fix issues with timing of when flush happens
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
5673fe39
MM
10
11#include <math.h>
4cff3ded
AW
12#include <string>
13using std::string;
5673fe39 14
4cff3ded 15#include "Planner.h"
3fceb8eb 16#include "Conveyor.h"
4cff3ded 17#include "Robot.h"
5673fe39
MM
18#include "nuts_bolts.h"
19#include "Pin.h"
20#include "StepperMotor.h"
21#include "Gcode.h"
5647f709 22#include "PublicDataRequest.h"
66383b80 23#include "RobotPublicAccess.h"
4cff3ded
AW
24#include "arm_solutions/BaseSolution.h"
25#include "arm_solutions/CartesianSolution.h"
c41d6d95 26#include "arm_solutions/RotatableCartesianSolution.h"
2a06c415 27#include "arm_solutions/LinearDeltaSolution.h"
bdaaa75d 28#include "arm_solutions/HBotSolution.h"
1217e470 29#include "arm_solutions/MorganSCARASolution.h"
61134a65 30#include "StepTicker.h"
7af0714f
JM
31#include "checksumm.h"
32#include "utils.h"
8d54c34c 33#include "ConfigValue.h"
5966b7d0 34#include "libs/StreamOutput.h"
dd0a7cfa 35#include "StreamOutputPool.h"
38bf9a1c 36
78d0e16a
MM
37#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
38#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
39#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
40#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
41#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
42#define arc_correction_checksum CHECKSUM("arc_correction")
43#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
44#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
45#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
43424972
JM
46
47// arm solutions
78d0e16a
MM
48#define arm_solution_checksum CHECKSUM("arm_solution")
49#define cartesian_checksum CHECKSUM("cartesian")
50#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
51#define rostock_checksum CHECKSUM("rostock")
2a06c415 52#define linear_delta_checksum CHECKSUM("linear_delta")
78d0e16a
MM
53#define delta_checksum CHECKSUM("delta")
54#define hbot_checksum CHECKSUM("hbot")
55#define corexy_checksum CHECKSUM("corexy")
56#define kossel_checksum CHECKSUM("kossel")
1217e470 57#define morgan_checksum CHECKSUM("morgan")
78d0e16a
MM
58
59// stepper motor stuff
60#define alpha_step_pin_checksum CHECKSUM("alpha_step_pin")
61#define beta_step_pin_checksum CHECKSUM("beta_step_pin")
62#define gamma_step_pin_checksum CHECKSUM("gamma_step_pin")
63#define alpha_dir_pin_checksum CHECKSUM("alpha_dir_pin")
64#define beta_dir_pin_checksum CHECKSUM("beta_dir_pin")
65#define gamma_dir_pin_checksum CHECKSUM("gamma_dir_pin")
66#define alpha_en_pin_checksum CHECKSUM("alpha_en_pin")
67#define beta_en_pin_checksum CHECKSUM("beta_en_pin")
68#define gamma_en_pin_checksum CHECKSUM("gamma_en_pin")
a84f0186 69
78d0e16a
MM
70#define alpha_steps_per_mm_checksum CHECKSUM("alpha_steps_per_mm")
71#define beta_steps_per_mm_checksum CHECKSUM("beta_steps_per_mm")
72#define gamma_steps_per_mm_checksum CHECKSUM("gamma_steps_per_mm")
73
df6a30f2
MM
74#define alpha_max_rate_checksum CHECKSUM("alpha_max_rate")
75#define beta_max_rate_checksum CHECKSUM("beta_max_rate")
76#define gamma_max_rate_checksum CHECKSUM("gamma_max_rate")
77
78
78d0e16a
MM
79// new-style actuator stuff
80#define actuator_checksum CHEKCSUM("actuator")
81
82#define step_pin_checksum CHECKSUM("step_pin")
83#define dir_pin_checksum CHEKCSUM("dir_pin")
84#define en_pin_checksum CHECKSUM("en_pin")
85
86#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
df6a30f2 87#define max_rate_checksum CHECKSUM("max_rate")
78d0e16a
MM
88
89#define alpha_checksum CHECKSUM("alpha")
90#define beta_checksum CHECKSUM("beta")
91#define gamma_checksum CHECKSUM("gamma")
92
43424972 93
38bf9a1c
JM
94#define NEXT_ACTION_DEFAULT 0
95#define NEXT_ACTION_DWELL 1
96#define NEXT_ACTION_GO_HOME 2
97
98#define MOTION_MODE_SEEK 0 // G0
99#define MOTION_MODE_LINEAR 1 // G1
100#define MOTION_MODE_CW_ARC 2 // G2
101#define MOTION_MODE_CCW_ARC 3 // G3
102#define MOTION_MODE_CANCEL 4 // G80
103
104#define PATH_CONTROL_MODE_EXACT_PATH 0
105#define PATH_CONTROL_MODE_EXACT_STOP 1
106#define PATH_CONTROL_MODE_CONTINOUS 2
107
108#define PROGRAM_FLOW_RUNNING 0
109#define PROGRAM_FLOW_PAUSED 1
110#define PROGRAM_FLOW_COMPLETED 2
111
112#define SPINDLE_DIRECTION_CW 0
113#define SPINDLE_DIRECTION_CCW 1
114
edac9072
AW
115// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
