Improve docs for 'eval-when'.
[bpt/guile.git] / doc / ref / api-macros.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2009, 2010, 2011,
4 @c 2012, 2013, 2014 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Macros
8 @section Macros
9
10 At its best, programming in Lisp is an iterative process of building up a
11 language appropriate to the problem at hand, and then solving the problem in
12 that language. Defining new procedures is part of that, but Lisp also allows
13 the user to extend its syntax, with its famous @dfn{macros}.
14
15 @cindex macros
16 @cindex transformation
17 Macros are syntactic extensions which cause the expression that they appear in
18 to be transformed in some way @emph{before} being evaluated. In expressions that
19 are intended for macro transformation, the identifier that names the relevant
20 macro must appear as the first element, like this:
21
22 @lisp
23 (@var{macro-name} @var{macro-args} @dots{})
24 @end lisp
25
26 @cindex macro expansion
27 @cindex domain-specific language
28 @cindex embedded domain-specific language
29 @cindex DSL
30 @cindex EDSL
31 Macro expansion is a separate phase of evaluation, run before code is
32 interpreted or compiled. A macro is a program that runs on programs, translating
33 an embedded language into core Scheme@footnote{These days such embedded
34 languages are often referred to as @dfn{embedded domain-specific
35 languages}, or EDSLs.}.
36
37 @menu
38 * Defining Macros:: Binding macros, globally and locally.
39 * Syntax Rules:: Pattern-driven macros.
40 * Syntax Case:: Procedural, hygienic macros.
41 * Syntax Transformer Helpers:: Helpers for use in procedural macros.
42 * Defmacros:: Lisp-style macros.
43 * Identifier Macros:: Identifier macros.
44 * Syntax Parameters:: Syntax Parameters.
45 * Eval When:: Affecting the expand-time environment.
46 * Internal Macros:: Macros as first-class values.
47 @end menu
48
49 @node Defining Macros
50 @subsection Defining Macros
51
52 A macro is a binding between a keyword and a syntax transformer. Since it's
53 difficult to discuss @code{define-syntax} without discussing the format of
54 transformers, consider the following example macro definition:
55
56 @example
57 (define-syntax when
58 (syntax-rules ()
59 ((when condition exp ...)
60 (if condition
61 (begin exp ...)))))
62
63 (when #t
64 (display "hey ho\n")
65 (display "let's go\n"))
66 @print{} hey ho
67 @print{} let's go
68 @end example
69
70 In this example, the @code{when} binding is bound with @code{define-syntax}.
71 Syntax transformers are discussed in more depth in @ref{Syntax Rules} and
72 @ref{Syntax Case}.
73
74 @deffn {Syntax} define-syntax keyword transformer
75 Bind @var{keyword} to the syntax transformer obtained by evaluating
76 @var{transformer}.
77
78 After a macro has been defined, further instances of @var{keyword} in Scheme
79 source code will invoke the syntax transformer defined by @var{transformer}.
80 @end deffn
81
82 One can also establish local syntactic bindings with @code{let-syntax}.
83
84 @deffn {Syntax} let-syntax ((keyword transformer) @dots{}) exp1 exp2 @dots{}
85 Bind each @var{keyword} to its corresponding @var{transformer} while
86 expanding @var{exp1} @var{exp2} @enddots{}.
87
88 A @code{let-syntax} binding only exists at expansion-time.
89
90 @example
91 (let-syntax ((unless
92 (syntax-rules ()
93 ((unless condition exp ...)
94 (if (not condition)
95 (begin exp ...))))))
96 (unless #t
97 (primitive-exit 1))
98 "rock rock rock")
99 @result{} "rock rock rock"
100 @end example
101 @end deffn
102
103 A @code{define-syntax} form is valid anywhere a definition may appear: at the
104 top-level, or locally. Just as a local @code{define} expands out to an instance
105 of @code{letrec}, a local @code{define-syntax} expands out to
106 @code{letrec-syntax}.
107
108 @deffn {Syntax} letrec-syntax ((keyword transformer) @dots{}) exp1 exp2 @dots{}
109 Bind each @var{keyword} to its corresponding @var{transformer} while
110 expanding @var{exp1} @var{exp2} @enddots{}.
111
112 In the spirit of @code{letrec} versus @code{let}, an expansion produced by
113 @var{transformer} may reference a @var{keyword} bound by the
114 same @var{letrec-syntax}.
115
116 @example
117 (letrec-syntax ((my-or
118 (syntax-rules ()
119 ((my-or)
120 #t)
121 ((my-or exp)
122 exp)
123 ((my-or exp rest ...)
124 (let ((t exp))
125 (if t
126 t
127 (my-or rest ...)))))))
128 (my-or #f "rockaway beach"))
129 @result{} "rockaway beach"
130 @end example
131 @end deffn
132
133 @node Syntax Rules
134 @subsection Syntax-rules Macros
135
136 @code{syntax-rules} macros are simple, pattern-driven syntax transformers, with
137 a beauty worthy of Scheme.
138
139 @deffn {Syntax} syntax-rules literals (pattern template) @dots{}
140 Create a syntax transformer that will rewrite an expression using the rules
141 embodied in the @var{pattern} and @var{template} clauses.
142 @end deffn
143
144 A @code{syntax-rules} macro consists of three parts: the literals (if any), the
145 patterns, and as many templates as there are patterns.
146
147 When the syntax expander sees the invocation of a @code{syntax-rules} macro, it
148 matches the expression against the patterns, in order, and rewrites the
149 expression using the template from the first matching pattern. If no pattern
150 matches, a syntax error is signalled.
151
152 @subsubsection Patterns
153
154 We have already seen some examples of patterns in the previous section:
155 @code{(unless condition exp ...)}, @code{(my-or exp)}, and so on. A pattern is
156 structured like the expression that it is to match. It can have nested structure
157 as well, like @code{(let ((var val) ...) exp exp* ...)}. Broadly speaking,
158 patterns are made of lists, improper lists, vectors, identifiers, and datums.
