fix bugs inconveyor so it starts queue off correctly
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
9d005957 16#include "Gcode.h"
61134a65 17#include "libs/StreamOutputPool.h"
8b260c2c 18#include "StepTicker.h"
9d005957
MM
19
20#include "mri.h"
21
4cff3ded
AW
22using std::string;
23#include <vector>
4cff3ded 24
8b260c2c
JM
25#define STEP_TICKER_FREQUENCY THEKERNEL->step_ticker->get_frequency()
26#define STEP_TICKER_FREQUENCY_2 (STEP_TICKER_FREQUENCY*STEP_TICKER_FREQUENCY)
27
edac9072
AW
28// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
29// It's stacked on a queue, and that queue is then executed in order, to move the motors.
30// Most of the accel math is also done in this class
31// And GCode objects for use in on_gcode_execute are also help in here
32
1cf31736
JM
33Block::Block()
34{
35 clear();
36}
37
38void Block::clear()
39{
40 //commands.clear();
41 //travel_distances.clear();
9e6014a6
JM
42 //gcodes.clear();
43 //std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
b64cb3dd 44
807b9b57 45 this->steps.fill(0);
1cf31736 46
f539c22f 47 steps_event_count = 0;
1598a726 48 nominal_rate = 0.0F;
f539c22f
MM
49 nominal_speed = 0.0F;
50 millimeters = 0.0F;
51 entry_speed = 0.0F;
f6542ad9 52 exit_speed = 0.0F;
3eadcfee 53 acceleration = 100.0F; // we don't want to get devide by zeroes if this is not set
1598a726 54 initial_rate = 0.0F;
f539c22f
MM
55 accelerate_until = 0;
56 decelerate_after = 0;
57 direction_bits = 0;
58 recalculate_flag = false;
59 nominal_length_flag = false;
60 max_entry_speed = 0.0F;
433d636f 61 is_ready = false;
f6542ad9
JM
62 is_ticking = false;
63 locked = false;
9e6014a6 64
8b260c2c
JM
65 acceleration_per_tick= 0;
66 deceleration_per_tick= 0;
67 total_move_ticks= 0;
a19a873f
JM
68 for(auto &i : tick_info) {
69 i.steps_per_tick= 0;
70 i.counter= 0;
71 i.acceleration_change= 0;
72 i.deceleration_change= 0;
73 i.plateau_rate= 0;
74 i.steps_to_move= 0;
75 i.step_count= 0;
76 i.next_accel_event= 0;
77 }
4cff3ded
AW
78}
79
433d636f 80void Block::debug() const
1cf31736 81{
a19a873f 82 THEKERNEL->streams->printf("%p: steps:X%04lu Y%04lu Z%04lu(max:%4lu) nominal:r%6.1f/s%6.1f mm:%9.6f acc:%5lu dec:%5lu rates:%10.4f entry/max: %10.4f/%10.4f ready:%d locked:%d ticking:%d recalc:%d nomlen:%d time:%f\r\n",
2134bcf2 83 this,
1b5776bf
JM
84 this->steps[0],
85 this->steps[1],
86 this->steps[2],
87 this->steps_event_count,
88 this->nominal_rate,
89 this->nominal_speed,
90 this->millimeters,
1b5776bf
JM
91 this->accelerate_until,
92 this->decelerate_after,
93 this->initial_rate,
1b5776bf
JM
94 this->entry_speed,
95 this->max_entry_speed,
1b5776bf 96 this->is_ready,
a19a873f
JM
97 this->locked,
98 this->is_ticking,
1b5776bf 99 recalculate_flag ? 1 : 0,
121844b7
JM
100 nominal_length_flag ? 1 : 0,
101 total_move_ticks/STEP_TICKER_FREQUENCY
1b5776bf 102 );
4cff3ded
AW
103}
104
105
69735c09 106/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
107// The factors represent a factor of braking and must be in the range 0.0-1.0.
108// +--------+ <- nominal_rate
109// / \
110// nominal_rate*entry_factor -> + \
111// | + <- nominal_rate*exit_factor
112// +-------------+
113// time -->
edac9072 114*/
a617ac35 115void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 116{
f6542ad9
JM
117 // if block is currently executing, don't touch anything!
