run finalizers asynchronously in asyncs
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19 /* #define DEBUGINFO */
20
21 #ifdef HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #define SCM_BUILDING_DEPRECATED_CODE
26
27 #include "libguile/gen-scmconfig.h"
28
29 #include <stdio.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <stdlib.h>
33 #include <math.h>
34
35 #ifdef __ia64__
36 #include <ucontext.h>
37 extern unsigned long * __libc_ia64_register_backing_store_base;
38 #endif
39
40 #include "libguile/_scm.h"
41 #include "libguile/eval.h"
42 #include "libguile/stime.h"
43 #include "libguile/stackchk.h"
44 #include "libguile/struct.h"
45 #include "libguile/smob.h"
46 #include "libguile/arrays.h"
47 #include "libguile/async.h"
48 #include "libguile/ports.h"
49 #include "libguile/root.h"
50 #include "libguile/strings.h"
51 #include "libguile/vectors.h"
52 #include "libguile/weaks.h"
53 #include "libguile/hashtab.h"
54 #include "libguile/tags.h"
55
56 #include "libguile/private-gc.h"
57 #include "libguile/validate.h"
58 #include "libguile/deprecation.h"
59 #include "libguile/gc.h"
60 #include "libguile/dynwind.h"
61
62 #include "libguile/bdw-gc.h"
63
64 /* For GC_set_start_callback. */
65 #include <gc/gc_mark.h>
66
67 #ifdef GUILE_DEBUG_MALLOC
68 #include "libguile/debug-malloc.h"
69 #endif
70
71 #ifdef HAVE_UNISTD_H
72 #include <unistd.h>
73 #endif
74
75 /* Set this to != 0 if every cell that is accessed shall be checked:
76 */
77 int scm_debug_cell_accesses_p = 0;
78 int scm_expensive_debug_cell_accesses_p = 0;
79
80 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
81 * the number of cell accesses after which a gc shall be called.
82 */
83 int scm_debug_cells_gc_interval = 0;
84
85 #if SCM_ENABLE_DEPRECATED == 1
86 /* Hash table that keeps a reference to objects the user wants to protect from
87 garbage collection. It could arguably be private but applications have come
88 to rely on it (e.g., Lilypond 2.13.9). */
89 SCM scm_protects;
90 #else
91 static SCM scm_protects;
92 #endif
93
94 #if (SCM_DEBUG_CELL_ACCESSES == 1)
95
96
97 /*
98
99 Assert that the given object is a valid reference to a valid cell. This
100 test involves to determine whether the object is a cell pointer, whether
101 this pointer actually points into a heap segment and whether the cell
102 pointed to is not a free cell. Further, additional garbage collections may
103 get executed after a user defined number of cell accesses. This helps to
104 find places in the C code where references are dropped for extremely short
105 periods.
106
107 */
108 void
109 scm_i_expensive_validation_check (SCM cell)
110 {
111 /* If desired, perform additional garbage collections after a user
112 * defined number of cell accesses.
113 */
114 if (scm_debug_cells_gc_interval)
115 {
116 static unsigned int counter = 0;
117
118 if (counter != 0)
119 {
120 --counter;
121 }
122 else
123 {
124 counter = scm_debug_cells_gc_interval;
125 scm_gc ();
126 }
127 }
128 }
129
130 /* Whether cell validation is already running. */
131 static int scm_i_cell_validation_already_running = 0;
132
133 void
134 scm_assert_cell_valid (SCM cell)
135 {
136 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
137 {
138 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
139
140 /*
141 During GC, no user-code should be run, and the guile core
142 should use non-protected accessors.
143 */
144 if (scm_gc_running_p)
145 return;
146
147 /*
148 Only scm_in_heap_p and rescanning the heap is wildly
149 expensive.
