Add four new sets of fast quotient and remainder operators
authorMark H Weaver <mhw@netris.org>
Sun, 13 Feb 2011 14:16:27 +0000 (09:16 -0500)
committerAndy Wingo <wingo@pobox.com>
Mon, 14 Feb 2011 19:30:53 +0000 (20:30 +0100)
* libguile/numbers.c (scm_floor_divide, scm_floor_quotient,
  scm_floor_remainder, scm_ceiling_divide, scm_ceiling_quotient,
  scm_ceiling_remainder, scm_truncate_divide, scm_truncate_quotient,
  scm_truncate_remainder, scm_round_divide, scm_round_quotient,
  scm_round_remainder): New extensible procedures `floor/',
  `floor-quotient', `floor-remainder', `ceiling/', `ceiling-quotient',
  `ceiling-remainder', `truncate/', `truncate-quotient',
  `truncate-remainder', `round/', `round-quotient', and
  `round-remainder'.

* libguile/numbers.h: Add function prototypes.

* test-suite/tests/numbers.test: Add tests.

* doc/ref/api-data.texi (Arithmetic): Add documentation.

* NEWS: Add NEWS entry.

NEWS
doc/ref/api-data.texi
libguile/numbers.c
libguile/numbers.h
test-suite/tests/numbers.test

diff --git a/NEWS b/NEWS
index df44517..6bebbf6 100644 (file)
--- a/NEWS
+++ b/NEWS
@@ -23,6 +23,34 @@ instead.
 `define-once' is like Lisp's `defvar': it creates a toplevel binding,
 but only if one does not exist already.
 
+** Added four new sets of fast quotient and remainder operators
+
+Added four new sets of fast quotient and remainder operators with
+different semantics than the R5RS operators.  They support not only
+integers, but all reals, including exact rationals and inexact
+floating point numbers.
+
+These procedures accept two real numbers N and D, where the divisor D
+must be non-zero.  Each set of operators computes an integer quotient
+Q and a real remainder R such that N = Q*D + R and |R| < |D|.  They
+differ only in how N/D is rounded to produce Q.
+
+`floor-quotient' and `floor-remainder' compute Q and R, respectively,
+where Q has been rounded toward negative infinity.  `floor/' returns
+both Q and R, and is more efficient than computing each separately.
+Note that when applied to integers, `floor-remainder' is equivalent to
+the R5RS integer-only `modulo' operator.  `ceiling-quotient',
+`ceiling-remainder', and `ceiling/' are similar except that Q is
+rounded toward positive infinity.
+
+For `truncate-quotient', `truncate-remainder', and `truncate/', Q is
+rounded toward zero.  Note that when applied to integers,
+`truncate-quotient' and `truncate-remainder' are equivalent to the
+R5RS integer-only operators `quotient' and `remainder'.
+
+For `round-quotient', `round-remainder', and `round/', Q is rounded to
+the nearest integer, with ties going to the nearest even integer.
+
 ** Improved exactness handling for complex number parsing
 
 When parsing non-real complex numbers, exactness specifiers are now
index 2faeb12..a8cce24 100644 (file)
@@ -907,7 +907,7 @@ sign as @var{n}.  In all cases quotient and remainder satisfy
 (remainder -13 4) @result{} -1
 @end lisp
 
-See also @code{euclidean-quotient}, @code{euclidean-remainder} and
+See also @code{truncate-quotient}, @code{truncate-remainder} and
 related operations in @ref{Arithmetic}.
 @end deffn
 
@@ -924,7 +924,7 @@ sign as @var{d}.
 (modulo -13 -4) @result{} -1
 @end lisp
 
-See also @code{euclidean-quotient}, @code{euclidean-remainder} and
+See also @code{floor-quotient}, @code{floor-remainder} and
 related operations in @ref{Arithmetic}.
 @end deffn
 
@@ -1148,9 +1148,21 @@ Returns the magnitude or angle of @var{z} as a @code{double}.
 @rnindex euclidean/
 @rnindex euclidean-quotient
 @rnindex euclidean-remainder
+@rnindex floor/
+@rnindex floor-quotient
+@rnindex floor-remainder
+@rnindex ceiling/
+@rnindex ceiling-quotient
+@rnindex ceiling-remainder
+@rnindex truncate/
+@rnindex truncate-quotient
+@rnindex truncate-remainder
 @rnindex centered/
 @rnindex centered-quotient
 @rnindex centered-remainder
+@rnindex round/
+@rnindex round-quotient
+@rnindex round-remainder
 
 The C arithmetic functions below always takes two arguments, while the
 Scheme functions can take an arbitrary number.  When you need to
@@ -1281,6 +1293,93 @@ Note that these operators are equivalent to the R6RS operators
 @end lisp
 @end deftypefn
 
+@deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
+@deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
+@deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
+@deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
+These procedures accept two real numbers @var{x} and @var{y}, where the
+divisor @var{y} must be non-zero.  @code{floor-quotient} returns the
+integer @var{q} and @code{floor-remainder} returns the real number
+@var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
+@math{@var{x} = @var{q}*@var{y} + @var{r}}.  @code{floor/} returns
+both @var{q} and @var{r}, and is more efficient than computing each
+separately.  Note that @var{r}, if non-zero, will have the same sign
+as @var{y}.
+
+When @var{x} and @var{y} are integers, @code{floor-quotient} is
+equivalent to the R5RS integer-only operator @code{modulo}.
+
+@lisp
+(floor-quotient 123 10) @result{} 12
+(floor-remainder 123 10) @result{} 3
+(floor/ 123 10) @result{} 12 and 3
+(floor/ 123 -10) @result{} -13 and -7
+(floor/ -123 10) @result{} -13 and 7
+(floor/ -123 -10) @result{} 12 and -3
+(floor/ -123.2 -63.5) @result{} 1.0 and -59.7
+(floor/ 16/3 -10/7) @result{} -4 and -8/21
+@end lisp
+@end deftypefn
+
+@deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
+@deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
+@deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
+@deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
+These procedures accept two real numbers @var{x} and @var{y}, where the
+divisor @var{y} must be non-zero.  @code{ceiling-quotient} returns the
+integer @var{q} and @code{ceiling-remainder} returns the real number
+@var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
+@math{@var{x} = @var{q}*@var{y} + @var{r}}.  @code{ceiling/} returns
+both @var{q} and @var{r}, and is more efficient than computing each
+separately.  Note that @var{r}, if non-zero, will have the opposite sign
+of @var{y}.
+
+@lisp
+(ceiling-quotient 123 10) @result{} 13
+(ceiling-remainder 123 10) @result{} -7
+(ceiling/ 123 10) @result{} 13 and -7
+(ceiling/ 123 -10) @result{} -12 and 3
+(ceiling/ -123 10) @result{} -12 and -3
+(ceiling/ -123 -10) @result{} 13 and 7
+(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
+(ceiling/ 16/3 -10/7) @result{} -3 and 22/21
+@end lisp
+@end deftypefn
+
+@deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
+@deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
+@deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
+@deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
+These procedures accept two real numbers @var{x} and @var{y}, where the
+divisor @var{y} must be non-zero.  @code{truncate-quotient} returns the
+integer @var{q} and @code{truncate-remainder} returns the real number
+@var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
+and @math{@var{x} = @var{q}*@var{y} + @var{r}}.  @code{truncate/} returns
+both @var{q} and @var{r}, and is more efficient than computing each
+separately.  Note that @var{r}, if non-zero, will have the same sign
+as @var{x}.
+
+When @var{x} and @var{y} are integers, these operators are equivalent to
+the R5RS integer-only operators @code{quotient} and @code{remainder}.
+
+@lisp
+(truncate-quotient 123 10) @result{} 12
+(truncate-remainder 123 10) @result{} 3
+(truncate/ 123 10) @result{} 12 and 3
+(truncate/ 123 -10) @result{} -12 and 3
+(truncate/ -123 10) @result{} -12 and -3
+(truncate/ -123 -10) @result{} 12 and -3
+(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
+(truncate/ 16/3 -10/7) @result{} -3 and 22/21
+@end lisp
+@end deftypefn
+
 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
@@ -1313,11 +1412,56 @@ Note that these operators are equivalent to the R6RS operators
 (centered/ 123 -10) @result{} -12 and 3
 (centered/ -123 10) @result{} -12 and -3
 (centered/ -123 -10) @result{} 12 and -3
+(centered/ 125 10) @result{} 13 and -5
+(centered/ 127 10) @result{} 13 and -3
+(centered/ 135 10) @result{} 14 and -5
 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
 (centered/ 16/3 -10/7) @result{} -4 and -8/21
 @end lisp
 @end deftypefn
 
+@deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
+@deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
+@deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
+@deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
+@deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
+These procedures accept two real numbers @var{x} and @var{y}, where the
+divisor @var{y} must be non-zero.  @code{round-quotient} returns the
+integer @var{q} and @code{round-remainder} returns the real number
+@var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
+@var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
+with ties going to the nearest even integer.  @code{round/}
+returns both @var{q} and @var{r}, and is more efficient than computing
+each separately.
+
+Note that @code{round/} and @code{centered/} are almost equivalent, but
+their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
+between two integers.  In this case, @code{round/} chooses the nearest
+even integer, whereas @code{centered/} chooses in such a way to satisfy
+the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
+is stronger than the corresponding constraint for @code{round/},
+@math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}.  In particular,
+when @var{x} and @var{y} are integers, the number of possible remainders
+returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
+possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
+@var{y} is even.
+
+@lisp
+(round-quotient 123 10) @result{} 12
+(round-remainder 123 10) @result{} 3
+(round/ 123 10) @result{} 12 and 3
+(round/ 123 -10) @result{} -12 and 3
+(round/ -123 10) @result{} -12 and -3
+(round/ -123 -10) @result{} 12 and -3
+(round/ 125 10) @result{} 12 and 5
+(round/ 127 10) @result{} 13 and -3
+(round/ 135 10) @result{} 14 and -5
+(round/ -123.2 -63.5) @result{} 2.0 and 3.8
+(round/ 16/3 -10/7) @result{} -4 and -8/21
+@end lisp
+@end deftypefn
+
 @node Scientific
 @subsubsection Scientific Functions
 
index e779c42..9107c81 100644 (file)
@@ -1616,24 +1616,2254 @@ scm_i_exact_rational_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp)
   *rp = scm_divide (r1, scm_product (xd, yd));
 }
 
