improve the check for blocks that can be pushed onto the job queue
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
9d005957 16#include "Gcode.h"
61134a65 17#include "libs/StreamOutputPool.h"
8b260c2c 18#include "StepTicker.h"
9d005957
MM
19
20#include "mri.h"
21
4cff3ded
AW
22using std::string;
23#include <vector>
4cff3ded 24
8b260c2c
JM
25#define STEP_TICKER_FREQUENCY THEKERNEL->step_ticker->get_frequency()
26#define STEP_TICKER_FREQUENCY_2 (STEP_TICKER_FREQUENCY*STEP_TICKER_FREQUENCY)
27
edac9072
AW
28// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
29// It's stacked on a queue, and that queue is then executed in order, to move the motors.
30// Most of the accel math is also done in this class
31// And GCode objects for use in on_gcode_execute are also help in here
32
1cf31736
JM
33Block::Block()
34{
35 clear();
36}
37
38void Block::clear()
39{
40 //commands.clear();
41 //travel_distances.clear();
9e6014a6
JM
42 //gcodes.clear();
43 //std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
b64cb3dd 44
807b9b57 45 this->steps.fill(0);
1cf31736 46
f539c22f 47 steps_event_count = 0;
1598a726 48 nominal_rate = 0.0F;
f539c22f
MM
49 nominal_speed = 0.0F;
50 millimeters = 0.0F;
51 entry_speed = 0.0F;
b5708347 52 //exit_speed = 0.0F;
3eadcfee 53 acceleration = 100.0F; // we don't want to get devide by zeroes if this is not set
1598a726 54 initial_rate = 0.0F;
f539c22f
MM
55 accelerate_until = 0;
56 decelerate_after = 0;
57 direction_bits = 0;
58 recalculate_flag = false;
59 nominal_length_flag = false;
60 max_entry_speed = 0.0F;
433d636f 61 is_ready = false;
9e6014a6 62
8b260c2c
JM
63 acceleration_per_tick= 0;
64 deceleration_per_tick= 0;
65 total_move_ticks= 0;
4cff3ded
AW
66}
67
433d636f 68void Block::debug() const
1cf31736 69{
d1d120e1 70 THEKERNEL->streams->printf("%p: steps:X%04lu Y%04lu Z%04lu(max:%4lu) nominal:r%6.1f/s%6.1f mm:%9.6f acc:%5lu dec:%5lu rates:%10.4f entry/max: %10.4f/%10.4f ready:%d recalc:%d nomlen:%d\r\n",
2134bcf2 71 this,
1b5776bf
JM
72 this->steps[0],
73 this->steps[1],
74 this->steps[2],
75 this->steps_event_count,
76 this->nominal_rate,
77 this->nominal_speed,
78 this->millimeters,
1b5776bf
JM
79 this->accelerate_until,
80 this->decelerate_after,
81 this->initial_rate,
1b5776bf
JM
82 this->entry_speed,
83 this->max_entry_speed,
1b5776bf
JM
84 this->is_ready,
85 recalculate_flag ? 1 : 0,
86 nominal_length_flag ? 1 : 0
87 );
4cff3ded
AW
88}
89
90
69735c09 91/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
92// The factors represent a factor of braking and must be in the range 0.0-1.0.