159 Users can match a sequence of patterns using the ellipsis (@code{...}).
160
161 Identifiers in a pattern are called @dfn{literals} if they are present in the
162 @code{syntax-rules} literals list, and @dfn{pattern variables} otherwise. When
163 building up the macro output, the expander replaces instances of a pattern
164 variable in the template with the matched subexpression.
165
166 @example
167 (define-syntax kwote
168 (syntax-rules ()
169 ((kwote exp)
170 (quote exp))))
171 (kwote (foo . bar))
172 @result{} (foo . bar)
173 @end example
174
175 An improper list of patterns matches as rest arguments do:
176
177 @example
178 (define-syntax let1
179 (syntax-rules ()
180 ((_ (var val) . exps)
181 (let ((var val)) . exps))))
182 @end example
183
184 However this definition of @code{let1} probably isn't what you want, as the tail
185 pattern @var{exps} will match non-lists, like @code{(let1 (foo 'bar) . baz)}. So
186 often instead of using improper lists as patterns, ellipsized patterns are
187 better. Instances of a pattern variable in the template must be followed by an
188 ellipsis.
189
190 @example
191 (define-syntax let1
192 (syntax-rules ()
193 ((_ (var val) exp ...)
194 (let ((var val)) exp ...))))
195 @end example
196
197 This @code{let1} probably still doesn't do what we want, because the body
198 matches sequences of zero expressions, like @code{(let1 (foo 'bar))}. In this
199 case we need to assert we have at least one body expression. A common idiom for
200 this is to name the ellipsized pattern variable with an asterisk:
201
202 @example
203 (define-syntax let1
204 (syntax-rules ()
205 ((_ (var val) exp exp* ...)
206 (let ((var val)) exp exp* ...))))
207 @end example
208
209 A vector of patterns matches a vector whose contents match the patterns,
210 including ellipsizing and tail patterns.
211
212 @example
213 (define-syntax letv
214 (syntax-rules ()
215 ((_ #((var val) ...) exp exp* ...)
216 (let ((var val) ...) exp exp* ...))))
217 (letv #((foo 'bar)) foo)
218 @result{} bar
219 @end example
220
221 Literals are used to match specific datums in an expression, like the use of
222 @code{=>} and @code{else} in @code{cond} expressions.
223
224 @example
225 (define-syntax cond1
226 (syntax-rules (=> else)
227 ((cond1 test => fun)
228 (let ((exp test))
229 (if exp (fun exp) #f)))
230 ((cond1 test exp exp* ...)
231 (if test (begin exp exp* ...)))
232 ((cond1 else exp exp* ...)
233 (begin exp exp* ...))))
234
235 (define (square x) (* x x))
236 (cond1 10 => square)
237 @result{} 100
238 (let ((=> #t))
239 (cond1 10 => square))
240 @result{} #<procedure square (x)>
241 @end example
242
243 A literal matches an input expression if the input expression is an identifier
244 with the same name as the literal, and both are unbound@footnote{Language
245 lawyers probably see the need here for use of @code{literal-identifier=?} rather
246 than @code{free-identifier=?}, and would probably be correct. Patches
247 accepted.}.
248
249 If a pattern is not a list, vector, or an identifier, it matches as a literal,
250 with @code{equal?}.
251
252 @example
253 (define-syntax define-matcher-macro
254 (syntax-rules ()
255 ((_ name lit)
256 (define-syntax name
257 (syntax-rules ()
258 ((_ lit) #t)
259 ((_ else) #f))))))
260
261 (define-matcher-macro is-literal-foo? "foo")
262
263 (is-literal-foo? "foo")
264 @result{} #t
265 (is-literal-foo? "bar")
266 @result{} #f
267 (let ((foo "foo"))
268 (is-literal-foo? foo))
269 @result{} #f
270 @end example
271
272 The last example indicates that matching happens at expansion-time, not
273 at run-time.
274
275 Syntax-rules macros are always used as @code{(@var{macro} . @var{args})}, and
276 the @var{macro} will always be a symbol. Correspondingly, a @code{syntax-rules}
277 pattern must be a list (proper or improper), and the first pattern in that list
278 must be an identifier. Incidentally it can be any identifier -- it doesn't have
279 to actually be the name of the macro. Thus the following three are equivalent:
280
281 @example
282 (define-syntax when
283 (syntax-rules ()
284 ((when c e ...)
285 (if c (begin e ...)))))
286
287 (define-syntax when
288 (syntax-rules ()
289 ((_ c e ...)
290 (if c (begin e ...)))))
291
292 (define-syntax when
293 (syntax-rules ()
294 ((something-else-entirely c e ...)
295 (if c (begin e ...)))))
296 @end example
297
298 For clarity, use one of the first two variants. Also note that since the pattern
299 variable will always match the macro itself (e.g., @code{cond1}), it is actually
300 left unbound in the template.
301
302 @subsubsection Hygiene
303
304 @code{syntax-rules} macros have a magical property: they preserve referential
305 transparency. When you read a macro definition, any free bindings in that macro
306 are resolved relative to the macro definition; and when you read a macro
307 instantiation, all free bindings in that expression are resolved relative to the
308 expression.
309
310 This property is sometimes known as @dfn{hygiene}, and it does aid in code
311 cleanliness. In your macro definitions, you can feel free to introduce temporary
312 variables, without worrying about inadvertently introducing bindings into the
313 macro expansion.
314
315 Consider the definition of @code{my-or} from the previous section:
316
317 @example
318 (define-syntax my-or
319 (syntax-rules ()
320 ((my-or)
321 #t)
322 ((my-or exp)
323 exp)
324 ((my-or exp rest ...)
325 (let ((t exp))
326 (if t
327 t
328 (my-or rest ...))))))
329 @end example
330
331 A naive expansion of @code{(let ((t #t)) (my-or #f t))} would yield:
332
333 @example
334 (let ((t #t))
335 (let ((t #f))
336 (if t t t)))
337 @result{} #f
338 @end example
339
340 @noindent
341 Which clearly is not what we want. Somehow the @code{t} in the definition is
342 distinct from the @code{t} at the site of use; and it is indeed this distinction
343 that is maintained by the syntax expander, when expanding hygienic macros.
