(feature?): Added deprecation message.
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 ;;;; As a special exception, the Free Software Foundation gives permission
21 ;;;; for additional uses of the text contained in its release of GUILE.
22 ;;;;
23 ;;;; The exception is that, if you link the GUILE library with other files
24 ;;;; to produce an executable, this does not by itself cause the
25 ;;;; resulting executable to be covered by the GNU General Public License.
26 ;;;; Your use of that executable is in no way restricted on account of
27 ;;;; linking the GUILE library code into it.
28 ;;;;
29 ;;;; This exception does not however invalidate any other reasons why
30 ;;;; the executable file might be covered by the GNU General Public License.
31 ;;;;
32 ;;;; This exception applies only to the code released by the
33 ;;;; Free Software Foundation under the name GUILE. If you copy
34 ;;;; code from other Free Software Foundation releases into a copy of
35 ;;;; GUILE, as the General Public License permits, the exception does
36 ;;;; not apply to the code that you add in this way. To avoid misleading
37 ;;;; anyone as to the status of such modified files, you must delete
38 ;;;; this exception notice from them.
39 ;;;;
40 ;;;; If you write modifications of your own for GUILE, it is your choice
41 ;;;; whether to permit this exception to apply to your modifications.
42 ;;;; If you do not wish that, delete this exception notice.
43 ;;;;
44 \f
45
46 ;;; Commentary:
47
48 ;;; This file is the first thing loaded into Guile. It adds many mundane
49 ;;; definitions and a few that are interesting.
50 ;;;
51 ;;; The module system (hence the hierarchical namespace) are defined in this
52 ;;; file.
53 ;;;
54
55 ;;; Code:
56
57 \f
58 ;;; {Deprecation}
59 ;;;
60
61 ;; We don't have macros here, but we do want to define
62 ;; `begin-deprecated' early.
63
64 (define begin-deprecated
65 (procedure->memoizing-macro
66 (lambda (exp env)
67 (if (include-deprecated-features)
68 `(begin ,@(cdr exp))
69 `#f))))
70
71 \f
72 ;;; {Features}
73 ;;
74
75 (define (provide sym)
76 (if (not (memq sym *features*))
77 (set! *features* (cons sym *features*))))
78
79 ;;; Return #t iff FEATURE is available to this Guile interpreter.
80 ;;; In SLIB, provided? also checks to see if the module is available.
81 ;;; We should do that too, but don't.
82 (define (provided? feature)
83 (and (memq feature *features*) #t))
84
85 (begin-deprecated
86 (define (feature? sym)
87 (issue-deprecation-warning
88 "`feature?' is deprecated. Use `provided?' instead.")
89 (provided? sym)))
90
91 ;;; let format alias simple-format until the more complete version is loaded
92 (define format simple-format)
93
94 \f
95 ;;; {R4RS compliance}
96
97 (primitive-load-path "ice-9/r4rs.scm")
98
99 \f
100 ;;; {Simple Debugging Tools}
101 ;;
102
103
104 ;; peek takes any number of arguments, writes them to the
105 ;; current ouput port, and returns the last argument.
106 ;; It is handy to wrap around an expression to look at
107 ;; a value each time is evaluated, e.g.:
108 ;;
109 ;; (+ 10 (troublesome-fn))
110 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
111 ;;
112
113 (define (peek . stuff)
114 (newline)
115 (display ";;; ")
116 (write stuff)
117 (newline)
118 (car (last-pair stuff)))
119
120 (define pk peek)
121
122 (define (warn . stuff)
123 (with-output-to-port (current-error-port)
124 (lambda ()
125 (newline)
126 (display ";;; WARNING ")
127 (display stuff)
128 (newline)
129 (car (last-pair stuff)))))
130
131 \f
132 ;;; {Trivial Functions}
133 ;;;
134
135 (define (identity x) x)
136 (define (1+ n) (+ n 1))
137 (define (1- n) (+ n -1))
138 (define (and=> value procedure) (and value (procedure value)))
139 (define (make-hash-table k) (make-vector k '()))
140
141 ;;; apply-to-args is functionally redundant with apply and, worse,
142 ;;; is less general than apply since it only takes two arguments.
143 ;;;
144 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
145 ;;; perform binding in many circumstances when the "let" family of
146 ;;; of forms don't cut it. E.g.:
147 ;;;
148 ;;; (apply-to-args (return-3d-mouse-coords)
149 ;;; (lambda (x y z)
150 ;;; ...))
151 ;;;
152
153 (define (apply-to-args args fn) (apply fn args))
154
155 \f
156
157 ;;; {Integer Math}
158 ;;;
159
160 (define (ipow-by-squaring x k acc proc)
161 (cond ((zero? k) acc)
162 ((= 1 k) (proc acc x))
163 (else (ipow-by-squaring (proc x x)
164 (quotient k 2)
165 (if (even? k) acc (proc acc x))
166 proc))))
167
168 \f
169 ;;; {Symbol Properties}
170 ;;;
171
172 (define (symbol-property sym prop)
173 (let ((pair (assoc prop (symbol-pref sym))))
174 (and pair (cdr pair))))
175
176 (define (set-symbol-property! sym prop val)
177 (let ((pair (assoc prop (symbol-pref sym))))
178 (if pair
179 (set-cdr! pair val)
180 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
181
182 (define (symbol-property-remove! sym prop)
183 (let ((pair (assoc prop (symbol-pref sym))))
184 (if pair
185 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
186
187 ;;; {General Properties}
188 ;;;
189
190 ;; This is a more modern interface to properties. It will replace all
191 ;; other property-like things eventually.
192
193 (define (make-object-property)
194 (let ((prop (primitive-make-property #f)))
195 (make-procedure-with-setter
196 (lambda (obj) (primitive-property-ref prop obj))
197 (lambda (obj val) (primitive-property-set! prop obj val)))))
198
199 \f
200
201 ;;; {Arrays}
202 ;;;
203
204 (if (provided? 'array)
205 (primitive-load-path "ice-9/arrays.scm"))
206
207 \f
208 ;;; {Keywords}
209 ;;;
210
211 (define (symbol->keyword symbol)
212 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
213
214 (define (keyword->symbol kw)
215 (let ((sym (symbol->string (keyword-dash-symbol kw))))
216 (string->symbol (substring sym 1 (string-length sym)))))
217
218 (define (kw-arg-ref args kw)
219 (let ((rem (member kw args)))
220 (and rem (pair? (cdr rem)) (cadr rem))))
221
222 \f
223
224 ;;; {Structs}
225
226 (define (struct-layout s)
227 (struct-ref (struct-vtable s) vtable-index-layout))
228
229 \f
230
231 ;;; Environments
232
233 (define the-environment
234 (procedure->syntax
235 (lambda (x e)
236 e)))
237
238 (define the-root-environment (the-environment))
239
240 (define (environment-module env)
241 (let ((closure (and (pair? env) (car (last-pair env)))))
242 (and closure (procedure-property closure 'module))))
243
244 \f
245 ;;; {Records}
246 ;;;
247
248 ;; Printing records: by default, records are printed as
249 ;;
250 ;; #<type-name field1: val1 field2: val2 ...>
251 ;;
252 ;; You can change that by giving a custom printing function to
253 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
254 ;; will be called like
255 ;;
256 ;; (<printer> object port)
257 ;;
258 ;; It should print OBJECT to PORT.
259
260 (define (inherit-print-state old-port new-port)
261 (if (get-print-state old-port)
262 (port-with-print-state new-port (get-print-state old-port))
263 new-port))
264
265 ;; 0: type-name, 1: fields
266 (define record-type-vtable
267 (make-vtable-vtable "prpr" 0
268 (lambda (s p)
269 (cond ((eq? s record-type-vtable)
270 (display "#<record-type-vtable>" p))
271 (else
272 (display "#<record-type " p)
273 (display (record-type-name s) p)
274 (display ">" p))))))
275
276 (define (record-type? obj)
277 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
278
279 (define (make-record-type type-name fields . opt)
280 (let ((printer-fn (and (pair? opt) (car opt))))
281 (let ((struct (make-struct record-type-vtable 0
282 (make-struct-layout
283 (apply string-append
284 (map (lambda (f) "pw") fields)))
285 (or printer-fn
286 (lambda (s p)
287 (display "#<" p)
288 (display type-name p)
289 (let loop ((fields fields)
290 (off 0))
291 (cond
292 ((not (null? fields))
293 (display " " p)
294 (display (car fields) p)
295 (display ": " p)
296 (display (struct-ref s off) p)
297 (loop (cdr fields) (+ 1 off)))))
298 (display ">" p)))
299 type-name
300 (copy-tree fields))))
301 ;; Temporary solution: Associate a name to the record type descriptor
302 ;; so that the object system can create a wrapper class for it.
303 (set-struct-vtable-name! struct (if (symbol? type-name)
304 type-name
305 (string->symbol type-name)))
306 struct)))
307
308 (define (record-type-name obj)
309 (if (record-type? obj)
310 (struct-ref obj vtable-offset-user)
311 (error 'not-a-record-type obj)))
312
313 (define (record-type-fields obj)
314 (if (record-type? obj)
315 (struct-ref obj (+ 1 vtable-offset-user))
316 (error 'not-a-record-type obj)))
317
318 (define (record-constructor rtd . opt)
319 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
320 (local-eval `(lambda ,field-names
321 (make-struct ',rtd 0 ,@(map (lambda (f)
322 (if (memq f field-names)
323 f
324 #f))
325 (record-type-fields rtd))))
326 the-root-environment)))
327
328 (define (record-predicate rtd)
329 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
330
331 (define (record-accessor rtd field-name)
332 (let* ((pos (list-index (record-type-fields rtd) field-name)))
333 (if (not pos)
334 (error 'no-such-field field-name))
335 (local-eval `(lambda (obj)
336 (and (eq? ',rtd (record-type-descriptor obj))
337 (struct-ref obj ,pos)))
338 the-root-environment)))
339
340 (define (record-modifier rtd field-name)
341 (let* ((pos (list-index (record-type-fields rtd) field-name)))
342 (if (not pos)
343 (error 'no-such-field field-name))
344 (local-eval `(lambda (obj val)
345 (and (eq? ',rtd (record-type-descriptor obj))
346 (struct-set! obj ,pos val)))
347 the-root-environment)))
348
349
350 (define (record? obj)
351 (and (struct? obj) (record-type? (struct-vtable obj))))
352
353 (define (record-type-descriptor obj)
354 (if (struct? obj)
355 (struct-vtable obj)
356 (error 'not-a-record obj)))
357
358 (provide 'record)
359
360 \f
361 ;;; {Booleans}
362 ;;;
363
364 (define (->bool x) (not (not x)))
365
366 \f
367 ;;; {Symbols}
368 ;;;
369
370 (define (symbol-append . args)
371 (string->symbol (apply string-append (map symbol->string args))))
372
373 (define (list->symbol . args)
374 (string->symbol (apply list->string args)))
375
376 (define (symbol . args)
377 (string->symbol (apply string args)))
378
379 \f
380 ;;; {Lists}
381 ;;;
382
383 (define (list-index l k)
384 (let loop ((n 0)
385 (l l))
386 (and (not (null? l))
387 (if (eq? (car l) k)
388 n
389 (loop (+ n 1) (cdr l))))))
390
391 (define (make-list n . init)
392 (if (pair? init) (set! init (car init)))
393 (let loop ((answer '())
394 (n n))
395 (if (<= n 0)
396 answer
397 (loop (cons init answer) (- n 1)))))
398
399 \f
400 ;;; {and-map and or-map}
401 ;;;
402 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
403 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
404 ;;;
405
406 ;; and-map f l
407 ;;
408 ;; Apply f to successive elements of l until exhaustion or f returns #f.
409 ;; If returning early, return #f. Otherwise, return the last value returned
410 ;; by f. If f has never been called because l is empty, return #t.
411 ;;
412 (define (and-map f lst)
413 (let loop ((result #t)
414 (l lst))
415 (and result
416 (or (and (null? l)
417 result)
418 (loop (f (car l)) (cdr l))))))
419
420 ;; or-map f l
421 ;;
422 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
423 ;; If returning early, return the return value of f.
