Cleanup and add comments
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10
11 #include "Robot.h"
12 #include "Planner.h"
13 #include "Conveyor.h"
14 #include "Pin.h"
15 #include "StepperMotor.h"
16 #include "Gcode.h"
17 #include "PublicDataRequest.h"
18 #include "PublicData.h"
19 #include "arm_solutions/BaseSolution.h"
20 #include "arm_solutions/CartesianSolution.h"
21 #include "arm_solutions/RotatableCartesianSolution.h"
22 #include "arm_solutions/LinearDeltaSolution.h"
23 #include "arm_solutions/RotaryDeltaSolution.h"
24 #include "arm_solutions/HBotSolution.h"
25 #include "arm_solutions/CoreXZSolution.h"
26 #include "arm_solutions/MorganSCARASolution.h"
27 #include "StepTicker.h"
28 #include "checksumm.h"
29 #include "utils.h"
30 #include "ConfigValue.h"
31 #include "libs/StreamOutput.h"
32 #include "StreamOutputPool.h"
33 #include "ExtruderPublicAccess.h"
34 #include "GcodeDispatch.h"
35 #include "ActuatorCoordinates.h"
36 #include "EndstopsPublicAccess.h"
37
38 #include "mbed.h" // for us_ticker_read()
39 #include "mri.h"
40
41 #include <fastmath.h>
42 #include <string>
43 #include <algorithm>
44
45 #define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46 #define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47 #define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48 #define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49 #define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
50 #define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
51 #define arc_correction_checksum CHECKSUM("arc_correction")
52 #define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53 #define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54 #define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
55 #define segment_z_moves_checksum CHECKSUM("segment_z_moves")
56 #define save_g92_checksum CHECKSUM("save_g92")
57 #define set_g92_checksum CHECKSUM("set_g92")
58
59 // arm solutions
60 #define arm_solution_checksum CHECKSUM("arm_solution")
61 #define cartesian_checksum CHECKSUM("cartesian")
62 #define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
63 #define rostock_checksum CHECKSUM("rostock")
64 #define linear_delta_checksum CHECKSUM("linear_delta")
65 #define rotary_delta_checksum CHECKSUM("rotary_delta")
66 #define delta_checksum CHECKSUM("delta")
67 #define hbot_checksum CHECKSUM("hbot")
68 #define corexy_checksum CHECKSUM("corexy")
69 #define corexz_checksum CHECKSUM("corexz")
70 #define kossel_checksum CHECKSUM("kossel")
71 #define morgan_checksum CHECKSUM("morgan")
72
73 // new-style actuator stuff
74 #define actuator_checksum CHEKCSUM("actuator")
75
76 #define step_pin_checksum CHECKSUM("step_pin")
77 #define dir_pin_checksum CHEKCSUM("dir_pin")
78 #define en_pin_checksum CHECKSUM("en_pin")
79
80 #define steps_per_mm_checksum CHECKSUM("steps_per_mm")
81 #define max_rate_checksum CHECKSUM("max_rate")
82 #define acceleration_checksum CHECKSUM("acceleration")
83 #define z_acceleration_checksum CHECKSUM("z_acceleration")
84
85 #define alpha_checksum CHECKSUM("alpha")
86 #define beta_checksum CHECKSUM("beta")
87 #define gamma_checksum CHECKSUM("gamma")
88
89 #define laser_module_default_power_checksum CHECKSUM("laser_module_default_power")
90
91 #define enable_checksum CHECKSUM("enable")
92 #define halt_checksum CHECKSUM("halt")
93 #define soft_endstop_checksum CHECKSUM("soft_endstop")
94 #define xmin_checksum CHECKSUM("x_min")
95 #define ymin_checksum CHECKSUM("y_min")
96 #define zmin_checksum CHECKSUM("z_min")
97 #define xmax_checksum CHECKSUM("x_max")
98 #define ymax_checksum CHECKSUM("y_max")
99 #define zmax_checksum CHECKSUM("z_max")
100
101 #define ARC_ANGULAR_TRAVEL_EPSILON 5E-9F // Float (radians)
102 #define PI 3.14159265358979323846F // force to be float, do not use M_PI
103
104 // The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
105 // It takes care of cutting arcs into segments, same thing for line that are too long
106
107 Robot::Robot()
108 {
109 this->inch_mode = false;
110 this->absolute_mode = true;
111 this->e_absolute_mode = true;
112 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
113 memset(this->machine_position, 0, sizeof machine_position);
114 memset(this->compensated_machine_position, 0, sizeof compensated_machine_position);
115 this->arm_solution = NULL;
116 seconds_per_minute = 60.0F;
117 this->clearToolOffset();
118 this->compensationTransform = nullptr;
119 this->get_e_scale_fnc= nullptr;
120 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
121 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
122 this->next_command_is_MCS = false;
123 this->disable_segmentation= false;
124 this->disable_arm_solution= false;
125 this->n_motors= 0;
126 }
127
128 //Called when the module has just been loaded
129 void Robot::on_module_loaded()
130 {
131 this->register_for_event(ON_GCODE_RECEIVED);
132
133 // Configuration
134 this->load_config();
135 }
136
137 #define ACTUATOR_CHECKSUMS(X) { \
138 CHECKSUM(X "_step_pin"), \
139 CHECKSUM(X "_dir_pin"), \
140 CHECKSUM(X "_en_pin"), \
141 CHECKSUM(X "_steps_per_mm"), \
142 CHECKSUM(X "_max_rate"), \
143 CHECKSUM(X "_acceleration") \
144 }
145
146 void Robot::load_config()
147 {
148 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
149 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
150 // To make adding those solution easier, they have their own, separate object.