344
345 This discussion is mostly relevant in the context of traditional Lisp macros
346 (@pxref{Defmacros}), which do not preserve referential transparency. Hygiene
347 adds to the expressive power of Scheme.
348
349 @subsubsection Shorthands
350
351 One often ends up writing simple one-clause @code{syntax-rules} macros.
352 There is a convenient shorthand for this idiom, in the form of
353 @code{define-syntax-rule}.
354
355 @deffn {Syntax} define-syntax-rule (keyword . pattern) [docstring] template
356 Define @var{keyword} as a new @code{syntax-rules} macro with one clause.
357 @end deffn
358
359 Cast into this form, our @code{when} example is significantly shorter:
360
361 @example
362 (define-syntax-rule (when c e ...)
363 (if c (begin e ...)))
364 @end example
365
366 @subsubsection Reporting Syntax Errors in Macros
367
368 @deffn {Syntax} syntax-error message [arg ...]
369 Report an error at macro-expansion time. @var{message} must be a string
370 literal, and the optional @var{arg} operands can be arbitrary expressions
371 providing additional information.
372 @end deffn
373
374 @code{syntax-error} is intended to be used within @code{syntax-rules}
375 templates. For example:
376
377 @example
378 (define-syntax simple-let
379 (syntax-rules ()
380 ((_ (head ... ((x . y) val) . tail)
381 body1 body2 ...)
382 (syntax-error
383 "expected an identifier but got"
384 (x . y)))
385 ((_ ((name val) ...) body1 body2 ...)
386 ((lambda (name ...) body1 body2 ...)
387 val ...))))
388 @end example
389
390 @subsubsection Specifying a Custom Ellipsis Identifier
391
392 When writing macros that generate macro definitions, it is convenient to
393 use a different ellipsis identifier at each level. Guile allows the
394 desired ellipsis identifier to be specified as the first operand to
395 @code{syntax-rules}, as specified by SRFI-46 and R7RS. For example:
396
397 @example
398 (define-syntax define-quotation-macros
399 (syntax-rules ()
400 ((_ (macro-name head-symbol) ...)
401 (begin (define-syntax macro-name
402 (syntax-rules ::: ()
403 ((_ x :::)
404 (quote (head-symbol x :::)))))
405 ...))))
406 (define-quotation-macros (quote-a a) (quote-b b) (quote-c c))
407 (quote-a 1 2 3) @result{} (a 1 2 3)
408 @end example
409
410 @subsubsection Further Information
411
412 For a formal definition of @code{syntax-rules} and its pattern language, see
413 @xref{Macros, , Macros, r5rs, Revised(5) Report on the Algorithmic Language
414 Scheme}.
415
416 @code{syntax-rules} macros are simple and clean, but do they have limitations.
417 They do not lend themselves to expressive error messages: patterns either match
418 or they don't. Their ability to generate code is limited to template-driven
419 expansion; often one needs to define a number of helper macros to get real work
420 done. Sometimes one wants to introduce a binding into the lexical context of the
421 generated code; this is impossible with @code{syntax-rules}. Relatedly, they
422 cannot programmatically generate identifiers.
423
424 The solution to all of these problems is to use @code{syntax-case} if you need
425 its features. But if for some reason you're stuck with @code{syntax-rules}, you
426 might enjoy Joe Marshall's
427 @uref{http://sites.google.com/site/evalapply/eccentric.txt,@code{syntax-rules}
428 Primer for the Merely Eccentric}.
429
430 @node Syntax Case
431 @subsection Support for the @code{syntax-case} System
432
433 @code{syntax-case} macros are procedural syntax transformers, with a power
434 worthy of Scheme.
435
436 @deffn {Syntax} syntax-case syntax literals (pattern [guard] exp) @dots{}
437 Match the syntax object @var{syntax} against the given patterns, in order. If a
438 @var{pattern} matches, return the result of evaluating the associated @var{exp}.
439 @end deffn
440
441 Compare the following definitions of @code{when}:
442
443 @example
444 (define-syntax when
445 (syntax-rules ()
446 ((_ test e e* ...)
447 (if test (begin e e* ...)))))
448
449 (define-syntax when
450 (lambda (x)
451 (syntax-case x ()
452 ((_ test e e* ...)
453 #'(if test (begin e e* ...))))))
454 @end example
455
456 Clearly, the @code{syntax-case} definition is similar to its @code{syntax-rules}
457 counterpart, and equally clearly there are some differences. The
458 @code{syntax-case} definition is wrapped in a @code{lambda}, a function of one
459 argument; that argument is passed to the @code{syntax-case} invocation; and the
460 ``return value'' of the macro has a @code{#'} prefix.
461
462 All of these differences stem from the fact that @code{syntax-case} does not
463 define a syntax transformer itself -- instead, @code{syntax-case} expressions
464 provide a way to destructure a @dfn{syntax object}, and to rebuild syntax
465 objects as output.
466
467 So the @code{lambda} wrapper is simply a leaky implementation detail, that
468 syntax transformers are just functions that transform syntax to syntax. This
469 should not be surprising, given that we have already described macros as
470 ``programs that write programs''. @code{syntax-case} is simply a way to take
471 apart and put together program text, and to be a valid syntax transformer it
472 needs to be wrapped in a procedure.
473
474 Unlike traditional Lisp macros (@pxref{Defmacros}), @code{syntax-case} macros
475 transform syntax objects, not raw Scheme forms. Recall the naive expansion of
476 @code{my-or} given in the previous section:
477
478 @example
479 (let ((t #t))
480 (my-or #f t))
481 ;; naive expansion:
482 (let ((t #t))
483 (let ((t #f))
484 (if t t t)))
485 @end example
486
487 Raw Scheme forms simply don't have enough information to distinguish the first
488 two @code{t} instances in @code{(if t t t)} from the third @code{t}. So instead
489 of representing identifiers as symbols, the syntax expander represents
490 identifiers as annotated syntax objects, attaching such information to those
491 syntax objects as is needed to maintain referential transparency.