424 ;;
425 (define (or-map f lst)
426 (let loop ((result #f)
427 (l lst))
428 (or result
429 (and (not (null? l))
430 (loop (f (car l)) (cdr l))))))
431
432 \f
433
434 (if (provided? 'posix)
435 (primitive-load-path "ice-9/posix.scm"))
436
437 (if (provided? 'socket)
438 (primitive-load-path "ice-9/networking.scm"))
439
440 (define file-exists?
441 (if (provided? 'posix)
442 (lambda (str)
443 (access? str F_OK))
444 (lambda (str)
445 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
446 (lambda args #f))))
447 (if port (begin (close-port port) #t)
448 #f)))))
449
450 (define file-is-directory?
451 (if (provided? 'posix)
452 (lambda (str)
453 (eq? (stat:type (stat str)) 'directory))
454 (lambda (str)
455 (let ((port (catch 'system-error
456 (lambda () (open-file (string-append str "/.")
457 OPEN_READ))
458 (lambda args #f))))
459 (if port (begin (close-port port) #t)
460 #f)))))
461
462 (define (has-suffix? str suffix)
463 (let ((sufl (string-length suffix))
464 (sl (string-length str)))
465 (and (> sl sufl)
466 (string=? (substring str (- sl sufl) sl) suffix))))
467
468 (define (system-error-errno args)
469 (if (eq? (car args) 'system-error)
470 (car (list-ref args 4))
471 #f))
472
473 \f
474 ;;; {Error Handling}
475 ;;;
476
477 (define (error . args)
478 (save-stack)
479 (if (null? args)
480 (scm-error 'misc-error #f "?" #f #f)
481 (let loop ((msg "~A")
482 (rest (cdr args)))
483 (if (not (null? rest))
484 (loop (string-append msg " ~S")
485 (cdr rest))
486 (scm-error 'misc-error #f msg args #f)))))
487
488 ;; bad-throw is the hook that is called upon a throw to a an unhandled
489 ;; key (unless the throw has four arguments, in which case
490 ;; it's usually interpreted as an error throw.)
491 ;; If the key has a default handler (a throw-handler-default property),
492 ;; it is applied to the throw.
493 ;;
494 (define (bad-throw key . args)
495 (let ((default (symbol-property key 'throw-handler-default)))
496 (or (and default (apply default key args))
497 (apply error "unhandled-exception:" key args))))
498
499 \f
500
501 (define (tm:sec obj) (vector-ref obj 0))
502 (define (tm:min obj) (vector-ref obj 1))
503 (define (tm:hour obj) (vector-ref obj 2))
504 (define (tm:mday obj) (vector-ref obj 3))
505 (define (tm:mon obj) (vector-ref obj 4))
506 (define (tm:year obj) (vector-ref obj 5))
507 (define (tm:wday obj) (vector-ref obj 6))
508 (define (tm:yday obj) (vector-ref obj 7))
509 (define (tm:isdst obj) (vector-ref obj 8))
510 (define (tm:gmtoff obj) (vector-ref obj 9))
511 (define (tm:zone obj) (vector-ref obj 10))
512
513 (define (set-tm:sec obj val) (vector-set! obj 0 val))
514 (define (set-tm:min obj val) (vector-set! obj 1 val))
515 (define (set-tm:hour obj val) (vector-set! obj 2 val))
516 (define (set-tm:mday obj val) (vector-set! obj 3 val))
517 (define (set-tm:mon obj val) (vector-set! obj 4 val))
518 (define (set-tm:year obj val) (vector-set! obj 5 val))
519 (define (set-tm:wday obj val) (vector-set! obj 6 val))
520 (define (set-tm:yday obj val) (vector-set! obj 7 val))
521 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
522 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
523 (define (set-tm:zone obj val) (vector-set! obj 10 val))
524
525 (define (tms:clock obj) (vector-ref obj 0))
526 (define (tms:utime obj) (vector-ref obj 1))
527 (define (tms:stime obj) (vector-ref obj 2))
528 (define (tms:cutime obj) (vector-ref obj 3))
529 (define (tms:cstime obj) (vector-ref obj 4))
530
531 (define file-position ftell)
532 (define (file-set-position port offset . whence)
533 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
534 (seek port offset whence)))
535
536 (define (move->fdes fd/port fd)
537 (cond ((integer? fd/port)
538 (dup->fdes fd/port fd)
539 (close fd/port)
540 fd)
541 (else
542 (primitive-move->fdes fd/port fd)
543 (set-port-revealed! fd/port 1)
544 fd/port)))
545
546 (define (release-port-handle port)
547 (let ((revealed (port-revealed port)))
548 (if (> revealed 0)
549 (set-port-revealed! port (- revealed 1)))))
550
551 (define (dup->port port/fd mode . maybe-fd)
552 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
553 mode)))
554 (if (pair? maybe-fd)
555 (set-port-revealed! port 1))
556 port))
557
558 (define (dup->inport port/fd . maybe-fd)
559 (apply dup->port port/fd "r" maybe-fd))
560
561 (define (dup->outport port/fd . maybe-fd)
562 (apply dup->port port/fd "w" maybe-fd))
563
564 (define (dup port/fd . maybe-fd)
565 (if (integer? port/fd)
566 (apply dup->fdes port/fd maybe-fd)
567 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
568
569 (define (duplicate-port port modes)
570 (dup->port port modes))
571
572 (define (fdes->inport fdes)
573 (let loop ((rest-ports (fdes->ports fdes)))
574 (cond ((null? rest-ports)
575 (let ((result (fdopen fdes "r")))
576 (set-port-revealed! result 1)
577 result))
578 ((input-port? (car rest-ports))
579 (set-port-revealed! (car rest-ports)
580 (+ (port-revealed (car rest-ports)) 1))
581 (car rest-ports))
582 (else
583 (loop (cdr rest-ports))))))
584
585 (define (fdes->outport fdes)
586 (let loop ((rest-ports (fdes->ports fdes)))
587 (cond ((null? rest-ports)
588 (let ((result (fdopen fdes "w")))
589 (set-port-revealed! result 1)
590 result))
591 ((output-port? (car rest-ports))
592 (set-port-revealed! (car rest-ports)
593 (+ (port-revealed (car rest-ports)) 1))
594 (car rest-ports))
595 (else
596 (loop (cdr rest-ports))))))
597
598 (define (port->fdes port)
599 (set-port-revealed! port (+ (port-revealed port) 1))
600 (fileno port))
601
602 (define (setenv name value)
603 (if value
604 (putenv (string-append name "=" value))
605 (putenv name)))
606
607 (define (unsetenv name)
608 "Remove the entry for NAME from the environment."
609 (putenv name))
610
611 \f
612 ;;; {Load Paths}
613 ;;;
614
615 ;;; Here for backward compatability
616 ;;
617 (define scheme-file-suffix (lambda () ".scm"))
618
619 (define (in-vicinity vicinity file)
620 (let ((tail (let ((len (string-length vicinity)))
621 (if (zero? len)
622 #f
623 (string-ref vicinity (- len 1))))))
624 (string-append vicinity
625 (if (or (not tail)
626 (eq? tail #\/))
627 ""
628 "/")
629 file)))
630
631 \f
632 ;;; {Help for scm_shell}
633 ;;; The argument-processing code used by Guile-based shells generates
634 ;;; Scheme code based on the argument list. This page contains help
635 ;;; functions for the code it generates.
636
637 (define (command-line) (program-arguments))
638
639 ;; This is mostly for the internal use of the code generated by
640 ;; scm_compile_shell_switches.
641
642 (define (turn-on-debugging)
643 (debug-enable 'debug)
644 (debug-enable 'backtrace)
645 (read-enable 'positions))
646
647 (define (load-user-init)
648 (let* ((home (or (getenv "HOME")
649 (false-if-exception (passwd:dir (getpwuid (getuid))))
650 "/")) ;; fallback for cygwin etc.
651 (init-file (in-vicinity home ".guile")))
652 (if (file-exists? init-file)
653 (primitive-load init-file))))
654
655 \f
656 ;;; {Loading by paths}
657
658 ;;; Load a Scheme source file named NAME, searching for it in the
659 ;;; directories listed in %load-path, and applying each of the file
660 ;;; name extensions listed in %load-extensions.
661 (define (load-from-path name)
662 (start-stack 'load-stack
663 (primitive-load-path name)))
664
665
666 \f
667 ;;; {Transcendental Functions}
668 ;;;
669 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
670 ;;; Written by Jerry D. Hedden, (C) FSF.
671 ;;; See the file `COPYING' for terms applying to this program.
672 ;;;
673
674 (define (exp z)
675 (if (real? z) ($exp z)
676 (make-polar ($exp (real-part z)) (imag-part z))))
677
678 (define (log z)
679 (if (and (real? z) (>= z 0))
680 ($log z)
681 (make-rectangular ($log (magnitude z)) (angle z))))
682
683 (define (sqrt z)
684 (if (real? z)
685 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
686 ($sqrt z))
687 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
688
689 (define expt
690 (let ((integer-expt integer-expt))
691 (lambda (z1 z2)
692 (cond ((integer? z2)
693 (if (>= z2 0)
694 (integer-expt z1 z2)
695 (/ 1 (integer-expt z1 (- z2)))))
696 ((and (real? z2) (real? z1) (>= z1 0))
697 ($expt z1 z2))
698 (else
699 (exp (* z2 (log z1))))))))
700
701 (define (sinh z)
702 (if (real? z) ($sinh z)
703 (let ((x (real-part z)) (y (imag-part z)))
704 (make-rectangular (* ($sinh x) ($cos y))
705 (* ($cosh x) ($sin y))))))
706 (define (cosh z)
707 (if (real? z) ($cosh z)
708 (let ((x (real-part z)) (y (imag-part z)))
709 (make-rectangular (* ($cosh x) ($cos y))
710 (* ($sinh x) ($sin y))))))
711 (define (tanh z)
712 (if (real? z) ($tanh z)
713 (let* ((x (* 2 (real-part z)))
714 (y (* 2 (imag-part z)))
715 (w (+ ($cosh x) ($cos y))))
716 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
717
718 (define (asinh z)
719 (if (real? z) ($asinh z)
720 (log (+ z (sqrt (+ (* z z) 1))))))
721
722 (define (acosh z)
723 (if (and (real? z) (>= z 1))
724 ($acosh z)
725 (log (+ z (sqrt (- (* z z) 1))))))
726
727 (define (atanh z)
728 (if (and (real? z) (> z -1) (< z 1))
729 ($atanh z)
730 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
731
732 (define (sin z)
733 (if (real? z) ($sin z)
734 (let ((x (real-part z)) (y (imag-part z)))
735 (make-rectangular (* ($sin x) ($cosh y))
736 (* ($cos x) ($sinh y))))))
737 (define (cos z)
738 (if (real? z) ($cos z)
739 (let ((x (real-part z)) (y (imag-part z)))
740 (make-rectangular (* ($cos x) ($cosh y))
741 (- (* ($sin x) ($sinh y)))))))
742 (define (tan z)
743 (if (real? z) ($tan z)
744 (let* ((x (* 2 (real-part z)))
745 (y (* 2 (imag-part z)))
746 (w (+ ($cos x) ($cosh y))))
747 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
748
749 (define (asin z)
750 (if (and (real? z) (>= z -1) (<= z 1))
751 ($asin z)
752 (* -i (asinh (* +i z)))))
753
754 (define (acos z)
755 (if (and (real? z) (>= z -1) (<= z 1))
756 ($acos z)
757 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
758
759 (define (atan z . y)
760 (if (null? y)
761 (if (real? z) ($atan z)
762 (/ (log (/ (- +i z) (+ +i z))) +2i))
763 ($atan2 z (car y))))
764
765 (define (log10 arg)
766 (/ (log arg) (log 10)))
767
768 \f
769
770 ;;; {Reader Extensions}
771 ;;;
772
773 ;;; Reader code for various "#c" forms.
774 ;;;
775
776 (read-hash-extend #\' (lambda (c port)
777 (read port)))
778
779 (define read-eval? (make-fluid))
780 (fluid-set! read-eval? #f)
781 (read-hash-extend #\.
782 (lambda (c port)
783 (if (fluid-ref read-eval?)
