initial implementation of new laser module
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
9d005957 16#include "Gcode.h"
61134a65 17#include "libs/StreamOutputPool.h"
8b260c2c 18#include "StepTicker.h"
9d005957
MM
19
20#include "mri.h"
21
4cff3ded
AW
22using std::string;
23#include <vector>
4cff3ded 24
8b260c2c
JM
25#define STEP_TICKER_FREQUENCY THEKERNEL->step_ticker->get_frequency()
26#define STEP_TICKER_FREQUENCY_2 (STEP_TICKER_FREQUENCY*STEP_TICKER_FREQUENCY)
27
8a9f9313
JM
28uint8_t Block::n_actuators= 0;
29
edac9072
AW
30// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
31// It's stacked on a queue, and that queue is then executed in order, to move the motors.
32// Most of the accel math is also done in this class
33// And GCode objects for use in on_gcode_execute are also help in here
34
1cf31736
JM
35Block::Block()
36{
37 clear();
38}
39
40void Block::clear()
41{
807b9b57 42 this->steps.fill(0);
1cf31736 43
f539c22f 44 steps_event_count = 0;
1598a726 45 nominal_rate = 0.0F;
f539c22f
MM
46 nominal_speed = 0.0F;
47 millimeters = 0.0F;
48 entry_speed = 0.0F;
f6542ad9 49 exit_speed = 0.0F;
374d0777 50 acceleration = 100.0F; // we don't want to get divide by zeroes if this is not set
1598a726 51 initial_rate = 0.0F;
f539c22f
MM
52 accelerate_until = 0;
53 decelerate_after = 0;
54 direction_bits = 0;
55 recalculate_flag = false;
56 nominal_length_flag = false;
57 max_entry_speed = 0.0F;
433d636f 58 is_ready = false;
f6542ad9 59 is_ticking = false;
23201534 60 is_g123 = false;
f6542ad9 61 locked = false;
23201534 62 s_value = 0.0F;
9e6014a6 63
8b260c2c
JM
64 acceleration_per_tick= 0;
65 deceleration_per_tick= 0;
66 total_move_ticks= 0;
8a9f9313
JM
67 if(tick_info.size() != n_actuators) {
68 tick_info.resize(n_actuators);
69 }
a19a873f
JM
70 for(auto &i : tick_info) {
71 i.steps_per_tick= 0;
72 i.counter= 0;
73 i.acceleration_change= 0;
74 i.deceleration_change= 0;
75 i.plateau_rate= 0;
76 i.steps_to_move= 0;
77 i.step_count= 0;
78 i.next_accel_event= 0;
79 }
4cff3ded
AW
80}
81
433d636f 82void Block::debug() const
1cf31736 83{
05b3de04 84 THEKERNEL->streams->printf("%p: steps-X:%lu Y:%lu Z:%lu ", this, this->steps[0], this->steps[1], this->steps[2]);
8a9f9313 85 for (size_t i = E_AXIS; i < n_actuators; ++i) {
05b3de04 86 THEKERNEL->streams->printf("E%d:%lu ", i-E_AXIS, this->steps[i]);
374d0777 87 }
05b3de04 88 THEKERNEL->streams->printf("(max:%lu) nominal:r%1.4f/s%1.4f mm:%1.4f acc:%1.2f accu:%lu decu:%lu ticks:%lu rates:%1.4f entry/max:%1.4f/%1.4f exit:%1.4f primary:%d ready:%d locked:%d ticking:%d recalc:%d nomlen:%d time:%f\r\n",
1b5776bf
JM
89 this->steps_event_count,
90 this->nominal_rate,
91 this->nominal_speed,
92 this->millimeters,
df56baf2 93 this->acceleration,
1b5776bf
JM
94 this->accelerate_until,
95 this->decelerate_after,
05b3de04 96 this->total_move_ticks,
1b5776bf 97 this->initial_rate,
1b5776bf
JM
98 this->entry_speed,
99 this->max_entry_speed,
05b3de04 100 this->exit_speed,
f41bc212 101 this->primary_axis,
1b5776bf 102 this->is_ready,
a19a873f
JM
103 this->locked,
104 this->is_ticking,
1b5776bf 105 recalculate_flag ? 1 : 0,
121844b7
JM
106 nominal_length_flag ? 1 : 0,
107 total_move_ticks/STEP_TICKER_FREQUENCY
1b5776bf 108 );
4cff3ded
AW
109}
110
111
69735c09 112/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
113// The factors represent a factor of braking and must be in the range 0.0-1.0.
