Merge remote-tracking branch 'upstream/edge' into feature/add-grbl-queries
[clinton/Smoothieware.git] / src / modules / tools / endstops / Endstops.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "modules/communication/utils/Gcode.h"
11 #include "modules/robot/Conveyor.h"
12 #include "modules/robot/ActuatorCoordinates.h"
13 #include "Endstops.h"
14 #include "libs/nuts_bolts.h"
15 #include "libs/Pin.h"
16 #include "libs/StepperMotor.h"
17 #include "wait_api.h" // mbed.h lib
18 #include "Robot.h"
19 #include "Stepper.h"
20 #include "Config.h"
21 #include "SlowTicker.h"
22 #include "Planner.h"
23 #include "checksumm.h"
24 #include "utils.h"
25 #include "ConfigValue.h"
26 #include "libs/StreamOutput.h"
27 #include "PublicDataRequest.h"
28 #include "EndstopsPublicAccess.h"
29 #include "StreamOutputPool.h"
30 #include "StepTicker.h"
31 #include "BaseSolution.h"
32 #include "SerialMessage.h"
33
34 #include <ctype.h>
35
36 #define ALPHA_AXIS 0
37 #define BETA_AXIS 1
38 #define GAMMA_AXIS 2
39 #define X_AXIS 0
40 #define Y_AXIS 1
41 #define Z_AXIS 2
42
43 #define endstops_module_enable_checksum CHECKSUM("endstops_enable")
44 #define corexy_homing_checksum CHECKSUM("corexy_homing")
45 #define delta_homing_checksum CHECKSUM("delta_homing")
46 #define rdelta_homing_checksum CHECKSUM("rdelta_homing")
47 #define scara_homing_checksum CHECKSUM("scara_homing")
48
49 #define alpha_min_endstop_checksum CHECKSUM("alpha_min_endstop")
50 #define beta_min_endstop_checksum CHECKSUM("beta_min_endstop")
51 #define gamma_min_endstop_checksum CHECKSUM("gamma_min_endstop")
52
53 #define alpha_max_endstop_checksum CHECKSUM("alpha_max_endstop")
54 #define beta_max_endstop_checksum CHECKSUM("beta_max_endstop")
55 #define gamma_max_endstop_checksum CHECKSUM("gamma_max_endstop")
56
57 #define alpha_trim_checksum CHECKSUM("alpha_trim")
58 #define beta_trim_checksum CHECKSUM("beta_trim")
59 #define gamma_trim_checksum CHECKSUM("gamma_trim")
60
61 // these values are in steps and should be deprecated
62 #define alpha_fast_homing_rate_checksum CHECKSUM("alpha_fast_homing_rate")
63 #define beta_fast_homing_rate_checksum CHECKSUM("beta_fast_homing_rate")
64 #define gamma_fast_homing_rate_checksum CHECKSUM("gamma_fast_homing_rate")
65
66 #define alpha_slow_homing_rate_checksum CHECKSUM("alpha_slow_homing_rate")
67 #define beta_slow_homing_rate_checksum CHECKSUM("beta_slow_homing_rate")
68 #define gamma_slow_homing_rate_checksum CHECKSUM("gamma_slow_homing_rate")
69
70 #define alpha_homing_retract_checksum CHECKSUM("alpha_homing_retract")
71 #define beta_homing_retract_checksum CHECKSUM("beta_homing_retract")
72 #define gamma_homing_retract_checksum CHECKSUM("gamma_homing_retract")
73
74 // same as above but in user friendly mm/s and mm
75 #define alpha_fast_homing_rate_mm_checksum CHECKSUM("alpha_fast_homing_rate_mm_s")
76 #define beta_fast_homing_rate_mm_checksum CHECKSUM("beta_fast_homing_rate_mm_s")
77 #define gamma_fast_homing_rate_mm_checksum CHECKSUM("gamma_fast_homing_rate_mm_s")
78
79 #define alpha_slow_homing_rate_mm_checksum CHECKSUM("alpha_slow_homing_rate_mm_s")
80 #define beta_slow_homing_rate_mm_checksum CHECKSUM("beta_slow_homing_rate_mm_s")
81 #define gamma_slow_homing_rate_mm_checksum CHECKSUM("gamma_slow_homing_rate_mm_s")
82
83 #define alpha_homing_retract_mm_checksum CHECKSUM("alpha_homing_retract_mm")
84 #define beta_homing_retract_mm_checksum CHECKSUM("beta_homing_retract_mm")
85 #define gamma_homing_retract_mm_checksum CHECKSUM("gamma_homing_retract_mm")
86
87 #define endstop_debounce_count_checksum CHECKSUM("endstop_debounce_count")
88
89 #define alpha_homing_direction_checksum CHECKSUM("alpha_homing_direction")
90 #define beta_homing_direction_checksum CHECKSUM("beta_homing_direction")
91 #define gamma_homing_direction_checksum CHECKSUM("gamma_homing_direction")
92 #define home_to_max_checksum CHECKSUM("home_to_max")
93 #define home_to_min_checksum CHECKSUM("home_to_min")
94 #define alpha_min_checksum CHECKSUM("alpha_min")
95 #define beta_min_checksum CHECKSUM("beta_min")
96 #define gamma_min_checksum CHECKSUM("gamma_min")
97
98 #define alpha_max_checksum CHECKSUM("alpha_max")
99 #define beta_max_checksum CHECKSUM("beta_max")
100 #define gamma_max_checksum CHECKSUM("gamma_max")
101
102 #define alpha_limit_enable_checksum CHECKSUM("alpha_limit_enable")
103 #define beta_limit_enable_checksum CHECKSUM("beta_limit_enable")
104 #define gamma_limit_enable_checksum CHECKSUM("gamma_limit_enable")
105
106 #define homing_order_checksum CHECKSUM("homing_order")
107 #define move_to_origin_checksum CHECKSUM("move_to_origin_after_home")
108
109 #define STEPPER THEKERNEL->robot->actuators
110 #define STEPS_PER_MM(a) (STEPPER[a]->get_steps_per_mm())
111
112
113 // Homing States
114 enum {
115 MOVING_TO_ENDSTOP_FAST, // homing move
116 MOVING_BACK, // homing move
117 MOVING_TO_ENDSTOP_SLOW, // homing move
118 NOT_HOMING,
119 BACK_OFF_HOME,