784 (eval (read port) (interaction-environment))
785 (error
786 "#. read expansion found and read-eval? is #f."))))
787
788 \f
789 ;;; {Command Line Options}
790 ;;;
791
792 (define (get-option argv kw-opts kw-args return)
793 (cond
794 ((null? argv)
795 (return #f #f argv))
796
797 ((or (not (eq? #\- (string-ref (car argv) 0)))
798 (eq? (string-length (car argv)) 1))
799 (return 'normal-arg (car argv) (cdr argv)))
800
801 ((eq? #\- (string-ref (car argv) 1))
802 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
803 (string-length (car argv))))
804 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
805 (kw-opt? (member kw kw-opts))
806 (kw-arg? (member kw kw-args))
807 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
808 (substring (car argv)
809 (+ kw-arg-pos 1)
810 (string-length (car argv))))
811 (and kw-arg?
812 (begin (set! argv (cdr argv)) (car argv))))))
813 (if (or kw-opt? kw-arg?)
814 (return kw arg (cdr argv))
815 (return 'usage-error kw (cdr argv)))))
816
817 (else
818 (let* ((char (substring (car argv) 1 2))
819 (kw (symbol->keyword char)))
820 (cond
821
822 ((member kw kw-opts)
823 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
824 (new-argv (if (= 0 (string-length rest-car))
825 (cdr argv)
826 (cons (string-append "-" rest-car) (cdr argv)))))
827 (return kw #f new-argv)))
828
829 ((member kw kw-args)
830 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
831 (arg (if (= 0 (string-length rest-car))
832 (cadr argv)
833 rest-car))
834 (new-argv (if (= 0 (string-length rest-car))
835 (cddr argv)
836 (cdr argv))))
837 (return kw arg new-argv)))
838
839 (else (return 'usage-error kw argv)))))))
840
841 (define (for-next-option proc argv kw-opts kw-args)
842 (let loop ((argv argv))
843 (get-option argv kw-opts kw-args
844 (lambda (opt opt-arg argv)
845 (and opt (proc opt opt-arg argv loop))))))
846
847 (define (display-usage-report kw-desc)
848 (for-each
849 (lambda (kw)
850 (or (eq? (car kw) #t)
851 (eq? (car kw) 'else)
852 (let* ((opt-desc kw)
853 (help (cadr opt-desc))
854 (opts (car opt-desc))
855 (opts-proper (if (string? (car opts)) (cdr opts) opts))
856 (arg-name (if (string? (car opts))
857 (string-append "<" (car opts) ">")
858 ""))
859 (left-part (string-append
860 (with-output-to-string
861 (lambda ()
862 (map (lambda (x) (display (keyword-symbol x)) (display " "))
863 opts-proper)))
864 arg-name))
865 (middle-part (if (and (< (string-length left-part) 30)
866 (< (string-length help) 40))
867 (make-string (- 30 (string-length left-part)) #\ )
868 "\n\t")))
869 (display left-part)
870 (display middle-part)
871 (display help)
872 (newline))))
873 kw-desc))
874
875
876
877 (define (transform-usage-lambda cases)
878 (let* ((raw-usage (delq! 'else (map car cases)))
879 (usage-sans-specials (map (lambda (x)
880 (or (and (not (list? x)) x)
881 (and (symbol? (car x)) #t)
882 (and (boolean? (car x)) #t)
883 x))
884 raw-usage))
885 (usage-desc (delq! #t usage-sans-specials))
886 (kw-desc (map car usage-desc))
887 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
888 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
889 (transmogrified-cases (map (lambda (case)
890 (cons (let ((opts (car case)))
891 (if (or (boolean? opts) (eq? 'else opts))
892 opts
893 (cond
894 ((symbol? (car opts)) opts)
895 ((boolean? (car opts)) opts)
896 ((string? (caar opts)) (cdar opts))
897 (else (car opts)))))
898 (cdr case)))
899 cases)))
900 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
901 (lambda (%argv)
902 (let %next-arg ((%argv %argv))
903 (get-option %argv
904 ',kw-opts
905 ',kw-args
906 (lambda (%opt %arg %new-argv)
907 (case %opt
908 ,@ transmogrified-cases))))))))
909
910
911 \f
912
913 ;;; {Low Level Modules}
914 ;;;
915 ;;; These are the low level data structures for modules.
916 ;;;
917 ;;; !!! warning: The interface to lazy binder procedures is going
918 ;;; to be changed in an incompatible way to permit all the basic
919 ;;; module ops to be virtualized.
920 ;;;
921 ;;; (make-module size use-list lazy-binding-proc) => module
922 ;;; module-{obarray,uses,binder}[|-set!]
923 ;;; (module? obj) => [#t|#f]
924 ;;; (module-locally-bound? module symbol) => [#t|#f]
925 ;;; (module-bound? module symbol) => [#t|#f]
926 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
927 ;;; (module-symbol-interned? module symbol) => [#t|#f]
928 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
929 ;;; (module-variable module symbol) => [#<variable ...> | #f]
930 ;;; (module-symbol-binding module symbol opt-value)
931 ;;; => [ <obj> | opt-value | an error occurs ]
932 ;;; (module-make-local-var! module symbol) => #<variable...>
933 ;;; (module-add! module symbol var) => unspecified
934 ;;; (module-remove! module symbol) => unspecified
935 ;;; (module-for-each proc module) => unspecified
936 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
937 ;;; (set-current-module module) => unspecified
938 ;;; (current-module) => #<module...>
939 ;;;
940 ;;;
941
942 \f
943 ;;; {Printing Modules}
944 ;; This is how modules are printed. You can re-define it.
945 ;; (Redefining is actually more complicated than simply redefining
946 ;; %print-module because that would only change the binding and not
947 ;; the value stored in the vtable that determines how record are
948 ;; printed. Sigh.)
949
950 (define (%print-module mod port) ; unused args: depth length style table)
951 (display "#<" port)
952 (display (or (module-kind mod) "module") port)
953 (let ((name (module-name mod)))
954 (if name
955 (begin
956 (display " " port)
957 (display name port))))
958 (display " " port)
959 (display (number->string (object-address mod) 16) port)
960 (display ">" port))
961
962 ;; module-type
963 ;;
964 ;; A module is characterized by an obarray in which local symbols
965 ;; are interned, a list of modules, "uses", from which non-local
966 ;; bindings can be inherited, and an optional lazy-binder which
967 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
968 ;; bindings that would otherwise not be found locally in the module.
969 ;;
970 ;; NOTE: If you change here, you also need to change libguile/modules.h.
971 ;;
972 (define module-type
973 (make-record-type 'module
974 '(obarray uses binder eval-closure transformer name kind
975 observers weak-observers observer-id)
976 %print-module))
977
978 ;; make-module &opt size uses binder
979 ;;
980 ;; Create a new module, perhaps with a particular size of obarray,
981 ;; initial uses list, or binding procedure.
982 ;;
983 (define make-module
984 (lambda args
985
986 (define (parse-arg index default)
987 (if (> (length args) index)
988 (list-ref args index)
989 default))
990
991 (if (> (length args) 3)
992 (error "Too many args to make-module." args))
993
994 (let ((size (parse-arg 0 1021))
995 (uses (parse-arg 1 '()))
996 (binder (parse-arg 2 #f)))
997
998 (if (not (integer? size))
999 (error "Illegal size to make-module." size))
1000 (if (not (and (list? uses)
1001 (and-map module? uses)))
1002 (error "Incorrect use list." uses))
1003 (if (and binder (not (procedure? binder)))
1004 (error
1005 "Lazy-binder expected to be a procedure or #f." binder))
1006
1007 (let ((module (module-constructor (make-vector size '())
1008 uses binder #f #f #f #f
1009 '()
1010 (make-weak-value-hash-table 31)
1011 0)))
1012
1013 ;; We can't pass this as an argument to module-constructor,
1014 ;; because we need it to close over a pointer to the module
1015 ;; itself.
1016 (set-module-eval-closure! module (standard-eval-closure module))
1017
1018 module))))
1019
1020 (define module-constructor (record-constructor module-type))
1021 (define module-obarray (record-accessor module-type 'obarray))
1022 (define set-module-obarray! (record-modifier module-type 'obarray))
1023 (define module-uses (record-accessor module-type 'uses))
1024 (define set-module-uses! (record-modifier module-type 'uses))
1025 (define module-binder (record-accessor module-type 'binder))
1026 (define set-module-binder! (record-modifier module-type 'binder))
1027
1028 ;; NOTE: This binding is used in libguile/modules.c.
1029 (define module-eval-closure (record-accessor module-type 'eval-closure))
1030
1031 (define module-transformer (record-accessor module-type 'transformer))
1032 (define set-module-transformer! (record-modifier module-type 'transformer))
1033 (define module-name (record-accessor module-type 'name))
1034 (define set-module-name! (record-modifier module-type 'name))
1035 (define module-kind (record-accessor module-type 'kind))
1036 (define set-module-kind! (record-modifier module-type 'kind))
1037 (define module-observers (record-accessor module-type 'observers))
1038 (define set-module-observers! (record-modifier module-type 'observers))
1039 (define module-weak-observers (record-accessor module-type 'weak-observers))
1040 (define module-observer-id (record-accessor module-type 'observer-id))
1041 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1042 (define module? (record-predicate module-type))
1043
1044 (define set-module-eval-closure!
1045 (let ((setter (record-modifier module-type 'eval-closure)))
1046 (lambda (module closure)
1047 (setter module closure)
1048 ;; Make it possible to lookup the module from the environment.
1049 ;; This implementation is correct since an eval closure can belong
1050 ;; to maximally one module.
1051 (set-procedure-property! closure 'module module))))
1052
1053 \f
1054 ;;; {Observer protocol}
1055 ;;;
1056
1057 (define (module-observe module proc)
1058 (set-module-observers! module (cons proc (module-observers module)))
1059 (cons module proc))
1060
1061 (define (module-observe-weak module proc)
1062 (let ((id (module-observer-id module)))
1063 (hash-set! (module-weak-observers module) id proc)
1064 (set-module-observer-id! module (+ 1 id))
1065 (cons module id)))
1066
1067 (define (module-unobserve token)
1068 (let ((module (car token))
1069 (id (cdr token)))
1070 (if (integer? id)
1071 (hash-remove! (module-weak-observers module) id)
1072 (set-module-observers! module (delq1! id (module-observers module)))))
1073 *unspecified*)
1074
1075 (define (module-modified m)
1076 (for-each (lambda (proc) (proc m)) (module-observers m))
1077 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1078
1079 \f
1080 ;;; {Module Searching in General}
1081 ;;;
1082 ;;; We sometimes want to look for properties of a symbol
1083 ;;; just within the obarray of one module. If the property
1084 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1085 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1086 ;;;
1087 ;;;
1088 ;;; Other times, we want to test for a symbol property in the obarray
1089 ;;; of M and, if it is not found there, try each of the modules in the
1090 ;;; uses list of M. This is the normal way of testing for some
1091 ;;; property, so we state these properties without qualification as
1092 ;;; in: ``The symbol 'fnord is interned in module M because it is
1093 ;;; interned locally in module M2 which is a member of the uses list
1094 ;;; of M.''
1095 ;;;
1096
1097 ;; module-search fn m
1098 ;;
1099 ;; return the first non-#f result of FN applied to M and then to
1100 ;; the modules in the uses of m, and so on recursively. If all applications
1101 ;; return #f, then so does this function.
1102 ;;
1103 (define (module-search fn m v)
1104 (define (loop pos)
1105 (and (pair? pos)
1106 (or (module-search fn (car pos) v)
1107 (loop (cdr pos)))))
1108 (or (fn m v)
1109 (loop (module-uses m))))
1110
1111
1112 ;;; {Is a symbol bound in a module?}
1113 ;;;
1114 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1115 ;;; of S in M has been set to some well-defined value.
1116 ;;;
1117
1118 ;; module-locally-bound? module symbol
1119 ;;
1120 ;; Is a symbol bound (interned and defined) locally in a given module?