151 // Here we read the config to find out which arm solution to use
152 if (this->arm_solution) delete this->arm_solution;
153 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
154 // Note checksums are not const expressions when in debug mode, so don't use switch
155 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
156 this->arm_solution = new HBotSolution(THEKERNEL->config);
157
158 } else if(solution_checksum == corexz_checksum) {
159 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
160
161 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
162 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
163
164 } else if(solution_checksum == rotatable_cartesian_checksum) {
165 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
166
167 } else if(solution_checksum == rotary_delta_checksum) {
168 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
169
170 } else if(solution_checksum == morgan_checksum) {
171 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
172
173 } else if(solution_checksum == cartesian_checksum) {
174 this->arm_solution = new CartesianSolution(THEKERNEL->config);
175
176 } else {
177 this->arm_solution = new CartesianSolution(THEKERNEL->config);
178 }
179
180 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
181 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
182 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
183 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
184 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
185 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
186 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
187
188 // in mm/sec but specified in config as mm/min
189 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
190 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
191 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
192
193 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
194 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
195 string g92 = THEKERNEL->config->value(set_g92_checksum )->by_default("")->as_string();
196 if(!g92.empty()) {
197 // optional setting for a fixed G92 offset
198 std::vector<float> t= parse_number_list(g92.c_str());
199 if(t.size() == 3) {
200 g92_offset = wcs_t(t[0], t[1], t[2]);
201 }
202 }
203
204 // default s value for laser
205 this->s_value = THEKERNEL->config->value(laser_module_default_power_checksum)->by_default(0.8F)->as_number();
206
207 // Make our Primary XYZ StepperMotors, and potentially A B C
208 uint16_t const motor_checksums[][6] = {
209 ACTUATOR_CHECKSUMS("alpha"), // X
210 ACTUATOR_CHECKSUMS("beta"), // Y
211 ACTUATOR_CHECKSUMS("gamma"), // Z
212 #if MAX_ROBOT_ACTUATORS > 3
213 ACTUATOR_CHECKSUMS("delta"), // A
214 #if MAX_ROBOT_ACTUATORS > 4
215 ACTUATOR_CHECKSUMS("epsilon"), // B
216 #if MAX_ROBOT_ACTUATORS > 5
217 ACTUATOR_CHECKSUMS("zeta") // C
218 #endif
219 #endif
220 #endif
221 };
222
223 // default acceleration setting, can be overriden with newer per axis settings
224 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
225
226 // make each motor
227 for (size_t a = 0; a < MAX_ROBOT_ACTUATORS; a++) {
228 Pin pins[3]; //step, dir, enable
229 for (size_t i = 0; i < 3; i++) {
230 pins[i].from_string(THEKERNEL->config->value(motor_checksums[a][i])->by_default("nc")->as_string())->as_output();
231 }
232
233 if(!pins[0].connected() || !pins[1].connected()) { // step and dir must be defined, but enable is optional
234 if(a <= Z_AXIS) {
235 THEKERNEL->streams->printf("FATAL: motor %c is not defined in config\n", 'X'+a);
236 n_motors= a; // we only have this number of motors
237 return;
238 }
239 break; // if any pin is not defined then the axis is not defined (and axis need to be defined in contiguous order)
240 }
241
242 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
243 // register this motor (NB This must be 0,1,2) of the actuators array
244 uint8_t n= register_motor(sm);
245 if(n != a) {
246 // this is a fatal error
247 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
248 return;
249 }
250
251 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(motor_checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
252 actuators[a]->set_max_rate(THEKERNEL->config->value(motor_checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
253 actuators[a]->set_acceleration(THEKERNEL->config->value(motor_checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
254 }
255
256 check_max_actuator_speeds(); // check the configs are sane
257
258 // if we have not specified a z acceleration see if the legacy config was set
259 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
260 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
261 if(!isnan(acc)) {
262 actuators[Z_AXIS]->set_acceleration(acc);
263 }
264 }
265
266 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
267 // so the first move can be correct if homing is not performed
268 ActuatorCoordinates actuator_pos;
269 arm_solution->cartesian_to_actuator(machine_position, actuator_pos);
270 for (size_t i = 0; i < n_motors; i++)
271 actuators[i]->change_last_milestone(actuator_pos[i]);
272
273 //this->clearToolOffset();
274
275 soft_endstop_enabled= THEKERNEL->config->value(soft_endstop_checksum, enable_checksum)->by_default(false)->as_bool();
276 soft_endstop_halt= THEKERNEL->config->value(soft_endstop_checksum, halt_checksum)->by_default(true)->as_bool();
277
278 soft_endstop_min[X_AXIS]= THEKERNEL->config->value(soft_endstop_checksum, xmin_checksum)->by_default(NAN)->as_number();
279 soft_endstop_min[Y_AXIS]= THEKERNEL->config->value(soft_endstop_checksum, ymin_checksum)->by_default(NAN)->as_number();
280 soft_endstop_min[Z_AXIS]= THEKERNEL->config->value(soft_endstop_checksum, zmin_checksum)->by_default(NAN)->as_number();
281 soft_endstop_max[X_AXIS]= THEKERNEL->config->value(soft_endstop_checksum, xmax_checksum)->by_default(NAN)->as_number();
282 soft_endstop_max[Y_AXIS]= THEKERNEL->config->value(soft_endstop_checksum, ymax_checksum)->by_default(NAN)->as_number();
283 soft_endstop_max[Z_AXIS]= THEKERNEL->config->value(soft_endstop_checksum, zmax_checksum)->by_default(NAN)->as_number();
284 }
285
286 uint8_t Robot::register_motor(StepperMotor *motor)
287 {
288 // register this motor with the step ticker
289 THEKERNEL->step_ticker->register_motor(motor);
290 if(n_motors >= k_max_actuators) {
291 // this is a fatal error
292 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
293 __debugbreak();
294 }
295 actuators.push_back(motor);
296 motor->set_motor_id(n_motors);
297 return n_motors++;
298 }
299
300 void Robot::push_state()
301 {
302 bool am = this->absolute_mode;
303 bool em = this->e_absolute_mode;
304 bool im = this->inch_mode;
305 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
306 state_stack.push(s);
307 }
308
309 void Robot::pop_state()
310 {
311 if(!state_stack.empty()) {
312 auto s = state_stack.top();
313 state_stack.pop();
314 this->feed_rate = std::get<0>(s);
315 this->seek_rate = std::get<1>(s);
316 this->absolute_mode = std::get<2>(s);
317 this->e_absolute_mode = std::get<3>(s);
318 this->inch_mode = std::get<4>(s);
319 this->current_wcs = std::get<5>(s);
320 }
321 }
322
323 std::vector<Robot::wcs_t> Robot::get_wcs_state() const
324 {
325 std::vector<wcs_t> v;
326 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
327 for(auto& i : wcs_offsets) {
328 v.push_back(i);
329 }
330 v.push_back(g92_offset);
331 v.push_back(tool_offset);
332 return v;
333 }
334
335 void Robot::get_current_machine_position(float *pos) const
336 {
337 // get real time current actuator position in mm
338 ActuatorCoordinates current_position{
339 actuators[X_AXIS]->get_current_position(),
340 actuators[Y_AXIS]->get_current_position(),
341 actuators[Z_AXIS]->get_current_position()
342 };
343
344 // get machine position from the actuator position using FK
345 arm_solution->actuator_to_cartesian(current_position, pos);
346 }
347
348 void Robot::print_position(uint8_t subcode, std::string& res, bool ignore_extruders) const
349 {
350 // M114.1 is a new way to do this (similar to how GRBL does it).
351 // it returns the realtime position based on the current step position of the actuators.