150 */
151 if (scm_expensive_debug_cell_accesses_p)
152 scm_i_expensive_validation_check (cell);
153
154 scm_i_cell_validation_already_running = 0; /* re-enable */
155 }
156 }
157
158
159
160 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
161 (SCM flag),
162 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
163 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
164 "but no additional calls to garbage collection are issued.\n"
165 "If @var{flag} is a number, strict cell access checking is enabled,\n"
166 "with an additional garbage collection after the given\n"
167 "number of cell accesses.\n"
168 "This procedure only exists when the compile-time flag\n"
169 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
170 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
171 {
172 if (scm_is_false (flag))
173 {
174 scm_debug_cell_accesses_p = 0;
175 }
176 else if (scm_is_eq (flag, SCM_BOOL_T))
177 {
178 scm_debug_cells_gc_interval = 0;
179 scm_debug_cell_accesses_p = 1;
180 scm_expensive_debug_cell_accesses_p = 0;
181 }
182 else
183 {
184 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
185 scm_debug_cell_accesses_p = 1;
186 scm_expensive_debug_cell_accesses_p = 1;
187 }
188 return SCM_UNSPECIFIED;
189 }
190 #undef FUNC_NAME
191
192
193 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
194
195 \f
196
197 /* Compatibility. */
198
199 #ifndef HAVE_GC_GET_HEAP_USAGE_SAFE
200 static void
201 GC_get_heap_usage_safe (GC_word *pheap_size, GC_word *pfree_bytes,
202 GC_word *punmapped_bytes, GC_word *pbytes_since_gc,
203 GC_word *ptotal_bytes)
204 {
205 *pheap_size = GC_get_heap_size ();
206 *pfree_bytes = GC_get_free_bytes ();
207 #ifdef HAVE_GC_GET_UNMAPPED_BYTES
208 *punmapped_bytes = GC_get_unmapped_bytes ();
209 #else
210 *punmapped_bytes = 0;
211 #endif
212 *pbytes_since_gc = GC_get_bytes_since_gc ();
213 *ptotal_bytes = GC_get_total_bytes ();
214 }
215 #endif
216
217 #ifndef HAVE_GC_GET_FREE_SPACE_DIVISOR
218 static GC_word
219 GC_get_free_space_divisor (void)
220 {
221 return GC_free_space_divisor;
222 }
223 #endif
224
225 \f
226 /* Hooks. */
227 scm_t_c_hook scm_before_gc_c_hook;
228 scm_t_c_hook scm_before_mark_c_hook;
229 scm_t_c_hook scm_before_sweep_c_hook;
230 scm_t_c_hook scm_after_sweep_c_hook;
231 scm_t_c_hook scm_after_gc_c_hook;
232
233
234 static void
235 run_before_gc_c_hook (void)
236 {
237 if (!SCM_I_CURRENT_THREAD)
238 /* GC while a thread is spinning up; punt. */
239 return;
240
241 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
242 }
243
244
245 /* GC Statistics Keeping
246 */
247 unsigned long scm_gc_ports_collected = 0;
248 static long gc_time_taken = 0;
249 static long gc_start_time = 0;
250
251 static unsigned long free_space_divisor;
252 static unsigned long minimum_free_space_divisor;
253 static double target_free_space_divisor;
254
255 static unsigned long protected_obj_count = 0;
256
257
258 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
259 SCM_SYMBOL (sym_heap_size, "heap-size");
260 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
261 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
262 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
263 SCM_SYMBOL (sym_protected_objects, "protected-objects");
264 SCM_SYMBOL (sym_times, "gc-times");
265
266
267 /* {Scheme Interface to GC}
268 */
269 static SCM
270 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
271 {
272 if (scm_is_integer (key))
273 {
274 int c_tag = scm_to_int (key);
275
276 char const * name = scm_i_tag_name (c_tag);
277 if (name != NULL)
278 {
279 key = scm_from_locale_string (name);
280 }
281 else
282 {
283 char s[100];
284 sprintf (s, "tag %d", c_tag);
285 key = scm_from_locale_string (s);
286 }
287 }
288
289 return scm_cons (scm_cons (key, val), acc);
290 }
291
292 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
293 (),
294 "Return an alist of statistics of the current live objects. ")
295 #define FUNC_NAME s_scm_gc_live_object_stats
296 {
297 SCM tab = scm_make_hash_table (scm_from_int (57));
298 SCM alist;
299
300 alist
301 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
302
303 return alist;
304 }
305 #undef FUNC_NAME
306
307 extern int scm_gc_malloc_yield_percentage;
308 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
309 (),
310 "Return an association list of statistics about Guile's current\n"
311 "use of storage.\n")
312 #define FUNC_NAME s_scm_gc_stats
313 {
314 SCM answer;
315 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
316 size_t gc_times;
317
318 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
319 &bytes_since_gc, &total_bytes);
320 gc_times = GC_gc_no;
321
322 answer =
323 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
324 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
325 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
326 scm_cons (sym_heap_total_allocated,
327 scm_from_size_t (total_bytes)),
328 scm_cons (sym_heap_allocated_since_gc,
329 scm_from_size_t (bytes_since_gc)),
330 scm_cons (sym_protected_objects,
331 scm_from_ulong (protected_obj_count)),
332 scm_cons (sym_times, scm_from_size_t (gc_times)),
333 SCM_UNDEFINED);
334
335 return answer;
336 }
337 #undef FUNC_NAME
338
339
340 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
341 (void),
342 "Dump information about the garbage collector's internal data "
343 "structures and memory usage to the standard output.")