114// +--------+ <- nominal_rate
115// / \
116// nominal_rate*entry_factor -> + \
117// | + <- nominal_rate*exit_factor
118// +-------------+
119// time -->
edac9072 120*/
a617ac35 121void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 122{
f6542ad9
JM
123 // if block is currently executing, don't touch anything!
124 if (is_ticking) return;
125
8b260c2c
JM
126 float initial_rate = this->nominal_rate * (entryspeed / this->nominal_speed); // steps/sec
127 float final_rate = this->nominal_rate * (exitspeed / this->nominal_speed);
128 //printf("Initial rate: %f, final_rate: %f\n", initial_rate, final_rate);
129 // How many steps ( can be fractions of steps, we need very precise values ) to accelerate and decelerate
130 // This is a simplification to get rid of rate_delta and get the steps/s² accel directly from the mm/s² accel
131 float acceleration_per_second = (this->acceleration * this->steps_event_count) / this->millimeters;
132
133 float maximum_possible_rate = sqrtf( ( this->steps_event_count * acceleration_per_second ) + ( ( powf(initial_rate, 2) + powf(final_rate, 2) ) / 2.0F ) );
134
135 //printf("id %d: acceleration_per_second: %f, maximum_possible_rate: %f steps/sec, %f mm/sec\n", this->id, acceleration_per_second, maximum_possible_rate, maximum_possible_rate/100);
136
137 // Now this is the maximum rate we'll achieve this move, either because
138 // it's the higher we can achieve, or because it's the higher we are
139 // allowed to achieve
1ae56063 140 this->maximum_rate = std::min(maximum_possible_rate, this->nominal_rate);
8b260c2c
JM
141
142 // Now figure out how long it takes to accelerate in seconds
143 float time_to_accelerate = ( this->maximum_rate - initial_rate ) / acceleration_per_second;
144
145 // Now figure out how long it takes to decelerate
146 float time_to_decelerate = ( final_rate - this->maximum_rate ) / -acceleration_per_second;
147
148 // Now we know how long it takes to accelerate and decelerate, but we must
149 // also know how long the entire move takes so we can figure out how long
150 // is the plateau if there is one
151 float plateau_time = 0;
152
153 // Only if there is actually a plateau ( we are limited by nominal_rate )
154 if(maximum_possible_rate > this->nominal_rate) {
155 // Figure out the acceleration and deceleration distances ( in steps )
156 float acceleration_distance = ( ( initial_rate + this->maximum_rate ) / 2.0F ) * time_to_accelerate;
157 float deceleration_distance = ( ( this->maximum_rate + final_rate ) / 2.0F ) * time_to_decelerate;
158
159 // Figure out the plateau steps
160 float plateau_distance = this->steps_event_count - acceleration_distance - deceleration_distance;
161
162 // Figure out the plateau time in seconds
163 plateau_time = plateau_distance / this->maximum_rate;
1cf31736 164 }
4cff3ded 165
8b260c2c
JM
166 // Figure out how long the move takes total ( in seconds )
167 float total_move_time = time_to_accelerate + time_to_decelerate + plateau_time;
168 //puts "total move time: #{total_move_time}s time to accelerate: #{time_to_accelerate}, time to decelerate: #{time_to_decelerate}"
169
170 // We now have the full timing for acceleration, plateau and deceleration,
171 // yay \o/ Now this is very important these are in seconds, and we need to
172 // round them into ticks. This means instead of accelerating in 100.23
173 // ticks we'll accelerate in 100 ticks. Which means to reach the exact
174 // speed we want to reach, we must figure out a new/slightly different
175 // acceleration/deceleration to be sure we accelerate and decelerate at
176 // the exact rate we want
177
178 // First off round total time, acceleration time and deceleration time in ticks
179 uint32_t acceleration_ticks = floorf( time_to_accelerate * STEP_TICKER_FREQUENCY );
180 uint32_t deceleration_ticks = floorf( time_to_decelerate * STEP_TICKER_FREQUENCY );
181 uint32_t total_move_ticks = floorf( total_move_time * STEP_TICKER_FREQUENCY );
182
183 // Now deduce the plateau time for those new values expressed in tick
