Merge branch 'master' into boehm-demers-weiser-gc
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23 \f
24 /* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
29 * All objects satisfying SCM_FRACTIONP are never an integer.
30 */
31
32 /* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
43
44 #ifdef HAVE_CONFIG_H
45 # include <config.h>
46 #endif
47
48 #include <math.h>
49 #include <ctype.h>
50 #include <string.h>
51
52 #if HAVE_COMPLEX_H
53 #include <complex.h>
54 #endif
55
56 #include "libguile/_scm.h"
57 #include "libguile/feature.h"
58 #include "libguile/ports.h"
59 #include "libguile/root.h"
60 #include "libguile/smob.h"
61 #include "libguile/strings.h"
62
63 #include "libguile/validate.h"
64 #include "libguile/numbers.h"
65 #include "libguile/deprecation.h"
66
67 #include "libguile/eq.h"
68
69 #include "libguile/discouraged.h"
70
71 /* values per glibc, if not already defined */
72 #ifndef M_LOG10E
73 #define M_LOG10E 0.43429448190325182765
74 #endif
75 #ifndef M_PI
76 #define M_PI 3.14159265358979323846
77 #endif
78
79 \f
80
81 /*
82 Wonder if this might be faster for some of our code? A switch on
83 the numtag would jump directly to the right case, and the
84 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
85
86 #define SCM_I_NUMTAG_NOTNUM 0
87 #define SCM_I_NUMTAG_INUM 1
88 #define SCM_I_NUMTAG_BIG scm_tc16_big
89 #define SCM_I_NUMTAG_REAL scm_tc16_real
90 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
91 #define SCM_I_NUMTAG(x) \
92 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
93 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
94 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
95 : SCM_I_NUMTAG_NOTNUM)))
96 */
97 /* the macro above will not work as is with fractions */
98
99
100 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
101
102 /* FLOBUFLEN is the maximum number of characters neccessary for the
103 * printed or scm_string representation of an inexact number.
104 */
105 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
106
107 #if defined (SCO)
108 #if ! defined (HAVE_ISNAN)
109 #define HAVE_ISNAN
110 static int
111 isnan (double x)
112 {
113 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
114 }
115 #endif
116 #if ! defined (HAVE_ISINF)
117 #define HAVE_ISINF
118 static int
119 isinf (double x)
120 {
121 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
122 }
123
124 #endif
125 #endif
126
127
128 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
129 an explicit check. In some future gmp (don't know what version number),
130 mpz_cmp_d is supposed to do this itself. */
131 #if 1
132 #define xmpz_cmp_d(z, d) \
133 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
134 #else
135 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
136 #endif
137
138 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
139 isinf. It does have finite and isnan though, hence the use of those.
140 fpclass would be a possibility on that system too. */
141 static int
142 xisinf (double x)
143 {
144 #if defined (HAVE_ISINF)
145 return isinf (x);
146 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
147 return (! (finite (x) || isnan (x)));
148 #else
149 return 0;
150 #endif
151 }
152
153 static int
154 xisnan (double x)
155 {
156 #if defined (HAVE_ISNAN)
157 return isnan (x);
158 #else
159 return 0;
160 #endif
161 }
162
163 #if defined (GUILE_I)
164 #if HAVE_COMPLEX_DOUBLE
165
166 /* For an SCM object Z which is a complex number (ie. satisfies
167 SCM_COMPLEXP), return its value as a C level "complex double". */
168 #define SCM_COMPLEX_VALUE(z) \
169 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
170
171 static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
172
173 /* Convert a C "complex double" to an SCM value. */
174 static inline SCM
175 scm_from_complex_double (complex double z)
176 {
177 return scm_c_make_rectangular (creal (z), cimag (z));
178 }
179
180 #endif /* HAVE_COMPLEX_DOUBLE */
181 #endif /* GUILE_I */
182
183 \f
184
185 static mpz_t z_negative_one;
186
187 \f
188
189 SCM
190 scm_i_mkbig ()
191 {
192 /* Return a newly created bignum. */
193 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
194 mpz_init (SCM_I_BIG_MPZ (z));
195 return z;
196 }
197
198 SCM
199 scm_i_long2big (long x)
200 {
201 /* Return a newly created bignum initialized to X. */
202 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
203 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
204 return z;
205 }
206
207 SCM
208 scm_i_ulong2big (unsigned long x)
209 {
210 /* Return a newly created bignum initialized to X. */
211 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
212 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
213 return z;
214 }
215
216 SCM
217 scm_i_clonebig (SCM src_big, int same_sign_p)
218 {
219 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
220 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
221 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
222 if (!same_sign_p)
223 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
224 return z;
225 }
226
227 int
228 scm_i_bigcmp (SCM x, SCM y)
229 {
230 /* Return neg if x < y, pos if x > y, and 0 if x == y */
231 /* presume we already know x and y are bignums */
232 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
233 scm_remember_upto_here_2 (x, y);
234 return result;
235 }
236
237 SCM
238 scm_i_dbl2big (double d)
239 {
240 /* results are only defined if d is an integer */
241 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
242 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
243 return z;
244 }
245
246 /* Convert a integer in double representation to a SCM number. */
247
248 SCM
249 scm_i_dbl2num (double u)
250 {
251 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
252 powers of 2, so there's no rounding when making "double" values
253 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
254 get rounded on a 64-bit machine, hence the "+1".
255
256 The use of floor() to force to an integer value ensures we get a
257 "numerically closest" value without depending on how a
258 double->long cast or how mpz_set_d will round. For reference,
259 double->long probably follows the hardware rounding mode,
260 mpz_set_d truncates towards zero. */
261
262 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
263 representable as a double? */
264
265 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
266 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
267 return SCM_I_MAKINUM ((long) u);
268 else
269 return scm_i_dbl2big (u);
270 }
271
272 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
273 with R5RS exact->inexact.
274
275 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
276 (ie. truncate towards zero), then adjust to get the closest double by
277 examining the next lower bit and adding 1 (to the absolute value) if
278 necessary.
279
280 Bignums exactly half way between representable doubles are rounded to the
281 next higher absolute value (ie. away from zero). This seems like an
282 adequate interpretation of R5RS "numerically closest", and it's easier
283 and faster than a full "nearest-even" style.
284
285 The bit test must be done on the absolute value of the mpz_t, which means
286 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
287 negatives as twos complement.
288
289 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
290 following the hardware rounding mode, but applied to the absolute value
291 of the mpz_t operand. This is not what we want so we put the high
292 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
293 mpz_get_d is supposed to always truncate towards zero.
294
295 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
296 is a slowdown. It'd be faster to pick out the relevant high bits with
297 mpz_getlimbn if we could be bothered coding that, and if the new
298 truncating gmp doesn't come out. */
299
300 double
301 scm_i_big2dbl (SCM b)
302 {
303 double result;
304 size_t bits;
305
306 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
307
308 #if 1
309 {
310 /* Current GMP, eg. 4.1.3, force truncation towards zero */
311 mpz_t tmp;
312 if (bits > DBL_MANT_DIG)
313 {
314 size_t shift = bits - DBL_MANT_DIG;
315 mpz_init2 (tmp, DBL_MANT_DIG);
316 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
317 result = ldexp (mpz_get_d (tmp), shift);
318 mpz_clear (tmp);
319 }
320 else
321 {
322 result = mpz_get_d (SCM_I_BIG_MPZ (b));
323 }
324 }
325 #else
326 /* Future GMP */
327 result = mpz_get_d (SCM_I_BIG_MPZ (b));
328 #endif
329
330 if (bits > DBL_MANT_DIG)
331 {
332 unsigned long pos = bits - DBL_MANT_DIG - 1;
333 /* test bit number "pos" in absolute value */
334 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
335 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
336 {
337 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
338 }
339 }
340
341 scm_remember_upto_here_1 (b);
342 return result;
343 }
344
345 SCM
346 scm_i_normbig (SCM b)
347 {
348 /* convert a big back to a fixnum if it'll fit */
349 /* presume b is a bignum */
350 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
351 {
352 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
353 if (SCM_FIXABLE (val))
354 b = SCM_I_MAKINUM (val);
355 }
356 return b;
357 }
358
359 static SCM_C_INLINE_KEYWORD SCM
360 scm_i_mpz2num (mpz_t b)
361 {
362 /* convert a mpz number to a SCM number. */
363 if (mpz_fits_slong_p (b))
364 {
365 long val = mpz_get_si (b);
366 if (SCM_FIXABLE (val))
367 return SCM_I_MAKINUM (val);
368 }
369
370 {
371 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
372 mpz_init_set (SCM_I_BIG_MPZ (z), b);
373 return z;
374 }
375 }
376
377 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
378 static SCM scm_divide2real (SCM x, SCM y);
379
380 static SCM
381 scm_i_make_ratio (SCM numerator, SCM denominator)
382 #define FUNC_NAME "make-ratio"
383 {
384 /* First make sure the arguments are proper.
385 */
386 if (SCM_I_INUMP (denominator))
387 {
388 if (scm_is_eq (denominator, SCM_INUM0))
389 scm_num_overflow ("make-ratio");
390 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
391 return numerator;
392 }
393 else
394 {
395 if (!(SCM_BIGP(denominator)))
396 SCM_WRONG_TYPE_ARG (2, denominator);
397 }
398 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
399 SCM_WRONG_TYPE_ARG (1, numerator);
400
401 /* Then flip signs so that the denominator is positive.
402 */
403 if (scm_is_true (scm_negative_p (denominator)))
404 {
405 numerator = scm_difference (numerator, SCM_UNDEFINED);
406 denominator = scm_difference (denominator, SCM_UNDEFINED);
407 }
408
409 /* Now consider for each of the four fixnum/bignum combinations
410 whether the rational number is really an integer.
411 */
412 if (SCM_I_INUMP (numerator))
413 {
414 long x = SCM_I_INUM (numerator);
415 if (scm_is_eq (numerator, SCM_INUM0))
416 return SCM_INUM0;
417 if (SCM_I_INUMP (denominator))
418 {
419 long y;
420 y = SCM_I_INUM (denominator);
421 if (x == y)
422 return SCM_I_MAKINUM(1);
423 if ((x % y) == 0)
424 return SCM_I_MAKINUM (x / y);
425 }
426 else
427 {
428 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
429 of that value for the denominator, as a bignum. Apart from
430 that case, abs(bignum) > abs(inum) so inum/bignum is not an
431 integer. */
432 if (x == SCM_MOST_NEGATIVE_FIXNUM
433 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
434 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
435 return SCM_I_MAKINUM(-1);
436 }
437 }
438 else if (SCM_BIGP (numerator))
439 {
440 if (SCM_I_INUMP (denominator))
441 {
442 long yy = SCM_I_INUM (denominator);
443 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
444 return scm_divide (numerator, denominator);
445 }
446 else
447 {
448 if (scm_is_eq (numerator, denominator))
449 return SCM_I_MAKINUM(1);
450 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
451 SCM_I_BIG_MPZ (denominator)))
452 return scm_divide(numerator, denominator);
453 }
454 }
455
456 /* No, it's a proper fraction.
457 */
458 {
459 SCM divisor = scm_gcd (numerator, denominator);
460 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
461 {
462 numerator = scm_divide (numerator, divisor);
463 denominator = scm_divide (denominator, divisor);
464 }
465
466 return scm_double_cell (scm_tc16_fraction,
467 SCM_UNPACK (numerator),
468 SCM_UNPACK (denominator), 0);
469 }
470 }
471 #undef FUNC_NAME
472
473 double
474 scm_i_fraction2double (SCM z)
475 {
476 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
477 SCM_FRACTION_DENOMINATOR (z)));
478 }
479
480 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
481 (SCM x),
482 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
483 "otherwise.")
484 #define FUNC_NAME s_scm_exact_p
485 {
486 if (SCM_I_INUMP (x))
487 return SCM_BOOL_T;
488 if (SCM_BIGP (x))
489 return SCM_BOOL_T;
490 if (SCM_FRACTIONP (x))
491 return SCM_BOOL_T;
492 if (SCM_NUMBERP (x))
493 return SCM_BOOL_F;
494 SCM_WRONG_TYPE_ARG (1, x);
495 }
496 #undef FUNC_NAME
497
498
499 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
500 (SCM n),
501 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
502 "otherwise.")
503 #define FUNC_NAME s_scm_odd_p
504 {
505 if (SCM_I_INUMP (n))
506 {
507 long val = SCM_I_INUM (n);
508 return scm_from_bool ((val & 1L) != 0);
509 }
510 else if (SCM_BIGP (n))
511 {
512 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
513 scm_remember_upto_here_1 (n);
514 return scm_from_bool (odd_p);
515 }
516 else if (scm_is_true (scm_inf_p (n)))
517 return SCM_BOOL_T;
518 else if (SCM_REALP (n))
519 {
520 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
521 if (rem == 1.0)
522 return SCM_BOOL_T;
523 else if (rem == 0.0)
524 return SCM_BOOL_F;
525 else
526 SCM_WRONG_TYPE_ARG (1, n);
527 }
528 else
529 SCM_WRONG_TYPE_ARG (1, n);
530 }
531 #undef FUNC_NAME
532
533
534 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
535 (SCM n),
536 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
537 "otherwise.")
538 #define FUNC_NAME s_scm_even_p
539 {
540 if (SCM_I_INUMP (n))
541 {
542 long val = SCM_I_INUM (n);
543 return scm_from_bool ((val & 1L) == 0);
544 }
545 else if (SCM_BIGP (n))
546 {
547 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
548 scm_remember_upto_here_1 (n);
549 return scm_from_bool (even_p);
550 }
551 else if (scm_is_true (scm_inf_p (n)))
552 return SCM_BOOL_T;
553 else if (SCM_REALP (n))
554 {
555 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
556 if (rem == 1.0)
557 return SCM_BOOL_F;
558 else if (rem == 0.0)
559 return SCM_BOOL_T;
560 else
561 SCM_WRONG_TYPE_ARG (1, n);
562 }
563 else
564 SCM_WRONG_TYPE_ARG (1, n);
565 }
566 #undef FUNC_NAME
567
568 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
569 (SCM x),
570 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
571 "or @samp{-inf.0}, @code{#f} otherwise.")
572 #define FUNC_NAME s_scm_inf_p
573 {
574 if (SCM_REALP (x))
575 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
576 else if (SCM_COMPLEXP (x))
577 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
578 || xisinf (SCM_COMPLEX_IMAG (x)));
579 else
580 return SCM_BOOL_F;
581 }
582 #undef FUNC_NAME
583
584 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
585 (SCM n),
586 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
587 "otherwise.")
588 #define FUNC_NAME s_scm_nan_p
589 {
590 if (SCM_REALP (n))
591 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
592 else if (SCM_COMPLEXP (n))
593 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
594 || xisnan (SCM_COMPLEX_IMAG (n)));
595 else
596 return SCM_BOOL_F;
597 }
598 #undef FUNC_NAME
599
600 /* Guile's idea of infinity. */
601 static double guile_Inf;
602
603 /* Guile's idea of not a number. */
604 static double guile_NaN;
605
606 static void
607 guile_ieee_init (void)
608 {
609 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
610
611 /* Some version of gcc on some old version of Linux used to crash when
612 trying to make Inf and NaN. */
613
614 #ifdef INFINITY
615 /* C99 INFINITY, when available.
616 FIXME: The standard allows for INFINITY to be something that overflows
617 at compile time. We ought to have a configure test to check for that
618 before trying to use it. (But in practice we believe this is not a
619 problem on any system guile is likely to target.) */
620 guile_Inf = INFINITY;
621 #elif HAVE_DINFINITY
622 /* OSF */
623 extern unsigned int DINFINITY[2];
624 guile_Inf = (*((double *) (DINFINITY)));
625 #else
626 double tmp = 1e+10;
627 guile_Inf = tmp;
628 for (;;)
629 {
630 guile_Inf *= 1e+10;
631 if (guile_Inf == tmp)
632 break;
633 tmp = guile_Inf;
634 }
635 #endif
636
637 #endif
638
639 #if defined (HAVE_ISNAN)
640
641 #ifdef NAN
642 /* C99 NAN, when available */
643 guile_NaN = NAN;
644 #elif HAVE_DQNAN
645 {
646 /* OSF */
647 extern unsigned int DQNAN[2];
648 guile_NaN = (*((double *)(DQNAN)));
649 }
650 #else
651 guile_NaN = guile_Inf / guile_Inf;
652 #endif
653
654 #endif
655 }
656
657 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
658 (void),
659 "Return Inf.")
660 #define FUNC_NAME s_scm_inf
661 {
662 static int initialized = 0;
663 if (! initialized)
664 {
665 guile_ieee_init ();
666 initialized = 1;
667 }
668 return scm_from_double (guile_Inf);
669 }
670 #undef FUNC_NAME
671
672 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
673 (void),
674 "Return NaN.")
675 #define FUNC_NAME s_scm_nan
676 {
677 static int initialized = 0;
678 if (!initialized)
679 {
680 guile_ieee_init ();
681 initialized = 1;
682 }
683 return scm_from_double (guile_NaN);
684 }
685 #undef FUNC_NAME
686
687
688 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
689 (SCM x),
690 "Return the absolute value of @var{x}.")
691 #define FUNC_NAME
692 {
693 if (SCM_I_INUMP (x))
694 {
695 long int xx = SCM_I_INUM (x);
696 if (xx >= 0)
697 return x;
698 else if (SCM_POSFIXABLE (-xx))
699 return SCM_I_MAKINUM (-xx);
700 else
701 return scm_i_long2big (-xx);
702 }
703 else if (SCM_BIGP (x))
704 {
705 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
706 if (sgn < 0)
707 return scm_i_clonebig (x, 0);
708 else
709 return x;
710 }
711 else if (SCM_REALP (x))
712 {
713 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
714 double xx = SCM_REAL_VALUE (x);
715 if (xx < 0.0)
716 return scm_from_double (-xx);
717 else
718 return x;
719 }
720 else if (SCM_FRACTIONP (x))
721 {
722 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
723 return x;
724 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
725 SCM_FRACTION_DENOMINATOR (x));
726 }
727 else
728 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
729 }
730 #undef FUNC_NAME
731
732
733 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
734 /* "Return the quotient of the numbers @var{x} and @var{y}."