344 #define FUNC_NAME s_scm_gc_dump
345 {
346 GC_dump ();
347
348 return SCM_UNSPECIFIED;
349 }
350 #undef FUNC_NAME
351
352
353 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
354 (SCM obj),
355 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
356 "returned by this function for @var{obj}")
357 #define FUNC_NAME s_scm_object_address
358 {
359 return scm_from_ulong (SCM_UNPACK (obj));
360 }
361 #undef FUNC_NAME
362
363
364 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
365 (),
366 "Disables the garbage collector. Nested calls are permitted. "
367 "GC is re-enabled once @code{gc-enable} has been called the "
368 "same number of times @code{gc-disable} was called.")
369 #define FUNC_NAME s_scm_gc_disable
370 {
371 GC_disable ();
372 return SCM_UNSPECIFIED;
373 }
374 #undef FUNC_NAME
375
376 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
377 (),
378 "Enables the garbage collector.")
379 #define FUNC_NAME s_scm_gc_enable
380 {
381 GC_enable ();
382 return SCM_UNSPECIFIED;
383 }
384 #undef FUNC_NAME
385
386
387 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
388 (),
389 "Scans all of SCM objects and reclaims for further use those that are\n"
390 "no longer accessible.")
391 #define FUNC_NAME s_scm_gc
392 {
393 scm_i_gc ("call");
394 /* If you're calling scm_gc(), you probably want synchronous
395 finalization. */
396 GC_invoke_finalizers ();
397 return SCM_UNSPECIFIED;
398 }
399 #undef FUNC_NAME
400
401 void
402 scm_i_gc (const char *what)
403 {
404 #ifndef HAVE_GC_SET_START_CALLBACK
405 run_before_gc_c_hook ();
406 #endif
407 GC_gcollect ();
408 }
409
410
411 \f
412 /* {GC Protection Helper Functions}
413 */
414
415
416 /*
417 * If within a function you need to protect one or more scheme objects from
418 * garbage collection, pass them as parameters to one of the
419 * scm_remember_upto_here* functions below. These functions don't do
420 * anything, but since the compiler does not know that they are actually
421 * no-ops, it will generate code that calls these functions with the given
422 * parameters. Therefore, you can be sure that the compiler will keep those
423 * scheme values alive (on the stack or in a register) up to the point where
424 * scm_remember_upto_here* is called. In other words, place the call to
425 * scm_remember_upto_here* _behind_ the last code in your function, that
426 * depends on the scheme object to exist.
427 *
428 * Example: We want to make sure that the string object str does not get
429 * garbage collected during the execution of 'some_function' in the code
430 * below, because otherwise the characters belonging to str would be freed and
431 * 'some_function' might access freed memory. To make sure that the compiler
432 * keeps str alive on the stack or in a register such that it is visible to
433 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
434 * call to 'some_function'. Note that this would not be necessary if str was
435 * used anyway after the call to 'some_function'.
436 * char *chars = scm_i_string_chars (str);
437 * some_function (chars);
438 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
439 */
440
441 /* Remove any macro versions of these while defining the functions.