492
493 @deffn {Syntax} syntax form
494 Create a syntax object wrapping @var{form} within the current lexical context.
495 @end deffn
496
497 Syntax objects are typically created internally to the process of expansion, but
498 it is possible to create them outside of syntax expansion:
499
500 @example
501 (syntax (foo bar baz))
502 @result{} #<some representation of that syntax>
503 @end example
504
505 @noindent
506 However it is more common, and useful, to create syntax objects when building
507 output from a @code{syntax-case} expression.
508
509 @example
510 (define-syntax add1
511 (lambda (x)
512 (syntax-case x ()
513 ((_ exp)
514 (syntax (+ exp 1))))))
515 @end example
516
517 It is not strictly necessary for a @code{syntax-case} expression to return a
518 syntax object, because @code{syntax-case} expressions can be used in helper
519 functions, or otherwise used outside of syntax expansion itself. However a
520 syntax transformer procedure must return a syntax object, so most uses of
521 @code{syntax-case} do end up returning syntax objects.
522
523 Here in this case, the form that built the return value was @code{(syntax (+ exp
524 1))}. The interesting thing about this is that within a @code{syntax}
525 expression, any appearance of a pattern variable is substituted into the
526 resulting syntax object, carrying with it all relevant metadata from the source
527 expression, such as lexical identity and source location.
528
529 Indeed, a pattern variable may only be referenced from inside a @code{syntax}
530 form. The syntax expander would raise an error when defining @code{add1} if it
531 found @var{exp} referenced outside a @code{syntax} form.
532
533 Since @code{syntax} appears frequently in macro-heavy code, it has a special
534 reader macro: @code{#'}. @code{#'foo} is transformed by the reader into
535 @code{(syntax foo)}, just as @code{'foo} is transformed into @code{(quote foo)}.
536
537 The pattern language used by @code{syntax-case} is conveniently the same
538 language used by @code{syntax-rules}. Given this, Guile actually defines
539 @code{syntax-rules} in terms of @code{syntax-case}:
540
541 @example
542 (define-syntax syntax-rules
543 (lambda (x)
544 (syntax-case x ()
545 ((_ (k ...) ((keyword . pattern) template) ...)
546 #'(lambda (x)
547 (syntax-case x (k ...)
548 ((dummy . pattern) #'template)
549 ...))))))
550 @end example
551
552 And that's that.
553
554 @subsubsection Why @code{syntax-case}?
555
556 The examples we have shown thus far could just as well have been expressed with
557 @code{syntax-rules}, and have just shown that @code{syntax-case} is more
558 verbose, which is true. But there is a difference: @code{syntax-case} creates
559 @emph{procedural} macros, giving the full power of Scheme to the macro expander.
560 This has many practical applications.
561
562 A common desire is to be able to match a form only if it is an identifier. This
563 is impossible with @code{syntax-rules}, given the datum matching forms. But with
564 @code{syntax-case} it is easy:
565
566 @deffn {Scheme Procedure} identifier? syntax-object
567 Returns @code{#t} if @var{syntax-object} is an identifier, or @code{#f}
568 otherwise.
569 @end deffn
570
571 @example
572 ;; relying on previous add1 definition
573 (define-syntax add1!
574 (lambda (x)
575 (syntax-case x ()
576 ((_ var) (identifier? #'var)
577 #'(set! var (add1 var))))))
578
579 (define foo 0)
580 (add1! foo)
581 foo @result{} 1
582 (add1! "not-an-identifier") @result{} error
583 @end example
584
585 With @code{syntax-rules}, the error for @code{(add1! "not-an-identifier")} would
586 be something like ``invalid @code{set!}''. With @code{syntax-case}, it will say
587 something like ``invalid @code{add1!}'', because we attach the @dfn{guard
588 clause} to the pattern: @code{(identifier? #'var)}. This becomes more important
589 with more complicated macros. It is necessary to use @code{identifier?}, because
590 to the expander, an identifier is more than a bare symbol.
591
592 Note that even in the guard clause, we reference the @var{var} pattern variable
593 within a @code{syntax} form, via @code{#'var}.
594
595 Another common desire is to introduce bindings into the lexical context of the
596 output expression. One example would be in the so-called ``anaphoric macros'',
597 like @code{aif}. Anaphoric macros bind some expression to a well-known
598 identifier, often @code{it}, within their bodies. For example, in @code{(aif
599 (foo) (bar it))}, @code{it} would be bound to the result of @code{(foo)}.
600
601 To begin with, we should mention a solution that doesn't work:
602
603 @example
604 ;; doesn't work
605 (define-syntax aif
606 (lambda (x)
607 (syntax-case x ()
608 ((_ test then else)
609 #'(let ((it test))
610 (if it then else))))))
611 @end example
612
613 The reason that this doesn't work is that, by default, the expander will
614 preserve referential transparency; the @var{then} and @var{else} expressions
615 won't have access to the binding of @code{it}.
616
617 But they can, if we explicitly introduce a binding via @code{datum->syntax}.
618
619 @deffn {Scheme Procedure} datum->syntax for-syntax datum
620 Create a syntax object that wraps @var{datum}, within the lexical context
621 corresponding to the syntax object @var{for-syntax}.
622 @end deffn
623
624 For completeness, we should mention that it is possible to strip the metadata
625 from a syntax object, returning a raw Scheme datum:
626
627 @deffn {Scheme Procedure} syntax->datum syntax-object
628 Strip the metadata from @var{syntax-object}, returning its contents as a raw
629 Scheme datum.
630 @end deffn
631
632 In this case we want to introduce @code{it} in the context of the whole
633 expression, so we can create a syntax object as @code{(datum->syntax x 'it)},
634 where @code{x} is the whole expression, as passed to the transformer procedure.