120 MOVE_TO_ORIGIN,
121 LIMIT_TRIGGERED
122 };
123
124 Endstops::Endstops()
125 {
126 this->status = NOT_HOMING;
127 home_offset[0] = home_offset[1] = home_offset[2] = 0.0F;
128 }
129
130 void Endstops::on_module_loaded()
131 {
132 // Do not do anything if not enabled
133 if ( THEKERNEL->config->value( endstops_module_enable_checksum )->by_default(true)->as_bool() == false ) {
134 delete this;
135 return;
136 }
137
138 register_for_event(ON_GCODE_RECEIVED);
139 register_for_event(ON_GET_PUBLIC_DATA);
140 register_for_event(ON_SET_PUBLIC_DATA);
141
142 THEKERNEL->step_ticker->register_acceleration_tick_handler([this]() {acceleration_tick(); });
143
144 // Settings
145 this->on_config_reload(this);
146 }
147
148 // Get config
149 void Endstops::on_config_reload(void *argument)
150 {
151 this->pins[0].from_string( THEKERNEL->config->value(alpha_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
152 this->pins[1].from_string( THEKERNEL->config->value(beta_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
153 this->pins[2].from_string( THEKERNEL->config->value(gamma_min_endstop_checksum )->by_default("nc" )->as_string())->as_input();
154 this->pins[3].from_string( THEKERNEL->config->value(alpha_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
155 this->pins[4].from_string( THEKERNEL->config->value(beta_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
156 this->pins[5].from_string( THEKERNEL->config->value(gamma_max_endstop_checksum )->by_default("nc" )->as_string())->as_input();
157
158 // These are the old ones in steps still here for backwards compatibility
159 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(0);
160 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_checksum )->by_default(4000 )->as_number() / STEPS_PER_MM(1);
161 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_checksum )->by_default(6400 )->as_number() / STEPS_PER_MM(2);
162 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(0);
163 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_checksum )->by_default(2000 )->as_number() / STEPS_PER_MM(1);
164 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_checksum )->by_default(3200 )->as_number() / STEPS_PER_MM(2);
165 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(0);
166 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_checksum )->by_default(400 )->as_number() / STEPS_PER_MM(1);
167 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_checksum )->by_default(1600 )->as_number() / STEPS_PER_MM(2);
168
169 // newer mm based config values override the old ones, convert to steps/mm and steps, defaults to what was set in the older config settings above
170 this->fast_rates[0] = THEKERNEL->config->value(alpha_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[0])->as_number();
171 this->fast_rates[1] = THEKERNEL->config->value(beta_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[1])->as_number();
172 this->fast_rates[2] = THEKERNEL->config->value(gamma_fast_homing_rate_mm_checksum )->by_default(this->fast_rates[2])->as_number();
173 this->slow_rates[0] = THEKERNEL->config->value(alpha_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[0])->as_number();
174 this->slow_rates[1] = THEKERNEL->config->value(beta_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[1])->as_number();
175 this->slow_rates[2] = THEKERNEL->config->value(gamma_slow_homing_rate_mm_checksum )->by_default(this->slow_rates[2])->as_number();
176 this->retract_mm[0] = THEKERNEL->config->value(alpha_homing_retract_mm_checksum )->by_default(this->retract_mm[0])->as_number();
177 this->retract_mm[1] = THEKERNEL->config->value(beta_homing_retract_mm_checksum )->by_default(this->retract_mm[1])->as_number();
178 this->retract_mm[2] = THEKERNEL->config->value(gamma_homing_retract_mm_checksum )->by_default(this->retract_mm[2])->as_number();
179
180 this->debounce_count = THEKERNEL->config->value(endstop_debounce_count_checksum )->by_default(100)->as_number();
181
182 // get homing direction and convert to boolean where true is home to min, and false is home to max
183 int home_dir = get_checksum(THEKERNEL->config->value(alpha_homing_direction_checksum)->by_default("home_to_min")->as_string());
184 this->home_direction[0] = home_dir != home_to_max_checksum;
185
186 home_dir = get_checksum(THEKERNEL->config->value(beta_homing_direction_checksum)->by_default("home_to_min")->as_string());
187 this->home_direction[1] = home_dir != home_to_max_checksum;
188
189 home_dir = get_checksum(THEKERNEL->config->value(gamma_homing_direction_checksum)->by_default("home_to_min")->as_string());
190 this->home_direction[2] = home_dir != home_to_max_checksum;
191
192 this->homing_position[0] = this->home_direction[0] ? THEKERNEL->config->value(alpha_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(alpha_max_checksum)->by_default(200)->as_number();