735 */
736 SCM
737 scm_quotient (SCM x, SCM y)
738 {
739 if (SCM_I_INUMP (x))
740 {
741 long xx = SCM_I_INUM (x);
742 if (SCM_I_INUMP (y))
743 {
744 long yy = SCM_I_INUM (y);
745 if (yy == 0)
746 scm_num_overflow (s_quotient);
747 else
748 {
749 long z = xx / yy;
750 if (SCM_FIXABLE (z))
751 return SCM_I_MAKINUM (z);
752 else
753 return scm_i_long2big (z);
754 }
755 }
756 else if (SCM_BIGP (y))
757 {
758 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
759 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
760 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
761 {
762 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
763 scm_remember_upto_here_1 (y);
764 return SCM_I_MAKINUM (-1);
765 }
766 else
767 return SCM_I_MAKINUM (0);
768 }
769 else
770 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
771 }
772 else if (SCM_BIGP (x))
773 {
774 if (SCM_I_INUMP (y))
775 {
776 long yy = SCM_I_INUM (y);
777 if (yy == 0)
778 scm_num_overflow (s_quotient);
779 else if (yy == 1)
780 return x;
781 else
782 {
783 SCM result = scm_i_mkbig ();
784 if (yy < 0)
785 {
786 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
787 SCM_I_BIG_MPZ (x),
788 - yy);
789 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
790 }
791 else
792 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
793 scm_remember_upto_here_1 (x);
794 return scm_i_normbig (result);
795 }
796 }
797 else if (SCM_BIGP (y))
798 {
799 SCM result = scm_i_mkbig ();
800 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
801 SCM_I_BIG_MPZ (x),
802 SCM_I_BIG_MPZ (y));
803 scm_remember_upto_here_2 (x, y);
804 return scm_i_normbig (result);
805 }
806 else
807 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
808 }
809 else
810 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
811 }
812
813 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
814 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
815 * "@lisp\n"
816 * "(remainder 13 4) @result{} 1\n"
817 * "(remainder -13 4) @result{} -1\n"
818 * "@end lisp"
819 */
820 SCM
821 scm_remainder (SCM x, SCM y)
822 {
823 if (SCM_I_INUMP (x))
824 {
825 if (SCM_I_INUMP (y))
826 {
827 long yy = SCM_I_INUM (y);
828 if (yy == 0)
829 scm_num_overflow (s_remainder);
830 else
831 {
832 long z = SCM_I_INUM (x) % yy;
833 return SCM_I_MAKINUM (z);
834 }
835 }
836 else if (SCM_BIGP (y))
837 {
838 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
839 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
840 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
841 {
842 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
843 scm_remember_upto_here_1 (y);
844 return SCM_I_MAKINUM (0);
845 }
846 else
847 return x;
848 }
849 else
850 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
851 }
852 else if (SCM_BIGP (x))
853 {
854 if (SCM_I_INUMP (y))
855 {
856 long yy = SCM_I_INUM (y);
857 if (yy == 0)
858 scm_num_overflow (s_remainder);
859 else
860 {
861 SCM result = scm_i_mkbig ();
862 if (yy < 0)
863 yy = - yy;
864 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
865 scm_remember_upto_here_1 (x);
866 return scm_i_normbig (result);
867 }
868 }
869 else if (SCM_BIGP (y))
870 {
871 SCM result = scm_i_mkbig ();
872 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
873 SCM_I_BIG_MPZ (x),
874 SCM_I_BIG_MPZ (y));
875 scm_remember_upto_here_2 (x, y);
876 return scm_i_normbig (result);
877 }
878 else
879 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
880 }
881 else
882 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
883 }
884
885
886 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
887 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
888 * "@lisp\n"
889 * "(modulo 13 4) @result{} 1\n"
890 * "(modulo -13 4) @result{} 3\n"
891 * "@end lisp"
892 */
893 SCM
894 scm_modulo (SCM x, SCM y)
895 {
896 if (SCM_I_INUMP (x))
897 {
898 long xx = SCM_I_INUM (x);
899 if (SCM_I_INUMP (y))
900 {
901 long yy = SCM_I_INUM (y);
902 if (yy == 0)
903 scm_num_overflow (s_modulo);
904 else
905 {
906 /* C99 specifies that "%" is the remainder corresponding to a
907 quotient rounded towards zero, and that's also traditional
908 for machine division, so z here should be well defined. */
909 long z = xx % yy;
910 long result;
911
912 if (yy < 0)
913 {
914 if (z > 0)
915 result = z + yy;
916 else
917 result = z;
918 }
919 else
920 {
921 if (z < 0)
922 result = z + yy;
923 else
924 result = z;
925 }
926 return SCM_I_MAKINUM (result);
927 }
928 }
929 else if (SCM_BIGP (y))
930 {
931 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
932 {
933 mpz_t z_x;
934 SCM result;
935
936 if (sgn_y < 0)
937 {
938 SCM pos_y = scm_i_clonebig (y, 0);
939 /* do this after the last scm_op */
940 mpz_init_set_si (z_x, xx);
941 result = pos_y; /* re-use this bignum */
942 mpz_mod (SCM_I_BIG_MPZ (result),
943 z_x,
944 SCM_I_BIG_MPZ (pos_y));
945 scm_remember_upto_here_1 (pos_y);
946 }
947 else
948 {
949 result = scm_i_mkbig ();
950 /* do this after the last scm_op */
951 mpz_init_set_si (z_x, xx);
952 mpz_mod (SCM_I_BIG_MPZ (result),
953 z_x,
954 SCM_I_BIG_MPZ (y));
955 scm_remember_upto_here_1 (y);
956 }
957
958 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
959 mpz_add (SCM_I_BIG_MPZ (result),
960 SCM_I_BIG_MPZ (y),
961 SCM_I_BIG_MPZ (result));
962 scm_remember_upto_here_1 (y);
963 /* and do this before the next one */
964 mpz_clear (z_x);
965 return scm_i_normbig (result);
966 }
967 }
968 else
969 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
970 }
971 else if (SCM_BIGP (x))
972 {
973 if (SCM_I_INUMP (y))
974 {
975 long yy = SCM_I_INUM (y);
976 if (yy == 0)
977 scm_num_overflow (s_modulo);
978 else
979 {
980 SCM result = scm_i_mkbig ();
981 mpz_mod_ui (SCM_I_BIG_MPZ (result),
982 SCM_I_BIG_MPZ (x),
983 (yy < 0) ? - yy : yy);
984 scm_remember_upto_here_1 (x);
985 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
986 mpz_sub_ui (SCM_I_BIG_MPZ (result),
987 SCM_I_BIG_MPZ (result),
988 - yy);
989 return scm_i_normbig (result);
990 }
991 }
992 else if (SCM_BIGP (y))
993 {
994 {
995 SCM result = scm_i_mkbig ();
996 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
997 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
998 mpz_mod (SCM_I_BIG_MPZ (result),
999 SCM_I_BIG_MPZ (x),
1000 SCM_I_BIG_MPZ (pos_y));
1001
1002 scm_remember_upto_here_1 (x);
1003 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1004 mpz_add (SCM_I_BIG_MPZ (result),
1005 SCM_I_BIG_MPZ (y),
1006 SCM_I_BIG_MPZ (result));
1007 scm_remember_upto_here_2 (y, pos_y);
1008 return scm_i_normbig (result);
1009 }
1010 }
1011 else
1012 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1013 }
1014 else
1015 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
1016 }
1017
1018 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
1019 /* "Return the greatest common divisor of all arguments.\n"
1020 * "If called without arguments, 0 is returned."
1021 */
1022 SCM
1023 scm_gcd (SCM x, SCM y)
1024 {
1025 if (SCM_UNBNDP (y))
1026 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
1027
1028 if (SCM_I_INUMP (x))
1029 {
1030 if (SCM_I_INUMP (y))
1031 {
1032 long xx = SCM_I_INUM (x);
1033 long yy = SCM_I_INUM (y);
1034 long u = xx < 0 ? -xx : xx;
1035 long v = yy < 0 ? -yy : yy;
1036 long result;
1037 if (xx == 0)
1038 result = v;
1039 else if (yy == 0)
1040 result = u;
1041 else
1042 {
1043 long k = 1;
1044 long t;
1045 /* Determine a common factor 2^k */
1046 while (!(1 & (u | v)))
1047 {
1048 k <<= 1;
1049 u >>= 1;
1050 v >>= 1;
1051 }
1052 /* Now, any factor 2^n can be eliminated */
1053 if (u & 1)
1054 t = -v;
1055 else
1056 {
1057 t = u;
1058 b3:
1059 t = SCM_SRS (t, 1);
1060 }
1061 if (!(1 & t))
1062 goto b3;
1063 if (t > 0)
1064 u = t;
1065 else
1066 v = -t;
1067 t = u - v;
1068 if (t != 0)
1069 goto b3;
1070 result = u * k;
1071 }
1072 return (SCM_POSFIXABLE (result)
1073 ? SCM_I_MAKINUM (result)
1074 : scm_i_long2big (result));
1075 }
1076 else if (SCM_BIGP (y))
1077 {
1078 SCM_SWAP (x, y);
1079 goto big_inum;
1080 }
1081 else
1082 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1083 }
1084 else if (SCM_BIGP (x))
1085 {
1086 if (SCM_I_INUMP (y))
1087 {
1088 unsigned long result;
1089 long yy;
1090 big_inum:
1091 yy = SCM_I_INUM (y);
1092 if (yy == 0)
1093 return scm_abs (x);
1094 if (yy < 0)
1095 yy = -yy;
1096 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1097 scm_remember_upto_here_1 (x);
1098 return (SCM_POSFIXABLE (result)
1099 ? SCM_I_MAKINUM (result)
1100 : scm_from_ulong (result));
1101 }
1102 else if (SCM_BIGP (y))
1103 {
1104 SCM result = scm_i_mkbig ();
1105 mpz_gcd (SCM_I_BIG_MPZ (result),
1106 SCM_I_BIG_MPZ (x),
1107 SCM_I_BIG_MPZ (y));
1108 scm_remember_upto_here_2 (x, y);
1109 return scm_i_normbig (result);
1110 }
1111 else
1112 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1113 }
1114 else
1115 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1116 }
1117
1118 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1119 /* "Return the least common multiple of the arguments.\n"
1120 * "If called without arguments, 1 is returned."
1121 */
1122 SCM
1123 scm_lcm (SCM n1, SCM n2)
1124 {
1125 if (SCM_UNBNDP (n2))
1126 {
1127 if (SCM_UNBNDP (n1))
1128 return SCM_I_MAKINUM (1L);
1129 n2 = SCM_I_MAKINUM (1L);
1130 }
1131
1132 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1133 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1134 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1135 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1136
1137 if (SCM_I_INUMP (n1))
1138 {
1139 if (SCM_I_INUMP (n2))
1140 {
1141 SCM d = scm_gcd (n1, n2);
1142 if (scm_is_eq (d, SCM_INUM0))
1143 return d;
1144 else
1145 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1146 }
1147 else
1148 {
1149 /* inum n1, big n2 */
1150 inumbig:
1151 {
1152 SCM result = scm_i_mkbig ();
1153 long nn1 = SCM_I_INUM (n1);
1154 if (nn1 == 0) return SCM_INUM0;
1155 if (nn1 < 0) nn1 = - nn1;
1156 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1157 scm_remember_upto_here_1 (n2);
1158 return result;
1159 }
1160 }
1161 }
1162 else
1163 {
1164 /* big n1 */
1165 if (SCM_I_INUMP (n2))
1166 {
1167 SCM_SWAP (n1, n2);
1168 goto inumbig;
1169 }
1170 else
1171 {
1172 SCM result = scm_i_mkbig ();
1173 mpz_lcm(SCM_I_BIG_MPZ (result),
1174 SCM_I_BIG_MPZ (n1),
1175 SCM_I_BIG_MPZ (n2));
1176 scm_remember_upto_here_2(n1, n2);
1177 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1178 return result;
1179 }
1180 }
1181 }
1182
1183 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1184
1185 Logand:
1186 X Y Result Method:
1187 (len)
1188 + + + x (map digit:logand X Y)
1189 + - + x (map digit:logand X (lognot (+ -1 Y)))
1190 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1191 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1192
1193 Logior:
1194 X Y Result Method:
1195
1196 + + + (map digit:logior X Y)
1197 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1198 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1199 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1200
1201 Logxor:
1202 X Y Result Method:
1203
1204 + + + (map digit:logxor X Y)
1205 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1206 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1207 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1208
1209 Logtest:
1210 X Y Result
1211
1212 + + (any digit:logand X Y)
1213 + - (any digit:logand X (lognot (+ -1 Y)))
1214 - + (any digit:logand (lognot (+ -1 X)) Y)
1215 - - #t
1216
1217 */
1218
1219 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1220 (SCM n1, SCM n2),
1221 "Return the bitwise AND of the integer arguments.\n\n"
1222 "@lisp\n"
1223 "(logand) @result{} -1\n"
1224 "(logand 7) @result{} 7\n"
1225 "(logand #b111 #b011 #b001) @result{} 1\n"
1226 "@end lisp")
1227 #define FUNC_NAME s_scm_logand
1228 {
1229 long int nn1;
1230
1231 if (SCM_UNBNDP (n2))
1232 {
1233 if (SCM_UNBNDP (n1))
1234 return SCM_I_MAKINUM (-1);
1235 else if (!SCM_NUMBERP (n1))
1236 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1237 else if (SCM_NUMBERP (n1))
1238 return n1;
1239 else
1240 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1241 }
1242
1243 if (SCM_I_INUMP (n1))
1244 {
1245 nn1 = SCM_I_INUM (n1);
1246 if (SCM_I_INUMP (n2))
1247 {
1248 long nn2 = SCM_I_INUM (n2);
1249 return SCM_I_MAKINUM (nn1 & nn2);
1250 }
1251 else if SCM_BIGP (n2)
1252 {
1253 intbig:
1254 if (n1 == 0)
1255 return SCM_INUM0;
1256 {
1257 SCM result_z = scm_i_mkbig ();
1258 mpz_t nn1_z;
1259 mpz_init_set_si (nn1_z, nn1);
1260 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1261 scm_remember_upto_here_1 (n2);
1262 mpz_clear (nn1_z);
1263 return scm_i_normbig (result_z);
1264 }
1265 }
1266 else
1267 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1268 }
1269 else if (SCM_BIGP (n1))
1270 {
1271 if (SCM_I_INUMP (n2))
1272 {
1273 SCM_SWAP (n1, n2);
1274 nn1 = SCM_I_INUM (n1);
1275 goto intbig;
1276 }
1277 else if (SCM_BIGP (n2))
1278 {
1279 SCM result_z = scm_i_mkbig ();
1280 mpz_and (SCM_I_BIG_MPZ (result_z),
1281 SCM_I_BIG_MPZ (n1),
1282 SCM_I_BIG_MPZ (n2));
1283 scm_remember_upto_here_2 (n1, n2);
1284 return scm_i_normbig (result_z);
1285 }
1286 else
1287 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1288 }
1289 else
1290 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1291 }
1292 #undef FUNC_NAME
1293
1294
1295 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1296 (SCM n1, SCM n2),
1297 "Return the bitwise OR of the integer arguments.\n\n"
1298 "@lisp\n"
1299 "(logior) @result{} 0\n"
1300 "(logior 7) @result{} 7\n"
1301 "(logior #b000 #b001 #b011) @result{} 3\n"
1302 "@end lisp")
1303 #define FUNC_NAME s_scm_logior
1304 {
1305 long int nn1;
1306
1307 if (SCM_UNBNDP (n2))
1308 {
1309 if (SCM_UNBNDP (n1))
1310 return SCM_INUM0;
1311 else if (SCM_NUMBERP (n1))
1312 return n1;
1313 else
1314 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1315 }
1316
1317 if (SCM_I_INUMP (n1))
1318 {
1319 nn1 = SCM_I_INUM (n1);
1320 if (SCM_I_INUMP (n2))
1321 {
1322 long nn2 = SCM_I_INUM (n2);
1323 return SCM_I_MAKINUM (nn1 | nn2);
1324 }
1325 else if (SCM_BIGP (n2))
1326 {
1327 intbig:
1328 if (nn1 == 0)
1329 return n2;
1330 {
1331 SCM result_z = scm_i_mkbig ();
1332 mpz_t nn1_z;
1333 mpz_init_set_si (nn1_z, nn1);
1334 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1335 scm_remember_upto_here_1 (n2);
1336 mpz_clear (nn1_z);
1337 return scm_i_normbig (result_z);
1338 }
1339 }
1340 else
1341 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1342 }
1343 else if (SCM_BIGP (n1))
1344 {
1345 if (SCM_I_INUMP (n2))
1346 {
1347 SCM_SWAP (n1, n2);
1348 nn1 = SCM_I_INUM (n1);
1349 goto intbig;
1350 }
1351 else if (SCM_BIGP (n2))
1352 {
1353 SCM result_z = scm_i_mkbig ();
1354 mpz_ior (SCM_I_BIG_MPZ (result_z),
1355 SCM_I_BIG_MPZ (n1),
1356 SCM_I_BIG_MPZ (n2));
1357 scm_remember_upto_here_2 (n1, n2);
1358 return scm_i_normbig (result_z);
1359 }
1360 else
1361 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1362 }
1363 else
1364 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1365 }
1366 #undef FUNC_NAME
1367
1368
1369 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1370 (SCM n1, SCM n2),
1371 "Return the bitwise XOR of the integer arguments. A bit is\n"
1372 "set in the result if it is set in an odd number of arguments.\n"
1373 "@lisp\n"
1374 "(logxor) @result{} 0\n"
1375 "(logxor 7) @result{} 7\n"
1376 "(logxor #b000 #b001 #b011) @result{} 2\n"
1377 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1378 "@end lisp")
1379 #define FUNC_NAME s_scm_logxor
1380 {
1381 long int nn1;
1382
1383 if (SCM_UNBNDP (n2))
1384 {
1385 if (SCM_UNBNDP (n1))
1386 return SCM_INUM0;
1387 else if (SCM_NUMBERP (n1))
1388 return n1;
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1391 }
1392
1393 if (SCM_I_INUMP (n1))
1394 {
1395 nn1 = SCM_I_INUM (n1);
1396 if (SCM_I_INUMP (n2))
1397 {
1398 long nn2 = SCM_I_INUM (n2);
1399 return SCM_I_MAKINUM (nn1 ^ nn2);
1400 }
1401 else if (SCM_BIGP (n2))
1402 {
1403 intbig:
1404 {
1405 SCM result_z = scm_i_mkbig ();
1406 mpz_t nn1_z;
1407 mpz_init_set_si (nn1_z, nn1);
1408 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1409 scm_remember_upto_here_1 (n2);
1410 mpz_clear (nn1_z);
1411 return scm_i_normbig (result_z);
1412 }
1413 }
1414 else
1415 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1416 }
1417 else if (SCM_BIGP (n1))
1418 {
1419 if (SCM_I_INUMP (n2))
1420 {
1421 SCM_SWAP (n1, n2);
1422 nn1 = SCM_I_INUM (n1);
1423 goto intbig;
1424 }
1425 else if (SCM_BIGP (n2))
1426 {
1427 SCM result_z = scm_i_mkbig ();
1428 mpz_xor (SCM_I_BIG_MPZ (result_z),
1429 SCM_I_BIG_MPZ (n1),
1430 SCM_I_BIG_MPZ (n2));
1431 scm_remember_upto_here_2 (n1, n2);
1432 return scm_i_normbig (result_z);
1433 }
1434 else
1435 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1436 }
1437 else
1438 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1439 }
1440 #undef FUNC_NAME
1441
1442
1443 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1444 (SCM j, SCM k),
1445 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1446 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1447 "without actually calculating the @code{logand}, just testing\n"
1448 "for non-zero.\n"
1449 "\n"
1450 "@lisp\n"
1451 "(logtest #b0100 #b1011) @result{} #f\n"
1452 "(logtest #b0100 #b0111) @result{} #t\n"
1453 "@end lisp")
1454 #define FUNC_NAME s_scm_logtest
1455 {
1456 long int nj;
1457
1458 if (SCM_I_INUMP (j))
1459 {
1460 nj = SCM_I_INUM (j);
1461 if (SCM_I_INUMP (k))
1462 {
1463 long nk = SCM_I_INUM (k);
1464 return scm_from_bool (nj & nk);
1465 }
1466 else if (SCM_BIGP (k))
1467 {
1468 intbig:
1469 if (nj == 0)
1470 return SCM_BOOL_F;
1471 {
1472 SCM result;
1473 mpz_t nj_z;
1474 mpz_init_set_si (nj_z, nj);
1475 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1476 scm_remember_upto_here_1 (k);
1477 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1478 mpz_clear (nj_z);
1479 return result;
1480 }
1481 }
1482 else
1483 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1484 }
1485 else if (SCM_BIGP (j))
1486 {
1487 if (SCM_I_INUMP (k))
1488 {
1489 SCM_SWAP (j, k);
1490 nj = SCM_I_INUM (j);
1491 goto intbig;
1492 }
1493 else if (SCM_BIGP (k))
1494 {
1495 SCM result;
1496 mpz_t result_z;
1497 mpz_init (result_z);
1498 mpz_and (result_z,
1499 SCM_I_BIG_MPZ (j),
1500 SCM_I_BIG_MPZ (k));
1501 scm_remember_upto_here_2 (j, k);
1502 result = scm_from_bool (mpz_sgn (result_z) != 0);
1503 mpz_clear (result_z);
1504 return result;
1505 }
1506 else
1507 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1508 }
1509 else
1510 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1511 }
1512 #undef FUNC_NAME
1513
1514
1515 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1516 (SCM index, SCM j),
1517 "Test whether bit number @var{index} in @var{j} is set.\n"
1518 "@var{index} starts from 0 for the least significant bit.\n"
1519 "\n"
1520 "@lisp\n"
1521 "(logbit? 0 #b1101) @result{} #t\n"
1522 "(logbit? 1 #b1101) @result{} #f\n"
1523 "(logbit? 2 #b1101) @result{} #t\n"
1524 "(logbit? 3 #b1101) @result{} #t\n"
1525 "(logbit? 4 #b1101) @result{} #f\n"
1526 "@end lisp")
1527 #define FUNC_NAME s_scm_logbit_p
1528 {
1529 unsigned long int iindex;
1530 iindex = scm_to_ulong (index);
1531
1532 if (SCM_I_INUMP (j))
1533 {
1534 /* bits above what's in an inum follow the sign bit */
1535 iindex = min (iindex, SCM_LONG_BIT - 1);
1536 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1537 }
1538 else if (SCM_BIGP (j))
1539 {
1540 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1541 scm_remember_upto_here_1 (j);
1542 return scm_from_bool (val);
1543 }
1544 else
1545 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1546 }
1547 #undef FUNC_NAME
1548
1549
1550 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1551 (SCM n),
1552 "Return the integer which is the ones-complement of the integer\n"
1553 "argument.\n"
1554 "\n"
1555 "@lisp\n"
1556 "(number->string (lognot #b10000000) 2)\n"
1557 " @result{} \"-10000001\"\n"
1558 "(number->string (lognot #b0) 2)\n"
1559 " @result{} \"-1\"\n"
1560 "@end lisp")
1561 #define FUNC_NAME s_scm_lognot
1562 {
1563 if (SCM_I_INUMP (n)) {
1564 /* No overflow here, just need to toggle all the bits making up the inum.
1565 Enhancement: No need to strip the tag and add it back, could just xor
1566 a block of 1 bits, if that worked with the various debug versions of
1567 the SCM typedef. */
1568 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1569
1570 } else if (SCM_BIGP (n)) {
1571 SCM result = scm_i_mkbig ();
1572 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1573 scm_remember_upto_here_1 (n);
1574 return result;
1575
1576 } else {
1577 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1578 }
1579 }
1580 #undef FUNC_NAME
1581
1582 /* returns 0 if IN is not an integer. OUT must already be
1583 initialized. */
1584 static int
1585 coerce_to_big (SCM in, mpz_t out)
1586 {
1587 if (SCM_BIGP (in))
1588 mpz_set (out, SCM_I_BIG_MPZ (in));
1589 else if (SCM_I_INUMP (in))
1590 mpz_set_si (out, SCM_I_INUM (in));
1591 else
1592 return 0;
1593
1594 return 1;
1595 }
1596
1597 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1598 (SCM n, SCM k, SCM m),
1599 "Return @var{n} raised to the integer exponent\n"
1600 "@var{k}, modulo @var{m}.\n"
1601 "\n"
1602 "@lisp\n"
1603 "(modulo-expt 2 3 5)\n"
1604 " @result{} 3\n"
1605 "@end lisp")
1606 #define FUNC_NAME s_scm_modulo_expt
1607 {
1608 mpz_t n_tmp;
1609 mpz_t k_tmp;
1610 mpz_t m_tmp;
1611
1612 /* There are two classes of error we might encounter --
1613 1) Math errors, which we'll report by calling scm_num_overflow,
1614 and
1615 2) wrong-type errors, which of course we'll report by calling
1616 SCM_WRONG_TYPE_ARG.
1617 We don't report those errors immediately, however; instead we do
1618 some cleanup first. These variables tell us which error (if
1619 any) we should report after cleaning up.