635
636 Here's another solution that doesn't work:
637
638 @example
639 ;; doesn't work either
640 (define-syntax aif
641 (lambda (x)
642 (syntax-case x ()
643 ((_ test then else)
644 (let ((it (datum->syntax x 'it)))
645 #'(let ((it test))
646 (if it then else)))))))
647 @end example
648
649 The reason that this one doesn't work is that there are really two
650 environments at work here -- the environment of pattern variables, as
651 bound by @code{syntax-case}, and the environment of lexical variables,
652 as bound by normal Scheme. The outer let form establishes a binding in
653 the environment of lexical variables, but the inner let form is inside a
654 syntax form, where only pattern variables will be substituted. Here we
655 need to introduce a piece of the lexical environment into the pattern
656 variable environment, and we can do so using @code{syntax-case} itself:
657
658 @example
659 ;; works, but is obtuse
660 (define-syntax aif
661 (lambda (x)
662 (syntax-case x ()
663 ((_ test then else)
664 ;; invoking syntax-case on the generated
665 ;; syntax object to expose it to `syntax'
666 (syntax-case (datum->syntax x 'it) ()
667 (it
668 #'(let ((it test))
669 (if it then else))))))))
670
671 (aif (getuid) (display it) (display "none")) (newline)
672 @print{} 500
673 @end example
674
675 However there are easier ways to write this. @code{with-syntax} is often
676 convenient:
677
678 @deffn {Syntax} with-syntax ((pat val) @dots{}) exp @dots{}
679 Bind patterns @var{pat} from their corresponding values @var{val}, within the
680 lexical context of @var{exp} @enddots{}.
681
682 @example
683 ;; better
684 (define-syntax aif
685 (lambda (x)
686 (syntax-case x ()
687 ((_ test then else)
688 (with-syntax ((it (datum->syntax x 'it)))
689 #'(let ((it test))
690 (if it then else)))))))
691 @end example
692 @end deffn
693
694 As you might imagine, @code{with-syntax} is defined in terms of
695 @code{syntax-case}. But even that might be off-putting to you if you are an old
696 Lisp macro hacker, used to building macro output with @code{quasiquote}. The
697 issue is that @code{with-syntax} creates a separation between the point of
698 definition of a value and its point of substitution.
699
700 @pindex quasisyntax
701 @pindex unsyntax
702 @pindex unsyntax-splicing
703 So for cases in which a @code{quasiquote} style makes more sense,
704 @code{syntax-case} also defines @code{quasisyntax}, and the related
705 @code{unsyntax} and @code{unsyntax-splicing}, abbreviated by the reader as
706 @code{#`}, @code{#,}, and @code{#,@@}, respectively.
707
708 For example, to define a macro that inserts a compile-time timestamp into a
709 source file, one may write:
710
711 @example
712 (define-syntax display-compile-timestamp
713 (lambda (x)
714 (syntax-case x ()
715 ((_)
716 #`(begin
717 (display "The compile timestamp was: ")
718 (display #,(current-time))
719 (newline))))))
720 @end example
721
722 Readers interested in further information on @code{syntax-case} macros should
723 see R. Kent Dybvig's excellent @cite{The Scheme Programming Language}, either
724 edition 3 or 4, in the chapter on syntax. Dybvig was the primary author of the
725 @code{syntax-case} system. The book itself is available online at
726 @uref{http://scheme.com/tspl4/}.
727
728 @subsubsection Custom Ellipsis Identifiers for syntax-case Macros
729
730 When writing procedural macros that generate macro definitions, it is
731 convenient to use a different ellipsis identifier at each level. Guile
732 supports this for procedural macros using the @code{with-ellipsis}
733 special form:
734
735 @deffn {Syntax} with-ellipsis ellipsis body @dots{}
736 @var{ellipsis} must be an identifier. Evaluate @var{body} in a special
737 lexical environment such that all macro patterns and templates within
738 @var{body} will use @var{ellipsis} as the ellipsis identifier instead of
739 the usual three dots (@code{...}).
740 @end deffn
741
742 For example:
743
744 @example
745 (define-syntax define-quotation-macros
746 (lambda (x)
747 (syntax-case x ()
748 ((_ (macro-name head-symbol) ...)
749 #'(begin (define-syntax macro-name
750 (lambda (x)
751 (with-ellipsis :::
752 (syntax-case x ()
753 ((_ x :::)
754 #'(quote (head-symbol x :::)))))))
755 ...)))))
756 (define-quotation-macros (quote-a a) (quote-b b) (quote-c c))
757 (quote-a 1 2 3) @result{} (a 1 2 3)
758 @end example
759
760 Note that @code{with-ellipsis} does not affect the ellipsis identifier
761 of the generated code, unless @code{with-ellipsis} is included around
762 the generated code.
763
764 @node Syntax Transformer Helpers
765 @subsection Syntax Transformer Helpers
766
767 As noted in the previous section, Guile's syntax expander operates on
768 syntax objects. Procedural macros consume and produce syntax objects.
769 This section describes some of the auxiliary helpers that procedural
770 macros can use to compare, generate, and query objects of this data
771 type.
772
773 @deffn {Scheme Procedure} bound-identifier=? a b
774 Return @code{#t} if the syntax objects @var{a} and @var{b} refer to the
775 same lexically-bound identifier, or @code{#f} otherwise.
776 @end deffn
777
778 @deffn {Scheme Procedure} free-identifier=? a b
779 Return @code{#t} if the syntax objects @var{a} and @var{b} refer to the
780 same free identifier, or @code{#f} otherwise.
781 @end deffn
782
783 @deffn {Scheme Procedure} generate-temporaries ls
784 Return a list of temporary identifiers as long as @var{ls} is long.
785 @end deffn
786
787 @deffn {Scheme Procedure} syntax-source x
788 Return the source properties that correspond to the syntax object
789 @var{x}. @xref{Source Properties}, for more information.
790 @end deffn
791
792 Guile also offers some more experimental interfaces in a separate
793 module. As was the case with the Large Hadron Collider, it is unclear
794 to our senior macrologists whether adding these interfaces will result
795 in awesomeness or in the destruction of Guile via the creation of a
796 singularity. We will preserve their functionality through the 2.0
797 series, but we reserve the right to modify them in a future stable
798 series, to a more than usual degree.
799
800 @example
801 (use-modules (system syntax))
802 @end example
803
804 @deffn {Scheme Procedure} syntax-module id
805 Return the name of the module whose source contains the identifier
806 @var{id}.