193 this->homing_position[1] = this->home_direction[1] ? THEKERNEL->config->value(beta_min_checksum )->by_default(0)->as_number() : THEKERNEL->config->value(beta_max_checksum )->by_default(200)->as_number();
194 this->homing_position[2] = this->home_direction[2] ? THEKERNEL->config->value(gamma_min_checksum)->by_default(0)->as_number() : THEKERNEL->config->value(gamma_max_checksum)->by_default(200)->as_number();
195
196 this->is_corexy = THEKERNEL->config->value(corexy_homing_checksum)->by_default(false)->as_bool();
197 this->is_delta = THEKERNEL->config->value(delta_homing_checksum)->by_default(false)->as_bool();
198 this->is_rdelta = THEKERNEL->config->value(rdelta_homing_checksum)->by_default(false)->as_bool();
199 this->is_scara = THEKERNEL->config->value(scara_homing_checksum)->by_default(false)->as_bool();
200
201 // see if an order has been specified, must be three characters, XYZ or YXZ etc
202 string order = THEKERNEL->config->value(homing_order_checksum)->by_default("")->as_string();
203 this->homing_order = 0;
204 if(order.size() == 3 && !this->is_delta) {
205 int shift = 0;
206 for(auto c : order) {
207 uint8_t i = toupper(c) - 'X';
208 if(i > 2) { // bad value
209 this->homing_order = 0;
210 break;
211 }
212 homing_order |= (i << shift);
213 shift += 2;
214 }
215 }
216
217 // endstop trim used by deltas to do soft adjusting
218 // on a delta homing to max, a negative trim value will move the carriage down, and a positive will move it up
219 this->trim_mm[0] = THEKERNEL->config->value(alpha_trim_checksum )->by_default(0 )->as_number();
220 this->trim_mm[1] = THEKERNEL->config->value(beta_trim_checksum )->by_default(0 )->as_number();
221 this->trim_mm[2] = THEKERNEL->config->value(gamma_trim_checksum )->by_default(0 )->as_number();
222
223 // limits enabled
224 this->limit_enable[X_AXIS] = THEKERNEL->config->value(alpha_limit_enable_checksum)->by_default(false)->as_bool();
225 this->limit_enable[Y_AXIS] = THEKERNEL->config->value(beta_limit_enable_checksum)->by_default(false)->as_bool();
226 this->limit_enable[Z_AXIS] = THEKERNEL->config->value(gamma_limit_enable_checksum)->by_default(false)->as_bool();
227
228 //s et to true by default for deltas duwe to trim, false on cartesians
229 this->move_to_origin_after_home = THEKERNEL->config->value(move_to_origin_checksum)->by_default(is_delta)->as_bool();
230
231 if(this->limit_enable[X_AXIS] || this->limit_enable[Y_AXIS] || this->limit_enable[Z_AXIS]) {
232 register_for_event(ON_IDLE);
233 if(this->is_delta) {
234 // we must enable all the limits not just one
235 this->limit_enable[X_AXIS] = true;
236 this->limit_enable[Y_AXIS] = true;
237 this->limit_enable[Z_AXIS] = true;
238 }
239 }
240
241 //
242 if(this->is_delta || this->is_rdelta) {
243 // some things must be the same or they will die, so force it here to avoid config errors
244 this->fast_rates[1] = this->fast_rates[2] = this->fast_rates[0];
245 this->slow_rates[1] = this->slow_rates[2] = this->slow_rates[0];
246 this->retract_mm[1] = this->retract_mm[2] = this->retract_mm[0];
247 this->home_direction[1] = this->home_direction[2] = this->home_direction[0];
248 this->homing_position[0] = this->homing_position[1] = 0;
249 }
250 }
251
252 bool Endstops::debounced_get(int pin)
253 {
254 uint8_t debounce = 0;
255 while(this->pins[pin].get()) {
256 if ( ++debounce >= this->debounce_count ) {
257 // pin triggered
258 return true;
259 }
260 }
261 return false;
262 }
263
264 static const char *endstop_names[] = {"min_x", "min_y", "min_z", "max_x", "max_y", "max_z"};
265
266 void Endstops::on_idle(void *argument)
267 {
268 if(this->status == LIMIT_TRIGGERED) {
269 // if we were in limit triggered see if it has been cleared
270 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
271 if(this->limit_enable[c]) {
272 std::array<int, 2> minmax{{0, 3}};
273 // check min and max endstops
274 for (int i : minmax) {
275 int n = c + i;
276 if(this->pins[n].get()) {
277 // still triggered, so exit
278 bounce_cnt = 0;
279 return;
280 }
281 }
282 }
283 }
284 if(++bounce_cnt > 10) { // can use less as it calls on_idle in between
285 // clear the state
286 this->status = NOT_HOMING;
287 }
288 return;
289
290 } else if(this->status != NOT_HOMING) {
291 // don't check while homing
292 return;
293 }
294
295 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
296 if(this->limit_enable[c] && STEPPER[c]->is_moving()) {
297 std::array<int, 2> minmax{{0, 3}};
298 // check min and max endstops
299 for (int i : minmax) {
300 int n = c + i;
301 if(debounced_get(n)) {
302 // endstop triggered
303 THEKERNEL->streams->printf("Limit switch %s was hit - reset or M999 required\n", endstop_names[n]);
304 this->status = LIMIT_TRIGGERED;
305 // disables heaters and motors, ignores incoming Gcode and flushes block queue
306 THEKERNEL->call_event(ON_HALT, nullptr);
307 return;
308 }
309 }
310 }
311 }
312 }
313
314 // if limit switches are enabled, then we must move off of the endstop otherwise we won't be able to move
