* boot-9.scm (cond-expand-features): Made the feature list public,
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 \f
21
22 ;;; Commentary:
23
24 ;;; This file is the first thing loaded into Guile. It adds many mundane
25 ;;; definitions and a few that are interesting.
26 ;;;
27 ;;; The module system (hence the hierarchical namespace) are defined in this
28 ;;; file.
29 ;;;
30
31 ;;; Code:
32
33 \f
34 ;;; {Deprecation}
35 ;;;
36
37 ;; We don't have macros here, but we do want to define
38 ;; `begin-deprecated' early.
39
40 (define begin-deprecated
41 (procedure->memoizing-macro
42 (lambda (exp env)
43 (if (include-deprecated-features)
44 `(begin ,@(cdr exp))
45 `#f))))
46
47 \f
48 ;;; {Features}
49 ;;
50
51 (define (provide sym)
52 (if (not (memq sym *features*))
53 (set! *features* (cons sym *features*))))
54
55 ;;; Return #t iff FEATURE is available to this Guile interpreter.
56 ;;; In SLIB, provided? also checks to see if the module is available.
57 ;;; We should do that too, but don't.
58 (define (provided? feature)
59 (and (memq feature *features*) #t))
60
61 ;;; presumably deprecated.
62 (define feature? provided?)
63
64 ;;; let format alias simple-format until the more complete version is loaded
65 (define format simple-format)
66
67 \f
68 ;;; {R4RS compliance}
69
70 (primitive-load-path "ice-9/r4rs.scm")
71
72 \f
73 ;;; {Simple Debugging Tools}
74 ;;
75
76
77 ;; peek takes any number of arguments, writes them to the
78 ;; current ouput port, and returns the last argument.
79 ;; It is handy to wrap around an expression to look at
80 ;; a value each time is evaluated, e.g.:
81 ;;
82 ;; (+ 10 (troublesome-fn))
83 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
84 ;;
85
86 (define (peek . stuff)
87 (newline)
88 (display ";;; ")
89 (write stuff)
90 (newline)
91 (car (last-pair stuff)))
92
93 (define pk peek)
94
95 (define (warn . stuff)
96 (with-output-to-port (current-error-port)
97 (lambda ()
98 (newline)
99 (display ";;; WARNING ")
100 (display stuff)
101 (newline)
102 (car (last-pair stuff)))))
103
104 \f
105 ;;; {Trivial Functions}
106 ;;;
107
108 (define (identity x) x)
109 (define (1+ n) (+ n 1))
110 (define (1- n) (+ n -1))
111 (define (and=> value procedure) (and value (procedure value)))
112 (define (make-hash-table k) (make-vector k '()))
113
114 (begin-deprecated
115 (define (id x)
116 (issue-deprecation-warning "`id' is deprecated. Use `identity' instead.")
117 (identity x))
118 (define (-1+ n)
119 (issue-deprecation-warning "`-1+' is deprecated. Use `1-' instead.")
120 (1- n))
121 (define (return-it . args)
122 (issue-deprecation-warning "`return-it' is deprecated. Use `noop' instead.")
123 (apply noop args)))
124
125 ;;; apply-to-args is functionally redundant with apply and, worse,
126 ;;; is less general than apply since it only takes two arguments.
127 ;;;
128 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
129 ;;; perform binding in many circumstances when the "let" family of
130 ;;; of forms don't cut it. E.g.:
131 ;;;
132 ;;; (apply-to-args (return-3d-mouse-coords)
133 ;;; (lambda (x y z)
134 ;;; ...))
135 ;;;
136
137 (define (apply-to-args args fn) (apply fn args))
138
139 \f
140
141 ;;; {Integer Math}
142 ;;;
143
144 (define (ipow-by-squaring x k acc proc)
145 (cond ((zero? k) acc)
146 ((= 1 k) (proc acc x))
147 (else (ipow-by-squaring (proc x x)
148 (quotient k 2)
149 (if (even? k) acc (proc acc x))
150 proc))))
151
152 (begin-deprecated
153 (define (string-character-length s)
154 (issue-deprecation-warning "`string-character-length' is deprecated. Use `string-length' instead.")
155 (string-length s))
156 (define (flags . args)
157 (issue-deprecation-warning "`flags' is deprecated. Use `logior' instead.")
158 (apply logior args)))
159
160 \f
161 ;;; {Symbol Properties}
162 ;;;
163
164 (define (symbol-property sym prop)
165 (let ((pair (assoc prop (symbol-pref sym))))
166 (and pair (cdr pair))))
167
168 (define (set-symbol-property! sym prop val)
169 (let ((pair (assoc prop (symbol-pref sym))))
170 (if pair
171 (set-cdr! pair val)
172 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
173
174 (define (symbol-property-remove! sym prop)
175 (let ((pair (assoc prop (symbol-pref sym))))
176 (if pair
177 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
178
179 ;;; {General Properties}
180 ;;;
181
182 ;; This is a more modern interface to properties. It will replace all
183 ;; other property-like things eventually.
184
185 (define (make-object-property)
186 (let ((prop (primitive-make-property #f)))
187 (make-procedure-with-setter
188 (lambda (obj) (primitive-property-ref prop obj))
189 (lambda (obj val) (primitive-property-set! prop obj val)))))
190
191 \f
192
193 ;;; {Arrays}
194 ;;;
195
196 (if (provided? 'array)
197 (primitive-load-path "ice-9/arrays.scm"))
198
199 \f
200 ;;; {Keywords}
201 ;;;
202
203 (define (symbol->keyword symbol)
204 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
205
206 (define (keyword->symbol kw)
207 (let ((sym (symbol->string (keyword-dash-symbol kw))))
208 (string->symbol (substring sym 1 (string-length sym)))))
209
210 (define (kw-arg-ref args kw)
211 (let ((rem (member kw args)))
212 (and rem (pair? (cdr rem)) (cadr rem))))
213
214 \f
215
216 ;;; {Structs}
217
218 (define (struct-layout s)
219 (struct-ref (struct-vtable s) vtable-index-layout))
220
221 \f
222
223 ;;; Environments
224
225 (define the-environment
226 (procedure->syntax
227 (lambda (x e)
228 e)))
229
230 (define the-root-environment (the-environment))
231
232 (define (environment-module env)
233 (let ((closure (and (pair? env) (car (last-pair env)))))
234 (and closure (procedure-property closure 'module))))
235
236 \f
237 ;;; {Records}
238 ;;;
239
240 ;; Printing records: by default, records are printed as
241 ;;
242 ;; #<type-name field1: val1 field2: val2 ...>
243 ;;
244 ;; You can change that by giving a custom printing function to
245 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
246 ;; will be called like
247 ;;
248 ;; (<printer> object port)
249 ;;
250 ;; It should print OBJECT to PORT.
251
252 (define (inherit-print-state old-port new-port)
253 (if (get-print-state old-port)
254 (port-with-print-state new-port (get-print-state old-port))
255 new-port))
256
257 ;; 0: type-name, 1: fields
258 (define record-type-vtable
259 (make-vtable-vtable "prpr" 0
260 (lambda (s p)
261 (cond ((eq? s record-type-vtable)
262 (display "#<record-type-vtable>" p))
263 (else
264 (display "#<record-type " p)
265 (display (record-type-name s) p)
266 (display ">" p))))))
267
268 (define (record-type? obj)
269 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
270
271 (define (make-record-type type-name fields . opt)
272 (let ((printer-fn (and (pair? opt) (car opt))))
273 (let ((struct (make-struct record-type-vtable 0
274 (make-struct-layout
275 (apply string-append
276 (map (lambda (f) "pw") fields)))
277 (or printer-fn
278 (lambda (s p)
279 (display "#<" p)
280 (display type-name p)
281 (let loop ((fields fields)
282 (off 0))
283 (cond
284 ((not (null? fields))
285 (display " " p)
286 (display (car fields) p)
287 (display ": " p)
288 (display (struct-ref s off) p)
289 (loop (cdr fields) (+ 1 off)))))
290 (display ">" p)))
291 type-name
292 (copy-tree fields))))
293 ;; Temporary solution: Associate a name to the record type descriptor
294 ;; so that the object system can create a wrapper class for it.
295 (set-struct-vtable-name! struct (if (symbol? type-name)
296 type-name
297 (string->symbol type-name)))
298 struct)))
299
300 (define (record-type-name obj)
301 (if (record-type? obj)
302 (struct-ref obj vtable-offset-user)
303 (error 'not-a-record-type obj)))
304
305 (define (record-type-fields obj)
306 (if (record-type? obj)
307 (struct-ref obj (+ 1 vtable-offset-user))
308 (error 'not-a-record-type obj)))
309
310 (define (record-constructor rtd . opt)
311 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
312 (local-eval `(lambda ,field-names
313 (make-struct ',rtd 0 ,@(map (lambda (f)
314 (if (memq f field-names)
315 f
316 #f))
317 (record-type-fields rtd))))
318 the-root-environment)))
319
320 (define (record-predicate rtd)
321 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
322
323 (define (record-accessor rtd field-name)
324 (let* ((pos (list-index (record-type-fields rtd) field-name)))
325 (if (not pos)
326 (error 'no-such-field field-name))
327 (local-eval `(lambda (obj)
328 (and (eq? ',rtd (record-type-descriptor obj))
329 (struct-ref obj ,pos)))
330 the-root-environment)))
331
332 (define (record-modifier rtd field-name)
333 (let* ((pos (list-index (record-type-fields rtd) field-name)))
334 (if (not pos)
335 (error 'no-such-field field-name))
336 (local-eval `(lambda (obj val)
337 (and (eq? ',rtd (record-type-descriptor obj))
338 (struct-set! obj ,pos val)))
339 the-root-environment)))
340
341
342 (define (record? obj)
343 (and (struct? obj) (record-type? (struct-vtable obj))))
344
345 (define (record-type-descriptor obj)
346 (if (struct? obj)
347 (struct-vtable obj)
348 (error 'not-a-record obj)))
349
350 (provide 'record)
351
352 \f
353 ;;; {Booleans}
354 ;;;
355
356 (define (->bool x) (not (not x)))
357
358 \f
359 ;;; {Symbols}
360 ;;;
361
362 (define (symbol-append . args)
363 (string->symbol (apply string-append (map symbol->string args))))
364
365 (define (list->symbol . args)
366 (string->symbol (apply list->string args)))
367
368 (define (symbol . args)
369 (string->symbol (apply string args)))
370
371 \f
372 ;;; {Lists}
373 ;;;
374
375 (define (list-index l k)
376 (let loop ((n 0)
377 (l l))
378 (and (not (null? l))
379 (if (eq? (car l) k)
380 n
381 (loop (+ n 1) (cdr l))))))
382
383 (define (make-list n . init)
384 (if (pair? init) (set! init (car init)))
385 (let loop ((answer '())
386 (n n))
387 (if (<= n 0)
388 answer
389 (loop (cons init answer) (- n 1)))))
390
391 \f
392 ;;; {and-map and or-map}
393 ;;;
394 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
395 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
396 ;;;
397
398 ;; and-map f l
399 ;;
400 ;; Apply f to successive elements of l until exhaustion or f returns #f.
401 ;; If returning early, return #f. Otherwise, return the last value returned
402 ;; by f. If f has never been called because l is empty, return #t.
403 ;;
404 (define (and-map f lst)
405 (let loop ((result #t)
406 (l lst))
407 (and result
408 (or (and (null? l)
409 result)
410 (loop (f (car l)) (cdr l))))))
411
412 ;; or-map f l
413 ;;
414 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
415 ;; If returning early, return the return value of f.
416 ;;
417 (define (or-map f lst)
418 (let loop ((result #f)
419 (l lst))
420 (or result
421 (and (not (null? l))
422 (loop (f (car l)) (cdr l))))))
423
424 \f
425
426 (if (provided? 'posix)
427 (primitive-load-path "ice-9/posix.scm"))
428
429 (if (provided? 'socket)
430 (primitive-load-path "ice-9/networking.scm"))
431
432 (define file-exists?
433 (if (provided? 'posix)
434 (lambda (str)
435 (access? str F_OK))
436 (lambda (str)
437 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
438 (lambda args #f))))
439 (if port (begin (close-port port) #t)
440 #f)))))
441
442 (define file-is-directory?
443 (if (provided? 'posix)
444 (lambda (str)
445 (eq? (stat:type (stat str)) 'directory))
446 (lambda (str)
447 (let ((port (catch 'system-error
448 (lambda () (open-file (string-append str "/.")
449 OPEN_READ))
450 (lambda args #f))))
451 (if port (begin (close-port port) #t)
452 #f)))))
453
454 (define (has-suffix? str suffix)
455 (let ((sufl (string-length suffix))
456 (sl (string-length str)))
457 (and (> sl sufl)
458 (string=? (substring str (- sl sufl) sl) suffix))))
459
460 \f
461 ;;; {Error Handling}
462 ;;;
463
464 (define (error . args)
465 (save-stack)
466 (if (null? args)
467 (scm-error 'misc-error #f "?" #f #f)
468 (let loop ((msg "~A")
469 (rest (cdr args)))
470 (if (not (null? rest))
471 (loop (string-append msg " ~S")
472 (cdr rest))
473 (scm-error 'misc-error #f msg args #f)))))
474
475 ;; bad-throw is the hook that is called upon a throw to a an unhandled
476 ;; key (unless the throw has four arguments, in which case
477 ;; it's usually interpreted as an error throw.)
478 ;; If the key has a default handler (a throw-handler-default property),
479 ;; it is applied to the throw.
480 ;;
481 (define (bad-throw key . args)
482 (let ((default (symbol-property key 'throw-handler-default)))
483 (or (and default (apply default key args))
484 (apply error "unhandled-exception:" key args))))
485
486 \f
487
488 (define (tm:sec obj) (vector-ref obj 0))
489 (define (tm:min obj) (vector-ref obj 1))
490 (define (tm:hour obj) (vector-ref obj 2))
491 (define (tm:mday obj) (vector-ref obj 3))
492 (define (tm:mon obj) (vector-ref obj 4))
493 (define (tm:year obj) (vector-ref obj 5))
494 (define (tm:wday obj) (vector-ref obj 6))
495 (define (tm:yday obj) (vector-ref obj 7))
496 (define (tm:isdst obj) (vector-ref obj 8))
497 (define (tm:gmtoff obj) (vector-ref obj 9))
498 (define (tm:zone obj) (vector-ref obj 10))
499
500 (define (set-tm:sec obj val) (vector-set! obj 0 val))
501 (define (set-tm:min obj val) (vector-set! obj 1 val))
502 (define (set-tm:hour obj val) (vector-set! obj 2 val))
503 (define (set-tm:mday obj val) (vector-set! obj 3 val))
504 (define (set-tm:mon obj val) (vector-set! obj 4 val))
505 (define (set-tm:year obj val) (vector-set! obj 5 val))
506 (define (set-tm:wday obj val) (vector-set! obj 6 val))
507 (define (set-tm:yday obj val) (vector-set! obj 7 val))
508 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
509 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
510 (define (set-tm:zone obj val) (vector-set! obj 10 val))
511
512 (define (tms:clock obj) (vector-ref obj 0))
513 (define (tms:utime obj) (vector-ref obj 1))
514 (define (tms:stime obj) (vector-ref obj 2))
515 (define (tms:cutime obj) (vector-ref obj 3))
516 (define (tms:cstime obj) (vector-ref obj 4))
517
518 (define (file-position . args) (apply ftell args))
519 (define (file-set-position . args) (apply fseek args))
520
521 (define (move->fdes fd/port fd)
522 (cond ((integer? fd/port)
523 (dup->fdes fd/port fd)
524 (close fd/port)
525 fd)
526 (else
527 (primitive-move->fdes fd/port fd)
528 (set-port-revealed! fd/port 1)
529 fd/port)))
530
531 (define (release-port-handle port)
532 (let ((revealed (port-revealed port)))
533 (if (> revealed 0)
534 (set-port-revealed! port (- revealed 1)))))
535
536 (define (dup->port port/fd mode . maybe-fd)
537 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
538 mode)))
539 (if (pair? maybe-fd)
540 (set-port-revealed! port 1))
541 port))
542
543 (define (dup->inport port/fd . maybe-fd)
544 (apply dup->port port/fd "r" maybe-fd))
545
546 (define (dup->outport port/fd . maybe-fd)
547 (apply dup->port port/fd "w" maybe-fd))
548
549 (define (dup port/fd . maybe-fd)
550 (if (integer? port/fd)
551 (apply dup->fdes port/fd maybe-fd)
552 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
553
554 (define (duplicate-port port modes)
555 (dup->port port modes))
556
557 (define (fdes->inport fdes)
558 (let loop ((rest-ports (fdes->ports fdes)))
559 (cond ((null? rest-ports)
560 (let ((result (fdopen fdes "r")))
561 (set-port-revealed! result 1)
562 result))
563 ((input-port? (car rest-ports))
564 (set-port-revealed! (car rest-ports)
565 (+ (port-revealed (car rest-ports)) 1))
566 (car rest-ports))
567 (else
568 (loop (cdr rest-ports))))))
569
570 (define (fdes->outport fdes)
571 (let loop ((rest-ports (fdes->ports fdes)))
572 (cond ((null? rest-ports)
573 (let ((result (fdopen fdes "w")))
574 (set-port-revealed! result 1)
575 result))
576 ((output-port? (car rest-ports))
577 (set-port-revealed! (car rest-ports)
578 (+ (port-revealed (car rest-ports)) 1))
579 (car rest-ports))
580 (else
581 (loop (cdr rest-ports))))))
582
583 (define (port->fdes port)
584 (set-port-revealed! port (+ (port-revealed port) 1))
585 (fileno port))
586
587 (define (setenv name value)
588 (if value
589 (putenv (string-append name "=" value))
590 (putenv name)))
591
592 \f
593 ;;; {Load Paths}
594 ;;;
595
596 ;;; Here for backward compatability
597 ;;
598 (define scheme-file-suffix (lambda () ".scm"))
599
600 (define (in-vicinity vicinity file)
601 (let ((tail (let ((len (string-length vicinity)))
602 (if (zero? len)
603 #f
604 (string-ref vicinity (- len 1))))))
605 (string-append vicinity
606 (if (or (not tail)
607 (eq? tail #\/))
608 ""
609 "/")
610 file)))
611
612 \f
613 ;;; {Help for scm_shell}
614 ;;; The argument-processing code used by Guile-based shells generates
615 ;;; Scheme code based on the argument list. This page contains help
616 ;;; functions for the code it generates.
617
618 (define (command-line) (program-arguments))
619
620 ;; This is mostly for the internal use of the code generated by
621 ;; scm_compile_shell_switches.
622 (define (load-user-init)
623 (let* ((home (or (getenv "HOME")
624 (false-if-exception (passwd:dir (getpwuid (getuid))))
625 "/")) ;; fallback for cygwin etc.
626 (init-file (in-vicinity home ".guile")))
627 (if (file-exists? init-file)
628 (primitive-load init-file))))
629
630 \f
631 ;;; {Loading by paths}
632
633 ;;; Load a Scheme source file named NAME, searching for it in the
634 ;;; directories listed in %load-path, and applying each of the file
635 ;;; name extensions listed in %load-extensions.
636 (define (load-from-path name)
637 (start-stack 'load-stack
638 (primitive-load-path name)))
639
640
641 \f
642 ;;; {Transcendental Functions}
643 ;;;
644 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
645 ;;; Written by Jerry D. Hedden, (C) FSF.
646 ;;; See the file `COPYING' for terms applying to this program.
647 ;;;
648
649 (define (exp z)
650 (if (real? z) ($exp z)
651 (make-polar ($exp (real-part z)) (imag-part z))))
652
653 (define (log z)
654 (if (and (real? z) (>= z 0))
655 ($log z)
656 (make-rectangular ($log (magnitude z)) (angle z))))
657
658 (define (sqrt z)
659 (if (real? z)
660 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
661 ($sqrt z))
662 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
663
664 (define expt
665 (let ((integer-expt integer-expt))
666 (lambda (z1 z2)
667 (cond ((integer? z2)
668 (if (>= z2 0)
669 (integer-expt z1 z2)
670 (/ 1 (integer-expt z1 (- z2)))))
671 ((and (real? z2) (real? z1) (>= z1 0))
672 ($expt z1 z2))
673 (else
674 (exp (* z2 (log z1))))))))
675
676 (define (sinh z)
677 (if (real? z) ($sinh z)
678 (let ((x (real-part z)) (y (imag-part z)))
679 (make-rectangular (* ($sinh x) ($cos y))
680 (* ($cosh x) ($sin y))))))
681 (define (cosh z)
682 (if (real? z) ($cosh z)
683 (let ((x (real-part z)) (y (imag-part z)))
684 (make-rectangular (* ($cosh x) ($cos y))
685 (* ($sinh x) ($sin y))))))
686 (define (tanh z)
687 (if (real? z) ($tanh z)
688 (let* ((x (* 2 (real-part z)))
689 (y (* 2 (imag-part z)))
690 (w (+ ($cosh x) ($cos y))))
691 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
692
693 (define (asinh z)
694 (if (real? z) ($asinh z)
695 (log (+ z (sqrt (+ (* z z) 1))))))
696
697 (define (acosh z)
698 (if (and (real? z) (>= z 1))
699 ($acosh z)
700 (log (+ z (sqrt (- (* z z) 1))))))
701
702 (define (atanh z)
703 (if (and (real? z) (> z -1) (< z 1))
704 ($atanh z)
705 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
706
707 (define (sin z)
708 (if (real? z) ($sin z)
709 (let ((x (real-part z)) (y (imag-part z)))
710 (make-rectangular (* ($sin x) ($cosh y))
711 (* ($cos x) ($sinh y))))))
712 (define (cos z)
713 (if (real? z) ($cos z)
714 (let ((x (real-part z)) (y (imag-part z)))
715 (make-rectangular (* ($cos x) ($cosh y))
716 (- (* ($sin x) ($sinh y)))))))
717 (define (tan z)
718 (if (real? z) ($tan z)
719 (let* ((x (* 2 (real-part z)))
720 (y (* 2 (imag-part z)))
721 (w (+ ($cos x) ($cosh y))))
722 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
723
724 (define (asin z)
725 (if (and (real? z) (>= z -1) (<= z 1))
726 ($asin z)
727 (* -i (asinh (* +i z)))))
728
729 (define (acos z)
730 (if (and (real? z) (>= z -1) (<= z 1))
731 ($acos z)
732 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
733
734 (define (atan z . y)
735 (if (null? y)
736 (if (real? z) ($atan z)
737 (/ (log (/ (- +i z) (+ +i z))) +2i))
738 ($atan2 z (car y))))
739
740 (define (log10 arg)
741 (/ (log arg) (log 10)))
742
743 \f
744
745 ;;; {Reader Extensions}
746 ;;;
747
748 ;;; Reader code for various "#c" forms.
749 ;;;
750
751 (read-hash-extend #\' (lambda (c port)
752 (read port)))
753 (read-hash-extend #\. (lambda (c port)
754 (eval (read port) (interaction-environment))))
755
756 \f
757 ;;; {Command Line Options}
758 ;;;
759
760 (define (get-option argv kw-opts kw-args return)
761 (cond
762 ((null? argv)
763 (return #f #f argv))
764
765 ((or (not (eq? #\- (string-ref (car argv) 0)))
766 (eq? (string-length (car argv)) 1))
767 (return 'normal-arg (car argv) (cdr argv)))
768
769 ((eq? #\- (string-ref (car argv) 1))
770 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
771 (string-length (car argv))))
772 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
773 (kw-opt? (member kw kw-opts))
774 (kw-arg? (member kw kw-args))
775 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
776 (substring (car argv)
777 (+ kw-arg-pos 1)
778 (string-length (car argv))))
779 (and kw-arg?
780 (begin (set! argv (cdr argv)) (car argv))))))
781 (if (or kw-opt? kw-arg?)
782 (return kw arg (cdr argv))
783 (return 'usage-error kw (cdr argv)))))
784
785 (else
786 (let* ((char (substring (car argv) 1 2))
787 (kw (symbol->keyword char)))
788 (cond
789
790 ((member kw kw-opts)
791 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
792 (new-argv (if (= 0 (string-length rest-car))
793 (cdr argv)
794 (cons (string-append "-" rest-car) (cdr argv)))))
795 (return kw #f new-argv)))
796
797 ((member kw kw-args)
798 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
799 (arg (if (= 0 (string-length rest-car))
800 (cadr argv)
801 rest-car))
802 (new-argv (if (= 0 (string-length rest-car))
803 (cddr argv)
804 (cdr argv))))
805 (return kw arg new-argv)))
806
807 (else (return 'usage-error kw argv)))))))
808
809 (define (for-next-option proc argv kw-opts kw-args)
810 (let loop ((argv argv))
811 (get-option argv kw-opts kw-args
812 (lambda (opt opt-arg argv)
813 (and opt (proc opt opt-arg argv loop))))))
814
815 (define (display-usage-report kw-desc)
816 (for-each
817 (lambda (kw)
818 (or (eq? (car kw) #t)
819 (eq? (car kw) 'else)
820 (let* ((opt-desc kw)
821 (help (cadr opt-desc))
822 (opts (car opt-desc))
823 (opts-proper (if (string? (car opts)) (cdr opts) opts))
824 (arg-name (if (string? (car opts))
825 (string-append "<" (car opts) ">")
826 ""))
827 (left-part (string-append
828 (with-output-to-string
829 (lambda ()
830 (map (lambda (x) (display (keyword-symbol x)) (display " "))
831 opts-proper)))
832 arg-name))
833 (middle-part (if (and (< (string-length left-part) 30)
834 (< (string-length help) 40))
835 (make-string (- 30 (string-length left-part)) #\ )
836 "\n\t")))
837 (display left-part)
838 (display middle-part)
839 (display help)
840 (newline))))
841 kw-desc))
842
843
844
845 (define (transform-usage-lambda cases)
846 (let* ((raw-usage (delq! 'else (map car cases)))
847 (usage-sans-specials (map (lambda (x)
848 (or (and (not (list? x)) x)
849 (and (symbol? (car x)) #t)
850 (and (boolean? (car x)) #t)
851 x))
852 raw-usage))
853 (usage-desc (delq! #t usage-sans-specials))
854 (kw-desc (map car usage-desc))
855 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
856 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
857 (transmogrified-cases (map (lambda (case)
858 (cons (let ((opts (car case)))
859 (if (or (boolean? opts) (eq? 'else opts))
860 opts
861 (cond
862 ((symbol? (car opts)) opts)
863 ((boolean? (car opts)) opts)
864 ((string? (caar opts)) (cdar opts))
865 (else (car opts)))))
866 (cdr case)))
867 cases)))
868 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
869 (lambda (%argv)
870 (let %next-arg ((%argv %argv))
871 (get-option %argv
872 ',kw-opts
873 ',kw-args
874 (lambda (%opt %arg %new-argv)
875 (case %opt
876 ,@ transmogrified-cases))))))))
877
878
879 \f
880
881 ;;; {Low Level Modules}
882 ;;;
883 ;;; These are the low level data structures for modules.
884 ;;;
885 ;;; !!! warning: The interface to lazy binder procedures is going
886 ;;; to be changed in an incompatible way to permit all the basic
887 ;;; module ops to be virtualized.
888 ;;;
889 ;;; (make-module size use-list lazy-binding-proc) => module
890 ;;; module-{obarray,uses,binder}[|-set!]
891 ;;; (module? obj) => [#t|#f]
892 ;;; (module-locally-bound? module symbol) => [#t|#f]
893 ;;; (module-bound? module symbol) => [#t|#f]
894 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
895 ;;; (module-symbol-interned? module symbol) => [#t|#f]
896 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
897 ;;; (module-variable module symbol) => [#<variable ...> | #f]
898 ;;; (module-symbol-binding module symbol opt-value)
899 ;;; => [ <obj> | opt-value | an error occurs ]
900 ;;; (module-make-local-var! module symbol) => #<variable...>
901 ;;; (module-add! module symbol var) => unspecified
902 ;;; (module-remove! module symbol) => unspecified
903 ;;; (module-for-each proc module) => unspecified
904 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
905 ;;; (set-current-module module) => unspecified
906 ;;; (current-module) => #<module...>
907 ;;;
908 ;;;
909
910 \f
911 ;;; {Printing Modules}
912 ;; This is how modules are printed. You can re-define it.
913 ;; (Redefining is actually more complicated than simply redefining
914 ;; %print-module because that would only change the binding and not
915 ;; the value stored in the vtable that determines how record are
916 ;; printed. Sigh.)
917
918 (define (%print-module mod port) ; unused args: depth length style table)
919 (display "#<" port)
920 (display (or (module-kind mod) "module") port)
921 (let ((name (module-name mod)))
922 (if name
923 (begin
924 (display " " port)
925 (display name port))))
926 (display " " port)
927 (display (number->string (object-address mod) 16) port)
928 (display ">" port))
929
930 ;; module-type
931 ;;
932 ;; A module is characterized by an obarray in which local symbols
933 ;; are interned, a list of modules, "uses", from which non-local
934 ;; bindings can be inherited, and an optional lazy-binder which
935 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
936 ;; bindings that would otherwise not be found locally in the module.
937 ;;
938 ;; NOTE: If you change here, you also need to change libguile/modules.h.
939 ;;
940 (define module-type
941 (make-record-type 'module
942 '(obarray uses binder eval-closure transformer name kind
943 observers weak-observers observer-id)
944 %print-module))
945
946 ;; make-module &opt size uses binder
947 ;;
948 ;; Create a new module, perhaps with a particular size of obarray,
949 ;; initial uses list, or binding procedure.
950 ;;
951 (define make-module
952 (lambda args
953
954 (define (parse-arg index default)
955 (if (> (length args) index)
956 (list-ref args index)
957 default))
958
959 (if (> (length args) 3)
960 (error "Too many args to make-module." args))
961
962 (let ((size (parse-arg 0 1021))
963 (uses (parse-arg 1 '()))
964 (binder (parse-arg 2 #f)))
965
966 (if (not (integer? size))
967 (error "Illegal size to make-module." size))
968 (if (not (and (list? uses)
969 (and-map module? uses)))
970 (error "Incorrect use list." uses))
971 (if (and binder (not (procedure? binder)))
972 (error
973 "Lazy-binder expected to be a procedure or #f." binder))
974
975 (let ((module (module-constructor (make-vector size '())
976 uses binder #f #f #f #f
977 '()
978 (make-weak-value-hash-table 31)
979 0)))
980
981 ;; We can't pass this as an argument to module-constructor,
982 ;; because we need it to close over a pointer to the module
983 ;; itself.
984 (set-module-eval-closure! module (standard-eval-closure module))
985
986 module))))
987
988 (define module-constructor (record-constructor module-type))
989 (define module-obarray (record-accessor module-type 'obarray))
990 (define set-module-obarray! (record-modifier module-type 'obarray))
991 (define module-uses (record-accessor module-type 'uses))
992 (define set-module-uses! (record-modifier module-type 'uses))
993 (define module-binder (record-accessor module-type 'binder))
994 (define set-module-binder! (record-modifier module-type 'binder))
995
996 ;; NOTE: This binding is used in libguile/modules.c.
997 (define module-eval-closure (record-accessor module-type 'eval-closure))
998
999 (define module-transformer (record-accessor module-type 'transformer))
1000 (define set-module-transformer! (record-modifier module-type 'transformer))
1001 (define module-name (record-accessor module-type 'name))
1002 (define set-module-name! (record-modifier module-type 'name))
1003 (define module-kind (record-accessor module-type 'kind))
1004 (define set-module-kind! (record-modifier module-type 'kind))
1005 (define module-observers (record-accessor module-type 'observers))
1006 (define set-module-observers! (record-modifier module-type 'observers))
1007 (define module-weak-observers (record-accessor module-type 'weak-observers))
1008 (define module-observer-id (record-accessor module-type 'observer-id))
1009 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1010 (define module? (record-predicate module-type))
1011
1012 (define set-module-eval-closure!
1013 (let ((setter (record-modifier module-type 'eval-closure)))
1014 (lambda (module closure)
1015 (setter module closure)
1016 ;; Make it possible to lookup the module from the environment.
1017 ;; This implementation is correct since an eval closure can belong
1018 ;; to maximally one module.
1019 (set-procedure-property! closure 'module module))))
1020
1021 (begin-deprecated
1022 (define (eval-in-module exp mod)
1023 (issue-deprecation-warning
1024 "`eval-in-module' is deprecated. Use `eval' instead.")
1025 (eval exp mod)))
1026
1027 \f
1028 ;;; {Observer protocol}
1029 ;;;
1030
1031 (define (module-observe module proc)
1032 (set-module-observers! module (cons proc (module-observers module)))
1033 (cons module proc))
1034
1035 (define (module-observe-weak module proc)
1036 (let ((id (module-observer-id module)))
1037 (hash-set! (module-weak-observers module) id proc)
1038 (set-module-observer-id! module (+ 1 id))
1039 (cons module id)))
1040
1041 (define (module-unobserve token)
1042 (let ((module (car token))
1043 (id (cdr token)))
1044 (if (integer? id)
1045 (hash-remove! (module-weak-observers module) id)
1046 (set-module-observers! module (delq1! id (module-observers module)))))
1047 *unspecified*)
1048
1049 (define (module-modified m)
1050 (for-each (lambda (proc) (proc m)) (module-observers m))
1051 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1052
1053 \f
1054 ;;; {Module Searching in General}
1055 ;;;
1056 ;;; We sometimes want to look for properties of a symbol
1057 ;;; just within the obarray of one module. If the property
1058 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1059 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1060 ;;;
1061 ;;;
1062 ;;; Other times, we want to test for a symbol property in the obarray
1063 ;;; of M and, if it is not found there, try each of the modules in the
1064 ;;; uses list of M. This is the normal way of testing for some
1065 ;;; property, so we state these properties without qualification as
1066 ;;; in: ``The symbol 'fnord is interned in module M because it is
1067 ;;; interned locally in module M2 which is a member of the uses list
1068 ;;; of M.''
1069 ;;;
1070
1071 ;; module-search fn m
1072 ;;
1073 ;; return the first non-#f result of FN applied to M and then to
1074 ;; the modules in the uses of m, and so on recursively. If all applications
1075 ;; return #f, then so does this function.
1076 ;;
1077 (define (module-search fn m v)
1078 (define (loop pos)
1079 (and (pair? pos)
1080 (or (module-search fn (car pos) v)
1081 (loop (cdr pos)))))
1082 (or (fn m v)
1083 (loop (module-uses m))))
1084
1085
1086 ;;; {Is a symbol bound in a module?}
1087 ;;;
1088 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1089 ;;; of S in M has been set to some well-defined value.
1090 ;;;
1091
1092 ;; module-locally-bound? module symbol
1093 ;;
1094 ;; Is a symbol bound (interned and defined) locally in a given module?
1095 ;;
1096 (define (module-locally-bound? m v)
1097 (let ((var (module-local-variable m v)))
1098 (and var
1099 (variable-bound? var))))
1100
1101 ;; module-bound? module symbol
1102 ;;
1103 ;; Is a symbol bound (interned and defined) anywhere in a given module
1104 ;; or its uses?
1105 ;;
1106 (define (module-bound? m v)
1107 (module-search module-locally-bound? m v))
1108
1109 ;;; {Is a symbol interned in a module?}
1110 ;;;
1111 ;;; Symbol S in Module M is interned if S occurs in
1112 ;;; of S in M has been set to some well-defined value.
1113 ;;;
1114 ;;; It is possible to intern a symbol in a module without providing
1115 ;;; an initial binding for the corresponding variable. This is done
1116 ;;; with:
1117 ;;; (module-add! module symbol (make-undefined-variable))
1118 ;;;
1119 ;;; In that case, the symbol is interned in the module, but not
1120 ;;; bound there. The unbound symbol shadows any binding for that
1121 ;;; symbol that might otherwise be inherited from a member of the uses list.