184 //uint32_t plateau_ticks = total_move_ticks - acceleration_ticks - deceleration_ticks;
185
186 // Now we figure out the acceleration value to reach EXACTLY maximum_rate(steps/s) in EXACTLY acceleration_ticks(ticks) amount of time in seconds
187 float acceleration_time = acceleration_ticks / STEP_TICKER_FREQUENCY; // This can be moved into the operation below, separated for clarity, note we need to do this instead of using time_to_accelerate(seconds) directly because time_to_accelerate(seconds) and acceleration_ticks(seconds) do not have the same value anymore due to the rounding
188 float deceleration_time = deceleration_ticks / STEP_TICKER_FREQUENCY;
189
190 float acceleration_in_steps = (acceleration_time > 0.0F ) ? ( this->maximum_rate - initial_rate ) / acceleration_time : 0;
191 float deceleration_in_steps = (deceleration_time > 0.0F ) ? ( this->maximum_rate - final_rate ) / deceleration_time : 0;
192
f6542ad9
JM
193 // we have a potential race condition here as we could get interrupted anywhere in the middle of this call, we need to lock
194 // the updates to the blocks to get around it
195 this->locked= true;
8b260c2c
JM
196 // Now figure out the two acceleration ramp change events in ticks
197 this->accelerate_until = acceleration_ticks;
198 this->decelerate_after = total_move_ticks - deceleration_ticks;
199
200 // Now figure out the acceleration PER TICK, this should ideally be held as a float, even a double if possible as it's very critical to the block timing
201 // steps/tick^2
202
203 this->acceleration_per_tick = acceleration_in_steps / STEP_TICKER_FREQUENCY_2;
204 this->deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
205
206 // We now have everything we need for this block to call a Steppermotor->move method !!!!
207 // Theorically, if accel is done per tick, the speed curve should be perfect.
8b260c2c
JM
208 this->total_move_ticks = total_move_ticks;
209
210 //puts "accelerate_until: #{this->accelerate_until}, decelerate_after: #{this->decelerate_after}, acceleration_per_tick: #{this->acceleration_per_tick}, total_move_ticks: #{this->total_move_ticks}"
211
212 this->initial_rate = initial_rate;
f6542ad9
JM
213 this->exit_speed = exitspeed;
214
215 // prepare the block for stepticker
216 this->prepare();
217 this->locked= false;
4cff3ded
AW
218}
219
4cff3ded
AW
220// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
221// acceleration within the allotted distance.
558e170c 222float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
1cf31736 223{
a617ac35 224 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
225}
226
4cff3ded 227// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 228float Block::reverse_pass(float exit_speed)
1cf31736 229{
a617ac35
MM
230 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
231 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
232 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
1b5776bf 233 if (this->entry_speed != this->max_entry_speed) {
a617ac35
MM
234 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
235 // for max allowable speed if block is decelerating and nominal length is false.
1b5776bf 236 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed)) {
4fdd2470 237 float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
a617ac35
MM
238
239 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
240
241 return this->entry_speed;
1b5776bf 242 } else
a617ac35
MM
243 this->entry_speed = this->max_entry_speed;
244 }
4cff3ded 245
a617ac35 246 return this->entry_speed;
aab6cbba 247}
4cff3ded
AW
248
249
250// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
251// returns maximum exit speed of this block
252float Block::forward_pass(float prev_max_exit_speed)
1cf31736 253{
aab6cbba
AW
254 // If the previous block is an acceleration block, but it is not long enough to complete the
255 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
256 // speeds have already been reset, maximized, and reverse planned by reverse planner.