1620 */
1621 int report_overflow = 0;
1622
1623 int position_of_wrong_type = 0;
1624 SCM value_of_wrong_type = SCM_INUM0;
1625
1626 SCM result = SCM_UNDEFINED;
1627
1628 mpz_init (n_tmp);
1629 mpz_init (k_tmp);
1630 mpz_init (m_tmp);
1631
1632 if (scm_is_eq (m, SCM_INUM0))
1633 {
1634 report_overflow = 1;
1635 goto cleanup;
1636 }
1637
1638 if (!coerce_to_big (n, n_tmp))
1639 {
1640 value_of_wrong_type = n;
1641 position_of_wrong_type = 1;
1642 goto cleanup;
1643 }
1644
1645 if (!coerce_to_big (k, k_tmp))
1646 {
1647 value_of_wrong_type = k;
1648 position_of_wrong_type = 2;
1649 goto cleanup;
1650 }
1651
1652 if (!coerce_to_big (m, m_tmp))
1653 {
1654 value_of_wrong_type = m;
1655 position_of_wrong_type = 3;
1656 goto cleanup;
1657 }
1658
1659 /* if the exponent K is negative, and we simply call mpz_powm, we
1660 will get a divide-by-zero exception when an inverse 1/n mod m
1661 doesn't exist (or is not unique). Since exceptions are hard to
1662 handle, we'll attempt the inversion "by hand" -- that way, we get
1663 a simple failure code, which is easy to handle. */
1664
1665 if (-1 == mpz_sgn (k_tmp))
1666 {
1667 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1668 {
1669 report_overflow = 1;
1670 goto cleanup;
1671 }
1672 mpz_neg (k_tmp, k_tmp);
1673 }
1674
1675 result = scm_i_mkbig ();
1676 mpz_powm (SCM_I_BIG_MPZ (result),
1677 n_tmp,
1678 k_tmp,
1679 m_tmp);
1680
1681 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1682 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1683
1684 cleanup:
1685 mpz_clear (m_tmp);
1686 mpz_clear (k_tmp);
1687 mpz_clear (n_tmp);
1688
1689 if (report_overflow)
1690 scm_num_overflow (FUNC_NAME);
1691
1692 if (position_of_wrong_type)
1693 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1694 value_of_wrong_type);
1695
1696 return scm_i_normbig (result);
1697 }
1698 #undef FUNC_NAME
1699
1700 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1701 (SCM n, SCM k),
1702 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1703 "exact integer, @var{n} can be any number.\n"
1704 "\n"
1705 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1706 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1707 "includes @math{0^0} is 1.\n"
1708 "\n"
1709 "@lisp\n"
1710 "(integer-expt 2 5) @result{} 32\n"
1711 "(integer-expt -3 3) @result{} -27\n"
1712 "(integer-expt 5 -3) @result{} 1/125\n"
1713 "(integer-expt 0 0) @result{} 1\n"
1714 "@end lisp")
1715 #define FUNC_NAME s_scm_integer_expt
1716 {
1717 long i2 = 0;
1718 SCM z_i2 = SCM_BOOL_F;
1719 int i2_is_big = 0;
1720 SCM acc = SCM_I_MAKINUM (1L);
1721
1722 /* 0^0 == 1 according to R5RS */
1723 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1724 return scm_is_false (scm_zero_p(k)) ? n : acc;
1725 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1726 return scm_is_false (scm_even_p (k)) ? n : acc;
1727
1728 if (SCM_I_INUMP (k))
1729 i2 = SCM_I_INUM (k);
1730 else if (SCM_BIGP (k))
1731 {
1732 z_i2 = scm_i_clonebig (k, 1);
1733 scm_remember_upto_here_1 (k);
1734 i2_is_big = 1;
1735 }
1736 else
1737 SCM_WRONG_TYPE_ARG (2, k);
1738
1739 if (i2_is_big)
1740 {
1741 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1742 {
1743 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1744 n = scm_divide (n, SCM_UNDEFINED);
1745 }
1746 while (1)
1747 {
1748 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1749 {
1750 return acc;
1751 }
1752 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1753 {
1754 return scm_product (acc, n);
1755 }
1756 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1757 acc = scm_product (acc, n);
1758 n = scm_product (n, n);
1759 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1760 }
1761 }
1762 else
1763 {
1764 if (i2 < 0)
1765 {
1766 i2 = -i2;
1767 n = scm_divide (n, SCM_UNDEFINED);
1768 }
1769 while (1)
1770 {
1771 if (0 == i2)
1772 return acc;
1773 if (1 == i2)
1774 return scm_product (acc, n);
1775 if (i2 & 1)
1776 acc = scm_product (acc, n);
1777 n = scm_product (n, n);
1778 i2 >>= 1;
1779 }
1780 }
1781 }
1782 #undef FUNC_NAME
1783
1784 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1785 (SCM n, SCM cnt),
1786 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1787 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1788 "\n"
1789 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1790 "@var{cnt} is negative it's a division, rounded towards negative\n"
1791 "infinity. (Note that this is not the same rounding as\n"
1792 "@code{quotient} does.)\n"
1793 "\n"
1794 "With @var{n} viewed as an infinite precision twos complement,\n"
1795 "@code{ash} means a left shift introducing zero bits, or a right\n"
1796 "shift dropping bits.\n"
1797 "\n"
1798 "@lisp\n"
1799 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1800 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1801 "\n"
1802 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1803 "(ash -23 -2) @result{} -6\n"
1804 "@end lisp")
1805 #define FUNC_NAME s_scm_ash
1806 {
1807 long bits_to_shift;
1808 bits_to_shift = scm_to_long (cnt);
1809
1810 if (SCM_I_INUMP (n))
1811 {
1812 long nn = SCM_I_INUM (n);
1813
1814 if (bits_to_shift > 0)
1815 {
1816 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1817 overflow a non-zero fixnum. For smaller shifts we check the
1818 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1819 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1820 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1821 bits_to_shift)". */
1822
1823 if (nn == 0)
1824 return n;
1825
1826 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1827 && ((unsigned long)
1828 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1829 <= 1))
1830 {
1831 return SCM_I_MAKINUM (nn << bits_to_shift);
1832 }
1833 else
1834 {
1835 SCM result = scm_i_long2big (nn);
1836 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1837 bits_to_shift);
1838 return result;
1839 }
1840 }
1841 else
1842 {
1843 bits_to_shift = -bits_to_shift;
1844 if (bits_to_shift >= SCM_LONG_BIT)
1845 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1846 else
1847 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1848 }
1849
1850 }
1851 else if (SCM_BIGP (n))
1852 {
1853 SCM result;
1854
1855 if (bits_to_shift == 0)
1856 return n;
1857
1858 result = scm_i_mkbig ();
1859 if (bits_to_shift >= 0)
1860 {
1861 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1862 bits_to_shift);
1863 return result;
1864 }
1865 else
1866 {
1867 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1868 we have to allocate a bignum even if the result is going to be a
1869 fixnum. */
1870 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1871 -bits_to_shift);
1872 return scm_i_normbig (result);
1873 }
1874
1875 }
1876 else
1877 {
1878 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1879 }
1880 }
1881 #undef FUNC_NAME
1882
1883
1884 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1885 (SCM n, SCM start, SCM end),
1886 "Return the integer composed of the @var{start} (inclusive)\n"
1887 "through @var{end} (exclusive) bits of @var{n}. The\n"
1888 "@var{start}th bit becomes the 0-th bit in the result.\n"
1889 "\n"
1890 "@lisp\n"
1891 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1892 " @result{} \"1010\"\n"
1893 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1894 " @result{} \"10110\"\n"
1895 "@end lisp")
1896 #define FUNC_NAME s_scm_bit_extract
1897 {
1898 unsigned long int istart, iend, bits;
1899 istart = scm_to_ulong (start);
1900 iend = scm_to_ulong (end);
1901 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1902
1903 /* how many bits to keep */
1904 bits = iend - istart;
1905
1906 if (SCM_I_INUMP (n))
1907 {
1908 long int in = SCM_I_INUM (n);
1909
1910 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1911 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1912 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1913
1914 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1915 {
1916 /* Since we emulate two's complement encoded numbers, this
1917 * special case requires us to produce a result that has
1918 * more bits than can be stored in a fixnum.
1919 */
1920 SCM result = scm_i_long2big (in);
1921 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1922 bits);
1923 return result;
1924 }
1925
1926 /* mask down to requisite bits */
1927 bits = min (bits, SCM_I_FIXNUM_BIT);
1928 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
1929 }
1930 else if (SCM_BIGP (n))
1931 {
1932 SCM result;
1933 if (bits == 1)
1934 {
1935 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1936 }
1937 else
1938 {
1939 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1940 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1941 such bits into a ulong. */
1942 result = scm_i_mkbig ();
1943 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1944 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1945 result = scm_i_normbig (result);
1946 }
1947 scm_remember_upto_here_1 (n);
1948 return result;
1949 }
1950 else
1951 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1952 }
1953 #undef FUNC_NAME
1954
1955
1956 static const char scm_logtab[] = {
1957 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1958 };
1959
1960 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1961 (SCM n),
1962 "Return the number of bits in integer @var{n}. If integer is\n"
1963 "positive, the 1-bits in its binary representation are counted.\n"
1964 "If negative, the 0-bits in its two's-complement binary\n"
1965 "representation are counted. If 0, 0 is returned.\n"
1966 "\n"
1967 "@lisp\n"
1968 "(logcount #b10101010)\n"
1969 " @result{} 4\n"
1970 "(logcount 0)\n"
1971 " @result{} 0\n"
1972 "(logcount -2)\n"
1973 " @result{} 1\n"
1974 "@end lisp")
1975 #define FUNC_NAME s_scm_logcount
1976 {
1977 if (SCM_I_INUMP (n))
1978 {
1979 unsigned long int c = 0;
1980 long int nn = SCM_I_INUM (n);
1981 if (nn < 0)
1982 nn = -1 - nn;
1983 while (nn)
1984 {
1985 c += scm_logtab[15 & nn];
1986 nn >>= 4;
1987 }
1988 return SCM_I_MAKINUM (c);
1989 }
1990 else if (SCM_BIGP (n))
1991 {
1992 unsigned long count;
1993 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1994 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1995 else
1996 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1997 scm_remember_upto_here_1 (n);
1998 return SCM_I_MAKINUM (count);
1999 }
2000 else
2001 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2002 }
2003 #undef FUNC_NAME
2004
2005
2006 static const char scm_ilentab[] = {
2007 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2008 };
2009
2010
2011 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2012 (SCM n),
2013 "Return the number of bits necessary to represent @var{n}.\n"
2014 "\n"
2015 "@lisp\n"
2016 "(integer-length #b10101010)\n"
2017 " @result{} 8\n"
2018 "(integer-length 0)\n"
2019 " @result{} 0\n"
2020 "(integer-length #b1111)\n"
2021 " @result{} 4\n"
2022 "@end lisp")
2023 #define FUNC_NAME s_scm_integer_length
2024 {
2025 if (SCM_I_INUMP (n))
2026 {
2027 unsigned long int c = 0;
2028 unsigned int l = 4;
2029 long int nn = SCM_I_INUM (n);
2030 if (nn < 0)
2031 nn = -1 - nn;
2032 while (nn)
2033 {
2034 c += 4;
2035 l = scm_ilentab [15 & nn];
2036 nn >>= 4;
2037 }
2038 return SCM_I_MAKINUM (c - 4 + l);
2039 }
2040 else if (SCM_BIGP (n))
2041 {
2042 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2043 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2044 1 too big, so check for that and adjust. */
2045 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2046 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2047 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2048 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2049 size--;
2050 scm_remember_upto_here_1 (n);
2051 return SCM_I_MAKINUM (size);
2052 }
2053 else
2054 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2055 }
2056 #undef FUNC_NAME
2057
2058 /*** NUMBERS -> STRINGS ***/
2059 #define SCM_MAX_DBL_PREC 60
2060 #define SCM_MAX_DBL_RADIX 36
2061
2062 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2063 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2064 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2065
2066 static
2067 void init_dblprec(int *prec, int radix) {
2068 /* determine floating point precision by adding successively
2069 smaller increments to 1.0 until it is considered == 1.0 */
2070 double f = ((double)1.0)/radix;
2071 double fsum = 1.0 + f;
2072
2073 *prec = 0;
2074 while (fsum != 1.0)
2075 {
2076 if (++(*prec) > SCM_MAX_DBL_PREC)
2077 fsum = 1.0;
2078 else
2079 {
2080 f /= radix;
2081 fsum = f + 1.0;
2082 }
2083 }
2084 (*prec) -= 1;
2085 }
2086
2087 static
2088 void init_fx_radix(double *fx_list, int radix)
2089 {
2090 /* initialize a per-radix list of tolerances. When added
2091 to a number < 1.0, we can determine if we should raund
2092 up and quit converting a number to a string. */
2093 int i;
2094 fx_list[0] = 0.0;
2095 fx_list[1] = 0.5;
2096 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2097 fx_list[i] = (fx_list[i-1] / radix);
2098 }
2099
2100 /* use this array as a way to generate a single digit */
2101 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2102
2103 static size_t
2104 idbl2str (double f, char *a, int radix)
2105 {
2106 int efmt, dpt, d, i, wp;
2107 double *fx;
2108 #ifdef DBL_MIN_10_EXP
2109 double f_cpy;
2110 int exp_cpy;
2111 #endif /* DBL_MIN_10_EXP */
2112 size_t ch = 0;
2113 int exp = 0;
2114
2115 if(radix < 2 ||
2116 radix > SCM_MAX_DBL_RADIX)
2117 {
2118 /* revert to existing behavior */
2119 radix = 10;
2120 }
2121
2122 wp = scm_dblprec[radix-2];
2123 fx = fx_per_radix[radix-2];
2124
2125 if (f == 0.0)
2126 {
2127 #ifdef HAVE_COPYSIGN
2128 double sgn = copysign (1.0, f);
2129
2130 if (sgn < 0.0)
2131 a[ch++] = '-';
2132 #endif
2133 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2134 }
2135
2136 if (xisinf (f))
2137 {
2138 if (f < 0)
2139 strcpy (a, "-inf.0");
2140 else
2141 strcpy (a, "+inf.0");
2142 return ch+6;
2143 }
2144 else if (xisnan (f))
2145 {
2146 strcpy (a, "+nan.0");
2147 return ch+6;
2148 }
2149
2150 if (f < 0.0)
2151 {
2152 f = -f;
2153 a[ch++] = '-';
2154 }
2155
2156 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2157 make-uniform-vector, from causing infinite loops. */
2158 /* just do the checking...if it passes, we do the conversion for our
2159 radix again below */
2160 f_cpy = f;
2161 exp_cpy = exp;
2162
2163 while (f_cpy < 1.0)
2164 {
2165 f_cpy *= 10.0;
2166 if (exp_cpy-- < DBL_MIN_10_EXP)
2167 {
2168 a[ch++] = '#';
2169 a[ch++] = '.';
2170 a[ch++] = '#';
2171 return ch;
2172 }
2173 }
2174 while (f_cpy > 10.0)
2175 {
2176 f_cpy *= 0.10;
2177 if (exp_cpy++ > DBL_MAX_10_EXP)
2178 {
2179 a[ch++] = '#';
2180 a[ch++] = '.';
2181 a[ch++] = '#';
2182 return ch;
2183 }
2184 }
2185 #endif
2186
2187 while (f < 1.0)
2188 {
2189 f *= radix;
2190 exp--;
2191 }
2192 while (f > radix)
2193 {
2194 f /= radix;
2195 exp++;
2196 }
2197
2198 if (f + fx[wp] >= radix)
2199 {
2200 f = 1.0;
2201 exp++;
2202 }
2203 zero:
2204 #ifdef ENGNOT
2205 /* adding 9999 makes this equivalent to abs(x) % 3 */
2206 dpt = (exp + 9999) % 3;
2207 exp -= dpt++;
2208 efmt = 1;
2209 #else
2210 efmt = (exp < -3) || (exp > wp + 2);
2211 if (!efmt)
2212 {
2213 if (exp < 0)
2214 {
2215 a[ch++] = '0';
2216 a[ch++] = '.';
2217 dpt = exp;
2218 while (++dpt)
2219 a[ch++] = '0';
2220 }
2221 else
2222 dpt = exp + 1;
2223 }
2224 else
2225 dpt = 1;
2226 #endif
2227
2228 do
2229 {
2230 d = f;
2231 f -= d;
2232 a[ch++] = number_chars[d];
2233 if (f < fx[wp])
2234 break;
2235 if (f + fx[wp] >= 1.0)
2236 {
2237 a[ch - 1] = number_chars[d+1];
2238 break;
2239 }
2240 f *= radix;
2241 if (!(--dpt))
2242 a[ch++] = '.';
2243 }
2244 while (wp--);
2245
2246 if (dpt > 0)
2247 {
2248 #ifndef ENGNOT
2249 if ((dpt > 4) && (exp > 6))
2250 {
2251 d = (a[0] == '-' ? 2 : 1);
2252 for (i = ch++; i > d; i--)
2253 a[i] = a[i - 1];
2254 a[d] = '.';
2255 efmt = 1;
2256 }
2257 else
2258 #endif
2259 {
2260 while (--dpt)
2261 a[ch++] = '0';
2262 a[ch++] = '.';
2263 }
2264 }
2265 if (a[ch - 1] == '.')
2266 a[ch++] = '0'; /* trailing zero */
2267 if (efmt && exp)
2268 {
2269 a[ch++] = 'e';
2270 if (exp < 0)
2271 {
2272 exp = -exp;
2273 a[ch++] = '-';
2274 }
2275 for (i = radix; i <= exp; i *= radix);
2276 for (i /= radix; i; i /= radix)
2277 {
2278 a[ch++] = number_chars[exp / i];
2279 exp %= i;
2280 }
2281 }
2282 return ch;
2283 }
2284
2285
2286 static size_t
2287 icmplx2str (double real, double imag, char *str, int radix)
2288 {
2289 size_t i;
2290
2291 i = idbl2str (real, str, radix);
2292 if (imag != 0.0)
2293 {
2294 /* Don't output a '+' for negative numbers or for Inf and
2295 NaN. They will provide their own sign. */
2296 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2297 str[i++] = '+';
2298 i += idbl2str (imag, &str[i], radix);
2299 str[i++] = 'i';
2300 }
2301 return i;
2302 }
2303
2304 static size_t
2305 iflo2str (SCM flt, char *str, int radix)
2306 {
2307 size_t i;
2308 if (SCM_REALP (flt))
2309 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2310 else
2311 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2312 str, radix);
2313 return i;
2314 }
2315
2316 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2317 characters in the result.
2318 rad is output base
2319 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2320 size_t
2321 scm_iint2str (scm_t_intmax num, int rad, char *p)
2322 {
2323 if (num < 0)
2324 {
2325 *p++ = '-';
2326 return scm_iuint2str (-num, rad, p) + 1;
2327 }
2328 else
2329 return scm_iuint2str (num, rad, p);
2330 }
2331
2332 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2333 characters in the result.
2334 rad is output base
2335 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2336 size_t
2337 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2338 {
2339 size_t j = 1;
2340 size_t i;
2341 scm_t_uintmax n = num;
2342
2343 for (n /= rad; n > 0; n /= rad)
2344 j++;
2345
2346 i = j;
2347 n = num;
2348 while (i--)
2349 {
2350 int d = n % rad;
2351
2352 n /= rad;
2353 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2354 }
2355 return j;
2356 }
2357
2358 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2359 (SCM n, SCM radix),
2360 "Return a string holding the external representation of the\n"
2361 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2362 "inexact, a radix of 10 will be used.")
2363 #define FUNC_NAME s_scm_number_to_string
2364 {
2365 int base;
2366
2367 if (SCM_UNBNDP (radix))
2368 base = 10;
2369 else
2370 base = scm_to_signed_integer (radix, 2, 36);
2371
2372 if (SCM_I_INUMP (n))
2373 {
2374 char num_buf [SCM_INTBUFLEN];
2375 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2376 return scm_from_locale_stringn (num_buf, length);
2377 }
2378 else if (SCM_BIGP (n))
2379 {
2380 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2381 scm_remember_upto_here_1 (n);
2382 return scm_take_locale_string (str);
2383 }
2384 else if (SCM_FRACTIONP (n))
2385 {
2386 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2387 scm_from_locale_string ("/"),
2388 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2389 }
2390 else if (SCM_INEXACTP (n))
2391 {
2392 char num_buf [FLOBUFLEN];
2393 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2394 }
2395 else
2396 SCM_WRONG_TYPE_ARG (1, n);
2397 }
2398 #undef FUNC_NAME
2399
2400
2401 /* These print routines used to be stubbed here so that scm_repl.c
2402 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2403
2404 int
2405 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2406 {
2407 char num_buf[FLOBUFLEN];
2408 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2409 return !0;
2410 }
2411
2412 void
2413 scm_i_print_double (double val, SCM port)
2414 {
2415 char num_buf[FLOBUFLEN];
2416 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2417 }
2418
2419 int
2420 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2421
2422 {
2423 char num_buf[FLOBUFLEN];
2424 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2425 return !0;
2426 }
2427
2428 void
2429 scm_i_print_complex (double real, double imag, SCM port)
2430 {
2431 char num_buf[FLOBUFLEN];
2432 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2433 }
2434
2435 int
2436 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2437 {
2438 SCM str;
2439 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2440 scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
2441 scm_remember_upto_here_1 (str);
2442 return !0;
2443 }
2444
2445 int
2446 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2447 {
2448 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2449 scm_remember_upto_here_1 (exp);
2450 scm_lfwrite (str, (size_t) strlen (str), port);
2451 free (str);
2452 return !0;
2453 }
2454 /*** END nums->strs ***/
2455
2456
2457 /*** STRINGS -> NUMBERS ***/
2458
2459 /* The following functions implement the conversion from strings to numbers.