+static SCM scm_i_inexact_floor_quotient (double x, double y);
+static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the floor of @math{@var{x} / @var{y}}.\n"
+                      "@lisp\n"
+                      "(floor-quotient 123 10) @result{} 12\n"
+                      "(floor-quotient 123 -10) @result{} -13\n"
+                      "(floor-quotient -123 10) @result{} -13\n"
+                      "(floor-quotient -123 -10) @result{} 12\n"
+                      "(floor-quotient -123.2 -63.5) @result{} 1.0\n"
+                      "(floor-quotient 16/3 -10/7) @result{} -4\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_floor_quotient
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         scm_t_inum xx1 = xx;
+         scm_t_inum qq;
+         if (SCM_LIKELY (yy > 0))
+           {
+             if (SCM_UNLIKELY (xx < 0))
+               xx1 = xx - yy + 1;
+           }
+         else if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_floor_quotient);
+         else if (xx > 0)
+           xx1 = xx - yy - 1;
+         qq = xx1 / yy;
+         if (SCM_LIKELY (SCM_FIXABLE (qq)))
+           return SCM_I_MAKINUM (qq);
+         else
+           return scm_i_inum2big (qq);
+       }
+      else if (SCM_BIGP (y))
+       {
+         int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_1 (y);
+         if (sign > 0)
+           return SCM_I_MAKINUM ((xx < 0) ? -1 : 0);
+         else
+           return SCM_I_MAKINUM ((xx > 0) ? -1 : 0);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_floor_quotient (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
+                           s_scm_floor_quotient);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_floor_quotient);
+         else if (SCM_UNLIKELY (yy == 1))
+           return x;
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             if (yy > 0)
+               mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
+             else
+               {
+                 mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+               }
+             scm_remember_upto_here_1 (x);
+             return scm_i_normbig (q);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM q = scm_i_mkbig ();
+         mpz_fdiv_q (SCM_I_BIG_MPZ (q),
+                     SCM_I_BIG_MPZ (x),
+                     SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         return scm_i_normbig (q);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_floor_quotient
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
+                           s_scm_floor_quotient);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_floor_quotient
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
+                           s_scm_floor_quotient);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_floor_quotient
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_quotient, x, y, SCM_ARG2,
+                           s_scm_floor_quotient);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_floor_quotient, x, y, SCM_ARG1,
+                       s_scm_floor_quotient);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_floor_quotient (double x, double y)
+{
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_floor_quotient);  /* or return a NaN? */
+  else
+    return scm_from_double (floor (x / y));
+}
+
+static SCM
+scm_i_exact_rational_floor_quotient (SCM x, SCM y)
+{
+  return scm_floor_quotient
+    (scm_product (scm_numerator (x), scm_denominator (y)),
+     scm_product (scm_numerator (y), scm_denominator (x)));
+}
+
+static SCM scm_i_inexact_floor_remainder (double x, double y);
+static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the real number @var{r} such that\n"
+                      "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "where @math{@var{q} = floor(@var{x} / @var{y})}.\n"
+                      "@lisp\n"
+                      "(floor-remainder 123 10) @result{} 3\n"
+                      "(floor-remainder 123 -10) @result{} -7\n"
+                      "(floor-remainder -123 10) @result{} 7\n"
+                      "(floor-remainder -123 -10) @result{} -3\n"
+                      "(floor-remainder -123.2 -63.5) @result{} -59.7\n"
+                      "(floor-remainder 16/3 -10/7) @result{} -8/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_floor_remainder
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_floor_remainder);
+         else
+           {
+             scm_t_inum rr = xx % yy;
+             int needs_adjustment;
+
+             if (SCM_LIKELY (yy > 0))
+               needs_adjustment = (rr < 0);
+             else
+               needs_adjustment = (rr > 0);
+
+             if (needs_adjustment)
+               rr += yy;
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_1 (y);
+         if (sign > 0)
+           {
+             if (xx < 0)
+               {
+                 SCM r = scm_i_mkbig ();
+                 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
+                 scm_remember_upto_here_1 (y);
+                 return scm_i_normbig (r);
+               }
+             else
+               return x;
+           }
+         else if (xx <= 0)
+           return x;
+         else
+           {
+             SCM r = scm_i_mkbig ();
+             mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
+             scm_remember_upto_here_1 (y);
+             return scm_i_normbig (r);
+           }
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_floor_remainder (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
+                           s_scm_floor_remainder);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_floor_remainder);
+         else
+           {
+             scm_t_inum rr;
+             if (yy > 0)
+               rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), yy);
+             else
+               rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
+             scm_remember_upto_here_1 (x);
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM r = scm_i_mkbig ();
+         mpz_fdiv_r (SCM_I_BIG_MPZ (r),
+                     SCM_I_BIG_MPZ (x),
+                     SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         return scm_i_normbig (r);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_floor_remainder
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
+                           s_scm_floor_remainder);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_floor_remainder
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
+                           s_scm_floor_remainder);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_floor_remainder
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_floor_remainder, x, y, SCM_ARG2,
+                           s_scm_floor_remainder);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_floor_remainder, x, y, SCM_ARG1,
+                       s_scm_floor_remainder);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_floor_remainder (double x, double y)
+{
+  /* Although it would be more efficient to use fmod here, we can't
+     because it would in some cases produce results inconsistent with
+     scm_i_inexact_floor_quotient, such that x != q * y + r (not even
+     close).  In particular, when x is very close to a multiple of y,
+     then r might be either 0.0 or y, but those two cases must
+     correspond to different choices of q.  If r = 0.0 then q must be
+     x/y, and if r = y then q must be x/y-1.  If quotient chooses one
+     and remainder chooses the other, it would be bad.  */
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_floor_remainder);  /* or return a NaN? */
+  else
+    return scm_from_double (x - y * floor (x / y));
+}
+
+static SCM
+scm_i_exact_rational_floor_remainder (SCM x, SCM y)
+{
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+  SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd),
+                               scm_product (scm_numerator (y), xd));
+  return scm_divide (r1, scm_product (xd, yd));
+}
+
+
+static void scm_i_inexact_floor_divide (double x, double y,
+                                       SCM *qp, SCM *rp);
+static void scm_i_exact_rational_floor_divide (SCM x, SCM y,
+                                              SCM *qp, SCM *rp);
+
+SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the integer @var{q} and the real number @var{r}\n"
+                      "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "and @math{@var{q} = floor(@var{x} / @var{y})}.\n"
+                      "@lisp\n"
+                      "(floor/ 123 10) @result{} 12 and 3\n"
+                      "(floor/ 123 -10) @result{} -13 and -7\n"
+                      "(floor/ -123 10) @result{} -13 and 7\n"
+                      "(floor/ -123 -10) @result{} 12 and -3\n"
+                      "(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
+                      "(floor/ 16/3 -10/7) @result{} -4 and -8/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_i_floor_divide
+{
+  SCM q, r;
+
+  scm_floor_divide(x, y, &q, &r);
+  return scm_values (scm_list_2 (q, r));
+}
+#undef FUNC_NAME
+
+#define s_scm_floor_divide s_scm_i_floor_divide
+#define g_scm_floor_divide g_scm_i_floor_divide
+
+void
+scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_floor_divide);
+         else
+           {
+             scm_t_inum qq = xx / yy;
+             scm_t_inum rr = xx % yy;
+             int needs_adjustment;
+
+             if (SCM_LIKELY (yy > 0))
+               needs_adjustment = (rr < 0);
+             else
+               needs_adjustment = (rr > 0);
+
+             if (needs_adjustment)
+               {
+                 rr += yy;
+                 qq--;
+               }
+
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               *qp = SCM_I_MAKINUM (qq);
+             else
+               *qp = scm_i_inum2big (qq);
+             *rp = SCM_I_MAKINUM (rr);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_1 (y);
+         if (sign > 0)
+           {
+             if (xx < 0)
+               {
+                 SCM r = scm_i_mkbig ();
+                 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
+                 scm_remember_upto_here_1 (y);
+                 *qp = SCM_I_MAKINUM (-1);
+                 *rp = scm_i_normbig (r);
+               }
+             else
+               {
+                 *qp = SCM_INUM0;
+                 *rp = x;
+               }
+           }
+         else if (xx <= 0)
+           {
+             *qp = SCM_INUM0;
+             *rp = x;
+           }
+         else
+           {
+             SCM r = scm_i_mkbig ();
+             mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
+             scm_remember_upto_here_1 (y);
+             *qp = SCM_I_MAKINUM (-1);
+             *rp = scm_i_normbig (r);
+           }
+         return;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_floor_divide (xx, SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
+                                         s_scm_floor_divide, qp, rp);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_floor_divide);
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             SCM r = scm_i_mkbig ();
+             if (yy > 0)
+               mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                               SCM_I_BIG_MPZ (x), yy);
+             else
+               {
+                 mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                                 SCM_I_BIG_MPZ (x), -yy);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+               }
+             scm_remember_upto_here_1 (x);
+             *qp = scm_i_normbig (q);
+             *rp = scm_i_normbig (r);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM q = scm_i_mkbig ();
+         SCM r = scm_i_mkbig ();
+         mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                      SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         *qp = scm_i_normbig (q);
+         *rp = scm_i_normbig (r);
+         return;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_floor_divide
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
+                                         s_scm_floor_divide, qp, rp);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_floor_divide
+         (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
+                                         s_scm_floor_divide, qp, rp);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_floor_divide
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_floor_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2,
+                                         s_scm_floor_divide, qp, rp);
+    }
+  else
+    return two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1,
+                                     s_scm_floor_divide, qp, rp);
+}
+
+static void
+scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp)
+{
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_floor_divide);  /* or return a NaN? */
+  else
+    {
+      double q = floor (x / y);
+      double r = x - q * y;
+      *qp = scm_from_double (q);
+      *rp = scm_from_double (r);
+    }
+}
+
+static void
+scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  SCM r1;
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+
+  scm_floor_divide (scm_product (scm_numerator (x), yd),
+                   scm_product (scm_numerator (y), xd),
+                   qp, &r1);
+  *rp = scm_divide (r1, scm_product (xd, yd));
+}
+
+static SCM scm_i_inexact_ceiling_quotient (double x, double y);
+static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the ceiling of @math{@var{x} / @var{y}}.\n"
+                      "@lisp\n"
+                      "(ceiling-quotient 123 10) @result{} 13\n"
+                      "(ceiling-quotient 123 -10) @result{} -12\n"
+                      "(ceiling-quotient -123 10) @result{} -12\n"
+                      "(ceiling-quotient -123 -10) @result{} 13\n"
+                      "(ceiling-quotient -123.2 -63.5) @result{} 2.0\n"
+                      "(ceiling-quotient 16/3 -10/7) @result{} -3\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_ceiling_quotient
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_ceiling_quotient);
+         else
+           {
+             scm_t_inum xx1 = xx;
+             scm_t_inum qq;
+             if (SCM_LIKELY (yy > 0))
+               {
+                 if (SCM_LIKELY (xx >= 0))
+                   xx1 = xx + yy - 1;
+               }
+             else if (SCM_UNLIKELY (yy == 0))
+               scm_num_overflow (s_scm_ceiling_quotient);
+             else if (xx < 0)
+               xx1 = xx + yy + 1;
+             qq = xx1 / yy;
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               return SCM_I_MAKINUM (qq);
+             else
+               return scm_i_inum2big (qq);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_1 (y);
+         if (SCM_LIKELY (sign > 0))
+           {
+             if (SCM_LIKELY (xx > 0))
+               return SCM_INUM1;
+             else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
+                      && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
+                                      - SCM_MOST_NEGATIVE_FIXNUM) == 0))
+               {
+                 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
+                 scm_remember_upto_here_1 (y);
+                 return SCM_I_MAKINUM (-1);
+               }
+             else
+               return SCM_INUM0;
+           }
+         else if (xx >= 0)
+           return SCM_INUM0;
+         else
+           return SCM_INUM1;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_quotient (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
+                           s_scm_ceiling_quotient);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_ceiling_quotient);
+         else if (SCM_UNLIKELY (yy == 1))
+           return x;
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             if (yy > 0)
+               mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
+             else
+               {
+                 mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+               }
+             scm_remember_upto_here_1 (x);
+             return scm_i_normbig (q);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM q = scm_i_mkbig ();
+         mpz_cdiv_q (SCM_I_BIG_MPZ (q),
+                     SCM_I_BIG_MPZ (x),
+                     SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         return scm_i_normbig (q);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_quotient
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
+                           s_scm_ceiling_quotient);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_ceiling_quotient
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
+                           s_scm_ceiling_quotient);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_quotient
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2,
+                           s_scm_ceiling_quotient);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1,
+                       s_scm_ceiling_quotient);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_ceiling_quotient (double x, double y)
+{
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_ceiling_quotient);  /* or return a NaN? */
+  else
+    return scm_from_double (ceil (x / y));
+}
+
+static SCM
+scm_i_exact_rational_ceiling_quotient (SCM x, SCM y)
+{
+  return scm_ceiling_quotient
+    (scm_product (scm_numerator (x), scm_denominator (y)),
+     scm_product (scm_numerator (y), scm_denominator (x)));
+}
+
+static SCM scm_i_inexact_ceiling_remainder (double x, double y);
+static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the real number @var{r} such that\n"
+                      "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
+                      "@lisp\n"
+                      "(ceiling-remainder 123 10) @result{} -7\n"
+                      "(ceiling-remainder 123 -10) @result{} 3\n"
+                      "(ceiling-remainder -123 10) @result{} -3\n"
+                      "(ceiling-remainder -123 -10) @result{} 7\n"
+                      "(ceiling-remainder -123.2 -63.5) @result{} 3.8\n"
+                      "(ceiling-remainder 16/3 -10/7) @result{} 22/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_ceiling_remainder
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_ceiling_remainder);
+         else
+           {
+             scm_t_inum rr = xx % yy;
+             int needs_adjustment;
+
+             if (SCM_LIKELY (yy > 0))
+               needs_adjustment = (rr > 0);
+             else
+               needs_adjustment = (rr < 0);
+
+             if (needs_adjustment)
+               rr -= yy;
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_1 (y);
+         if (SCM_LIKELY (sign > 0))
+           {
+             if (SCM_LIKELY (xx > 0))
+               {
+                 SCM r = scm_i_mkbig ();
+                 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
+                 scm_remember_upto_here_1 (y);
+                 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
+                 return scm_i_normbig (r);
+               }
+             else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
+                      && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
+                                      - SCM_MOST_NEGATIVE_FIXNUM) == 0))
+               {
+                 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
+                 scm_remember_upto_here_1 (y);
+                 return SCM_INUM0;
+               }
+             else
+               return x;
+           }
+         else if (xx >= 0)
+           return x;
+         else
+           {
+             SCM r = scm_i_mkbig ();
+             mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
+             scm_remember_upto_here_1 (y);
+             mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
+             return scm_i_normbig (r);
+           }
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_remainder (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
+                           s_scm_ceiling_remainder);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_ceiling_remainder);
+         else
+           {
+             scm_t_inum rr;
+             if (yy > 0)
+               rr = -mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
+             else
+               rr = mpz_fdiv_ui (SCM_I_BIG_MPZ (x), -yy);
+             scm_remember_upto_here_1 (x);
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM r = scm_i_mkbig ();
+         mpz_cdiv_r (SCM_I_BIG_MPZ (r),
+                     SCM_I_BIG_MPZ (x),
