Merge remote-tracking branch 'upstream/edge' into feature/acceleration-per-tick
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "modules/robot/ActuatorCoordinates.h"
13 #include "Endstops.h"
14 #include "libs/nuts_bolts.h"
15 #include "libs/Pin.h"
16 #include "libs/StepperMotor.h"
17 #include "wait_api.h" // mbed.h lib
18 #include "Robot.h"
19 #include "Config.h"
20 #include "SlowTicker.h"
21 #include "Planner.h"
22 #include "checksumm.h"
23 #include "utils.h"
24 #include "ConfigValue.h"
25 #include "libs/StreamOutput.h"
26 #include "PublicDataRequest.h"
27 #include "EndstopsPublicAccess.h"
28 #include "StreamOutputPool.h"
29 #include "StepTicker.h"
30 #include "BaseSolution.h"
31 #include "SerialMessage.h"
32
33 #include <ctype.h>
34
35 #define ALPHA_AXIS 0
36 #define BETA_AXIS 1
37 #define GAMMA_AXIS 2
38 #define X_AXIS 0
39 #define Y_AXIS 1
40 #define Z_AXIS 2
41
42 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
43 #define corexy_homing_checksum CHECKSUM("corexy_homing")
44 #define delta_homing_checksum CHECKSUM("delta_homing")
45 #define rdelta_homing_checksum CHECKSUM("rdelta_homing")
46 #define scara_homing_checksum CHECKSUM("scara_homing")
47
48 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
49 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
50 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
51
52 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
53 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
54 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
55
56 #define alpha_trim_checksum CHECKSUM("alpha_trim")
57 #define beta_trim_checksum CHECKSUM("beta_trim")
58 #define gamma_trim_checksum CHECKSUM("gamma_trim")
59
60 // these values are in steps and should be deprecated
61 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
62 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
63 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
64
65 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
66 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
67 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
68
69 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
70 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
71 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
72
73 // same as above but in user friendly mm/s and mm
74 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
75 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
76 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
77
78 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
79 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
80 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
81
82 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
83 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
84 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
85
86 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
87
88 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
89 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
90 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
91 #define home_to_max_checksum CHECKSUM("home_to_max")
92 #define home_to_min_checksum CHECKSUM("home_to_min")
93 #define alpha_min_checksum CHECKSUM("alpha_min")
94 #define beta_min_checksum CHECKSUM("beta_min")
95 #define gamma_min_checksum CHECKSUM("gamma_min")
96
97 #define alpha_max_checksum CHECKSUM("alpha_max")
98 #define beta_max_checksum CHECKSUM("beta_max")
99 #define gamma_max_checksum CHECKSUM("gamma_max")
100
101 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
102 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
103 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
104
105 #define homing_order_checksum CHECKSUM("homing_order")
106 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
107
108 #define STEPPER THEROBOT->actuators
109 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
110
111
112 // Homing States
113 enum {
114 MOVING_TO_ENDSTOP_FAST, // homing move
115 MOVING_TO_ENDSTOP_SLOW, // homing move
116 MOVING_BACK, // homing move
117 NOT_HOMING,
118 BACK_OFF_HOME,
119 MOVE_TO_ORIGIN,
120 LIMIT_TRIGGERED
121 };
122
123 Endstops::Endstops()
124 {
125 this->status = NOT_HOMING;
126 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
127 debounce.fill(0);
128 }
129
130 void Endstops::on_module_loaded()
131 {