2460 * The implementation somehow follows the grammar for numbers as it is given
2461 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2462 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2463 * points should be noted about the implementation:
2464 * * Each function keeps a local index variable 'idx' that points at the
2465 * current position within the parsed string. The global index is only
2466 * updated if the function could parse the corresponding syntactic unit
2467 * successfully.
2468 * * Similarly, the functions keep track of indicators of inexactness ('#',
2469 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2470 * global exactness information is only updated after each part has been
2471 * successfully parsed.
2472 * * Sequences of digits are parsed into temporary variables holding fixnums.
2473 * Only if these fixnums would overflow, the result variables are updated
2474 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2475 * the temporary variables holding the fixnums are cleared, and the process
2476 * starts over again. If for example fixnums were able to store five decimal
2477 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2478 * and the result was computed as 12345 * 100000 + 67890. In other words,
2479 * only every five digits two bignum operations were performed.
2480 */
2481
2482 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2483
2484 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2485
2486 /* In non ASCII-style encodings the following macro might not work. */
2487 #define XDIGIT2UINT(d) \
2488 (isdigit ((int) (unsigned char) d) \
2489 ? (d) - '0' \
2490 : tolower ((int) (unsigned char) d) - 'a' + 10)
2491
2492 static SCM
2493 mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2494 unsigned int radix, enum t_exactness *p_exactness)
2495 {
2496 unsigned int idx = *p_idx;
2497 unsigned int hash_seen = 0;
2498 scm_t_bits shift = 1;
2499 scm_t_bits add = 0;
2500 unsigned int digit_value;
2501 SCM result;
2502 char c;
2503
2504 if (idx == len)
2505 return SCM_BOOL_F;
2506
2507 c = mem[idx];
2508 if (!isxdigit ((int) (unsigned char) c))
2509 return SCM_BOOL_F;
2510 digit_value = XDIGIT2UINT (c);
2511 if (digit_value >= radix)
2512 return SCM_BOOL_F;
2513
2514 idx++;
2515 result = SCM_I_MAKINUM (digit_value);
2516 while (idx != len)
2517 {
2518 char c = mem[idx];
2519 if (isxdigit ((int) (unsigned char) c))
2520 {
2521 if (hash_seen)
2522 break;
2523 digit_value = XDIGIT2UINT (c);
2524 if (digit_value >= radix)
2525 break;
2526 }
2527 else if (c == '#')
2528 {
2529 hash_seen = 1;
2530 digit_value = 0;
2531 }
2532 else
2533 break;
2534
2535 idx++;
2536 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2537 {
2538 result = scm_product (result, SCM_I_MAKINUM (shift));
2539 if (add > 0)
2540 result = scm_sum (result, SCM_I_MAKINUM (add));
2541
2542 shift = radix;
2543 add = digit_value;
2544 }
2545 else
2546 {
2547 shift = shift * radix;
2548 add = add * radix + digit_value;
2549 }
2550 };
2551
2552 if (shift > 1)
2553 result = scm_product (result, SCM_I_MAKINUM (shift));
2554 if (add > 0)
2555 result = scm_sum (result, SCM_I_MAKINUM (add));
2556
2557 *p_idx = idx;
2558 if (hash_seen)
2559 *p_exactness = INEXACT;
2560
2561 return result;
2562 }
2563
2564
2565 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2566 * covers the parts of the rules that start at a potential point. The value
2567 * of the digits up to the point have been parsed by the caller and are given
2568 * in variable result. The content of *p_exactness indicates, whether a hash
2569 * has already been seen in the digits before the point.
2570 */
2571
2572 /* In non ASCII-style encodings the following macro might not work. */
2573 #define DIGIT2UINT(d) ((d) - '0')
2574
2575 static SCM
2576 mem2decimal_from_point (SCM result, const char* mem, size_t len,
2577 unsigned int *p_idx, enum t_exactness *p_exactness)
2578 {
2579 unsigned int idx = *p_idx;
2580 enum t_exactness x = *p_exactness;
2581
2582 if (idx == len)
2583 return result;
2584
2585 if (mem[idx] == '.')
2586 {
2587 scm_t_bits shift = 1;
2588 scm_t_bits add = 0;
2589 unsigned int digit_value;
2590 SCM big_shift = SCM_I_MAKINUM (1);
2591
2592 idx++;
2593 while (idx != len)
2594 {
2595 char c = mem[idx];
2596 if (isdigit ((int) (unsigned char) c))
2597 {
2598 if (x == INEXACT)
2599 return SCM_BOOL_F;
2600 else
2601 digit_value = DIGIT2UINT (c);
2602 }
2603 else if (c == '#')
2604 {
2605 x = INEXACT;
2606 digit_value = 0;
2607 }
2608 else
2609 break;
2610
2611 idx++;
2612 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2613 {
2614 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2615 result = scm_product (result, SCM_I_MAKINUM (shift));
2616 if (add > 0)
2617 result = scm_sum (result, SCM_I_MAKINUM (add));
2618
2619 shift = 10;
2620 add = digit_value;
2621 }
2622 else
2623 {
2624 shift = shift * 10;
2625 add = add * 10 + digit_value;
2626 }
2627 };
2628
2629 if (add > 0)
2630 {
2631 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2632 result = scm_product (result, SCM_I_MAKINUM (shift));
2633 result = scm_sum (result, SCM_I_MAKINUM (add));
2634 }
2635
2636 result = scm_divide (result, big_shift);
2637
2638 /* We've seen a decimal point, thus the value is implicitly inexact. */
2639 x = INEXACT;
2640 }
2641
2642 if (idx != len)
2643 {
2644 int sign = 1;
2645 unsigned int start;
2646 char c;
2647 int exponent;
2648 SCM e;
2649
2650 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2651
2652 switch (mem[idx])
2653 {
2654 case 'd': case 'D':
2655 case 'e': case 'E':
2656 case 'f': case 'F':
2657 case 'l': case 'L':
2658 case 's': case 'S':
2659 idx++;
2660 if (idx == len)
2661 return SCM_BOOL_F;
2662
2663 start = idx;
2664 c = mem[idx];
2665 if (c == '-')
2666 {
2667 idx++;
2668 if (idx == len)
2669 return SCM_BOOL_F;
2670
2671 sign = -1;
2672 c = mem[idx];
2673 }
2674 else if (c == '+')
2675 {
2676 idx++;
2677 if (idx == len)
2678 return SCM_BOOL_F;
2679
2680 sign = 1;
2681 c = mem[idx];
2682 }
2683 else
2684 sign = 1;
2685
2686 if (!isdigit ((int) (unsigned char) c))
2687 return SCM_BOOL_F;
2688
2689 idx++;
2690 exponent = DIGIT2UINT (c);
2691 while (idx != len)
2692 {
2693 char c = mem[idx];
2694 if (isdigit ((int) (unsigned char) c))
2695 {
2696 idx++;
2697 if (exponent <= SCM_MAXEXP)
2698 exponent = exponent * 10 + DIGIT2UINT (c);
2699 }
2700 else
2701 break;
2702 }
2703
2704 if (exponent > SCM_MAXEXP)
2705 {
2706 size_t exp_len = idx - start;
2707 SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
2708 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2709 scm_out_of_range ("string->number", exp_num);
2710 }
2711
2712 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2713 if (sign == 1)
2714 result = scm_product (result, e);
2715 else
2716 result = scm_divide2real (result, e);
2717
2718 /* We've seen an exponent, thus the value is implicitly inexact. */
2719 x = INEXACT;
2720
2721 break;
2722
2723 default:
2724 break;
2725 }
2726 }
2727
2728 *p_idx = idx;
2729 if (x == INEXACT)
2730 *p_exactness = x;
2731
2732 return result;
2733 }
2734
2735
2736 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2737
2738 static SCM
2739 mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2740 unsigned int radix, enum t_exactness *p_exactness)
2741 {
2742 unsigned int idx = *p_idx;
2743 SCM result;
2744
2745 /* Start off believing that the number will be exact. This changes
2746 to INEXACT if we see a decimal point or a hash. */
2747 enum t_exactness x = EXACT;
2748
2749 if (idx == len)
2750 return SCM_BOOL_F;
2751
2752 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2753 {
2754 *p_idx = idx+5;
2755 return scm_inf ();
2756 }
2757
2758 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2759 {
2760 /* Cobble up the fractional part. We might want to set the
2761 NaN's mantissa from it. */
2762 idx += 4;
2763 mem2uinteger (mem, len, &idx, 10, &x);
2764 *p_idx = idx;
2765 return scm_nan ();
2766 }
2767
2768 if (mem[idx] == '.')
2769 {
2770 if (radix != 10)
2771 return SCM_BOOL_F;
2772 else if (idx + 1 == len)
2773 return SCM_BOOL_F;
2774 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2775 return SCM_BOOL_F;
2776 else
2777 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
2778 p_idx, &x);
2779 }
2780 else
2781 {
2782 SCM uinteger;
2783
2784 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2785 if (scm_is_false (uinteger))
2786 return SCM_BOOL_F;
2787
2788 if (idx == len)
2789 result = uinteger;
2790 else if (mem[idx] == '/')
2791 {
2792 SCM divisor;
2793
2794 idx++;
2795 if (idx == len)
2796 return SCM_BOOL_F;
2797
2798 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2799 if (scm_is_false (divisor))
2800 return SCM_BOOL_F;
2801
2802 /* both are int/big here, I assume */
2803 result = scm_i_make_ratio (uinteger, divisor);
2804 }
2805 else if (radix == 10)
2806 {
2807 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2808 if (scm_is_false (result))
2809 return SCM_BOOL_F;
2810 }
2811 else
2812 result = uinteger;
2813
2814 *p_idx = idx;
2815 }
2816
2817 /* Update *p_exactness if the number just read was inexact. This is
2818 important for complex numbers, so that a complex number is
2819 treated as inexact overall if either its real or imaginary part
2820 is inexact.
2821 */
2822 if (x == INEXACT)
2823 *p_exactness = x;
2824
2825 /* When returning an inexact zero, make sure it is represented as a
2826 floating point value so that we can change its sign.
2827 */
2828 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2829 result = scm_from_double (0.0);
2830
2831 return result;
2832 }
2833
2834
2835 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2836
2837 static SCM
2838 mem2complex (const char* mem, size_t len, unsigned int idx,
2839 unsigned int radix, enum t_exactness *p_exactness)
2840 {
2841 char c;
2842 int sign = 0;
2843 SCM ureal;
2844
2845 if (idx == len)
2846 return SCM_BOOL_F;
2847
2848 c = mem[idx];
2849 if (c == '+')
2850 {
2851 idx++;
2852 sign = 1;
2853 }
2854 else if (c == '-')
2855 {
2856 idx++;
2857 sign = -1;
2858 }
2859
2860 if (idx == len)
2861 return SCM_BOOL_F;
2862
2863 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2864 if (scm_is_false (ureal))
2865 {
2866 /* input must be either +i or -i */
2867
2868 if (sign == 0)
2869 return SCM_BOOL_F;
2870
2871 if (mem[idx] == 'i' || mem[idx] == 'I')
2872 {
2873 idx++;
2874 if (idx != len)
2875 return SCM_BOOL_F;
2876
2877 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2878 }
2879 else
2880 return SCM_BOOL_F;
2881 }
2882 else
2883 {
2884 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2885 ureal = scm_difference (ureal, SCM_UNDEFINED);
2886
2887 if (idx == len)
2888 return ureal;
2889
2890 c = mem[idx];
2891 switch (c)
2892 {
2893 case 'i': case 'I':
2894 /* either +<ureal>i or -<ureal>i */
2895
2896 idx++;
2897 if (sign == 0)
2898 return SCM_BOOL_F;
2899 if (idx != len)
2900 return SCM_BOOL_F;
2901 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2902
2903 case '@':
2904 /* polar input: <real>@<real>. */
2905
2906 idx++;
2907 if (idx == len)
2908 return SCM_BOOL_F;
2909 else
2910 {
2911 int sign;
2912 SCM angle;
2913 SCM result;
2914
2915 c = mem[idx];
2916 if (c == '+')
2917 {
2918 idx++;
2919 if (idx == len)
2920 return SCM_BOOL_F;
2921 sign = 1;
2922 }
2923 else if (c == '-')
2924 {
2925 idx++;
2926 if (idx == len)
2927 return SCM_BOOL_F;
2928 sign = -1;
2929 }
2930 else
2931 sign = 1;
2932
2933 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2934 if (scm_is_false (angle))
2935 return SCM_BOOL_F;
2936 if (idx != len)
2937 return SCM_BOOL_F;
2938
2939 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2940 angle = scm_difference (angle, SCM_UNDEFINED);
2941
2942 result = scm_make_polar (ureal, angle);
2943 return result;
2944 }
2945 case '+':
2946 case '-':
2947 /* expecting input matching <real>[+-]<ureal>?i */
2948
2949 idx++;
2950 if (idx == len)
2951 return SCM_BOOL_F;
2952 else
2953 {
2954 int sign = (c == '+') ? 1 : -1;
2955 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2956
2957 if (scm_is_false (imag))
2958 imag = SCM_I_MAKINUM (sign);
2959 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2960 imag = scm_difference (imag, SCM_UNDEFINED);
2961
2962 if (idx == len)
2963 return SCM_BOOL_F;
2964 if (mem[idx] != 'i' && mem[idx] != 'I')
2965 return SCM_BOOL_F;
2966
2967 idx++;
2968 if (idx != len)
2969 return SCM_BOOL_F;
2970
2971 return scm_make_rectangular (ureal, imag);
2972 }
2973 default:
2974 return SCM_BOOL_F;
2975 }
2976 }
2977 }
2978
2979
2980 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2981
2982 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2983
2984 SCM
2985 scm_c_locale_stringn_to_number (const char* mem, size_t len,
2986 unsigned int default_radix)
2987 {
2988 unsigned int idx = 0;
2989 unsigned int radix = NO_RADIX;
2990 enum t_exactness forced_x = NO_EXACTNESS;
2991 enum t_exactness implicit_x = EXACT;
2992 SCM result;
2993
2994 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2995 while (idx + 2 < len && mem[idx] == '#')
2996 {
2997 switch (mem[idx + 1])
2998 {
2999 case 'b': case 'B':
3000 if (radix != NO_RADIX)
3001 return SCM_BOOL_F;
3002 radix = DUAL;
3003 break;
3004 case 'd': case 'D':
3005 if (radix != NO_RADIX)
3006 return SCM_BOOL_F;
3007 radix = DEC;
3008 break;
3009 case 'i': case 'I':
3010 if (forced_x != NO_EXACTNESS)
3011 return SCM_BOOL_F;
3012 forced_x = INEXACT;
3013 break;
3014 case 'e': case 'E':
3015 if (forced_x != NO_EXACTNESS)
3016 return SCM_BOOL_F;
3017 forced_x = EXACT;
3018 break;
3019 case 'o': case 'O':
3020 if (radix != NO_RADIX)
3021 return SCM_BOOL_F;
3022 radix = OCT;
3023 break;
3024 case 'x': case 'X':
3025 if (radix != NO_RADIX)
3026 return SCM_BOOL_F;
3027 radix = HEX;
3028 break;
3029 default:
3030 return SCM_BOOL_F;
3031 }
3032 idx += 2;
3033 }
3034
3035 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3036 if (radix == NO_RADIX)
3037 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
3038 else
3039 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
3040
3041 if (scm_is_false (result))
3042 return SCM_BOOL_F;
3043
3044 switch (forced_x)
3045 {
3046 case EXACT:
3047 if (SCM_INEXACTP (result))
3048 return scm_inexact_to_exact (result);
3049 else
3050 return result;
3051 case INEXACT:
3052 if (SCM_INEXACTP (result))
3053 return result;
3054 else
3055 return scm_exact_to_inexact (result);
3056 case NO_EXACTNESS:
3057 default:
3058 if (implicit_x == INEXACT)
3059 {
3060 if (SCM_INEXACTP (result))
3061 return result;
3062 else
3063 return scm_exact_to_inexact (result);
3064 }
3065 else
3066 return result;
3067 }
3068 }
3069
3070
3071 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3072 (SCM string, SCM radix),
3073 "Return a number of the maximally precise representation\n"
3074 "expressed by the given @var{string}. @var{radix} must be an\n"
3075 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3076 "is a default radix that may be overridden by an explicit radix\n"
3077 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3078 "supplied, then the default radix is 10. If string is not a\n"
3079 "syntactically valid notation for a number, then\n"
3080 "@code{string->number} returns @code{#f}.")
3081 #define FUNC_NAME s_scm_string_to_number
3082 {
3083 SCM answer;
3084 unsigned int base;
3085 SCM_VALIDATE_STRING (1, string);
3086
3087 if (SCM_UNBNDP (radix))
3088 base = 10;
3089 else
3090 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3091
3092 answer = scm_c_locale_stringn_to_number (scm_i_string_chars (string),
3093 scm_i_string_length (string),
3094 base);
3095 scm_remember_upto_here_1 (string);
3096 return answer;
3097 }
3098 #undef FUNC_NAME
3099
3100
3101 /*** END strs->nums ***/
3102
3103
3104 SCM
3105 scm_bigequal (SCM x, SCM y)
3106 {
3107 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3108 scm_remember_upto_here_2 (x, y);
3109 return scm_from_bool (0 == result);
3110 }
3111
3112 SCM
3113 scm_real_equalp (SCM x, SCM y)
3114 {
3115 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3116 }
3117
3118 SCM
3119 scm_complex_equalp (SCM x, SCM y)
3120 {
3121 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3122 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3123 }
3124
3125 SCM
3126 scm_i_fraction_equalp (SCM x, SCM y)
3127 {
3128 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3129 SCM_FRACTION_NUMERATOR (y)))
3130 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3131 SCM_FRACTION_DENOMINATOR (y))))
3132 return SCM_BOOL_F;
3133 else
3134 return SCM_BOOL_T;
3135 }
3136
3137
3138 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3139 (SCM x),
3140 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3141 "otherwise.")
3142 #define FUNC_NAME s_scm_number_p
3143 {
3144 return scm_from_bool (SCM_NUMBERP (x));
3145 }
3146 #undef FUNC_NAME
3147
3148 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3149 (SCM x),
3150 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3151 "otherwise. Note that the sets of real, rational and integer\n"
3152 "values form subsets of the set of complex numbers, i. e. the\n"
3153 "predicate will also be fulfilled if @var{x} is a real,\n"
3154 "rational or integer number.")
3155 #define FUNC_NAME s_scm_complex_p
3156 {
3157 /* all numbers are complex. */
3158 return scm_number_p (x);
3159 }
3160 #undef FUNC_NAME
3161
3162 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3163 (SCM x),
3164 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3165 "otherwise. Note that the set of integer values forms a subset of\n"
3166 "the set of real numbers, i. e. the predicate will also be\n"
3167 "fulfilled if @var{x} is an integer number.")
3168 #define FUNC_NAME s_scm_real_p
3169 {
3170 /* we can't represent irrational numbers. */
3171 return scm_rational_p (x);
3172 }
3173 #undef FUNC_NAME
3174
3175 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3176 (SCM x),
3177 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3178 "otherwise. Note that the set of integer values forms a subset of\n"
3179 "the set of rational numbers, i. e. the predicate will also be\n"
3180 "fulfilled if @var{x} is an integer number.")
3181 #define FUNC_NAME s_scm_rational_p
3182 {
3183 if (SCM_I_INUMP (x))
3184 return SCM_BOOL_T;
3185 else if (SCM_IMP (x))
3186 return SCM_BOOL_F;
3187 else if (SCM_BIGP (x))
3188 return SCM_BOOL_T;
3189 else if (SCM_FRACTIONP (x))
3190 return SCM_BOOL_T;
3191 else if (SCM_REALP (x))
3192 /* due to their limited precision, all floating point numbers are
3193 rational as well. */
3194 return SCM_BOOL_T;
3195 else
3196 return SCM_BOOL_F;
3197 }
3198 #undef FUNC_NAME
3199
3200 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3201 (SCM x),
3202 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3203 "else.")
3204 #define FUNC_NAME s_scm_integer_p
3205 {
3206 double r;
3207 if (SCM_I_INUMP (x))
3208 return SCM_BOOL_T;
3209 if (SCM_IMP (x))
3210 return SCM_BOOL_F;
3211 if (SCM_BIGP (x))
3212 return SCM_BOOL_T;
3213 if (!SCM_INEXACTP (x))
3214 return SCM_BOOL_F;
3215 if (SCM_COMPLEXP (x))
3216 return SCM_BOOL_F;
3217 r = SCM_REAL_VALUE (x);
3218 /* +/-inf passes r==floor(r), making those #t */
3219 if (r == floor (r))
3220 return SCM_BOOL_T;
3221 return SCM_BOOL_F;
3222 }
3223 #undef FUNC_NAME
3224
3225
3226 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3227 (SCM x),
3228 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3229 "else.")