+                     SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         return scm_i_normbig (r);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_remainder
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
+                           s_scm_ceiling_remainder);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_ceiling_remainder
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
+                           s_scm_ceiling_remainder);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_remainder
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2,
+                           s_scm_ceiling_remainder);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1,
+                       s_scm_ceiling_remainder);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_ceiling_remainder (double x, double y)
+{
+  /* Although it would be more efficient to use fmod here, we can't
+     because it would in some cases produce results inconsistent with
+     scm_i_inexact_ceiling_quotient, such that x != q * y + r (not even
+     close).  In particular, when x is very close to a multiple of y,
+     then r might be either 0.0 or -y, but those two cases must
+     correspond to different choices of q.  If r = 0.0 then q must be
+     x/y, and if r = -y then q must be x/y+1.  If quotient chooses one
+     and remainder chooses the other, it would be bad.  */
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_ceiling_remainder);  /* or return a NaN? */
+  else
+    return scm_from_double (x - y * ceil (x / y));
+}
+
+static SCM
+scm_i_exact_rational_ceiling_remainder (SCM x, SCM y)
+{
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+  SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd),
+                                 scm_product (scm_numerator (y), xd));
+  return scm_divide (r1, scm_product (xd, yd));
+}
+
+static void scm_i_inexact_ceiling_divide (double x, double y,
+                                         SCM *qp, SCM *rp);
+static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y,
+                                                SCM *qp, SCM *rp);
+
+SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the integer @var{q} and the real number @var{r}\n"
+                      "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n"
+                      "@lisp\n"
+                      "(ceiling/ 123 10) @result{} 13 and -7\n"
+                      "(ceiling/ 123 -10) @result{} -12 and 3\n"
+                      "(ceiling/ -123 10) @result{} -12 and -3\n"
+                      "(ceiling/ -123 -10) @result{} 13 and 7\n"
+                      "(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
+                      "(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_i_ceiling_divide
+{
+  SCM q, r;
+
+  scm_ceiling_divide(x, y, &q, &r);
+  return scm_values (scm_list_2 (q, r));
+}
+#undef FUNC_NAME
+
+#define s_scm_ceiling_divide s_scm_i_ceiling_divide
+#define g_scm_ceiling_divide g_scm_i_ceiling_divide
+
+void
+scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_ceiling_divide);
+         else
+           {
+             scm_t_inum qq = xx / yy;
+             scm_t_inum rr = xx % yy;
+             int needs_adjustment;
+
+             if (SCM_LIKELY (yy > 0))
+               needs_adjustment = (rr > 0);
+             else
+               needs_adjustment = (rr < 0);
+
+             if (needs_adjustment)
+               {
+                 rr -= yy;
+                 qq++;
+               }
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               *qp = SCM_I_MAKINUM (qq);
+             else
+               *qp = scm_i_inum2big (qq);
+             *rp = SCM_I_MAKINUM (rr);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         int sign = mpz_sgn (SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_1 (y);
+         if (SCM_LIKELY (sign > 0))
+           {
+             if (SCM_LIKELY (xx > 0))
+               {
+                 SCM r = scm_i_mkbig ();
+                 mpz_sub_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), xx);
+                 scm_remember_upto_here_1 (y);
+                 mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
+                 *qp = SCM_INUM1;
+                 *rp = scm_i_normbig (r);
+               }
+             else if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
+                      && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
+                                      - SCM_MOST_NEGATIVE_FIXNUM) == 0))
+               {
+                 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
+                 scm_remember_upto_here_1 (y);
+                 *qp = SCM_I_MAKINUM (-1);
+                 *rp = SCM_INUM0;
+               }
+             else
+               {
+                 *qp = SCM_INUM0;
+                 *rp = x;
+               }
+           }
+         else if (xx >= 0)
+           {
+             *qp = SCM_INUM0;
+             *rp = x;
+           }
+         else
+           {
+             SCM r = scm_i_mkbig ();
+             mpz_add_ui (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y), -xx);
+             scm_remember_upto_here_1 (y);
+             mpz_neg (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r));
+             *qp = SCM_INUM1;
+             *rp = scm_i_normbig (r);
+           }
+         return;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_divide (xx, SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
+                                         s_scm_ceiling_divide, qp, rp);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_ceiling_divide);
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             SCM r = scm_i_mkbig ();
+             if (yy > 0)
+               mpz_cdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                               SCM_I_BIG_MPZ (x), yy);
+             else
+               {
+                 mpz_fdiv_qr_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                                 SCM_I_BIG_MPZ (x), -yy);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+               }
+             scm_remember_upto_here_1 (x);
+             *qp = scm_i_normbig (q);
+             *rp = scm_i_normbig (r);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM q = scm_i_mkbig ();
+         SCM r = scm_i_mkbig ();
+         mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                      SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         *qp = scm_i_normbig (q);
+         *rp = scm_i_normbig (r);
+         return;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_divide
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
+                                         s_scm_ceiling_divide, qp, rp);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_ceiling_divide
+         (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
+                                         s_scm_ceiling_divide, qp, rp);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_ceiling_divide
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_ceiling_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2,
+                                         s_scm_ceiling_divide, qp, rp);
+    }
+  else
+    return two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1,
+                                     s_scm_ceiling_divide, qp, rp);
+}
+
+static void
+scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp)
+{
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_ceiling_divide);  /* or return a NaN? */
+  else
+    {
+      double q = ceil (x / y);
+      double r = x - q * y;
+      *qp = scm_from_double (q);
+      *rp = scm_from_double (r);
+    }
+}
+
+static void
+scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  SCM r1;
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+
+  scm_ceiling_divide (scm_product (scm_numerator (x), yd),
+                     scm_product (scm_numerator (y), xd),
+                     qp, &r1);
+  *rp = scm_divide (r1, scm_product (xd, yd));
+}
+
+static SCM scm_i_inexact_truncate_quotient (double x, double y);
+static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return @math{@var{x} / @var{y}} rounded toward zero.\n"
+                      "@lisp\n"
+                      "(truncate-quotient 123 10) @result{} 12\n"
+                      "(truncate-quotient 123 -10) @result{} -12\n"
+                      "(truncate-quotient -123 10) @result{} -12\n"
+                      "(truncate-quotient -123 -10) @result{} 12\n"
+                      "(truncate-quotient -123.2 -63.5) @result{} 1.0\n"
+                      "(truncate-quotient 16/3 -10/7) @result{} -3\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_truncate_quotient
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_truncate_quotient);
+         else
+           {
+             scm_t_inum qq = xx / yy;
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               return SCM_I_MAKINUM (qq);
+             else
+               return scm_i_inum2big (qq);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
+             && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
+                                          - SCM_MOST_NEGATIVE_FIXNUM) == 0))
+           {
+             /* Special case: x == fixnum-min && y == abs (fixnum-min) */
+             scm_remember_upto_here_1 (y);
+             return SCM_I_MAKINUM (-1);
+           }
+         else
+           return SCM_INUM0;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_truncate_quotient (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
+                           s_scm_truncate_quotient);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_truncate_quotient);
+         else if (SCM_UNLIKELY (yy == 1))
+           return x;
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             if (yy > 0)
+               mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), yy);
+             else
+               {
+                 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (x), -yy);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+               }
+             scm_remember_upto_here_1 (x);
+             return scm_i_normbig (q);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM q = scm_i_mkbig ();
+         mpz_tdiv_q (SCM_I_BIG_MPZ (q),
+                     SCM_I_BIG_MPZ (x),
+                     SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         return scm_i_normbig (q);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_truncate_quotient
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
+                           s_scm_truncate_quotient);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_truncate_quotient
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
+                           s_scm_truncate_quotient);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_truncate_quotient
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_quotient, x, y, SCM_ARG2,
+                           s_scm_truncate_quotient);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_truncate_quotient, x, y, SCM_ARG1,
+                       s_scm_truncate_quotient);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_truncate_quotient (double x, double y)
+{
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_truncate_quotient);  /* or return a NaN? */
+  else
+    return scm_from_double (scm_c_truncate (x / y));
+}
+
+static SCM
+scm_i_exact_rational_truncate_quotient (SCM x, SCM y)
+{
+  return scm_truncate_quotient
+    (scm_product (scm_numerator (x), scm_denominator (y)),
+     scm_product (scm_numerator (y), scm_denominator (x)));
+}
+
+static SCM scm_i_inexact_truncate_remainder (double x, double y);
+static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the real number @var{r} such that\n"
+                      "@math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "where @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
+                      "@lisp\n"
+                      "(truncate-remainder 123 10) @result{} 3\n"
+                      "(truncate-remainder 123 -10) @result{} 3\n"
+                      "(truncate-remainder -123 10) @result{} -3\n"
+                      "(truncate-remainder -123 -10) @result{} -3\n"
+                      "(truncate-remainder -123.2 -63.5) @result{} -59.7\n"
+                      "(truncate-remainder 16/3 -10/7) @result{} 22/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_truncate_remainder
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_truncate_remainder);
+         else
+           return SCM_I_MAKINUM (xx % yy);
+       }
+      else if (SCM_BIGP (y))
+       {
+         if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
+             && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
+                                          - SCM_MOST_NEGATIVE_FIXNUM) == 0))
+           {
+             /* Special case: x == fixnum-min && y == abs (fixnum-min) */
+             scm_remember_upto_here_1 (y);
+             return SCM_INUM0;
+           }
+         else
+           return x;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_truncate_remainder (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
+                           s_scm_truncate_remainder);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_truncate_remainder);
+         else
+           {
+             scm_t_inum rr = (mpz_tdiv_ui (SCM_I_BIG_MPZ (x),
+                                           (yy > 0) ? yy : -yy)
+                              * mpz_sgn (SCM_I_BIG_MPZ (x)));
+             scm_remember_upto_here_1 (x);
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM r = scm_i_mkbig ();
+         mpz_tdiv_r (SCM_I_BIG_MPZ (r),
+                     SCM_I_BIG_MPZ (x),
+                     SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         return scm_i_normbig (r);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_truncate_remainder
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
+                           s_scm_truncate_remainder);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_truncate_remainder
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
+                           s_scm_truncate_remainder);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_truncate_remainder
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_truncate_remainder, x, y, SCM_ARG2,
+                           s_scm_truncate_remainder);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_truncate_remainder, x, y, SCM_ARG1,
+                       s_scm_truncate_remainder);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_truncate_remainder (double x, double y)
+{
+  /* Although it would be more efficient to use fmod here, we can't
+     because it would in some cases produce results inconsistent with
+     scm_i_inexact_truncate_quotient, such that x != q * y + r (not even
+     close).  In particular, when x is very close to a multiple of y,
+     then r might be either 0.0 or sgn(x)*|y|, but those two cases must
+     correspond to different choices of q.  If quotient chooses one and
+     remainder chooses the other, it would be bad.  */
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_truncate_remainder);  /* or return a NaN? */
+  else
+    return scm_from_double (x - y * scm_c_truncate (x / y));
+}
+
+static SCM
+scm_i_exact_rational_truncate_remainder (SCM x, SCM y)
+{
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+  SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd),
+                                  scm_product (scm_numerator (y), xd));
+  return scm_divide (r1, scm_product (xd, yd));
+}
+
+
+static void scm_i_inexact_truncate_divide (double x, double y,
+                                          SCM *qp, SCM *rp);
+static void scm_i_exact_rational_truncate_divide (SCM x, SCM y,
+                                                 SCM *qp, SCM *rp);
+
+SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the integer @var{q} and the real number @var{r}\n"
+                      "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "and @math{@var{q} = truncate(@var{x} / @var{y})}.\n"
+                      "@lisp\n"
+                      "(truncate/ 123 10) @result{} 12 and 3\n"
+                      "(truncate/ 123 -10) @result{} -12 and 3\n"
+                      "(truncate/ -123 10) @result{} -12 and -3\n"
+                      "(truncate/ -123 -10) @result{} 12 and -3\n"
+                      "(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n"
+                      "(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_i_truncate_divide
+{
+  SCM q, r;
+
+  scm_truncate_divide(x, y, &q, &r);
+  return scm_values (scm_list_2 (q, r));
+}
+#undef FUNC_NAME
+
+#define s_scm_truncate_divide s_scm_i_truncate_divide
+#define g_scm_truncate_divide g_scm_i_truncate_divide
+
+void
+scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_truncate_divide);
+         else
+           {
+             scm_t_inum qq = xx / yy;
+             scm_t_inum rr = xx % yy;
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               *qp = SCM_I_MAKINUM (qq);
+             else
+               *qp = scm_i_inum2big (qq);
+             *rp = SCM_I_MAKINUM (rr);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         if (SCM_UNLIKELY (xx == SCM_MOST_NEGATIVE_FIXNUM)
+             && SCM_UNLIKELY (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
+                                          - SCM_MOST_NEGATIVE_FIXNUM) == 0))
+           {
+             /* Special case: x == fixnum-min && y == abs (fixnum-min) */
+             scm_remember_upto_here_1 (y);
+             *qp = SCM_I_MAKINUM (-1);
+             *rp = SCM_INUM0;
+           }
+         else
+           {
+             *qp = SCM_INUM0;
+             *rp = x;
+           }
+         return;
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_truncate_divide (xx, SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_truncate_divide, x, y, SCM_ARG2,
+          s_scm_truncate_divide, qp, rp);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_truncate_divide);
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             scm_t_inum rr;
+             if (yy > 0)
+               rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                   SCM_I_BIG_MPZ (x), yy);
+             else
+               {
+                 rr = mpz_tdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                     SCM_I_BIG_MPZ (x), -yy);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+               }
+             rr *= mpz_sgn (SCM_I_BIG_MPZ (x));
+             scm_remember_upto_here_1 (x);
+             *qp = scm_i_normbig (q);
+             *rp = SCM_I_MAKINUM (rr);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         SCM q = scm_i_mkbig ();
+         SCM r = scm_i_mkbig ();
+         mpz_tdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                      SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+         scm_remember_upto_here_2 (x, y);
+         *qp = scm_i_normbig (q);
+         *rp = scm_i_normbig (r);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_truncate_divide
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_truncate_divide, x, y, SCM_ARG2,
+          s_scm_truncate_divide, qp, rp);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_truncate_divide
+         (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_truncate_divide, x, y, SCM_ARG2,
+          s_scm_truncate_divide, qp, rp);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_truncate_divide
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_truncate_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_truncate_divide, x, y, SCM_ARG2,
+          s_scm_truncate_divide, qp, rp);
+    }
+  else
+    return two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1,
+                                     s_scm_truncate_divide, qp, rp);
+}
+
+static void
+scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp)
+{
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_truncate_divide);  /* or return a NaN? */
+  else
+    {
+      double q, r, q1;
+      /* FIXME: Use trunc, after it has been imported from gnulib */
+      q1 = x / y;
+      q = (q1 >= 0) ? floor (q1) : ceil (q1);
+      r = x - q * y;
+      *qp = scm_from_double (q);
+      *rp = scm_from_double (r);
+    }
+}
+
+static void
+scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  SCM r1;
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+
+  scm_truncate_divide (scm_product (scm_numerator (x), yd),
+                      scm_product (scm_numerator (y), xd),
+                      qp, &r1);
+  *rp = scm_divide (r1, scm_product (xd, yd));
+}
+
 static SCM scm_i_inexact_centered_quotient (double x, double y);
 static SCM scm_i_bigint_centered_quotient (SCM x, SCM y);
 static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y);
 
-SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
+SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the integer @var{q} such that\n"
+                      "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
+                      "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
+                      "@lisp\n"
+                      "(centered-quotient 123 10) @result{} 12\n"
+                      "(centered-quotient 123 -10) @result{} -12\n"
+                      "(centered-quotient -123 10) @result{} -12\n"
+                      "(centered-quotient -123 -10) @result{} 12\n"
+                      "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
+                      "(centered-quotient 16/3 -10/7) @result{} -4\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_centered_quotient
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_centered_quotient);
+         else
+           {
+             scm_t_inum qq = xx / yy;
+             scm_t_inum rr = xx % yy;
+             if (SCM_LIKELY (xx > 0))
+               {
+                 if (SCM_LIKELY (yy > 0))
+                   {
+                     if (rr >= (yy + 1) / 2)
+                       qq++;
+                   }
+                 else
+                   {
+                     if (rr >= (1 - yy) / 2)
+                       qq--;
+                   }
+               }
+             else
+               {
+                 if (SCM_LIKELY (yy > 0))
+                   {
+                     if (rr < -yy / 2)
+                       qq--;
+                   }
+                 else
+                   {
+                     if (rr < yy / 2)
+                       qq++;
+                   }
+               }
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               return SCM_I_MAKINUM (qq);
+             else
+               return scm_i_inum2big (qq);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         /* Pass a denormalized bignum version of x (even though it
+            can fit in a fixnum) to scm_i_bigint_centered_quotient */
+         return scm_i_bigint_centered_quotient (scm_i_long2big (xx), y);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_centered_quotient (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
+                           s_scm_centered_quotient);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_centered_quotient);
+         else if (SCM_UNLIKELY (yy == 1))
+           return x;
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             scm_t_inum rr;
+             /* Arrange for rr to initially be non-positive,
+                because that simplifies the test to see
+                if it is within the needed bounds. */
+             if (yy > 0)
+               {
+                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                       SCM_I_BIG_MPZ (x), yy);
+                 scm_remember_upto_here_1 (x);
+                 if (rr < -yy / 2)
+                   mpz_sub_ui (SCM_I_BIG_MPZ (q),
+                               SCM_I_BIG_MPZ (q), 1);
+               }
+             else
+               {
+                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                       SCM_I_BIG_MPZ (x), -yy);
+                 scm_remember_upto_here_1 (x);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+                 if (rr < yy / 2)
+                   mpz_add_ui (SCM_I_BIG_MPZ (q),
+                               SCM_I_BIG_MPZ (q), 1);
+               }
+             return scm_i_normbig (q);
+           }
+       }
+      else if (SCM_BIGP (y))
+       return scm_i_bigint_centered_quotient (x, y);
+      else if (SCM_REALP (y))
+       return scm_i_inexact_centered_quotient
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
+                           s_scm_centered_quotient);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_centered_quotient
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
+                           s_scm_centered_quotient);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_centered_quotient
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_quotient (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
+                           s_scm_centered_quotient);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
+                       s_scm_centered_quotient);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_centered_quotient (double x, double y)
+{
+  if (SCM_LIKELY (y > 0))
+    return scm_from_double (floor (x/y + 0.5));
+  else if (SCM_LIKELY (y < 0))
+    return scm_from_double (ceil (x/y - 0.5));
+  else if (y == 0)
+    scm_num_overflow (s_scm_centered_quotient);  /* or return a NaN? */
+  else
+    return scm_nan ();
+}
+
+/* Assumes that both x and y are bigints, though
+   x might be able to fit into a fixnum. */
+static SCM
+scm_i_bigint_centered_quotient (SCM x, SCM y)
+{
+  SCM q, r, min_r;
+
+  /* Note that x might be small enough to fit into a
+     fixnum, so we must not let it escape into the wild */
+  q = scm_i_mkbig ();
+  r = scm_i_mkbig ();
+
+  /* min_r will eventually become -abs(y)/2 */
+  min_r = scm_i_mkbig ();
+  mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
+                  SCM_I_BIG_MPZ (y), 1);
+
+  /* Arrange for rr to initially be non-positive,
+     because that simplifies the test to see
+     if it is within the needed bounds. */
+  if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
+    {
+      mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+      scm_remember_upto_here_2 (x, y);
+      mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
+      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
+       mpz_sub_ui (SCM_I_BIG_MPZ (q),
+                   SCM_I_BIG_MPZ (q), 1);
+    }
+  else
+    {
+      mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+      scm_remember_upto_here_2 (x, y);
+      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
+       mpz_add_ui (SCM_I_BIG_MPZ (q),
+                   SCM_I_BIG_MPZ (q), 1);
+    }
+  scm_remember_upto_here_2 (r, min_r);
+  return scm_i_normbig (q);
+}
+
+static SCM
+scm_i_exact_rational_centered_quotient (SCM x, SCM y)
+{
+  return scm_centered_quotient
+    (scm_product (scm_numerator (x), scm_denominator (y)),
+     scm_product (scm_numerator (y), scm_denominator (x)));
+}
+
+static SCM scm_i_inexact_centered_remainder (double x, double y);
+static SCM scm_i_bigint_centered_remainder (SCM x, SCM y);
+static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the real number @var{r} such that\n"
+                      "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
+                      "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "for some integer @var{q}.\n"
+                      "@lisp\n"
+                      "(centered-remainder 123 10) @result{} 3\n"
+                      "(centered-remainder 123 -10) @result{} 3\n"
+                      "(centered-remainder -123 10) @result{} -3\n"
+                      "(centered-remainder -123 -10) @result{} -3\n"
+                      "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
+                      "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_centered_remainder
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_centered_remainder);
+         else
+           {
+             scm_t_inum rr = xx % yy;
+             if (SCM_LIKELY (xx > 0))
+               {
+                 if (SCM_LIKELY (yy > 0))
+                   {
+                     if (rr >= (yy + 1) / 2)
+                       rr -= yy;
+                   }
+                 else
+                   {
+                     if (rr >= (1 - yy) / 2)
+                       rr += yy;
+                   }
+               }
+             else
+               {
+                 if (SCM_LIKELY (yy > 0))
+                   {
+                     if (rr < -yy / 2)
+                       rr += yy;
+                   }
+                 else
+                   {
+                     if (rr < yy / 2)
+                       rr -= yy;
+                   }
+               }
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       {
+         /* Pass a denormalized bignum version of x (even though it
+            can fit in a fixnum) to scm_i_bigint_centered_remainder */
+         return scm_i_bigint_centered_remainder (scm_i_long2big (xx), y);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_centered_remainder (xx, SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
+                           s_scm_centered_remainder);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_centered_remainder);
+         else
+           {
+             scm_t_inum rr;
+             /* Arrange for rr to initially be non-positive,
+                because that simplifies the test to see
+                if it is within the needed bounds. */
+             if (yy > 0)
+               {
+                 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
+                 scm_remember_upto_here_1 (x);
+                 if (rr < -yy / 2)
+                   rr += yy;
+               }
+             else
+               {
+                 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
+                 scm_remember_upto_here_1 (x);
+                 if (rr < yy / 2)
+                   rr -= yy;
+               }
+             return SCM_I_MAKINUM (rr);
+           }
+       }
+      else if (SCM_BIGP (y))
+       return scm_i_bigint_centered_remainder (x, y);
+      else if (SCM_REALP (y))
+       return scm_i_inexact_centered_remainder
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
+                           s_scm_centered_remainder);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_centered_remainder
+         (SCM_REAL_VALUE (x), scm_to_double (y));
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
+                           s_scm_centered_remainder);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_centered_remainder
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_remainder (x, y);
+      else
+       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
+                           s_scm_centered_remainder);
+    }
+  else
+    SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
+                       s_scm_centered_remainder);
+}
+#undef FUNC_NAME
+
+static SCM
+scm_i_inexact_centered_remainder (double x, double y)
+{
+  double q;
+
+  /* Although it would be more efficient to use fmod here, we can't
+     because it would in some cases produce results inconsistent with
+     scm_i_inexact_centered_quotient, such that x != r + q * y (not even
+     close).  In particular, when x-y/2 is very close to a multiple of
+     y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
+     two cases must correspond to different choices of q.  If quotient
+     chooses one and remainder chooses the other, it would be bad. */
+  if (SCM_LIKELY (y > 0))
+    q = floor (x/y + 0.5);
+  else if (SCM_LIKELY (y < 0))
+    q = ceil (x/y - 0.5);
+  else if (y == 0)
+    scm_num_overflow (s_scm_centered_remainder);  /* or return a NaN? */
+  else
+    return scm_nan ();
+  return scm_from_double (x - q * y);
+}
+
+/* Assumes that both x and y are bigints, though
+   x might be able to fit into a fixnum. */
+static SCM
+scm_i_bigint_centered_remainder (SCM x, SCM y)
+{
+  SCM r, min_r;
+
+  /* Note that x might be small enough to fit into a
+     fixnum, so we must not let it escape into the wild */
+  r = scm_i_mkbig ();
+
+  /* min_r will eventually become -abs(y)/2 */
+  min_r = scm_i_mkbig ();
+  mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
+                  SCM_I_BIG_MPZ (y), 1);
+
+  /* Arrange for rr to initially be non-positive,
+     because that simplifies the test to see
+     if it is within the needed bounds. */
+  if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
+    {
+      mpz_cdiv_r (SCM_I_BIG_MPZ (r),
+                 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+      mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
+      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
+       mpz_add (SCM_I_BIG_MPZ (r),
+                SCM_I_BIG_MPZ (r),
+                SCM_I_BIG_MPZ (y));
+    }
+  else
+    {
+      mpz_fdiv_r (SCM_I_BIG_MPZ (r),
+                 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
+       mpz_sub (SCM_I_BIG_MPZ (r),
+                SCM_I_BIG_MPZ (r),
+                SCM_I_BIG_MPZ (y));
+    }
+  scm_remember_upto_here_2 (x, y);
+  return scm_i_normbig (r);
+}
+
+static SCM
+scm_i_exact_rational_centered_remainder (SCM x, SCM y)
+{
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+  SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
+                                  scm_product (scm_numerator (y), xd));
+  return scm_divide (r1, scm_product (xd, yd));
+}
+
+
+static void scm_i_inexact_centered_divide (double x, double y,
+                                          SCM *qp, SCM *rp);
+static void scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp);
+static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
+                                                 SCM *qp, SCM *rp);
+
+SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
+                      (SCM x, SCM y),
+                      "Return the integer @var{q} and the real number @var{r}\n"
+                      "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
+                      "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
+                      "@lisp\n"
+                      "(centered/ 123 10) @result{} 12 and 3\n"
+                      "(centered/ 123 -10) @result{} -12 and 3\n"
+                      "(centered/ -123 10) @result{} -12 and -3\n"
+                      "(centered/ -123 -10) @result{} 12 and -3\n"
+                      "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
+                      "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
+                      "@end lisp")
+#define FUNC_NAME s_scm_i_centered_divide
+{
+  SCM q, r;
+
+  scm_centered_divide(x, y, &q, &r);
+  return scm_values (scm_list_2 (q, r));
+}
+#undef FUNC_NAME
+
+#define s_scm_centered_divide s_scm_i_centered_divide
+#define g_scm_centered_divide g_scm_i_centered_divide
+
+void
+scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  if (SCM_LIKELY (SCM_I_INUMP (x)))
+    {
+      scm_t_inum xx = SCM_I_INUM (x);
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_centered_divide);
+         else
+           {
+             scm_t_inum qq = xx / yy;
+             scm_t_inum rr = xx % yy;
+             if (SCM_LIKELY (xx > 0))
+               {
+                 if (SCM_LIKELY (yy > 0))
+                   {
+                     if (rr >= (yy + 1) / 2)
+                       { qq++; rr -= yy; }
+                   }
+                 else
+                   {
+                     if (rr >= (1 - yy) / 2)
+                       { qq--; rr += yy; }
+                   }
+               }