442 Functions are always included in the library, for upward binary
443 compatibility and in case combinations of GCC and non-GCC are used. */
444 #undef scm_remember_upto_here_1
445 #undef scm_remember_upto_here_2
446
447 void
448 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
449 {
450 /* Empty. Protects a single object from garbage collection. */
451 }
452
453 void
454 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
455 {
456 /* Empty. Protects two objects from garbage collection. */
457 }
458
459 void
460 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
461 {
462 /* Empty. Protects any number of objects from garbage collection. */
463 }
464
465 /*
466 These crazy functions prevent garbage collection
467 of arguments after the first argument by
468 ensuring they remain live throughout the
469 function because they are used in the last
470 line of the code block.
471 It'd be better to have a nice compiler hint to
472 aid the conservative stack-scanning GC. --03/09/00 gjb */
473 SCM
474 scm_return_first (SCM elt, ...)
475 {
476 return elt;
477 }
478
479 int
480 scm_return_first_int (int i, ...)
481 {
482 return i;
483 }
484
485
486 SCM
487 scm_permanent_object (SCM obj)
488 {
489 return (scm_gc_protect_object (obj));
490 }
491
492
493 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
494 other references are dropped, until the object is unprotected by calling
495 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
496 i. e. it is possible to protect the same object several times, but it is
497 necessary to unprotect the object the same number of times to actually get
498 the object unprotected. It is an error to unprotect an object more often
499 than it has been protected before. The function scm_protect_object returns
500 OBJ.
501 */
502
503 /* Implementation note: For every object X, there is a counter which
504 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
505 */
506
507
508
509 SCM
510 scm_gc_protect_object (SCM obj)
511 {
512 SCM handle;
513
514 /* This critical section barrier will be replaced by a mutex. */
515 /* njrev: Indeed; if my comment above is correct, there is the same
516 critsec/mutex inconsistency here. */
517 SCM_CRITICAL_SECTION_START;
518
519 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
520 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
521
522 protected_obj_count ++;
523
524 SCM_CRITICAL_SECTION_END;
525
526 return obj;
527 }
528
529
530 /* Remove any protection for OBJ established by a prior call to
531 scm_protect_object. This function returns OBJ.
532
533 See scm_protect_object for more information. */
534 SCM
535 scm_gc_unprotect_object (SCM obj)
536 {
537 SCM handle;
538
539 /* This critical section barrier will be replaced by a mutex. */
540 /* njrev: and again. */
541 SCM_CRITICAL_SECTION_START;
542
543 if (scm_gc_running_p)
544 {
545 fprintf (stderr, "scm_unprotect_object called during GC.\n");
546 abort ();
547 }
548
549 handle = scm_hashq_get_handle (scm_protects, obj);
550
551 if (scm_is_false (handle))
552 {
553 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
554 abort ();
555 }
556 else
557 {
558 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
559 if (scm_is_eq (count, scm_from_int (0)))
560 scm_hashq_remove_x (scm_protects, obj);
561 else
562 SCM_SETCDR (handle, count);
563 }
564 protected_obj_count --;
565
566 SCM_CRITICAL_SECTION_END;
567
568 return obj;
569 }
570
571 void
572 scm_gc_register_root (SCM *p)
573 {
574 /* Nothing. */
575 }
576
577 void
578 scm_gc_unregister_root (SCM *p)
579 {
580 /* Nothing. */
581 }
582
583 void
584 scm_gc_register_roots (SCM *b, unsigned long n)
585 {
586 SCM *p = b;
587 for (; p < b + n; ++p)
588 scm_gc_register_root (p);
589 }
590
591 void
592 scm_gc_unregister_roots (SCM *b, unsigned long n)
593 {
594 SCM *p = b;
595 for (; p < b + n; ++p)
596 scm_gc_unregister_root (p);
597 }
598
599 \f
600
601
602 /*
603 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
604 */
605
606 /* Get an integer from an environment variable. */
607 int
608 scm_getenv_int (const char *var, int def)
609 {
610 char *end = 0;
611 char *val = getenv (var);
612 long res = def;
613 if (!val)
614 return def;
615 res = strtol (val, &end, 10);
616 if (end == val)
617 return def;
618 return res;
619 }
620
621 void
622 scm_storage_prehistory ()
623 {
624 GC_all_interior_pointers = 0;
625 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
626 minimum_free_space_divisor = free_space_divisor;
627 target_free_space_divisor = free_space_divisor;
628 GC_set_free_space_divisor (free_space_divisor);
629 GC_set_finalize_on_demand (1);
630
631 GC_INIT ();
632
633 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
634 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
635 /* When using GC 6.8, this call is required to initialize thread-local