116// It takes care of cutting arcs into segments, same thing for line that are too long
41fd89e0 117#define max(a,b) (((a) > (b)) ? (a) : (b))
edac9072 118
4710532a
JM
119Robot::Robot()
120{
a1b7e9f0 121 this->inch_mode = false;
0e8b102e 122 this->absolute_mode = true;
df27a6a3 123 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded 124 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
df27a6a3 125 clear_vector(this->last_milestone);
3632a517 126 clear_vector(this->transformed_last_milestone);
0b804a41 127 this->arm_solution = NULL;
da947c62 128 seconds_per_minute = 60.0F;
fae93525 129 this->clearToolOffset();
3632a517 130 this->compensationTransform= nullptr;
728477c4 131 this->halted= false;
4cff3ded
AW
132}
133
134//Called when the module has just been loaded
4710532a
JM
135void Robot::on_module_loaded()
136{
4cff3ded 137 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
138 this->register_for_event(ON_GET_PUBLIC_DATA);
139 this->register_for_event(ON_SET_PUBLIC_DATA);
728477c4 140 this->register_for_event(ON_HALT);
4cff3ded
AW
141
142 // Configuration
da24d6ae
AW
143 this->on_config_reload(this);
144}
145
4710532a
JM
146void Robot::on_config_reload(void *argument)
147{
5984acdf 148
edac9072
AW
149 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
150 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
151 // To make adding those solution easier, they have their own, separate object.
5984acdf 152 // Here we read the config to find out which arm solution to use
0b804a41 153 if (this->arm_solution) delete this->arm_solution;
314ab8f7 154 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 155 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 156 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 157 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d 158
2a06c415
JM
159 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
160 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
73a4e3c0 161
4710532a 162 } else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 163 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 164
1217e470
QH
165 } else if(solution_checksum == morgan_checksum) {
166 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
167
4710532a 168 } else if(solution_checksum == cartesian_checksum) {
314ab8f7 169 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 170
4710532a 171 } else {
314ab8f7 172 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 173 }
73a4e3c0 174
0b804a41 175
da947c62
MM
176 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
177 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
178 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
1ad23cd3 179 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
da947c62
MM
180 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.5f)->as_number();
181 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
78d0e16a 182
c9ed779d
MM
183 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
184 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
185 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
feb204be 186
78d0e16a
MM
187 Pin alpha_step_pin;
188 Pin alpha_dir_pin;
189 Pin alpha_en_pin;
190 Pin beta_step_pin;
191 Pin beta_dir_pin;
192 Pin beta_en_pin;
193 Pin gamma_step_pin;
194 Pin gamma_dir_pin;
195 Pin gamma_en_pin;
196
197 alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
198 alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
199 alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
200 beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
9c5fa39a
MM
201 beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
202 beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
78d0e16a
MM
203 gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
204 gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
205 gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
78d0e16a 206
a84f0186
MM
207 float steps_per_mm[3] = {
208 THEKERNEL->config->value(alpha_steps_per_mm_checksum)->by_default( 80.0F)->as_number(),
209 THEKERNEL->config->value(beta_steps_per_mm_checksum )->by_default( 80.0F)->as_number(),
210 THEKERNEL->config->value(gamma_steps_per_mm_checksum)->by_default(2560.0F)->as_number(),
211 };
212
78d0e16a
MM
213 // TODO: delete or detect old steppermotors
214 // Make our 3 StepperMotors
9c5fa39a
MM
215 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(alpha_step_pin, alpha_dir_pin, alpha_en_pin) );