+             else
+               {
+                 if (SCM_LIKELY (yy > 0))
+                   {
+                     if (rr < -yy / 2)
+                       { qq--; rr += yy; }
+                   }
+                 else
+                   {
+                     if (rr < yy / 2)
+                       { qq++; rr -= yy; }
+                   }
+               }
+             if (SCM_LIKELY (SCM_FIXABLE (qq)))
+               *qp = SCM_I_MAKINUM (qq);
+             else
+               *qp = scm_i_inum2big (qq);
+             *rp = SCM_I_MAKINUM (rr);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       {
+         /* Pass a denormalized bignum version of x (even though it
+            can fit in a fixnum) to scm_i_bigint_centered_divide */
+         return scm_i_bigint_centered_divide (scm_i_long2big (xx), y, qp, rp);
+       }
+      else if (SCM_REALP (y))
+       return scm_i_inexact_centered_divide (xx, SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_centered_divide, x, y, SCM_ARG2,
+          s_scm_centered_divide, qp, rp);
+    }
+  else if (SCM_BIGP (x))
+    {
+      if (SCM_LIKELY (SCM_I_INUMP (y)))
+       {
+         scm_t_inum yy = SCM_I_INUM (y);
+         if (SCM_UNLIKELY (yy == 0))
+           scm_num_overflow (s_scm_centered_divide);
+         else
+           {
+             SCM q = scm_i_mkbig ();
+             scm_t_inum rr;
+             /* Arrange for rr to initially be non-positive,
+                because that simplifies the test to see
+                if it is within the needed bounds. */
+             if (yy > 0)
+               {
+                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                       SCM_I_BIG_MPZ (x), yy);
+                 scm_remember_upto_here_1 (x);
+                 if (rr < -yy / 2)
+                   {
+                     mpz_sub_ui (SCM_I_BIG_MPZ (q),
+                                 SCM_I_BIG_MPZ (q), 1);
+                     rr += yy;
+                   }
+               }
+             else
+               {
+                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                       SCM_I_BIG_MPZ (x), -yy);
+                 scm_remember_upto_here_1 (x);
+                 mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
+                 if (rr < yy / 2)
+                   {
+                     mpz_add_ui (SCM_I_BIG_MPZ (q),
+                                 SCM_I_BIG_MPZ (q), 1);
+                     rr -= yy;
+                   }
+               }
+             *qp = scm_i_normbig (q);
+             *rp = SCM_I_MAKINUM (rr);
+           }
+         return;
+       }
+      else if (SCM_BIGP (y))
+       return scm_i_bigint_centered_divide (x, y, qp, rp);
+      else if (SCM_REALP (y))
+       return scm_i_inexact_centered_divide
+         (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_centered_divide, x, y, SCM_ARG2,
+          s_scm_centered_divide, qp, rp);
+    }
+  else if (SCM_REALP (x))
+    {
+      if (SCM_REALP (y) || SCM_I_INUMP (y) ||
+         SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_inexact_centered_divide
+         (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_centered_divide, x, y, SCM_ARG2,
+          s_scm_centered_divide, qp, rp);
+    }
+  else if (SCM_FRACTIONP (x))
+    {
+      if (SCM_REALP (y))
+       return scm_i_inexact_centered_divide
+         (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
+      else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
+       return scm_i_exact_rational_centered_divide (x, y, qp, rp);
+      else
+       return two_valued_wta_dispatch_2
+         (g_scm_centered_divide, x, y, SCM_ARG2,
+          s_scm_centered_divide, qp, rp);
+    }
+  else
+    return two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
+                                     s_scm_centered_divide, qp, rp);
+}
+
+static void
+scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
+{
+  double q, r;
+
+  if (SCM_LIKELY (y > 0))
+    q = floor (x/y + 0.5);
+  else if (SCM_LIKELY (y < 0))
+    q = ceil (x/y - 0.5);
+  else if (y == 0)
+    scm_num_overflow (s_scm_centered_divide);  /* or return a NaN? */
+  else
+    q = guile_NaN;
+  r = x - q * y;
+  *qp = scm_from_double (q);
+  *rp = scm_from_double (r);
+}
+
+/* Assumes that both x and y are bigints, though
+   x might be able to fit into a fixnum. */
+static void
+scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  SCM q, r, min_r;
+
+  /* Note that x might be small enough to fit into a
+     fixnum, so we must not let it escape into the wild */
+  q = scm_i_mkbig ();
+  r = scm_i_mkbig ();
+
+  /* min_r will eventually become -abs(y/2) */
+  min_r = scm_i_mkbig ();
+  mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
+                  SCM_I_BIG_MPZ (y), 1);
+
+  /* Arrange for rr to initially be non-positive,
+     because that simplifies the test to see
+     if it is within the needed bounds. */
+  if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
+    {
+      mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+      mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
+      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
+       {
+         mpz_sub_ui (SCM_I_BIG_MPZ (q),
+                     SCM_I_BIG_MPZ (q), 1);
+         mpz_add (SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (y));
+       }
+    }
+  else
+    {
+      mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
+       {
+         mpz_add_ui (SCM_I_BIG_MPZ (q),
+                     SCM_I_BIG_MPZ (q), 1);
+         mpz_sub (SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (r),
+                  SCM_I_BIG_MPZ (y));
+       }
+    }
+  scm_remember_upto_here_2 (x, y);
+  *qp = scm_i_normbig (q);
+  *rp = scm_i_normbig (r);
+}
+
+static void
+scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+{
+  SCM r1;
+  SCM xd = scm_denominator (x);
+  SCM yd = scm_denominator (y);
+
+  scm_centered_divide (scm_product (scm_numerator (x), yd),
+                      scm_product (scm_numerator (y), xd),
+                      qp, &r1);
+  *rp = scm_divide (r1, scm_product (xd, yd));
+}
+
+static SCM scm_i_inexact_round_quotient (double x, double y);
+static SCM scm_i_bigint_round_quotient (SCM x, SCM y);
+static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y);
+
+SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0,
                       (SCM x, SCM y),
-                      "Return the integer @var{q} such that\n"
-                      "@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n"
-                      "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
+                      "Return @math{@var{x} / @var{y}} to the nearest integer,\n"
+                      "with ties going to the nearest even integer.\n"
                       "@lisp\n"
-                      "(centered-quotient 123 10) @result{} 12\n"
-                      "(centered-quotient 123 -10) @result{} -12\n"
-                      "(centered-quotient -123 10) @result{} -12\n"
-                      "(centered-quotient -123 -10) @result{} 12\n"
-                      "(centered-quotient -123.2 -63.5) @result{} 2.0\n"
-                      "(centered-quotient 16/3 -10/7) @result{} -4\n"
+                      "(round-quotient 123 10) @result{} 12\n"
+                      "(round-quotient 123 -10) @result{} -12\n"
+                      "(round-quotient -123 10) @result{} -12\n"
+                      "(round-quotient -123 -10) @result{} 12\n"
+                      "(round-quotient 125 10) @result{} 12\n"
+                      "(round-quotient 127 10) @result{} 13\n"
+                      "(round-quotient 135 10) @result{} 14\n"
+                      "(round-quotient -123.2 -63.5) @result{} 2.0\n"
+                      "(round-quotient 16/3 -10/7) @result{} -4\n"
                       "@end lisp")
-#define FUNC_NAME s_scm_centered_quotient
+#define FUNC_NAME s_scm_round_quotient
 {
   if (SCM_LIKELY (SCM_I_INUMP (x)))
     {
@@ -1642,36 +3872,33 @@ SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
        {
          scm_t_inum yy = SCM_I_INUM (y);
          if (SCM_UNLIKELY (yy == 0))
-           scm_num_overflow (s_scm_centered_quotient);
+           scm_num_overflow (s_scm_round_quotient);
          else
            {
              scm_t_inum qq = xx / yy;
              scm_t_inum rr = xx % yy;
-             if (SCM_LIKELY (xx > 0))
+             scm_t_inum ay = yy;
+             scm_t_inum r2 = 2 * rr;
+
+             if (SCM_LIKELY (yy < 0))
                {
-                 if (SCM_LIKELY (yy > 0))
-                   {
-                     if (rr >= (yy + 1) / 2)
-                       qq++;
-                   }
-                 else
-                   {
-                     if (rr >= (1 - yy) / 2)
-                       qq--;
-                   }
+                 ay = -ay;
+                 r2 = -r2;
+               }
+
+             if (qq & 1L)
+               {
+                 if (r2 >= ay)
+                   qq++;
+                 else if (r2 <= -ay)
+                   qq--;
                }
              else
                {
-                 if (SCM_LIKELY (yy > 0))
-                   {
-                     if (rr < -yy / 2)
-                       qq--;
-                   }
-                 else
-                   {
-                     if (rr < yy / 2)
-                       qq++;
-                   }
+                 if (r2 > ay)
+                   qq++;
+                 else if (r2 < -ay)
+                   qq--;
                }
              if (SCM_LIKELY (SCM_FIXABLE (qq)))
                return SCM_I_MAKINUM (qq);
@@ -1682,16 +3909,16 @@ SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
       else if (SCM_BIGP (y))
        {
          /* Pass a denormalized bignum version of x (even though it
-            can fit in a fixnum) to scm_i_bigint_centered_quotient */
-         return scm_i_bigint_centered_quotient (scm_i_long2big (xx), y);
+            can fit in a fixnum) to scm_i_bigint_round_quotient */
+         return scm_i_bigint_round_quotient (scm_i_long2big (xx), y);
        }
       else if (SCM_REALP (y))
-       return scm_i_inexact_centered_quotient (xx, SCM_REAL_VALUE (y));
+       return scm_i_inexact_round_quotient (xx, SCM_REAL_VALUE (y));
       else if (SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_quotient (x, y);
+       return scm_i_exact_rational_round_quotient (x, y);
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
-                           s_scm_centered_quotient);
+       SCM_WTA_DISPATCH_2 (g_scm_round_quotient, x, y, SCM_ARG2,
+                           s_scm_round_quotient);
     }
   else if (SCM_BIGP (x))
     {
@@ -1699,159 +3926,150 @@ SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0,
        {
          scm_t_inum yy = SCM_I_INUM (y);
          if (SCM_UNLIKELY (yy == 0))
-           scm_num_overflow (s_scm_centered_quotient);
+           scm_num_overflow (s_scm_round_quotient);
          else if (SCM_UNLIKELY (yy == 1))
            return x;
          else
            {
              SCM q = scm_i_mkbig ();
              scm_t_inum rr;
-             /* Arrange for rr to initially be non-positive,
-                because that simplifies the test to see
-                if it is within the needed bounds. */
+             int needs_adjustment;
+
              if (yy > 0)
                {
-                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
-                                       SCM_I_BIG_MPZ (x), yy);
-                 scm_remember_upto_here_1 (x);
-                 if (rr < -yy / 2)
-                   mpz_sub_ui (SCM_I_BIG_MPZ (q),
-                               SCM_I_BIG_MPZ (q), 1);
+                 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                     SCM_I_BIG_MPZ (x), yy);
+                 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+                   needs_adjustment = (2*rr >= yy);
+                 else
+                   needs_adjustment = (2*rr > yy);
                }
              else
                {
                  rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
                                        SCM_I_BIG_MPZ (x), -yy);
-                 scm_remember_upto_here_1 (x);
                  mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
-                 if (rr < yy / 2)
-                   mpz_add_ui (SCM_I_BIG_MPZ (q),
-                               SCM_I_BIG_MPZ (q), 1);
+                 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+                   needs_adjustment = (2*rr <= yy);
+                 else
+                   needs_adjustment = (2*rr < yy);
                }
+             scm_remember_upto_here_1 (x);
+             if (needs_adjustment)
+               mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
              return scm_i_normbig (q);
            }
        }
       else if (SCM_BIGP (y))
-       return scm_i_bigint_centered_quotient (x, y);
+       return scm_i_bigint_round_quotient (x, y);
       else if (SCM_REALP (y))
-       return scm_i_inexact_centered_quotient
+       return scm_i_inexact_round_quotient
          (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
       else if (SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_quotient (x, y);
+       return scm_i_exact_rational_round_quotient (x, y);
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
-                           s_scm_centered_quotient);
+       SCM_WTA_DISPATCH_2 (g_scm_round_quotient, x, y, SCM_ARG2,
+                           s_scm_round_quotient);
     }
   else if (SCM_REALP (x))
     {
       if (SCM_REALP (y) || SCM_I_INUMP (y) ||
          SCM_BIGP (y) || SCM_FRACTIONP (y))
-       return scm_i_inexact_centered_quotient
+       return scm_i_inexact_round_quotient
          (SCM_REAL_VALUE (x), scm_to_double (y));
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
-                           s_scm_centered_quotient);
+       SCM_WTA_DISPATCH_2 (g_scm_round_quotient, x, y, SCM_ARG2,
+                           s_scm_round_quotient);
     }
   else if (SCM_FRACTIONP (x))
     {
       if (SCM_REALP (y))
-       return scm_i_inexact_centered_quotient
+       return scm_i_inexact_round_quotient
          (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
       else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_quotient (x, y);
+       return scm_i_exact_rational_round_quotient (x, y);
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG2,
-                           s_scm_centered_quotient);
+       SCM_WTA_DISPATCH_2 (g_scm_round_quotient, x, y, SCM_ARG2,
+                           s_scm_round_quotient);
     }
   else
-    SCM_WTA_DISPATCH_2 (g_scm_centered_quotient, x, y, SCM_ARG1,
-                       s_scm_centered_quotient);
+    SCM_WTA_DISPATCH_2 (g_scm_round_quotient, x, y, SCM_ARG1,
+                       s_scm_round_quotient);
 }
 #undef FUNC_NAME
 