636 freelists (shouldn't be necessary with GC 7.0). */
637 GC_init ();
638 #endif
639
640 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
641
642 /* We only need to register a displacement for those types for which the
643 higher bits of the type tag are used to store a pointer (that is, a
644 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
645 handled in `scm_alloc_struct ()'. */
646 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
647 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
648
649 /* Sanity check. */
650 if (!GC_is_visible (&scm_protects))
651 abort ();
652
653 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
654 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
655 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
656 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
657 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
658 }
659
660 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
661
662 void
663 scm_init_gc_protect_object ()
664 {
665 scm_protects = scm_c_make_hash_table (31);
666
667 #if 0
668 /* We can't have a cleanup handler since we have no thread to run it
669 in. */
670
671 #ifdef HAVE_ATEXIT
672 atexit (cleanup);
673 #else
674 #ifdef HAVE_ON_EXIT
675 on_exit (cleanup, 0);
676 #endif
677 #endif
678
679 #endif
680 }
681
682 \f
683
684 SCM scm_after_gc_hook;
685
686 static SCM after_gc_async_cell;
687
688 /* The function after_gc_async_thunk causes the execution of the
689 * after-gc-hook. It is run after the gc, as soon as the asynchronous
690 * events are handled by the evaluator.
691 */
692 static SCM
693 after_gc_async_thunk (void)
694 {
695 /* Fun, no? Hook-run *and* run-hook? */
696 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
697 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
698 return SCM_UNSPECIFIED;
699 }
700
701
702 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
703 * at the end of the garbage collection. The only purpose of this
704 * function is to mark the after_gc_async (which will eventually lead to
705 * the execution of the after_gc_async_thunk).
706 */
707 static void *
708 queue_after_gc_hook (void * hook_data SCM_UNUSED,
709 void *fn_data SCM_UNUSED,
710 void *data SCM_UNUSED)
711 {
712 /* If cell access debugging is enabled, the user may choose to perform
713 * additional garbage collections after an arbitrary number of cell
714 * accesses. We don't want the scheme level after-gc-hook to be performed
715 * for each of these garbage collections for the following reason: The
716 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
717 * after-gc-hook was performed with every gc, and if the gc was performed
718 * after a very small number of cell accesses, then the number of cell
719 * accesses during the execution of the after-gc-hook will suffice to cause
720 * the execution of the next gc. Then, guile would keep executing the
721 * after-gc-hook over and over again, and would never come to do other
722 * things.
723 *
724 * To overcome this problem, if cell access debugging with additional
725 * garbage collections is enabled, the after-gc-hook is never run by the
726 * garbage collecter. When running guile with cell access debugging and the
727 * execution of the after-gc-hook is desired, then it is necessary to run
728 * the hook explicitly from the user code. This has the effect, that from
729 * the scheme level point of view it seems that garbage collection is
730 * performed with a much lower frequency than it actually is. Obviously,
731 * this will not work for code that depends on a fixed one to one
732 * relationship between the execution counts of the C level garbage
733 * collection hooks and the execution count of the scheme level
734 * after-gc-hook.
735 */
736
737 #if (SCM_DEBUG_CELL_ACCESSES == 1)
738 if (scm_debug_cells_gc_interval == 0)
739 #endif
740 {
741 scm_i_thread *t = SCM_I_CURRENT_THREAD;
742
743 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
744 {
745 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
746 t->active_asyncs = after_gc_async_cell;
747 t->pending_asyncs = 1;
748 }
749 }
750
751 return NULL;
752 }
753
754 \f
755
756 static void *
757 start_gc_timer (void * hook_data SCM_UNUSED,
758 void *fn_data SCM_UNUSED,
759 void *data SCM_UNUSED)
760 {
761 if (!gc_start_time)
762 gc_start_time = scm_c_get_internal_run_time ();
763
764 return NULL;
765 }
766
767 static void *
768 accumulate_gc_timer (void * hook_data SCM_UNUSED,
769 void *fn_data SCM_UNUSED,
770 void *data SCM_UNUSED)
771 {
772 if (gc_start_time)
773 {
774 long now = scm_c_get_internal_run_time ();
775 gc_time_taken += now - gc_start_time;
776 gc_start_time = 0;
777 }
778
779 return NULL;
780 }
781
782 /* Return some idea of the memory footprint of a process, in bytes.