216 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(beta_step_pin, beta_dir_pin, beta_en_pin ) );
217 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(gamma_step_pin, gamma_dir_pin, gamma_en_pin) );
78d0e16a 218
a84f0186
MM
219 alpha_stepper_motor->change_steps_per_mm(steps_per_mm[0]);
220 beta_stepper_motor->change_steps_per_mm(steps_per_mm[1]);
221 gamma_stepper_motor->change_steps_per_mm(steps_per_mm[2]);
222
df6a30f2
MM
223 alpha_stepper_motor->max_rate = THEKERNEL->config->value(alpha_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
224 beta_stepper_motor->max_rate = THEKERNEL->config->value(beta_max_rate_checksum )->by_default(30000.0F)->as_number() / 60.0F;
225 gamma_stepper_motor->max_rate = THEKERNEL->config->value(gamma_max_rate_checksum)->by_default(30000.0F)->as_number() / 60.0F;
dd0a7cfa 226 check_max_actuator_speeds(); // check the configs are sane
df6a30f2 227
78d0e16a
MM
228 actuators.clear();
229 actuators.push_back(alpha_stepper_motor);
230 actuators.push_back(beta_stepper_motor);
231 actuators.push_back(gamma_stepper_motor);
975469ad 232
dd0a7cfa 233
975469ad
MM
234 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
235 // so the first move can be correct if homing is not performed
236 float actuator_pos[3];
237 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
238 for (int i = 0; i < 3; i++)
239 actuators[i]->change_last_milestone(actuator_pos[i]);
5966b7d0
AT
240
241 //this->clearToolOffset();
4cff3ded
AW
242}
243
dd0a7cfa
JM
244// this does a sanity check that actuator speeds do not exceed steps rate capability
245// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
246void Robot::check_max_actuator_speeds()
247{
248 float step_freq= alpha_stepper_motor->max_rate * alpha_stepper_motor->get_steps_per_mm();
249 if(step_freq > THEKERNEL->base_stepping_frequency) {
250 alpha_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / alpha_stepper_motor->get_steps_per_mm());
251 THEKERNEL->streams->printf("WARNING: alpha_max_rate exceeds base_stepping_frequency * alpha_steps_per_mm: %f, setting to %f\n", step_freq, alpha_stepper_motor->max_rate);
252 }
253
254 step_freq= beta_stepper_motor->max_rate * beta_stepper_motor->get_steps_per_mm();
255 if(step_freq > THEKERNEL->base_stepping_frequency) {
256 beta_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / beta_stepper_motor->get_steps_per_mm());
257 THEKERNEL->streams->printf("WARNING: beta_max_rate exceeds base_stepping_frequency * beta_steps_per_mm: %f, setting to %f\n", step_freq, beta_stepper_motor->max_rate);
258 }
259
260 step_freq= gamma_stepper_motor->max_rate * gamma_stepper_motor->get_steps_per_mm();
261 if(step_freq > THEKERNEL->base_stepping_frequency) {
262 gamma_stepper_motor->max_rate= floorf(THEKERNEL->base_stepping_frequency / gamma_stepper_motor->get_steps_per_mm());
263 THEKERNEL->streams->printf("WARNING: gamma_max_rate exceeds base_stepping_frequency * gamma_steps_per_mm: %f, setting to %f\n", step_freq, gamma_stepper_motor->max_rate);
264 }
265}
266
728477c4
JM
267void Robot::on_halt(void *arg)
268{
269 halted= (arg == nullptr);
270}
271
4710532a
JM
272void Robot::on_get_public_data(void *argument)
273{
274 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
b55cfff1
JM
275
276 if(!pdr->starts_with(robot_checksum)) return;
277
278 if(pdr->second_element_is(speed_override_percent_checksum)) {
1ad23cd3 279 static float return_data;
da947c62 280 return_data = 100.0F * 60.0F / seconds_per_minute;
b55cfff1
JM
281 pdr->set_data_ptr(&return_data);
282 pdr->set_taken();
98761c28 283
4710532a 284 } else if(pdr->second_element_is(current_position_checksum)) {
1ad23cd3 285 static float return_data[3];
4710532a
JM
286 return_data[0] = from_millimeters(this->last_milestone[0]);
287 return_data[1] = from_millimeters(this->last_milestone[1]);
288 return_data[2] = from_millimeters(this->last_milestone[2]);
b55cfff1
JM
289
290 pdr->set_data_ptr(&return_data);
98761c28 291 pdr->set_taken();
b55cfff1 292 }
5647f709
JM
293}
294
4710532a
JM
295void Robot::on_set_public_data(void *argument)
296{
297 PublicDataRequest *pdr = static_cast<PublicDataRequest *>(argument);
5647f709 298
b55cfff1 299 if(!pdr->starts_with(robot_checksum)) return;
5647f709 300
b55cfff1 301 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 302 // NOTE do not use this while printing!