807 @end deffn
808
809 @deffn {Scheme Procedure} syntax-local-binding id
810 Resolve the identifer @var{id}, a syntax object, within the current
811 lexical environment, and return two values, the binding type and a
812 binding value. The binding type is a symbol, which may be one of the
813 following:
814
815 @table @code
816 @item lexical
817 A lexically-bound variable. The value is a unique token (in the sense
818 of @code{eq?}) identifying this binding.
819 @item macro
820 A syntax transformer, either local or global. The value is the
821 transformer procedure.
822 @item pattern-variable
823 A pattern variable, bound via @code{syntax-case}. The value is an
824 opaque object, internal to the expander.
825 @item ellipsis
826 An internal binding, bound via @code{with-ellipsis}. The value is the
827 (anti-marked) local ellipsis identifier.
828 @item displaced-lexical
829 A lexical variable that has gone out of scope. This can happen if a
830 badly-written procedural macro saves a syntax object, then attempts to
831 introduce it in a context in which it is unbound. The value is
832 @code{#f}.
833 @item global
834 A global binding. The value is a pair, whose head is the symbol, and
835 whose tail is the name of the module in which to resolve the symbol.
836 @item other
837 Some other binding, like @code{lambda} or other core bindings. The
838 value is @code{#f}.
839 @end table
840
841 This is a very low-level procedure, with limited uses. One case in
842 which it is useful is to build abstractions that associate auxiliary
843 information with macros:
844
845 @example
846 (define aux-property (make-object-property))
847 (define-syntax-rule (with-aux aux value)
848 (let ((trans value))
849 (set! (aux-property trans) aux)
850 trans))
851 (define-syntax retrieve-aux
852 (lambda (x)
853 (syntax-case x ()
854 ((x id)
855 (call-with-values (lambda () (syntax-local-binding #'id))
856 (lambda (type val)
857 (with-syntax ((aux (datum->syntax #'here
858 (and (eq? type 'macro)
859 (aux-property val)))))
860 #''aux)))))))
861 (define-syntax foo
862 (with-aux 'bar
863 (syntax-rules () ((_) 'foo))))
864 (foo)
865 @result{} foo
866 (retrieve-aux foo)
867 @result{} bar
868 @end example
869
870 @code{syntax-local-binding} must be called within the dynamic extent of
871 a syntax transformer; to call it otherwise will signal an error.
872 @end deffn
873
874 @deffn {Scheme Procedure} syntax-locally-bound-identifiers id
875 Return a list of identifiers that were visible lexically when the
876 identifier @var{id} was created, in order from outermost to innermost.
877
878 This procedure is intended to be used in specialized procedural macros,
879 to provide a macro with the set of bound identifiers that the macro can
880 reference.
881
882 As a technical implementation detail, the identifiers returned by
883 @code{syntax-locally-bound-identifiers} will be anti-marked, like the
884 syntax object that is given as input to a macro. This is to signal to
885 the macro expander that these bindings were present in the original
886 source, and do not need to be hygienically renamed, as would be the case
887 with other introduced identifiers. See the discussion of hygiene in
888 section 12.1 of the R6RS, for more information on marks.
889
890 @example
891 (define (local-lexicals id)
892 (filter (lambda (x)
893 (eq? (syntax-local-binding x) 'lexical))
894 (syntax-locally-bound-identifiers id)))
895 (define-syntax lexicals
896 (lambda (x)
897 (syntax-case x ()
898 ((lexicals) #'(lexicals lexicals))
899 ((lexicals scope)
900 (with-syntax (((id ...) (local-lexicals #'scope)))
901 #'(list (cons 'id id) ...))))))
902
903 (let* ((x 10) (x 20)) (lexicals))
904 @result{} ((x . 10) (x . 20))
905 @end example
906 @end deffn
907
908
909 @node Defmacros
910 @subsection Lisp-style Macro Definitions
911
912 The traditional way to define macros in Lisp is very similar to procedure
913 definitions. The key differences are that the macro definition body should
914 return a list that describes the transformed expression, and that the definition
915 is marked as a macro definition (rather than a procedure definition) by the use
916 of a different definition keyword: in Lisp, @code{defmacro} rather than
917 @code{defun}, and in Scheme, @code{define-macro} rather than @code{define}.
918
919 @fnindex defmacro
920 @fnindex define-macro
921 Guile supports this style of macro definition using both @code{defmacro}
922 and @code{define-macro}. The only difference between them is how the
923 macro name and arguments are grouped together in the definition:
924
925 @lisp
926 (defmacro @var{name} (@var{args} @dots{}) @var{body} @dots{})
927 @end lisp
928
929 @noindent
930 is the same as
931
932 @lisp
933 (define-macro (@var{name} @var{args} @dots{}) @var{body} @dots{})
934 @end lisp
935
936 @noindent
937 The difference is analogous to the corresponding difference between
938 Lisp's @code{defun} and Scheme's @code{define}.
939
940 Having read the previous section on @code{syntax-case}, it's probably clear that
941 Guile actually implements defmacros in terms of @code{syntax-case}, applying the
942 transformer on the expression between invocations of @code{syntax->datum} and
943 @code{datum->syntax}. This realization leads us to the problem with defmacros,
944 that they do not preserve referential transparency. One can be careful to not
945 introduce bindings into expanded code, via liberal use of @code{gensym}, but
946 there is no getting around the lack of referential transparency for free
947 bindings in the macro itself.
948
949 Even a macro as simple as our @code{when} from before is difficult to get right:
950
951 @example
952 (define-macro (when cond exp . rest)
953 `(if ,cond
954 (begin ,exp . ,rest)))
955
956 (when #f (display "Launching missiles!\n"))
957 @result{} #f
958
959 (let ((if list))
960 (when #f (display "Launching missiles!\n")))
961 @print{} Launching missiles!