352 // this does require a FK to get a machine position from the actuator position
353 // and then invert all the transforms to get a workspace position from machine position
354 // M114 just does it the old way uses machine_position and does inverse transforms to get the requested position
355 uint32_t n = 0;
356 char buf[64];
357 if(subcode == 0) { // M114 print WCS
358 wcs_t pos= mcs2wcs(machine_position);
359 n = snprintf(buf, sizeof(buf), "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
360
361 } else if(subcode == 4) {
362 // M114.4 print last milestone
363 n = snprintf(buf, sizeof(buf), "MP: X:%1.4f Y:%1.4f Z:%1.4f", machine_position[X_AXIS], machine_position[Y_AXIS], machine_position[Z_AXIS]);
364
365 } else if(subcode == 5) {
366 // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
367 // will differ from LMS by the compensation at the current position otherwise
368 n = snprintf(buf, sizeof(buf), "CMP: X:%1.4f Y:%1.4f Z:%1.4f", compensated_machine_position[X_AXIS], compensated_machine_position[Y_AXIS], compensated_machine_position[Z_AXIS]);
369
370 } else {
371 // get real time positions
372 float mpos[3];
373 get_current_machine_position(mpos);
374
375 // current_position/mpos includes the compensation transform so we need to get the inverse to get actual position
376 if(compensationTransform) compensationTransform(mpos, true); // get inverse compensation transform
377
378 if(subcode == 1) { // M114.1 print realtime WCS
379 wcs_t pos= mcs2wcs(mpos);
380 n = snprintf(buf, sizeof(buf), "WCS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
381
382 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
383 n = snprintf(buf, sizeof(buf), "MCS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
384
385 } else if(subcode == 3) { // M114.3 print realtime actuator position
386 // get real time current actuator position in mm
387 ActuatorCoordinates current_position{
388 actuators[X_AXIS]->get_current_position(),
389 actuators[Y_AXIS]->get_current_position(),
390 actuators[Z_AXIS]->get_current_position()
391 };
392 n = snprintf(buf, sizeof(buf), "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
393 }
394 }
395
396 if(n > sizeof(buf)) n= sizeof(buf);
397 res.append(buf, n);
398
399 #if MAX_ROBOT_ACTUATORS > 3
400 // deal with the ABC axis
401 for (int i = A_AXIS; i < n_motors; ++i) {
402 n= 0;
403 if(ignore_extruders && actuators[i]->is_extruder()) continue; // don't show an extruder as that will be E
404 if(subcode == 4) { // M114.4 print last milestone
405 n= snprintf(buf, sizeof(buf), " %c:%1.4f", 'A'+i-A_AXIS, machine_position[i]);
406
407 }else if(subcode == 2 || subcode == 3) { // M114.2/M114.3 print actuator position which is the same as machine position for ABC
408 // current actuator position
409 n= snprintf(buf, sizeof(buf), " %c:%1.4f", 'A'+i-A_AXIS, actuators[i]->get_current_position());
410 }
411 if(n > sizeof(buf)) n= sizeof(buf);
412 if(n > 0) res.append(buf, n);
413 }
414 #endif
415 }
416
417 // converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
418 Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
419 {
420 return std::make_tuple(
421 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
422 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
423 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
424 );
425 }
426
427 // this does a sanity check that actuator speeds do not exceed steps rate capability
428 // we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
429 void Robot::check_max_actuator_speeds()
430 {
431 for (size_t i = 0; i < n_motors; i++) {
432 if(actuators[i]->is_extruder()) continue; //extruders are not included in this check
433
434 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
435 if (step_freq > THEKERNEL->base_stepping_frequency) {
436 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
437 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
438 }
439 }
440 }
441
442 //A GCode has been received
443 //See if the current Gcode line has some orders for us
444 void Robot::on_gcode_received(void *argument)
445 {
446 Gcode *gcode = static_cast<Gcode *>(argument);
447
448 enum MOTION_MODE_T motion_mode= NONE;
449
450 if( gcode->has_g) {
451 switch( gcode->g ) {
452 case 0: motion_mode = SEEK; break;
453 case 1: motion_mode = LINEAR; break;
454 case 2: motion_mode = CW_ARC; break;
455 case 3: motion_mode = CCW_ARC; break;
456 case 4: { // G4 Dwell
457 uint32_t delay_ms = 0;
458 if (gcode->has_letter('P')) {
459 if(THEKERNEL->is_grbl_mode()) {
460 // in grbl mode (and linuxcnc) P is decimal seconds
461 float f= gcode->get_value('P');
462 delay_ms= f * 1000.0F;
463
464 }else{
465 // in reprap P is milliseconds, they always have to be different!
466 delay_ms = gcode->get_int('P');
467 }
468 }
469 if (gcode->has_letter('S')) {
470 delay_ms += gcode->get_int('S') * 1000;
471 }
472 if (delay_ms > 0) {
473 // drain queue
474 THEKERNEL->conveyor->wait_for_idle();
475 // wait for specified time
476 uint32_t start = us_ticker_read(); // mbed call
477 while ((us_ticker_read() - start) < delay_ms * 1000) {
478 THEKERNEL->call_event(ON_IDLE, this);
479 if(THEKERNEL->is_halted()) return;
480 }
481 }
482 }
483 break;
484
485 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
486 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
487 size_t n = gcode->get_uint('P');
488 if(n == 0) n = current_wcs; // set current coordinate system
489 else --n;
490 if(n < MAX_WCS) {
491 float x, y, z;
492 std::tie(x, y, z) = wcs_offsets[n];
493 if(gcode->get_int('L') == 20) {
494 // this makes the current machine position (less compensation transform) the offset
495 // get current position in WCS
496 wcs_t pos= mcs2wcs(machine_position);
497
498 if(gcode->has_letter('X')){
499 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
500 }
501
502 if(gcode->has_letter('Y')){
503 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
504 }
505 if(gcode->has_letter('Z')) {
506 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
507 }
508
509 } else {
510 if(absolute_mode) {
511 // the value is the offset from machine zero
512 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
513 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
514 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
515 }else{
516 if(gcode->has_letter('X')) x += to_millimeters(gcode->get_value('X'));
517 if(gcode->has_letter('Y')) y += to_millimeters(gcode->get_value('Y'));
518 if(gcode->has_letter('Z')) z += to_millimeters(gcode->get_value('Z'));
519 }
520 }
521 wcs_offsets[n] = wcs_t(x, y, z);
522 }
523 }
524 break;
525
526 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
527 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
528 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
529 case 20: this->inch_mode = true; break;
530 case 21: this->inch_mode = false; break;
531
532 case 54: case 55: case 56: case 57: case 58: case 59:
533 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
534 current_wcs = gcode->g - 54;
535 if(gcode->g == 59 && gcode->subcode > 0) {
536 current_wcs += gcode->subcode;
537 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
538 }
539 break;
540
541 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
542 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
543
544 case 92: {
545 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
546 // reset G92 offsets to 0
547 g92_offset = wcs_t(0, 0, 0);
548
549 } else if(gcode->subcode == 3) {
550 // initialize G92 to the specified values, only used for saving it with M500
551 float x= 0, y= 0, z= 0;
552 if(gcode->has_letter('X')) x= gcode->get_value('X');
553 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
554 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
555 g92_offset = wcs_t(x, y, z);
556
557 } else {
558 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
559 float x, y, z;
560 std::tie(x, y, z) = g92_offset;
561 // get current position in WCS
562 wcs_t pos= mcs2wcs(machine_position);
563
564 // adjust g92 offset to make the current wpos == the value requested
565 if(gcode->has_letter('X')){
566 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
567 }
568 if(gcode->has_letter('Y')){
569 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
570 }
571 if(gcode->has_letter('Z')) {
572 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
573 }
574 g92_offset = wcs_t(x, y, z);
575 }
576
577 #if MAX_ROBOT_ACTUATORS > 3
578 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
579 // reset the E position, legacy for 3d Printers to be reprap compatible
580 // find the selected extruder
581 int selected_extruder= get_active_extruder();
582 if(selected_extruder > 0) {
583 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
584 machine_position[selected_extruder]= compensated_machine_position[selected_extruder]= e;
585 actuators[selected_extruder]->change_last_milestone(get_e_scale_fnc ? e*get_e_scale_fnc() : e);
586 }
587 }
588 #endif
589
590 return;
591 }
592 }
593
594 } else if( gcode->has_m) {
595 switch( gcode->m ) {
596 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