3230 #define FUNC_NAME s_scm_inexact_p
3231 {
3232 if (SCM_INEXACTP (x))
3233 return SCM_BOOL_T;
3234 if (SCM_NUMBERP (x))
3235 return SCM_BOOL_F;
3236 SCM_WRONG_TYPE_ARG (1, x);
3237 }
3238 #undef FUNC_NAME
3239
3240
3241 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3242 /* "Return @code{#t} if all parameters are numerically equal." */
3243 SCM
3244 scm_num_eq_p (SCM x, SCM y)
3245 {
3246 again:
3247 if (SCM_I_INUMP (x))
3248 {
3249 long xx = SCM_I_INUM (x);
3250 if (SCM_I_INUMP (y))
3251 {
3252 long yy = SCM_I_INUM (y);
3253 return scm_from_bool (xx == yy);
3254 }
3255 else if (SCM_BIGP (y))
3256 return SCM_BOOL_F;
3257 else if (SCM_REALP (y))
3258 {
3259 /* On a 32-bit system an inum fits a double, we can cast the inum
3260 to a double and compare.
3261
3262 But on a 64-bit system an inum is bigger than a double and
3263 casting it to a double (call that dxx) will round. dxx is at
3264 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3265 an integer and fits a long. So we cast yy to a long and
3266 compare with plain xx.
3267
3268 An alternative (for any size system actually) would be to check
3269 yy is an integer (with floor) and is in range of an inum
3270 (compare against appropriate powers of 2) then test
3271 xx==(long)yy. It's just a matter of which casts/comparisons
3272 might be fastest or easiest for the cpu. */
3273
3274 double yy = SCM_REAL_VALUE (y);
3275 return scm_from_bool ((double) xx == yy
3276 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3277 || xx == (long) yy));
3278 }
3279 else if (SCM_COMPLEXP (y))
3280 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3281 && (0.0 == SCM_COMPLEX_IMAG (y)));
3282 else if (SCM_FRACTIONP (y))
3283 return SCM_BOOL_F;
3284 else
3285 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3286 }
3287 else if (SCM_BIGP (x))
3288 {
3289 if (SCM_I_INUMP (y))
3290 return SCM_BOOL_F;
3291 else if (SCM_BIGP (y))
3292 {
3293 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3294 scm_remember_upto_here_2 (x, y);
3295 return scm_from_bool (0 == cmp);
3296 }
3297 else if (SCM_REALP (y))
3298 {
3299 int cmp;
3300 if (xisnan (SCM_REAL_VALUE (y)))
3301 return SCM_BOOL_F;
3302 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3303 scm_remember_upto_here_1 (x);
3304 return scm_from_bool (0 == cmp);
3305 }
3306 else if (SCM_COMPLEXP (y))
3307 {
3308 int cmp;
3309 if (0.0 != SCM_COMPLEX_IMAG (y))
3310 return SCM_BOOL_F;
3311 if (xisnan (SCM_COMPLEX_REAL (y)))
3312 return SCM_BOOL_F;
3313 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3314 scm_remember_upto_here_1 (x);
3315 return scm_from_bool (0 == cmp);
3316 }
3317 else if (SCM_FRACTIONP (y))
3318 return SCM_BOOL_F;
3319 else
3320 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3321 }
3322 else if (SCM_REALP (x))
3323 {
3324 double xx = SCM_REAL_VALUE (x);
3325 if (SCM_I_INUMP (y))
3326 {
3327 /* see comments with inum/real above */
3328 long yy = SCM_I_INUM (y);
3329 return scm_from_bool (xx == (double) yy
3330 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3331 || (long) xx == yy));
3332 }
3333 else if (SCM_BIGP (y))
3334 {
3335 int cmp;
3336 if (xisnan (SCM_REAL_VALUE (x)))
3337 return SCM_BOOL_F;
3338 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3339 scm_remember_upto_here_1 (y);
3340 return scm_from_bool (0 == cmp);
3341 }
3342 else if (SCM_REALP (y))
3343 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3344 else if (SCM_COMPLEXP (y))
3345 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3346 && (0.0 == SCM_COMPLEX_IMAG (y)));
3347 else if (SCM_FRACTIONP (y))
3348 {
3349 double xx = SCM_REAL_VALUE (x);
3350 if (xisnan (xx))
3351 return SCM_BOOL_F;
3352 if (xisinf (xx))
3353 return scm_from_bool (xx < 0.0);
3354 x = scm_inexact_to_exact (x); /* with x as frac or int */
3355 goto again;
3356 }
3357 else
3358 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3359 }
3360 else if (SCM_COMPLEXP (x))
3361 {
3362 if (SCM_I_INUMP (y))
3363 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3364 && (SCM_COMPLEX_IMAG (x) == 0.0));
3365 else if (SCM_BIGP (y))
3366 {
3367 int cmp;
3368 if (0.0 != SCM_COMPLEX_IMAG (x))
3369 return SCM_BOOL_F;
3370 if (xisnan (SCM_COMPLEX_REAL (x)))
3371 return SCM_BOOL_F;
3372 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3373 scm_remember_upto_here_1 (y);
3374 return scm_from_bool (0 == cmp);
3375 }
3376 else if (SCM_REALP (y))
3377 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3378 && (SCM_COMPLEX_IMAG (x) == 0.0));
3379 else if (SCM_COMPLEXP (y))
3380 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3381 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3382 else if (SCM_FRACTIONP (y))
3383 {
3384 double xx;
3385 if (SCM_COMPLEX_IMAG (x) != 0.0)
3386 return SCM_BOOL_F;
3387 xx = SCM_COMPLEX_REAL (x);
3388 if (xisnan (xx))
3389 return SCM_BOOL_F;
3390 if (xisinf (xx))
3391 return scm_from_bool (xx < 0.0);
3392 x = scm_inexact_to_exact (x); /* with x as frac or int */
3393 goto again;
3394 }
3395 else
3396 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3397 }
3398 else if (SCM_FRACTIONP (x))
3399 {
3400 if (SCM_I_INUMP (y))
3401 return SCM_BOOL_F;
3402 else if (SCM_BIGP (y))
3403 return SCM_BOOL_F;
3404 else if (SCM_REALP (y))
3405 {
3406 double yy = SCM_REAL_VALUE (y);
3407 if (xisnan (yy))
3408 return SCM_BOOL_F;
3409 if (xisinf (yy))
3410 return scm_from_bool (0.0 < yy);
3411 y = scm_inexact_to_exact (y); /* with y as frac or int */
3412 goto again;
3413 }
3414 else if (SCM_COMPLEXP (y))
3415 {
3416 double yy;
3417 if (SCM_COMPLEX_IMAG (y) != 0.0)
3418 return SCM_BOOL_F;
3419 yy = SCM_COMPLEX_REAL (y);
3420 if (xisnan (yy))
3421 return SCM_BOOL_F;
3422 if (xisinf (yy))
3423 return scm_from_bool (0.0 < yy);
3424 y = scm_inexact_to_exact (y); /* with y as frac or int */
3425 goto again;
3426 }
3427 else if (SCM_FRACTIONP (y))
3428 return scm_i_fraction_equalp (x, y);
3429 else
3430 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3431 }
3432 else
3433 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3434 }
3435
3436
3437 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3438 done are good for inums, but for bignums an answer can almost always be
3439 had by just examining a few high bits of the operands, as done by GMP in
3440 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3441 of the float exponent to take into account. */
3442
3443 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3444 /* "Return @code{#t} if the list of parameters is monotonically\n"
3445 * "increasing."
3446 */
3447 SCM
3448 scm_less_p (SCM x, SCM y)
3449 {
3450 again:
3451 if (SCM_I_INUMP (x))
3452 {
3453 long xx = SCM_I_INUM (x);
3454 if (SCM_I_INUMP (y))
3455 {
3456 long yy = SCM_I_INUM (y);
3457 return scm_from_bool (xx < yy);
3458 }
3459 else if (SCM_BIGP (y))
3460 {
3461 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3462 scm_remember_upto_here_1 (y);
3463 return scm_from_bool (sgn > 0);
3464 }
3465 else if (SCM_REALP (y))
3466 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3467 else if (SCM_FRACTIONP (y))
3468 {
3469 /* "x < a/b" becomes "x*b < a" */
3470 int_frac:
3471 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3472 y = SCM_FRACTION_NUMERATOR (y);
3473 goto again;
3474 }
3475 else
3476 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3477 }
3478 else if (SCM_BIGP (x))
3479 {
3480 if (SCM_I_INUMP (y))
3481 {
3482 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3483 scm_remember_upto_here_1 (x);
3484 return scm_from_bool (sgn < 0);
3485 }
3486 else if (SCM_BIGP (y))
3487 {
3488 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3489 scm_remember_upto_here_2 (x, y);
3490 return scm_from_bool (cmp < 0);
3491 }
3492 else if (SCM_REALP (y))
3493 {
3494 int cmp;
3495 if (xisnan (SCM_REAL_VALUE (y)))
3496 return SCM_BOOL_F;
3497 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3498 scm_remember_upto_here_1 (x);
3499 return scm_from_bool (cmp < 0);
3500 }
3501 else if (SCM_FRACTIONP (y))
3502 goto int_frac;
3503 else
3504 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3505 }
3506 else if (SCM_REALP (x))
3507 {
3508 if (SCM_I_INUMP (y))
3509 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3510 else if (SCM_BIGP (y))
3511 {
3512 int cmp;
3513 if (xisnan (SCM_REAL_VALUE (x)))
3514 return SCM_BOOL_F;
3515 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3516 scm_remember_upto_here_1 (y);
3517 return scm_from_bool (cmp > 0);
3518 }
3519 else if (SCM_REALP (y))
3520 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3521 else if (SCM_FRACTIONP (y))
3522 {
3523 double xx = SCM_REAL_VALUE (x);
3524 if (xisnan (xx))
3525 return SCM_BOOL_F;
3526 if (xisinf (xx))
3527 return scm_from_bool (xx < 0.0);
3528 x = scm_inexact_to_exact (x); /* with x as frac or int */
3529 goto again;
3530 }
3531 else
3532 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3533 }
3534 else if (SCM_FRACTIONP (x))
3535 {
3536 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3537 {
3538 /* "a/b < y" becomes "a < y*b" */
3539 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3540 x = SCM_FRACTION_NUMERATOR (x);
3541 goto again;
3542 }
3543 else if (SCM_REALP (y))
3544 {
3545 double yy = SCM_REAL_VALUE (y);
3546 if (xisnan (yy))
3547 return SCM_BOOL_F;
3548 if (xisinf (yy))
3549 return scm_from_bool (0.0 < yy);
3550 y = scm_inexact_to_exact (y); /* with y as frac or int */
3551 goto again;
3552 }
3553 else if (SCM_FRACTIONP (y))
3554 {
3555 /* "a/b < c/d" becomes "a*d < c*b" */
3556 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3557 SCM_FRACTION_DENOMINATOR (y));
3558 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3559 SCM_FRACTION_DENOMINATOR (x));
3560 x = new_x;
3561 y = new_y;
3562 goto again;
3563 }
3564 else
3565 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3566 }
3567 else
3568 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3569 }
3570
3571
3572 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3573 /* "Return @code{#t} if the list of parameters is monotonically\n"
3574 * "decreasing."
3575 */
3576 #define FUNC_NAME s_scm_gr_p
3577 SCM
3578 scm_gr_p (SCM x, SCM y)
3579 {
3580 if (!SCM_NUMBERP (x))
3581 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3582 else if (!SCM_NUMBERP (y))
3583 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3584 else
3585 return scm_less_p (y, x);
3586 }
3587 #undef FUNC_NAME
3588
3589
3590 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3591 /* "Return @code{#t} if the list of parameters is monotonically\n"
3592 * "non-decreasing."
3593 */
3594 #define FUNC_NAME s_scm_leq_p
3595 SCM
3596 scm_leq_p (SCM x, SCM y)
3597 {
3598 if (!SCM_NUMBERP (x))
3599 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3600 else if (!SCM_NUMBERP (y))
3601 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3602 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3603 return SCM_BOOL_F;
3604 else
3605 return scm_not (scm_less_p (y, x));
3606 }
3607 #undef FUNC_NAME
3608
3609
3610 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3611 /* "Return @code{#t} if the list of parameters is monotonically\n"
3612 * "non-increasing."
3613 */
3614 #define FUNC_NAME s_scm_geq_p
3615 SCM
3616 scm_geq_p (SCM x, SCM y)
3617 {
3618 if (!SCM_NUMBERP (x))
3619 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3620 else if (!SCM_NUMBERP (y))
3621 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3622 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3623 return SCM_BOOL_F;
3624 else
3625 return scm_not (scm_less_p (x, y));
3626 }
3627 #undef FUNC_NAME
3628
3629
3630 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3631 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3632 * "zero."
3633 */
3634 SCM
3635 scm_zero_p (SCM z)
3636 {
3637 if (SCM_I_INUMP (z))
3638 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3639 else if (SCM_BIGP (z))
3640 return SCM_BOOL_F;
3641 else if (SCM_REALP (z))
3642 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3643 else if (SCM_COMPLEXP (z))
3644 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3645 && SCM_COMPLEX_IMAG (z) == 0.0);
3646 else if (SCM_FRACTIONP (z))
3647 return SCM_BOOL_F;
3648 else
3649 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3650 }
3651
3652
3653 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3654 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3655 * "zero."
3656 */
3657 SCM
3658 scm_positive_p (SCM x)
3659 {
3660 if (SCM_I_INUMP (x))
3661 return scm_from_bool (SCM_I_INUM (x) > 0);
3662 else if (SCM_BIGP (x))
3663 {
3664 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3665 scm_remember_upto_here_1 (x);
3666 return scm_from_bool (sgn > 0);
3667 }
3668 else if (SCM_REALP (x))
3669 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3670 else if (SCM_FRACTIONP (x))
3671 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3672 else
3673 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3674 }
3675
3676
3677 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3678 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3679 * "zero."
3680 */
3681 SCM
3682 scm_negative_p (SCM x)
3683 {
3684 if (SCM_I_INUMP (x))
3685 return scm_from_bool (SCM_I_INUM (x) < 0);
3686 else if (SCM_BIGP (x))
3687 {
3688 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3689 scm_remember_upto_here_1 (x);
3690 return scm_from_bool (sgn < 0);
3691 }
3692 else if (SCM_REALP (x))
3693 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3694 else if (SCM_FRACTIONP (x))
3695 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3696 else
3697 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3698 }
3699
3700
3701 /* scm_min and scm_max return an inexact when either argument is inexact, as
3702 required by r5rs. On that basis, for exact/inexact combinations the
3703 exact is converted to inexact to compare and possibly return. This is
3704 unlike scm_less_p above which takes some trouble to preserve all bits in
3705 its test, such trouble is not required for min and max. */
3706
3707 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3708 /* "Return the maximum of all parameter values."
3709 */
3710 SCM
3711 scm_max (SCM x, SCM y)
3712 {
3713 if (SCM_UNBNDP (y))
3714 {
3715 if (SCM_UNBNDP (x))
3716 SCM_WTA_DISPATCH_0 (g_max, s_max);
3717 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3718 return x;
3719 else
3720 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3721 }
3722
3723 if (SCM_I_INUMP (x))
3724 {
3725 long xx = SCM_I_INUM (x);
3726 if (SCM_I_INUMP (y))
3727 {
3728 long yy = SCM_I_INUM (y);
3729 return (xx < yy) ? y : x;
3730 }
3731 else if (SCM_BIGP (y))
3732 {
3733 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3734 scm_remember_upto_here_1 (y);
3735 return (sgn < 0) ? x : y;
3736 }
3737 else if (SCM_REALP (y))
3738 {
3739 double z = xx;
3740 /* if y==NaN then ">" is false and we return NaN */
3741 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3742 }
3743 else if (SCM_FRACTIONP (y))
3744 {
3745 use_less:
3746 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3747 }
3748 else
3749 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3750 }
3751 else if (SCM_BIGP (x))
3752 {
3753 if (SCM_I_INUMP (y))
3754 {
3755 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3756 scm_remember_upto_here_1 (x);
3757 return (sgn < 0) ? y : x;
3758 }
3759 else if (SCM_BIGP (y))
3760 {
3761 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3762 scm_remember_upto_here_2 (x, y);
3763 return (cmp > 0) ? x : y;
3764 }
3765 else if (SCM_REALP (y))
3766 {
3767 /* if y==NaN then xx>yy is false, so we return the NaN y */
3768 double xx, yy;
3769 big_real:
3770 xx = scm_i_big2dbl (x);
3771 yy = SCM_REAL_VALUE (y);
3772 return (xx > yy ? scm_from_double (xx) : y);
3773 }
3774 else if (SCM_FRACTIONP (y))
3775 {
3776 goto use_less;
3777 }
3778 else
3779 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3780 }
3781 else if (SCM_REALP (x))
3782 {
3783 if (SCM_I_INUMP (y))
3784 {
3785 double z = SCM_I_INUM (y);
3786 /* if x==NaN then "<" is false and we return NaN */
3787 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3788 }
3789 else if (SCM_BIGP (y))
3790 {
3791 SCM_SWAP (x, y);
3792 goto big_real;
3793 }
3794 else if (SCM_REALP (y))
3795 {
3796 /* if x==NaN then our explicit check means we return NaN
3797 if y==NaN then ">" is false and we return NaN
3798 calling isnan is unavoidable, since it's the only way to know
3799 which of x or y causes any compares to be false */
3800 double xx = SCM_REAL_VALUE (x);
3801 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3802 }
3803 else if (SCM_FRACTIONP (y))
3804 {
3805 double yy = scm_i_fraction2double (y);
3806 double xx = SCM_REAL_VALUE (x);
3807 return (xx < yy) ? scm_from_double (yy) : x;
3808 }
3809 else
3810 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3811 }
3812 else if (SCM_FRACTIONP (x))
3813 {
3814 if (SCM_I_INUMP (y))
3815 {
3816 goto use_less;
3817 }
3818 else if (SCM_BIGP (y))
3819 {
3820 goto use_less;
3821 }
3822 else if (SCM_REALP (y))
3823 {
3824 double xx = scm_i_fraction2double (x);
3825 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3826 }
3827 else if (SCM_FRACTIONP (y))
3828 {
3829 goto use_less;
3830 }
3831 else
3832 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3833 }
3834 else
3835 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3836 }
3837
3838
3839 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3840 /* "Return the minium of all parameter values."
3841 */
3842 SCM
3843 scm_min (SCM x, SCM y)
3844 {
3845 if (SCM_UNBNDP (y))
3846 {
3847 if (SCM_UNBNDP (x))
3848 SCM_WTA_DISPATCH_0 (g_min, s_min);
3849 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3850 return x;
3851 else
3852 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3853 }
3854
3855 if (SCM_I_INUMP (x))
3856 {
3857 long xx = SCM_I_INUM (x);
3858 if (SCM_I_INUMP (y))
3859 {
3860 long yy = SCM_I_INUM (y);
3861 return (xx < yy) ? x : y;
3862 }
3863 else if (SCM_BIGP (y))
3864 {
3865 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3866 scm_remember_upto_here_1 (y);
3867 return (sgn < 0) ? y : x;
3868 }
3869 else if (SCM_REALP (y))
3870 {
3871 double z = xx;
3872 /* if y==NaN then "<" is false and we return NaN */
3873 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3874 }
3875 else if (SCM_FRACTIONP (y))
3876 {
3877 use_less:
3878 return (scm_is_false (scm_less_p (x, y)) ? y : x);
3879 }
3880 else
3881 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3882 }
3883 else if (SCM_BIGP (x))
3884 {
3885 if (SCM_I_INUMP (y))
3886 {
3887 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3888 scm_remember_upto_here_1 (x);
3889 return (sgn < 0) ? x : y;
3890 }
3891 else if (SCM_BIGP (y))
3892 {
3893 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3894 scm_remember_upto_here_2 (x, y);
3895 return (cmp > 0) ? y : x;
3896 }
3897 else if (SCM_REALP (y))
3898 {
3899 /* if y==NaN then xx<yy is false, so we return the NaN y */
3900 double xx, yy;
3901 big_real:
3902 xx = scm_i_big2dbl (x);
3903 yy = SCM_REAL_VALUE (y);
3904 return (xx < yy ? scm_from_double (xx) : y);
3905 }
3906 else if (SCM_FRACTIONP (y))
3907 {
3908 goto use_less;
3909 }
3910 else
3911 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3912 }
3913 else if (SCM_REALP (x))
3914 {
3915 if (SCM_I_INUMP (y))
3916 {
3917 double z = SCM_I_INUM (y);
3918 /* if x==NaN then "<" is false and we return NaN */
3919 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
3920 }
3921 else if (SCM_BIGP (y))
3922 {
3923 SCM_SWAP (x, y);
3924 goto big_real;
3925 }
3926 else if (SCM_REALP (y))
3927 {
3928 /* if x==NaN then our explicit check means we return NaN
3929 if y==NaN then "<" is false and we return NaN
3930 calling isnan is unavoidable, since it's the only way to know
3931 which of x or y causes any compares to be false */
3932 double xx = SCM_REAL_VALUE (x);
3933 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3934 }
3935 else if (SCM_FRACTIONP (y))
3936 {
3937 double yy = scm_i_fraction2double (y);
3938 double xx = SCM_REAL_VALUE (x);
3939 return (yy < xx) ? scm_from_double (yy) : x;
3940 }
3941 else
3942 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3943 }
3944 else if (SCM_FRACTIONP (x))
3945 {
3946 if (SCM_I_INUMP (y))
3947 {
3948 goto use_less;
3949 }
3950 else if (SCM_BIGP (y))
3951 {
3952 goto use_less;
3953 }
3954 else if (SCM_REALP (y))
3955 {
3956 double xx = scm_i_fraction2double (x);
3957 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
3958 }
3959 else if (SCM_FRACTIONP (y))
3960 {
3961 goto use_less;
3962 }
3963 else
3964 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3965 }
3966 else
3967 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3968 }
3969
3970
3971 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3972 /* "Return the sum of all parameter values. Return 0 if called without\n"
3973 * "any parameters."