1121 ;;
1122 (define (module-locally-bound? m v)
1123 (let ((var (module-local-variable m v)))
1124 (and var
1125 (variable-bound? var))))
1126
1127 ;; module-bound? module symbol
1128 ;;
1129 ;; Is a symbol bound (interned and defined) anywhere in a given module
1130 ;; or its uses?
1131 ;;
1132 (define (module-bound? m v)
1133 (module-search module-locally-bound? m v))
1134
1135 ;;; {Is a symbol interned in a module?}
1136 ;;;
1137 ;;; Symbol S in Module M is interned if S occurs in
1138 ;;; of S in M has been set to some well-defined value.
1139 ;;;
1140 ;;; It is possible to intern a symbol in a module without providing
1141 ;;; an initial binding for the corresponding variable. This is done
1142 ;;; with:
1143 ;;; (module-add! module symbol (make-undefined-variable))
1144 ;;;
1145 ;;; In that case, the symbol is interned in the module, but not
1146 ;;; bound there. The unbound symbol shadows any binding for that
1147 ;;; symbol that might otherwise be inherited from a member of the uses list.
1148 ;;;
1149
1150 (define (module-obarray-get-handle ob key)
1151 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1152
1153 (define (module-obarray-ref ob key)
1154 ((if (symbol? key) hashq-ref hash-ref) ob key))
1155
1156 (define (module-obarray-set! ob key val)
1157 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1158
1159 (define (module-obarray-remove! ob key)
1160 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1161
1162 ;; module-symbol-locally-interned? module symbol
1163 ;;
1164 ;; is a symbol interned (not neccessarily defined) locally in a given module
1165 ;; or its uses? Interned symbols shadow inherited bindings even if
1166 ;; they are not themselves bound to a defined value.
1167 ;;
1168 (define (module-symbol-locally-interned? m v)
1169 (not (not (module-obarray-get-handle (module-obarray m) v))))
1170
1171 ;; module-symbol-interned? module symbol
1172 ;;
1173 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1174 ;; or its uses? Interned symbols shadow inherited bindings even if
1175 ;; they are not themselves bound to a defined value.
1176 ;;
1177 (define (module-symbol-interned? m v)
1178 (module-search module-symbol-locally-interned? m v))
1179
1180
1181 ;;; {Mapping modules x symbols --> variables}
1182 ;;;
1183
1184 ;; module-local-variable module symbol
1185 ;; return the local variable associated with a MODULE and SYMBOL.
1186 ;;
1187 ;;; This function is very important. It is the only function that can
1188 ;;; return a variable from a module other than the mutators that store
1189 ;;; new variables in modules. Therefore, this function is the location
1190 ;;; of the "lazy binder" hack.
1191 ;;;
1192 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1193 ;;; to a variable, return that variable object.
1194 ;;;
1195 ;;; If the symbols is not found at first, but the module has a lazy binder,
1196 ;;; then try the binder.
1197 ;;;
1198 ;;; If the symbol is not found at all, return #f.
1199 ;;;
1200 (define (module-local-variable m v)
1201 ; (caddr
1202 ; (list m v
1203 (let ((b (module-obarray-ref (module-obarray m) v)))
1204 (or (and (variable? b) b)
1205 (and (module-binder m)
1206 ((module-binder m) m v #f)))))
1207 ;))
1208
1209 ;; module-variable module symbol
1210 ;;
1211 ;; like module-local-variable, except search the uses in the
1212 ;; case V is not found in M.
1213 ;;
1214 ;; NOTE: This function is superseded with C code (see modules.c)
1215 ;;; when using the standard eval closure.
1216 ;;
1217 (define (module-variable m v)
1218 (module-search module-local-variable m v))
1219
1220
1221 ;;; {Mapping modules x symbols --> bindings}
1222 ;;;
1223 ;;; These are similar to the mapping to variables, except that the
1224 ;;; variable is dereferenced.
1225 ;;;
1226
1227 ;; module-symbol-binding module symbol opt-value
1228 ;;
1229 ;; return the binding of a variable specified by name within
1230 ;; a given module, signalling an error if the variable is unbound.
1231 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1232 ;; return OPT-VALUE.
1233 ;;
1234 (define (module-symbol-local-binding m v . opt-val)
1235 (let ((var (module-local-variable m v)))
1236 (if var
1237 (variable-ref var)
1238 (if (not (null? opt-val))
1239 (car opt-val)
1240 (error "Locally unbound variable." v)))))
1241
1242 ;; module-symbol-binding module symbol opt-value
1243 ;;
1244 ;; return the binding of a variable specified by name within
1245 ;; a given module, signalling an error if the variable is unbound.
1246 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1247 ;; return OPT-VALUE.
1248 ;;
1249 (define (module-symbol-binding m v . opt-val)
1250 (let ((var (module-variable m v)))
1251 (if var
1252 (variable-ref var)
1253 (if (not (null? opt-val))
1254 (car opt-val)
1255 (error "Unbound variable." v)))))
1256
1257
1258 \f
1259 ;;; {Adding Variables to Modules}
1260 ;;;
1261 ;;;
1262
1263
1264 ;; module-make-local-var! module symbol
1265 ;;
1266 ;; ensure a variable for V in the local namespace of M.
1267 ;; If no variable was already there, then create a new and uninitialzied
1268 ;; variable.
1269 ;;
1270 (define (module-make-local-var! m v)
1271 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1272 (and (variable? b)
1273 (begin
1274 (module-modified m)
1275 b)))
1276 (and (module-binder m)
1277 ((module-binder m) m v #t))
1278 (begin
1279 (let ((answer (make-undefined-variable)))
1280 (module-obarray-set! (module-obarray m) v answer)
1281 (module-modified m)
1282 answer))))
1283
1284 ;; module-ensure-local-variable! module symbol
1285 ;;
1286 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1287 ;; there is no binding for SYMBOL, create a new uninitialized
1288 ;; variable. Return the local variable.
1289 ;;
1290 (define (module-ensure-local-variable! module symbol)
1291 (or (module-local-variable module symbol)
1292 (let ((var (make-undefined-variable)))
1293 (module-add! module symbol var)
1294 var)))
1295
1296 ;; module-add! module symbol var
1297 ;;
1298 ;; ensure a particular variable for V in the local namespace of M.
1299 ;;
1300 (define (module-add! m v var)
1301 (if (not (variable? var))
1302 (error "Bad variable to module-add!" var))
1303 (module-obarray-set! (module-obarray m) v var)
1304 (module-modified m))
1305
1306 ;; module-remove!
1307 ;;
1308 ;; make sure that a symbol is undefined in the local namespace of M.
1309 ;;
1310 (define (module-remove! m v)
1311 (module-obarray-remove! (module-obarray m) v)
1312 (module-modified m))
1313
1314 (define (module-clear! m)
1315 (vector-fill! (module-obarray m) '())
1316 (module-modified m))
1317
1318 ;; MODULE-FOR-EACH -- exported
1319 ;;
1320 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1321 ;;
1322 (define (module-for-each proc module)
1323 (let ((obarray (module-obarray module)))
1324 (do ((index 0 (+ index 1))
1325 (end (vector-length obarray)))
1326 ((= index end))
1327 (for-each
1328 (lambda (bucket)
1329 (proc (car bucket) (cdr bucket)))
1330 (vector-ref obarray index)))))
1331
1332
1333 (define (module-map proc module)
1334 (let* ((obarray (module-obarray module))
1335 (end (vector-length obarray)))
1336
1337 (let loop ((i 0)
1338 (answer '()))
1339 (if (= i end)
1340 answer
1341 (loop (+ 1 i)
1342 (append!
1343 (map (lambda (bucket)
1344 (proc (car bucket) (cdr bucket)))
1345 (vector-ref obarray i))
1346 answer))))))
1347 \f
1348
1349 ;;; {Low Level Bootstrapping}
1350 ;;;
1351
1352 ;; make-root-module
1353
1354 ;; A root module uses the pre-modules-obarray as its obarray. This
1355 ;; special obarray accumulates all bindings that have been established
1356 ;; before the module system is fully booted.
1357 ;;
1358 ;; (The obarray continues to be used by code that has been closed over
1359 ;; before the module system has been booted.)
1360
1361 (define (make-root-module)
1362 (let ((m (make-module 0)))
1363 (set-module-obarray! m (%get-pre-modules-obarray))
1364 m))
1365
1366 ;; make-scm-module
1367
1368 ;; The root interface is a module that uses the same obarray as the
1369 ;; root module. It does not allow new definitions, tho.
1370
1371 (define (make-scm-module)
1372 (let ((m (make-module 0)))
1373 (set-module-obarray! m (%get-pre-modules-obarray))
1374 (set-module-eval-closure! m (standard-interface-eval-closure m))
1375 m))
1376
1377
1378 \f
1379 ;;; {Module-based Loading}
1380 ;;;
1381
1382 (define (save-module-excursion thunk)
1383 (let ((inner-module (current-module))
1384 (outer-module #f))
1385 (dynamic-wind (lambda ()
1386 (set! outer-module (current-module))
1387 (set-current-module inner-module)
1388 (set! inner-module #f))
1389 thunk
1390 (lambda ()
1391 (set! inner-module (current-module))
1392 (set-current-module outer-module)
1393 (set! outer-module #f)))))
1394
1395 (define basic-load load)
1396
1397 (define (load-module filename)
1398 (save-module-excursion
1399 (lambda ()
1400 (let ((oldname (and (current-load-port)
1401 (port-filename (current-load-port)))))
1402 (basic-load (if (and oldname
1403 (> (string-length filename) 0)
1404 (not (char=? (string-ref filename 0) #\/))
1405 (not (string=? (dirname oldname) ".")))
1406 (string-append (dirname oldname) "/" filename)
1407 filename))))))
1408
1409
1410 \f
1411 ;;; {MODULE-REF -- exported}
1412 ;;
1413 ;; Returns the value of a variable called NAME in MODULE or any of its
1414 ;; used modules. If there is no such variable, then if the optional third
1415 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1416 ;;
1417 (define (module-ref module name . rest)
1418 (let ((variable (module-variable module name)))
1419 (if (and variable (variable-bound? variable))
1420 (variable-ref variable)
1421 (if (null? rest)
1422 (error "No variable named" name 'in module)
1423 (car rest) ; default value
1424 ))))
1425
1426 ;; MODULE-SET! -- exported
1427 ;;
1428 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1429 ;; to VALUE; if there is no such variable, an error is signaled.
1430 ;;
1431 (define (module-set! module name value)
1432 (let ((variable (module-variable module name)))
1433 (if variable
1434 (variable-set! variable value)
1435 (error "No variable named" name 'in module))))
1436
1437 ;; MODULE-DEFINE! -- exported
1438 ;;
1439 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1440 ;; variable, it is added first.
1441 ;;
1442 (define (module-define! module name value)
1443 (let ((variable (module-local-variable module name)))
1444 (if variable
1445 (begin
1446 (variable-set! variable value)
1447 (module-modified module))
1448 (let ((variable (make-variable value)))
1449 (module-add! module name variable)))))
1450
1451 ;; MODULE-DEFINED? -- exported
1452 ;;
1453 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1454 ;; uses)
1455 ;;
1456 (define (module-defined? module name)
1457 (let ((variable (module-variable module name)))
1458 (and variable (variable-bound? variable))))
1459
1460 ;; MODULE-USE! module interface
1461 ;;
1462 ;; Add INTERFACE to the list of interfaces used by MODULE.
1463 ;;
1464 (define (module-use! module interface)
1465 (set-module-uses! module
1466 (cons interface (delq! interface (module-uses module))))
1467 (module-modified module))
1468
1469 \f
1470 ;;; {Recursive Namespaces}
1471 ;;;
1472 ;;;
1473 ;;; A hierarchical namespace emerges if we consider some module to be
1474 ;;; root, and variables bound to modules as nested namespaces.
1475 ;;;
1476 ;;; The routines in this file manage variable names in hierarchical namespace.
1477 ;;; Each variable name is a list of elements, looked up in successively nested
1478 ;;; modules.