597 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
598 // break;
599
600 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
601 if(!THEKERNEL->is_grbl_mode()) break;
602 // fall through to M2
603 case 2: // M2 end of program
604 current_wcs = 0;
605 absolute_mode = true;
606 break;
607 case 17:
608 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
609 break;
610
611 case 18: // this allows individual motors to be turned off, no parameters falls through to turn all off
612 if(gcode->get_num_args() > 0) {
613 // bitmap of motors to turn off, where bit 1:X, 2:Y, 3:Z, 4:A, 5:B, 6:C
614 uint32_t bm= 0;
615 for (int i = 0; i < n_motors; ++i) {
616 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-3));
617 if(gcode->has_letter(axis)) bm |= (0x02<<i); // set appropriate bit
618 }
619 // handle E parameter as currently selected extruder ABC
620 if(gcode->has_letter('E')) {
621 // find first selected extruder
622 int i= get_active_extruder();
623 if(i > 0) {
624 bm |= (0x02<<i); // set appropriate bit
625 }
626 }
627
628 THEKERNEL->conveyor->wait_for_idle();
629 THEKERNEL->call_event(ON_ENABLE, (void *)bm);
630 break;
631 }
632 // fall through
633 case 84:
634 THEKERNEL->conveyor->wait_for_idle();
635 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
636 break;
637
638 case 82: e_absolute_mode= true; break;
639 case 83: e_absolute_mode= false; break;
640
641 case 92: // M92 - set steps per mm
642 for (int i = 0; i < n_motors; ++i) {
643 if(actuators[i]->is_extruder()) continue; //extruders handle this themselves
644 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-A_AXIS));
645 if(gcode->has_letter(axis)) {
646 actuators[i]->change_steps_per_mm(this->to_millimeters(gcode->get_value(axis)));
647 }
648 gcode->stream->printf("%c:%f ", axis, actuators[i]->get_steps_per_mm());
649 }
650 gcode->add_nl = true;
651 check_max_actuator_speeds();
652 return;
653
654 case 114:{
655 std::string buf;
656 print_position(gcode->subcode, buf, true); // ignore extruders as they will print E themselves
657 gcode->txt_after_ok.append(buf);
658 return;
659 }
660
661 case 120: // push state
662 push_state();
663 break;
664
665 case 121: // pop state
666 pop_state();
667 break;
668
669 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
670 if(gcode->get_num_args() == 0) {
671 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
672 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
673 }
674 if(gcode->subcode == 1) {
675 for (size_t i = A_AXIS; i < n_motors; i++) {
676 if(actuators[i]->is_extruder()) continue; //extruders handle this themselves
677 gcode->stream->printf(" %c: %g ", 'A' + i - A_AXIS, actuators[i]->get_max_rate());
678 }
679 }
680
681 gcode->add_nl = true;
682
683 }else{
684 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
685 if (gcode->has_letter('X' + i)) {
686 float v= gcode->get_value('X'+i);
687 if(gcode->subcode == 0) this->max_speeds[i]= v;
688 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
689 }
690 }
691
692 if(gcode->subcode == 1) {
693 // ABC axis only handle actuator max speeds
694 for (size_t i = A_AXIS; i < n_motors; i++) {
695 if(actuators[i]->is_extruder()) continue; //extruders handle this themselves
696 int c= 'A' + i - A_AXIS;
697 if(gcode->has_letter(c)) {
698 float v= gcode->get_value(c);
699 actuators[i]->set_max_rate(v);
700 }
701 }
702 }
703
704
705 // this format is deprecated
706 if(gcode->subcode == 0 && (gcode->has_letter('A') || gcode->has_letter('B') || gcode->has_letter('C'))) {
707 gcode->stream->printf("NOTE this format is deprecated, Use M203.1 instead\n");
708 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
709 if (gcode->has_letter('A' + i)) {
710 float v= gcode->get_value('A'+i);
711 actuators[i]->set_max_rate(v);
712 }
713 }
714 }
715
716 if(gcode->subcode == 1) check_max_actuator_speeds();
717 }
718 break;
719
720 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
721 if (gcode->has_letter('S')) {
722 float acc = gcode->get_value('S'); // mm/s^2
723 // enforce minimum
724 if (acc < 1.0F) acc = 1.0F;
725 this->default_acceleration = acc;
726 }
727 for (int i = 0; i < n_motors; ++i) {
728 if(actuators[i]->is_extruder()) continue; //extruders handle this themselves
729 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-A_AXIS));
730 if(gcode->has_letter(axis)) {
731 float acc = gcode->get_value(axis); // mm/s^2
732 // enforce positive
733 if (acc <= 0.0F) acc = NAN;
734 actuators[i]->set_acceleration(acc);
735 }
736 }
737 break;
738
739 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
740 if (gcode->has_letter('X')) {
741 float jd = gcode->get_value('X');
742 // enforce minimum
743 if (jd < 0.0F)
744 jd = 0.0F;
745 THEKERNEL->planner->junction_deviation = jd;
746 }
747 if (gcode->has_letter('Z')) {
748 float jd = gcode->get_value('Z');
749 // enforce minimum, -1 disables it and uses regular junction deviation
750 if (jd <= -1.0F)
751 jd = NAN;
752 THEKERNEL->planner->z_junction_deviation = jd;
753 }
754 if (gcode->has_letter('S')) {
755 float mps = gcode->get_value('S');
756 // enforce minimum
757 if (mps < 0.0F)
758 mps = 0.0F;
759 THEKERNEL->planner->minimum_planner_speed = mps;
760 }
761 break;
762
763 case 211: // M211 Sn turns soft endstops on/off
764 if(gcode->has_letter('S')) {
765 soft_endstop_enabled= gcode->get_uint('S') == 1;
766 }else{
767 gcode->stream->printf("Soft endstops are %s", soft_endstop_enabled ? "Enabled" : "Disabled");
768 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
769 if(isnan(soft_endstop_min[i])) {
770 gcode->stream->printf(",%c min is disabled", 'X'+i);
771 }
772 if(isnan(soft_endstop_max[i])) {
773 gcode->stream->printf(",%c max is disabled", 'X'+i);
774 }
775 if(!is_homed(i)) {
776 gcode->stream->printf(",%c axis is not homed", 'X'+i);
777 }
778 }
779 gcode->stream->printf("\n");
780 }
781 break;
782
783 case 220: // M220 - speed override percentage
784 if (gcode->has_letter('S')) {
785 float factor = gcode->get_value('S');
786 // enforce minimum 10% speed
787 if (factor < 10.0F)
788 factor = 10.0F;
789 // enforce maximum 10x speed
790 if (factor > 1000.0F)
791 factor = 1000.0F;
792
793 seconds_per_minute = 6000.0F / factor;
794 } else {
795 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
796 }
797 break;
798
799 case 400: // wait until all moves are done up to this point
800 THEKERNEL->conveyor->wait_for_idle();
801 break;
802
803 case 500: // M500 saves some volatile settings to config override file
804 case 503: { // M503 just prints the settings
805 gcode->stream->printf(";Steps per unit:\nM92 ");
806 for (int i = 0; i < n_motors; ++i) {
807 if(actuators[i]->is_extruder()) continue; //extruders handle this themselves
808 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-A_AXIS));
809 gcode->stream->printf("%c%1.5f ", axis, actuators[i]->get_steps_per_mm());
810 }
811 gcode->stream->printf("\n");
812
813 // only print if not NAN
814 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
815 for (int i = 0; i < n_motors; ++i) {
816 if(actuators[i]->is_extruder()) continue; // extruders handle this themselves
817 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-A_AXIS));
818 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", axis, actuators[i]->get_acceleration());
819 }
820 gcode->stream->printf("\n");
821
822 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, isnan(THEKERNEL->planner->z_junction_deviation)?-1:THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
823
824 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
825
826 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 ");
827 for (int i = 0; i < n_motors; ++i) {
828 if(actuators[i]->is_extruder()) continue; // extruders handle this themselves
829 char axis= (i <= Z_AXIS ? 'X'+i : 'A'+(i-A_AXIS));
830 gcode->stream->printf("%c%1.5f ", axis, actuators[i]->get_max_rate());
831 }
832 gcode->stream->printf("\n");
833
834 // get or save any arm solution specific optional values
835 BaseSolution::arm_options_t options;
836 if(arm_solution->get_optional(options) && !options.empty()) {
837 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
838 for(auto &i : options) {
839 gcode->stream->printf(" %c%1.4f", i.first, i.second);
840 }
841 gcode->stream->printf("\n");
842 }
843
844 // save wcs_offsets and current_wcs
845 // TODO this may need to be done whenever they change to be compliant
846 gcode->stream->printf(";WCS settings\n");
847 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
848 int n = 1;
849 for(auto &i : wcs_offsets) {
850 if(i != wcs_t(0, 0, 0)) {
851 float x, y, z;
852 std::tie(x, y, z) = i;
853 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
854 }
855 ++n;
856 }
857 if(save_g92) {
858 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
859 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
860 if(g92_offset != wcs_t(0, 0, 0)) {
861 float x, y, z;
862 std::tie(x, y, z) = g92_offset;
863 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
864 }
865 }
866 }
867 break;
868
869 case 665: { // M665 set optional arm solution variables based on arm solution.