132 // Do not do anything if not enabled
133 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
134 delete this;
135 return;
136 }
137
138 register_for_event(ON_GCODE_RECEIVED);
139 register_for_event(ON_GET_PUBLIC_DATA);
140 register_for_event(ON_SET_PUBLIC_DATA);
141
142 // Settings
143 this->load_config();
144
145 THEKERNEL->slow_ticker->attach(1000, this, &Endstops::read_endstops);
146 }
147
148 // Get config
149 void Endstops::load_config()
150 {
151 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
156 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
157
158 // These are the old ones in steps still here for backwards compatibility
159 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
160 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
161 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
162 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
163 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
164 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
165 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
166 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
167 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
168
169 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
170 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
171 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
172 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
173 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
174 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
175 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
176 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
177 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
178 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
179
180 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
181
182 // get homing direction and convert to boolean where true is home to min, and false is home to max
183 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
184 this->home_direction[0] = home_dir != home_to_max_checksum;
185
186 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
187 this->home_direction[1] = home_dir != home_to_max_checksum;
188
189 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
190 this->home_direction[2] = home_dir != home_to_max_checksum;
191
192 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
193 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
194 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
195
196 // used to set maximum movement on homing
197 this->alpha_max= THEKERNEL->config->value(alpha_max_checksum)->by_default(500)->as_number();
198 this->beta_max= THEKERNEL->config->value(beta_max_checksum)->by_default(500)->as_number();
199 this->gamma_max= THEKERNEL->config->value(gamma_max_checksum)->by_default(500)->as_number();
200
201 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
202 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
203 this->is_rdelta = THEKERNEL->config->value(rdelta_homing_checksum)->by_default(false)->as_bool();
204 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
205
206 // see if an order has been specified, must be three characters, XYZ or YXZ etc
207 string order = THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
208 this->homing_order = 0;
209 if(order.size() == 3 && !(this->is_delta || this->is_rdelta)) {
210 int shift = 0;
211 for(auto c : order) {
212 uint8_t i = toupper(c) - 'X';
213 if(i > 2) { // bad value
214 this->homing_order = 0;
215 break;
216 }
217 homing_order |= (i << shift);
218 shift += 2;
219 }
220 }
221
222 // endstop trim used by deltas to do soft adjusting
223 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
224 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
225 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
226 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
227
228 // limits enabled
229 this->limit_enable[X_AXIS] = THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
230 this->limit_enable[Y_AXIS] = THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
231 this->limit_enable[Z_AXIS] = THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
232
233 // set to true by default for deltas due to trim, false on cartesians
234 this->move_to_origin_after_home = THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
235
236 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]) {
237 register_for_event(ON_IDLE);
238 if(this->is_delta || this->is_rdelta) {
239 // we must enable all the limits not just one
240 this->limit_enable[X_AXIS] = true;
241 this->limit_enable[Y_AXIS] = true;
242 this->limit_enable[Z_AXIS] = true;
243 }
244 }
245
246 //
247 if(this->is_delta || this->is_rdelta) {
248 // some things must be the same or they will die, so force it here to avoid config errors
249 this->fast_rates[1] = this->fast_rates[2] = this->fast_rates[0];
250 this->slow_rates[1] = this->slow_rates[2] = this->slow_rates[0];
251 this->retract_mm[1] = this->retract_mm[2] = this->retract_mm[0];
252 this->home_direction[1] = this->home_direction[2] = this->home_direction[0];
253 // NOTE homing_position for rdelta is the angle of the actuator not the cartesian position
254 if(!this->is_rdelta) this->homing_position[0] = this->homing_position[1] = 0;
255 }
256 }
257
258 bool Endstops::debounced_get(int pin)
259 {
260 uint8_t debounce = 0;
261 while(this->pins[pin].get()) {
262 if ( ++debounce >= this->debounce_count ) {
263 // pin triggered
264 return true;
265 }
266 }
267 return false;
268 }
269
270 static const char *endstop_names[] = {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
271
272 void Endstops::on_idle(void *argument)
273 {
274 if(this->status == LIMIT_TRIGGERED) {
275 // if we were in limit triggered see if it has been cleared
276 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
277 if(this->limit_enable[c]) {
278 std::array<int, 2> minmax{{0, 3}};
279 // check min and max endstops
280 for (int i : minmax) {
281 int n = c + i;
282 if(this->pins[n].get()) {
283 // still triggered, so exit
284 bounce_cnt = 0;
285 return;
286 }
287 }
288 }
289 }
290 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
291 // clear the state
292 this->status = NOT_HOMING;
293 }
294 return;
295
296 } else if(this->status != NOT_HOMING) {
297 // don't check while homing
298 return;
299 }
300
301 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
302 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
303 std::array<int, 2> minmax{{0, 3}};
304 // check min and max endstops
305 for (int i : minmax) {
306 int n = c + i;
307 if(debounced_get(n)) {
308 // endstop triggered
309 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
310 this->status = LIMIT_TRIGGERED;
311 // disables heaters and motors, ignores incoming Gcode and flushes block queue
312 THEKERNEL->call_event(ON_HALT, nullptr);
313 return;
314 }
315 }
316 }
317 }
318 }
319
320 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
321 // checks if triggered and only backs off if triggered
322 void Endstops::back_off_home(std::bitset<3> axis)
323 {
324 std::vector<std::pair<char, float>> params;
325 this->status = BACK_OFF_HOME;
326
327 // these are handled differently
328 if(is_delta) {
329 // Move off of the endstop using a regular relative move in Z only
330 params.push_back({'Z', this->retract_mm[Z_AXIS] * (this->home_direction[Z_AXIS] ? 1 : -1)});
331
332 } else {
333 // cartesians, concatenate all the moves we need to do into one gcode
334 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
335 if(!axis[c]) continue; // only for axes we asked to move
336
337 // if not triggered no need to move off
338 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
339 params.push_back({c + 'X', this->retract_mm[c] * (this->home_direction[c] ? 1 : -1)});
340 }
341 }
342 }
343
344 if(!params.empty()) {
345 // Move off of the endstop using a regular relative move
346 params.insert(params.begin(), {'G', 0});
347 // use X slow rate to move, Z should have a max speed set anyway
348 params.push_back({'F', this->slow_rates[X_AXIS] * 60.0F});
349 char gcode_buf[64];
350 append_parameters(gcode_buf, params, sizeof(gcode_buf));
351 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
352 THEROBOT->push_state();
353 THEROBOT->absolute_mode = false; // needs to be relative mode
354 THEROBOT->on_gcode_received(&gc); // send to robot directly
355 // Wait for above to finish
356 THEKERNEL->conveyor->wait_for_empty_queue();
357 THEROBOT->pop_state();
358 }
359
360 this->status = NOT_HOMING;
361 }
362
363 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
364 void Endstops::move_to_origin()
365 {
366 if(!(axis_to_home[X_AXIS] && axis_to_home[Y_AXIS])) return; // ignore if X and Y not homing
367
368 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
369 // float pos[3]; THEROBOT->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
370
371 this->status = MOVE_TO_ORIGIN;
372 // Move to center using a regular move, use slower of X and Y fast rate
373 float rate = std::min(this->fast_rates[0], this->fast_rates[1]) * 60.0F;
374 char buf[32];
375 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
376 THEROBOT->push_state();
377 struct SerialMessage message;
378 message.message = buf;
379 message.stream = &(StreamOutput::NullStream);
380 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
381 // Wait for above to finish
382 THEKERNEL->conveyor->wait_for_empty_queue();
383 THEROBOT->pop_state();
384 this->status = NOT_HOMING;
385 }
386
387 // Called every millisecond in an ISR
388 uint32_t Endstops::read_endstops(uint32_t dummy)
389 {
390 if(this->status != MOVING_TO_ENDSTOP_SLOW && this->status != MOVING_TO_ENDSTOP_FAST) return 0; // not doing anything we need to monitor for
391
392 if(!is_corexy) {
393 // check each axis
394 for ( int m = X_AXIS; m <= Z_AXIS; m++ ) {
395 if(STEPPER[m]->is_moving()) {
396 // if it is moving then we check the associated endstop, and debounce it
397 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
398 if(debounce[m] < debounce_count) {
399 debounce[m]++;
400 } else {
401 // we signal the motor to stop, which will preempt any moves on that axis
402 STEPPER[m]->stop_moving();
403 }
404
405 } else {
406 // The endstop was not hit yet
407 debounce[m] = 0;
408 }
409 }
410 }
411
412 } else {
413 // corexy is different as the actuators are not directly related to the XY axis
414 // so we check the axis that is currently homing then stop all motors
415 for ( int m = X_AXIS; m <= Z_AXIS; m++ ) {
416 if(axis_to_home[m]) {
417 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
418 if(debounce[m] < debounce_count) {
419 debounce[m]++;
420 } else {
421 // we signal all the motors to stop, as on corexy X and Y motors will move for X and Y axis homing and we only hom eone axis at a time
422 STEPPER[X_AXIS]->stop_moving();
423 STEPPER[Y_AXIS]->stop_moving();
424 STEPPER[Z_AXIS]->stop_moving();
425 }
426
427 } else {
428 // The endstop was not hit yet
429 debounce[m] = 0;
430 }
431 }
432 }
433 }
434
435 return 0;
436 }
437
438 void Endstops::home(std::bitset<3> a)
439 {
440 // reset debounce counts
441 debounce.fill(0);
442
443 this->axis_to_home= a;
444
445 // Start moving the axes to the origin
446 this->status = MOVING_TO_ENDSTOP_FAST;
447
448 if(axis_to_home[X_AXIS] && axis_to_home[Y_AXIS]) {
449 // Home XY first so as not to slow them down by homing Z at the same time
450 float delta[3] {alpha_max, beta_max, 0};
451 if(this->home_direction[X_AXIS]) delta[X_AXIS]= -delta[X_AXIS];
452 if(this->home_direction[Y_AXIS]) delta[Y_AXIS]= -delta[Y_AXIS];
453 float feed_rate = std::min(fast_rates[X_AXIS], fast_rates[Y_AXIS]);
454 THEROBOT->solo_move(delta, feed_rate);
455
456 // Wait for XY to have homed
457 THECONVEYOR->wait_for_empty_queue();
458
459 } else if(axis_to_home[X_AXIS]) {
460 // now home X only
461 float delta[3] {alpha_max, 0, 0};
462 if(this->home_direction[X_AXIS]) delta[X_AXIS]= -delta[X_AXIS];
463 THEROBOT->solo_move(delta, fast_rates[X_AXIS]);
464 // wait for X
465 THECONVEYOR->wait_for_empty_queue();
466
467 } else if(axis_to_home[Y_AXIS]) {
468 // now home Y only
469 float delta[3] {0, beta_max, 0};
470 if(this->home_direction[Y_AXIS]) delta[Y_AXIS]= -delta[Y_AXIS];
471 THEROBOT->solo_move(delta, fast_rates[Y_AXIS]);
472 // wait for Y
473 THECONVEYOR->wait_for_empty_queue();
474 }
475
476 if(axis_to_home[Z_AXIS]) {
477 // now home z
478 float delta[3] {0, 0, gamma_max};
479 if(this->home_direction[Z_AXIS]) delta[Z_AXIS]= -delta[Z_AXIS];
480 THEROBOT->solo_move(delta, fast_rates[Z_AXIS]);
481 // wait for Z
482 THECONVEYOR->wait_for_empty_queue();
483 }
484
485 float delta[3]{0,0,0};
486 // use minimum feed rate of all three axes that are being homed (sub optimal)
487 float feed_rate= slow_rates[X_AXIS];
488 // Move back a small distance for all homing axis
489 this->status = MOVING_BACK;
490 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
491 if(axis_to_home[c]) {
492 delta[c]= this->retract_mm[c];
493 if(!this->home_direction[c]) delta[c]= -delta[c];
494 feed_rate= std::min(slow_rates[c], feed_rate);
495 }
496 }
497
498 THEROBOT->solo_move(delta, feed_rate);
499 // wait until finished
500 THECONVEYOR->wait_for_empty_queue();
501
502 // Start moving the axes to the origin slowly
503 this->status = MOVING_TO_ENDSTOP_SLOW;
504 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
505 if(axis_to_home[c]) {
506 delta[c]= this->retract_mm[c];
507 if(this->home_direction[c]) delta[c]= -delta[c];
508 }else{
509 delta[c]= 0;
510 }
511 }
512 THEROBOT->solo_move(delta, feed_rate);
513 // wait until finished
514 THECONVEYOR->wait_for_empty_queue();
515
516 this->status = NOT_HOMING;
517 }
518
519 void Endstops::process_home_command(Gcode* gcode)
520 {
521 if( (gcode->subcode == 0 && THEKERNEL->is_grbl_mode()) || (gcode->subcode == 2 && !THEKERNEL->is_grbl_mode()) ) {
522 // G28 in grbl mode or G28.2 in normal mode will do a rapid to the predefined position
523 // TODO spec says if XYZ specified move to them first then move to MCS of specifed axis
524 char buf[32];
525 snprintf(buf, sizeof(buf), "G53 G0 X%f Y%f", saved_position[X_AXIS], saved_position[Y_AXIS]); // must use machine coordinates in case G92 or WCS is in effect
526 struct SerialMessage message;
527 message.message = buf;
528 message.stream = &(StreamOutput::NullStream);
529 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
530 return;
531
532 } else if(THEKERNEL->is_grbl_mode() && gcode->subcode == 2) { // G28.2 in grbl mode forces homing (triggered by $H)
533 // fall through so it does homing cycle
534
535 } else if(gcode->subcode == 1) { // G28.1 set pre defined position
536 // saves current position in absolute machine coordinates
537 THEROBOT->get_axis_position(saved_position);
538 return;
539
540 } else if(gcode->subcode == 3) { // G28.3 is a smoothie special it sets manual homing
541 if(gcode->get_num_args() == 0) {
542 THEROBOT->reset_axis_position(0, 0, 0);
543 } else {
544 // do a manual homing based on given coordinates, no endstops required
545 if(gcode->has_letter('X')) THEROBOT->reset_axis_position(gcode->get_value('X'), X_AXIS);
546 if(gcode->has_letter('Y')) THEROBOT->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
547 if(gcode->has_letter('Z')) THEROBOT->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
548 }
549 return;
550
551 } else if(gcode->subcode == 4) { // G28.4 is a smoothie special it sets manual homing based on the actuator position (used for rotary delta)
552 // do a manual homing based on given coordinates, no endstops required, NOTE does not support the multi actuator hack
553 ActuatorCoordinates ac;
554 if(gcode->has_letter('A')) ac[0] = gcode->get_value('A');
555 if(gcode->has_letter('B')) ac[1] = gcode->get_value('B');
556 if(gcode->has_letter('C')) ac[2] = gcode->get_value('C');
557 THEROBOT->reset_actuator_position(ac);
558 return;
559
560 } else if(THEKERNEL->is_grbl_mode()) {
561 gcode->stream->printf("error:Unsupported command\n");
562 return;
563 }
564
565 // G28 is received, we have homing to do
566
567 // First wait for the queue to be empty
568 THEKERNEL->conveyor->wait_for_empty_queue();
569
570 // deltas, scaras always home Z axis only
571 bool home_in_z = this->is_delta || this->is_rdelta || this->is_scara;
572
573 // figure our which axis to home
574 bitset<3> haxis;
575 haxis.reset();
576
577 if(!home_in_z) { // ie not a delta
578 bool axis_speced = ( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
579 // only enable homing if the endstop is defined,
580 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
581 if (this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() && (!axis_speced || gcode->has_letter(c + 'X')) ) {
582 haxis.set(c);
583 }
584 }
585
586 } else {
587 // Only Z axis homes (even though all actuators move this is handled by arm solution)
588 haxis.set(Z_AXIS);
589 }
590
591 // save current actuator position so we can report how far we moved
592 ActuatorCoordinates start_pos{
593 THEROBOT->actuators[X_AXIS]->get_current_position(),
594 THEROBOT->actuators[Y_AXIS]->get_current_position(),
595 THEROBOT->actuators[Z_AXIS]->get_current_position()
596 };
597
598 // Enable the motors
599 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
600
601 // do the actual homing
602 if(homing_order != 0) {
603 // if an order has been specified do it in the specified order
604 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
605 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
606 for (uint8_t m = homing_order; m != 0; m >>= 2) {
607 int a= (m & 0x03); // axis to home
608 if(haxis[a]) { // if axis is selected to home
609 std::bitset<3> bs;
610 bs.set(a);
611 home(bs);
612 }
613 // check if on_halt (eg kill)
614 if(THEKERNEL->is_halted()) break;
615 }
616
617 } else if(is_corexy) {
618 // corexy must home each axis individually
619 for (int a = X_AXIS; a <= Z_AXIS; ++a) {
620 if(haxis[a]) {
621 std::bitset<3> bs;
622 bs.set(a);
623 home(bs);
624 }
625 }
626
627 } else {
628 // they could all home at the same time
629 home(haxis);
630 }
631
632 // check if on_halt (eg kill)
633 if(THEKERNEL->is_halted()) {
634 if(!THEKERNEL->is_grbl_mode()) {
635 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
636 }
637 return;
638 }
639
640 // set the last probe position to the actuator units moved during this home
641 THEROBOT->set_last_probe_position(
642 std::make_tuple(
643 start_pos[0] - THEROBOT->actuators[0]->get_current_position(),
644 start_pos[1] - THEROBOT->actuators[1]->get_current_position(),
645 start_pos[2] - THEROBOT->actuators[2]->get_current_position(),
646 0));
647
648 if(home_in_z) { // deltas only
649 // Here's where we would have been if the endstops were perfectly trimmed
650 // NOTE on a rotary delta home_offset is actuator position in degrees when homed and
651 // home_offset is the theta offset for each actuator, so M206 is used to set theta offset for each actuator in degrees
652 float ideal_position[3] = {
653 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
654 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
655 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
656 };
657
658 bool has_endstop_trim = this->is_delta || this->is_scara;
659 if (has_endstop_trim) {
660 ActuatorCoordinates ideal_actuator_position;
661 THEROBOT->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
662
663 // We are actually not at the ideal position, but a trim away
664 ActuatorCoordinates real_actuator_position = {
665 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
666 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
667 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
668 };
669
670 float real_position[3];
671 THEROBOT->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
672 // Reset the actuator positions to correspond our real position
673 THEROBOT->reset_axis_position(real_position[0], real_position[1], real_position[2]);
674
675 } else {
676 // without endstop trim, real_position == ideal_position
677 if(is_rdelta) {
678 // with a rotary delta we set the actuators angle then use the FK to calculate the resulting cartesian coordinates
679 ActuatorCoordinates real_actuator_position = {ideal_position[0], ideal_position[1], ideal_position[2]};
680 THEROBOT->reset_actuator_position(real_actuator_position);
681
682 } else {
683 // Reset the actuator positions to correspond our real position
684 THEROBOT->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
685 }
686 }
687
688 } else {
689 // Zero the ax(i/e)s position, add in the home offset
690 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
691 if (axis_to_home[c]) {
692 THEROBOT->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
693 }
694 }
695 }
696
697 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
698 // default is off for cartesian on for deltas
699 if(!is_delta) {
700 // NOTE a rotary delta usually has optical or hall-effect endstops so it is safe to go past them a little bit
701 if(this->move_to_origin_after_home) move_to_origin();
702 // if limit switches are enabled we must back off endstop after setting home
703 back_off_home(haxis);
704
705 } else if(this->move_to_origin_after_home || this->limit_enable[X_AXIS]) {
706 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
707 // also need to back off endstops if limits are enabled
708 back_off_home(haxis);
709 if(this->move_to_origin_after_home) move_to_origin();
710 }
711 }
712
713 void Endstops::set_homing_offset(Gcode *gcode)
714 {
715 // Similar to M206 and G92 but sets Homing offsets based on current position
716 float cartesian[3];
717 THEROBOT->get_axis_position(cartesian); // get actual position from robot
718 if (gcode->has_letter('X')) {
719 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
720 THEROBOT->reset_axis_position(gcode->get_value('X'), X_AXIS);