4710532a 303 float t = *static_cast<float *>(pdr->get_data_ptr());
98761c28 304 // enforce minimum 10% speed
4710532a 305 if (t < 10.0F) t = 10.0F;
98761c28 306
da947c62 307 this->seconds_per_minute = t / 0.6F; // t * 60 / 100
b55cfff1 308 pdr->set_taken();
4710532a
JM
309 } else if(pdr->second_element_is(current_position_checksum)) {
310 float *t = static_cast<float *>(pdr->get_data_ptr());
311 for (int i = 0; i < 3; i++) {
8adf2390
L
312 this->last_milestone[i] = this->to_millimeters(t[i]);
313 }
314
315 float actuator_pos[3];
316 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
317 for (int i = 0; i < 3; i++)
318 actuators[i]->change_last_milestone(actuator_pos[i]);
319
320 pdr->set_taken();
321 }
5647f709
JM
322}
323
4cff3ded 324//A GCode has been received
edac9072 325//See if the current Gcode line has some orders for us
4710532a
JM
326void Robot::on_gcode_received(void *argument)
327{
328 Gcode *gcode = static_cast<Gcode *>(argument);
6bc4a00a 329
23c90ba6 330 this->motion_mode = -1;
4cff3ded 331
4710532a
JM
332 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
333 if( gcode->has_g) {
334 switch( gcode->g ) {
74b6303c
DD
335 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
336 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
337 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
338 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
339 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
340 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
341 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
342 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
343 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
344 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
345 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 346 case 92: {
4710532a 347 if(gcode->get_num_args() == 0) {
cef9acea
JM
348 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
349 reset_axis_position(0, i);
350 }
351
4710532a
JM
352 } else {
353 for (char letter = 'X'; letter <= 'Z'; letter++) {
cef9acea
JM
354 if ( gcode->has_letter(letter) ) {
355 reset_axis_position(this->to_millimeters(gcode->get_value(letter)), letter - 'X');
356 }
eaf8a8a8 357 }
6bc4a00a 358 }
78d0e16a 359
74b6303c 360 gcode->mark_as_taken();
78d0e16a 361 return;
4710532a
JM
362 }
363 }
364 } else if( gcode->has_m) {
365 switch( gcode->m ) {
0fb5b438 366 case 92: // M92 - set steps per mm
0fb5b438 367 if (gcode->has_letter('X'))
78d0e16a 368 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
0fb5b438 369 if (gcode->has_letter('Y'))
78d0e16a 370 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
0fb5b438 371 if (gcode->has_letter('Z'))
78d0e16a 372 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
7369629d
MM
373 if (gcode->has_letter('F'))
374 seconds_per_minute = gcode->get_value('F');
78d0e16a
MM
375
376 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm, seconds_per_minute);
0fb5b438 377 gcode->add_nl = true;
74b6303c 378 gcode->mark_as_taken();
dd0a7cfa 379 check_max_actuator_speeds();
0fb5b438 380 return;
4710532a
JM
381 case 114: {
382 char buf[32];
383 int n = snprintf(buf, sizeof(buf), "C: X:%1.3f Y:%1.3f Z:%1.3f",
384 from_millimeters(this->last_milestone[0]),
385 from_millimeters(this->last_milestone[1]),
386 from_millimeters(this->last_milestone[2]));
387 gcode->txt_after_ok.append(buf, n);
388 gcode->mark_as_taken();
389 }
390 return;
33e4cc02 391
83488642
JM
392 case 203: // M203 Set maximum feedrates in mm/sec
393 if (gcode->has_letter('X'))
4710532a 394 this->max_speeds[X_AXIS] = gcode->get_value('X');
83488642 395 if (gcode->has_letter('Y'))
4710532a 396 this->max_speeds[Y_AXIS] = gcode->get_value('Y');
83488642 397 if (gcode->has_letter('Z'))
4710532a 398 this->max_speeds[Z_AXIS] = gcode->get_value('Z');
83488642 399 if (gcode->has_letter('A'))
4710532a 400 alpha_stepper_motor->max_rate = gcode->get_value('A');
83488642 401 if (gcode->has_letter('B'))
4710532a 402 beta_stepper_motor->max_rate = gcode->get_value('B');
83488642 403 if (gcode->has_letter('C'))
4710532a 404 gamma_stepper_motor->max_rate = gcode->get_value('C');
83488642 405
dd0a7cfa
JM
406 check_max_actuator_speeds();
407
83488642 408 gcode->stream->printf("X:%g Y:%g Z:%g A:%g B:%g C:%g ",
4710532a
JM
409 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
410 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
83488642
JM
411 gcode->add_nl = true;
412 gcode->mark_as_taken();
413 break;
414
c5fe1787 415 case 204: // M204 Snnn - set acceleration to nnn, Znnn sets z acceleration
d4ee6ee2 416 gcode->mark_as_taken();
83488642 417
4710532a 418 if (gcode->has_letter('S')) {
83488642
JM
419 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
420 THEKERNEL->conveyor->wait_for_empty_queue();
4710532a 421 float acc = gcode->get_value('S'); // mm/s^2
d4ee6ee2 422 // enforce minimum
da947c62
MM
423 if (acc < 1.0F)
424 acc = 1.0F;
4710532a 425 THEKERNEL->planner->acceleration = acc;
d4ee6ee2 426 }
c5fe1787
JM
427 if (gcode->has_letter('Z')) {
428 // TODO for safety so it applies only to following gcodes, maybe a better way to do this?