1122 ;;;
1123
1124 (define (module-obarray-get-handle ob key)
1125 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1126
1127 (define (module-obarray-ref ob key)
1128 ((if (symbol? key) hashq-ref hash-ref) ob key))
1129
1130 (define (module-obarray-set! ob key val)
1131 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1132
1133 (define (module-obarray-remove! ob key)
1134 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1135
1136 ;; module-symbol-locally-interned? module symbol
1137 ;;
1138 ;; is a symbol interned (not neccessarily defined) locally in a given module
1139 ;; or its uses? Interned symbols shadow inherited bindings even if
1140 ;; they are not themselves bound to a defined value.
1141 ;;
1142 (define (module-symbol-locally-interned? m v)
1143 (not (not (module-obarray-get-handle (module-obarray m) v))))
1144
1145 ;; module-symbol-interned? module symbol
1146 ;;
1147 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1148 ;; or its uses? Interned symbols shadow inherited bindings even if
1149 ;; they are not themselves bound to a defined value.
1150 ;;
1151 (define (module-symbol-interned? m v)
1152 (module-search module-symbol-locally-interned? m v))
1153
1154
1155 ;;; {Mapping modules x symbols --> variables}
1156 ;;;
1157
1158 ;; module-local-variable module symbol
1159 ;; return the local variable associated with a MODULE and SYMBOL.
1160 ;;
1161 ;;; This function is very important. It is the only function that can
1162 ;;; return a variable from a module other than the mutators that store
1163 ;;; new variables in modules. Therefore, this function is the location
1164 ;;; of the "lazy binder" hack.
1165 ;;;
1166 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1167 ;;; to a variable, return that variable object.
1168 ;;;
1169 ;;; If the symbols is not found at first, but the module has a lazy binder,
1170 ;;; then try the binder.
1171 ;;;
1172 ;;; If the symbol is not found at all, return #f.
1173 ;;;
1174 (define (module-local-variable m v)
1175 ; (caddr
1176 ; (list m v
1177 (let ((b (module-obarray-ref (module-obarray m) v)))
1178 (or (and (variable? b) b)
1179 (and (module-binder m)
1180 ((module-binder m) m v #f)))))
1181 ;))
1182
1183 ;; module-variable module symbol
1184 ;;
1185 ;; like module-local-variable, except search the uses in the
1186 ;; case V is not found in M.
1187 ;;
1188 ;; NOTE: This function is superseded with C code (see modules.c)
1189 ;;; when using the standard eval closure.
1190 ;;
1191 (define (module-variable m v)
1192 (module-search module-local-variable m v))
1193
1194
1195 ;;; {Mapping modules x symbols --> bindings}
1196 ;;;
1197 ;;; These are similar to the mapping to variables, except that the
1198 ;;; variable is dereferenced.
1199 ;;;
1200
1201 ;; module-symbol-binding module symbol opt-value
1202 ;;
1203 ;; return the binding of a variable specified by name within
1204 ;; a given module, signalling an error if the variable is unbound.
1205 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1206 ;; return OPT-VALUE.
1207 ;;
1208 (define (module-symbol-local-binding m v . opt-val)
1209 (let ((var (module-local-variable m v)))
1210 (if var
1211 (variable-ref var)
1212 (if (not (null? opt-val))
1213 (car opt-val)
1214 (error "Locally unbound variable." v)))))
1215
1216 ;; module-symbol-binding module symbol opt-value
1217 ;;
1218 ;; return the binding of a variable specified by name within
1219 ;; a given module, signalling an error if the variable is unbound.
1220 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1221 ;; return OPT-VALUE.
1222 ;;
1223 (define (module-symbol-binding m v . opt-val)
1224 (let ((var (module-variable m v)))
1225 (if var
1226 (variable-ref var)
1227 (if (not (null? opt-val))
1228 (car opt-val)
1229 (error "Unbound variable." v)))))
1230
1231
1232 \f
1233 ;;; {Adding Variables to Modules}
1234 ;;;
1235 ;;;
1236
1237
1238 ;; module-make-local-var! module symbol
1239 ;;
1240 ;; ensure a variable for V in the local namespace of M.
1241 ;; If no variable was already there, then create a new and uninitialzied
1242 ;; variable.
1243 ;;
1244 (define (module-make-local-var! m v)
1245 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1246 (and (variable? b)
1247 (begin
1248 (module-modified m)
1249 b)))
1250 (and (module-binder m)
1251 ((module-binder m) m v #t))
1252 (begin
1253 (let ((answer (make-undefined-variable)))
1254 (variable-set-name-hint! answer v)
1255 (module-obarray-set! (module-obarray m) v answer)
1256 (module-modified m)
1257 answer))))
1258
1259 ;; module-add! module symbol var
1260 ;;
1261 ;; ensure a particular variable for V in the local namespace of M.
1262 ;;
1263 (define (module-add! m v var)
1264 (if (not (variable? var))
1265 (error "Bad variable to module-add!" var))
1266 (module-obarray-set! (module-obarray m) v var)
1267 (module-modified m))
1268
1269 ;; module-remove!
1270 ;;
1271 ;; make sure that a symbol is undefined in the local namespace of M.
1272 ;;
1273 (define (module-remove! m v)
1274 (module-obarray-remove! (module-obarray m) v)
1275 (module-modified m))
1276
1277 (define (module-clear! m)
1278 (vector-fill! (module-obarray m) '())
1279 (module-modified m))
1280
1281 ;; MODULE-FOR-EACH -- exported
1282 ;;
1283 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1284 ;;
1285 (define (module-for-each proc module)
1286 (let ((obarray (module-obarray module)))
1287 (do ((index 0 (+ index 1))
1288 (end (vector-length obarray)))
1289 ((= index end))
1290 (for-each
1291 (lambda (bucket)
1292 (proc (car bucket) (cdr bucket)))
1293 (vector-ref obarray index)))))
1294
1295
1296 (define (module-map proc module)
1297 (let* ((obarray (module-obarray module))
1298 (end (vector-length obarray)))
1299
1300 (let loop ((i 0)
1301 (answer '()))
1302 (if (= i end)
1303 answer
1304 (loop (+ 1 i)
1305 (append!
1306 (map (lambda (bucket)
1307 (proc (car bucket) (cdr bucket)))
1308 (vector-ref obarray i))
1309 answer))))))
1310 \f
1311
1312 ;;; {Low Level Bootstrapping}
1313 ;;;
1314
1315 ;; make-root-module
1316
1317 ;; A root module uses the pre-modules-obarray as its obarray. This
1318 ;; special obarray accumulates all bindings that have been established
1319 ;; before the module system is fully booted.
1320 ;;
1321 ;; (The obarray continues to be used by code that has been closed over
1322 ;; before the module system has been booted.)
1323
1324 (define (make-root-module)
1325 (let ((m (make-module 0)))
1326 (set-module-obarray! m (%get-pre-modules-obarray))
1327 m))
1328
1329 ;; make-scm-module
1330
1331 ;; The root interface is a module that uses the same obarray as the
1332 ;; root module. It does not allow new definitions, tho.
1333
1334 (define (make-scm-module)
1335 (let ((m (make-module 0)))
1336 (set-module-obarray! m (%get-pre-modules-obarray))
1337 (set-module-eval-closure! m (standard-interface-eval-closure m))
1338 m))
1339
1340
1341 \f
1342 ;;; {Module-based Loading}
1343 ;;;
1344
1345 (define (save-module-excursion thunk)
1346 (let ((inner-module (current-module))
1347 (outer-module #f))
1348 (dynamic-wind (lambda ()
1349 (set! outer-module (current-module))
1350 (set-current-module inner-module)
1351 (set! inner-module #f))
1352 thunk
1353 (lambda ()
1354 (set! inner-module (current-module))
1355 (set-current-module outer-module)
1356 (set! outer-module #f)))))
1357
1358 (define basic-load load)
1359
1360 (define (load-module filename)
1361 (save-module-excursion
1362 (lambda ()
1363 (let ((oldname (and (current-load-port)
1364 (port-filename (current-load-port)))))
1365 (basic-load (if (and oldname
1366 (> (string-length filename) 0)
1367 (not (char=? (string-ref filename 0) #\/))
1368 (not (string=? (dirname oldname) ".")))
1369 (string-append (dirname oldname) "/" filename)
1370 filename))))))
1371
1372
1373 \f
1374 ;;; {MODULE-REF -- exported}
1375 ;;
1376 ;; Returns the value of a variable called NAME in MODULE or any of its
1377 ;; used modules. If there is no such variable, then if the optional third
1378 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1379 ;;
1380 (define (module-ref module name . rest)
1381 (let ((variable (module-variable module name)))
1382 (if (and variable (variable-bound? variable))
1383 (variable-ref variable)
1384 (if (null? rest)
1385 (error "No variable named" name 'in module)
1386 (car rest) ; default value
1387 ))))
1388
1389 ;; MODULE-SET! -- exported
1390 ;;
1391 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1392 ;; to VALUE; if there is no such variable, an error is signaled.
1393 ;;
1394 (define (module-set! module name value)
1395 (let ((variable (module-variable module name)))
1396 (if variable
1397 (variable-set! variable value)
1398 (error "No variable named" name 'in module))))
1399
1400 ;; MODULE-DEFINE! -- exported
1401 ;;
1402 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1403 ;; variable, it is added first.
1404 ;;
1405 (define (module-define! module name value)
1406 (let ((variable (module-local-variable module name)))
1407 (if variable
1408 (begin
1409 (variable-set! variable value)
1410 (module-modified module))
1411 (let ((variable (make-variable value)))
1412 (variable-set-name-hint! variable name)
1413 (module-add! module name variable)))))
1414
1415 ;; MODULE-DEFINED? -- exported
1416 ;;
1417 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1418 ;; uses)
1419 ;;
1420 (define (module-defined? module name)
1421 (let ((variable (module-variable module name)))
1422 (and variable (variable-bound? variable))))
1423
1424 ;; MODULE-USE! module interface
1425 ;;
1426 ;; Add INTERFACE to the list of interfaces used by MODULE.
1427 ;;
1428 (define (module-use! module interface)
1429 (set-module-uses! module
1430 (cons interface (delq! interface (module-uses module))))
1431 (module-modified module))
1432
1433 \f
1434 ;;; {Recursive Namespaces}
1435 ;;;
1436 ;;;
1437 ;;; A hierarchical namespace emerges if we consider some module to be
1438 ;;; root, and variables bound to modules as nested namespaces.
1439 ;;;
1440 ;;; The routines in this file manage variable names in hierarchical namespace.
1441 ;;; Each variable name is a list of elements, looked up in successively nested
1442 ;;; modules.
1443 ;;;
1444 ;;; (nested-ref some-root-module '(foo bar baz))
1445 ;;; => <value of a variable named baz in the module bound to bar in
1446 ;;; the module bound to foo in some-root-module>
1447 ;;;
1448 ;;;
1449 ;;; There are:
1450 ;;;
1451 ;;; ;; a-root is a module
1452 ;;; ;; name is a list of symbols
1453 ;;;
1454 ;;; nested-ref a-root name
1455 ;;; nested-set! a-root name val
1456 ;;; nested-define! a-root name val
1457 ;;; nested-remove! a-root name
1458 ;;;
1459 ;;;
1460 ;;; (current-module) is a natural choice for a-root so for convenience there are
1461 ;;; also:
1462 ;;;
1463 ;;; local-ref name == nested-ref (current-module) name
1464 ;;; local-set! name val == nested-set! (current-module) name val
1465 ;;; local-define! name val == nested-define! (current-module) name val
1466 ;;; local-remove! name == nested-remove! (current-module) name
1467 ;;;
1468
1469
1470 (define (nested-ref root names)
1471 (let loop ((cur root)
1472 (elts names))
1473 (cond
1474 ((null? elts) cur)
1475 ((not (module? cur)) #f)
1476 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1477
1478 (define (nested-set! root names val)
1479 (let loop ((cur root)
1480 (elts names))
1481 (if (null? (cdr elts))
1482 (module-set! cur (car elts) val)
1483 (loop (module-ref cur (car elts)) (cdr elts)))))
1484
1485 (define (nested-define! root names val)
1486 (let loop ((cur root)
1487 (elts names))
1488 (if (null? (cdr elts))
1489 (module-define! cur (car elts) val)
1490 (loop (module-ref cur (car elts)) (cdr elts)))))
1491
1492 (define (nested-remove! root names)
1493 (let loop ((cur root)
1494 (elts names))
1495 (if (null? (cdr elts))
1496 (module-remove! cur (car elts))
1497 (loop (module-ref cur (car elts)) (cdr elts)))))
1498
1499 (define (local-ref names) (nested-ref (current-module) names))
1500 (define (local-set! names val) (nested-set! (current-module) names val))
1501 (define (local-define names val) (nested-define! (current-module) names val))
1502 (define (local-remove names) (nested-remove! (current-module) names))
1503
1504
1505 \f
1506 ;;; {The (app) module}
1507 ;;;
1508 ;;; The root of conventionally named objects not directly in the top level.
1509 ;;;
1510 ;;; (app modules)
1511 ;;; (app modules guile)
1512 ;;;
1513 ;;; The directory of all modules and the standard root module.
1514 ;;;
1515
1516 (define (module-public-interface m)
1517 (module-ref m '%module-public-interface #f))
1518 (define (set-module-public-interface! m i)
1519 (module-define! m '%module-public-interface i))
1520 (define (set-system-module! m s)
1521 (set-procedure-property! (module-eval-closure m) 'system-module s))
1522 (define the-root-module (make-root-module))
1523 (define the-scm-module (make-scm-module))
1524 (set-module-public-interface! the-root-module the-scm-module)
1525 (set-module-name! the-root-module '(guile))
1526 (set-module-name! the-scm-module '(guile))
1527 (set-module-kind! the-scm-module 'interface)
1528 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1529
1530 ;; NOTE: This binding is used in libguile/modules.c.
1531 ;;
1532 (define (make-modules-in module name)
1533 (if (null? name)
1534 module
1535 (cond
1536 ((module-ref module (car name) #f)
1537 => (lambda (m) (make-modules-in m (cdr name))))
1538 (else (let ((m (make-module 31)))
1539 (set-module-kind! m 'directory)
1540 (set-module-name! m (append (or (module-name module)
1541 '())
1542 (list (car name))))
1543 (module-define! module (car name) m)
1544 (make-modules-in m (cdr name)))))))
1545
1546 (define (beautify-user-module! module)
1547 (let ((interface (module-public-interface module)))
1548 (if (or (not interface)
1549 (eq? interface module))
1550 (let ((interface (make-module 31)))
1551 (set-module-name! interface (module-name module))
1552 (set-module-kind! interface 'interface)
1553 (set-module-public-interface! module interface))))
1554 (if (and (not (memq the-scm-module (module-uses module)))
1555 (not (eq? module the-root-module)))
1556 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1557
1558 ;; NOTE: This binding is used in libguile/modules.c.
1559 ;;
1560 (define (resolve-module name . maybe-autoload)
1561 (let ((full-name (append '(app modules) name)))
1562 (let ((already (local-ref full-name)))
1563 (if already
1564 ;; The module already exists...
1565 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1566 (not (module-public-interface already)))
1567 ;; ...but we are told to load and it doesn't contain source, so
1568 (begin
1569 (try-load-module name)
1570 already)
1571 ;; simply return it.
1572 already)
1573 (begin
1574 ;; Try to autoload it if we are told so
1575 (if (or (null? maybe-autoload) (car maybe-autoload))
1576 (try-load-module name))
1577 ;; Get/create it.
1578 (make-modules-in (current-module) full-name))))))
1579
1580 ;; Cheat.
1581 (define try-module-autoload #f)
1582
1583 ;; This boots the module system. All bindings needed by modules.c
1584 ;; must have been defined by now.
1585 ;;
1586 (set-current-module the-root-module)
1587
1588 (define app (make-module 31))
1589 (local-define '(app modules) (make-module 31))
1590 (local-define '(app modules guile) the-root-module)
1591
1592 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1593
1594 (define (try-load-module name)
1595 (or (try-module-linked name)
1596 (try-module-autoload name)
1597 (try-module-dynamic-link name)))
1598
1599 (define (purify-module! module)
1600 "Removes bindings in MODULE which are inherited from the (guile) module."
1601 (let ((use-list (module-uses module)))
1602 (if (and (pair? use-list)
1603 (eq? (car (last-pair use-list)) the-scm-module))
1604 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1605
1606 (define (resolve-interface name)
1607 (let ((module (resolve-module name)))
1608 (and module (module-public-interface module))))
1609
1610
1611 ;; Return a module interface made from SPEC.
1612 ;; SPEC can be a list of symbols, in which case it names a module
1613 ;; whose public interface is found and returned.
1614 ;;
1615 ;; SPEC can also be of the form:
1616 ;; (MODULE-NAME [:select SELECTION] [:rename RENAMER])
1617 ;; in which case a partial interface is newly created and returned.
1618 ;; MODULE-NAME is a list of symbols, as above; SELECTION is a list of
1619 ;; selection-specs to be imported; and RENAMER is a procedure that takes a
1620 ;; symbol and returns its new name. A selection-spec is either a symbol or a
1621 ;; pair of symbols (ORIG . SEEN), where ORIG is the name in the used module
1622 ;; and SEEN is the name in the using module. Note that SEEN is also passed
1623 ;; through RENAMER.
1624 ;;
1625 ;; The `:select' and `:rename' clauses are optional. If both are omitted, the
1626 ;; returned interface has no bindings. If the `:select' clause is omitted,
1627 ;; RENAMER operates on the used module's public interface.
1628 ;;
1629 ;; Signal "no code for module" error if module name is not resolvable or its
1630 ;; public interface is not available. Signal "no binding" error if selected
1631 ;; binding does not exist in the used module.
1632 ;;
1633 (define (resolve-interface spec)
1634 (let* ((simple? (not (pair? (car spec))))
1635 (name (if simple? spec (car spec)))
1636 (module (resolve-module name))
1637 (public-i (and module (module-public-interface module))))
1638 (and (or (not module) (not public-i))
1639 (error "no code for module" name))
1640 (if simple?
1641 public-i
1642 (let ((selection (cond ((memq ':select spec) => cadr)
1643 (else (module-map (lambda (sym var) sym)
1644 public-i))))
1645 (rename (cond ((memq ':rename spec)
1646 => (lambda (x)
1647 ;; fixme:ttn -- move to macroexpansion time
1648 (eval (cadr x) (current-module))))
1649 (else identity)))
1650 (custom-i (make-module 31)))
1651 (set-module-kind! custom-i 'interface)
1652 (for-each (lambda (sel-spec)
1653 (let* ((direct? (symbol? sel-spec))
1654 (orig (if direct?
1655 sel-spec
1656 (car sel-spec)))
1657 (seen (if direct?
1658 sel-spec
1659 (cdr sel-spec))))
1660 (module-add! custom-i (rename seen)
1661 (or (module-local-variable module orig)
1662 (error
1663 ;; fixme: format manually for now
1664 (simple-format
1665 #f "no binding `~A' in module ~A"
1666 orig name))))))
1667 selection)
1668 custom-i))))
1669
1670 (define (symbol-prefix-proc prefix)
1671 (lambda (symbol)
1672 (symbol-append prefix symbol)))
1673
1674 (define (process-define-module args)
1675 (let* ((module-id (car args))
1676 (module (resolve-module module-id #f))
1677 (kws (cdr args))
1678 (unrecognized (lambda ()
1679 (error "unrecognized define-module argument" kws))))
1680 (beautify-user-module! module)
1681 (let loop ((kws kws)
1682 (reversed-interfaces '())
1683 (exports '()))
1684 (if (null? kws)
1685 (begin
1686 (for-each (lambda (interface)
1687 (module-use! module interface))
1688 reversed-interfaces)
1689 (module-export! module exports))
1690 (let ((keyword (if (keyword? (car kws))
1691 (keyword->symbol (car kws))
1692 (and (symbol? (car kws))
1693 (let ((s (symbol->string (car kws))))
1694 (and (eq? (string-ref s 0) #\:)
1695 (string->symbol (substring s 1))))))))
1696 (case keyword
1697 ((use-module use-syntax)
1698 (or (pair? (cdr kws))
1699 (unrecognized))
1700 (let* ((spec (cadr kws))
1701 (interface (resolve-interface spec)))
1702 (and (eq? keyword 'use-syntax)
1703 (or (symbol? (car spec))
1704 (error "invalid module name for use-syntax"
1705 spec))
1706 (set-module-transformer!
1707 module
1708 (module-ref interface (car (last-pair module-name))
1709 #f)))
1710 (loop (cddr kws)
1711 (cons interface reversed-interfaces)
1712 exports)))
1713 ((autoload)
1714 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1715 (unrecognized))
1716 (loop (cdddr kws)
1717 (cons (make-autoload-interface module
1718 (cadr kws)
1719 (caddr kws))
1720 reversed-interfaces)
1721 exports))
1722 ((no-backtrace)
1723 (set-system-module! module #t)
1724 (loop (cdr kws) reversed-interfaces exports))
1725 ((pure)
1726 (purify-module! module)
1727 (loop (cdr kws) reversed-interfaces exports))
1728 ((export)
1729 (or (pair? (cdr kws))
1730 (unrecognized))
1731 (loop (cddr kws)
1732 reversed-interfaces
1733 (append (cadr kws) exports)))
1734 (else
1735 (unrecognized))))))
1736 (set-current-module module)
1737 module))
1738
1739 ;;; {Autoload}
1740
1741 (define (make-autoload-interface module name bindings)
1742 (let ((b (lambda (a sym definep)
1743 (and (memq sym bindings)
1744 (let ((i (module-public-interface (resolve-module name))))
1745 (if (not i)
1746 (error "missing interface for module" name))
1747 ;; Replace autoload-interface with interface
1748 (set-car! (memq a (module-uses module)) i)
1749 (module-local-variable i sym))))))
1750 (module-constructor #() '() b #f #f name 'autoload
1751 '() (make-weak-value-hash-table 31) 0)))
1752
1753 ;;; {Compiled module}
1754
1755 (define load-compiled #f)
1756
1757 \f
1758 ;;; {Autoloading modules}
1759
1760 (define autoloads-in-progress '())
1761
1762 (define (try-module-autoload module-name)
1763 (let* ((reverse-name (reverse module-name))
1764 (name (symbol->string (car reverse-name)))
1765 (dir-hint-module-name (reverse (cdr reverse-name)))
1766 (dir-hint (apply string-append
1767 (map (lambda (elt)
1768 (string-append (symbol->string elt) "/"))
1769 dir-hint-module-name))))
1770 (resolve-module dir-hint-module-name #f)
1771 (and (not (autoload-done-or-in-progress? dir-hint name))
1772 (let ((didit #f))
1773 (define (load-file proc file)
1774 (save-module-excursion (lambda () (proc file)))
1775 (set! didit #t))
1776 (dynamic-wind
1777 (lambda () (autoload-in-progress! dir-hint name))
1778 (lambda ()
1779 (let ((file (in-vicinity dir-hint name)))
1780 (cond ((and load-compiled
1781 (%search-load-path (string-append file ".go")))
1782 => (lambda (full)
1783 (load-file load-compiled full)))
1784 ((%search-load-path file)
1785 => (lambda (full)
1786 (load-file primitive-load full))))))
1787 (lambda () (set-autoloaded! dir-hint name didit)))
1788 didit))))
1789
1790 \f
1791 ;;; Dynamic linking of modules
1792
1793 ;; This method of dynamically linking Guile Extensions is deprecated.
1794 ;; Use `dynamic-link' and `dynamic-call' explicitely from Scheme code
1795 ;; instead.
1796
1797 ;; XXX - We can not offer the removal of this code thru the
1798 ;; deprecation mechanism since we have no complete replacement yet.
1799
1800 (define (split-c-module-name str)
1801 (let loop ((rev '())
1802 (start 0)
1803 (pos 0)
1804 (end (string-length str)))
1805 (cond
1806 ((= pos end)
1807 (reverse (cons (string->symbol (substring str start pos)) rev)))
1808 ((eq? (string-ref str pos) #\space)
1809 (loop (cons (string->symbol (substring str start pos)) rev)
1810 (+ pos 1)
1811 (+ pos 1)
1812 end))
1813 (else
1814 (loop rev start (+ pos 1) end)))))
1815
1816 (define (convert-c-registered-modules dynobj)
1817 (let ((res (map (lambda (c)
1818 (list (split-c-module-name (car c)) (cdr c) dynobj))
1819 (c-registered-modules))))
1820 (c-clear-registered-modules)
1821 res))
1822
1823 (define registered-modules '())
1824
1825 (define (register-modules dynobj)
1826 (set! registered-modules
1827 (append! (convert-c-registered-modules dynobj)
1828 registered-modules)))
1829
1830 (define (warn-autoload-deprecation modname)
1831 ;; Do nothing here until we can deprecate the code for real.
1832 (if #f
1833 (issue-deprecation-warning
1834 "Autoloading of compiled code modules is deprecated."
1835 "Write a Scheme file instead that uses `dynamic-link' directly.")))
1836
1837 (define (init-dynamic-module modname)
1838 ;; Register any linked modules which have been registered on the C level
1839 (register-modules #f)
1840 (or-map (lambda (modinfo)
1841 (if (equal? (car modinfo) modname)
1842 (begin
1843 (warn-autoload-deprecation modname)
1844 (set! registered-modules (delq! modinfo registered-modules))
1845 (let ((mod (resolve-module modname #f)))
1846 (save-module-excursion
1847 (lambda ()
1848 (set-current-module mod)
1849 (set-module-public-interface! mod mod)
1850 (dynamic-call (cadr modinfo) (caddr modinfo))
1851 ))
1852 #t))
1853 #f))
1854 registered-modules))
1855
1856 (define (dynamic-maybe-call name dynobj)
1857 (catch #t ; could use false-if-exception here
1858 (lambda ()
1859 (dynamic-call name dynobj))
1860 (lambda args
1861 #f)))
1862
1863 (define (dynamic-maybe-link filename)
1864 (catch #t ; could use false-if-exception here
1865 (lambda ()
1866 (dynamic-link filename))
1867 (lambda args
1868 #f)))
1869
1870 (define (find-and-link-dynamic-module module-name)
1871 (define (make-init-name mod-name)
1872 (string-append "scm_init"
1873 (list->string (map (lambda (c)
1874 (if (or (char-alphabetic? c)
1875 (char-numeric? c))
1876 c
1877 #\_))
1878 (string->list mod-name)))
1879 "_module"))
1880
1881 ;; Put the subdirectory for this module in the car of SUBDIR-AND-LIBNAME,
1882 ;; and the `libname' (the name of the module prepended by `lib') in the cdr
1883 ;; field. For example, if MODULE-NAME is the list (inet tcp-ip udp), then
1884 ;; SUBDIR-AND-LIBNAME will be the pair ("inet/tcp-ip" . "libudp").