315 // checks if triggered and only backs off if triggered
316 void Endstops::back_off_home(char axes_to_move)
317 {
318 std::vector<std::pair<char, float>> params;
319 this->status = BACK_OFF_HOME;
320
321 // these are handled differently
322 if(is_delta) {
323 // Move off of the endstop using a regular relative move in Z only
324 params.push_back({'Z', this->retract_mm[Z_AXIS] * (this->home_direction[Z_AXIS] ? 1 : -1)});
325
326 } else {
327 // cartesians, concatenate all the moves we need to do into one gcode
328 for( int c = X_AXIS; c <= Z_AXIS; c++ ) {
329 if( ((axes_to_move >> c ) & 1) == 0) continue; // only for axes we asked to move
330
331 // if not triggered no need to move off
332 if(this->limit_enable[c] && debounced_get(c + (this->home_direction[c] ? 0 : 3)) ) {
333 params.push_back({c + 'X', this->retract_mm[c] * (this->home_direction[c] ? 1 : -1)});
334 }
335 }
336 }
337
338 if(!params.empty()) {
339 // Move off of the endstop using a regular relative move
340 params.insert(params.begin(), {'G', 0});
341 // use X slow rate to move, Z should have a max speed set anyway
342 params.push_back({'F', this->slow_rates[X_AXIS] * 60.0F});
343 char gcode_buf[64];
344 append_parameters(gcode_buf, params, sizeof(gcode_buf));
345 Gcode gc(gcode_buf, &(StreamOutput::NullStream));
346 bool oldmode = THEKERNEL->robot->absolute_mode;
347 THEKERNEL->robot->absolute_mode = false; // needs to be relative mode
348 THEKERNEL->robot->on_gcode_received(&gc); // send to robot directly
349 THEKERNEL->robot->absolute_mode = oldmode; // restore mode
350 // Wait for above to finish
351 THEKERNEL->conveyor->wait_for_empty_queue();
352 }
353
354 this->status = NOT_HOMING;
355 }
356
357 // If enabled will move the head to 0,0 after homing, but only if X and Y were set to home
358 void Endstops::move_to_origin(char axes_to_move)
359 {
360 if( (axes_to_move & 0x03) != 3 ) return; // ignore if X and Y not homing
361
362 // Do we need to check if we are already at 0,0? probably not as the G0 will not do anything if we are
363 // float pos[3]; THEKERNEL->robot->get_axis_position(pos); if(pos[0] == 0 && pos[1] == 0) return;
364
365 this->status = MOVE_TO_ORIGIN;
366 // Move to center using a regular move, use slower of X and Y fast rate
367 float rate = std::min(this->fast_rates[0], this->fast_rates[1]) * 60.0F;
368 char buf[32];
369 snprintf(buf, sizeof(buf), "G53 G0 X0 Y0 F%1.4f", rate); // must use machine coordinates in case G92 or WCS is in effect
370 struct SerialMessage message;
371 message.message = buf;
372 message.stream = &(StreamOutput::NullStream);
373 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
374 // Wait for above to finish
375 THEKERNEL->conveyor->wait_for_empty_queue();
376 this->status = NOT_HOMING;
377 }
378
379 bool Endstops::wait_for_homed(char axes_to_move)
380 {
381 bool running = true;
382 unsigned int debounce[3] = {0, 0, 0};
383 while (running) {
384 running = false;
385 THEKERNEL->call_event(ON_IDLE);
386
387 // check if on_halt (eg kill)
388 if(THEKERNEL->is_halted()) return false;
389
390 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
391 if ( ( axes_to_move >> c ) & 1 ) {
392 if ( this->pins[c + (this->home_direction[c] ? 0 : 3)].get() ) {
393 if ( debounce[c] < debounce_count ) {
394 debounce[c]++;
395 running = true;
396 } else if ( STEPPER[c]->is_moving() ) {
397 STEPPER[c]->move(0, 0);
398 axes_to_move &= ~(1 << c); // no need to check it again
399 }
400 } else {
401 // The endstop was not hit yet
402 running = true;
403 debounce[c] = 0;
404 }
405 }
406 }
407 }
408 return true;
409 }
410
411 void Endstops::do_homing_cartesian(char axes_to_move)
412 {
413 // check if on_halt (eg kill)
414 if(THEKERNEL->is_halted()) return;
415
416 // this homing works for cartesian and delta printers
417 // Start moving the axes to the origin
418 this->status = MOVING_TO_ENDSTOP_FAST;
419 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
420 if ( ( axes_to_move >> c) & 1 ) {
421 this->feed_rate[c] = this->fast_rates[c];
422 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
423 }
424 }
425
426 // Wait for all axes to have homed
427 if(!this->wait_for_homed(axes_to_move)) return;
428
429 // Move back a small distance
430 this->status = MOVING_BACK;
431 bool inverted_dir;
432 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
433 if ( ( axes_to_move >> c ) & 1 ) {
434 inverted_dir = !this->home_direction[c];
435 this->feed_rate[c] = this->slow_rates[c];
436 STEPPER[c]->move(inverted_dir, this->retract_mm[c]*STEPS_PER_MM(c), 0);
437 }
438 }
439
440 // Wait for moves to be done
441 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
442 if ( ( axes_to_move >> c ) & 1 ) {
443 while ( STEPPER[c]->is_moving() ) {
444 THEKERNEL->call_event(ON_IDLE);
445 if(THEKERNEL->is_halted()) return;
446 }
447 }
448 }
449
450 // Start moving the axes to the origin slowly