3974 */
3975 SCM
3976 scm_sum (SCM x, SCM y)
3977 {
3978 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
3979 {
3980 if (SCM_NUMBERP (x)) return x;
3981 if (SCM_UNBNDP (x)) return SCM_INUM0;
3982 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3983 }
3984
3985 if (SCM_LIKELY (SCM_I_INUMP (x)))
3986 {
3987 if (SCM_LIKELY (SCM_I_INUMP (y)))
3988 {
3989 long xx = SCM_I_INUM (x);
3990 long yy = SCM_I_INUM (y);
3991 long int z = xx + yy;
3992 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
3993 }
3994 else if (SCM_BIGP (y))
3995 {
3996 SCM_SWAP (x, y);
3997 goto add_big_inum;
3998 }
3999 else if (SCM_REALP (y))
4000 {
4001 long int xx = SCM_I_INUM (x);
4002 return scm_from_double (xx + SCM_REAL_VALUE (y));
4003 }
4004 else if (SCM_COMPLEXP (y))
4005 {
4006 long int xx = SCM_I_INUM (x);
4007 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
4008 SCM_COMPLEX_IMAG (y));
4009 }
4010 else if (SCM_FRACTIONP (y))
4011 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4012 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4013 SCM_FRACTION_DENOMINATOR (y));
4014 else
4015 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4016 } else if (SCM_BIGP (x))
4017 {
4018 if (SCM_I_INUMP (y))
4019 {
4020 long int inum;
4021 int bigsgn;
4022 add_big_inum:
4023 inum = SCM_I_INUM (y);
4024 if (inum == 0)
4025 return x;
4026 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4027 if (inum < 0)
4028 {
4029 SCM result = scm_i_mkbig ();
4030 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4031 scm_remember_upto_here_1 (x);
4032 /* we know the result will have to be a bignum */
4033 if (bigsgn == -1)
4034 return result;
4035 return scm_i_normbig (result);
4036 }
4037 else
4038 {
4039 SCM result = scm_i_mkbig ();
4040 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4041 scm_remember_upto_here_1 (x);
4042 /* we know the result will have to be a bignum */
4043 if (bigsgn == 1)
4044 return result;
4045 return scm_i_normbig (result);
4046 }
4047 }
4048 else if (SCM_BIGP (y))
4049 {
4050 SCM result = scm_i_mkbig ();
4051 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4052 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4053 mpz_add (SCM_I_BIG_MPZ (result),
4054 SCM_I_BIG_MPZ (x),
4055 SCM_I_BIG_MPZ (y));
4056 scm_remember_upto_here_2 (x, y);
4057 /* we know the result will have to be a bignum */
4058 if (sgn_x == sgn_y)
4059 return result;
4060 return scm_i_normbig (result);
4061 }
4062 else if (SCM_REALP (y))
4063 {
4064 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4065 scm_remember_upto_here_1 (x);
4066 return scm_from_double (result);
4067 }
4068 else if (SCM_COMPLEXP (y))
4069 {
4070 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4071 + SCM_COMPLEX_REAL (y));
4072 scm_remember_upto_here_1 (x);
4073 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4074 }
4075 else if (SCM_FRACTIONP (y))
4076 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4077 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4078 SCM_FRACTION_DENOMINATOR (y));
4079 else
4080 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4081 }
4082 else if (SCM_REALP (x))
4083 {
4084 if (SCM_I_INUMP (y))
4085 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4086 else if (SCM_BIGP (y))
4087 {
4088 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4089 scm_remember_upto_here_1 (y);
4090 return scm_from_double (result);
4091 }
4092 else if (SCM_REALP (y))
4093 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4094 else if (SCM_COMPLEXP (y))
4095 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4096 SCM_COMPLEX_IMAG (y));
4097 else if (SCM_FRACTIONP (y))
4098 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4099 else
4100 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4101 }
4102 else if (SCM_COMPLEXP (x))
4103 {
4104 if (SCM_I_INUMP (y))
4105 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4106 SCM_COMPLEX_IMAG (x));
4107 else if (SCM_BIGP (y))
4108 {
4109 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4110 + SCM_COMPLEX_REAL (x));
4111 scm_remember_upto_here_1 (y);
4112 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4113 }
4114 else if (SCM_REALP (y))
4115 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4116 SCM_COMPLEX_IMAG (x));
4117 else if (SCM_COMPLEXP (y))
4118 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4119 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4120 else if (SCM_FRACTIONP (y))
4121 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4122 SCM_COMPLEX_IMAG (x));
4123 else
4124 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4125 }
4126 else if (SCM_FRACTIONP (x))
4127 {
4128 if (SCM_I_INUMP (y))
4129 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4130 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4131 SCM_FRACTION_DENOMINATOR (x));
4132 else if (SCM_BIGP (y))
4133 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4134 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4135 SCM_FRACTION_DENOMINATOR (x));
4136 else if (SCM_REALP (y))
4137 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4138 else if (SCM_COMPLEXP (y))
4139 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4140 SCM_COMPLEX_IMAG (y));
4141 else if (SCM_FRACTIONP (y))
4142 /* a/b + c/d = (ad + bc) / bd */
4143 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4144 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4145 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4146 else
4147 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4148 }
4149 else
4150 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4151 }
4152
4153
4154 SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4155 (SCM x),
4156 "Return @math{@var{x}+1}.")
4157 #define FUNC_NAME s_scm_oneplus
4158 {
4159 return scm_sum (x, SCM_I_MAKINUM (1));
4160 }
4161 #undef FUNC_NAME
4162
4163
4164 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
4165 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4166 * the sum of all but the first argument are subtracted from the first
4167 * argument. */
4168 #define FUNC_NAME s_difference
4169 SCM
4170 scm_difference (SCM x, SCM y)
4171 {
4172 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4173 {
4174 if (SCM_UNBNDP (x))
4175 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4176 else
4177 if (SCM_I_INUMP (x))
4178 {
4179 long xx = -SCM_I_INUM (x);
4180 if (SCM_FIXABLE (xx))
4181 return SCM_I_MAKINUM (xx);
4182 else
4183 return scm_i_long2big (xx);
4184 }
4185 else if (SCM_BIGP (x))
4186 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4187 bignum, but negating that gives a fixnum. */
4188 return scm_i_normbig (scm_i_clonebig (x, 0));
4189 else if (SCM_REALP (x))
4190 return scm_from_double (-SCM_REAL_VALUE (x));
4191 else if (SCM_COMPLEXP (x))
4192 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4193 -SCM_COMPLEX_IMAG (x));
4194 else if (SCM_FRACTIONP (x))
4195 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4196 SCM_FRACTION_DENOMINATOR (x));
4197 else
4198 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4199 }
4200
4201 if (SCM_LIKELY (SCM_I_INUMP (x)))
4202 {
4203 if (SCM_LIKELY (SCM_I_INUMP (y)))
4204 {
4205 long int xx = SCM_I_INUM (x);
4206 long int yy = SCM_I_INUM (y);
4207 long int z = xx - yy;
4208 if (SCM_FIXABLE (z))
4209 return SCM_I_MAKINUM (z);
4210 else
4211 return scm_i_long2big (z);
4212 }
4213 else if (SCM_BIGP (y))
4214 {
4215 /* inum-x - big-y */
4216 long xx = SCM_I_INUM (x);
4217
4218 if (xx == 0)
4219 return scm_i_clonebig (y, 0);
4220 else
4221 {
4222 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4223 SCM result = scm_i_mkbig ();
4224
4225 if (xx >= 0)
4226 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4227 else
4228 {
4229 /* x - y == -(y + -x) */
4230 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4231 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4232 }
4233 scm_remember_upto_here_1 (y);
4234
4235 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4236 /* we know the result will have to be a bignum */
4237 return result;
4238 else
4239 return scm_i_normbig (result);
4240 }
4241 }
4242 else if (SCM_REALP (y))
4243 {
4244 long int xx = SCM_I_INUM (x);
4245 return scm_from_double (xx - SCM_REAL_VALUE (y));
4246 }
4247 else if (SCM_COMPLEXP (y))
4248 {
4249 long int xx = SCM_I_INUM (x);
4250 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4251 - SCM_COMPLEX_IMAG (y));
4252 }
4253 else if (SCM_FRACTIONP (y))
4254 /* a - b/c = (ac - b) / c */
4255 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4256 SCM_FRACTION_NUMERATOR (y)),
4257 SCM_FRACTION_DENOMINATOR (y));
4258 else
4259 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4260 }
4261 else if (SCM_BIGP (x))
4262 {
4263 if (SCM_I_INUMP (y))
4264 {
4265 /* big-x - inum-y */
4266 long yy = SCM_I_INUM (y);
4267 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4268
4269 scm_remember_upto_here_1 (x);
4270 if (sgn_x == 0)
4271 return (SCM_FIXABLE (-yy) ?
4272 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4273 else
4274 {
4275 SCM result = scm_i_mkbig ();
4276
4277 if (yy >= 0)
4278 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4279 else
4280 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4281 scm_remember_upto_here_1 (x);
4282
4283 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4284 /* we know the result will have to be a bignum */
4285 return result;
4286 else
4287 return scm_i_normbig (result);
4288 }
4289 }
4290 else if (SCM_BIGP (y))
4291 {
4292 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4293 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4294 SCM result = scm_i_mkbig ();
4295 mpz_sub (SCM_I_BIG_MPZ (result),
4296 SCM_I_BIG_MPZ (x),
4297 SCM_I_BIG_MPZ (y));
4298 scm_remember_upto_here_2 (x, y);
4299 /* we know the result will have to be a bignum */
4300 if ((sgn_x == 1) && (sgn_y == -1))
4301 return result;
4302 if ((sgn_x == -1) && (sgn_y == 1))
4303 return result;
4304 return scm_i_normbig (result);
4305 }
4306 else if (SCM_REALP (y))
4307 {
4308 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4309 scm_remember_upto_here_1 (x);
4310 return scm_from_double (result);
4311 }
4312 else if (SCM_COMPLEXP (y))
4313 {
4314 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4315 - SCM_COMPLEX_REAL (y));
4316 scm_remember_upto_here_1 (x);
4317 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4318 }
4319 else if (SCM_FRACTIONP (y))
4320 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4321 SCM_FRACTION_NUMERATOR (y)),
4322 SCM_FRACTION_DENOMINATOR (y));
4323 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4324 }
4325 else if (SCM_REALP (x))
4326 {
4327 if (SCM_I_INUMP (y))
4328 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4329 else if (SCM_BIGP (y))
4330 {
4331 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4332 scm_remember_upto_here_1 (x);
4333 return scm_from_double (result);
4334 }
4335 else if (SCM_REALP (y))
4336 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4337 else if (SCM_COMPLEXP (y))
4338 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4339 -SCM_COMPLEX_IMAG (y));
4340 else if (SCM_FRACTIONP (y))
4341 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4342 else
4343 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4344 }
4345 else if (SCM_COMPLEXP (x))
4346 {
4347 if (SCM_I_INUMP (y))
4348 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4349 SCM_COMPLEX_IMAG (x));
4350 else if (SCM_BIGP (y))
4351 {
4352 double real_part = (SCM_COMPLEX_REAL (x)
4353 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4354 scm_remember_upto_here_1 (x);
4355 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4356 }
4357 else if (SCM_REALP (y))
4358 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4359 SCM_COMPLEX_IMAG (x));
4360 else if (SCM_COMPLEXP (y))
4361 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4362 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4363 else if (SCM_FRACTIONP (y))
4364 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4365 SCM_COMPLEX_IMAG (x));
4366 else
4367 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4368 }
4369 else if (SCM_FRACTIONP (x))
4370 {
4371 if (SCM_I_INUMP (y))
4372 /* a/b - c = (a - cb) / b */
4373 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4374 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4375 SCM_FRACTION_DENOMINATOR (x));
4376 else if (SCM_BIGP (y))
4377 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4378 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4379 SCM_FRACTION_DENOMINATOR (x));
4380 else if (SCM_REALP (y))
4381 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4382 else if (SCM_COMPLEXP (y))
4383 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4384 -SCM_COMPLEX_IMAG (y));
4385 else if (SCM_FRACTIONP (y))
4386 /* a/b - c/d = (ad - bc) / bd */
4387 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4388 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4389 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4390 else
4391 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4392 }
4393 else
4394 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4395 }
4396 #undef FUNC_NAME
4397
4398
4399 SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4400 (SCM x),
4401 "Return @math{@var{x}-1}.")
4402 #define FUNC_NAME s_scm_oneminus
4403 {
4404 return scm_difference (x, SCM_I_MAKINUM (1));
4405 }
4406 #undef FUNC_NAME
4407
4408
4409 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4410 /* "Return the product of all arguments. If called without arguments,\n"
4411 * "1 is returned."
4412 */
4413 SCM
4414 scm_product (SCM x, SCM y)
4415 {
4416 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4417 {
4418 if (SCM_UNBNDP (x))
4419 return SCM_I_MAKINUM (1L);
4420 else if (SCM_NUMBERP (x))
4421 return x;
4422 else
4423 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4424 }
4425
4426 if (SCM_LIKELY (SCM_I_INUMP (x)))
4427 {
4428 long xx;
4429
4430 intbig:
4431 xx = SCM_I_INUM (x);
4432
4433 switch (xx)
4434 {
4435 case 0: return x; break;
4436 case 1: return y; break;
4437 }
4438
4439 if (SCM_LIKELY (SCM_I_INUMP (y)))
4440 {
4441 long yy = SCM_I_INUM (y);
4442 long kk = xx * yy;
4443 SCM k = SCM_I_MAKINUM (kk);
4444 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4445 return k;
4446 else
4447 {
4448 SCM result = scm_i_long2big (xx);
4449 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4450 return scm_i_normbig (result);
4451 }
4452 }
4453 else if (SCM_BIGP (y))
4454 {
4455 SCM result = scm_i_mkbig ();
4456 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4457 scm_remember_upto_here_1 (y);
4458 return result;
4459 }
4460 else if (SCM_REALP (y))
4461 return scm_from_double (xx * SCM_REAL_VALUE (y));
4462 else if (SCM_COMPLEXP (y))
4463 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4464 xx * SCM_COMPLEX_IMAG (y));
4465 else if (SCM_FRACTIONP (y))
4466 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4467 SCM_FRACTION_DENOMINATOR (y));
4468 else
4469 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4470 }
4471 else if (SCM_BIGP (x))
4472 {
4473 if (SCM_I_INUMP (y))
4474 {
4475 SCM_SWAP (x, y);
4476 goto intbig;
4477 }
4478 else if (SCM_BIGP (y))
4479 {
4480 SCM result = scm_i_mkbig ();
4481 mpz_mul (SCM_I_BIG_MPZ (result),
4482 SCM_I_BIG_MPZ (x),
4483 SCM_I_BIG_MPZ (y));
4484 scm_remember_upto_here_2 (x, y);
4485 return result;
4486 }
4487 else if (SCM_REALP (y))
4488 {
4489 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4490 scm_remember_upto_here_1 (x);
4491 return scm_from_double (result);
4492 }
4493 else if (SCM_COMPLEXP (y))
4494 {
4495 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4496 scm_remember_upto_here_1 (x);
4497 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4498 z * SCM_COMPLEX_IMAG (y));
4499 }
4500 else if (SCM_FRACTIONP (y))
4501 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4502 SCM_FRACTION_DENOMINATOR (y));
4503 else
4504 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4505 }
4506 else if (SCM_REALP (x))
4507 {
4508 if (SCM_I_INUMP (y))
4509 {
4510 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4511 if (scm_is_eq (y, SCM_INUM0))
4512 return y;
4513 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4514 }
4515 else if (SCM_BIGP (y))
4516 {
4517 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4518 scm_remember_upto_here_1 (y);
4519 return scm_from_double (result);
4520 }
4521 else if (SCM_REALP (y))
4522 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4523 else if (SCM_COMPLEXP (y))
4524 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4525 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4526 else if (SCM_FRACTIONP (y))
4527 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4528 else
4529 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4530 }
4531 else if (SCM_COMPLEXP (x))
4532 {
4533 if (SCM_I_INUMP (y))
4534 {
4535 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4536 if (scm_is_eq (y, SCM_INUM0))
4537 return y;
4538 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4539 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4540 }
4541 else if (SCM_BIGP (y))
4542 {
4543 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4544 scm_remember_upto_here_1 (y);
4545 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4546 z * SCM_COMPLEX_IMAG (x));
4547 }
4548 else if (SCM_REALP (y))
4549 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4550 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4551 else if (SCM_COMPLEXP (y))
4552 {
4553 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4554 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4555 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4556 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4557 }
4558 else if (SCM_FRACTIONP (y))
4559 {
4560 double yy = scm_i_fraction2double (y);
4561 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4562 yy * SCM_COMPLEX_IMAG (x));
4563 }
4564 else
4565 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4566 }
4567 else if (SCM_FRACTIONP (x))
4568 {
4569 if (SCM_I_INUMP (y))
4570 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4571 SCM_FRACTION_DENOMINATOR (x));
4572 else if (SCM_BIGP (y))
4573 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4574 SCM_FRACTION_DENOMINATOR (x));
4575 else if (SCM_REALP (y))
4576 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4577 else if (SCM_COMPLEXP (y))
4578 {
4579 double xx = scm_i_fraction2double (x);
4580 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4581 xx * SCM_COMPLEX_IMAG (y));
4582 }
4583 else if (SCM_FRACTIONP (y))
4584 /* a/b * c/d = ac / bd */
4585 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4586 SCM_FRACTION_NUMERATOR (y)),
4587 scm_product (SCM_FRACTION_DENOMINATOR (x),
4588 SCM_FRACTION_DENOMINATOR (y)));
4589 else
4590 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4591 }
4592 else
4593 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4594 }
4595
4596 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4597 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4598 #define ALLOW_DIVIDE_BY_ZERO
4599 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4600 #endif
4601
4602 /* The code below for complex division is adapted from the GNU
4603 libstdc++, which adapted it from f2c's libF77, and is subject to
4604 this copyright: */
4605
4606 /****************************************************************
4607 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4608
4609 Permission to use, copy, modify, and distribute this software
4610 and its documentation for any purpose and without fee is hereby
4611 granted, provided that the above copyright notice appear in all
4612 copies and that both that the copyright notice and this
4613 permission notice and warranty disclaimer appear in supporting
4614 documentation, and that the names of AT&T Bell Laboratories or
4615 Bellcore or any of their entities not be used in advertising or
4616 publicity pertaining to distribution of the software without
4617 specific, written prior permission.
4618
4619 AT&T and Bellcore disclaim all warranties with regard to this
4620 software, including all implied warranties of merchantability
4621 and fitness. In no event shall AT&T or Bellcore be liable for
4622 any special, indirect or consequential damages or any damages
4623 whatsoever resulting from loss of use, data or profits, whether
4624 in an action of contract, negligence or other tortious action,
4625 arising out of or in connection with the use or performance of
4626 this software.
4627 ****************************************************************/
4628
4629 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4630 /* Divide the first argument by the product of the remaining
4631 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4632 returned. */
4633 #define FUNC_NAME s_divide
4634 static SCM
4635 scm_i_divide (SCM x, SCM y, int inexact)
4636 {
4637 double a;
4638
4639 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4640 {
4641 if (SCM_UNBNDP (x))
4642 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4643 else if (SCM_I_INUMP (x))
4644 {
4645 long xx = SCM_I_INUM (x);
4646 if (xx == 1 || xx == -1)
4647 return x;
4648 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4649 else if (xx == 0)
4650 scm_num_overflow (s_divide);
4651 #endif
4652 else
4653 {
4654 if (inexact)
4655 return scm_from_double (1.0 / (double) xx);
4656 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4657 }
4658 }
4659 else if (SCM_BIGP (x))
4660 {
4661 if (inexact)
4662 return scm_from_double (1.0 / scm_i_big2dbl (x));
4663 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4664 }
4665 else if (SCM_REALP (x))
4666 {
4667 double xx = SCM_REAL_VALUE (x);
4668 #ifndef ALLOW_DIVIDE_BY_ZERO
4669 if (xx == 0.0)
4670 scm_num_overflow (s_divide);
4671 else
4672 #endif
4673 return scm_from_double (1.0 / xx);
4674 }
4675 else if (SCM_COMPLEXP (x))
4676 {
4677 double r = SCM_COMPLEX_REAL (x);
4678 double i = SCM_COMPLEX_IMAG (x);
4679 if (fabs(r) <= fabs(i))
4680 {
4681 double t = r / i;
4682 double d = i * (1.0 + t * t);
4683 return scm_c_make_rectangular (t / d, -1.0 / d);
4684 }
4685 else
4686 {
4687 double t = i / r;
4688 double d = r * (1.0 + t * t);
4689 return scm_c_make_rectangular (1.0 / d, -t / d);
4690 }
4691 }
4692 else if (SCM_FRACTIONP (x))
4693 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4694 SCM_FRACTION_NUMERATOR (x));
4695 else
4696 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4697 }
4698
4699 if (SCM_LIKELY (SCM_I_INUMP (x)))
4700 {
4701 long xx = SCM_I_INUM (x);
4702 if (SCM_LIKELY (SCM_I_INUMP (y)))
4703 {
4704 long yy = SCM_I_INUM (y);
4705 if (yy == 0)
4706 {
4707 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4708 scm_num_overflow (s_divide);
4709 #else
4710 return scm_from_double ((double) xx / (double) yy);
4711 #endif
4712 }
4713 else if (xx % yy != 0)
4714 {
4715 if (inexact)
4716 return scm_from_double ((double) xx / (double) yy);
4717 else return scm_i_make_ratio (x, y);
4718 }
4719 else
4720 {
4721 long z = xx / yy;
4722 if (SCM_FIXABLE (z))
4723 return SCM_I_MAKINUM (z);
4724 else
4725 return scm_i_long2big (z);
4726 }
4727 }
4728 else if (SCM_BIGP (y))
4729 {
4730 if (inexact)
4731 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4732 else return scm_i_make_ratio (x, y);
4733 }
4734 else if (SCM_REALP (y))
4735 {
4736 double yy = SCM_REAL_VALUE (y);
4737 #ifndef ALLOW_DIVIDE_BY_ZERO
4738 if (yy == 0.0)
4739 scm_num_overflow (s_divide);
4740 else
4741 #endif
4742 return scm_from_double ((double) xx / yy);
4743 }
4744 else if (SCM_COMPLEXP (y))
4745 {
4746 a = xx;
4747 complex_div: /* y _must_ be a complex number */
4748 {
4749 double r = SCM_COMPLEX_REAL (y);
4750 double i = SCM_COMPLEX_IMAG (y);
4751 if (fabs(r) <= fabs(i))
4752 {
4753 double t = r / i;
4754 double d = i * (1.0 + t * t);
4755 return scm_c_make_rectangular ((a * t) / d, -a / d);
4756 }
4757 else
4758 {
4759 double t = i / r;
4760 double d = r * (1.0 + t * t);
4761 return scm_c_make_rectangular (a / d, -(a * t) / d);
4762 }
4763 }
4764 }
4765 else if (SCM_FRACTIONP (y))
4766 /* a / b/c = ac / b */
4767 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4768 SCM_FRACTION_NUMERATOR (y));
4769 else
4770 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4771 }
4772 else if (SCM_BIGP (x))
4773 {
4774 if (SCM_I_INUMP (y))
4775 {
4776 long int yy = SCM_I_INUM (y);
4777 if (yy == 0)
4778 {
4779 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4780 scm_num_overflow (s_divide);
4781 #else
4782 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4783 scm_remember_upto_here_1 (x);
4784 return (sgn == 0) ? scm_nan () : scm_inf ();
4785 #endif
4786 }
4787 else if (yy == 1)
4788 return x;
4789 else
4790 {
4791 /* FIXME: HMM, what are the relative performance issues here?