962 @result{} (#f #<unspecified>)
963 @end example
964
965 Guile's perspective is that defmacros have had a good run, but that modern
966 macros should be written with @code{syntax-rules} or @code{syntax-case}. There
967 are still many uses of defmacros within Guile itself, but we will be phasing
968 them out over time. Of course we won't take away @code{defmacro} or
969 @code{define-macro} themselves, as there is lots of code out there that uses
970 them.
971
972
973 @node Identifier Macros
974 @subsection Identifier Macros
975
976 When the syntax expander sees a form in which the first element is a macro, the
977 whole form gets passed to the macro's syntax transformer. One may visualize this
978 as:
979
980 @example
981 (define-syntax foo foo-transformer)
982 (foo @var{arg}...)
983 ;; expands via
984 (foo-transformer #'(foo @var{arg}...))
985 @end example
986
987 If, on the other hand, a macro is referenced in some other part of a form, the
988 syntax transformer is invoked with only the macro reference, not the whole form.
989
990 @example
991 (define-syntax foo foo-transformer)
992 foo
993 ;; expands via
994 (foo-transformer #'foo)
995 @end example
996
997 This allows bare identifier references to be replaced programmatically via a
998 macro. @code{syntax-rules} provides some syntax to effect this transformation
999 more easily.
1000
1001 @deffn {Syntax} identifier-syntax exp
1002 Returns a macro transformer that will replace occurrences of the macro with
1003 @var{exp}.
1004 @end deffn
1005
1006 For example, if you are importing external code written in terms of @code{fx+},
1007 the fixnum addition operator, but Guile doesn't have @code{fx+}, you may use the
1008 following to replace @code{fx+} with @code{+}:
1009
1010 @example
1011 (define-syntax fx+ (identifier-syntax +))
1012 @end example
1013
1014 There is also special support for recognizing identifiers on the
1015 left-hand side of a @code{set!} expression, as in the following:
1016
1017 @example
1018 (define-syntax foo foo-transformer)
1019 (set! foo @var{val})
1020 ;; expands via
1021 (foo-transformer #'(set! foo @var{val}))
1022 ;; if foo-transformer is a "variable transformer"
1023 @end example
1024
1025 As the example notes, the transformer procedure must be explicitly
1026 marked as being a ``variable transformer'', as most macros aren't
1027 written to discriminate on the form in the operator position.
1028
1029 @deffn {Scheme Procedure} make-variable-transformer transformer
1030 Mark the @var{transformer} procedure as being a ``variable
1031 transformer''. In practice this means that, when bound to a syntactic
1032 keyword, it may detect references to that keyword on the left-hand-side
1033 of a @code{set!}.
1034
1035 @example
1036 (define bar 10)
1037 (define-syntax bar-alias
1038 (make-variable-transformer
1039 (lambda (x)
1040 (syntax-case x (set!)
1041 ((set! var val) #'(set! bar val))
1042 ((var arg ...) #'(bar arg ...))
1043 (var (identifier? #'var) #'bar)))))
1044
1045 bar-alias @result{} 10
1046 (set! bar-alias 20)
1047 bar @result{} 20
1048 (set! bar 30)
1049 bar-alias @result{} 30
1050 @end example
1051 @end deffn
1052
1053 There is an extension to identifier-syntax which allows it to handle the
1054 @code{set!} case as well:
1055
1056 @deffn {Syntax} identifier-syntax (var exp1) ((set! var val) exp2)
1057 Create a variable transformer. The first clause is used for references
1058 to the variable in operator or operand position, and the second for
1059 appearances of the variable on the left-hand-side of an assignment.
1060
1061 For example, the previous @code{bar-alias} example could be expressed
1062 more succinctly like this:
1063
1064 @example
1065 (define-syntax bar-alias
1066 (identifier-syntax
1067 (var bar)
1068 ((set! var val) (set! bar val))))
1069 @end example
1070
1071 @noindent
1072 As before, the templates in @code{identifier-syntax} forms do not need
1073 wrapping in @code{#'} syntax forms.
1074 @end deffn
1075
1076
1077 @node Syntax Parameters
1078 @subsection Syntax Parameters
1079
1080 Syntax parameters@footnote{Described in the paper @cite{Keeping it Clean
1081 with Syntax Parameters} by Barzilay, Culpepper and Flatt.} are a
1082 mechanism for rebinding a macro definition within the dynamic extent of
1083 a macro expansion. This provides a convenient solution to one of the
1084 most common types of unhygienic macro: those that introduce a unhygienic
1085 binding each time the macro is used. Examples include a @code{lambda}
1086 form with a @code{return} keyword, or class macros that introduce a
1087 special @code{self} binding.
1088
1089 With syntax parameters, instead of introducing the binding
1090 unhygienically each time, we instead create one binding for the keyword,
1091 which we can then adjust later when we want the keyword to have a
1092 different meaning. As no new bindings are introduced, hygiene is
1093 preserved. This is similar to the dynamic binding mechanisms we have at
1094 run-time (@pxref{SRFI-39, parameters}), except that the dynamic binding
1095 only occurs during macro expansion. The code after macro expansion
1096 remains lexically scoped.
1097
1098 @deffn {Syntax} define-syntax-parameter keyword transformer
1099 Binds @var{keyword} to the value obtained by evaluating
1100 @var{transformer}. The @var{transformer} provides the default expansion
1101 for the syntax parameter, and in the absence of
1102 @code{syntax-parameterize}, is functionally equivalent to
1103 @code{define-syntax}. Usually, you will just want to have the
1104 @var{transformer} throw a syntax error indicating that the @var{keyword}
1105 is supposed to be used in conjunction with another macro, for example:
1106 @example
1107 (define-syntax-parameter return
1108 (lambda (stx)
1109 (syntax-violation 'return "return used outside of a lambda^" stx)))
1110 @end example
1111 @end deffn
1112
1113 @deffn {Syntax} syntax-parameterize ((keyword transformer) @dots{}) exp @dots{}
1114 Adjusts @var{keyword} @dots{} to use the values obtained by evaluating
1115 their @var{transformer} @dots{}, in the expansion of the @var{exp}
1116 @dots{} forms. Each @var{keyword} must be bound to a syntax-parameter.