429 THEKERNEL->conveyor->wait_for_empty_queue();
430 float acc = gcode->get_value('Z'); // mm/s^2
431 // enforce positive
432 if (acc < 0.0F)
433 acc = 0.0F;
434 THEKERNEL->planner->z_acceleration = acc;
435 }
d4ee6ee2
JM
436 break;
437
8b69c90d 438 case 205: // M205 Xnnn - set junction deviation Snnn - Set minimum planner speed
d4ee6ee2 439 gcode->mark_as_taken();
4710532a
JM
440 if (gcode->has_letter('X')) {
441 float jd = gcode->get_value('X');
d4ee6ee2 442 // enforce minimum
8b69c90d
JM
443 if (jd < 0.0F)
444 jd = 0.0F;
4710532a 445 THEKERNEL->planner->junction_deviation = jd;
d4ee6ee2 446 }
4710532a
JM
447 if (gcode->has_letter('S')) {
448 float mps = gcode->get_value('S');
8b69c90d
JM
449 // enforce minimum
450 if (mps < 0.0F)
451 mps = 0.0F;
4710532a 452 THEKERNEL->planner->minimum_planner_speed = mps;
8b69c90d 453 }
d4ee6ee2 454 break;
98761c28 455
7369629d 456 case 220: // M220 - speed override percentage
74b6303c 457 gcode->mark_as_taken();
4710532a 458 if (gcode->has_letter('S')) {
1ad23cd3 459 float factor = gcode->get_value('S');
98761c28 460 // enforce minimum 10% speed
da947c62
MM
461 if (factor < 10.0F)
462 factor = 10.0F;
463 // enforce maximum 10x speed
464 if (factor > 1000.0F)
465 factor = 1000.0F;
466
467 seconds_per_minute = 6000.0F / factor;
7369629d 468 }
b4f56013 469 break;
ec4773e5 470
494dc541
JM
471 case 400: // wait until all moves are done up to this point
472 gcode->mark_as_taken();
314ab8f7 473 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
474 break;
475
33e4cc02 476 case 500: // M500 saves some volatile settings to config override file
b7cd847e 477 case 503: { // M503 just prints the settings
78d0e16a 478 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->steps_per_mm, actuators[1]->steps_per_mm, actuators[2]->steps_per_mm);
c5fe1787 479 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f Z%1.5f\n", THEKERNEL->planner->acceleration, THEKERNEL->planner->z_acceleration);
8b69c90d 480 gcode->stream->printf(";X- Junction Deviation, S - Minimum Planner speed:\nM205 X%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->minimum_planner_speed);
83488642 481 gcode->stream->printf(";Max feedrates in mm/sec, XYZ cartesian, ABC actuator:\nM203 X%1.5f Y%1.5f Z%1.5f A%1.5f B%1.5f C%1.5f\n",
4710532a
JM
482 this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS],
483 alpha_stepper_motor->max_rate, beta_stepper_motor->max_rate, gamma_stepper_motor->max_rate);
b7cd847e
JM
484
485 // get or save any arm solution specific optional values
486 BaseSolution::arm_options_t options;
487 if(arm_solution->get_optional(options) && !options.empty()) {
488 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
4710532a 489 for(auto &i : options) {
b7cd847e
JM
490 gcode->stream->printf(" %c%1.4f", i.first, i.second);
491 }
492 gcode->stream->printf("\n");
493 }
33e4cc02
JM
494 gcode->mark_as_taken();
495 break;
b7cd847e 496 }
33e4cc02 497
b7cd847e 498 case 665: { // M665 set optional arm solution variables based on arm solution.
ec4773e5 499 gcode->mark_as_taken();
b7cd847e
JM
500 // the parameter args could be any letter except S so ask solution what options it supports
501 BaseSolution::arm_options_t options;
502 if(arm_solution->get_optional(options)) {
4710532a 503 for(auto &i : options) {
b7cd847e 504 // foreach optional value
4710532a 505 char c = i.first;
b7cd847e 506 if(gcode->has_letter(c)) { // set new value
4710532a 507 i.second = gcode->get_value(c);
b7cd847e
JM
508 }
509 // print all current values of supported options
510 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
5523c05d 511 gcode->add_nl = true;
ec4773e5 512 }
b7cd847e
JM
513 // set the new options
514 arm_solution->set_optional(options);
ec4773e5 515 }
ec4773e5 516
b7cd847e 517 // set delta segments per second, not saved by M500
ec29d378 518 if(gcode->has_letter('S')) {
4710532a 519 this->delta_segments_per_second = gcode->get_value('S');
ec29d378 520 }
ec4773e5 521 break;
b7cd847e 522 }
6989211c 523 }
494dc541
JM
524 }
525
c83887ea
MM
526 if( this->motion_mode < 0)
527 return;
6bc4a00a 528
4710532a 529 //Get parameters
1ad23cd3 530 float target[3], offset[3];
c2885de8 531 clear_vector(offset);
6bc4a00a 532
2ba859c9 533 memcpy(target, this->last_milestone, sizeof(target)); //default to last target
6bc4a00a 534
4710532a
JM