4792 We need to test. Is it faster on average to test
4793 divisible_p, then perform whichever operation, or is it
4794 faster to perform the integer div opportunistically and
4795 switch to real if there's a remainder? For now we take the
4796 middle ground: test, then if divisible, use the faster div
4797 func. */
4798
4799 long abs_yy = yy < 0 ? -yy : yy;
4800 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4801
4802 if (divisible_p)
4803 {
4804 SCM result = scm_i_mkbig ();
4805 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4806 scm_remember_upto_here_1 (x);
4807 if (yy < 0)
4808 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4809 return scm_i_normbig (result);
4810 }
4811 else
4812 {
4813 if (inexact)
4814 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4815 else return scm_i_make_ratio (x, y);
4816 }
4817 }
4818 }
4819 else if (SCM_BIGP (y))
4820 {
4821 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4822 if (y_is_zero)
4823 {
4824 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4825 scm_num_overflow (s_divide);
4826 #else
4827 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4828 scm_remember_upto_here_1 (x);
4829 return (sgn == 0) ? scm_nan () : scm_inf ();
4830 #endif
4831 }
4832 else
4833 {
4834 /* big_x / big_y */
4835 if (inexact)
4836 {
4837 /* It's easily possible for the ratio x/y to fit a double
4838 but one or both x and y be too big to fit a double,
4839 hence the use of mpq_get_d rather than converting and
4840 dividing. */
4841 mpq_t q;
4842 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
4843 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
4844 return scm_from_double (mpq_get_d (q));
4845 }
4846 else
4847 {
4848 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4849 SCM_I_BIG_MPZ (y));
4850 if (divisible_p)
4851 {
4852 SCM result = scm_i_mkbig ();
4853 mpz_divexact (SCM_I_BIG_MPZ (result),
4854 SCM_I_BIG_MPZ (x),
4855 SCM_I_BIG_MPZ (y));
4856 scm_remember_upto_here_2 (x, y);
4857 return scm_i_normbig (result);
4858 }
4859 else
4860 return scm_i_make_ratio (x, y);
4861 }
4862 }
4863 }
4864 else if (SCM_REALP (y))
4865 {
4866 double yy = SCM_REAL_VALUE (y);
4867 #ifndef ALLOW_DIVIDE_BY_ZERO
4868 if (yy == 0.0)
4869 scm_num_overflow (s_divide);
4870 else
4871 #endif
4872 return scm_from_double (scm_i_big2dbl (x) / yy);
4873 }
4874 else if (SCM_COMPLEXP (y))
4875 {
4876 a = scm_i_big2dbl (x);
4877 goto complex_div;
4878 }
4879 else if (SCM_FRACTIONP (y))
4880 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4881 SCM_FRACTION_NUMERATOR (y));
4882 else
4883 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4884 }
4885 else if (SCM_REALP (x))
4886 {
4887 double rx = SCM_REAL_VALUE (x);
4888 if (SCM_I_INUMP (y))
4889 {
4890 long int yy = SCM_I_INUM (y);
4891 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4892 if (yy == 0)
4893 scm_num_overflow (s_divide);
4894 else
4895 #endif
4896 return scm_from_double (rx / (double) yy);
4897 }
4898 else if (SCM_BIGP (y))
4899 {
4900 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4901 scm_remember_upto_here_1 (y);
4902 return scm_from_double (rx / dby);
4903 }
4904 else if (SCM_REALP (y))
4905 {
4906 double yy = SCM_REAL_VALUE (y);
4907 #ifndef ALLOW_DIVIDE_BY_ZERO
4908 if (yy == 0.0)
4909 scm_num_overflow (s_divide);
4910 else
4911 #endif
4912 return scm_from_double (rx / yy);
4913 }
4914 else if (SCM_COMPLEXP (y))
4915 {
4916 a = rx;
4917 goto complex_div;
4918 }
4919 else if (SCM_FRACTIONP (y))
4920 return scm_from_double (rx / scm_i_fraction2double (y));
4921 else
4922 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4923 }
4924 else if (SCM_COMPLEXP (x))
4925 {
4926 double rx = SCM_COMPLEX_REAL (x);
4927 double ix = SCM_COMPLEX_IMAG (x);
4928 if (SCM_I_INUMP (y))
4929 {
4930 long int yy = SCM_I_INUM (y);
4931 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4932 if (yy == 0)
4933 scm_num_overflow (s_divide);
4934 else
4935 #endif
4936 {
4937 double d = yy;
4938 return scm_c_make_rectangular (rx / d, ix / d);
4939 }
4940 }
4941 else if (SCM_BIGP (y))
4942 {
4943 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4944 scm_remember_upto_here_1 (y);
4945 return scm_c_make_rectangular (rx / dby, ix / dby);
4946 }
4947 else if (SCM_REALP (y))
4948 {
4949 double yy = SCM_REAL_VALUE (y);
4950 #ifndef ALLOW_DIVIDE_BY_ZERO
4951 if (yy == 0.0)
4952 scm_num_overflow (s_divide);
4953 else
4954 #endif
4955 return scm_c_make_rectangular (rx / yy, ix / yy);
4956 }
4957 else if (SCM_COMPLEXP (y))
4958 {
4959 double ry = SCM_COMPLEX_REAL (y);
4960 double iy = SCM_COMPLEX_IMAG (y);
4961 if (fabs(ry) <= fabs(iy))
4962 {
4963 double t = ry / iy;
4964 double d = iy * (1.0 + t * t);
4965 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
4966 }
4967 else
4968 {
4969 double t = iy / ry;
4970 double d = ry * (1.0 + t * t);
4971 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
4972 }
4973 }
4974 else if (SCM_FRACTIONP (y))
4975 {
4976 double yy = scm_i_fraction2double (y);
4977 return scm_c_make_rectangular (rx / yy, ix / yy);
4978 }
4979 else
4980 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4981 }
4982 else if (SCM_FRACTIONP (x))
4983 {
4984 if (SCM_I_INUMP (y))
4985 {
4986 long int yy = SCM_I_INUM (y);
4987 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4988 if (yy == 0)
4989 scm_num_overflow (s_divide);
4990 else
4991 #endif
4992 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4993 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4994 }
4995 else if (SCM_BIGP (y))
4996 {
4997 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4998 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4999 }
5000 else if (SCM_REALP (y))
5001 {
5002 double yy = SCM_REAL_VALUE (y);
5003 #ifndef ALLOW_DIVIDE_BY_ZERO
5004 if (yy == 0.0)
5005 scm_num_overflow (s_divide);
5006 else
5007 #endif
5008 return scm_from_double (scm_i_fraction2double (x) / yy);
5009 }
5010 else if (SCM_COMPLEXP (y))
5011 {
5012 a = scm_i_fraction2double (x);
5013 goto complex_div;
5014 }
5015 else if (SCM_FRACTIONP (y))
5016 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
5017 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5018 else
5019 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5020 }
5021 else
5022 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
5023 }
5024
5025 SCM
5026 scm_divide (SCM x, SCM y)
5027 {
5028 return scm_i_divide (x, y, 0);
5029 }
5030
5031 static SCM scm_divide2real (SCM x, SCM y)
5032 {
5033 return scm_i_divide (x, y, 1);
5034 }
5035 #undef FUNC_NAME
5036
5037
5038 double
5039 scm_asinh (double x)
5040 {
5041 #if HAVE_ASINH
5042 return asinh (x);
5043 #else
5044 #define asinh scm_asinh
5045 return log (x + sqrt (x * x + 1));
5046 #endif
5047 }
5048 SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
5049 /* "Return the inverse hyperbolic sine of @var{x}."
5050 */
5051
5052
5053 double
5054 scm_acosh (double x)
5055 {
5056 #if HAVE_ACOSH
5057 return acosh (x);
5058 #else
5059 #define acosh scm_acosh
5060 return log (x + sqrt (x * x - 1));
5061 #endif
5062 }
5063 SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
5064 /* "Return the inverse hyperbolic cosine of @var{x}."
5065 */
5066
5067
5068 double
5069 scm_atanh (double x)
5070 {
5071 #if HAVE_ATANH
5072 return atanh (x);
5073 #else
5074 #define atanh scm_atanh
5075 return 0.5 * log ((1 + x) / (1 - x));
5076 #endif
5077 }
5078 SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
5079 /* "Return the inverse hyperbolic tangent of @var{x}."
5080 */
5081
5082
5083 double
5084 scm_c_truncate (double x)
5085 {
5086 #if HAVE_TRUNC
5087 return trunc (x);
5088 #else
5089 if (x < 0.0)
5090 return -floor (-x);
5091 return floor (x);
5092 #endif
5093 }
5094
5095 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
5096 half-way case (ie. when x is an integer plus 0.5) going upwards.
5097 Then half-way cases are identified and adjusted down if the
5098 round-upwards didn't give the desired even integer.
5099
5100 "plus_half == result" identifies a half-way case. If plus_half, which is
5101 x + 0.5, is an integer then x must be an integer plus 0.5.
5102
5103 An odd "result" value is identified with result/2 != floor(result/2).
5104 This is done with plus_half, since that value is ready for use sooner in
5105 a pipelined cpu, and we're already requiring plus_half == result.
5106
5107 Note however that we need to be careful when x is big and already an
5108 integer. In that case "x+0.5" may round to an adjacent integer, causing
5109 us to return such a value, incorrectly. For instance if the hardware is
5110 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5111 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5112 returned. Or if the hardware is in round-upwards mode, then other bigger
5113 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5114 representable value, 2^128+2^76 (or whatever), again incorrect.
5115
5116 These bad roundings of x+0.5 are avoided by testing at the start whether
5117 x is already an integer. If it is then clearly that's the desired result
5118 already. And if it's not then the exponent must be small enough to allow
5119 an 0.5 to be represented, and hence added without a bad rounding. */
5120
5121 double
5122 scm_c_round (double x)
5123 {
5124 double plus_half, result;
5125
5126 if (x == floor (x))
5127 return x;
5128
5129 plus_half = x + 0.5;
5130 result = floor (plus_half);
5131 /* Adjust so that the rounding is towards even. */
5132 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5133 ? result - 1
5134 : result);
5135 }
5136
5137 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5138 (SCM x),
5139 "Round the number @var{x} towards zero.")
5140 #define FUNC_NAME s_scm_truncate_number
5141 {
5142 if (scm_is_false (scm_negative_p (x)))
5143 return scm_floor (x);
5144 else
5145 return scm_ceiling (x);
5146 }
5147 #undef FUNC_NAME
5148
5149 static SCM exactly_one_half;
5150
5151 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5152 (SCM x),
5153 "Round the number @var{x} towards the nearest integer. "
5154 "When it is exactly halfway between two integers, "
5155 "round towards the even one.")
5156 #define FUNC_NAME s_scm_round_number
5157 {
5158 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5159 return x;
5160 else if (SCM_REALP (x))
5161 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5162 else
5163 {
5164 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5165 single quotient+remainder division then examining to see which way
5166 the rounding should go. */
5167 SCM plus_half = scm_sum (x, exactly_one_half);
5168 SCM result = scm_floor (plus_half);
5169 /* Adjust so that the rounding is towards even. */
5170 if (scm_is_true (scm_num_eq_p (plus_half, result))
5171 && scm_is_true (scm_odd_p (result)))
5172 return scm_difference (result, SCM_I_MAKINUM (1));
5173 else
5174 return result;
5175 }
5176 }
5177 #undef FUNC_NAME
5178
5179 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5180 (SCM x),
5181 "Round the number @var{x} towards minus infinity.")
5182 #define FUNC_NAME s_scm_floor
5183 {
5184 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5185 return x;
5186 else if (SCM_REALP (x))
5187 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5188 else if (SCM_FRACTIONP (x))
5189 {
5190 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5191 SCM_FRACTION_DENOMINATOR (x));
5192 if (scm_is_false (scm_negative_p (x)))
5193 {
5194 /* For positive x, rounding towards zero is correct. */
5195 return q;
5196 }
5197 else
5198 {
5199 /* For negative x, we need to return q-1 unless x is an
5200 integer. But fractions are never integer, per our
5201 assumptions. */
5202 return scm_difference (q, SCM_I_MAKINUM (1));
5203 }
5204 }
5205 else
5206 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5207 }
5208 #undef FUNC_NAME
5209
5210 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5211 (SCM x),
5212 "Round the number @var{x} towards infinity.")
5213 #define FUNC_NAME s_scm_ceiling
5214 {
5215 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5216 return x;
5217 else if (SCM_REALP (x))
5218 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5219 else if (SCM_FRACTIONP (x))
5220 {
5221 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5222 SCM_FRACTION_DENOMINATOR (x));
5223 if (scm_is_false (scm_positive_p (x)))
5224 {
5225 /* For negative x, rounding towards zero is correct. */
5226 return q;
5227 }
5228 else
5229 {
5230 /* For positive x, we need to return q+1 unless x is an
5231 integer. But fractions are never integer, per our
5232 assumptions. */
5233 return scm_sum (q, SCM_I_MAKINUM (1));
5234 }
5235 }
5236 else
5237 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5238 }
5239 #undef FUNC_NAME
5240
5241 SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5242 /* "Return the square root of the real number @var{x}."
5243 */
5244 SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5245 /* "Return the absolute value of the real number @var{x}."
5246 */
5247 SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5248 /* "Return the @var{x}th power of e."
5249 */
5250 SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5251 /* "Return the natural logarithm of the real number @var{x}."
5252 */
5253 SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5254 /* "Return the sine of the real number @var{x}."
5255 */
5256 SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5257 /* "Return the cosine of the real number @var{x}."
5258 */
5259 SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5260 /* "Return the tangent of the real number @var{x}."
5261 */
5262 SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5263 /* "Return the arc sine of the real number @var{x}."
5264 */
5265 SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5266 /* "Return the arc cosine of the real number @var{x}."
5267 */
5268 SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5269 /* "Return the arc tangent of the real number @var{x}."
5270 */
5271 SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5272 /* "Return the hyperbolic sine of the real number @var{x}."
5273 */
5274 SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5275 /* "Return the hyperbolic cosine of the real number @var{x}."
5276 */
5277 SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5278 /* "Return the hyperbolic tangent of the real number @var{x}."
5279 */
5280
5281 struct dpair
5282 {
5283 double x, y;
5284 };
5285
5286 static void scm_two_doubles (SCM x,
5287 SCM y,
5288 const char *sstring,
5289 struct dpair * xy);
5290
5291 static void
5292 scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5293 {
5294 if (SCM_I_INUMP (x))
5295 xy->x = SCM_I_INUM (x);
5296 else if (SCM_BIGP (x))
5297 xy->x = scm_i_big2dbl (x);
5298 else if (SCM_REALP (x))
5299 xy->x = SCM_REAL_VALUE (x);
5300 else if (SCM_FRACTIONP (x))
5301 xy->x = scm_i_fraction2double (x);
5302 else
5303 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5304
5305 if (SCM_I_INUMP (y))
5306 xy->y = SCM_I_INUM (y);
5307 else if (SCM_BIGP (y))
5308 xy->y = scm_i_big2dbl (y);
5309 else if (SCM_REALP (y))
5310 xy->y = SCM_REAL_VALUE (y);
5311 else if (SCM_FRACTIONP (y))
5312 xy->y = scm_i_fraction2double (y);
5313 else
5314 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5315 }
5316
5317
5318 SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5319 (SCM x, SCM y),
5320 "Return @var{x} raised to the power of @var{y}. This\n"
5321 "procedure does not accept complex arguments.")
5322 #define FUNC_NAME s_scm_sys_expt
5323 {
5324 struct dpair xy;
5325 scm_two_doubles (x, y, FUNC_NAME, &xy);
5326 return scm_from_double (pow (xy.x, xy.y));
5327 }
5328 #undef FUNC_NAME
5329
5330
5331 SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5332 (SCM x, SCM y),
5333 "Return the arc tangent of the two arguments @var{x} and\n"
5334 "@var{y}. This is similar to calculating the arc tangent of\n"
5335 "@var{x} / @var{y}, except that the signs of both arguments\n"
5336 "are used to determine the quadrant of the result. This\n"
5337 "procedure does not accept complex arguments.")
5338 #define FUNC_NAME s_scm_sys_atan2
5339 {
5340 struct dpair xy;
5341 scm_two_doubles (x, y, FUNC_NAME, &xy);
5342 return scm_from_double (atan2 (xy.x, xy.y));
5343 }
5344 #undef FUNC_NAME
5345
5346 SCM
5347 scm_c_make_rectangular (double re, double im)
5348 {
5349 if (im == 0.0)
5350 return scm_from_double (re);
5351 else
5352 {
5353 SCM z;
5354 SCM_NEWSMOB (z, scm_tc16_complex,
5355 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5356 "complex"));
5357 SCM_COMPLEX_REAL (z) = re;
5358 SCM_COMPLEX_IMAG (z) = im;
5359 return z;
5360 }
5361 }
5362
5363 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5364 (SCM real_part, SCM imaginary_part),
5365 "Return a complex number constructed of the given @var{real-part} "
5366 "and @var{imaginary-part} parts.")
5367 #define FUNC_NAME s_scm_make_rectangular
5368 {
5369 struct dpair xy;
5370 scm_two_doubles (real_part, imaginary_part, FUNC_NAME, &xy);
5371 return scm_c_make_rectangular (xy.x, xy.y);
5372 }
5373 #undef FUNC_NAME
5374
5375 SCM
5376 scm_c_make_polar (double mag, double ang)
5377 {
5378 double s, c;
5379
5380 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5381 use it on Glibc-based systems that have it (it's a GNU extension). See
5382 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5383 details. */
5384 #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
5385 sincos (ang, &s, &c);
5386 #else
5387 s = sin (ang);
5388 c = cos (ang);
5389 #endif
5390 return scm_c_make_rectangular (mag * c, mag * s);
5391 }
5392
5393 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5394 (SCM x, SCM y),
5395 "Return the complex number @var{x} * e^(i * @var{y}).")
5396 #define FUNC_NAME s_scm_make_polar
5397 {
5398 struct dpair xy;
5399 scm_two_doubles (x, y, FUNC_NAME, &xy);
5400 return scm_c_make_polar (xy.x, xy.y);
5401 }
5402 #undef FUNC_NAME
5403
5404
5405 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5406 /* "Return the real part of the number @var{z}."
5407 */
5408 SCM
5409 scm_real_part (SCM z)
5410 {
5411 if (SCM_I_INUMP (z))
5412 return z;
5413 else if (SCM_BIGP (z))
5414 return z;
5415 else if (SCM_REALP (z))
5416 return z;
5417 else if (SCM_COMPLEXP (z))
5418 return scm_from_double (SCM_COMPLEX_REAL (z));
5419 else if (SCM_FRACTIONP (z))
5420 return z;
5421 else
5422 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5423 }
5424
5425
5426 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5427 /* "Return the imaginary part of the number @var{z}."
5428 */
5429 SCM
5430 scm_imag_part (SCM z)
5431 {
5432 if (SCM_I_INUMP (z))
5433 return SCM_INUM0;
5434 else if (SCM_BIGP (z))
5435 return SCM_INUM0;
5436 else if (SCM_REALP (z))
5437 return scm_flo0;
5438 else if (SCM_COMPLEXP (z))
5439 return scm_from_double (SCM_COMPLEX_IMAG (z));
5440 else if (SCM_FRACTIONP (z))
5441 return SCM_INUM0;
5442 else
5443 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5444 }
5445
5446 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5447 /* "Return the numerator of the number @var{z}."