783 Currently only works on Linux systems. */
784 static size_t
785 get_image_size (void)
786 {
787 unsigned long size, resident, share;
788 size_t ret = 0;
789
790 FILE *fp = fopen ("/proc/self/statm", "r");
791
792 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
793 ret = resident * 4096;
794
795 if (fp)
796 fclose (fp);
797
798 return ret;
799 }
800
801 /* These are discussed later. */
802 static size_t bytes_until_gc;
803 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
804
805 /* Make GC run more frequently when the process image size is growing,
806 measured against the number of bytes allocated through the GC.
807
808 If Guile is allocating at a GC-managed heap size H, libgc will tend
809 to limit the process image size to H*N. But if at the same time the
810 user program is mallocating at a rate M bytes per GC-allocated byte,
811 then the process stabilizes at H*N*M -- assuming that collecting data
812 will result in malloc'd data being freed. It doesn't take a very
813 large M for this to be a bad situation. To limit the image size,
814 Guile should GC more often -- the bigger the M, the more often.
815
816 Numeric functions that produce bigger and bigger integers are
817 pessimal, because M is an increasing function of time. Here is an
818 example of such a function:
819
820 (define (factorial n)
821 (define (fac n acc)
822 (if (<= n 1)
823 acc
824 (fac (1- n) (* n acc))))
825 (fac n 1))
826
827 It is possible for a process to grow for reasons that will not be
828 solved by faster GC. In that case M will be estimated as
829 artificially high for a while, and so GC will happen more often on
830 the Guile side. But when it stabilizes, Guile can ease back the GC
831 frequency.
832
833 The key is to measure process image growth, not mallocation rate.
834 For maximum effectiveness, Guile reacts quickly to process growth,
835 and exponentially backs down when the process stops growing.
836
837 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
838 for further discussion.
839 */
840 static void *
841 adjust_gc_frequency (void * hook_data SCM_UNUSED,
842 void *fn_data SCM_UNUSED,
843 void *data SCM_UNUSED)
844 {
845 static size_t prev_image_size = 0;
846 static size_t prev_bytes_alloced = 0;
847 size_t image_size;
848 size_t bytes_alloced;
849
850 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
851 bytes_until_gc = GC_get_heap_size ();
852 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
853
854 image_size = get_image_size ();
855 bytes_alloced = GC_get_total_bytes ();
856
857 #define HEURISTICS_DEBUG 0
858
859 #if HEURISTICS_DEBUG
860 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
861 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
862 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
863 #endif
864
865 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
866 {
867 double growth_rate, new_target_free_space_divisor;
868 double decay_factor = 0.5;
869 double hysteresis = 0.1;
870
871 growth_rate = ((double) image_size - prev_image_size)
872 / ((double)bytes_alloced - prev_bytes_alloced);
873
874 #if HEURISTICS_DEBUG
875 fprintf (stderr, "growth rate %f\n", growth_rate);
876 #endif
877
878 new_target_free_space_divisor = minimum_free_space_divisor;
879
880 if (growth_rate > 0)
881 new_target_free_space_divisor *= 1.0 + growth_rate;
882
883 #if HEURISTICS_DEBUG
884 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
885 #endif
886
887 if (new_target_free_space_divisor < target_free_space_divisor)
888 /* Decay down. */
889 target_free_space_divisor =
890 (decay_factor * target_free_space_divisor
891 + (1.0 - decay_factor) * new_target_free_space_divisor);
892 else
893 /* Jump up. */
894 target_free_space_divisor = new_target_free_space_divisor;
895
896 #if HEURISTICS_DEBUG
897 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
898 #endif
899
900 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
901 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
902 {
903 free_space_divisor = lround (target_free_space_divisor);
904 #if HEURISTICS_DEBUG
905 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
906 #endif
907 GC_set_free_space_divisor (free_space_divisor);
908 }
909 }
910
911 prev_image_size = image_size;
912 prev_bytes_alloced = bytes_alloced;
913
914 return NULL;
915 }
916
917 /* The adjust_gc_frequency routine handles transients in the process
918 image size. It can't handle instense non-GC-managed steady-state
919 allocation though, as it decays the FSD at steady-state down to its
920 minimum value.