1479 ;;;
1480 ;;; (nested-ref some-root-module '(foo bar baz))
1481 ;;; => <value of a variable named baz in the module bound to bar in
1482 ;;; the module bound to foo in some-root-module>
1483 ;;;
1484 ;;;
1485 ;;; There are:
1486 ;;;
1487 ;;; ;; a-root is a module
1488 ;;; ;; name is a list of symbols
1489 ;;;
1490 ;;; nested-ref a-root name
1491 ;;; nested-set! a-root name val
1492 ;;; nested-define! a-root name val
1493 ;;; nested-remove! a-root name
1494 ;;;
1495 ;;;
1496 ;;; (current-module) is a natural choice for a-root so for convenience there are
1497 ;;; also:
1498 ;;;
1499 ;;; local-ref name == nested-ref (current-module) name
1500 ;;; local-set! name val == nested-set! (current-module) name val
1501 ;;; local-define! name val == nested-define! (current-module) name val
1502 ;;; local-remove! name == nested-remove! (current-module) name
1503 ;;;
1504
1505
1506 (define (nested-ref root names)
1507 (let loop ((cur root)
1508 (elts names))
1509 (cond
1510 ((null? elts) cur)
1511 ((not (module? cur)) #f)
1512 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1513
1514 (define (nested-set! root names val)
1515 (let loop ((cur root)
1516 (elts names))
1517 (if (null? (cdr elts))
1518 (module-set! cur (car elts) val)
1519 (loop (module-ref cur (car elts)) (cdr elts)))))
1520
1521 (define (nested-define! root names val)
1522 (let loop ((cur root)
1523 (elts names))
1524 (if (null? (cdr elts))
1525 (module-define! cur (car elts) val)
1526 (loop (module-ref cur (car elts)) (cdr elts)))))
1527
1528 (define (nested-remove! root names)
1529 (let loop ((cur root)
1530 (elts names))
1531 (if (null? (cdr elts))
1532 (module-remove! cur (car elts))
1533 (loop (module-ref cur (car elts)) (cdr elts)))))
1534
1535 (define (local-ref names) (nested-ref (current-module) names))
1536 (define (local-set! names val) (nested-set! (current-module) names val))
1537 (define (local-define names val) (nested-define! (current-module) names val))
1538 (define (local-remove names) (nested-remove! (current-module) names))
1539
1540
1541 \f
1542 ;;; {The (app) module}
1543 ;;;
1544 ;;; The root of conventionally named objects not directly in the top level.
1545 ;;;
1546 ;;; (app modules)
1547 ;;; (app modules guile)
1548 ;;;
1549 ;;; The directory of all modules and the standard root module.
1550 ;;;
1551
1552 (define (module-public-interface m)
1553 (module-ref m '%module-public-interface #f))
1554 (define (set-module-public-interface! m i)
1555 (module-define! m '%module-public-interface i))
1556 (define (set-system-module! m s)
1557 (set-procedure-property! (module-eval-closure m) 'system-module s))
1558 (define the-root-module (make-root-module))
1559 (define the-scm-module (make-scm-module))
1560 (set-module-public-interface! the-root-module the-scm-module)
1561 (set-module-name! the-root-module '(guile))
1562 (set-module-name! the-scm-module '(guile))
1563 (set-module-kind! the-scm-module 'interface)
1564 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1565
1566 ;; NOTE: This binding is used in libguile/modules.c.
1567 ;;
1568 (define (make-modules-in module name)
1569 (if (null? name)
1570 module
1571 (cond
1572 ((module-ref module (car name) #f)
1573 => (lambda (m) (make-modules-in m (cdr name))))
1574 (else (let ((m (make-module 31)))
1575 (set-module-kind! m 'directory)
1576 (set-module-name! m (append (or (module-name module)
1577 '())
1578 (list (car name))))
1579 (module-define! module (car name) m)
1580 (make-modules-in m (cdr name)))))))
1581
1582 (define (beautify-user-module! module)
1583 (let ((interface (module-public-interface module)))
1584 (if (or (not interface)
1585 (eq? interface module))
1586 (let ((interface (make-module 31)))
1587 (set-module-name! interface (module-name module))
1588 (set-module-kind! interface 'interface)
1589 (set-module-public-interface! module interface))))
1590 (if (and (not (memq the-scm-module (module-uses module)))
1591 (not (eq? module the-root-module)))
1592 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1593
1594 ;; NOTE: This binding is used in libguile/modules.c.
1595 ;;
1596 (define (resolve-module name . maybe-autoload)
1597 (let ((full-name (append '(app modules) name)))
1598 (let ((already (local-ref full-name)))
1599 (if already
1600 ;; The module already exists...
1601 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1602 (not (module-public-interface already)))
1603 ;; ...but we are told to load and it doesn't contain source, so
1604 (begin
1605 (try-load-module name)
1606 already)
1607 ;; simply return it.
1608 already)
1609 (begin
1610 ;; Try to autoload it if we are told so
1611 (if (or (null? maybe-autoload) (car maybe-autoload))
1612 (try-load-module name))
1613 ;; Get/create it.
1614 (make-modules-in (current-module) full-name))))))
1615
1616 ;; Cheat. These bindings are needed by modules.c, but we don't want
1617 ;; to move their real definition here because that would be unnatural.
1618 ;;
1619 (define try-module-autoload #f)
1620 (define process-define-module #f)
1621 (define process-use-modules #f)
1622 (define module-export! #f)
1623
1624 ;; This boots the module system. All bindings needed by modules.c
1625 ;; must have been defined by now.
1626 ;;
1627 (set-current-module the-root-module)
1628
1629 (define app (make-module 31))
1630 (local-define '(app modules) (make-module 31))
1631 (local-define '(app modules guile) the-root-module)
1632
1633 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1634
1635 (define (try-load-module name)
1636 (try-module-autoload name))
1637
1638 (define (purify-module! module)
1639 "Removes bindings in MODULE which are inherited from the (guile) module."
1640 (let ((use-list (module-uses module)))
1641 (if (and (pair? use-list)
1642 (eq? (car (last-pair use-list)) the-scm-module))
1643 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1644
1645 ;; Return a module that is an interface to the module designated by
1646 ;; NAME.
1647 ;;
1648 ;; `resolve-interface' takes two keyword arguments:
1649 ;;
1650 ;; #:select SELECTION
1651 ;;
1652 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1653 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1654 ;; is the name in the used module and SEEN is the name in the using
1655 ;; module. Note that SEEN is also passed through RENAMER, below. The
1656 ;; default is to select all bindings. If you specify no selection but
1657 ;; a renamer, only the bindings that already exist in the used module
1658 ;; are made available in the interface. Bindings that are added later
1659 ;; are not picked up.
1660 ;;
1661 ;; #:renamer RENAMER
1662 ;;
1663 ;; RENAMER is a procedure that takes a symbol and returns its new
1664 ;; name. The default is to not perform any renaming.
1665 ;;
1666 ;; Signal "no code for module" error if module name is not resolvable
1667 ;; or its public interface is not available. Signal "no binding"
1668 ;; error if selected binding does not exist in the used module.
1669 ;;
1670 (define (resolve-interface name . args)
1671
1672 (define (get-keyword-arg args kw def)
1673 (cond ((memq kw args)
1674 => (lambda (kw-arg)
1675 (if (null? (cdr kw-arg))
1676 (error "keyword without value: " kw))
1677 (cadr kw-arg)))
1678 (else
1679 def)))
1680
1681 (let* ((select (get-keyword-arg args #:select #f))
1682 (renamer (get-keyword-arg args #:renamer identity))
1683 (module (resolve-module name))
1684 (public-i (and module (module-public-interface module))))
1685 (and (or (not module) (not public-i))
1686 (error "no code for module" name))
1687 (if (and (not select) (eq? renamer identity))
1688 public-i
1689 (let ((selection (or select (module-map (lambda (sym var) sym)
1690 public-i)))
1691 (custom-i (make-module 31)))
1692 (set-module-kind! custom-i 'interface)
1693 ;; XXX - should use a lazy binder so that changes to the
1694 ;; used module are picked up automatically.
1695 (for-each (lambda (bspec)
1696 (let* ((direct? (symbol? bspec))
1697 (orig (if direct? bspec (car bspec)))
1698 (seen (if direct? bspec (cdr bspec))))
1699 (module-add! custom-i (renamer seen)
1700 (or (module-local-variable public-i orig)
1701 (module-local-variable module orig)
1702 (error
1703 ;; fixme: format manually for now
1704 (simple-format
1705 #f "no binding `~A' in module ~A"
1706 orig name))))))
1707 selection)
1708 custom-i))))
1709
1710 (define (symbol-prefix-proc prefix)
1711 (lambda (symbol)
1712 (symbol-append prefix symbol)))
1713
1714 ;; This function is called from "modules.c". If you change it, be
1715 ;; sure to update "modules.c" as well.
1716
1717 (define (process-define-module args)
1718 (let* ((module-id (car args))
1719 (module (resolve-module module-id #f))
1720 (kws (cdr args))
1721 (unrecognized (lambda (arg)
1722 (error "unrecognized define-module argument" arg))))
1723 (beautify-user-module! module)
1724 (let loop ((kws kws)
1725 (reversed-interfaces '())
1726 (exports '())
1727 (re-exports '()))
1728 (if (null? kws)
1729 (begin
1730 (for-each (lambda (interface)
1731 (module-use! module interface))
1732 (reverse reversed-interfaces))
1733 (module-export! module exports)
1734 (module-re-export! module re-exports))
1735 (case (car kws)
1736 ((#:use-module #:use-syntax)
1737 (or (pair? (cdr kws))
1738 (unrecognized kws))
1739 (let* ((interface-args (cadr kws))
1740 (interface (apply resolve-interface interface-args)))
1741 (and (eq? (car kws) #:use-syntax)
1742 (or (symbol? (caar interface-args))
1743 (error "invalid module name for use-syntax"
1744 (car interface-args)))
1745 (set-module-transformer!
1746 module
1747 (module-ref interface
1748 (car (last-pair (car interface-args)))
1749 #f)))
1750 (loop (cddr kws)
1751 (cons interface reversed-interfaces)
1752 exports
1753 re-exports)))
1754 ((#:autoload)
1755 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1756 (unrecognized kws))
1757 (loop (cdddr kws)
1758 (cons (make-autoload-interface module
1759 (cadr kws)
1760 (caddr kws))
1761 reversed-interfaces)
1762 exports
1763 re-exports))
1764 ((#:no-backtrace)
1765 (set-system-module! module #t)
1766 (loop (cdr kws) reversed-interfaces exports re-exports))
1767 ((#:pure)
1768 (purify-module! module)
1769 (loop (cdr kws) reversed-interfaces exports re-exports))
1770 ((#:export #:export-syntax)
1771 (or (pair? (cdr kws))
1772 (unrecognized kws))
1773 (loop (cddr kws)
1774 reversed-interfaces
1775 (append (cadr kws) exports)
1776 re-exports))
1777 ((#:re-export #:re-export-syntax)
1778 (or (pair? (cdr kws))
1779 (unrecognized kws))
1780 (loop (cddr kws)
1781 reversed-interfaces
1782 exports
1783 (append (cadr kws) re-exports)))
1784 (else
1785 (unrecognized kws)))))
1786 module))
1787
1788 ;;; {Autoload}
1789
1790 (define (make-autoload-interface module name bindings)
1791 (let ((b (lambda (a sym definep)
1792 (and (memq sym bindings)
1793 (let ((i (module-public-interface (resolve-module name))))
1794 (if (not i)
1795 (error "missing interface for module" name))
1796 ;; Replace autoload-interface with interface
1797 (set-car! (memq a (module-uses module)) i)
1798 (module-local-variable i sym))))))
1799 (module-constructor #() '() b #f #f name 'autoload
1800 '() (make-weak-value-hash-table 31) 0)))
1801
1802 ;;; {Compiled module}
1803
1804 (define load-compiled #f)
1805
1806 \f
1807 ;;; {Autoloading modules}
1808
1809 (define autoloads-in-progress '())
1810
1811 ;; This function is called from "modules.c". If you change it, be
1812 ;; sure to update "modules.c" as well.