93// +--------+ <- nominal_rate
94// / \
95// nominal_rate*entry_factor -> + \
96// | + <- nominal_rate*exit_factor
97// +-------------+
98// time -->
edac9072 99*/
a617ac35 100void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 101{
8b260c2c
JM
102 float initial_rate = this->nominal_rate * (entryspeed / this->nominal_speed); // steps/sec
103 float final_rate = this->nominal_rate * (exitspeed / this->nominal_speed);
104 //printf("Initial rate: %f, final_rate: %f\n", initial_rate, final_rate);
105 // How many steps ( can be fractions of steps, we need very precise values ) to accelerate and decelerate
106 // This is a simplification to get rid of rate_delta and get the steps/s² accel directly from the mm/s² accel
107 float acceleration_per_second = (this->acceleration * this->steps_event_count) / this->millimeters;
108
109 float maximum_possible_rate = sqrtf( ( this->steps_event_count * acceleration_per_second ) + ( ( powf(initial_rate, 2) + powf(final_rate, 2) ) / 2.0F ) );
110
111 //printf("id %d: acceleration_per_second: %f, maximum_possible_rate: %f steps/sec, %f mm/sec\n", this->id, acceleration_per_second, maximum_possible_rate, maximum_possible_rate/100);
112
113 // Now this is the maximum rate we'll achieve this move, either because
114 // it's the higher we can achieve, or because it's the higher we are
115 // allowed to achieve
1ae56063 116 this->maximum_rate = std::min(maximum_possible_rate, this->nominal_rate);
8b260c2c
JM
117
118 // Now figure out how long it takes to accelerate in seconds
119 float time_to_accelerate = ( this->maximum_rate - initial_rate ) / acceleration_per_second;
120
121 // Now figure out how long it takes to decelerate
122 float time_to_decelerate = ( final_rate - this->maximum_rate ) / -acceleration_per_second;
123
124 // Now we know how long it takes to accelerate and decelerate, but we must
125 // also know how long the entire move takes so we can figure out how long
126 // is the plateau if there is one
127 float plateau_time = 0;
128
129 // Only if there is actually a plateau ( we are limited by nominal_rate )
130 if(maximum_possible_rate > this->nominal_rate) {
131 // Figure out the acceleration and deceleration distances ( in steps )
132 float acceleration_distance = ( ( initial_rate + this->maximum_rate ) / 2.0F ) * time_to_accelerate;
133 float deceleration_distance = ( ( this->maximum_rate + final_rate ) / 2.0F ) * time_to_decelerate;
134
135 // Figure out the plateau steps
136 float plateau_distance = this->steps_event_count - acceleration_distance - deceleration_distance;
137
138 // Figure out the plateau time in seconds
139 plateau_time = plateau_distance / this->maximum_rate;
1cf31736 140 }
4cff3ded 141
8b260c2c
JM
142 // Figure out how long the move takes total ( in seconds )
143 float total_move_time = time_to_accelerate + time_to_decelerate + plateau_time;
144 //puts "total move time: #{total_move_time}s time to accelerate: #{time_to_accelerate}, time to decelerate: #{time_to_decelerate}"
145
146 // We now have the full timing for acceleration, plateau and deceleration,
147 // yay \o/ Now this is very important these are in seconds, and we need to
148 // round them into ticks. This means instead of accelerating in 100.23
149 // ticks we'll accelerate in 100 ticks. Which means to reach the exact
150 // speed we want to reach, we must figure out a new/slightly different
151 // acceleration/deceleration to be sure we accelerate and decelerate at
152 // the exact rate we want
153
154 // First off round total time, acceleration time and deceleration time in ticks
155 uint32_t acceleration_ticks = floorf( time_to_accelerate * STEP_TICKER_FREQUENCY );
156 uint32_t deceleration_ticks = floorf( time_to_decelerate * STEP_TICKER_FREQUENCY );
157 uint32_t total_move_ticks = floorf( total_move_time * STEP_TICKER_FREQUENCY );
158
159 // Now deduce the plateau time for those new values expressed in tick
160 //uint32_t plateau_ticks = total_move_ticks - acceleration_ticks - deceleration_ticks;
161
162 // Now we figure out the acceleration value to reach EXACTLY maximum_rate(steps/s) in EXACTLY acceleration_ticks(ticks) amount of time in seconds
163 float acceleration_time = acceleration_ticks / STEP_TICKER_FREQUENCY; // This can be moved into the operation below, separated for clarity, note we need to do this instead of using time_to_accelerate(seconds) directly because time_to_accelerate(seconds) and acceleration_ticks(seconds) do not have the same value anymore due to the rounding
164 float deceleration_time = deceleration_ticks / STEP_TICKER_FREQUENCY;
165
166 float acceleration_in_steps = (acceleration_time > 0.0F ) ? ( this->maximum_rate - initial_rate ) / acceleration_time : 0;
167 float deceleration_in_steps = (deceleration_time > 0.0F ) ? ( this->maximum_rate - final_rate ) / deceleration_time : 0;
168
8b260c2c
JM
169 // Now figure out the two acceleration ramp change events in ticks
170 this->accelerate_until = acceleration_ticks;
171 this->decelerate_after = total_move_ticks - deceleration_ticks;
172
173 // Now figure out the acceleration PER TICK, this should ideally be held as a float, even a double if possible as it's very critical to the block timing
174 // steps/tick^2
175
176 this->acceleration_per_tick = acceleration_in_steps / STEP_TICKER_FREQUENCY_2;
177 this->deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
178
179 // We now have everything we need for this block to call a Steppermotor->move method !!!!