1117 @code{syntax-parameterize} differs from @code{let-syntax}, in that the
1118 binding is not shadowed, but adjusted, and so uses of the keyword in the
1119 expansion of @var{exp} @dots{} use the new transformers. This is
1120 somewhat similar to how @code{parameterize} adjusts the values of
1121 regular parameters, rather than creating new bindings.
1122
1123 @example
1124 (define-syntax lambda^
1125 (syntax-rules ()
1126 [(lambda^ argument-list body body* ...)
1127 (lambda argument-list
1128 (call-with-current-continuation
1129 (lambda (escape)
1130 ;; In the body we adjust the 'return' keyword so that calls
1131 ;; to 'return' are replaced with calls to the escape
1132 ;; continuation.
1133 (syntax-parameterize ([return (syntax-rules ()
1134 [(return vals (... ...))
1135 (escape vals (... ...))])])
1136 body body* ...))))]))
1137
1138 ;; Now we can write functions that return early. Here, 'product' will
1139 ;; return immediately if it sees any 0 element.
1140 (define product
1141 (lambda^ (list)
1142 (fold (lambda (n o)
1143 (if (zero? n)
1144 (return 0)
1145 (* n o)))
1146 1
1147 list)))
1148 @end example
1149 @end deffn
1150
1151
1152 @node Eval When
1153 @subsection Eval-when
1154
1155 As @code{syntax-case} macros have the whole power of Scheme available to them,
1156 they present a problem regarding time: when a macro runs, what parts of the
1157 program are available for the macro to use?
1158
1159 The default answer to this question is that when you import a module (via
1160 @code{define-module} or @code{use-modules}), that module will be loaded up at
1161 expansion-time, as well as at run-time. Additionally, top-level syntactic
1162 definitions within one compilation unit made by @code{define-syntax} are also
1163 evaluated at expansion time, in the order that they appear in the compilation
1164 unit (file).
1165
1166 But if a syntactic definition needs to call out to a normal procedure at
1167 expansion-time, it might well need need special declarations to indicate that
1168 the procedure should be made available at expansion-time.
1169
1170 For example, the following code will work at a REPL, but not in a file:
1171
1172 @example
1173 ;; incorrect
1174 (use-modules (srfi srfi-19))
1175 (define (date) (date->string (current-date)))
1176 (define-syntax %date (identifier-syntax (date)))
1177 (define *compilation-date* %date)
1178 @end example
1179
1180 It works at a REPL because the expressions are evaluated one-by-one, in order,
1181 but if placed in a file, the expressions are expanded one-by-one, but not
1182 evaluated until the compiled file is loaded.
1183
1184 The fix is to use @code{eval-when}.
1185
1186 @example
1187 ;; correct: using eval-when
1188 (use-modules (srfi srfi-19))
1189 (eval-when (expand load eval)
1190 (define (date) (date->string (current-date))))
1191 (define-syntax %date (identifier-syntax (date)))
1192 (define *compilation-date* %date)
1193 @end example
1194
1195 @deffn {Syntax} eval-when conditions exp...
1196 Evaluate @var{exp...} under the given @var{conditions}. Valid
1197 conditions include:
1198
1199 @table @code
1200 @item expand
1201 Evaluate during macro expansion, whether compiling or not.
1202
1203 @item load
1204 Evaluate during the evaluation phase of compiled code, e.g. when loading
1205 a compiled module or running compiled code at the REPL.
1206
1207 @item eval
1208 Evaluate during the evaluation phase of non-compiled code.
1209
1210 @item compile
1211 Evaluate during macro expansion, but only when compiling.
1212 @end table
1213
1214 In other words, when using the primitive evaluator, @code{eval-when}
1215 expressions with @code{expand} are run during macro expansion, and those
1216 with @code{eval} are run during the evaluation phase.
1217
1218 When using the compiler, @code{eval-when} expressions with either
1219 @code{expand} or @code{compile} are run during macro expansion, and
1220 those with @code{load} are run during the evaluation phase.
1221
1222 When in doubt, use the three conditions @code{(expand load eval)}, as in
1223 the example above. Other uses of @code{eval-when} may void your
1224 warranty or poison your cat.
1225 @end deffn
1226
1227 @node Internal Macros
1228 @subsection Internal Macros
1229
1230 @deffn {Scheme Procedure} make-syntax-transformer name type binding
1231 Construct a syntax transformer object. This is part of Guile's low-level support
1232 for syntax-case.
1233 @end deffn
1234
1235 @deffn {Scheme Procedure} macro? obj
1236 @deffnx {C Function} scm_macro_p (obj)
1237 Return @code{#t} if @var{obj} is a syntax transformer, or @code{#f}
1238 otherwise.
1239
1240 Note that it's a bit difficult to actually get a macro as a first-class object;
1241 simply naming it (like @code{case}) will produce a syntax error. But it is
1242 possible to get these objects using @code{module-ref}:
1243
1244 @example
1245 (macro? (module-ref (current-module) 'case))
1246 @result{} #t
1247 @end example
1248 @end deffn
1249
1250 @deffn {Scheme Procedure} macro-type m
1251 @deffnx {C Function} scm_macro_type (m)
1252 Return the @var{type} that was given when @var{m} was constructed, via
1253 @code{make-syntax-transformer}.
1254 @end deffn
1255
1256 @deffn {Scheme Procedure} macro-name m
1257 @deffnx {C Function} scm_macro_name (m)
1258 Return the name of the macro @var{m}.
1259 @end deffn
1260
1261 @deffn {Scheme Procedure} macro-binding m
1262 @deffnx {C Function} scm_macro_binding (m)
1263 Return the binding of the macro @var{m}.
1264 @end deffn
1265
1266 @deffn {Scheme Procedure} macro-transformer m
1267 @deffnx {C Function} scm_macro_transformer (m)
1268 Return the transformer of the macro @var{m}. This will return a procedure, for
1269 which one may ask the docstring. That's the whole reason this section is
1270 documented. Actually a part of the result of @code{macro-binding}.
1271 @end deffn
1272
1273
1274 @c Local Variables:
1275 @c TeX-master: "guile.texi"
1276 @c End: