cleanup a bunch of fields that should be private
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 #include "Gcode.h"
17 #include "libs/StreamOutputPool.h"
18 #include "Stepper.h"
19
20 #include "mri.h"
21
22 using std::string;
23 #include <vector>
24
25 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
26 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
27 // Most of the accel math is also done in this class
28 // And GCode objects for use in on_gcode_execute are also help in here
29
30 Block::Block()
31 {
32 clear();
33 }
34
35 void Block::clear()
36 {
37 //commands.clear();
38 //travel_distances.clear();
39 gcodes.clear();
40 clear_vector(this->steps);
41
42 steps_event_count = 0;
43 nominal_rate = 0;
44 nominal_speed = 0.0F;
45 millimeters = 0.0F;
46 entry_speed = 0.0F;
47 exit_speed = 0.0F;
48 rate_delta = 0.0F;
49 initial_rate = -1;
50 final_rate = -1;
51 accelerate_until = 0;
52 decelerate_after = 0;
53 direction_bits = 0;
54 recalculate_flag = false;
55 nominal_length_flag = false;
56 max_entry_speed = 0.0F;
57 is_ready = false;
58 times_taken = 0;
59 }
60
61 void Block::debug()
62 {
63 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
64 this,
65 this->steps[0],
66 this->steps[1],
67 this->steps[2],
68 this->steps_event_count,
69 this->nominal_rate,
70 this->nominal_speed,
71 this->millimeters,
72 this->rate_delta,
73 this->accelerate_until,
74 this->decelerate_after,
75 this->initial_rate,
76 this->final_rate,
77 this->entry_speed,
78 this->max_entry_speed,
79 this->times_taken,
80 this->is_ready,
81 recalculate_flag?1:0,
82 nominal_length_flag?1:0
83 );
84 }
85
86
87 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
88 // The factors represent a factor of braking and must be in the range 0.0-1.0.
89 // +--------+ <- nominal_rate
90 // / \
91 // nominal_rate*entry_factor -> + \
92 // | + <- nominal_rate*exit_factor
93 // +-------------+
94 // time -->
95 */
96 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
97 {
98 // if block is currently executing, don't touch anything!
99 if (times_taken)
100 return;
101
102 // The planner passes us factors, we need to transform them in rates
103 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/s)
104 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/s)
105
106 // How many steps to accelerate and decelerate
107 float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->get_acceleration_ticks_per_second(); // ( step/s^2)
108 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
109 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_second ) );
110
111 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
112 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
113
114 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
115 // have to use intersection_distance() to calculate when to abort acceleration and start braking
116 // in order to reach the final_rate exactly at the end of this block.
117 if (plateau_steps < 0) {
118 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
119 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
120 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
121 plateau_steps = 0;
122 }
123 this->accelerate_until = accelerate_steps;
124 this->decelerate_after = accelerate_steps + plateau_steps;
125
126 this->exit_speed = exitspeed;
127 }
128
129 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
130 // given acceleration:
131 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
132 {
133 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
134 }
135
136 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
137 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
138 // a total travel of distance. This can be used to compute the intersection point between acceleration and
139 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
140 //
141 /* + <- some maximum rate we don't care about
142 /|\
143 / | \
144 / | + <- final_rate
145 / | |
146 initial_rate -> +----+--+
147 ^ ^
148 | |
149 intersection_distance distance */
150 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
151 {
152 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
153 }
154
155 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
156 // acceleration within the allotted distance.
157 inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
158 {
159 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
160 }
161
162
163 // Called by Planner::recalculate() when scanning the plan from last to first entry.
164 float Block::reverse_pass(float exit_speed)
165 {
166 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
167 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
168 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
169 if (this->entry_speed != this->max_entry_speed)
170 {
171 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
172 // for max allowable speed if block is decelerating and nominal length is false.
173 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
174 {
175 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), exit_speed, this->millimeters);
176
177 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
178
179 return this->entry_speed;
180 }
181 else
182 this->entry_speed = this->max_entry_speed;
183 }
184
185 return this->entry_speed;
186 }
187
188
189 // Called by Planner::recalculate() when scanning the plan from first to last entry.
190 // returns maximum exit speed of this block
191 float Block::forward_pass(float prev_max_exit_speed)
192 {
193 // If the previous block is an acceleration block, but it is not long enough to complete the
194 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
195 // speeds have already been reset, maximized, and reverse planned by reverse planner.
196 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
197
198 // TODO: find out if both of these checks are necessary
199 if (prev_max_exit_speed > nominal_speed)
200 prev_max_exit_speed = nominal_speed;
201 if (prev_max_exit_speed > max_entry_speed)
202 prev_max_exit_speed = max_entry_speed;
203
204 if (prev_max_exit_speed <= entry_speed)
205 {
206 // accel limited
207 entry_speed = prev_max_exit_speed;
208 // since we're now acceleration or cruise limited
209 // we don't need to recalculate our entry speed anymore
210 recalculate_flag = false;
211 }
212 // else
213 // // decel limited, do nothing
214
215 return max_exit_speed();
216 }
217
218 float Block::max_exit_speed()
219 {
220 // if block is currently executing, return cached exit speed from calculate_trapezoid
221 // this ensures that a block following a currently executing block will have correct entry speed
222 if (times_taken)
223 return exit_speed;
224
225 // if nominal_length_flag is asserted
226 // we are guaranteed to reach nominal speed regardless of entry speed
227 // thus, max exit will always be nominal
228 if (nominal_length_flag)
229 return nominal_speed;
230
231 // otherwise, we have to work out max exit speed based on entry and acceleration
232 float max = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), this->entry_speed, this->millimeters);
233
234 return min(max, nominal_speed);
235 }
236
237 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
238 void Block::append_gcode(Gcode* gcode)
239 {
240 Gcode new_gcode = *gcode;
241 gcodes.push_back(new_gcode);
242 }
243
244 void Block::begin()
245 {
246 recalculate_flag = false;
247
248 if (!is_ready)
249 __debugbreak();
250
251 times_taken = -1;
252
253 // execute all the gcodes related to this block
254 for(unsigned int index = 0; index < gcodes.size(); index++)
255 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
256
257 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
258
259 if (times_taken < 0)
260 release();
261 }
262
263 // Signal the conveyor that this block is ready to be injected into the system
264 void Block::ready()
265 {
266 this->is_ready = true;
267 }
268
269 // Mark the block as taken by one more module
270 void Block::take()
271 {
272 if (times_taken < 0)
273 times_taken = 0;
274 times_taken++;
275 }
276
277 // Mark the block as no longer taken by one module, go to next block if this free's it
278 void Block::release()
279 {
280 if (--this->times_taken <= 0)
281 {
282 times_taken = 0;
283 if (is_ready)
284 {
285 is_ready = false;
286 THEKERNEL->call_event(ON_BLOCK_END, this);
287
288 // ensure conveyor gets called last
289 THEKERNEL->conveyor->on_block_end(this);
290 }
291 }
292 }