721 }
722 if (gcode->has_letter('Y')) {
723 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
724 THEROBOT->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
725 }
726 if (gcode->has_letter('Z')) {
727 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
728 THEROBOT->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
729 }
730
731 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
732 }
733
734 // Start homing sequences by response to GCode commands
735 void Endstops::on_gcode_received(void *argument)
736 {
737 Gcode *gcode = static_cast<Gcode *>(argument);
738 if ( gcode->has_g && gcode->g == 28) {
739 process_home_command(gcode);
740
741 } else if (gcode->has_m) {
742
743 switch (gcode->m) {
744 case 119: {
745 for (int i = 0; i < 6; ++i) {
746 if(this->pins[i].connected())
747 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
748 }
749 gcode->add_nl = true;
750
751 }
752 break;
753
754 case 206: // M206 - set homing offset
755 if(is_rdelta) return; // RotaryDeltaCalibration module will handle this
756
757 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
758 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
759 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
760 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
761 break;
762
763 case 306: // set homing offset based on current position
764 if(is_rdelta) return; // RotaryDeltaCalibration module will handle this
765
766 set_homing_offset(gcode);
767 break;
768
769 case 500: // save settings
770 case 503: // print settings
771 if(!is_rdelta)
772 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
773 else
774 gcode->stream->printf(";Theta offset (degrees):\nM206 A%1.5f B%1.5f C%1.5f\n", home_offset[0], home_offset[1], home_offset[2]);
775
776 if (this->is_delta || this->is_scara) {
777 gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
778 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
779 }
780 if(saved_position[X_AXIS] != 0 || saved_position[Y_AXIS] != 0) {
781 gcode->stream->printf(";predefined position:\nG28.1 X%1.4f Y%1.4f Z%1.4f\n", saved_position[X_AXIS], saved_position[Y_AXIS], saved_position[Z_AXIS]);
782 }
783 break;
784
785 case 665:
786 if (this->is_delta || this->is_scara) { // M665 - set max gamma/z height
787 float gamma_max = this->homing_position[2];
788 if (gcode->has_letter('Z')) {
789 this->homing_position[2] = gamma_max = gcode->get_value('Z');
790 }
791 gcode->stream->printf("Max Z %8.3f ", gamma_max);
792 gcode->add_nl = true;
793 }
794 break;
795
796 case 666:
797 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
798 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
799 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
800 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
801
802 // print the current trim values in mm
803 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
804
805 }
806 break;
807
808 }
809 }
810 }
811
812 void Endstops::on_get_public_data(void* argument)
813 {
814 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
815
816 if(!pdr->starts_with(endstops_checksum)) return;
817
818 if(pdr->second_element_is(trim_checksum)) {
819 pdr->set_data_ptr(&this->trim_mm);
820 pdr->set_taken();
821
822 } else if(pdr->second_element_is(home_offset_checksum)) {
823 pdr->set_data_ptr(&this->home_offset);
824 pdr->set_taken();
825
826 } else if(pdr->second_element_is(saved_position_checksum)) {
827 pdr->set_data_ptr(&this->saved_position);
828 pdr->set_taken();
829
830 } else if(pdr->second_element_is(get_homing_status_checksum)) {
831 bool *homing = static_cast<bool *>(pdr->get_data_ptr());
832 *homing = this->status != NOT_HOMING;
833 pdr->set_taken();
834 }
835 }
836
837 void Endstops::on_set_public_data(void* argument)
838 {
839 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
840
841 if(!pdr->starts_with(endstops_checksum)) return;
842
843 if(pdr->second_element_is(trim_checksum)) {
844 float *t = static_cast<float*>(pdr->get_data_ptr());
845 this->trim_mm[0] = t[0];
846 this->trim_mm[1] = t[1];
847 this->trim_mm[2] = t[2];
848 pdr->set_taken();
849
850 } else if(pdr->second_element_is(home_offset_checksum)) {
851 float *t = static_cast<float*>(pdr->get_data_ptr());
852 if(!isnan(t[0])) this->home_offset[0] = t[0];
853 if(!isnan(t[1])) this->home_offset[1] = t[1];
854 if(!isnan(t[2])) this->home_offset[2] = t[2];
855 }
856 }