257 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
258
259 // TODO: find out if both of these checks are necessary
260 if (prev_max_exit_speed > nominal_speed)
261 prev_max_exit_speed = nominal_speed;
262 if (prev_max_exit_speed > max_entry_speed)
263 prev_max_exit_speed = max_entry_speed;
264
1b5776bf 265 if (prev_max_exit_speed <= entry_speed) {
a617ac35
MM
266 // accel limited
267 entry_speed = prev_max_exit_speed;
268 // since we're now acceleration or cruise limited
269 // we don't need to recalculate our entry speed anymore
270 recalculate_flag = false;
aab6cbba 271 }
a617ac35
MM
272 // else
273 // // decel limited, do nothing
7b49793d 274
a617ac35
MM
275 return max_exit_speed();
276}
277
278float Block::max_exit_speed()
279{
5de195be
MM
280 // if block is currently executing, return cached exit speed from calculate_trapezoid
281 // this ensures that a block following a currently executing block will have correct entry speed
f6542ad9
JM
282 if(is_ticking)
283 return this->exit_speed;
5de195be 284
a617ac35
MM
285 // if nominal_length_flag is asserted
286 // we are guaranteed to reach nominal speed regardless of entry speed
287 // thus, max exit will always be nominal
288 if (nominal_length_flag)
289 return nominal_speed;
290
291 // otherwise, we have to work out max exit speed based on entry and acceleration
4fdd2470 292 float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
a617ac35
MM
293
294 return min(max, nominal_speed);
4cff3ded
AW
295}
296
f6542ad9 297// prepare block for the step ticker, called everytime the block changes
8a9f9313 298// this is done during planning so does not delay tick generation and step ticker can simply grab the next block during the interrupt
f6542ad9
JM
299void Block::prepare()
300{
301 float inv = 1.0F / this->steps_event_count;
8a9f9313 302 for (uint8_t m = 0; m < n_actuators; m++) {
f6542ad9
JM
303 uint32_t steps = this->steps[m];
304 this->tick_info[m].steps_to_move = steps;
305 if(steps == 0) continue;
306
307 float aratio = inv * steps;
308 this->tick_info[m].steps_per_tick = STEPTICKER_TOFP((this->initial_rate * aratio) / STEP_TICKER_FREQUENCY); // steps/sec / tick frequency to get steps per tick in 2.30 fixed point
309 this->tick_info[m].counter = 0; // 2.30 fixed point
310 this->tick_info[m].step_count = 0;
311 this->tick_info[m].next_accel_event = this->total_move_ticks + 1;
312
313 float acceleration_change = 0;
314 if(this->accelerate_until != 0) { // If the next accel event is the end of accel
315 this->tick_info[m].next_accel_event = this->accelerate_until;
316 acceleration_change = this->acceleration_per_tick;
317
318 } else if(this->decelerate_after == 0 /*&& this->accelerate_until == 0*/) {
319 // we start off decelerating
320 acceleration_change = -this->deceleration_per_tick;
321
322 } else if(this->decelerate_after != this->total_move_ticks /*&& this->accelerate_until == 0*/) {
323 // If the next event is the start of decel ( don't set this if the next accel event is accel end )
324 this->tick_info[m].next_accel_event = this->decelerate_after;
325 }
326
327 // convert to fixed point after scaling
328 this->tick_info[m].acceleration_change= STEPTICKER_TOFP(acceleration_change * aratio);
329 this->tick_info[m].deceleration_change= -STEPTICKER_TOFP(this->deceleration_per_tick * aratio);
330 this->tick_info[m].plateau_rate= STEPTICKER_TOFP((this->maximum_rate * aratio) / STEP_TICKER_FREQUENCY);
331 }
332}