1813
1814 (define (try-module-autoload module-name)
1815 (let* ((reverse-name (reverse module-name))
1816 (name (symbol->string (car reverse-name)))
1817 (dir-hint-module-name (reverse (cdr reverse-name)))
1818 (dir-hint (apply string-append
1819 (map (lambda (elt)
1820 (string-append (symbol->string elt) "/"))
1821 dir-hint-module-name))))
1822 (resolve-module dir-hint-module-name #f)
1823 (and (not (autoload-done-or-in-progress? dir-hint name))
1824 (let ((didit #f))
1825 (define (load-file proc file)
1826 (save-module-excursion (lambda () (proc file)))
1827 (set! didit #t))
1828 (dynamic-wind
1829 (lambda () (autoload-in-progress! dir-hint name))
1830 (lambda ()
1831 (let ((file (in-vicinity dir-hint name)))
1832 (cond ((and load-compiled
1833 (%search-load-path (string-append file ".go")))
1834 => (lambda (full)
1835 (load-file load-compiled full)))
1836 ((%search-load-path file)
1837 => (lambda (full)
1838 (load-file primitive-load full))))))
1839 (lambda () (set-autoloaded! dir-hint name didit)))
1840 didit))))
1841
1842 \f
1843 ;;; Dynamic linking of modules
1844
1845 (define autoloads-done '((guile . guile)))
1846
1847 (define (autoload-done-or-in-progress? p m)
1848 (let ((n (cons p m)))
1849 (->bool (or (member n autoloads-done)
1850 (member n autoloads-in-progress)))))
1851
1852 (define (autoload-done! p m)
1853 (let ((n (cons p m)))
1854 (set! autoloads-in-progress
1855 (delete! n autoloads-in-progress))
1856 (or (member n autoloads-done)
1857 (set! autoloads-done (cons n autoloads-done)))))
1858
1859 (define (autoload-in-progress! p m)
1860 (let ((n (cons p m)))
1861 (set! autoloads-done
1862 (delete! n autoloads-done))
1863 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1864
1865 (define (set-autoloaded! p m done?)
1866 (if done?
1867 (autoload-done! p m)
1868 (let ((n (cons p m)))
1869 (set! autoloads-done (delete! n autoloads-done))
1870 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1871
1872
1873
1874 \f
1875 ;; {EVAL-CASE}
1876 ;;
1877 ;; (eval-case ((situation*) forms)* (else forms)?)
1878 ;;
1879 ;; Evaluate certain code based on the situation that eval-case is used
1880 ;; in. The only defined situation right now is `load-toplevel' which
1881 ;; triggers for code evaluated at the top-level, for example from the
1882 ;; REPL or when loading a file.
1883
1884 (define eval-case
1885 (procedure->memoizing-macro
1886 (lambda (exp env)
1887 (define (toplevel-env? env)
1888 (or (not (pair? env)) (not (pair? (car env)))))
1889 (define (syntax)
1890 (error "syntax error in eval-case"))
1891 (let loop ((clauses (cdr exp)))
1892 (cond
1893 ((null? clauses)
1894 #f)
1895 ((not (list? (car clauses)))
1896 (syntax))
1897 ((eq? 'else (caar clauses))
1898 (or (null? (cdr clauses))
1899 (syntax))
1900 (cons 'begin (cdar clauses)))
1901 ((not (list? (caar clauses)))
1902 (syntax))
1903 ((and (toplevel-env? env)
1904 (memq 'load-toplevel (caar clauses)))
1905 (cons 'begin (cdar clauses)))
1906 (else
1907 (loop (cdr clauses))))))))
1908
1909 \f
1910 ;;; {Macros}
1911 ;;;
1912
1913 (define (primitive-macro? m)
1914 (and (macro? m)
1915 (not (macro-transformer m))))
1916
1917 ;;; {Defmacros}
1918 ;;;
1919 (define macro-table (make-weak-key-hash-table 523))
1920 (define xformer-table (make-weak-key-hash-table 523))
1921
1922 (define (defmacro? m) (hashq-ref macro-table m))
1923 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1924 (define (defmacro-transformer m) (hashq-ref xformer-table m))
1925 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
1926
1927 (define defmacro:transformer
1928 (lambda (f)
1929 (let* ((xform (lambda (exp env)
1930 (copy-tree (apply f (cdr exp)))))
1931 (a (procedure->memoizing-macro xform)))
1932 (assert-defmacro?! a)
1933 (set-defmacro-transformer! a f)
1934 a)))
1935
1936
1937 (define defmacro
1938 (let ((defmacro-transformer
1939 (lambda (name parms . body)
1940 (let ((transformer `(lambda ,parms ,@body)))
1941 `(eval-case
1942 ((load-toplevel)
1943 (define ,name (defmacro:transformer ,transformer)))
1944 (else
1945 (error "defmacro can only be used at the top level")))))))
1946 (defmacro:transformer defmacro-transformer)))
1947
1948 (define defmacro:syntax-transformer
1949 (lambda (f)
1950 (procedure->syntax
1951 (lambda (exp env)
1952 (copy-tree (apply f (cdr exp)))))))
1953
1954
1955 ;; XXX - should the definition of the car really be looked up in the
1956 ;; current module?
1957
1958 (define (macroexpand-1 e)
1959 (cond
1960 ((pair? e) (let* ((a (car e))
1961 (val (and (symbol? a) (local-ref (list a)))))
1962 (if (defmacro? val)
1963 (apply (defmacro-transformer val) (cdr e))
1964 e)))
1965 (#t e)))
1966
1967 (define (macroexpand e)
1968 (cond
1969 ((pair? e) (let* ((a (car e))
1970 (val (and (symbol? a) (local-ref (list a)))))
1971 (if (defmacro? val)
1972 (macroexpand (apply (defmacro-transformer val) (cdr e)))
1973 e)))
1974 (#t e)))
1975
1976 (provide 'defmacro)
1977
1978 \f
1979
1980 ;;; {Run-time options}
1981
1982 (define define-option-interface
1983 (let* ((option-name car)
1984 (option-value cadr)
1985 (option-documentation caddr)
1986
1987 (print-option (lambda (option)
1988 (display (option-name option))
1989 (if (< (string-length
1990 (symbol->string (option-name option)))
1991 8)
1992 (display #\tab))
1993 (display #\tab)
1994 (display (option-value option))
1995 (display #\tab)
1996 (display (option-documentation option))
1997 (newline)))
1998
1999 ;; Below follow the macros defining the run-time option interfaces.
2000
2001 (make-options (lambda (interface)
2002 `(lambda args
2003 (cond ((null? args) (,interface))
2004 ((list? (car args))
2005 (,interface (car args)) (,interface))
2006 (else (for-each ,print-option
2007 (,interface #t)))))))
2008
2009 (make-enable (lambda (interface)
2010 `(lambda flags
2011 (,interface (append flags (,interface)))
2012 (,interface))))
2013
2014 (make-disable (lambda (interface)
2015 `(lambda flags
2016 (let ((options (,interface)))
2017 (for-each (lambda (flag)
2018 (set! options (delq! flag options)))
2019 flags)
2020 (,interface options)
2021 (,interface)))))
2022
2023 (make-set! (lambda (interface)
2024 `((name exp)
2025 (,'quasiquote
2026 (begin (,interface (append (,interface)
2027 (list '(,'unquote name)
2028 (,'unquote exp))))
2029 (,interface)))))))
2030 (procedure->memoizing-macro
2031 (lambda (exp env)
2032 (cons 'begin
2033 (let* ((option-group (cadr exp))
2034 (interface (car option-group)))
2035 (append (map (lambda (name constructor)
2036 `(define ,name
2037 ,(constructor interface)))
2038 (cadr option-group)
2039 (list make-options
2040 make-enable
2041 make-disable))
2042 (map (lambda (name constructor)
2043 `(defmacro ,name
2044 ,@(constructor interface)))
2045 (caddr option-group)
2046 (list make-set!)))))))))
2047
2048 (define-option-interface
2049 (eval-options-interface
2050 (eval-options eval-enable eval-disable)
2051 (eval-set!)))
2052
2053 (define-option-interface
2054 (debug-options-interface
2055 (debug-options debug-enable debug-disable)
2056 (debug-set!)))
2057
2058 (define-option-interface
2059 (evaluator-traps-interface
2060 (traps trap-enable trap-disable)
2061 (trap-set!)))
2062
2063 (define-option-interface
2064 (read-options-interface
2065 (read-options read-enable read-disable)
2066 (read-set!)))
2067
2068 (define-option-interface
2069 (print-options-interface
2070 (print-options print-enable print-disable)
2071 (print-set!)))
2072
2073 \f
2074
2075 ;;; {Running Repls}
2076 ;;;
2077
2078 (define (repl read evaler print)
2079 (let loop ((source (read (current-input-port))))
2080 (print (evaler source))
2081 (loop (read (current-input-port)))))
2082
2083 ;; A provisional repl that acts like the SCM repl:
2084 ;;
2085 (define scm-repl-silent #f)
2086 (define (assert-repl-silence v) (set! scm-repl-silent v))
2087
2088 (define *unspecified* (if #f #f))
2089 (define (unspecified? v) (eq? v *unspecified*))
2090
2091 (define scm-repl-print-unspecified #f)
2092 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2093
2094 (define scm-repl-verbose #f)
2095 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2096
2097 (define scm-repl-prompt "guile> ")
2098
2099 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2100
2101 (define (default-lazy-handler key . args)
2102 (save-stack lazy-handler-dispatch)
2103 (apply throw key args))
2104
2105 (define (lazy-handler-dispatch key . args)
2106 (apply default-lazy-handler key args))
2107
2108 (define abort-hook (make-hook))
2109
2110 ;; these definitions are used if running a script.
2111 ;; otherwise redefined in error-catching-loop.
2112 (define (set-batch-mode?! arg) #t)
2113 (define (batch-mode?) #t)
2114
2115 (define (error-catching-loop thunk)
2116 (let ((status #f)
2117 (interactive #t))
2118 (define (loop first)
2119 (let ((next
2120 (catch #t
2121
2122 (lambda ()
2123 (lazy-catch #t
2124 (lambda ()
2125 (dynamic-wind
2126 (lambda () (unmask-signals))
2127 (lambda ()
2128 (with-traps
2129 (lambda ()
2130 (first)
2131
2132 ;; This line is needed because mark
2133 ;; doesn't do closures quite right.
2134 ;; Unreferenced locals should be
2135 ;; collected.
2136 ;;
2137 (set! first #f)
2138 (let loop ((v (thunk)))
2139 (loop (thunk)))
2140 #f)))
2141 (lambda () (mask-signals))))
2142
2143 lazy-handler-dispatch))
2144
2145 (lambda (key . args)
2146 (case key
2147 ((quit)
2148 (set! status args)
2149 #f)
2150
2151 ((switch-repl)
2152 (apply throw 'switch-repl args))
2153
2154 ((abort)
2155 ;; This is one of the closures that require
2156 ;; (set! first #f) above
2157 ;;
2158 (lambda ()
2159 (run-hook abort-hook)
2160 (force-output (current-output-port))
2161 (display "ABORT: " (current-error-port))
2162 (write args (current-error-port))
2163 (newline (current-error-port))
2164 (if interactive
2165 (begin
2166 (if (and
2167 (not has-shown-debugger-hint?)
2168 (not (memq 'backtrace
2169 (debug-options-interface)))
2170 (stack? (fluid-ref the-last-stack)))
2171 (begin
2172 (newline (current-error-port))
2173 (display
2174 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2175 (current-error-port))
2176 (set! has-shown-debugger-hint? #t)))
2177 (force-output (current-error-port)))
2178 (begin
2179 (primitive-exit 1)))
2180 (set! stack-saved? #f)))
2181
2182 (else
2183 ;; This is the other cons-leak closure...
2184 (lambda ()
2185 (cond ((= (length args) 4)
2186 (apply handle-system-error key args))
2187 (else
2188 (apply bad-throw key args))))))))))
2189 (if next (loop next) status)))
2190 (set! set-batch-mode?! (lambda (arg)
2191 (cond (arg
2192 (set! interactive #f)
2193 (restore-signals))
2194 (#t
2195 (error "sorry, not implemented")))))
2196 (set! batch-mode? (lambda () (not interactive)))
2197 (loop (lambda () #t))))
2198
2199 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2200 (define before-signal-stack (make-fluid))
2201 (define stack-saved? #f)
2202
2203 (define (save-stack . narrowing)
2204 (or stack-saved?