451 this->status = MOVING_TO_ENDSTOP_SLOW;
452 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
453 if ( ( axes_to_move >> c ) & 1 ) {
454 this->feed_rate[c] = this->slow_rates[c];
455 STEPPER[c]->move(this->home_direction[c], 10000000, 0);
456 }
457 }
458
459 // Wait for all axes to have homed
460 if(!this->wait_for_homed(axes_to_move)) return;
461 }
462
463 bool Endstops::wait_for_homed_corexy(int axis)
464 {
465 bool running = true;
466 unsigned int debounce[3] = {0, 0, 0};
467 while (running) {
468 running = false;
469 THEKERNEL->call_event(ON_IDLE);
470
471 // check if on_halt (eg kill)
472 if(THEKERNEL->is_halted()) return false;
473
474 if ( this->pins[axis + (this->home_direction[axis] ? 0 : 3)].get() ) {
475 if ( debounce[axis] < debounce_count ) {
476 debounce[axis] ++;
477 running = true;
478 } else {
479 // turn both off if running
480 if (STEPPER[X_AXIS]->is_moving()) STEPPER[X_AXIS]->move(0, 0);
481 if (STEPPER[Y_AXIS]->is_moving()) STEPPER[Y_AXIS]->move(0, 0);
482 }
483 } else {
484 // The endstop was not hit yet
485 running = true;
486 debounce[axis] = 0;
487 }
488 }
489 return true;
490 }
491
492 void Endstops::corexy_home(int home_axis, bool dirx, bool diry, float fast_rate, float slow_rate, unsigned int retract_steps)
493 {
494 // check if on_halt (eg kill)
495 if(THEKERNEL->is_halted()) return;
496
497 this->status = MOVING_TO_ENDSTOP_FAST;
498 this->feed_rate[X_AXIS] = fast_rate;
499 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
500 this->feed_rate[Y_AXIS] = fast_rate;
501 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
502
503 // wait for primary axis
504 if(!this->wait_for_homed_corexy(home_axis)) return;
505
506 // Move back a small distance
507 this->status = MOVING_BACK;
508 this->feed_rate[X_AXIS] = slow_rate;
509 STEPPER[X_AXIS]->move(!dirx, retract_steps, 0);
510 this->feed_rate[Y_AXIS] = slow_rate;
511 STEPPER[Y_AXIS]->move(!diry, retract_steps, 0);
512
513 // wait until done
514 while ( STEPPER[X_AXIS]->is_moving() || STEPPER[Y_AXIS]->is_moving()) {
515 THEKERNEL->call_event(ON_IDLE);
516 if(THEKERNEL->is_halted()) return;
517 }
518
519 // Start moving the axes to the origin slowly
520 this->status = MOVING_TO_ENDSTOP_SLOW;
521 this->feed_rate[X_AXIS] = slow_rate;
522 STEPPER[X_AXIS]->move(dirx, 10000000, 0);
523 this->feed_rate[Y_AXIS] = slow_rate;
524 STEPPER[Y_AXIS]->move(diry, 10000000, 0);
525
526 // wait for primary axis
527 if(!this->wait_for_homed_corexy(home_axis)) return;
528 }
529
530 // this homing works for HBots/CoreXY
531 void Endstops::do_homing_corexy(char axes_to_move)
532 {
533 // TODO should really make order configurable, and select whether to allow XY to home at the same time, diagonally
534 // To move XY at the same time only one motor needs to turn, determine which motor and which direction based on min or max directions
535 // allow to move until an endstop triggers, then stop that motor. Speed up when moving diagonally to match X or Y speed
536 // continue moving in the direction not yet triggered (which means two motors turning) until endstop hit
537
538 if((axes_to_move & 0x03) == 0x03) { // both X and Y need Homing
539 // determine which motor to turn and which way
540 bool dirx = this->home_direction[X_AXIS];
541 bool diry = this->home_direction[Y_AXIS];
542 int motor;
543 bool dir;
544 if(dirx && diry) { // min/min
545 motor = X_AXIS;
546 dir = true;
547 } else if(dirx && !diry) { // min/max
548 motor = Y_AXIS;
549 dir = true;
550 } else if(!dirx && diry) { // max/min
551 motor = Y_AXIS;
552 dir = false;
553 } else if(!dirx && !diry) { // max/max
554 motor = X_AXIS;
555 dir = false;
556 }
557
558 // then move both X and Y until one hits the endstop
559 this->status = MOVING_TO_ENDSTOP_FAST;
560 // need to allow for more ground covered when moving diagonally
561 this->feed_rate[motor] = this->fast_rates[motor] * 1.4142;
562 STEPPER[motor]->move(dir, 10000000, 0);
563 // wait until either X or Y hits the endstop
564 bool running = true;
565 while (running) {
566 THEKERNEL->call_event(ON_IDLE);
567 if(THEKERNEL->is_halted()) return;
568 for(int m = X_AXIS; m <= Y_AXIS; m++) {
569 if(this->pins[m + (this->home_direction[m] ? 0 : 3)].get()) {
570 // turn off motor
571 if(STEPPER[motor]->is_moving()) STEPPER[motor]->move(0, 0);
572 running = false;
573 break;
574 }
575 }
576 }
577 }
578
579 // move individual axis
580 if (axes_to_move & 0x01) { // Home X, which means both X and Y in same direction
581 bool dir = this->home_direction[X_AXIS];
582 corexy_home(X_AXIS, dir, dir, this->fast_rates[X_AXIS], this->slow_rates[X_AXIS], this->retract_mm[X_AXIS]*STEPS_PER_MM(X_AXIS));
583 }
584
585 if (axes_to_move & 0x02) { // Home Y, which means both X and Y in different directions
586 bool dir = this->home_direction[Y_AXIS];
587 corexy_home(Y_AXIS, dir, !dir, this->fast_rates[Y_AXIS], this->slow_rates[Y_AXIS], this->retract_mm[Y_AXIS]*STEPS_PER_MM(Y_AXIS));