535 for(char letter = 'I'; letter <= 'K'; letter++) {
536 if( gcode->has_letter(letter) ) {
537 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
c2885de8
JM
538 }
539 }
4710532a
JM
540 for(char letter = 'X'; letter <= 'Z'; letter++) {
541 if( gcode->has_letter(letter) ) {
c7689006 542 target[letter - 'X'] = this->to_millimeters(gcode->get_value(letter)) + (this->absolute_mode ? this->toolOffset[letter - 'X'] : target[letter - 'X']);
c2885de8
JM
543 }
544 }
6bc4a00a 545
4710532a 546 if( gcode->has_letter('F') ) {
7369629d 547 if( this->motion_mode == MOTION_MODE_SEEK )
da947c62 548 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 549 else
da947c62 550 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
7369629d 551 }
6bc4a00a 552
4cff3ded 553 //Perform any physical actions
fae93525
JM
554 switch(this->motion_mode) {
555 case MOTION_MODE_CANCEL: break;
556 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate / seconds_per_minute ); break;
557 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate / seconds_per_minute ); break;
558 case MOTION_MODE_CW_ARC:
559 case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded 560 }
13e4a3f9 561
fae93525 562 // last_milestone was set to target in append_milestone, no need to do it again
4cff3ded 563
edac9072
AW
564}
565
5984acdf 566// We received a new gcode, and one of the functions
edac9072
AW
567// determined the distance for that given gcode. So now we can attach this gcode to the right block
568// and continue
4710532a
JM
569void Robot::distance_in_gcode_is_known(Gcode *gcode)
570{
edac9072 571 //If the queue is empty, execute immediatly, otherwise attach to the last added block
e0ee24ed 572 THEKERNEL->conveyor->append_gcode(gcode);
edac9072
AW
573}
574
cef9acea
JM
575// reset the position for all axis (used in homing for delta as last_milestone may be bogus)
576void Robot::reset_axis_position(float x, float y, float z)
577{
578 this->last_milestone[X_AXIS] = x;
579 this->last_milestone[Y_AXIS] = y;
580 this->last_milestone[Z_AXIS] = z;
3632a517
JM
581 this->transformed_last_milestone[X_AXIS] = x;
582 this->transformed_last_milestone[Y_AXIS] = y;
583 this->transformed_last_milestone[Z_AXIS] = z;
cef9acea
JM
584
585 float actuator_pos[3];
586 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
587 for (int i = 0; i < 3; i++)
588 actuators[i]->change_last_milestone(actuator_pos[i]);
589}
590
591// Reset the position for an axis (used in homing and G92)
4710532a
JM
592void Robot::reset_axis_position(float position, int axis)
593{
2ba859c9 594 this->last_milestone[axis] = position;
3632a517 595 this->transformed_last_milestone[axis] = position;
29c28822
MM
596
597 float actuator_pos[3];
cef9acea 598 arm_solution->cartesian_to_actuator(this->last_milestone, actuator_pos);
29c28822
MM
599
600 for (int i = 0; i < 3; i++)
601 actuators[i]->change_last_milestone(actuator_pos[i]);
4cff3ded
AW
602}
603
728477c4
JM
604// Use FK to find out where actuator is and reset lastmilestone to match
605// FIXME we need to know where the actual current actuator position is, this does not currently do that and so is useless
606void Robot::reset_position_from_current_actuator_position()
607{
608 // FIXME do not want last_milestone we need actual actuator position
609 // float actuator_pos[]= {actuators[X_AXIS]->get_current_position_mm(), actuators[Y_AXIS]->get_current_position_mm(), actuators[Z_AXIS]->get_current_position_mm()};
610 // arm_solution->actuator_to_cartesian(actuator_pos, this->last_milestone);
611}
edac9072 612
4cff3ded 613// Convert target from millimeters to steps, and append this to the planner
da947c62 614void Robot::append_milestone( float target[], float rate_mm_s )
df6a30f2 615{
1ad23cd3 616 float deltas[3];
df6a30f2
MM
617 float unit_vec[3];
618 float actuator_pos[3];
3632a517 619 float transformed_target[3]; // adjust target for bed compensation
df6a30f2
MM
620 float millimeters_of_travel;
621
3632a517
JM
622 // unity transform by default
623 memcpy(transformed_target, target, sizeof(transformed_target));
5e45206a 624
3632a517
JM
625 // check function pointer and call if set to transform the target to compensate for bed
626 if(compensationTransform) {
627 // some compensation strategies can transform XYZ, some just change Z
628 compensationTransform(transformed_target);
33742399 629 }