2205 (cond ((not (memq 'debug (debug-options-interface)))
2206 (fluid-set! the-last-stack #f)
2207 (set! stack-saved? #t))
2208 (else
2209 (fluid-set!
2210 the-last-stack
2211 (case (stack-id #t)
2212 ((repl-stack)
2213 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2214 ((load-stack)
2215 (apply make-stack #t save-stack 0 #t 0 narrowing))
2216 ((tk-stack)
2217 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2218 ((#t)
2219 (apply make-stack #t save-stack 0 1 narrowing))
2220 (else
2221 (let ((id (stack-id #t)))
2222 (and (procedure? id)
2223 (apply make-stack #t save-stack id #t 0 narrowing))))))
2224 (set! stack-saved? #t)))))
2225
2226 (define before-error-hook (make-hook))
2227 (define after-error-hook (make-hook))
2228 (define before-backtrace-hook (make-hook))
2229 (define after-backtrace-hook (make-hook))
2230
2231 (define has-shown-debugger-hint? #f)
2232
2233 (define (handle-system-error key . args)
2234 (let ((cep (current-error-port)))
2235 (cond ((not (stack? (fluid-ref the-last-stack))))
2236 ((memq 'backtrace (debug-options-interface))
2237 (run-hook before-backtrace-hook)
2238 (newline cep)
2239 (display "Backtrace:\n")
2240 (display-backtrace (fluid-ref the-last-stack) cep)
2241 (newline cep)
2242 (run-hook after-backtrace-hook)))
2243 (run-hook before-error-hook)
2244 (apply display-error (fluid-ref the-last-stack) cep args)
2245 (run-hook after-error-hook)
2246 (force-output cep)
2247 (throw 'abort key)))
2248
2249 (define (quit . args)
2250 (apply throw 'quit args))
2251
2252 (define exit quit)
2253
2254 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2255
2256 ;; Replaced by C code:
2257 ;;(define (backtrace)
2258 ;; (if (fluid-ref the-last-stack)
2259 ;; (begin
2260 ;; (newline)
2261 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2262 ;; (newline)
2263 ;; (if (and (not has-shown-backtrace-hint?)
2264 ;; (not (memq 'backtrace (debug-options-interface))))
2265 ;; (begin
2266 ;; (display
2267 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2268 ;;automatically if an error occurs in the future.\n")
2269 ;; (set! has-shown-backtrace-hint? #t))))
2270 ;; (display "No backtrace available.\n")))
2271
2272 (define (error-catching-repl r e p)
2273 (error-catching-loop
2274 (lambda ()
2275 (call-with-values (lambda () (e (r)))
2276 (lambda the-values (for-each p the-values))))))
2277
2278 (define (gc-run-time)
2279 (cdr (assq 'gc-time-taken (gc-stats))))
2280
2281 (define before-read-hook (make-hook))
2282 (define after-read-hook (make-hook))
2283 (define before-eval-hook (make-hook 1))
2284 (define after-eval-hook (make-hook 1))
2285 (define before-print-hook (make-hook 1))
2286 (define after-print-hook (make-hook 1))
2287
2288 ;;; The default repl-reader function. We may override this if we've
2289 ;;; the readline library.
2290 (define repl-reader
2291 (lambda (prompt)
2292 (display prompt)
2293 (force-output)
2294 (run-hook before-read-hook)
2295 (read (current-input-port))))
2296
2297 (define (scm-style-repl)
2298
2299 (letrec (
2300 (start-gc-rt #f)
2301 (start-rt #f)
2302 (repl-report-start-timing (lambda ()
2303 (set! start-gc-rt (gc-run-time))
2304 (set! start-rt (get-internal-run-time))))
2305 (repl-report (lambda ()
2306 (display ";;; ")
2307 (display (inexact->exact
2308 (* 1000 (/ (- (get-internal-run-time) start-rt)
2309 internal-time-units-per-second))))
2310 (display " msec (")
2311 (display (inexact->exact
2312 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2313 internal-time-units-per-second))))
2314 (display " msec in gc)\n")))
2315
2316 (consume-trailing-whitespace
2317 (lambda ()
2318 (let ((ch (peek-char)))
2319 (cond
2320 ((eof-object? ch))
2321 ((or (char=? ch #\space) (char=? ch #\tab))
2322 (read-char)
2323 (consume-trailing-whitespace))
2324 ((char=? ch #\newline)
2325 (read-char))))))
2326 (-read (lambda ()
2327 (let ((val
2328 (let ((prompt (cond ((string? scm-repl-prompt)
2329 scm-repl-prompt)
2330 ((thunk? scm-repl-prompt)
2331 (scm-repl-prompt))
2332 (scm-repl-prompt "> ")
2333 (else ""))))
2334 (repl-reader prompt))))
2335
2336 ;; As described in R4RS, the READ procedure updates the
2337 ;; port to point to the first character past the end of
2338 ;; the external representation of the object. This
2339 ;; means that it doesn't consume the newline typically
2340 ;; found after an expression. This means that, when
2341 ;; debugging Guile with GDB, GDB gets the newline, which
2342 ;; it often interprets as a "continue" command, making
2343 ;; breakpoints kind of useless. So, consume any
2344 ;; trailing newline here, as well as any whitespace
2345 ;; before it.
2346 ;; But not if EOF, for control-D.
2347 (if (not (eof-object? val))
2348 (consume-trailing-whitespace))
2349 (run-hook after-read-hook)
2350 (if (eof-object? val)
2351 (begin
2352 (repl-report-start-timing)
2353 (if scm-repl-verbose
2354 (begin
2355 (newline)
2356 (display ";;; EOF -- quitting")
2357 (newline)))
2358 (quit 0)))
2359 val)))
2360
2361 (-eval (lambda (sourc)
2362 (repl-report-start-timing)
2363 (run-hook before-eval-hook sourc)
2364 (let ((val (start-stack 'repl-stack
2365 ;; If you change this procedure
2366 ;; (primitive-eval), please also
2367 ;; modify the repl-stack case in
2368 ;; save-stack so that stack cutting
2369 ;; continues to work.
2370 (primitive-eval sourc))))
2371 (run-hook after-eval-hook sourc)
2372 val)))
2373
2374
2375 (-print (let ((maybe-print (lambda (result)
2376 (if (or scm-repl-print-unspecified
2377 (not (unspecified? result)))
2378 (begin
2379 (write result)
2380 (newline))))))
2381 (lambda (result)
2382 (if (not scm-repl-silent)
2383 (begin
2384 (run-hook before-print-hook result)
2385 (maybe-print result)
2386 (run-hook after-print-hook result)
2387 (if scm-repl-verbose
2388 (repl-report))
2389 (force-output))))))
2390
2391 (-quit (lambda (args)
2392 (if scm-repl-verbose
2393 (begin
2394 (display ";;; QUIT executed, repl exitting")
2395 (newline)
2396 (repl-report)))
2397 args))
2398
2399 (-abort (lambda ()
2400 (if scm-repl-verbose
2401 (begin
2402 (display ";;; ABORT executed.")
2403 (newline)
2404 (repl-report)))
2405 (repl -read -eval -print))))
2406
2407 (let ((status (error-catching-repl -read
2408 -eval
2409 -print)))
2410 (-quit status))))
2411
2412
2413 \f
2414 ;;; {IOTA functions: generating lists of numbers}
2415
2416 (define (iota n)
2417 (let loop ((count (1- n)) (result '()))
2418 (if (< count 0) result
2419 (loop (1- count) (cons count result)))))
2420
2421 \f
2422 ;;; {While}
2423 ;;;
2424 ;;; with `continue' and `break'.
2425 ;;;
2426
2427 (defmacro while (cond . body)
2428 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2429 (break (lambda val (apply throw 'break val))))
2430 (catch 'break
2431 (lambda () (continue))
2432 (lambda v (cadr v)))))
2433
2434 ;;; {collect}
2435 ;;;
2436 ;;; Similar to `begin' but returns a list of the results of all constituent
2437 ;;; forms instead of the result of the last form.
2438 ;;; (The definition relies on the current left-to-right
2439 ;;; order of evaluation of operands in applications.)
2440
2441 (defmacro collect forms
2442 (cons 'list forms))
2443
2444 ;;; {with-fluids}
2445
2446 ;; with-fluids is a convenience wrapper for the builtin procedure
2447 ;; `with-fluids*'. The syntax is just like `let':
2448 ;;
2449 ;; (with-fluids ((fluid val)
2450 ;; ...)
2451 ;; body)
2452
2453 (defmacro with-fluids (bindings . body)
2454 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2455 (lambda () ,@body)))
2456
2457 \f
2458
2459 ;;; {Macros}
2460 ;;;
2461
2462 ;; actually....hobbit might be able to hack these with a little
2463 ;; coaxing
2464 ;;
2465
2466 (defmacro define-macro (first . rest)
2467 (let ((name (if (symbol? first) first (car first)))
2468 (transformer
2469 (if (symbol? first)
2470 (car rest)
2471 `(lambda ,(cdr first) ,@rest))))
2472 `(eval-case
2473 ((load-toplevel)
2474 (define ,name (defmacro:transformer ,transformer)))
2475 (else
2476 (error "define-macro can only be used at the top level")))))
2477
2478
2479 (defmacro define-syntax-macro (first . rest)
2480 (let ((name (if (symbol? first) first (car first)))
2481 (transformer
2482 (if (symbol? first)
2483 (car rest)
2484 `(lambda ,(cdr first) ,@rest))))
2485 `(eval-case
2486 ((load-toplevel)
2487 (define ,name (defmacro:syntax-transformer ,transformer)))
2488 (else
2489 (error "define-syntax-macro can only be used at the top level")))))
2490
2491 \f
2492 ;;; {Module System Macros}
2493 ;;;
2494
2495 ;; Return a list of expressions that evaluate to the appropriate
2496 ;; arguments for resolve-interface according to SPEC.
2497
2498 (define (compile-interface-spec spec)
2499 (define (make-keyarg sym key quote?)
2500 (cond ((or (memq sym spec)
2501 (memq key spec))
2502 => (lambda (rest)
2503 (if quote?
2504 (list key (list 'quote (cadr rest)))
2505 (list key (cadr rest)))))
2506 (else
2507 '())))
2508 (define (map-apply func list)
2509 (map (lambda (args) (apply func args)) list))
2510 (define keys
2511 ;; sym key quote?
2512 '((:select #:select #t)
2513 (:renamer #:renamer #f)))
2514 (if (not (pair? (car spec)))
2515 `(',spec)
2516 `(',(car spec)
2517 ,@(apply append (map-apply make-keyarg keys)))))
2518
2519 (define (keyword-like-symbol->keyword sym)
2520 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2521
2522 (define (compile-define-module-args args)
2523 ;; Just quote everything except #:use-module and #:use-syntax. We
2524 ;; need to know about all arguments regardless since we want to turn
2525 ;; symbols that look like keywords into real keywords, and the
2526 ;; keyword args in a define-module form are not regular
2527 ;; (i.e. no-backtrace doesn't take a value).
2528 (let loop ((compiled-args `((quote ,(car args))))
2529 (args (cdr args)))
2530 (cond ((null? args)
2531 (reverse! compiled-args))
2532 ;; symbol in keyword position
2533 ((symbol? (car args))
2534 (loop compiled-args
2535 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2536 ((memq (car args) '(#:no-backtrace #:pure))
2537 (loop (cons (car args) compiled-args)
2538 (cdr args)))
2539 ((null? (cdr args))
2540 (error "keyword without value:" (car args)))
2541 ((memq (car args) '(#:use-module #:use-syntax))
2542 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2543 (car args)
2544 compiled-args)
2545 (cddr args)))
2546 ((eq? (car args) #:autoload)
2547 (loop (cons* `(quote ,(caddr args))
2548 `(quote ,(cadr args))
2549 (car args)
2550 compiled-args)
2551 (cdddr args)))
2552 (else
2553 (loop (cons* `(quote ,(cadr args))
2554 (car args)
2555 compiled-args)
2556 (cddr args))))))
2557
2558 (defmacro define-module args
2559 `(eval-case
2560 ((load-toplevel)
2561 (let ((m (process-define-module
2562 (list ,@(compile-define-module-args args)))))
2563 (set-current-module m)
2564 m))
2565 (else
2566 (error "define-module can only be used at the top level"))))
2567
2568 ;; The guts of the use-modules macro. Add the interfaces of the named
2569 ;; modules to the use-list of the current module, in order.