118 if (is_ticking) return;
119
8b260c2c
JM
120 float initial_rate = this->nominal_rate * (entryspeed / this->nominal_speed); // steps/sec
121 float final_rate = this->nominal_rate * (exitspeed / this->nominal_speed);
122 //printf("Initial rate: %f, final_rate: %f\n", initial_rate, final_rate);
123 // How many steps ( can be fractions of steps, we need very precise values ) to accelerate and decelerate
124 // This is a simplification to get rid of rate_delta and get the steps/s² accel directly from the mm/s² accel
125 float acceleration_per_second = (this->acceleration * this->steps_event_count) / this->millimeters;
126
127 float maximum_possible_rate = sqrtf( ( this->steps_event_count * acceleration_per_second ) + ( ( powf(initial_rate, 2) + powf(final_rate, 2) ) / 2.0F ) );
128
129 //printf("id %d: acceleration_per_second: %f, maximum_possible_rate: %f steps/sec, %f mm/sec\n", this->id, acceleration_per_second, maximum_possible_rate, maximum_possible_rate/100);
130
131 // Now this is the maximum rate we'll achieve this move, either because
132 // it's the higher we can achieve, or because it's the higher we are
133 // allowed to achieve
1ae56063 134 this->maximum_rate = std::min(maximum_possible_rate, this->nominal_rate);
8b260c2c
JM
135
136 // Now figure out how long it takes to accelerate in seconds
137 float time_to_accelerate = ( this->maximum_rate - initial_rate ) / acceleration_per_second;
138
139 // Now figure out how long it takes to decelerate
140 float time_to_decelerate = ( final_rate - this->maximum_rate ) / -acceleration_per_second;
141
142 // Now we know how long it takes to accelerate and decelerate, but we must
143 // also know how long the entire move takes so we can figure out how long
144 // is the plateau if there is one
145 float plateau_time = 0;
146
147 // Only if there is actually a plateau ( we are limited by nominal_rate )
148 if(maximum_possible_rate > this->nominal_rate) {
149 // Figure out the acceleration and deceleration distances ( in steps )
150 float acceleration_distance = ( ( initial_rate + this->maximum_rate ) / 2.0F ) * time_to_accelerate;
151 float deceleration_distance = ( ( this->maximum_rate + final_rate ) / 2.0F ) * time_to_decelerate;
152
153 // Figure out the plateau steps
154 float plateau_distance = this->steps_event_count - acceleration_distance - deceleration_distance;
155
156 // Figure out the plateau time in seconds
157 plateau_time = plateau_distance / this->maximum_rate;
1cf31736 158 }
4cff3ded 159
8b260c2c
JM
160 // Figure out how long the move takes total ( in seconds )
161 float total_move_time = time_to_accelerate + time_to_decelerate + plateau_time;
162 //puts "total move time: #{total_move_time}s time to accelerate: #{time_to_accelerate}, time to decelerate: #{time_to_decelerate}"
163
164 // We now have the full timing for acceleration, plateau and deceleration,
165 // yay \o/ Now this is very important these are in seconds, and we need to
166 // round them into ticks. This means instead of accelerating in 100.23
167 // ticks we'll accelerate in 100 ticks. Which means to reach the exact
168 // speed we want to reach, we must figure out a new/slightly different
169 // acceleration/deceleration to be sure we accelerate and decelerate at
170 // the exact rate we want
171
172 // First off round total time, acceleration time and deceleration time in ticks
173 uint32_t acceleration_ticks = floorf( time_to_accelerate * STEP_TICKER_FREQUENCY );
174 uint32_t deceleration_ticks = floorf( time_to_decelerate * STEP_TICKER_FREQUENCY );
175 uint32_t total_move_ticks = floorf( total_move_time * STEP_TICKER_FREQUENCY );
176
177 // Now deduce the plateau time for those new values expressed in tick
178 //uint32_t plateau_ticks = total_move_ticks - acceleration_ticks - deceleration_ticks;
179
180 // Now we figure out the acceleration value to reach EXACTLY maximum_rate(steps/s) in EXACTLY acceleration_ticks(ticks) amount of time in seconds
181 float acceleration_time = acceleration_ticks / STEP_TICKER_FREQUENCY; // This can be moved into the operation below, separated for clarity, note we need to do this instead of using time_to_accelerate(seconds) directly because time_to_accelerate(seconds) and acceleration_ticks(seconds) do not have the same value anymore due to the rounding
182 float deceleration_time = deceleration_ticks / STEP_TICKER_FREQUENCY;
183
184 float acceleration_in_steps = (acceleration_time > 0.0F ) ? ( this->maximum_rate - initial_rate ) / acceleration_time : 0;
185 float deceleration_in_steps = (deceleration_time > 0.0F ) ? ( this->maximum_rate - final_rate ) / deceleration_time : 0;
186
f6542ad9
JM
187 // we have a potential race condition here as we could get interrupted anywhere in the middle of this call, we need to lock
188 // the updates to the blocks to get around it
189 this->locked= true;
8b260c2c
JM
190 // Now figure out the two acceleration ramp change events in ticks
191 this->accelerate_until = acceleration_ticks;
192 this->decelerate_after = total_move_ticks - deceleration_ticks;
193
194 // Now figure out the acceleration PER TICK, this should ideally be held as a float, even a double if possible as it's very critical to the block timing
195 // steps/tick^2
196
197 this->acceleration_per_tick = acceleration_in_steps / STEP_TICKER_FREQUENCY_2;
198 this->deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
199
200 // We now have everything we need for this block to call a Steppermotor->move method !!!!
201 // Theorically, if accel is done per tick, the speed curve should be perfect.