180 // Theorically, if accel is done per tick, the speed curve should be perfect.
181
182 // We need this to call move()
183 this->total_move_ticks = total_move_ticks;
184
185 //puts "accelerate_until: #{this->accelerate_until}, decelerate_after: #{this->decelerate_after}, acceleration_per_tick: #{this->acceleration_per_tick}, total_move_ticks: #{this->total_move_ticks}"
186
187 this->initial_rate = initial_rate;
b5708347 188 //this->exit_speed = exitspeed;
4cff3ded
AW
189}
190
4cff3ded
AW
191// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
192// acceleration within the allotted distance.
558e170c 193float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
1cf31736 194{
a617ac35 195 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
196}
197
4cff3ded 198// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 199float Block::reverse_pass(float exit_speed)
1cf31736 200{
a617ac35
MM
201 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
202 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
203 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
1b5776bf 204 if (this->entry_speed != this->max_entry_speed) {
a617ac35
MM
205 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
206 // for max allowable speed if block is decelerating and nominal length is false.
1b5776bf 207 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed)) {
4fdd2470 208 float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
a617ac35
MM
209
210 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
211
212 return this->entry_speed;
1b5776bf 213 } else
a617ac35
MM
214 this->entry_speed = this->max_entry_speed;
215 }
4cff3ded 216
a617ac35 217 return this->entry_speed;
aab6cbba 218}
4cff3ded
AW
219
220
221// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
222// returns maximum exit speed of this block
223float Block::forward_pass(float prev_max_exit_speed)
1cf31736 224{
aab6cbba
AW
225 // If the previous block is an acceleration block, but it is not long enough to complete the
226 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
227 // speeds have already been reset, maximized, and reverse planned by reverse planner.
228 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
229
230 // TODO: find out if both of these checks are necessary
231 if (prev_max_exit_speed > nominal_speed)
232 prev_max_exit_speed = nominal_speed;
233 if (prev_max_exit_speed > max_entry_speed)
234 prev_max_exit_speed = max_entry_speed;
235
1b5776bf 236 if (prev_max_exit_speed <= entry_speed) {
a617ac35
MM
237 // accel limited
238 entry_speed = prev_max_exit_speed;
239 // since we're now acceleration or cruise limited
240 // we don't need to recalculate our entry speed anymore
241 recalculate_flag = false;
aab6cbba 242 }
a617ac35
MM
243 // else
244 // // decel limited, do nothing
7b49793d 245
a617ac35
MM
246 return max_exit_speed();
247}
248
249float Block::max_exit_speed()
250{
5de195be
MM
251 // if block is currently executing, return cached exit speed from calculate_trapezoid
252 // this ensures that a block following a currently executing block will have correct entry speed
9e6014a6
JM
253 // FIXME
254 // if (times_taken)
255 // return exit_speed;
5de195be 256
a617ac35
MM
257 // if nominal_length_flag is asserted
258 // we are guaranteed to reach nominal speed regardless of entry speed
259 // thus, max exit will always be nominal
260 if (nominal_length_flag)
261 return nominal_speed;
262
263 // otherwise, we have to work out max exit speed based on entry and acceleration
4fdd2470 264 float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
a617ac35
MM
265
266 return min(max, nominal_speed);
4cff3ded
AW
267}
268
4cff3ded 269// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
9e6014a6
JM
270// void Block::append_gcode(Gcode* gcode)
271// {
272// Gcode new_gcode = *gcode;
273// new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJK parameters from the saved command
274// gcodes.push_back(new_gcode);
275// }
4cff3ded 276
b5708347
JM
277// void Block::begin()
278// {
279// // can no longer be used in planning
280// recalculate_flag = false;
a617ac35 281
b5708347
JM
282// // TODO probably should remove this
283// if (!is_ready)
284// __debugbreak();
9d005957 285
b5708347 286// }
4cff3ded 287
9e6014a6 288// Mark the block as finished
b5708347
JM
289//void Block::release()
290//{
d1d120e1
JM
291 // if (is_ready) {
292 // is_ready = false;
293 // THEKERNEL->conveyor->on_block_end(this);
294 // }
b5708347 295//}