2570
2571 ;; This function is called by "modules.c". If you change it, be sure
2572 ;; to change scm_c_use_module as well.
2573
2574 (define (process-use-modules module-interface-args)
2575 (for-each (lambda (mif-args)
2576 (let ((mod-iface (apply resolve-interface mif-args)))
2577 (or mod-iface
2578 (error "no such module" mif-args))
2579 (module-use! (current-module) mod-iface)))
2580 module-interface-args))
2581
2582 (defmacro use-modules modules
2583 `(eval-case
2584 ((load-toplevel)
2585 (process-use-modules
2586 (list ,@(map (lambda (m)
2587 `(list ,@(compile-interface-spec m)))
2588 modules))))
2589 (else
2590 (error "use-modules can only be used at the top level"))))
2591
2592 (defmacro use-syntax (spec)
2593 `(eval-case
2594 ((load-toplevel)
2595 ,@(if (pair? spec)
2596 `((process-use-modules (list
2597 (list ,@(compile-interface-spec spec))))
2598 (set-module-transformer! (current-module)
2599 ,(car (last-pair spec))))
2600 `((set-module-transformer! (current-module) ,spec))))
2601 (else
2602 (error "use-syntax can only be used at the top level"))))
2603
2604 (define define-private define)
2605
2606 (defmacro define-public args
2607 (define (syntax)
2608 (error "bad syntax" (list 'define-public args)))
2609 (define (defined-name n)
2610 (cond
2611 ((symbol? n) n)
2612 ((pair? n) (defined-name (car n)))
2613 (else (syntax))))
2614 (cond
2615 ((null? args)
2616 (syntax))
2617 (#t
2618 (let ((name (defined-name (car args))))
2619 `(begin
2620 (define-private ,@args)
2621 (eval-case ((load-toplevel) (export ,name))))))))
2622
2623 (defmacro defmacro-public args
2624 (define (syntax)
2625 (error "bad syntax" (list 'defmacro-public args)))
2626 (define (defined-name n)
2627 (cond
2628 ((symbol? n) n)
2629 (else (syntax))))
2630 (cond
2631 ((null? args)
2632 (syntax))
2633 (#t
2634 (let ((name (defined-name (car args))))
2635 `(begin
2636 (eval-case ((load-toplevel) (export ,name)))
2637 (defmacro ,@args))))))
2638
2639 ;; Export a local variable
2640
2641 ;; This function is called from "modules.c". If you change it, be
2642 ;; sure to update "modules.c" as well.
2643
2644 (define (module-export! m names)
2645 (let ((public-i (module-public-interface m)))
2646 (for-each (lambda (name)
2647 (let ((var (module-ensure-local-variable! m name)))
2648 (module-add! public-i name var)))
2649 names)))
2650
2651 ;; Re-export a imported variable
2652 ;;
2653 (define (module-re-export! m names)
2654 (let ((public-i (module-public-interface m)))
2655 (for-each (lambda (name)
2656 (let ((var (module-variable m name)))
2657 (cond ((not var)
2658 (error "Undefined variable:" name))
2659 ((eq? var (module-local-variable m name))
2660 (error "re-exporting local variable:" name))
2661 (else
2662 (module-add! public-i name var)))))
2663 names)))
2664
2665 (defmacro export names
2666 `(eval-case
2667 ((load-toplevel)
2668 (module-export! (current-module) ',names))
2669 (else
2670 (error "export can only be used at the top level"))))
2671
2672 (defmacro re-export names
2673 `(eval-case
2674 ((load-toplevel)
2675 (module-re-export! (current-module) ',names))
2676 (else
2677 (error "re-export can only be used at the top level"))))
2678
2679 (define export-syntax export)
2680 (define re-export-syntax re-export)
2681
2682
2683 (define load load-module)
2684
2685 \f
2686
2687 ;;; {`cond-expand' for SRFI-0 support.}
2688 ;;;
2689 ;;; This syntactic form expands into different commands or
2690 ;;; definitions, depending on the features provided by the Scheme
2691 ;;; implementation.
2692 ;;;
2693 ;;; Syntax:
2694 ;;;
2695 ;;; <cond-expand>
2696 ;;; --> (cond-expand <cond-expand-clause>+)
2697 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2698 ;;; <cond-expand-clause>
2699 ;;; --> (<feature-requirement> <command-or-definition>*)
2700 ;;; <feature-requirement>
2701 ;;; --> <feature-identifier>
2702 ;;; | (and <feature-requirement>*)
2703 ;;; | (or <feature-requirement>*)
2704 ;;; | (not <feature-requirement>)
2705 ;;; <feature-identifier>
2706 ;;; --> <a symbol which is the name or alias of a SRFI>
2707 ;;;
2708 ;;; Additionally, this implementation provides the
2709 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2710 ;;; determine the implementation type and the supported standard.
2711 ;;;
2712 ;;; Currently, the following feature identifiers are supported:
2713 ;;;
2714 ;;; guile r5rs srfi-0
2715 ;;;
2716 ;;; Remember to update the features list when adding more SRFIs.
2717
2718 (define %cond-expand-features
2719 ;; Adjust the above comment when changing this.
2720 '(guile r5rs srfi-0))
2721
2722 ;; This table maps module public interfaces to the list of features.
2723 ;;
2724 (define %cond-expand-table (make-hash-table 31))
2725
2726 ;; Add one or more features to the `cond-expand' feature list of the
2727 ;; module `module'.
2728 ;;
2729 (define (cond-expand-provide module features)
2730 (let ((mod (module-public-interface module)))
2731 (and mod
2732 (hashq-set! %cond-expand-table mod
2733 (append (hashq-ref %cond-expand-table mod '())
2734 features)))))
2735
2736 (define cond-expand
2737 (procedure->memoizing-macro
2738 (lambda (exp env)
2739 (let ((clauses (cdr exp))
2740 (syntax-error (lambda (cl)
2741 (error "invalid clause in `cond-expand'" cl))))
2742 (letrec
2743 ((test-clause
2744 (lambda (clause)
2745 (cond
2746 ((symbol? clause)
2747 (or (memq clause %cond-expand-features)
2748 (let lp ((uses (module-uses (env-module env))))
2749 (if (pair? uses)
2750 (or (memq clause
2751 (hashq-ref %cond-expand-table
2752 (car uses) '()))
2753 (lp (cdr uses)))
2754 #f))))
2755 ((pair? clause)
2756 (cond
2757 ((eq? 'and (car clause))
2758 (let lp ((l (cdr clause)))
2759 (cond ((null? l)
2760 #t)
2761 ((pair? l)
2762 (and (test-clause (car l)) (lp (cdr l))))
2763 (else
2764 (syntax-error clause)))))
2765 ((eq? 'or (car clause))
2766 (let lp ((l (cdr clause)))
2767 (cond ((null? l)
2768 #f)
2769 ((pair? l)
2770 (or (test-clause (car l)) (lp (cdr l))))
2771 (else
2772 (syntax-error clause)))))
2773 ((eq? 'not (car clause))
2774 (cond ((not (pair? (cdr clause)))
2775 (syntax-error clause))
2776 ((pair? (cddr clause))
2777 ((syntax-error clause))))
2778 (not (test-clause (cadr clause))))
2779 (else
2780 (syntax-error clause))))
2781 (else
2782 (syntax-error clause))))))
2783 (let lp ((c clauses))
2784 (cond
2785 ((null? c)
2786 (error "Unfulfilled `cond-expand'"))
2787 ((not (pair? c))
2788 (syntax-error c))
2789 ((not (pair? (car c)))
2790 (syntax-error (car c)))
2791 ((test-clause (caar c))
2792 `(begin ,@(cdar c)))
2793 ((eq? (caar c) 'else)
2794 (if (pair? (cdr c))
2795 (syntax-error c))
2796 `(begin ,@(cdar c)))
2797 (else
2798 (lp (cdr c))))))))))
2799
2800 ;; This procedure gets called from the startup code with a list of
2801 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
2802 ;;
2803 (define (use-srfis srfis)
2804 (let lp ((s srfis))
2805 (if (pair? s)
2806 (let* ((srfi (string->symbol
2807 (string-append "srfi-" (number->string (car s)))))
2808 (mod-i (resolve-interface (list 'srfi srfi))))
2809 (module-use! (current-module) mod-i)
2810 (lp (cdr s))))))
2811
2812 \f
2813
2814 ;;; {Load emacs interface support if emacs option is given.}
2815
2816 (define (named-module-use! user usee)
2817 (module-use! (resolve-module user) (resolve-interface usee)))
2818
2819 (define (load-emacs-interface)
2820 (and (provided? 'debug-extensions)
2821 (debug-enable 'backtrace))
2822 (named-module-use! '(guile-user) '(ice-9 emacs)))
2823
2824 \f
2825
2826 (define using-readline?
2827 (let ((using-readline? (make-fluid)))
2828 (make-procedure-with-setter
2829 (lambda () (fluid-ref using-readline?))
2830 (lambda (v) (fluid-set! using-readline? v)))))
2831
2832 (define (top-repl)
2833 (let ((guile-user-module (resolve-module '(guile-user))))
2834
2835 ;; Load emacs interface support if emacs option is given.
2836 (if (and (module-defined? the-root-module 'use-emacs-interface)
2837 (module-ref the-root-module 'use-emacs-interface))
2838 (load-emacs-interface))
2839
2840 ;; Use some convenient modules (in reverse order)
2841
2842 (if (provided? 'regex)
2843 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
2844 (if (provided? 'threads)
2845 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
2846 ;; load debugger on demand
2847 (module-use! guile-user-module
2848 (make-autoload-interface guile-user-module
2849 '(ice-9 debugger) '(debug)))
2850 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
2851 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
2852 ;; so that builtin bindings will be checked first
2853 (module-use! guile-user-module (resolve-interface '(guile)))
2854
2855 (set-current-module guile-user-module)
2856
2857 (let ((old-handlers #f)
2858 (signals (if (provided? 'posix)
2859 `((,SIGINT . "User interrupt")
2860 (,SIGFPE . "Arithmetic error")
2861 (,SIGBUS . "Bad memory access (bus error)")
2862 (,SIGSEGV
2863 . "Bad memory access (Segmentation violation)"))
2864 '())))
2865
2866 (dynamic-wind
2867
2868 ;; call at entry
2869 (lambda ()
2870 (let ((make-handler (lambda (msg)
2871 (lambda (sig)
2872 ;; Make a backup copy of the stack
2873 (fluid-set! before-signal-stack
2874 (fluid-ref the-last-stack))
2875 (save-stack %deliver-signals)
2876 (scm-error 'signal
2877 #f
2878 msg
2879 #f
2880 (list sig))))))
2881 (set! old-handlers
2882 (map (lambda (sig-msg)
2883 (sigaction (car sig-msg)
2884 (make-handler (cdr sig-msg))))
2885 signals))))
2886
2887 ;; the protected thunk.
2888 (lambda ()
2889 (let ((status (scm-style-repl)))
2890 (run-hook exit-hook)
2891 status))
2892
2893 ;; call at exit.
2894 (lambda ()
2895 (map (lambda (sig-msg old-handler)
2896 (if (not (car old-handler))
2897 ;; restore original C handler.
2898 (sigaction (car sig-msg) #f)
2899 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2900 (sigaction (car sig-msg)
2901 (car old-handler)
2902 (cdr old-handler))))
2903 signals old-handlers))))))
2904
2905 (defmacro false-if-exception (expr)
2906 `(catch #t (lambda () ,expr)
2907 (lambda args #f)))
2908
2909 ;;; This hook is run at the very end of an interactive session.
2910 ;;;
2911 (define exit-hook (make-hook))
2912
2913 \f
2914 (append! %load-path (list "."))
2915
2916 ;; Place the user in the guile-user module.
2917 ;;
2918
2919 (define-module (guile-user))
2920
2921 ;;; boot-9.scm ends here