 static SCM
-scm_i_inexact_centered_quotient (double x, double y)
+scm_i_inexact_round_quotient (double x, double y)
 {
-  if (SCM_LIKELY (y > 0))
-    return scm_from_double (floor (x/y + 0.5));
-  else if (SCM_LIKELY (y < 0))
-    return scm_from_double (ceil (x/y - 0.5));
-  else if (y == 0)
-    scm_num_overflow (s_scm_centered_quotient);  /* or return a NaN? */
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_round_quotient);  /* or return a NaN? */
   else
-    return scm_nan ();
+    return scm_from_double (scm_c_round (x / y));
 }
 
 /* Assumes that both x and y are bigints, though
    x might be able to fit into a fixnum. */
 static SCM
-scm_i_bigint_centered_quotient (SCM x, SCM y)
+scm_i_bigint_round_quotient (SCM x, SCM y)
 {
-  SCM q, r, min_r;
+  SCM q, r, r2;
+  int cmp, needs_adjustment;
 
   /* Note that x might be small enough to fit into a
      fixnum, so we must not let it escape into the wild */
   q = scm_i_mkbig ();
   r = scm_i_mkbig ();
+  r2 = scm_i_mkbig ();
 
-  /* min_r will eventually become -abs(y)/2 */
-  min_r = scm_i_mkbig ();
-  mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
-                  SCM_I_BIG_MPZ (y), 1);
+  mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+              SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+  mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1);  /* r2 = 2*r */
+  scm_remember_upto_here_2 (x, r);
 
-  /* Arrange for rr to initially be non-positive,
-     because that simplifies the test to see
-     if it is within the needed bounds. */
-  if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
-    {
-      mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
-      scm_remember_upto_here_2 (x, y);
-      mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
-      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
-       mpz_sub_ui (SCM_I_BIG_MPZ (q),
-                   SCM_I_BIG_MPZ (q), 1);
-    }
+  cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
+  if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+    needs_adjustment = (cmp >= 0);
   else
-    {
-      mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
-      scm_remember_upto_here_2 (x, y);
-      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
-       mpz_add_ui (SCM_I_BIG_MPZ (q),
-                   SCM_I_BIG_MPZ (q), 1);
-    }
-  scm_remember_upto_here_2 (r, min_r);
+    needs_adjustment = (cmp > 0);
+  scm_remember_upto_here_2 (r2, y);
+
+  if (needs_adjustment)
+    mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
+
   return scm_i_normbig (q);
 }
 
 static SCM
-scm_i_exact_rational_centered_quotient (SCM x, SCM y)
+scm_i_exact_rational_round_quotient (SCM x, SCM y)
 {
-  return scm_centered_quotient
+  return scm_round_quotient
     (scm_product (scm_numerator (x), scm_denominator (y)),
      scm_product (scm_numerator (y), scm_denominator (x)));
 }
 
-static SCM scm_i_inexact_centered_remainder (double x, double y);
-static SCM scm_i_bigint_centered_remainder (SCM x, SCM y);
-static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y);
+static SCM scm_i_inexact_round_remainder (double x, double y);
+static SCM scm_i_bigint_round_remainder (SCM x, SCM y);
+static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y);
 
-SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
+SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0,
                       (SCM x, SCM y),
                       "Return the real number @var{r} such that\n"
-                      "@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n"
-                      "and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
-                      "for some integer @var{q}.\n"
+                      "@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n"
+                      "@var{q} is @math{@var{x} / @var{y}} rounded to the\n"
+                      "nearest integer, with ties going to the nearest\n"
+                      "even integer.\n"
                       "@lisp\n"
-                      "(centered-remainder 123 10) @result{} 3\n"
-                      "(centered-remainder 123 -10) @result{} 3\n"
-                      "(centered-remainder -123 10) @result{} -3\n"
-                      "(centered-remainder -123 -10) @result{} -3\n"
-                      "(centered-remainder -123.2 -63.5) @result{} 3.8\n"
-                      "(centered-remainder 16/3 -10/7) @result{} -8/21\n"
+                      "(round-remainder 123 10) @result{} 3\n"
+                      "(round-remainder 123 -10) @result{} 3\n"
+                      "(round-remainder -123 10) @result{} -3\n"
+                      "(round-remainder -123 -10) @result{} -3\n"
+                      "(round-remainder 125 10) @result{} 5\n"
+                      "(round-remainder 127 10) @result{} -3\n"
+                      "(round-remainder 135 10) @result{} -5\n"
+                      "(round-remainder -123.2 -63.5) @result{} 3.8\n"
+                      "(round-remainder 16/3 -10/7) @result{} -8/21\n"
                       "@end lisp")
-#define FUNC_NAME s_scm_centered_remainder
+#define FUNC_NAME s_scm_round_remainder
 {
   if (SCM_LIKELY (SCM_I_INUMP (x)))
     {
@@ -1860,35 +4078,33 @@ SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
        {
          scm_t_inum yy = SCM_I_INUM (y);
          if (SCM_UNLIKELY (yy == 0))
-           scm_num_overflow (s_scm_centered_remainder);
+           scm_num_overflow (s_scm_round_remainder);
          else
            {
+             scm_t_inum qq = xx / yy;
              scm_t_inum rr = xx % yy;
-             if (SCM_LIKELY (xx > 0))
+             scm_t_inum ay = yy;
+             scm_t_inum r2 = 2 * rr;
+
+             if (SCM_LIKELY (yy < 0))
                {
-                 if (SCM_LIKELY (yy > 0))
-                   {
-                     if (rr >= (yy + 1) / 2)
-                       rr -= yy;
-                   }
-                 else
-                   {
-                     if (rr >= (1 - yy) / 2)
-                       rr += yy;
-                   }
+                 ay = -ay;
+                 r2 = -r2;
+               }
+
+             if (qq & 1L)
+               {
+                 if (r2 >= ay)
+                   rr -= yy;
+                 else if (r2 <= -ay)
+                   rr += yy;
                }
              else
                {
-                 if (SCM_LIKELY (yy > 0))
-                   {
-                     if (rr < -yy / 2)
-                       rr += yy;
-                   }
-                 else
-                   {
-                     if (rr < yy / 2)
-                       rr -= yy;
-                   }
+                 if (r2 > ay)
+                   rr -= yy;
+                 else if (r2 < -ay)
+                   rr += yy;
                }
              return SCM_I_MAKINUM (rr);
            }
@@ -1896,16 +4112,17 @@ SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
       else if (SCM_BIGP (y))
        {
          /* Pass a denormalized bignum version of x (even though it
-            can fit in a fixnum) to scm_i_bigint_centered_remainder */
-         return scm_i_bigint_centered_remainder (scm_i_long2big (xx), y);
+            can fit in a fixnum) to scm_i_bigint_round_remainder */
+         return scm_i_bigint_round_remainder
+           (scm_i_long2big (xx), y);
        }
       else if (SCM_REALP (y))
-       return scm_i_inexact_centered_remainder (xx, SCM_REAL_VALUE (y));
+       return scm_i_inexact_round_remainder (xx, SCM_REAL_VALUE (y));
       else if (SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_remainder (x, y);
+       return scm_i_exact_rational_round_remainder (x, y);
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
-                           s_scm_centered_remainder);
+       SCM_WTA_DISPATCH_2 (g_scm_round_remainder, x, y, SCM_ARG2,
+                           s_scm_round_remainder);
     }
   else if (SCM_BIGP (x))
     {
@@ -1913,177 +4130,174 @@ SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0,
        {
          scm_t_inum yy = SCM_I_INUM (y);
          if (SCM_UNLIKELY (yy == 0))
-           scm_num_overflow (s_scm_centered_remainder);
+           scm_num_overflow (s_scm_round_remainder);
          else
            {
+             SCM q = scm_i_mkbig ();
              scm_t_inum rr;
-             /* Arrange for rr to initially be non-positive,
-                because that simplifies the test to see
-                if it is within the needed bounds. */
+             int needs_adjustment;
+
              if (yy > 0)
                {
-                 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), yy);
-                 scm_remember_upto_here_1 (x);
-                 if (rr < -yy / 2)
-                   rr += yy;
+                 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                     SCM_I_BIG_MPZ (x), yy);
+                 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+                   needs_adjustment = (2*rr >= yy);
+                 else
+                   needs_adjustment = (2*rr > yy);
                }
              else
                {
-                 rr = - mpz_cdiv_ui (SCM_I_BIG_MPZ (x), -yy);
-                 scm_remember_upto_here_1 (x);
-                 if (rr < yy / 2)
-                   rr -= yy;
+                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                       SCM_I_BIG_MPZ (x), -yy);
+                 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+                   needs_adjustment = (2*rr <= yy);
+                 else
+                   needs_adjustment = (2*rr < yy);
                }
+             scm_remember_upto_here_2 (x, q);
+             if (needs_adjustment)
+               rr -= yy;
              return SCM_I_MAKINUM (rr);
            }
        }
       else if (SCM_BIGP (y))
-       return scm_i_bigint_centered_remainder (x, y);
+       return scm_i_bigint_round_remainder (x, y);
       else if (SCM_REALP (y))
-       return scm_i_inexact_centered_remainder
+       return scm_i_inexact_round_remainder
          (scm_i_big2dbl (x), SCM_REAL_VALUE (y));
       else if (SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_remainder (x, y);
+       return scm_i_exact_rational_round_remainder (x, y);
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
-                           s_scm_centered_remainder);
+       SCM_WTA_DISPATCH_2 (g_scm_round_remainder, x, y, SCM_ARG2,
+                           s_scm_round_remainder);
     }
   else if (SCM_REALP (x))
     {
       if (SCM_REALP (y) || SCM_I_INUMP (y) ||
          SCM_BIGP (y) || SCM_FRACTIONP (y))
-       return scm_i_inexact_centered_remainder
+       return scm_i_inexact_round_remainder
          (SCM_REAL_VALUE (x), scm_to_double (y));
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
-                           s_scm_centered_remainder);
+       SCM_WTA_DISPATCH_2 (g_scm_round_remainder, x, y, SCM_ARG2,
+                           s_scm_round_remainder);
     }
   else if (SCM_FRACTIONP (x))
     {
       if (SCM_REALP (y))
-       return scm_i_inexact_centered_remainder
+       return scm_i_inexact_round_remainder
          (scm_i_fraction2double (x), SCM_REAL_VALUE (y));
       else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_remainder (x, y);
+       return scm_i_exact_rational_round_remainder (x, y);
       else
-       SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG2,
-                           s_scm_centered_remainder);
+       SCM_WTA_DISPATCH_2 (g_scm_round_remainder, x, y, SCM_ARG2,
+                           s_scm_round_remainder);
     }
   else
-    SCM_WTA_DISPATCH_2 (g_scm_centered_remainder, x, y, SCM_ARG1,
-                       s_scm_centered_remainder);
+    SCM_WTA_DISPATCH_2 (g_scm_round_remainder, x, y, SCM_ARG1,
+                       s_scm_round_remainder);
 }
 #undef FUNC_NAME
 
 static SCM
-scm_i_inexact_centered_remainder (double x, double y)
+scm_i_inexact_round_remainder (double x, double y)
 {
-  double q;
-
   /* Although it would be more efficient to use fmod here, we can't
      because it would in some cases produce results inconsistent with
-     scm_i_inexact_centered_quotient, such that x != r + q * y (not even
+     scm_i_inexact_round_quotient, such that x != r + q * y (not even
      close).  In particular, when x-y/2 is very close to a multiple of
-     y, then r might be either -abs(y/2) or abs(y/2)-epsilon, but those
-     two cases must correspond to different choices of q.  If quotient
+     y, then r might be either -abs(y/2) or abs(y/2), but those two
+     cases must correspond to different choices of q.  If quotient
      chooses one and remainder chooses the other, it would be bad. */
-  if (SCM_LIKELY (y > 0))
-    q = floor (x/y + 0.5);
-  else if (SCM_LIKELY (y < 0))
-    q = ceil (x/y - 0.5);
-  else if (y == 0)
-    scm_num_overflow (s_scm_centered_remainder);  /* or return a NaN? */
+
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_round_remainder);  /* or return a NaN? */
   else
-    return scm_nan ();
-  return scm_from_double (x - q * y);
+    {
+      double q = scm_c_round (x / y);
+      return scm_from_double (x - q * y);
+    }
 }
 
 /* Assumes that both x and y are bigints, though
    x might be able to fit into a fixnum. */
 static SCM
-scm_i_bigint_centered_remainder (SCM x, SCM y)
+scm_i_bigint_round_remainder (SCM x, SCM y)
 {
-  SCM r, min_r;
+  SCM q, r, r2;
+  int cmp, needs_adjustment;
 
   /* Note that x might be small enough to fit into a
      fixnum, so we must not let it escape into the wild */
+  q = scm_i_mkbig ();
   r = scm_i_mkbig ();
+  r2 = scm_i_mkbig ();
 
-  /* min_r will eventually become -abs(y)/2 */
-  min_r = scm_i_mkbig ();
-  mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
-                  SCM_I_BIG_MPZ (y), 1);
+  mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+              SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+  scm_remember_upto_here_1 (x);
+  mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1);  /* r2 = 2*r */
 
-  /* Arrange for rr to initially be non-positive,
-     because that simplifies the test to see
-     if it is within the needed bounds. */
-  if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
-    {
-      mpz_cdiv_r (SCM_I_BIG_MPZ (r),
-                 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
-      mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
-      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
-       mpz_add (SCM_I_BIG_MPZ (r),
-                SCM_I_BIG_MPZ (r),
-                SCM_I_BIG_MPZ (y));
-    }
+  cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
+  if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+    needs_adjustment = (cmp >= 0);
   else
-    {
-      mpz_fdiv_r (SCM_I_BIG_MPZ (r),
-                 SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
-      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
-       mpz_sub (SCM_I_BIG_MPZ (r),
-                SCM_I_BIG_MPZ (r),
-                SCM_I_BIG_MPZ (y));
-    }
-  scm_remember_upto_here_2 (x, y);
+    needs_adjustment = (cmp > 0);
+  scm_remember_upto_here_2 (q, r2);
+
+  if (needs_adjustment)
+    mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
+
+  scm_remember_upto_here_1 (y);
   return scm_i_normbig (r);
 }
 
 static SCM
-scm_i_exact_rational_centered_remainder (SCM x, SCM y)
+scm_i_exact_rational_round_remainder (SCM x, SCM y)
 {
   SCM xd = scm_denominator (x);
   SCM yd = scm_denominator (y);
-  SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd),
-                                  scm_product (scm_numerator (y), xd));
+  SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd),
+                               scm_product (scm_numerator (y), xd));
   return scm_divide (r1, scm_product (xd, yd));
 }
 
 
-static void scm_i_inexact_centered_divide (double x, double y,
-                                          SCM *qp, SCM *rp);
-static void scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp);
-static void scm_i_exact_rational_centered_divide (SCM x, SCM y,
-                                                 SCM *qp, SCM *rp);
+static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp);
+static void scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
+static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp);
 
-SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0,
+SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0,
                       (SCM x, SCM y),
                       "Return the integer @var{q} and the real number @var{r}\n"
                       "such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n"
-                      "and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n"
+                      "and @var{q} is @math{@var{x} / @var{y}} rounded to the\n"
+                      "nearest integer, with ties going to the nearest even integer.\n"
                       "@lisp\n"
-                      "(centered/ 123 10) @result{} 12 and 3\n"
-                      "(centered/ 123 -10) @result{} -12 and 3\n"
-                      "(centered/ -123 10) @result{} -12 and -3\n"
-                      "(centered/ -123 -10) @result{} 12 and -3\n"
-                      "(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
-                      "(centered/ 16/3 -10/7) @result{} -4 and -8/21\n"
+                      "(round/ 123 10) @result{} 12 and 3\n"
+                      "(round/ 123 -10) @result{} -12 and 3\n"
+                      "(round/ -123 10) @result{} -12 and -3\n"
+                      "(round/ -123 -10) @result{} 12 and -3\n"
+                      "(round/ 125 10) @result{} 12 and 5\n"
+                      "(round/ 127 10) @result{} 13 and -3\n"
+                      "(round/ 135 10) @result{} 14 and -5\n"
+                      "(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n"
+                      "(round/ 16/3 -10/7) @result{} -4 and -8/21\n"
                       "@end lisp")
-#define FUNC_NAME s_scm_i_centered_divide
+#define FUNC_NAME s_scm_i_round_divide
 {
   SCM q, r;
 
-  scm_centered_divide(x, y, &q, &r);
+  scm_round_divide(x, y, &q, &r);
   return scm_values (scm_list_2 (q, r));
 }
 #undef FUNC_NAME
 
-#define s_scm_centered_divide s_scm_i_centered_divide
-#define g_scm_centered_divide g_scm_i_centered_divide
+#define s_scm_round_divide s_scm_i_round_divide
+#define g_scm_round_divide g_scm_i_round_divide
 
 void
-scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
 {
   if (SCM_LIKELY (SCM_I_INUMP (x)))
     {
@@ -2092,36 +4306,33 @@ scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
        {
          scm_t_inum yy = SCM_I_INUM (y);
          if (SCM_UNLIKELY (yy == 0))
-           scm_num_overflow (s_scm_centered_divide);
+           scm_num_overflow (s_scm_round_divide);
          else
            {
              scm_t_inum qq = xx / yy;
              scm_t_inum rr = xx % yy;
-             if (SCM_LIKELY (xx > 0))
+             scm_t_inum ay = yy;
+             scm_t_inum r2 = 2 * rr;
+
+             if (SCM_LIKELY (yy < 0))
                {
-                 if (SCM_LIKELY (yy > 0))
-                   {
-                     if (rr >= (yy + 1) / 2)
-                       { qq++; rr -= yy; }
-                   }
-                 else
-                   {
-                     if (rr >= (1 - yy) / 2)
-                       { qq--; rr += yy; }
-                   }
+                 ay = -ay;
+                 r2 = -r2;
+               }
+
+             if (qq & 1L)
+               {
+                 if (r2 >= ay)
+                   { qq++; rr -= yy; }
+                 else if (r2 <= -ay)
+                   { qq--; rr += yy; }
                }
              else
                {
-                 if (SCM_LIKELY (yy > 0))
-                   {
-                     if (rr < -yy / 2)
-                       { qq--; rr += yy; }
-                   }
-                 else
-                   {
-                     if (rr < yy / 2)
-                       { qq++; rr -= yy; }
-                   }
+                 if (r2 > ay)
+                   { qq++; rr -= yy; }
+                 else if (r2 < -ay)
+                   { qq--; rr += yy; }
                }
              if (SCM_LIKELY (SCM_FIXABLE (qq)))
                *qp = SCM_I_MAKINUM (qq);
@@ -2134,17 +4345,17 @@ scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
       else if (SCM_BIGP (y))
        {
          /* Pass a denormalized bignum version of x (even though it
-            can fit in a fixnum) to scm_i_bigint_centered_divide */
-         return scm_i_bigint_centered_divide (scm_i_long2big (xx), y, qp, rp);
+            can fit in a fixnum) to scm_i_bigint_round_divide */
+         return scm_i_bigint_round_divide
+           (scm_i_long2big (SCM_I_INUM (x)), y, qp, rp);
        }
       else if (SCM_REALP (y))
-       return scm_i_inexact_centered_divide (xx, SCM_REAL_VALUE (y), qp, rp);
+       return scm_i_inexact_round_divide (xx, SCM_REAL_VALUE (y), qp, rp);
       else if (SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_divide (x, y, qp, rp);
+       return scm_i_exact_rational_round_divide (x, y, qp, rp);
       else
-       return two_valued_wta_dispatch_2
-         (g_scm_centered_divide, x, y, SCM_ARG2,
-          s_scm_centered_divide, qp, rp);
+       return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
+                                         s_scm_round_divide, qp, rp);
     }
   else if (SCM_BIGP (x))
     {
@@ -2152,38 +4363,37 @@ scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
        {
          scm_t_inum yy = SCM_I_INUM (y);
          if (SCM_UNLIKELY (yy == 0))
-           scm_num_overflow (s_scm_centered_divide);
+           scm_num_overflow (s_scm_round_divide);
          else
            {
              SCM q = scm_i_mkbig ();
              scm_t_inum rr;
-             /* Arrange for rr to initially be non-positive,
-                because that simplifies the test to see
-                if it is within the needed bounds. */
+             int needs_adjustment;
+
              if (yy > 0)
                {
-                 rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
-                                       SCM_I_BIG_MPZ (x), yy);
-                 scm_remember_upto_here_1 (x);
-                 if (rr < -yy / 2)
-                   {
-                     mpz_sub_ui (SCM_I_BIG_MPZ (q),
-                                 SCM_I_BIG_MPZ (q), 1);
-                     rr += yy;
-                   }
+                 rr = mpz_fdiv_q_ui (SCM_I_BIG_MPZ (q),
+                                     SCM_I_BIG_MPZ (x), yy);
+                 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+                   needs_adjustment = (2*rr >= yy);
+                 else
+                   needs_adjustment = (2*rr > yy);
                }
              else
                {
                  rr = - mpz_cdiv_q_ui (SCM_I_BIG_MPZ (q),
                                        SCM_I_BIG_MPZ (x), -yy);
-                 scm_remember_upto_here_1 (x);
                  mpz_neg (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q));
-                 if (rr < yy / 2)
-                   {
-                     mpz_add_ui (SCM_I_BIG_MPZ (q),
-                                 SCM_I_BIG_MPZ (q), 1);
-                     rr -= yy;
-                   }
+                 if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+                   needs_adjustment = (2*rr <= yy);
+                 else
+                   needs_adjustment = (2*rr < yy);
+               }
+             scm_remember_upto_here_1 (x);
+             if (needs_adjustment)
+               {
+                 mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
+                 rr -= yy;
                }
              *qp = scm_i_normbig (q);
              *rp = SCM_I_MAKINUM (rr);
@@ -2191,125 +4401,102 @@ scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
          return;
        }
       else if (SCM_BIGP (y))
-       return scm_i_bigint_centered_divide (x, y, qp, rp);
+       return scm_i_bigint_round_divide (x, y, qp, rp);
       else if (SCM_REALP (y))
-       return scm_i_inexact_centered_divide
+       return scm_i_inexact_round_divide
          (scm_i_big2dbl (x), SCM_REAL_VALUE (y), qp, rp);
       else if (SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_divide (x, y, qp, rp);
+       return scm_i_exact_rational_round_divide (x, y, qp, rp);
       else
-       return two_valued_wta_dispatch_2
-         (g_scm_centered_divide, x, y, SCM_ARG2,
-          s_scm_centered_divide, qp, rp);
+       return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
+                                         s_scm_round_divide, qp, rp);
     }
   else if (SCM_REALP (x))
     {
       if (SCM_REALP (y) || SCM_I_INUMP (y) ||
          SCM_BIGP (y) || SCM_FRACTIONP (y))
-       return scm_i_inexact_centered_divide
+       return scm_i_inexact_round_divide
          (SCM_REAL_VALUE (x), scm_to_double (y), qp, rp);
       else
-       return two_valued_wta_dispatch_2
-         (g_scm_centered_divide, x, y, SCM_ARG2,
-          s_scm_centered_divide, qp, rp);
+       return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
+                                         s_scm_round_divide, qp, rp);
     }
   else if (SCM_FRACTIONP (x))
     {
       if (SCM_REALP (y))
-       return scm_i_inexact_centered_divide
+       return scm_i_inexact_round_divide
          (scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp);
       else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y))
-       return scm_i_exact_rational_centered_divide (x, y, qp, rp);
+       return scm_i_exact_rational_round_divide (x, y, qp, rp);
       else
-       return two_valued_wta_dispatch_2
-         (g_scm_centered_divide, x, y, SCM_ARG2,
-          s_scm_centered_divide, qp, rp);
+       return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2,
+                                         s_scm_round_divide, qp, rp);
     }
   else
-    return two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1,
-                                     s_scm_centered_divide, qp, rp);
+    return two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1,
+                                     s_scm_round_divide, qp, rp);
 }
 