ff7e9858 630
3632a517
JM
631 // find distance moved by each axis, use transformed target from last_transformed_target
632 for (int axis = X_AXIS; axis <= Z_AXIS; axis++){
633 deltas[axis] = transformed_target[axis] - transformed_last_milestone[axis];
634 }
635 // store last transformed
636 memcpy(this->transformed_last_milestone, transformed_target, sizeof(this->transformed_last_milestone));
aab6cbba 637
edac9072 638 // Compute how long this move moves, so we can attach it to the block for later use
869acfb8 639 millimeters_of_travel = sqrtf( powf( deltas[X_AXIS], 2 ) + powf( deltas[Y_AXIS], 2 ) + powf( deltas[Z_AXIS], 2 ) );
df6a30f2
MM
640
641 // find distance unit vector
642 for (int i = 0; i < 3; i++)
643 unit_vec[i] = deltas[i] / millimeters_of_travel;
644
645 // Do not move faster than the configured cartesian limits
4710532a
JM
646 for (int axis = X_AXIS; axis <= Z_AXIS; axis++) {
647 if ( max_speeds[axis] > 0 ) {
da947c62 648 float axis_speed = fabs(unit_vec[axis] * rate_mm_s);
df6a30f2
MM
649
650 if (axis_speed > max_speeds[axis])
da947c62 651 rate_mm_s *= ( max_speeds[axis] / axis_speed );
7b470506
AW
652 }
653 }
4cff3ded 654
5e45206a 655 // find actuator position given cartesian position, use actual adjusted target
3632a517 656 arm_solution->cartesian_to_actuator( transformed_target, actuator_pos );
df6a30f2
MM
657
658 // check per-actuator speed limits
4710532a 659 for (int actuator = 0; actuator <= 2; actuator++) {
da947c62 660 float actuator_rate = fabs(actuator_pos[actuator] - actuators[actuator]->last_milestone_mm) * rate_mm_s / millimeters_of_travel;
df6a30f2
MM
661
662 if (actuator_rate > actuators[actuator]->max_rate)
da947c62 663 rate_mm_s *= (actuators[actuator]->max_rate / actuator_rate);
df6a30f2
MM
664 }
665
edac9072 666 // Append the block to the planner
da947c62 667 THEKERNEL->planner->append_block( actuator_pos, rate_mm_s, millimeters_of_travel, unit_vec );
4cff3ded 668
5e45206a 669 // Update the last_milestone to the current target for the next time we use last_milestone, use the requested target not the adjusted one
c2885de8 670 memcpy(this->last_milestone, target, sizeof(this->last_milestone)); // this->last_milestone[] = target[];
4cff3ded
AW
671
672}
673
edac9072 674// Append a move to the queue ( cutting it into segments if needed )
4710532a
JM
675void Robot::append_line(Gcode *gcode, float target[], float rate_mm_s )
676{
4cff3ded 677
edac9072 678 // Find out the distance for this gcode
869acfb8 679 gcode->millimeters_of_travel = powf( target[X_AXIS] - this->last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - this->last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - this->last_milestone[Z_AXIS], 2 );
4cff3ded 680
edac9072 681 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
4710532a 682 if( gcode->millimeters_of_travel < 1e-8F ) {
95b4885b
JM
683 return;
684 }
436a2cd1 685
2ba859c9
MM
686 gcode->millimeters_of_travel = sqrtf(gcode->millimeters_of_travel);
687
edac9072 688 // Mark the gcode as having a known distance
5dcb2ff3 689 this->distance_in_gcode_is_known( gcode );
436a2cd1 690
4a0c8e14
JM
691 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
692 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
693 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 694 uint16_t segments;
5984acdf 695
c2885de8 696 if(this->delta_segments_per_second > 1.0F) {
4a0c8e14
JM
697 // enabled if set to something > 1, it is set to 0.0 by default
698 // segment based on current speed and requested segments per second
699 // the faster the travel speed the fewer segments needed
700 // NOTE rate is mm/sec and we take into account any speed override
da947c62 701 float seconds = gcode->millimeters_of_travel / rate_mm_s;
4710532a 702 segments = max(1, ceil(this->delta_segments_per_second * seconds));
4a0c8e14 703 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 704
4710532a
JM
705 } else {
706 if(this->mm_per_line_segment == 0.0F) {
707 segments = 1; // don't split it up
708 } else {
709 segments = ceil( gcode->millimeters_of_travel / this->mm_per_line_segment);
4a0c8e14
JM
710 }
711 }
5984acdf 712
4710532a 713 if (segments > 1) {
2ba859c9
MM
714 // A vector to keep track of the endpoint of each segment
715 float segment_delta[3];
716 float segment_end[3];
717
718 // How far do we move each segment?