870 // the parameter args could be any letter each arm solution only accepts certain ones
871 BaseSolution::arm_options_t options = gcode->get_args();
872 options.erase('S'); // don't include the S
873 options.erase('U'); // don't include the U
874 if(options.size() > 0) {
875 // set the specified options
876 arm_solution->set_optional(options);
877 }
878 options.clear();
879 if(arm_solution->get_optional(options)) {
880 // foreach optional value
881 for(auto &i : options) {
882 // print all current values of supported options
883 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
884 gcode->add_nl = true;
885 }
886 }
887
888 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
889 this->delta_segments_per_second = gcode->get_value('S');
890 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
891
892 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
893 this->mm_per_line_segment = gcode->get_value('U');
894 this->delta_segments_per_second = 0;
895 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
896 }
897
898 break;
899 }
900 }
901 }
902
903 if( motion_mode != NONE) {
904 is_g123= motion_mode != SEEK;
905 process_move(gcode, motion_mode);
906
907 }else{
908 is_g123= false;
909 }
910
911 next_command_is_MCS = false; // must be on same line as G0 or G1
912 }
913
914 int Robot::get_active_extruder() const
915 {
916 for (int i = E_AXIS; i < n_motors; ++i) {
917 // find first selected extruder
918 if(actuators[i]->is_extruder() && actuators[i]->is_selected()) return i;
919 }
920 return 0;
921 }
922
923 // process a G0/G1/G2/G3
924 void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
925 {
926 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
927 // get XYZ and one E (which goes to the selected extruder)
928 float param[4]{NAN, NAN, NAN, NAN};
929
930 // process primary axis
931 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
932 char letter= 'X'+i;
933 if( gcode->has_letter(letter) ) {
934 param[i] = this->to_millimeters(gcode->get_value(letter));
935 }
936 }
937
938 float offset[3]{0,0,0};
939 for(char letter = 'I'; letter <= 'K'; letter++) {
940 if( gcode->has_letter(letter) ) {
941 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
942 }
943 }
944
945 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
946 float target[n_motors];
947 memcpy(target, machine_position, n_motors*sizeof(float));
948
949 if(!next_command_is_MCS) {
950 if(this->absolute_mode) {
951 // apply wcs offsets and g92 offset and tool offset
952 if(!isnan(param[X_AXIS])) {
953 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
954 }
955
956 if(!isnan(param[Y_AXIS])) {
957 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
958 }
959
960 if(!isnan(param[Z_AXIS])) {
961 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
962 }
963
964 }else{
965 // they are deltas from the machine_position if specified
966 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
967 if(!isnan(param[i])) target[i] = param[i] + machine_position[i];
968 }
969 }
970
971 }else{
972 // already in machine coordinates, we do not add wcs or tool offset for that
973 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
974 if(!isnan(param[i])) target[i] = param[i];
975 }
976 }
977
978 float delta_e= NAN;
979
980 #if MAX_ROBOT_ACTUATORS > 3
981 // process extruder parameters, for active extruder only (only one active extruder at a time)
982 int selected_extruder= 0;
983 if(gcode->has_letter('E')) {
984 selected_extruder= get_active_extruder();
985 param[E_AXIS]= gcode->get_value('E');
986 }
987
988 // do E for the selected extruder
989 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
990 if(this->e_absolute_mode) {
991 target[selected_extruder]= param[E_AXIS];
992 delta_e= target[selected_extruder] - machine_position[selected_extruder];
993 }else{
994 delta_e= param[E_AXIS];
995 target[selected_extruder] = delta_e + machine_position[selected_extruder];
996 }
997 }
998
999 // process ABC axis, this is mutually exclusive to using E for an extruder, so if E is used and A then the results are undefined
1000 for (int i = A_AXIS; i < n_motors; ++i) {
1001 char letter= 'A'+i-A_AXIS;
1002 if(gcode->has_letter(letter)) {
1003 float p= gcode->get_value(letter);
1004 if(this->absolute_mode) {
1005 target[i]= p;
1006 }else{
1007 target[i]= p + machine_position[i];
1008 }
1009 }
1010 }
1011 #endif
1012
1013 if( gcode->has_letter('F') ) {
1014 if( motion_mode == SEEK )
1015 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
1016 else
1017 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
1018 }
1019
1020 // S is modal When specified on a G0/1/2/3 command
1021 if(gcode->has_letter('S')) s_value= gcode->get_value('S');
1022
1023 bool moved= false;
1024
1025 // Perform any physical actions
1026 switch(motion_mode) {
1027 case NONE: break;
1028
1029 case SEEK:
1030 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
1031 break;
1032
1033 case LINEAR:
1034 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
1035 break;
1036
1037 case CW_ARC:
1038 case CCW_ARC:
1039 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
1040 moved= this->compute_arc(gcode, offset, target, motion_mode);
1041 break;
1042 }
1043
1044 // needed to act as start of next arc command
1045 memcpy(arc_milestone, target, sizeof(arc_milestone));
1046
1047 if(moved) {
1048 // set machine_position to the calculated target
1049 memcpy(machine_position, target, n_motors*sizeof(float));
1050 }
1051 }
1052
1053 // reset the machine position for all axis. Used for homing.
1054 // after homing we supply the cartesian coordinates that the head is at when homed,
1055 // however for Z this is the compensated machine position (if enabled)
1056 // So we need to apply the inverse compensation transform to the supplied coordinates to get the correct machine position
1057 // this will make the results from M114 and ? consistent after homing.
1058 // This works for cases where the Z endstop is fixed on the Z actuator and is the same regardless of where XY are.