 static void
-scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp)
+scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp)
 {
-  double q, r;
-
-  if (SCM_LIKELY (y > 0))
-    q = floor (x/y + 0.5);
-  else if (SCM_LIKELY (y < 0))
-    q = ceil (x/y - 0.5);
-  else if (y == 0)
-    scm_num_overflow (s_scm_centered_divide);  /* or return a NaN? */
+  if (SCM_UNLIKELY (y == 0))
+    scm_num_overflow (s_scm_round_divide);  /* or return a NaN? */
   else
-    q = guile_NaN;
-  r = x - q * y;
-  *qp = scm_from_double (q);
-  *rp = scm_from_double (r);
+    {
+      double q = scm_c_round (x / y);
+      double r = x - q * y;
+      *qp = scm_from_double (q);
+      *rp = scm_from_double (r);
+    }
 }
 
 /* Assumes that both x and y are bigints, though
    x might be able to fit into a fixnum. */
 static void
-scm_i_bigint_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+scm_i_bigint_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
 {
-  SCM q, r, min_r;
+  SCM q, r, r2;
+  int cmp, needs_adjustment;
 
   /* Note that x might be small enough to fit into a
      fixnum, so we must not let it escape into the wild */
   q = scm_i_mkbig ();
   r = scm_i_mkbig ();
+  r2 = scm_i_mkbig ();
 
-  /* min_r will eventually become -abs(y/2) */
-  min_r = scm_i_mkbig ();
-  mpz_tdiv_q_2exp (SCM_I_BIG_MPZ (min_r),
-                  SCM_I_BIG_MPZ (y), 1);
+  mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
+              SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
+  scm_remember_upto_here_1 (x);
+  mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1);  /* r2 = 2*r */
 
-  /* Arrange for rr to initially be non-positive,
-     because that simplifies the test to see
-     if it is within the needed bounds. */
-  if (mpz_sgn (SCM_I_BIG_MPZ (y)) > 0)
-    {
-      mpz_cdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
-      mpz_neg (SCM_I_BIG_MPZ (min_r), SCM_I_BIG_MPZ (min_r));
-      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
-       {
-         mpz_sub_ui (SCM_I_BIG_MPZ (q),
-                     SCM_I_BIG_MPZ (q), 1);
-         mpz_add (SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (y));
-       }
-    }
+  cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
+  if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
+    needs_adjustment = (cmp >= 0);
   else
+    needs_adjustment = (cmp > 0);
+
+  if (needs_adjustment)
     {
-      mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
-      if (mpz_cmp (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (min_r)) < 0)
-       {
-         mpz_add_ui (SCM_I_BIG_MPZ (q),
-                     SCM_I_BIG_MPZ (q), 1);
-         mpz_sub (SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (r),
-                  SCM_I_BIG_MPZ (y));
-       }
+      mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
+      mpz_sub (SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (r), SCM_I_BIG_MPZ (y));
     }
-  scm_remember_upto_here_2 (x, y);
+
+  scm_remember_upto_here_2 (r2, y);
   *qp = scm_i_normbig (q);
   *rp = scm_i_normbig (r);
 }
 
 static void
-scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp)
+scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp)
 {
   SCM r1;
   SCM xd = scm_denominator (x);
   SCM yd = scm_denominator (y);
 
-  scm_centered_divide (scm_product (scm_numerator (x), yd),
-                      scm_product (scm_numerator (y), xd),
-                      qp, &r1);
+  scm_round_divide (scm_product (scm_numerator (x), yd),
+                   scm_product (scm_numerator (y), xd),
+                   qp, &r1);
   *rp = scm_divide (r1, scm_product (xd, yd));
 }
 
index b8529a3..bc2d4f2 100644 (file)
@@ -181,9 +181,21 @@ SCM_API SCM scm_modulo (SCM x, SCM y);
 SCM_API void scm_euclidean_divide (SCM x, SCM y, SCM *q, SCM *r);
 SCM_API SCM scm_euclidean_quotient (SCM x, SCM y);
 SCM_API SCM scm_euclidean_remainder (SCM x, SCM y);
+SCM_API void scm_floor_divide (SCM x, SCM y, SCM *q, SCM *r);
+SCM_API SCM scm_floor_quotient (SCM x, SCM y);
+SCM_API SCM scm_floor_remainder (SCM x, SCM y);
+SCM_API void scm_ceiling_divide (SCM x, SCM y, SCM *q, SCM *r);
+SCM_API SCM scm_ceiling_quotient (SCM x, SCM y);
+SCM_API SCM scm_ceiling_remainder (SCM x, SCM y);
+SCM_API void scm_truncate_divide (SCM x, SCM y, SCM *q, SCM *r);
+SCM_API SCM scm_truncate_quotient (SCM x, SCM y);
+SCM_API SCM scm_truncate_remainder (SCM x, SCM y);
 SCM_API void scm_centered_divide (SCM x, SCM y, SCM *q, SCM *r);
 SCM_API SCM scm_centered_quotient (SCM x, SCM y);
 SCM_API SCM scm_centered_remainder (SCM x, SCM y);
+SCM_API void scm_round_divide (SCM x, SCM y, SCM *q, SCM *r);
+SCM_API SCM scm_round_quotient (SCM x, SCM y);
+SCM_API SCM scm_round_remainder (SCM x, SCM y);
 SCM_API SCM scm_gcd (SCM x, SCM y);
 SCM_API SCM scm_lcm (SCM n1, SCM n2);
 SCM_API SCM scm_logand (SCM n1, SCM n2);
@@ -200,7 +212,11 @@ SCM_API SCM scm_logcount (SCM n);
 SCM_API SCM scm_integer_length (SCM n);
 
 SCM_INTERNAL SCM scm_i_euclidean_divide (SCM x, SCM y);
+SCM_INTERNAL SCM scm_i_floor_divide (SCM x, SCM y);
+SCM_INTERNAL SCM scm_i_ceiling_divide (SCM x, SCM y);
+SCM_INTERNAL SCM scm_i_truncate_divide (SCM x, SCM y);
 SCM_INTERNAL SCM scm_i_centered_divide (SCM x, SCM y);
+SCM_INTERNAL SCM scm_i_round_divide (SCM x, SCM y);
 
 SCM_INTERNAL SCM scm_i_gcd (SCM x, SCM y, SCM rest);
 SCM_INTERNAL SCM scm_i_lcm (SCM x, SCM y, SCM rest);
index f738189..ef59a02 100644 (file)
                   (test-within-range? 0 <= r < (abs y)))
              (test-eqv? q (/ x y)))))
 
+  (define (valid-floor-answer? x y q r)
+    (and (eq? (exact? q)
+              (exact? r)
+              (and (exact? x) (exact? y)))
+         (test-eqv? r (- x (* q y)))
+         (if (and (finite? x) (finite? y))
+             (and (integer? q)
+                  (if (> y 0)
+                      (test-within-range? 0 <= r < y)
+                      (test-within-range? y < r <= 0)))
+             (test-eqv? q (/ x y)))))
+
+  (define (valid-ceiling-answer? x y q r)
+    (and (eq? (exact? q)
+              (exact? r)
+              (and (exact? x) (exact? y)))
+         (test-eqv? r (- x (* q y)))
+         (if (and (finite? x) (finite? y))
+             (and (integer? q)
+                  (if (> y 0)
+                      (test-within-range? (- y) < r <= 0)
+                      (test-within-range?    0 <= r < (- y))))
+             (test-eqv? q (/ x y)))))
+
+  (define (valid-truncate-answer? x y q r)
+    (and (eq? (exact? q)
+              (exact? r)
+              (and (exact? x) (exact? y)))
+         (test-eqv? r (- x (* q y)))
+         (if (and (finite? x) (finite? y))
+             (and (integer? q)
+                  (if (> x 0)
+                      (test-within-range?          0 <= r < (abs y))
+                      (test-within-range? (- (abs y)) < r <= 0)))
+             (test-eqv? q (/ x y)))))
+
   (define (valid-centered-answer? x y q r)
     (and (eq? (exact? q)
               (exact? r)
                    (* -1/2 (abs y)) <= r < (* +1/2 (abs y))))
              (test-eqv? q (/ x y)))))
 
+  (define (valid-round-answer? x y q r)
+    (and (eq? (exact? q)
+              (exact? r)
+              (and (exact? x) (exact? y)))
+         (test-eqv? r (- x (* q y)))
+         (if (and (finite? x) (finite? y))
+             (and (integer? q)
+                  (let ((ay/2 (/ (abs y) 2)))
+                    (if (even? q)
+                        (test-within-range? (- ay/2) <= r <= ay/2)
+                        (test-within-range? (- ay/2) <  r <  ay/2))))
+             (test-eqv? q (/ x y)))))
+
   (define (for lsts f) (apply for-each f lsts))
 
   (define big (expt 10 (1+ (inexact->exact (ceiling (log10 fixnum-max))))))
                         euclidean-remainder
                         valid-euclidean-answer?))
 
+  (with-test-prefix "floor/"
+    (run-division-tests floor/
+                        floor-quotient
+                        floor-remainder
+                        valid-floor-answer?))
+
+  (with-test-prefix "ceiling/"
+    (run-division-tests ceiling/
+                        ceiling-quotient
+                        ceiling-remainder
+                        valid-ceiling-answer?))
+
+  (with-test-prefix "truncate/"
+    (run-division-tests truncate/
+                        truncate-quotient
+                        truncate-remainder
+                        valid-truncate-answer?))
+
   (with-test-prefix "centered/"
     (run-division-tests centered/
                         centered-quotient
                         centered-remainder
-                        valid-centered-answer?)))
+                        valid-centered-answer?))
+
+  (with-test-prefix "round/"
+    (run-division-tests round/
+                        round-quotient
+                        round-remainder
+                        valid-round-answer?)))