9fff6045 719 for (int i = X_AXIS; i <= Z_AXIS; i++)
2ba859c9 720 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
4cff3ded 721
c8e0fb15
MM
722 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
723 // We always add another point after this loop so we stop at segments-1, ie i < segments
4710532a 724 for (int i = 1; i < segments; i++) {
728477c4 725 if(halted) return; // don;t queue any more segments
4710532a 726 for(int axis = X_AXIS; axis <= Z_AXIS; axis++ )
2ba859c9
MM
727 segment_end[axis] = last_milestone[axis] + segment_delta[axis];
728
729 // Append the end of this segment to the queue
730 this->append_milestone(segment_end, rate_mm_s);
731 }
4cff3ded 732 }
5984acdf
MM
733
734 // Append the end of this full move to the queue
da947c62 735 this->append_milestone(target, rate_mm_s);
2134bcf2
MM
736
737 // if adding these blocks didn't start executing, do that now
738 THEKERNEL->conveyor->ensure_running();
4cff3ded
AW
739}
740
4cff3ded 741
edac9072 742// Append an arc to the queue ( cutting it into segments as needed )
4710532a
JM
743void Robot::append_arc(Gcode *gcode, float target[], float offset[], float radius, bool is_clockwise )
744{
aab6cbba 745
edac9072 746 // Scary math
2ba859c9
MM
747 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
748 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
749 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1ad23cd3
MM
750 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
751 float r_axis1 = -offset[this->plane_axis_1];
752 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
753 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
aab6cbba
AW
754
755 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
4710532a
JM
756 float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
757 if (angular_travel < 0) {
758 angular_travel += 2 * M_PI;
759 }
760 if (is_clockwise) {
761 angular_travel -= 2 * M_PI;
762 }
aab6cbba 763
edac9072 764 // Find the distance for this gcode
4710532a 765 gcode->millimeters_of_travel = hypotf(angular_travel * radius, fabs(linear_travel));
436a2cd1 766
edac9072 767 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
4710532a
JM
768 if( gcode->millimeters_of_travel < 0.0001F ) {
769 return;
770 }
5dcb2ff3 771
edac9072 772 // Mark the gcode as having a known distance
d149c730 773 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
774
775 // Figure out how many segments for this gcode
4710532a 776 uint16_t segments = floor(gcode->millimeters_of_travel / this->mm_per_arc_segment);
aab6cbba 777
4710532a
JM
778 float theta_per_segment = angular_travel / segments;
779 float linear_per_segment = linear_travel / segments;
aab6cbba
AW
780
781 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
782 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
783 r_T = [cos(phi) -sin(phi);
784 sin(phi) cos(phi] * r ;
785 For arc generation, the center of the circle is the axis of rotation and the radius vector is
786 defined from the circle center to the initial position. Each line segment is formed by successive
787 vector rotations. This requires only two cos() and sin() computations to form the rotation
788 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1ad23cd3 789 all float numbers are single precision on the Arduino. (True float precision will not have
aab6cbba
AW
790 round off issues for CNC applications.) Single precision error can accumulate to be greater than
791 tool precision in some cases. Therefore, arc path correction is implemented.
792
793 Small angle approximation may be used to reduce computation overhead further. This approximation
794 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
795 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
796 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
797 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
798 issue for CNC machines with the single precision Arduino calculations.
799 This approximation also allows mc_arc to immediately insert a line segment into the planner
800 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
801 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
802 This is important when there are successive arc motions.
803 */
804 // Vector rotation matrix values
4710532a 805 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1ad23cd3 806 float sin_T = theta_per_segment;
aab6cbba 807
1ad23cd3
MM
808 float arc_target[3];
809 float sin_Ti;
810 float cos_Ti;
811 float r_axisi;
aab6cbba
AW
812 uint16_t i;
813 int8_t count = 0;
814
815 // Initialize the linear axis
2ba859c9 816 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
aab6cbba 817
4710532a 818 for (i = 1; i < segments; i++) { // Increment (segments-1)
728477c4 819 if(halted) return; // don't queue any more segments
aab6cbba 820
b66fb830 821 if (count < this->arc_correction ) {
4710532a
JM
822 // Apply vector rotation matrix
823 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
824 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
825 r_axis1 = r_axisi;
826 count++;
aab6cbba 827 } else {
4710532a
JM
828 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
829 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
830 cos_Ti = cosf(i * theta_per_segment);
831 sin_Ti = sinf(i * theta_per_segment);
832 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
833 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
834 count = 0;
aab6cbba
AW
835 }
836
837 // Update arc_target location
838 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
839 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
840 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
841
842 // Append this segment to the queue
da947c62 843 this->append_milestone(arc_target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
844
845 }
edac9072 846
aab6cbba 847 // Ensure last segment arrives at target location.
da947c62 848 this->append_milestone(target, this->feed_rate / seconds_per_minute);
aab6cbba
AW
849}
850
edac9072 851// Do the math for an arc and add it to the queue
4710532a
JM
852void Robot::compute_arc(Gcode *gcode, float offset[], float target[])
853{
aab6cbba
AW
854
855 // Find the radius
13addf09 856 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
aab6cbba
AW
857
858 // Set clockwise/counter-clockwise sign for mc_arc computations
859 bool is_clockwise = false;
4710532a
JM
860 if( this->motion_mode == MOTION_MODE_CW_ARC ) {
861 is_clockwise = true;
862 }
aab6cbba
AW
863
864 // Append arc
436a2cd1 865 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
866
867}
868
869
4710532a
JM
870float Robot::theta(float x, float y)
871{
872 float t = atanf(x / fabs(y));
873 if (y > 0) {
874 return(t);
875 } else {
876 if (t > 0) {
877 return(M_PI - t);
878 } else {
879 return(-M_PI - t);
880 }
881 }
4cff3ded
AW
882}
883
4710532a
JM
884void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
885{
4cff3ded
AW
886 this->plane_axis_0 = axis_0;
887 this->plane_axis_1 = axis_1;
888 this->plane_axis_2 = axis_2;
889}
890
fae93525 891void Robot::clearToolOffset()
4710532a 892{
fae93525
JM
893 memset(this->toolOffset, 0, sizeof(this->toolOffset));
894}
895
896void Robot::setToolOffset(const float offset[3])
897{
fae93525 898 memcpy(this->toolOffset, offset, sizeof(this->toolOffset));
5966b7d0
AT
899}
900