588 }
589
590 if (axes_to_move & 0x04) { // move Z
591 do_homing_cartesian(0x04); // just home normally for Z
592 }
593 }
594
595 void Endstops::home(char axes_to_move)
596 {
597 // not a block move so disable the last tick setting
598 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
599 STEPPER[c]->set_moved_last_block(false);
600 }
601
602 if (is_corexy) {
603 // corexy/HBot homing
604 do_homing_corexy(axes_to_move);
605 } else {
606 // cartesian/delta homing
607 do_homing_cartesian(axes_to_move);
608 }
609
610 // make sure all steppers are off (especially if aborted)
611 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
612 STEPPER[c]->move(0, 0);
613 }
614 this->status = NOT_HOMING;
615 }
616
617 // Start homing sequences by response to GCode commands
618 void Endstops::on_gcode_received(void *argument)
619 {
620 Gcode *gcode = static_cast<Gcode *>(argument);
621 if ( gcode->has_g && gcode->g == 28) {
622 if( (gcode->subcode == 0 && THEKERNEL->is_grbl_mode()) || (gcode->subcode == 2 && !THEKERNEL->is_grbl_mode()) ) {
623 // G28 in grbl mode or G28.2 in normal mode will do a rapid to the predefined position
624 // TODO spec says if XYZ specified move to them first then move to MCS of specifed axis
625 char buf[32];
626 snprintf(buf, sizeof(buf), "G53 G0 X%f Y%f", saved_position[X_AXIS], saved_position[Y_AXIS]); // must use machine coordinates in case G92 or WCS is in effect
627 struct SerialMessage message;
628 message.message = buf;
629 message.stream = &(StreamOutput::NullStream);
630 THEKERNEL->call_event(ON_CONSOLE_LINE_RECEIVED, &message ); // as it is a multi G code command
631 return;
632
633 } else if(THEKERNEL->is_grbl_mode() && gcode->subcode == 2) { // G28.2 in grbl mode forces homing (triggered by $H)
634 // fall through so it does homing cycle
635
636 } else if(gcode->subcode == 1) { // G28.1 set pre defined position
637 // saves current position in absolute machine coordinates
638 THEKERNEL->robot->get_axis_position(saved_position);
639 return;
640
641 } else if(gcode->subcode == 3) { // G28.3 is a smoothie special it sets manual homing
642 if(gcode->get_num_args() == 0) {
643 THEKERNEL->robot->reset_axis_position(0, 0, 0);
644 } else {
645 // do a manual homing based on current position, no endstops required
646 if(gcode->has_letter('X')) THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
647 if(gcode->has_letter('Y')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
648 if(gcode->has_letter('Z')) THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
649 }
650 return;
651
652 } else if(THEKERNEL->is_grbl_mode()) {
653 gcode->stream->printf("error:Unsupported command\n");
654 return;
655 }
656
657 // G28 is received, we have homing to do
658
659 // First wait for the queue to be empty
660 THEKERNEL->conveyor->wait_for_empty_queue();
661
662 // Do we move select axes or all of them
663 char axes_to_move = 0;
664 // only enable homing if the endstop is defined, deltas, scaras always home all axis
665 bool home_all = this->is_delta || this->is_rdelta || this->is_scara || !( gcode->has_letter('X') || gcode->has_letter('Y') || gcode->has_letter('Z') );
666
667 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
668 if ( (home_all || gcode->has_letter(c + 'X')) && this->pins[c + (this->home_direction[c] ? 0 : 3)].connected() ) {
669 axes_to_move += ( 1 << c );
670 }
671 }
672
673 // Enable the motors
674 THEKERNEL->stepper->turn_enable_pins_on();
675
676 // do the actual homing
677 if(homing_order != 0) {
678 // if an order has been specified do it in the specified order
679 // homing order is 0b00ccbbaa where aa is 0,1,2 to specify the first axis, bb is the second and cc is the third
680 // eg 0b00100001 would be Y X Z, 0b00100100 would be X Y Z
681 for (uint8_t m = homing_order; m != 0; m >>= 2) {
682 int a = (1 << (m & 0x03)); // axis to move
683 if((a & axes_to_move) != 0) {
684 home(a);
685 }
686 // check if on_halt (eg kill)
687 if(THEKERNEL->is_halted()) break;
688 }
689
690 } else {
691 // they all home at the same time
692 home(axes_to_move);
693 }
694
695 // check if on_halt (eg kill)
696 if(THEKERNEL->is_halted()) {
697 if(!THEKERNEL->is_grbl_mode()) {
698 THEKERNEL->streams->printf("Homing cycle aborted by kill\n");
699 }
700 return;
701 }
702
703 if(home_all) {
704 // Here's where we would have been if the endstops were perfectly trimmed
705 float ideal_position[3] = {
706 this->homing_position[X_AXIS] + this->home_offset[X_AXIS],
707 this->homing_position[Y_AXIS] + this->home_offset[Y_AXIS],
708 this->homing_position[Z_AXIS] + this->home_offset[Z_AXIS]
709 };
710
711 bool has_endstop_trim = this->is_delta || this->is_scara;
712 if (has_endstop_trim) {
713 ActuatorCoordinates ideal_actuator_position;
714 THEKERNEL->robot->arm_solution->cartesian_to_actuator(ideal_position, ideal_actuator_position);
715
716 // We are actually not at the ideal position, but a trim away
