Allow TABS in config
[clinton/Smoothieware.git] / src / modules / tools / temperaturecontrol / TemperatureControl.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 // TODO : THIS FILE IS LAME, MUST BE MADE MUCH BETTER
9
10 #include "libs/Module.h"
11 #include "libs/Kernel.h"
12 #include <math.h>
13 #include "TemperatureControl.h"
14 #include "TemperatureControlPool.h"
15 #include "libs/Pin.h"
16 #include "libs/Median.h"
17 #include "modules/robot/Conveyor.h"
18 #include "PublicDataRequest.h"
19 #include "TemperatureControlPublicAccess.h"
20 #include "StreamOutputPool.h"
21 #include "Config.h"
22 #include "checksumm.h"
23 #include "Gcode.h"
24 #include "Adc.h"
25 #include "SlowTicker.h"
26 #include "Pauser.h"
27
28 #include "MRI_Hooks.h"
29
30 #define UNDEFINED -1
31
32 #define thermistor_checksum CHECKSUM("thermistor")
33 #define r0_checksum CHECKSUM("r0")
34 #define readings_per_second_checksum CHECKSUM("readings_per_second")
35 #define max_pwm_checksum CHECKSUM("max_pwm")
36 #define pwm_frequency_checksum CHECKSUM("pwm_frequency")
37 #define bang_bang_checksum CHECKSUM("bang_bang")
38 #define hysteresis_checksum CHECKSUM("hysteresis")
39 #define t0_checksum CHECKSUM("t0")
40 #define beta_checksum CHECKSUM("beta")
41 #define vadc_checksum CHECKSUM("vadc")
42 #define vcc_checksum CHECKSUM("vcc")
43 #define r1_checksum CHECKSUM("r1")
44 #define r2_checksum CHECKSUM("r2")
45 #define thermistor_pin_checksum CHECKSUM("thermistor_pin")
46 #define heater_pin_checksum CHECKSUM("heater_pin")
47
48 #define get_m_code_checksum CHECKSUM("get_m_code")
49 #define set_m_code_checksum CHECKSUM("set_m_code")
50 #define set_and_wait_m_code_checksum CHECKSUM("set_and_wait_m_code")
51
52 #define designator_checksum CHECKSUM("designator")
53
54 #define p_factor_checksum CHECKSUM("p_factor")
55 #define i_factor_checksum CHECKSUM("i_factor")
56 #define d_factor_checksum CHECKSUM("d_factor")
57
58 #define i_max_checksum CHECKSUM("i_max")
59
60 #define preset1_checksum CHECKSUM("preset1")
61 #define preset2_checksum CHECKSUM("preset2")
62
63
64 TemperatureControl::TemperatureControl(uint16_t name) :
65 name_checksum(name), waiting(false), min_temp_violated(false) {}
66
67 void TemperatureControl::on_module_loaded(){
68
69 // We start not desiring any temp
70 this->target_temperature = UNDEFINED;
71
72 // Settings
73 this->on_config_reload(this);
74
75 this->acceleration_factor = 10;
76
77 // Register for events
78 register_for_event(ON_CONFIG_RELOAD);
79 this->register_for_event(ON_GCODE_EXECUTE);
80 this->register_for_event(ON_GCODE_RECEIVED);
81 this->register_for_event(ON_MAIN_LOOP);
82 this->register_for_event(ON_SECOND_TICK);
83 this->register_for_event(ON_GET_PUBLIC_DATA);
84 this->register_for_event(ON_SET_PUBLIC_DATA);
85 }
86
87 void TemperatureControl::on_main_loop(void* argument){
88 if (this->min_temp_violated) {
89 THEKERNEL->streams->printf("Error: MINTEMP triggered on P%d.%d! check your thermistors!\n", this->thermistor_pin.port_number, this->thermistor_pin.pin);
90 this->min_temp_violated = false;
91 }
92 }
93
94 // Get configuration from the config file
95 void TemperatureControl::on_config_reload(void* argument){
96
97 // General config
98 this->set_m_code = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, set_m_code_checksum)->by_default(104)->as_number();
99 this->set_and_wait_m_code = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, set_and_wait_m_code_checksum)->by_default(109)->as_number();
100 this->get_m_code = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, get_m_code_checksum)->by_default(105)->as_number();
101 this->readings_per_second = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, readings_per_second_checksum)->by_default(20)->as_number();
102
103 this->designator = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, designator_checksum)->by_default(string("T"))->as_string();
104
105 // Values are here : http://reprap.org/wiki/Thermistor
106 this->r0 = 100000;
107 this->t0 = 25;
108 this->beta = 4066;
109 this->r1 = 0;
110 this->r2 = 4700;
111
112 // Preset values for various common types of thermistors
113 ConfigValue* thermistor = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, thermistor_checksum);
114 if( thermistor->value.compare("EPCOS100K" ) == 0 ){ // Default
115 }else if( thermistor->value.compare("RRRF100K" ) == 0 ){ this->beta = 3960;
116 }else if( thermistor->value.compare("RRRF10K" ) == 0 ){ this->beta = 3964; this->r0 = 10000; this->r1 = 680; this->r2 = 1600;
117 }else if( thermistor->value.compare("Honeywell100K") == 0 ){ this->beta = 3974;
118 }else if( thermistor->value.compare("Semitec" ) == 0 ){ this->beta = 4267;
119 }else if( thermistor->value.compare("HT100K" ) == 0 ){ this->beta = 3990; }
120
121 // Preset values are overriden by specified values
122 this->r0 = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, r0_checksum )->by_default(this->r0 )->as_number(); // Stated resistance eg. 100K
123 this->t0 = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, t0_checksum )->by_default(this->t0 )->as_number(); // Temperature at stated resistance, eg. 25C
124 this->beta = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, beta_checksum)->by_default(this->beta)->as_number(); // Thermistor beta rating. See http://reprap.org/bin/view/Main/MeasuringThermistorBeta
125 this->r1 = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, r1_checksum )->by_default(this->r1 )->as_number();
126 this->r2 = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, r2_checksum )->by_default(this->r2 )->as_number();
127
128 this->preset1 = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, preset1_checksum)->by_default(0)->as_number();
129 this->preset2 = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, preset2_checksum)->by_default(0)->as_number();
130
131
132 // Thermistor math
133 j = (1.0 / beta);
134 k = (1.0 / (t0 + 273.15));
135
136 // sigma-delta output modulation
137 o = 0;
138
139 // Thermistor pin for ADC readings
140 this->thermistor_pin.from_string(THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, thermistor_pin_checksum )->required()->as_string());
141 THEKERNEL->adc->enable_pin(&thermistor_pin);
142
143 // Heater pin
144 this->heater_pin.from_string( THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, heater_pin_checksum)->required()->as_string())->as_output();
145 this->heater_pin.max_pwm( THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, max_pwm_checksum)->by_default(255)->as_number() );
146
147 this->heater_pin.set(0);
148 this->heater_on= false;
149
150 // used to enable bang bang control of heater
151 this->use_bangbang= THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, bang_bang_checksum)->by_default(false)->as_bool();
152 this->hysteresis= THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, hysteresis_checksum)->by_default(2)->as_number();
153
154 set_low_on_debug(heater_pin.port_number, heater_pin.pin);
155
156 // activate SD-DAC timer
157 THEKERNEL->slow_ticker->attach( THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, pwm_frequency_checksum)->by_default(2000)->as_number() , &heater_pin, &Pwm::on_tick);
158
159 // reading tick
160 THEKERNEL->slow_ticker->attach( this->readings_per_second, this, &TemperatureControl::thermistor_read_tick );
161 this->PIDdt= 1.0 / this->readings_per_second;
162
163 // PID
164 setPIDp( THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, p_factor_checksum)->by_default(10 )->as_number() );
165 setPIDi( THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, i_factor_checksum)->by_default(0.3f)->as_number() );
166 setPIDd( THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, d_factor_checksum)->by_default(200)->as_number() );
167 // set to the same as max_pwm by default
168 this->i_max = THEKERNEL->config->value(temperature_control_checksum, this->name_checksum, i_max_checksum )->by_default(this->heater_pin.max_pwm())->as_number();
169 this->iTerm = 0.0;
170 this->lastInput= -1.0;
171 this->last_reading = 0.0;
172 }
173
174 void TemperatureControl::on_gcode_received(void* argument){
175 Gcode* gcode = static_cast<Gcode*>(argument);
176 if (gcode->has_m) {
177 // Get temperature
178 if( gcode->m == this->get_m_code ){
179 char buf[32]; // should be big enough for any status
180 int n= snprintf(buf, sizeof(buf), "%s:%3.1f /%3.1f @%d ", this->designator.c_str(), this->get_temperature(), ((target_temperature == UNDEFINED)?0.0:target_temperature), this->o);
181 gcode->txt_after_ok.append(buf, n);
182 gcode->mark_as_taken();
183
184 } else if (gcode->m == 301) {
185 gcode->mark_as_taken();
186 if (gcode->has_letter('S') && (gcode->get_value('S') == this->pool_index))
187 {
188 if (gcode->has_letter('P'))
189 setPIDp( gcode->get_value('P') );
190 if (gcode->has_letter('I'))
191 setPIDi( gcode->get_value('I') );
192 if (gcode->has_letter('D'))
193 setPIDd( gcode->get_value('D') );
194 if (gcode->has_letter('X'))
195 this->i_max = gcode->get_value('X');
196 }
197 //gcode->stream->printf("%s(S%d): Pf:%g If:%g Df:%g X(I_max):%g Pv:%g Iv:%g Dv:%g O:%d\n", this->designator.c_str(), this->pool_index, this->p_factor, this->i_factor/this->PIDdt, this->d_factor*this->PIDdt, this->i_max, this->p, this->i, this->d, o);
198 gcode->stream->printf("%s(S%d): Pf:%g If:%g Df:%g X(I_max):%g O:%d\n", this->designator.c_str(), this->pool_index, this->p_factor, this->i_factor/this->PIDdt, this->d_factor*this->PIDdt, this->i_max, o);
199
200 } else if (gcode->m == 303) {
201 if (gcode->has_letter('E') && (gcode->get_value('E') == this->pool_index)) {
202 gcode->mark_as_taken();
203 float target = 150.0;
204 if (gcode->has_letter('S')) {
205 target = gcode->get_value('S');
206 gcode->stream->printf("Target: %5.1f\n", target);
207 }
208 int ncycles= 8;
209 if (gcode->has_letter('C')) {
210 ncycles= gcode->get_value('C');
211 }
212 gcode->stream->printf("Start PID tune, command is %s\n", gcode->command.c_str());
213 this->pool->PIDtuner->begin(this, target, gcode->stream, ncycles);
214 }
215
216 } else if (gcode->m == 500 || gcode->m == 503){// M500 saves some volatile settings to config override file, M503 just prints the settings
217 gcode->stream->printf(";PID settings:\nM301 S%d P%1.4f I%1.4f D%1.4f\n", this->pool_index, this->p_factor, this->i_factor/this->PIDdt, this->d_factor*this->PIDdt);
218 gcode->mark_as_taken();
219
220 } else if( ( gcode->m == this->set_m_code || gcode->m == this->set_and_wait_m_code ) && gcode->has_letter('S') ) {
221 // Attach gcodes to the last block for on_gcode_execute
222 THEKERNEL->conveyor->append_gcode(gcode);
223
224 // push an empty block if we have to wait, so the Planner can get things right, and we can prevent subsequent non-move gcodes from executing
225 if (gcode->m == this->set_and_wait_m_code)
226 // ensure that no subsequent gcodes get executed with our M109 or similar
227 THEKERNEL->conveyor->queue_head_block();
228 }
229 }
230 }
231
232 void TemperatureControl::on_gcode_execute(void* argument){
233 Gcode* gcode = static_cast<Gcode*>(argument);
234 if( gcode->has_m){
235 if (((gcode->m == this->set_m_code) || (gcode->m == this->set_and_wait_m_code))
236 && gcode->has_letter('S'))
237 {
238 float v = gcode->get_value('S');
239
240 if (v == 0.0)
241 {
242 this->target_temperature = UNDEFINED;
243 this->heater_pin.set(0);
244 }
245 else
246 {
247 this->set_desired_temperature(v);
248
249 if( gcode->m == this->set_and_wait_m_code)
250 {
251 THEKERNEL->pauser->take();
252 this->waiting = true;
253 }
254 }
255 }
256 }
257 }
258
259 void TemperatureControl::on_get_public_data(void* argument){
260 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
261
262 if(!pdr->starts_with(temperature_control_checksum)) return;
263
264 if(!pdr->second_element_is(this->name_checksum)) return; // will be bed or hotend
265
266 // ok this is targeted at us, so send back the requested data
267 if(pdr->third_element_is(current_temperature_checksum)) {
268 // this must be static as it will be accessed long after we have returned
269 static struct pad_temperature temp_return;
270 temp_return.current_temperature= this->get_temperature();
271 temp_return.target_temperature= (target_temperature == UNDEFINED) ? 0 : this->target_temperature;
272 temp_return.pwm= this->o;
273
274 pdr->set_data_ptr(&temp_return);
275 pdr->set_taken();
276 }
277 }
278
279 void TemperatureControl::on_set_public_data(void* argument){
280 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
281
282 if(!pdr->starts_with(temperature_control_checksum)) return;
283
284 if(!pdr->second_element_is(this->name_checksum)) return; // will be bed or hotend
285
286 // ok this is targeted at us, so set the temp
287 float t= *static_cast<float*>(pdr->get_data_ptr());
288 this->set_desired_temperature(t);
289 pdr->set_taken();
290 }
291
292 void TemperatureControl::set_desired_temperature(float desired_temperature)
293 {
294 if (desired_temperature == 1.0)
295 desired_temperature = preset1;
296 else if (desired_temperature == 2.0)
297 desired_temperature = preset2;
298
299 target_temperature = desired_temperature;
300 if (desired_temperature == 0.0)
301 heater_pin.set((o = 0));
302 }
303
304 float TemperatureControl::get_temperature(){
305 return last_reading;
306 }
307
308 float TemperatureControl::adc_value_to_temperature(int adc_value)
309 {
310 if ((adc_value == 4095) || (adc_value == 0))
311 return INFINITY;
312 float r = r2 / ((4095.0 / adc_value) - 1.0);
313 if (r1 > 0)
314 r = (r1 * r) / (r1 - r);
315 return (1.0 / (k + (j * log(r / r0)))) - 273.15;
316 }
317
318 uint32_t TemperatureControl::thermistor_read_tick(uint32_t dummy){
319 int r = new_thermistor_reading();
320
321 float temperature = adc_value_to_temperature(r);
322
323 if (target_temperature > 0)
324 {
325 if ((r <= 1) || (r >= 4094))
326 {
327 this->min_temp_violated = true;
328 target_temperature = UNDEFINED;
329 heater_pin.set(0);
330 }
331 else
332 {
333 pid_process(temperature);
334 if ((temperature > target_temperature) && waiting)
335 {
336 THEKERNEL->pauser->release();
337 waiting = false;
338 }
339 }
340 }
341 else
342 {
343 heater_pin.set((o = 0));
344 }
345 last_reading = temperature;
346 return 0;
347 }
348
349 /**
350 * Based on https://github.com/br3ttb/Arduino-PID-Library
351 */
352 void TemperatureControl::pid_process(float temperature)
353 {
354 if(use_bangbang) {
355 // bang bang if very simple, if temp is < target - hysteresis turn on full else if temp is > target + hysteresis turn heater off
356 // good for relays
357 if(temperature > target_temperature+hysteresis && heater_on) {
358 heater_pin.set(false);
359 heater_on= false;
360 this->o= 0; // for display purposes only
361
362 }else if(temperature < target_temperature-hysteresis && !heater_on) {
363 if(heater_pin.max_pwm() >= 255) {
364 // turn on full
365 this->heater_pin.set(true);
366 this->o= 255; // for display purposes only
367 }else{
368 // only to whatever max pwm is configured
369 this->heater_pin.pwm(heater_pin.max_pwm());
370 this->o= heater_pin.max_pwm(); // for display purposes only
371 }
372 heater_on= true;
373 }
374 return;
375 }
376
377 // regular PID control
378 float error = target_temperature - temperature;
379 this->iTerm += (error * this->i_factor);
380 if (this->iTerm > this->i_max) this->iTerm = this->i_max;
381 else if (this->iTerm < 0.0) this->iTerm = 0.0;
382
383 if(this->lastInput < 0.0) this->lastInput= temperature; // set first time
384 float d= (temperature - this->lastInput);
385
386 // calculate the PID output
387 // TODO does this need to be scaled by max_pwm/256? I think not as p_factor already does that
388 this->o = (this->p_factor*error) + this->iTerm - (this->d_factor*d);
389
390 if (this->o >= heater_pin.max_pwm())
391 this->o = heater_pin.max_pwm();
392 else if (this->o < 0)
393 this->o = 0;
394
395 this->heater_pin.pwm(this->o);
396 this->lastInput= temperature;
397 }
398
399 int TemperatureControl::new_thermistor_reading()
400 {
401 int last_raw = THEKERNEL->adc->read(&thermistor_pin);
402 if (queue.size() >= queue.capacity()) {
403 uint16_t l;
404 queue.pop_front(l);
405 }
406 uint16_t r = last_raw;
407 queue.push_back(r);
408 for (int i=0; i<queue.size(); i++)
409 median_buffer[i] = *queue.get_ref(i);
410 uint16_t m = median_buffer[quick_median(median_buffer, queue.size())];
411 return m;
412 }
413
414 void TemperatureControl::on_second_tick(void* argument)
415 {
416 if (waiting)
417 THEKERNEL->streams->printf("%s:%3.1f /%3.1f @%d\n", designator.c_str(), get_temperature(), ((target_temperature == UNDEFINED)?0.0:target_temperature), o);
418 }
419
420 void TemperatureControl::setPIDp(float p) {
421 this->p_factor= p;
422 }
423
424 void TemperatureControl::setPIDi(float i) {
425 this->i_factor= i*this->PIDdt;
426 }
427
428 void TemperatureControl::setPIDd(float d) {
429 this->d_factor= d/this->PIDdt;
430 }