921
922 The only real way to handle continuous, high non-GC allocation is to
923 let the GC know about it. This routine can handle non-GC allocation
924 rates that are similar in size to the GC-managed heap size.
925 */
926
927 void
928 scm_gc_register_allocation (size_t size)
929 {
930 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
931 if (bytes_until_gc - size > bytes_until_gc)
932 {
933 bytes_until_gc = GC_get_heap_size ();
934 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
935 GC_gcollect ();
936 }
937 else
938 {
939 bytes_until_gc -= size;
940 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
941 }
942 }
943
944
945 \f
946
947 char const *
948 scm_i_tag_name (scm_t_bits tag)
949 {
950 switch (tag & 0x7f) /* 7 bits */
951 {
952 case scm_tcs_struct:
953 return "struct";
954 case scm_tcs_cons_imcar:
955 return "cons (immediate car)";
956 case scm_tcs_cons_nimcar:
957 return "cons (non-immediate car)";
958 case scm_tc7_pointer:
959 return "foreign";
960 case scm_tc7_hashtable:
961 return "hashtable";
962 case scm_tc7_fluid:
963 return "fluid";
964 case scm_tc7_dynamic_state:
965 return "dynamic state";
966 case scm_tc7_frame:
967 return "frame";
968 case scm_tc7_objcode:
969 return "objcode";
970 case scm_tc7_vm:
971 return "vm";
972 case scm_tc7_vm_cont:
973 return "vm continuation";
974 case scm_tc7_wvect:
975 return "weak vector";
976 case scm_tc7_vector:
977 return "vector";
978 case scm_tc7_number:
979 switch (tag)
980 {
981 case scm_tc16_real:
982 return "real";
983 break;
984 case scm_tc16_big:
985 return "bignum";
986 break;
987 case scm_tc16_complex:
988 return "complex number";
989 break;
990 case scm_tc16_fraction:
991 return "fraction";
992 break;
993 }
994 break;
995 case scm_tc7_string:
996 return "string";
997 break;
998 case scm_tc7_stringbuf:
999 return "string buffer";
1000 break;
1001 case scm_tc7_symbol:
1002 return "symbol";
1003 break;
1004 case scm_tc7_variable:
1005 return "variable";
1006 break;
1007 case scm_tc7_port:
1008 return "port";
1009 break;
1010 case scm_tc7_smob:
1011 {
1012 int k = 0xff & (tag >> 8);
1013 return (scm_smobs[k].name);
1014 }
1015 break;
1016 }
1017
1018 return NULL;
1019 }
1020
1021
1022
1023 \f
1024 void
1025 scm_init_gc ()
1026 {
1027 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
1028
1029 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
1030 scm_c_define ("after-gc-hook", scm_after_gc_hook);
1031
1032 /* When the async is to run, the cdr of the gc_async pair gets set to
1033 the asyncs queue of the current thread. */
1034 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
1035 after_gc_async_thunk),
1036 SCM_BOOL_F);
1037
1038 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
1039 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
1040 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
1041
1042 #if HAVE_GC_GET_HEAP_USAGE_SAFE
1043 /* GC_get_heap_usage does not take a lock, and so can run in the GC
1044 start hook. */
1045 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
1046 #else
1047 /* GC_get_heap_usage might take a lock (and did from 7.2alpha1 to
1048 7.2alpha7), so call it in the after_gc_hook. */
1049 scm_c_hook_add (&scm_after_gc_c_hook, adjust_gc_frequency, NULL, 0);
1050 #endif
1051
1052 #ifdef HAVE_GC_SET_START_CALLBACK
1053 GC_set_start_callback (run_before_gc_c_hook);
1054 #endif
1055
1056 #include "libguile/gc.x"
1057 }
1058
1059
1060 void
1061 scm_gc_sweep (void)
1062 #define FUNC_NAME "scm_gc_sweep"
1063 {
1064 /* FIXME */
1065 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1066 }
1067 #undef FUNC_NAME
1068
1069 /*
1070 Local Variables:
1071 c-file-style: "gnu"
1072 End:
1073 */