5448 */
5449 SCM
5450 scm_numerator (SCM z)
5451 {
5452 if (SCM_I_INUMP (z))
5453 return z;
5454 else if (SCM_BIGP (z))
5455 return z;
5456 else if (SCM_FRACTIONP (z))
5457 return SCM_FRACTION_NUMERATOR (z);
5458 else if (SCM_REALP (z))
5459 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5460 else
5461 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5462 }
5463
5464
5465 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5466 /* "Return the denominator of the number @var{z}."
5467 */
5468 SCM
5469 scm_denominator (SCM z)
5470 {
5471 if (SCM_I_INUMP (z))
5472 return SCM_I_MAKINUM (1);
5473 else if (SCM_BIGP (z))
5474 return SCM_I_MAKINUM (1);
5475 else if (SCM_FRACTIONP (z))
5476 return SCM_FRACTION_DENOMINATOR (z);
5477 else if (SCM_REALP (z))
5478 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5479 else
5480 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5481 }
5482
5483 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5484 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5485 * "@code{abs} for real arguments, but also allows complex numbers."
5486 */
5487 SCM
5488 scm_magnitude (SCM z)
5489 {
5490 if (SCM_I_INUMP (z))
5491 {
5492 long int zz = SCM_I_INUM (z);
5493 if (zz >= 0)
5494 return z;
5495 else if (SCM_POSFIXABLE (-zz))
5496 return SCM_I_MAKINUM (-zz);
5497 else
5498 return scm_i_long2big (-zz);
5499 }
5500 else if (SCM_BIGP (z))
5501 {
5502 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5503 scm_remember_upto_here_1 (z);
5504 if (sgn < 0)
5505 return scm_i_clonebig (z, 0);
5506 else
5507 return z;
5508 }
5509 else if (SCM_REALP (z))
5510 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5511 else if (SCM_COMPLEXP (z))
5512 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5513 else if (SCM_FRACTIONP (z))
5514 {
5515 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5516 return z;
5517 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5518 SCM_FRACTION_DENOMINATOR (z));
5519 }
5520 else
5521 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5522 }
5523
5524
5525 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5526 /* "Return the angle of the complex number @var{z}."
5527 */
5528 SCM
5529 scm_angle (SCM z)
5530 {
5531 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5532 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5533 But if atan2 follows the floating point rounding mode, then the value
5534 is not a constant. Maybe it'd be close enough though. */
5535 if (SCM_I_INUMP (z))
5536 {
5537 if (SCM_I_INUM (z) >= 0)
5538 return scm_flo0;
5539 else
5540 return scm_from_double (atan2 (0.0, -1.0));
5541 }
5542 else if (SCM_BIGP (z))
5543 {
5544 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5545 scm_remember_upto_here_1 (z);
5546 if (sgn < 0)
5547 return scm_from_double (atan2 (0.0, -1.0));
5548 else
5549 return scm_flo0;
5550 }
5551 else if (SCM_REALP (z))
5552 {
5553 if (SCM_REAL_VALUE (z) >= 0)
5554 return scm_flo0;
5555 else
5556 return scm_from_double (atan2 (0.0, -1.0));
5557 }
5558 else if (SCM_COMPLEXP (z))
5559 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5560 else if (SCM_FRACTIONP (z))
5561 {
5562 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5563 return scm_flo0;
5564 else return scm_from_double (atan2 (0.0, -1.0));
5565 }
5566 else
5567 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5568 }
5569
5570
5571 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5572 /* Convert the number @var{x} to its inexact representation.\n"
5573 */
5574 SCM
5575 scm_exact_to_inexact (SCM z)
5576 {
5577 if (SCM_I_INUMP (z))
5578 return scm_from_double ((double) SCM_I_INUM (z));
5579 else if (SCM_BIGP (z))
5580 return scm_from_double (scm_i_big2dbl (z));
5581 else if (SCM_FRACTIONP (z))
5582 return scm_from_double (scm_i_fraction2double (z));
5583 else if (SCM_INEXACTP (z))
5584 return z;
5585 else
5586 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5587 }
5588
5589
5590 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5591 (SCM z),
5592 "Return an exact number that is numerically closest to @var{z}.")
5593 #define FUNC_NAME s_scm_inexact_to_exact
5594 {
5595 if (SCM_I_INUMP (z))
5596 return z;
5597 else if (SCM_BIGP (z))
5598 return z;
5599 else if (SCM_REALP (z))
5600 {
5601 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5602 SCM_OUT_OF_RANGE (1, z);
5603 else
5604 {
5605 mpq_t frac;
5606 SCM q;
5607
5608 mpq_init (frac);
5609 mpq_set_d (frac, SCM_REAL_VALUE (z));
5610 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5611 scm_i_mpz2num (mpq_denref (frac)));
5612
5613 /* When scm_i_make_ratio throws, we leak the memory allocated
5614 for frac...
5615 */
5616 mpq_clear (frac);
5617 return q;
5618 }
5619 }
5620 else if (SCM_FRACTIONP (z))
5621 return z;
5622 else
5623 SCM_WRONG_TYPE_ARG (1, z);
5624 }
5625 #undef FUNC_NAME
5626
5627 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5628 (SCM x, SCM eps),
5629 "Returns the @emph{simplest} rational number differing\n"
5630 "from @var{x} by no more than @var{eps}.\n"
5631 "\n"
5632 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
5633 "exact result when both its arguments are exact. Thus, you might need\n"
5634 "to use @code{inexact->exact} on the arguments.\n"
5635 "\n"
5636 "@lisp\n"
5637 "(rationalize (inexact->exact 1.2) 1/100)\n"
5638 "@result{} 6/5\n"
5639 "@end lisp")
5640 #define FUNC_NAME s_scm_rationalize
5641 {
5642 if (SCM_I_INUMP (x))
5643 return x;
5644 else if (SCM_BIGP (x))
5645 return x;
5646 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5647 {
5648 /* Use continued fractions to find closest ratio. All
5649 arithmetic is done with exact numbers.
5650 */
5651
5652 SCM ex = scm_inexact_to_exact (x);
5653 SCM int_part = scm_floor (ex);
5654 SCM tt = SCM_I_MAKINUM (1);
5655 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5656 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5657 SCM rx;
5658 int i = 0;
5659
5660 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5661 return ex;
5662
5663 ex = scm_difference (ex, int_part); /* x = x-int_part */
5664 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5665
5666 /* We stop after a million iterations just to be absolutely sure
5667 that we don't go into an infinite loop. The process normally
5668 converges after less than a dozen iterations.
5669 */
5670
5671 eps = scm_abs (eps);
5672 while (++i < 1000000)
5673 {
5674 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5675 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5676 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5677 scm_is_false
5678 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5679 eps))) /* abs(x-a/b) <= eps */
5680 {
5681 SCM res = scm_sum (int_part, scm_divide (a, b));
5682 if (scm_is_false (scm_exact_p (x))
5683 || scm_is_false (scm_exact_p (eps)))
5684 return scm_exact_to_inexact (res);
5685 else
5686 return res;
5687 }
5688 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5689 SCM_UNDEFINED);
5690 tt = scm_floor (rx); /* tt = floor (rx) */
5691 a2 = a1;
5692 b2 = b1;
5693 a1 = a;
5694 b1 = b;
5695 }
5696 scm_num_overflow (s_scm_rationalize);
5697 }
5698 else
5699 SCM_WRONG_TYPE_ARG (1, x);
5700 }
5701 #undef FUNC_NAME
5702
5703 /* conversion functions */
5704
5705 int
5706 scm_is_integer (SCM val)
5707 {
5708 return scm_is_true (scm_integer_p (val));
5709 }
5710
5711 int
5712 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5713 {
5714 if (SCM_I_INUMP (val))
5715 {
5716 scm_t_signed_bits n = SCM_I_INUM (val);
5717 return n >= min && n <= max;
5718 }
5719 else if (SCM_BIGP (val))
5720 {
5721 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5722 return 0;
5723 else if (min >= LONG_MIN && max <= LONG_MAX)
5724 {
5725 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5726 {
5727 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5728 return n >= min && n <= max;
5729 }
5730 else
5731 return 0;
5732 }
5733 else
5734 {
5735 scm_t_intmax n;
5736 size_t count;
5737
5738 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5739 > CHAR_BIT*sizeof (scm_t_uintmax))
5740 return 0;
5741
5742 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5743 SCM_I_BIG_MPZ (val));
5744
5745 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
5746 {
5747 if (n < 0)
5748 return 0;
5749 }
5750 else
5751 {
5752 n = -n;
5753 if (n >= 0)
5754 return 0;
5755 }
5756
5757 return n >= min && n <= max;
5758 }
5759 }
5760 else
5761 return 0;
5762 }
5763
5764 int
5765 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5766 {
5767 if (SCM_I_INUMP (val))
5768 {
5769 scm_t_signed_bits n = SCM_I_INUM (val);
5770 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5771 }
5772 else if (SCM_BIGP (val))
5773 {
5774 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5775 return 0;
5776 else if (max <= ULONG_MAX)
5777 {
5778 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5779 {
5780 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5781 return n >= min && n <= max;
5782 }
5783 else
5784 return 0;
5785 }
5786 else
5787 {
5788 scm_t_uintmax n;
5789 size_t count;
5790
5791 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5792 return 0;
5793
5794 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5795 > CHAR_BIT*sizeof (scm_t_uintmax))
5796 return 0;
5797
5798 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5799 SCM_I_BIG_MPZ (val));
5800
5801 return n >= min && n <= max;
5802 }
5803 }
5804 else
5805 return 0;
5806 }
5807
5808 static void
5809 scm_i_range_error (SCM bad_val, SCM min, SCM max)
5810 {
5811 scm_error (scm_out_of_range_key,
5812 NULL,
5813 "Value out of range ~S to ~S: ~S",
5814 scm_list_3 (min, max, bad_val),
5815 scm_list_1 (bad_val));
5816 }
5817
5818 #define TYPE scm_t_intmax
5819 #define TYPE_MIN min
5820 #define TYPE_MAX max
5821 #define SIZEOF_TYPE 0
5822 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5823 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5824 #include "libguile/conv-integer.i.c"
5825
5826 #define TYPE scm_t_uintmax
5827 #define TYPE_MIN min
5828 #define TYPE_MAX max
5829 #define SIZEOF_TYPE 0
5830 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5831 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5832 #include "libguile/conv-uinteger.i.c"
5833
5834 #define TYPE scm_t_int8
5835 #define TYPE_MIN SCM_T_INT8_MIN
5836 #define TYPE_MAX SCM_T_INT8_MAX
5837 #define SIZEOF_TYPE 1
5838 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5839 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5840 #include "libguile/conv-integer.i.c"
5841
5842 #define TYPE scm_t_uint8
5843 #define TYPE_MIN 0
5844 #define TYPE_MAX SCM_T_UINT8_MAX
5845 #define SIZEOF_TYPE 1
5846 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5847 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5848 #include "libguile/conv-uinteger.i.c"
5849
5850 #define TYPE scm_t_int16
5851 #define TYPE_MIN SCM_T_INT16_MIN
5852 #define TYPE_MAX SCM_T_INT16_MAX
5853 #define SIZEOF_TYPE 2
5854 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5855 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5856 #include "libguile/conv-integer.i.c"
5857
5858 #define TYPE scm_t_uint16
5859 #define TYPE_MIN 0
5860 #define TYPE_MAX SCM_T_UINT16_MAX
5861 #define SIZEOF_TYPE 2
5862 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5863 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5864 #include "libguile/conv-uinteger.i.c"
5865
5866 #define TYPE scm_t_int32
5867 #define TYPE_MIN SCM_T_INT32_MIN
5868 #define TYPE_MAX SCM_T_INT32_MAX
5869 #define SIZEOF_TYPE 4
5870 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5871 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5872 #include "libguile/conv-integer.i.c"
5873
5874 #define TYPE scm_t_uint32
5875 #define TYPE_MIN 0
5876 #define TYPE_MAX SCM_T_UINT32_MAX
5877 #define SIZEOF_TYPE 4
5878 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5879 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5880 #include "libguile/conv-uinteger.i.c"
5881
5882 #define TYPE scm_t_wchar
5883 #define TYPE_MIN (scm_t_int32)-1
5884 #define TYPE_MAX (scm_t_int32)0x10ffff
5885 #define SIZEOF_TYPE 4
5886 #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
5887 #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
5888 #include "libguile/conv-integer.i.c"
5889
5890 #if SCM_HAVE_T_INT64
5891
5892 #define TYPE scm_t_int64
5893 #define TYPE_MIN SCM_T_INT64_MIN
5894 #define TYPE_MAX SCM_T_INT64_MAX
5895 #define SIZEOF_TYPE 8
5896 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5897 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5898 #include "libguile/conv-integer.i.c"
5899
5900 #define TYPE scm_t_uint64
5901 #define TYPE_MIN 0
5902 #define TYPE_MAX SCM_T_UINT64_MAX
5903 #define SIZEOF_TYPE 8
5904 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5905 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5906 #include "libguile/conv-uinteger.i.c"
5907
5908 #endif
5909
5910 void
5911 scm_to_mpz (SCM val, mpz_t rop)
5912 {
5913 if (SCM_I_INUMP (val))
5914 mpz_set_si (rop, SCM_I_INUM (val));
5915 else if (SCM_BIGP (val))
5916 mpz_set (rop, SCM_I_BIG_MPZ (val));
5917 else
5918 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
5919 }
5920
5921 SCM
5922 scm_from_mpz (mpz_t val)
5923 {
5924 return scm_i_mpz2num (val);
5925 }
5926
5927 int
5928 scm_is_real (SCM val)
5929 {
5930 return scm_is_true (scm_real_p (val));
5931 }
5932
5933 int
5934 scm_is_rational (SCM val)
5935 {
5936 return scm_is_true (scm_rational_p (val));
5937 }
5938
5939 double
5940 scm_to_double (SCM val)
5941 {
5942 if (SCM_I_INUMP (val))
5943 return SCM_I_INUM (val);
5944 else if (SCM_BIGP (val))
5945 return scm_i_big2dbl (val);
5946 else if (SCM_FRACTIONP (val))
5947 return scm_i_fraction2double (val);
5948 else if (SCM_REALP (val))
5949 return SCM_REAL_VALUE (val);
5950 else
5951 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
5952 }
5953
5954 SCM
5955 scm_from_double (double val)
5956 {
5957 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5958 SCM_REAL_VALUE (z) = val;
5959 return z;
5960 }
5961
5962 #if SCM_ENABLE_DISCOURAGED == 1
5963
5964 float
5965 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5966 {
5967 if (SCM_BIGP (num))
5968 {
5969 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5970 if (!xisinf (res))
5971 return res;
5972 else
5973 scm_out_of_range (NULL, num);
5974 }
5975 else
5976 return scm_to_double (num);
5977 }
5978
5979 double
5980 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5981 {
5982 if (SCM_BIGP (num))
5983 {
5984 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5985 if (!xisinf (res))
5986 return res;
5987 else
5988 scm_out_of_range (NULL, num);
5989 }
5990 else
5991 return scm_to_double (num);
5992 }
5993
5994 #endif
5995
5996 int
5997 scm_is_complex (SCM val)
5998 {
5999 return scm_is_true (scm_complex_p (val));
6000 }
6001
6002 double
6003 scm_c_real_part (SCM z)
6004 {
6005 if (SCM_COMPLEXP (z))
6006 return SCM_COMPLEX_REAL (z);
6007 else
6008 {
6009 /* Use the scm_real_part to get proper error checking and
6010 dispatching.
6011 */
6012 return scm_to_double (scm_real_part (z));
6013 }
6014 }
6015
6016 double
6017 scm_c_imag_part (SCM z)
6018 {
6019 if (SCM_COMPLEXP (z))
6020 return SCM_COMPLEX_IMAG (z);
6021 else
6022 {
6023 /* Use the scm_imag_part to get proper error checking and
6024 dispatching. The result will almost always be 0.0, but not
6025 always.
6026 */
6027 return scm_to_double (scm_imag_part (z));
6028 }
6029 }
6030
6031 double
6032 scm_c_magnitude (SCM z)
6033 {
6034 return scm_to_double (scm_magnitude (z));
6035 }
6036
6037 double
6038 scm_c_angle (SCM z)
6039 {
6040 return scm_to_double (scm_angle (z));
6041 }
6042
6043 int
6044 scm_is_number (SCM z)
6045 {
6046 return scm_is_true (scm_number_p (z));
6047 }
6048
6049
6050 /* In the following functions we dispatch to the real-arg funcs like log()
6051 when we know the arg is real, instead of just handing everything to
6052 clog() for instance. This is in case clog() doesn't optimize for a
6053 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6054 well use it to go straight to the applicable C func. */
6055
6056 SCM_DEFINE (scm_log, "log", 1, 0, 0,
6057 (SCM z),
6058 "Return the natural logarithm of @var{z}.")
6059 #define FUNC_NAME s_scm_log
6060 {
6061 if (SCM_COMPLEXP (z))
6062 {
6063 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
6064 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6065 #else
6066 double re = SCM_COMPLEX_REAL (z);
6067 double im = SCM_COMPLEX_IMAG (z);
6068 return scm_c_make_rectangular (log (hypot (re, im)),
6069 atan2 (im, re));
6070 #endif
6071 }
6072 else
6073 {
6074 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6075 although the value itself overflows. */
6076 double re = scm_to_double (z);
6077 double l = log (fabs (re));
6078 if (re >= 0.0)
6079 return scm_from_double (l);
6080 else
6081 return scm_c_make_rectangular (l, M_PI);
6082 }
6083 }
6084 #undef FUNC_NAME
6085
6086
6087 SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6088 (SCM z),
6089 "Return the base 10 logarithm of @var{z}.")
6090 #define FUNC_NAME s_scm_log10
6091 {
6092 if (SCM_COMPLEXP (z))
6093 {
6094 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6095 clog() and a multiply by M_LOG10E, rather than the fallback
6096 log10+hypot+atan2.) */
6097 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
6098 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6099 #else
6100 double re = SCM_COMPLEX_REAL (z);
6101 double im = SCM_COMPLEX_IMAG (z);
6102 return scm_c_make_rectangular (log10 (hypot (re, im)),
6103 M_LOG10E * atan2 (im, re));
6104 #endif
6105 }
6106 else
6107 {
6108 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6109 although the value itself overflows. */
6110 double re = scm_to_double (z);
6111 double l = log10 (fabs (re));
6112 if (re >= 0.0)
6113 return scm_from_double (l);
6114 else
6115 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6116 }
6117 }
6118 #undef FUNC_NAME
6119
6120
6121 SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6122 (SCM z),
6123 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6124 "base of natural logarithms (2.71828@dots{}).")
6125 #define FUNC_NAME s_scm_exp
6126 {
6127 if (SCM_COMPLEXP (z))
6128 {
6129 #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
6130 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6131 #else
6132 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6133 SCM_COMPLEX_IMAG (z));
6134 #endif
6135 }
6136 else
6137 {
6138 /* When z is a negative bignum the conversion to double overflows,
6139 giving -infinity, but that's ok, the exp is still 0.0. */
6140 return scm_from_double (exp (scm_to_double (z)));
6141 }
6142 }
6143 #undef FUNC_NAME
6144
6145
6146 SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6147 (SCM x),
6148 "Return the square root of @var{z}. Of the two possible roots\n"
6149 "(positive and negative), the one with the a positive real part\n"
6150 "is returned, or if that's zero then a positive imaginary part.\n"
6151 "Thus,\n"
6152 "\n"
6153 "@example\n"
6154 "(sqrt 9.0) @result{} 3.0\n"
6155 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6156 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6157 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6158 "@end example")
6159 #define FUNC_NAME s_scm_sqrt
6160 {
6161 if (SCM_COMPLEXP (x))
6162 {
6163 #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
6164 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6165 #else
6166 double re = SCM_COMPLEX_REAL (x);
6167 double im = SCM_COMPLEX_IMAG (x);
6168 return scm_c_make_polar (sqrt (hypot (re, im)),
6169 0.5 * atan2 (im, re));
6170 #endif
6171 }
6172 else
6173 {
6174 double xx = scm_to_double (x);
6175 if (xx < 0)
6176 return scm_c_make_rectangular (0.0, sqrt (-xx));
6177 else
6178 return scm_from_double (sqrt (xx));
6179 }
6180 }
6181 #undef FUNC_NAME
6182
6183
6184
6185 void
6186 scm_init_numbers ()
6187 {
6188 int i;
6189
6190 mpz_init_set_si (z_negative_one, -1);
6191
6192 /* It may be possible to tune the performance of some algorithms by using
6193 * the following constants to avoid the creation of bignums. Please, before
6194 * using these values, remember the two rules of program optimization:
6195 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
6196 scm_c_define ("most-positive-fixnum",
6197 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
6198 scm_c_define ("most-negative-fixnum",
6199 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
6200
6201 scm_add_feature ("complex");
6202 scm_add_feature ("inexact");
6203 scm_flo0 = scm_from_double (0.0);
6204
6205 /* determine floating point precision */
6206 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
6207 {
6208 init_dblprec(&scm_dblprec[i-2],i);
6209 init_fx_radix(fx_per_radix[i-2],i);
6210 }
6211 #ifdef DBL_DIG
6212 /* hard code precision for base 10 if the preprocessor tells us to... */
6213 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6214 #endif
6215
6216 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
6217 SCM_I_MAKINUM (2)));
6218 #include "libguile/numbers.x"
6219 }
6220
6221 /*
6222 Local Variables:
6223 c-file-style: "gnu"
6224 End:
6225 */