Convert the endstop/homing configs to mm and mm/sec
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "Endstops.h"
13 #include "libs/nuts_bolts.h"
14 #include "libs/Pin.h"
15 #include "libs/StepperMotor.h"
16 #include "wait_api.h" // mbed.h lib
17
18 Endstops::Endstops(){
19 this->status = NOT_HOMING;
20 }
21
22 void Endstops::on_module_loaded() {
23 // Do not do anything if not enabled
24 if( this->kernel->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ){ return; }
25
26 register_for_event(ON_CONFIG_RELOAD);
27 this->register_for_event(ON_GCODE_RECEIVED);
28
29 // Take StepperMotor objects from Robot and keep them here
30 this->steppers[0] = this->kernel->robot->alpha_stepper_motor;
31 this->steppers[1] = this->kernel->robot->beta_stepper_motor;
32 this->steppers[2] = this->kernel->robot->gamma_stepper_motor;
33
34 // Settings
35 this->on_config_reload(this);
36
37 }
38
39 // Get config
40 void Endstops::on_config_reload(void* argument){
41 this->pins[0].from_string( this->kernel->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
42 this->pins[1].from_string( this->kernel->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
43 this->pins[2].from_string( this->kernel->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
44 this->pins[3].from_string( this->kernel->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
45 this->pins[4].from_string( this->kernel->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
46 this->pins[5].from_string( this->kernel->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
47
48 // we need to know steps per mm for M206, also use them for all settings
49 this->steps_per_mm[0] = this->kernel->config->value(alpha_steps_per_mm_checksum )->as_number();
50 this->steps_per_mm[1] = this->kernel->config->value(beta_steps_per_mm_checksum )->as_number();
51 this->steps_per_mm[2] = this->kernel->config->value(gamma_steps_per_mm_checksum )->as_number();
52
53 this->fast_rates[0] = this->kernel->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number();
54 this->fast_rates[1] = this->kernel->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number();
55 this->fast_rates[2] = this->kernel->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number();
56 this->slow_rates[0] = this->kernel->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number();
57 this->slow_rates[1] = this->kernel->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number();
58 this->slow_rates[2] = this->kernel->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number();
59 this->retract_steps[0] = this->kernel->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number();
60 this->retract_steps[1] = this->kernel->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number();
61 this->retract_steps[2] = this->kernel->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number();
62
63 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
64 this->fast_rates[0]= this->kernel->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
65 this->fast_rates[1]= this->kernel->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
66 this->fast_rates[2]= this->kernel->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
67 this->slow_rates[0]= this->kernel->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0] / steps_per_mm[0])->as_number() * steps_per_mm[0];
68 this->slow_rates[1]= this->kernel->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1] / steps_per_mm[1])->as_number() * steps_per_mm[1];
69 this->slow_rates[2]= this->kernel->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2] / steps_per_mm[2])->as_number() * steps_per_mm[2];
70 this->retract_steps[0]= this->kernel->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_steps[0]/steps_per_mm[0])->as_number() * steps_per_mm[0];
71 this->retract_steps[1]= this->kernel->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_steps[1]/steps_per_mm[1])->as_number() * steps_per_mm[1];
72 this->retract_steps[2]= this->kernel->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_steps[2]/steps_per_mm[2])->as_number() * steps_per_mm[2];
73
74 // endstop trim used by deltas to do soft adjusting, in mm, convert to steps
75 this->trim[0] = this->kernel->config->value(alpha_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[0];
76 this->trim[1] = this->kernel->config->value(beta_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[0];
77 this->trim[2] = this->kernel->config->value(gamma_trim_checksum )->by_default(0 )->as_number() * steps_per_mm[0];
78
79 this->debounce_count = this->kernel->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
80
81
82 // get homing direction and convert to boolean where true is home to min, and false is home to max
83 int home_dir = get_checksum(this->kernel->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
84 this->home_direction[0] = home_dir != home_to_max_checksum;
85
86 home_dir = get_checksum(this->kernel->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
87 this->home_direction[1] = home_dir != home_to_max_checksum;
88
89 home_dir = get_checksum(this->kernel->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
90 this->home_direction[2] = home_dir != home_to_max_checksum;
91
92 this->homing_position[0] = this->home_direction[0]?this->kernel->config->value(alpha_min_checksum)->by_default(0)->as_number():this->kernel->config->value(alpha_max_checksum)->by_default(200)->as_number();
93 this->homing_position[1] = this->home_direction[1]?this->kernel->config->value(beta_min_checksum )->by_default(0)->as_number():this->kernel->config->value(beta_max_checksum )->by_default(200)->as_number();;
94 this->homing_position[2] = this->home_direction[2]?this->kernel->config->value(gamma_min_checksum)->by_default(0)->as_number():this->kernel->config->value(gamma_max_checksum)->by_default(200)->as_number();;
95
96 this->is_corexy = this->kernel->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
97 }
98
99 void Endstops::wait_for_homed(char axes_to_move){
100 bool running = true;
101 unsigned int debounce[3] = {0,0,0};
102 while(running){
103 running = false;
104 this->kernel->call_event(ON_IDLE);
105 for( char c = 'X'; c <= 'Z'; c++ ){
106 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
107 if( this->pins[c - 'X' + (this->home_direction[c - 'X']?0:3)].get() ){
108 if( debounce[c - 'X'] < debounce_count ) {
109 debounce[c - 'X'] ++;
110 running = true;
111 } else if ( this->steppers[c - 'X']->moving ){
112 this->steppers[c - 'X']->move(0,0);
113 }
114 }else{
115 // The endstop was not hit yet
116 running = true;
117 debounce[c - 'X'] = 0;
118 }
119 }
120 }
121 }
122 }
123
124 // this homing works for cartesian and delta printers, not for HBots/CoreXY
125 void Endstops::do_homing(char axes_to_move) {
126 // Start moving the axes to the origin
127 this->status = MOVING_TO_ORIGIN_FAST;
128 for( char c = 'X'; c <= 'Z'; c++ ){
129 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
130 this->steppers[c - 'X']->set_speed(this->fast_rates[c - 'X']);
131 this->steppers[c - 'X']->move(this->home_direction[c - 'X'],10000000);
132 }
133 }
134
135 // Wait for all axes to have homed
136 this->wait_for_homed(axes_to_move);
137
138 // Move back a small distance
139 this->status = MOVING_BACK;
140 bool inverted_dir;
141 for( char c = 'X'; c <= 'Z'; c++ ){
142 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
143 inverted_dir = !this->home_direction[c - 'X'];
144 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
145 this->steppers[c - 'X']->move(inverted_dir,this->retract_steps[c - 'X']);
146 }
147 }
148
149 // Wait for moves to be done
150 for( char c = 'X'; c <= 'Z'; c++ ){
151 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
152 while( this->steppers[c - 'X']->moving ){
153 this->kernel->call_event(ON_IDLE);
154 }
155 }
156 }
157
158 // Start moving the axes to the origin slowly
159 this->status = MOVING_TO_ORIGIN_SLOW;
160 for( char c = 'X'; c <= 'Z'; c++ ){
161 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
162 this->steppers[c - 'X']->set_speed(this->slow_rates[c -'X']);
163 this->steppers[c - 'X']->move(this->home_direction[c - 'X'],10000000);
164 }
165 }
166
167 // Wait for all axes to have homed
168 this->wait_for_homed(axes_to_move);
169
170 // move for soft trim
171 this->status = MOVING_BACK;
172 for( char c = 'X'; c <= 'Z'; c++ ){
173 if( this->trim[c - 'X'] != 0 && ( axes_to_move >> ( c - 'X' ) ) & 1 ){
174 inverted_dir = !this->home_direction[c - 'X'];
175 // move up or down depending on sign of trim
176 if(this->trim[c - 'X'] < 0) inverted_dir= !inverted_dir;
177 this->steppers[c - 'X']->set_speed(this->slow_rates[c - 'X']);
178 this->steppers[c - 'X']->move(inverted_dir,this->trim[c - 'X']);
179 }
180 }
181
182 // Wait for moves to be done
183 for( char c = 'X'; c <= 'Z'; c++ ){
184 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
185 this->kernel->streams->printf("axis %c \r\n", c );
186 while( this->steppers[c - 'X']->moving ){
187 this->kernel->call_event(ON_IDLE);
188 }
189 }
190 }
191
192 // Homing is done
193 this->status = NOT_HOMING;
194 }
195
196 #define X_AXIS 0
197 #define Y_AXIS 1
198 #define Z_AXIS 2
199
200 // this homing works for HBots/CoreXY
201 void Endstops::do_homing_corexy(char axes_to_move) {
202 // Start moving the axes to the origin
203 if(axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
204 this->status = MOVING_TO_ORIGIN_FAST;
205 this->steppers[X_AXIS]->set_speed(this->fast_rates[X_AXIS]);
206 this->steppers[X_AXIS]->move(this->home_direction[X_AXIS], 10000000);
207 this->steppers[Y_AXIS]->set_speed(this->fast_rates[X_AXIS]);
208 this->steppers[Y_AXIS]->move(this->home_direction[X_AXIS], 10000000);
209
210 // wait for X
211 this->wait_for_homed(0x01);
212
213 // Move back a small distance
214 this->status = MOVING_BACK;
215 this->steppers[X_AXIS]->set_speed(this->slow_rates[X_AXIS]);
216 this->steppers[X_AXIS]->move(!this->home_direction[X_AXIS], this->retract_steps[X_AXIS]);
217 this->steppers[Y_AXIS]->set_speed(this->slow_rates[X_AXIS]);
218 this->steppers[Y_AXIS]->move(!this->home_direction[X_AXIS], this->retract_steps[X_AXIS]);
219
220 // wait until done
221 while( this->steppers[X_AXIS]->moving ){ this->kernel->call_event(ON_IDLE); }
222
223 // Start moving the axes to the origin slowly
224 this->status = MOVING_TO_ORIGIN_SLOW;
225 this->steppers[X_AXIS]->set_speed(this->slow_rates[X_AXIS]);
226 this->steppers[X_AXIS]->move(this->home_direction[X_AXIS], 10000000);
227 this->steppers[Y_AXIS]->set_speed(this->slow_rates[X_AXIS]);
228 this->steppers[Y_AXIS]->move(this->home_direction[X_AXIS], 10000000);
229
230 // wait for X
231 this->wait_for_homed(0x01);
232 }
233
234 if(axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
235 this->status = MOVING_TO_ORIGIN_FAST;
236 this->steppers[X_AXIS]->set_speed(this->fast_rates[Y_AXIS]);
237 this->steppers[X_AXIS]->move(this->home_direction[Y_AXIS], 10000000);
238 this->steppers[Y_AXIS]->set_speed(this->fast_rates[Y_AXIS]); // yes I use X_axis speed as they need to go at the same speed
239 this->steppers[Y_AXIS]->move(!this->home_direction[Y_AXIS], 10000000);
240
241 // wait for Y
242 this->wait_for_homed(0x02);
243
244 // Move back a small distance
245 this->status = MOVING_BACK;
246 this->steppers[X_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
247 this->steppers[X_AXIS]->move(!this->home_direction[Y_AXIS], this->retract_steps[Y_AXIS]);
248 this->steppers[Y_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
249 this->steppers[Y_AXIS]->move(this->home_direction[Y_AXIS], this->retract_steps[Y_AXIS]);
250
251 // wait until done
252 while( this->steppers[Y_AXIS]->moving ){ this->kernel->call_event(ON_IDLE); }
253
254 // Start moving the axes to the origin slowly
255 this->status = MOVING_TO_ORIGIN_SLOW;
256 this->steppers[X_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
257 this->steppers[X_AXIS]->move(this->home_direction[Y_AXIS], 10000000);
258 this->steppers[Y_AXIS]->set_speed(this->slow_rates[Y_AXIS]);
259 this->steppers[Y_AXIS]->move(!this->home_direction[Y_AXIS], 10000000);
260
261 // wait for Y
262 this->wait_for_homed(0x02);
263 }
264
265 if(axes_to_move & 0x04) { // move Z
266 do_homing(0x04); // just home normally for Z
267 }
268
269 // Homing is done
270 this->status = NOT_HOMING;
271 }
272
273 // Start homing sequences by response to GCode commands
274 void Endstops::on_gcode_received(void* argument)
275 {
276 Gcode* gcode = static_cast<Gcode*>(argument);
277 if( gcode->has_g)
278 {
279 if( gcode->g == 28 )
280 {
281 gcode->mark_as_taken();
282 // G28 is received, we have homing to do
283
284 // First wait for the queue to be empty
285 this->kernel->conveyor->wait_for_empty_queue();
286
287 // Do we move select axes or all of them
288 char axes_to_move = 0;
289 // only enable homing if the endstop is defined
290 bool home_all= !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
291
292 for( char c = 'X'; c <= 'Z'; c++ ){
293 if( (home_all || gcode->has_letter(c)) && this->pins[c - 'X' + (this->home_direction[c - 'X']?0:3)].connected() ){ axes_to_move += ( 1 << (c - 'X' ) ); }
294 }
295
296 // Enable the motors
297 this->kernel->stepper->turn_enable_pins_on();
298
299 // do the actual homing
300 if(is_corexy)
301 do_homing_corexy(axes_to_move);
302 else
303 do_homing(axes_to_move);
304
305 // Zero the ax(i/e)s position
306 for( char c = 'X'; c <= 'Z'; c++ ){
307 if( ( axes_to_move >> ( c - 'X' ) ) & 1 ){
308
309 this->kernel->robot->reset_axis_position(this->homing_position[c - 'X'], c - 'X');
310 }
311 }
312
313 }
314 }
315 else if (gcode->has_m){
316 switch(gcode->m){
317 case 119:
318 {
319
320 int px= this->home_direction[0] ? 0 : 3;
321 int py= this->home_direction[1] ? 1 : 4;
322 int pz= this->home_direction[2] ? 2 : 5;
323 const char* mx= this->home_direction[0] ? "min" : "max";
324 const char* my= this->home_direction[1] ? "min" : "max";
325 const char* mz= this->home_direction[2] ? "min" : "max";
326
327 gcode->stream->printf("X %s:%d Y %s:%d Z %s:%d\n", mx, this->pins[px].get(), my, this->pins[py].get(), mz, this->pins[pz].get());
328 gcode->mark_as_taken();
329 }
330 break;
331
332 case 206: // M206 - set trim for each axis in mm
333 {
334 int dirx= (this->home_direction[0] ? 1 : -1);
335 int diry= (this->home_direction[1] ? 1 : -1);
336 int dirz= (this->home_direction[2] ? 1 : -1);
337 double mm[3];
338 mm[0]= trim[0]/steps_per_mm[0] * dirx; // convert to mm
339 mm[1]= trim[1]/steps_per_mm[1] * diry;
340 mm[2]= trim[2]/steps_per_mm[2] * dirz;
341
342 if(gcode->has_letter('X')) mm[0]= gcode->get_value('X');
343 if(gcode->has_letter('Y')) mm[1]= gcode->get_value('Y');
344 if(gcode->has_letter('Z')) mm[2]= gcode->get_value('Z');
345
346 trim[0]= lround(mm[0]*steps_per_mm[0]) * dirx; // convert back to steps
347 trim[1]= lround(mm[1]*steps_per_mm[1]) * diry;
348 trim[2]= lround(mm[2]*steps_per_mm[2]) * dirz;
349
350 // print the current trim values in mm and steps
351 char buf[64];
352 int n= snprintf(buf, sizeof(buf), "X:%5.3f (%d) Y:%5.3f (%d) Z:%5.3f (%d) ", mm[0], trim[0], mm[1], trim[1], mm[2], trim[2]);
353 gcode->txt_after_ok.append(buf, n);
354 gcode->mark_as_taken();
355 }
356 break;
357
358 }
359 }
360 }
361