1059 void Robot::reset_axis_position(float x, float y, float z)
1060 {
1061 // set both the same initially
1062 compensated_machine_position[X_AXIS]= machine_position[X_AXIS] = x;
1063 compensated_machine_position[Y_AXIS]= machine_position[Y_AXIS] = y;
1064 compensated_machine_position[Z_AXIS]= machine_position[Z_AXIS] = z;
1065
1066 if(compensationTransform) {
1067 // apply inverse transform to get machine_position
1068 compensationTransform(machine_position, true);
1069 }
1070
1071 // now set the actuator positions based on the supplied compensated position
1072 ActuatorCoordinates actuator_pos;
1073 arm_solution->cartesian_to_actuator(this->compensated_machine_position, actuator_pos);
1074 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
1075 actuators[i]->change_last_milestone(actuator_pos[i]);
1076 }
1077
1078 // Reset the position for an axis (used in homing, and to reset extruder after suspend)
1079 void Robot::reset_axis_position(float position, int axis)
1080 {
1081 compensated_machine_position[axis] = position;
1082 if(axis <= Z_AXIS) {
1083 reset_axis_position(compensated_machine_position[X_AXIS], compensated_machine_position[Y_AXIS], compensated_machine_position[Z_AXIS]);
1084
1085 #if MAX_ROBOT_ACTUATORS > 3
1086 }else if(axis < n_motors) {
1087 // ABC and/or extruders need to be set as there is no arm solution for them
1088 machine_position[axis]= compensated_machine_position[axis]= position;
1089 actuators[axis]->change_last_milestone(machine_position[axis]);
1090 #endif
1091 }
1092 }
1093
1094 // similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
1095 // then sets the axis positions to match. currently only called from Endstops.cpp and RotaryDeltaCalibration.cpp
1096 void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
1097 {
1098 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
1099 if(!isnan(ac[i])) actuators[i]->change_last_milestone(ac[i]);
1100 }
1101
1102 // now correct axis positions then recorrect actuator to account for rounding
1103 reset_position_from_current_actuator_position();
1104 }
1105
1106 // Use FK to find out where actuator is and reset to match
1107 // TODO maybe we should only reset axis that are being homed unless this is due to a ON_HALT
1108 void Robot::reset_position_from_current_actuator_position()
1109 {
1110 ActuatorCoordinates actuator_pos;
1111 for (size_t i = X_AXIS; i < n_motors; i++) {
1112 // NOTE actuator::current_position is curently NOT the same as actuator::machine_position after an abrupt abort
1113 actuator_pos[i] = actuators[i]->get_current_position();
1114 }
1115
1116 // discover machine position from where actuators actually are
1117 arm_solution->actuator_to_cartesian(actuator_pos, compensated_machine_position);
1118 memcpy(machine_position, compensated_machine_position, sizeof machine_position);
1119
1120 // compensated_machine_position includes the compensation transform so we need to get the inverse to get actual machine_position
1121 if(compensationTransform) compensationTransform(machine_position, true); // get inverse compensation transform
1122
1123 // now reset actuator::machine_position, NOTE this may lose a little precision as FK is not always entirely accurate.
1124 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
1125 // to get everything in perfect sync.
1126 arm_solution->cartesian_to_actuator(compensated_machine_position, actuator_pos);
1127 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
1128 actuators[i]->change_last_milestone(actuator_pos[i]);
1129 }
1130
1131 // Handle extruders and/or ABC axis
1132 #if MAX_ROBOT_ACTUATORS > 3
1133 for (int i = A_AXIS; i < n_motors; i++) {
1134 // ABC and/or extruders just need to set machine_position and compensated_machine_position
1135 float ap= actuator_pos[i];
1136 if(actuators[i]->is_extruder() && get_e_scale_fnc) ap /= get_e_scale_fnc(); // inverse E scale if there is one and this is an extruder
1137 machine_position[i]= compensated_machine_position[i]= ap;
1138 actuators[i]->change_last_milestone(actuator_pos[i]); // this updates the last_milestone in the actuator
1139 }
1140 #endif
1141 }
1142
1143 // Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
1144 // target is in machine coordinates without the compensation transform, however we save a compensated_machine_position that includes
1145 // all transforms and is what we actually convert to actuator positions
1146 bool Robot::append_milestone(const float target[], float rate_mm_s)
1147 {
1148 float deltas[n_motors];
1149 float transformed_target[n_motors]; // adjust target for bed compensation
1150 float unit_vec[N_PRIMARY_AXIS];
1151
1152 // unity transform by default
1153 memcpy(transformed_target, target, n_motors*sizeof(float));
1154
1155 // check function pointer and call if set to transform the target to compensate for bed
1156 if(compensationTransform) {
1157 // some compensation strategies can transform XYZ, some just change Z
1158 compensationTransform(transformed_target, false);
1159 }
1160
1161 // check soft endstops only for homed axis that are enabled
1162 if(soft_endstop_enabled) {
1163 for (int i = 0; i <= Z_AXIS; ++i) {
1164 if(!is_homed(i)) continue;
1165 if( (!isnan(soft_endstop_min[i]) && transformed_target[i] < soft_endstop_min[i]) || (!isnan(soft_endstop_max[i]) && transformed_target[i] > soft_endstop_max[i]) ) {
1166 if(soft_endstop_halt) {
1167 if(THEKERNEL->is_grbl_mode()) {
1168 THEKERNEL->streams->printf("error: ");
1169 }else{
1170 THEKERNEL->streams->printf("Error: ");
1171 }
1172
1173 THEKERNEL->streams->printf("Soft Endstop %c was exceeded - reset or $X or M999 required\n", i+'X');
1174 THEKERNEL->call_event(ON_HALT, nullptr);
1175 return false;
1176
1177 //} else if(soft_endstop_truncate) {
1178 // TODO VERY hard to do need to go back and change the target, and calculate intercept with the edge
1179 // and store all preceding vectors that have on eor more points ourtside of bounds so we can create a propper clip against the boundaries
1180
1181 } else {
1182 // ignore it
1183 if(THEKERNEL->is_grbl_mode()) {
1184 THEKERNEL->streams->printf("error: ");
1185 }else{
1186 THEKERNEL->streams->printf("Error: ");
1187 }
1188 THEKERNEL->streams->printf("Soft Endstop %c was exceeded - entire move ignored\n", i+'X');
1189 return false;
1190 }
1191 }
1192 }
1193 }
1194
1195
1196 bool move= false;
1197 float sos= 0; // sum of squares for just primary axis (XYZ usually)
1198
1199 // find distance moved by each axis, use transformed target from the current compensated machine position
1200 for (size_t i = 0; i < n_motors; i++) {
1201 deltas[i] = transformed_target[i] - compensated_machine_position[i];
1202 if(deltas[i] == 0) continue;
1203 // at least one non zero delta
1204 move = true;
1205 if(i < N_PRIMARY_AXIS) {
1206 sos += powf(deltas[i], 2);
1207 }
1208 }
1209
1210 // nothing moved
1211 if(!move) return false;
1212
1213 // see if this is a primary axis move or not
1214 bool auxilliary_move= true;
1215 for (int i = 0; i < N_PRIMARY_AXIS; ++i) {
1216 if(deltas[i] != 0) {
1217 auxilliary_move= false;
1218 break;
1219 }
1220 }
1221
1222 // total movement, use XYZ if a primary axis otherwise we calculate distance for E after scaling to mm
1223 float distance= auxilliary_move ? 0 : sqrtf(sos);
1224
1225 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
1226 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
1227 if(!auxilliary_move && distance < 0.00001F) return false;
1228
1229
1230 if(!auxilliary_move) {
1231 for (size_t i = X_AXIS; i < N_PRIMARY_AXIS; i++) {
1232 // find distance unit vector for primary axis only
1233 unit_vec[i] = deltas[i] / distance;
1234
1235 // Do not move faster than the configured cartesian limits for XYZ
1236 if ( i <= Z_AXIS && max_speeds[i] > 0 ) {
1237 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
1238
1239 if (axis_speed > max_speeds[i])
1240 rate_mm_s *= ( max_speeds[i] / axis_speed );
1241 }
1242 }
1243 }
1244
1245 // find actuator position given the machine position, use actual adjusted target
1246 ActuatorCoordinates actuator_pos;
1247 if(!disable_arm_solution) {
1248 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
1249
1250 }else{
1251 // basically the same as cartesian, would be used for special homing situations like for scara
1252 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
1253 actuator_pos[i] = transformed_target[i];
1254 }
1255 }
1256
1257 #if MAX_ROBOT_ACTUATORS > 3
1258 sos= 0;
1259 // for the extruders just copy the position, and possibly scale it from mm³ to mm
1260 for (size_t i = E_AXIS; i < n_motors; i++) {
1261 actuator_pos[i]= transformed_target[i];
1262 if(actuators[i]->is_extruder() && get_e_scale_fnc) {
1263 // NOTE this relies on the fact only one extruder is active at a time
1264 // scale for volumetric or flow rate
1265 // TODO is this correct? scaling the absolute target? what if the scale changes?