717 ActuatorCoordinates real_actuator_position = {
718 ideal_actuator_position[X_AXIS] - this->trim_mm[X_AXIS],
719 ideal_actuator_position[Y_AXIS] - this->trim_mm[Y_AXIS],
720 ideal_actuator_position[Z_AXIS] - this->trim_mm[Z_AXIS]
721 };
722
723 float real_position[3];
724 THEKERNEL->robot->arm_solution->actuator_to_cartesian(real_actuator_position, real_position);
725 // Reset the actuator positions to correspond our real position
726 THEKERNEL->robot->reset_axis_position(real_position[0], real_position[1], real_position[2]);
727 } else {
728 // without endstop trim, real_position == ideal_position
729 // Reset the actuator positions to correspond our real position
730 THEKERNEL->robot->reset_axis_position(ideal_position[0], ideal_position[1], ideal_position[2]);
731 }
732 } else {
733 // Zero the ax(i/e)s position, add in the home offset
734 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
735 if ( (axes_to_move >> c) & 1 ) {
736 THEKERNEL->robot->reset_axis_position(this->homing_position[c] + this->home_offset[c], c);
737 }
738 }
739 }
740
741 // on some systems where 0,0 is bed center it is nice to have home goto 0,0 after homing
742 // default is off for cartesian on for deltas
743 if(!is_delta) {
744 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
745 // if limit switches are enabled we must back off endstop after setting home
746 back_off_home(axes_to_move);
747
748 } else if(this->move_to_origin_after_home || this->limit_enable[X_AXIS]) {
749 // deltas are not left at 0,0 because of the trim settings, so move to 0,0 if requested, but we need to back off endstops first
750 // also need to back off endstops if limits are enabled
751 back_off_home(axes_to_move);
752 if(this->move_to_origin_after_home) move_to_origin(axes_to_move);
753 }
754 }
755
756 if (gcode->has_m) {
757 switch (gcode->m) {
758 case 119: {
759 for (int i = 0; i < 6; ++i) {
760 if(this->pins[i].connected())
761 gcode->stream->printf("%s:%d ", endstop_names[i], this->pins[i].get());
762 }
763 gcode->add_nl = true;
764
765 }
766 break;
767
768 case 206: // M206 - set homing offset
769 if (gcode->has_letter('X')) home_offset[0] = gcode->get_value('X');
770 if (gcode->has_letter('Y')) home_offset[1] = gcode->get_value('Y');
771 if (gcode->has_letter('Z')) home_offset[2] = gcode->get_value('Z');
772 gcode->stream->printf("X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
773
774 break;
775
776 case 306: { // Similar to M206 and G92 but sets Homing offsets based on current position
777 float cartesian[3];
778 THEKERNEL->robot->get_axis_position(cartesian); // get actual position from robot
779 if (gcode->has_letter('X')) {
780 home_offset[0] -= (cartesian[X_AXIS] - gcode->get_value('X'));
781 THEKERNEL->robot->reset_axis_position(gcode->get_value('X'), X_AXIS);
782 }
783 if (gcode->has_letter('Y')) {
784 home_offset[1] -= (cartesian[Y_AXIS] - gcode->get_value('Y'));
785 THEKERNEL->robot->reset_axis_position(gcode->get_value('Y'), Y_AXIS);
786 }
787 if (gcode->has_letter('Z')) {
788 home_offset[2] -= (cartesian[Z_AXIS] - gcode->get_value('Z'));
789 THEKERNEL->robot->reset_axis_position(gcode->get_value('Z'), Z_AXIS);
790 }
791
792 gcode->stream->printf("Homing Offset: X %5.3f Y %5.3f Z %5.3f\n", home_offset[0], home_offset[1], home_offset[2]);
793
794 }
795 break;
796
797 case 500: // save settings
798 case 503: // print settings
799 gcode->stream->printf(";Home offset (mm):\nM206 X%1.2f Y%1.2f Z%1.2f\n", home_offset[0], home_offset[1], home_offset[2]);
800 if (this->is_delta || this->is_scara) {
801 if(!this->is_rdelta) gcode->stream->printf(";Trim (mm):\nM666 X%1.3f Y%1.3f Z%1.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
802 gcode->stream->printf(";Max Z\nM665 Z%1.3f\n", this->homing_position[2]);
803 }
804 if(saved_position[X_AXIS] != 0 || saved_position[Y_AXIS] != 0) {
805 gcode->stream->printf(";predefined position:\nG28.1 X%1.4f Y%1.4f Z%1.4f\n", saved_position[X_AXIS], saved_position[Y_AXIS], saved_position[Z_AXIS]);
806 }
807 break;
808
809 case 665: { // M665 - set max gamma/z height
810
811 float gamma_max = this->homing_position[2];
812 if (gcode->has_letter('Z')) {
813 this->homing_position[2] = gamma_max = gcode->get_value('Z');
814 }
815 gcode->stream->printf("Max Z %8.3f ", gamma_max);
816 gcode->add_nl = true;
817 }
818 break;
819
820
821 case 666:
822 if(this->is_delta || this->is_scara) { // M666 - set trim for each axis in mm, NB negative mm trim is down
823 if (gcode->has_letter('X')) trim_mm[0] = gcode->get_value('X');
824 if (gcode->has_letter('Y')) trim_mm[1] = gcode->get_value('Y');
825 if (gcode->has_letter('Z')) trim_mm[2] = gcode->get_value('Z');
826
827 // print the current trim values in mm
828 gcode->stream->printf("X: %5.3f Y: %5.3f Z: %5.3f\n", trim_mm[0], trim_mm[1], trim_mm[2]);
829
830 }
831 break;
832
833 // NOTE this is to test accuracy of lead screws etc.