8b260c2c
JM
202 this->total_move_ticks = total_move_ticks;
203
204 //puts "accelerate_until: #{this->accelerate_until}, decelerate_after: #{this->decelerate_after}, acceleration_per_tick: #{this->acceleration_per_tick}, total_move_ticks: #{this->total_move_ticks}"
205
206 this->initial_rate = initial_rate;
f6542ad9
JM
207 this->exit_speed = exitspeed;
208
209 // prepare the block for stepticker
210 this->prepare();
211 this->locked= false;
4cff3ded
AW
212}
213
4cff3ded
AW
214// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
215// acceleration within the allotted distance.
558e170c 216float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
1cf31736 217{
a617ac35 218 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
219}
220
4cff3ded 221// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 222float Block::reverse_pass(float exit_speed)
1cf31736 223{
a617ac35
MM
224 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
225 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
226 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
1b5776bf 227 if (this->entry_speed != this->max_entry_speed) {
a617ac35
MM
228 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
229 // for max allowable speed if block is decelerating and nominal length is false.
1b5776bf 230 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed)) {
4fdd2470 231 float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
a617ac35
MM
232
233 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
234
235 return this->entry_speed;
1b5776bf 236 } else
a617ac35
MM
237 this->entry_speed = this->max_entry_speed;
238 }
4cff3ded 239
a617ac35 240 return this->entry_speed;
aab6cbba 241}
4cff3ded
AW
242
243
244// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
245// returns maximum exit speed of this block
246float Block::forward_pass(float prev_max_exit_speed)
1cf31736 247{
aab6cbba
AW
248 // If the previous block is an acceleration block, but it is not long enough to complete the
249 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
250 // speeds have already been reset, maximized, and reverse planned by reverse planner.
251 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
252
253 // TODO: find out if both of these checks are necessary
254 if (prev_max_exit_speed > nominal_speed)
255 prev_max_exit_speed = nominal_speed;
256 if (prev_max_exit_speed > max_entry_speed)
257 prev_max_exit_speed = max_entry_speed;
258
1b5776bf 259 if (prev_max_exit_speed <= entry_speed) {
a617ac35
MM
260 // accel limited
261 entry_speed = prev_max_exit_speed;
262 // since we're now acceleration or cruise limited
263 // we don't need to recalculate our entry speed anymore
264 recalculate_flag = false;
aab6cbba 265 }
a617ac35
MM
266 // else
267 // // decel limited, do nothing
7b49793d 268
a617ac35
MM
269 return max_exit_speed();
270}
271
272float Block::max_exit_speed()
273{
5de195be
MM
274 // if block is currently executing, return cached exit speed from calculate_trapezoid
275 // this ensures that a block following a currently executing block will have correct entry speed
f6542ad9
JM
276 if(is_ticking)
277 return this->exit_speed;
5de195be 278
a617ac35
MM
279 // if nominal_length_flag is asserted
280 // we are guaranteed to reach nominal speed regardless of entry speed
281 // thus, max exit will always be nominal
282 if (nominal_length_flag)
283 return nominal_speed;
284
285 // otherwise, we have to work out max exit speed based on entry and acceleration
4fdd2470 286 float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
a617ac35
MM
287
288 return min(max, nominal_speed);
4cff3ded
AW
289}
290
f6542ad9 291// prepare block for the step ticker, called everytime the block changes
a19a873f 292// this is done during planning so does not delay tick generation and step ticker can simplh grab the next block during the interrupt
f6542ad9
JM
293void Block::prepare()
294{
295 float inv = 1.0F / this->steps_event_count;
296 for (uint8_t m = 0; m < k_max_actuators; m++) {
297 uint32_t steps = this->steps[m];
298 this->tick_info[m].steps_to_move = steps;
299 if(steps == 0) continue;
300
301 float aratio = inv * steps;
302 this->tick_info[m].steps_per_tick = STEPTICKER_TOFP((this->initial_rate * aratio) / STEP_TICKER_FREQUENCY); // steps/sec / tick frequency to get steps per tick in 2.30 fixed point
303 this->tick_info[m].counter = 0; // 2.30 fixed point
304 this->tick_info[m].step_count = 0;
305 this->tick_info[m].next_accel_event = this->total_move_ticks + 1;
306
307 float acceleration_change = 0;
308 if(this->accelerate_until != 0) { // If the next accel event is the end of accel
309 this->tick_info[m].next_accel_event = this->accelerate_until;
310 acceleration_change = this->acceleration_per_tick;
311
312 } else if(this->decelerate_after == 0 /*&& this->accelerate_until == 0*/) {
313 // we start off decelerating
314 acceleration_change = -this->deceleration_per_tick;
315
316 } else if(this->decelerate_after != this->total_move_ticks /*&& this->accelerate_until == 0*/) {
317 // If the next event is the start of decel ( don't set this if the next accel event is accel end )
318 this->tick_info[m].next_accel_event = this->decelerate_after;
319 }
320
321 // convert to fixed point after scaling
322 this->tick_info[m].acceleration_change= STEPTICKER_TOFP(acceleration_change * aratio);
323 this->tick_info[m].deceleration_change= -STEPTICKER_TOFP(this->deceleration_per_tick * aratio);
324 this->tick_info[m].plateau_rate= STEPTICKER_TOFP((this->maximum_rate * aratio) / STEP_TICKER_FREQUENCY);
325 }
326}