1266 // for volumetric it basically converts mm³ to mm, but what about flow rate?
1267 actuator_pos[i] *= get_e_scale_fnc();
1268 }
1269 if(auxilliary_move) {
1270 // for E only moves we need to use the scaled E to calculate the distance
1271 sos += powf(actuator_pos[i] - actuators[i]->get_last_milestone(), 2);
1272 }
1273 }
1274 if(auxilliary_move) {
1275 distance= sqrtf(sos); // distance in mm of the e move
1276 if(distance < 0.00001F) return false;
1277 }
1278 #endif
1279
1280 // use default acceleration to start with
1281 float acceleration = default_acceleration;
1282
1283 float isecs = rate_mm_s / distance;
1284
1285 // check per-actuator speed limits
1286 for (size_t actuator = 0; actuator < n_motors; actuator++) {
1287 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1288 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1289
1290 float actuator_rate= d * isecs;
1291 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1292 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1293 isecs = rate_mm_s / distance;
1294 }
1295
1296 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1297 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1298 if(auxilliary_move || actuator < N_PRIMARY_AXIS) {
1299 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1300 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1301 float ca = fabsf((d/distance) * acceleration);
1302 if (ca > ma) {
1303 acceleration *= ( ma / ca );
1304 }
1305 }
1306 }
1307 }
1308
1309 // if we are in feed hold wait here until it is released, this means that even segemnted lines will pause
1310 while(THEKERNEL->get_feed_hold()) {
1311 THEKERNEL->call_event(ON_IDLE, this);
1312 // if we also got a HALT then break out of this
1313 if(THEKERNEL->is_halted()) return false;
1314 }
1315
1316 // Append the block to the planner
1317 // NOTE that distance here should be either the distance travelled by the XYZ axis, or the E mm travel if a solo E move
1318 // NOTE this call will bock until there is room in the block queue, on_idle will continue to be called
1319 if(THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, distance, auxilliary_move ? nullptr : unit_vec, acceleration, s_value, is_g123)) {
1320 // this is the new compensated machine position
1321 memcpy(this->compensated_machine_position, transformed_target, n_motors*sizeof(float));
1322 return true;
1323 }
1324
1325 // no actual move
1326 return false;
1327 }
1328
1329 // Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1330 bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
1331 {
1332 if(THEKERNEL->is_halted()) return false;
1333
1334 // catch negative or zero feed rates
1335 if(rate_mm_s <= 0.0F) {
1336 return false;
1337 }
1338
1339 // get the absolute target position, default is current machine_position
1340 float target[n_motors];
1341 memcpy(target, machine_position, n_motors*sizeof(float));
1342
1343 // add in the deltas to get new target
1344 for (int i= 0; i < naxis; i++) {
1345 target[i] += delta[i];
1346 }
1347
1348 // submit for planning and if moved update machine_position
1349 if(append_milestone(target, rate_mm_s)) {
1350 memcpy(machine_position, target, n_motors*sizeof(float));
1351 return true;
1352 }
1353
1354 return false;
1355 }
1356
1357 // Append a move to the queue ( cutting it into segments if needed )
1358 bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
1359 {
1360 // catch negative or zero feed rates and return the same error as GRBL does
1361 if(rate_mm_s <= 0.0F) {
1362 gcode->is_error= true;
1363 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1364 return false;
1365 }
1366
1367 // Find out the distance for this move in XYZ in MCS
1368 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - machine_position[X_AXIS], 2 ) + powf( target[Y_AXIS] - machine_position[Y_AXIS], 2 ) + powf( target[Z_AXIS] - machine_position[Z_AXIS], 2 ));
1369
1370 if(millimeters_of_travel < 0.00001F) {
1371 // we have no movement in XYZ, probably E only extrude or retract
1372 return this->append_milestone(target, rate_mm_s);
1373 }
1374
1375 /*
1376 For extruders, we need to do some extra work to limit the volumetric rate if specified...
1377 If using volumetric limts we need to be using volumetric extrusion for this to work as Ennn needs to be in mm³ not mm
1378 We ask Extruder to do all the work but we need to pass in the relevant data.
1379 NOTE we need to do this before we segment the line (for deltas)
1380 */
1381 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1382 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
1383 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
1384 rate_mm_s *= data[1]; // adjust the feedrate
1385 }
1386 }
1387
1388 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
1389 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1390 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
1391 uint16_t segments;
1392
1393 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
1394 segments= 1;
1395
1396 } else if(this->delta_segments_per_second > 1.0F) {
1397 // enabled if set to something > 1, it is set to 0.0 by default
1398 // segment based on current speed and requested segments per second
1399 // the faster the travel speed the fewer segments needed
1400 // NOTE rate is mm/sec and we take into account any speed override
1401 float seconds = millimeters_of_travel / rate_mm_s;
1402 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
1403 // TODO if we are only moving in Z on a delta we don't really need to segment at all
1404
1405 } else {
1406 if(this->mm_per_line_segment == 0.0F) {
1407 segments = 1; // don't split it up
1408 } else {
1409 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
1410 }
1411 }
1412
1413 bool moved= false;
1414 if (segments > 1) {
1415 // A vector to keep track of the endpoint of each segment
1416 float segment_delta[n_motors];
1417 float segment_end[n_motors];
1418 memcpy(segment_end, machine_position, n_motors*sizeof(float));
1419
1420 // How far do we move each segment?
1421 for (int i = 0; i < n_motors; i++)
1422 segment_delta[i] = (target[i] - machine_position[i]) / segments;
1423
1424 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1425 // We always add another point after this loop so we stop at segments-1, ie i < segments
1426 for (int i = 1; i < segments; i++) {
1427 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1428 for (int j = 0; j < n_motors; j++)
1429 segment_end[j] += segment_delta[j];
1430
1431 // Append the end of this segment to the queue
1432 // this can block waiting for free block queue or if in feed hold
1433 bool b= this->append_milestone(segment_end, rate_mm_s);
1434 moved= moved || b;
1435 }
1436 }
1437
1438 // Append the end of this full move to the queue
1439 if(this->append_milestone(target, rate_mm_s)) moved= true;
1440
1441 this->next_command_is_MCS = false; // always reset this
1442
1443 return moved;
1444 }
1445
1446
1447 // Append an arc to the queue ( cutting it into segments as needed )
1448 // TODO does not support any E parameters so cannot be used for 3D printing.