834 case 1910: { // M1910 - move specific number of raw steps
835 if(gcode->subcode == 0) {
836 // Enable the motors
837 THEKERNEL->stepper->turn_enable_pins_on();
838
839 int x = 0, y = 0 , z = 0, f = 200 * 16;
840 if (gcode->has_letter('F')) f = gcode->get_value('F');
841 if (gcode->has_letter('X')) {
842 x = gcode->get_value('X');
843 STEPPER[X_AXIS]->move(x < 0, abs(x), f);
844 }
845 if (gcode->has_letter('Y')) {
846 y = gcode->get_value('Y');
847 STEPPER[Y_AXIS]->move(y < 0, abs(y), f);
848 }
849 if (gcode->has_letter('Z')) {
850 z = gcode->get_value('Z');
851 STEPPER[Z_AXIS]->move(z < 0, abs(z), f);
852 }
853 gcode->stream->printf("Moving X %d Y %d Z %d steps at F %d steps/sec\n", x, y, z, f);
854
855 } else if(gcode->subcode == 1) {
856 // stop any that are moving
857 for (int i = 0; i < 3; ++i) {
858 if(STEPPER[i]->is_moving()) STEPPER[i]->move(0, 0);
859 }
860 }
861 break;
862 }
863 }
864 }
865 }
866
867 // Called periodically to change the speed to match acceleration
868 void Endstops::acceleration_tick(void)
869 {
870 if(this->status >= NOT_HOMING) return; // nothing to do, only do this when moving for homing sequence
871
872 // foreach stepper that is moving
873 for ( int c = X_AXIS; c <= Z_AXIS; c++ ) {
874 if( !STEPPER[c]->is_moving() ) continue;
875
876 uint32_t current_rate = STEPPER[c]->get_steps_per_second();
877 uint32_t target_rate = floorf(this->feed_rate[c] * STEPS_PER_MM(c));
878 float acc = (c == Z_AXIS) ? THEKERNEL->planner->get_z_acceleration() : THEKERNEL->planner->get_acceleration();
879 if( current_rate < target_rate ) {
880 uint32_t rate_increase = floorf((acc / THEKERNEL->acceleration_ticks_per_second) * STEPS_PER_MM(c));
881 current_rate = min( target_rate, current_rate + rate_increase );
882 }
883 if( current_rate > target_rate ) { current_rate = target_rate; }
884
885 // steps per second
886 STEPPER[c]->set_speed(current_rate);
887 }
888
889 return;
890 }
891
892 void Endstops::on_get_public_data(void* argument)
893 {
894 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
895
896 if(!pdr->starts_with(endstops_checksum)) return;
897
898 if(pdr->second_element_is(trim_checksum)) {
899 pdr->set_data_ptr(&this->trim_mm);
900 pdr->set_taken();
901
902 } else if(pdr->second_element_is(home_offset_checksum)) {
903 pdr->set_data_ptr(&this->home_offset);
904 pdr->set_taken();
905
906 } else if(pdr->second_element_is(saved_position_checksum)) {
907 pdr->set_data_ptr(&this->saved_position);
908 pdr->set_taken();
909
910 } else if(pdr->second_element_is(get_homing_status_checksum)) {
911 bool *homing= static_cast<bool *>(pdr->get_data_ptr());
912 *homing= this->status != NOT_HOMING;
913 pdr->set_taken();
914 }
915 }
916
917 void Endstops::on_set_public_data(void* argument)
918 {
919 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
920
921 if(!pdr->starts_with(endstops_checksum)) return;
922
923 if(pdr->second_element_is(trim_checksum)) {
924 float *t = static_cast<float*>(pdr->get_data_ptr());
925 this->trim_mm[0] = t[0];
926 this->trim_mm[1] = t[1];
927 this->trim_mm[2] = t[2];
928 pdr->set_taken();
929
930 } else if(pdr->second_element_is(home_offset_checksum)) {
931 float *t = static_cast<float*>(pdr->get_data_ptr());
932 if(!isnan(t[0])) this->home_offset[0] = t[0];
933 if(!isnan(t[1])) this->home_offset[1] = t[1];
934 if(!isnan(t[2])) this->home_offset[2] = t[2];
935 }
936 }