1449 bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
1450 {
1451 float rate_mm_s= this->feed_rate / seconds_per_minute;
1452 // catch negative or zero feed rates and return the same error as GRBL does
1453 if(rate_mm_s <= 0.0F) {
1454 gcode->is_error= true;
1455 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1456 return false;
1457 }
1458
1459 // Scary math
1460 float center_axis0 = this->arc_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1461 float center_axis1 = this->arc_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1462 float linear_travel = target[this->plane_axis_2] - this->arc_milestone[this->plane_axis_2];
1463 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to start position
1464 float r_axis1 = -offset[this->plane_axis_1];
1465 float rt_axis0 = target[this->plane_axis_0] - this->arc_milestone[this->plane_axis_0] - offset[this->plane_axis_0]; // Radius vector from center to target position
1466 float rt_axis1 = target[this->plane_axis_1] - this->arc_milestone[this->plane_axis_1] - offset[this->plane_axis_1];
1467 float angular_travel = 0;
1468 //check for condition where atan2 formula will fail due to everything canceling out exactly
1469 if((this->arc_milestone[this->plane_axis_0]==target[this->plane_axis_0]) && (this->arc_milestone[this->plane_axis_1]==target[this->plane_axis_1])) {
1470 if (is_clockwise) { // set angular_travel to -2pi for a clockwise full circle
1471 angular_travel = (-2 * PI);
1472 } else { // set angular_travel to 2pi for a counterclockwise full circle
1473 angular_travel = (2 * PI);
1474 }
1475 } else {
1476 // Patch from GRBL Firmware - Christoph Baumann 04072015
1477 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1478 // Only run if not a full circle or angular travel will incorrectly result in 0.0f
1479 angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
1480 if (plane_axis_2 == Y_AXIS) { is_clockwise = !is_clockwise; } //Math for XZ plane is reverse of other 2 planes
1481 if (is_clockwise) { // adjust angular_travel to be in the range of -2pi to 0 for clockwise arcs
1482 if (angular_travel > 0) { angular_travel -= (2 * PI); }
1483 } else { // adjust angular_travel to be in the range of 0 to 2pi for counterclockwise arcs
1484 if (angular_travel < 0) { angular_travel += (2 * PI); }
1485 }
1486 }
1487
1488 // Find the distance for this gcode
1489 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
1490
1491 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
1492 if( millimeters_of_travel < 0.000001F ) {
1493 return false;
1494 }
1495
1496 // limit segments by maximum arc error
1497 float arc_segment = this->mm_per_arc_segment;
1498 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
1499 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1500 if (this->mm_per_arc_segment < min_err_segment) {
1501 arc_segment = min_err_segment;
1502 }
1503 }
1504
1505 // catch fall through on above
1506 if(arc_segment < 0.0001F) {
1507 arc_segment= 0.5F; /// the old default, so we avoid the divide by zero
1508 }
1509
1510 // Figure out how many segments for this gcode
1511 // TODO for deltas we need to make sure we are at least as many segments as requested, also if mm_per_line_segment is set we need to use the
1512 uint16_t segments = floorf(millimeters_of_travel / arc_segment);
1513 bool moved= false;
1514
1515 if(segments > 1) {
1516 float theta_per_segment = angular_travel / segments;
1517 float linear_per_segment = linear_travel / segments;
1518
1519 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1520 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1521 r_T = [cos(phi) -sin(phi);
1522 sin(phi) cos(phi] * r ;
1523 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1524 defined from the circle center to the initial position. Each line segment is formed by successive
1525 vector rotations. This requires only two cos() and sin() computations to form the rotation
1526 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1527 all float numbers are single precision on the Arduino. (True float precision will not have
1528 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1529 tool precision in some cases. Therefore, arc path correction is implemented.
1530
1531 Small angle approximation may be used to reduce computation overhead further. This approximation
1532 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1533 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1534 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1535 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1536 issue for CNC machines with the single precision Arduino calculations.
1537 This approximation also allows mc_arc to immediately insert a line segment into the planner
1538 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1539 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1540 This is important when there are successive arc motions.
1541 */
1542 // Vector rotation matrix values
1543 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1544 float sin_T = theta_per_segment;
1545
1546 // TODO we need to handle the ABC axis here by segmenting them
1547 float arc_target[n_motors];
1548 float sin_Ti;
1549 float cos_Ti;
1550 float r_axisi;
1551 uint16_t i;
1552 int8_t count = 0;
1553
1554 // init array for all axis
1555 memcpy(arc_target, machine_position, n_motors*sizeof(float));
1556
1557 // Initialize the linear axis
1558 arc_target[this->plane_axis_2] = this->machine_position[this->plane_axis_2];
1559
1560 for (i = 1; i < segments; i++) { // Increment (segments-1)
1561 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1562
1563 if (count < this->arc_correction ) {
1564 // Apply vector rotation matrix
1565 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1566 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1567 r_axis1 = r_axisi;
1568 count++;
1569 } else {
1570 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1571 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1572 cos_Ti = cosf(i * theta_per_segment);
1573 sin_Ti = sinf(i * theta_per_segment);
1574 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1575 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1576 count = 0;
1577 }
1578
1579 // Update arc_target location
1580 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1581 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1582 arc_target[this->plane_axis_2] += linear_per_segment;
1583
1584 // Append this segment to the queue
1585 bool b= this->append_milestone(arc_target, rate_mm_s);
1586 moved= moved || b;
1587 }
1588 }
1589
1590 // Ensure last segment arrives at target location.
1591 if(this->append_milestone(target, rate_mm_s)) moved= true;
1592
1593 return moved;
1594 }
1595
1596 // Do the math for an arc and add it to the queue
1597 bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
1598 {
1599
1600 // Find the radius
1601 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
1602
1603 // Set clockwise/counter-clockwise sign for mc_arc computations
1604 bool is_clockwise = false;
1605 if( motion_mode == CW_ARC ) {
1606 is_clockwise = true;
1607 }
1608
1609 // Append arc
1610 return this->append_arc(gcode, target, offset, radius, is_clockwise );
1611 }
1612
1613
1614 float Robot::theta(float x, float y)
1615 {
1616 float t = atanf(x / fabs(y));
1617 if (y > 0) {
1618 return(t);
1619 } else {
1620 if (t > 0) {
1621 return(PI - t);
1622 } else {
1623 return(-PI - t);
1624 }
1625 }
1626 }
1627
1628 void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1629 {
1630 this->plane_axis_0 = axis_0;
1631 this->plane_axis_1 = axis_1;
1632 this->plane_axis_2 = axis_2;
1633 }
1634
1635 void Robot::clearToolOffset()
1636 {
1637 this->tool_offset= wcs_t(0,0,0);
1638 }
1639
1640 void Robot::setToolOffset(const float offset[3])
1641 {
1642 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
1643 }
1644
1645 float Robot::get_feed_rate() const
1646 {
1647 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1648 }
1649
1650 bool Robot::is_homed(uint8_t i) const
1651 {
1652 if(i >= 3) return false; // safety
1653
1654 // if we are homing we ignore soft endstops so return false
1655 bool homing;
1656 bool ok = PublicData::get_value(endstops_checksum, get_homing_status_checksum, 0, &homing);
1657 if(!ok || homing) return false;
1658
1659 // check individual axis homing status
1660 bool homed[3];
1661 ok = PublicData::get_value(endstops_checksum, get_homed_status_checksum, 0, homed);
1662 if(!ok) return false;
1663 return homed[i];
1664 }