1885 (let ((subdir-and-libname
1886 (let loop ((dirs "")
1887 (syms module-name))
1888 (if (null? (cdr syms))
1889 (cons dirs (string-append "lib" (symbol->string (car syms))))
1890 (loop (string-append dirs (symbol->string (car syms)) "/")
1891 (cdr syms)))))
1892 (init (make-init-name (apply string-append
1893 (map (lambda (s)
1894 (string-append "_"
1895 (symbol->string s)))
1896 module-name)))))
1897 (let ((subdir (car subdir-and-libname))
1898 (libname (cdr subdir-and-libname)))
1899
1900 ;; Now look in each dir in %LOAD-PATH for `subdir/libfoo.la'. If that
1901 ;; file exists, fetch the dlname from that file and attempt to link
1902 ;; against it. If `subdir/libfoo.la' does not exist, or does not seem
1903 ;; to name any shared library, look for `subdir/libfoo.so' instead and
1904 ;; link against that.
1905 (let check-dirs ((dir-list %load-path))
1906 (if (null? dir-list)
1907 #f
1908 (let* ((dir (in-vicinity (car dir-list) subdir))
1909 (sharlib-full
1910 (or (try-using-libtool-name dir libname)
1911 (try-using-sharlib-name dir libname))))
1912 (if (and sharlib-full (file-exists? sharlib-full))
1913 (link-dynamic-module sharlib-full init)
1914 (check-dirs (cdr dir-list)))))))))
1915
1916 (define (try-using-libtool-name libdir libname)
1917 (let ((libtool-filename (in-vicinity libdir
1918 (string-append libname ".la"))))
1919 (and (file-exists? libtool-filename)
1920 libtool-filename)))
1921
1922 (define (try-using-sharlib-name libdir libname)
1923 (in-vicinity libdir (string-append libname ".so")))
1924
1925 (define (link-dynamic-module filename initname)
1926 ;; Register any linked modules which has been registered on the C level
1927 (register-modules #f)
1928 (let ((dynobj (dynamic-link filename)))
1929 (dynamic-call initname dynobj)
1930 (register-modules dynobj)))
1931
1932 (define (try-module-linked module-name)
1933 (init-dynamic-module module-name))
1934
1935 (define (try-module-dynamic-link module-name)
1936 (and (find-and-link-dynamic-module module-name)
1937 (init-dynamic-module module-name)))
1938
1939
1940
1941 (define autoloads-done '((guile . guile)))
1942
1943 (define (autoload-done-or-in-progress? p m)
1944 (let ((n (cons p m)))
1945 (->bool (or (member n autoloads-done)
1946 (member n autoloads-in-progress)))))
1947
1948 (define (autoload-done! p m)
1949 (let ((n (cons p m)))
1950 (set! autoloads-in-progress
1951 (delete! n autoloads-in-progress))
1952 (or (member n autoloads-done)
1953 (set! autoloads-done (cons n autoloads-done)))))
1954
1955 (define (autoload-in-progress! p m)
1956 (let ((n (cons p m)))
1957 (set! autoloads-done
1958 (delete! n autoloads-done))
1959 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1960
1961 (define (set-autoloaded! p m done?)
1962 (if done?
1963 (autoload-done! p m)
1964 (let ((n (cons p m)))
1965 (set! autoloads-done (delete! n autoloads-done))
1966 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1967
1968
1969
1970 \f
1971 ;; {EVAL-CASE}
1972 ;;
1973 ;; (eval-case ((situation*) forms)* (else forms)?)
1974 ;;
1975 ;; Evaluate certain code based on the situation that eval-case is used
1976 ;; in. The only defined situation right now is `load-toplevel' which
1977 ;; triggers for code evaluated at the top-level, for example from the
1978 ;; REPL or when loading a file.
1979
1980 (define eval-case
1981 (procedure->memoizing-macro
1982 (lambda (exp env)
1983 (define (toplevel-env? env)
1984 (or (not (pair? env)) (not (pair? (car env)))))
1985 (define (syntax)
1986 (error "syntax error in eval-case"))
1987 (let loop ((clauses (cdr exp)))
1988 (cond
1989 ((null? clauses)
1990 #f)
1991 ((not (list? (car clauses)))
1992 (syntax))
1993 ((eq? 'else (caar clauses))
1994 (or (null? (cdr clauses))
1995 (syntax))
1996 (cons 'begin (cdar clauses)))
1997 ((not (list? (caar clauses)))
1998 (syntax))
1999 ((and (toplevel-env? env)
2000 (memq 'load-toplevel (caar clauses)))
2001 (cons 'begin (cdar clauses)))
2002 (else
2003 (loop (cdr clauses))))))))
2004
2005 \f
2006 ;;; {Macros}
2007 ;;;
2008
2009 (define (primitive-macro? m)
2010 (and (macro? m)
2011 (not (macro-transformer m))))
2012
2013 ;;; {Defmacros}
2014 ;;;
2015 (define macro-table (make-weak-key-hash-table 523))
2016 (define xformer-table (make-weak-key-hash-table 523))
2017
2018 (define (defmacro? m) (hashq-ref macro-table m))
2019 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
2020 (define (defmacro-transformer m) (hashq-ref xformer-table m))
2021 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2022
2023 (define defmacro:transformer
2024 (lambda (f)
2025 (let* ((xform (lambda (exp env)
2026 (copy-tree (apply f (cdr exp)))))
2027 (a (procedure->memoizing-macro xform)))
2028 (assert-defmacro?! a)
2029 (set-defmacro-transformer! a f)
2030 a)))
2031
2032
2033 (define defmacro
2034 (let ((defmacro-transformer
2035 (lambda (name parms . body)
2036 (let ((transformer `(lambda ,parms ,@body)))
2037 `(eval-case
2038 ((load-toplevel)
2039 (define ,name (defmacro:transformer ,transformer)))
2040 (else
2041 (error "defmacro can only be used at the top level")))))))
2042 (defmacro:transformer defmacro-transformer)))
2043
2044 (define defmacro:syntax-transformer
2045 (lambda (f)
2046 (procedure->syntax
2047 (lambda (exp env)
2048 (copy-tree (apply f (cdr exp)))))))
2049
2050
2051 ;; XXX - should the definition of the car really be looked up in the
2052 ;; current module?
2053
2054 (define (macroexpand-1 e)
2055 (cond
2056 ((pair? e) (let* ((a (car e))
2057 (val (and (symbol? a) (local-ref (list a)))))
2058 (if (defmacro? val)
2059 (apply (defmacro-transformer val) (cdr e))
2060 e)))
2061 (#t e)))
2062
2063 (define (macroexpand e)
2064 (cond
2065 ((pair? e) (let* ((a (car e))
2066 (val (and (symbol? a) (local-ref (list a)))))
2067 (if (defmacro? val)
2068 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2069 e)))
2070 (#t e)))
2071
2072 (provide 'defmacro)
2073
2074 \f
2075
2076 ;;; {Run-time options}
2077
2078 (define define-option-interface
2079 (let* ((option-name car)
2080 (option-value cadr)
2081 (option-documentation caddr)
2082
2083 (print-option (lambda (option)
2084 (display (option-name option))
2085 (if (< (string-length
2086 (symbol->string (option-name option)))
2087 8)
2088 (display #\tab))
2089 (display #\tab)
2090 (display (option-value option))
2091 (display #\tab)
2092 (display (option-documentation option))
2093 (newline)))
2094
2095 ;; Below follow the macros defining the run-time option interfaces.
2096
2097 (make-options (lambda (interface)
2098 `(lambda args
2099 (cond ((null? args) (,interface))
2100 ((list? (car args))
2101 (,interface (car args)) (,interface))
2102 (else (for-each ,print-option
2103 (,interface #t)))))))
2104
2105 (make-enable (lambda (interface)
2106 `(lambda flags
2107 (,interface (append flags (,interface)))
2108 (,interface))))
2109
2110 (make-disable (lambda (interface)
2111 `(lambda flags
2112 (let ((options (,interface)))
2113 (for-each (lambda (flag)
2114 (set! options (delq! flag options)))
2115 flags)
2116 (,interface options)
2117 (,interface)))))
2118
2119 (make-set! (lambda (interface)
2120 `((name exp)
2121 (,'quasiquote
2122 (begin (,interface (append (,interface)
2123 (list '(,'unquote name)
2124 (,'unquote exp))))
2125 (,interface)))))))
2126 (procedure->macro
2127 (lambda (exp env)
2128 (cons 'begin
2129 (let* ((option-group (cadr exp))
2130 (interface (car option-group)))
2131 (append (map (lambda (name constructor)
2132 `(define ,name
2133 ,(constructor interface)))
2134 (cadr option-group)
2135 (list make-options
2136 make-enable
2137 make-disable))
2138 (map (lambda (name constructor)
2139 `(defmacro ,name
2140 ,@(constructor interface)))
2141 (caddr option-group)
2142 (list make-set!)))))))))
2143
2144 (define-option-interface
2145 (eval-options-interface
2146 (eval-options eval-enable eval-disable)
2147 (eval-set!)))
2148
2149 (define-option-interface
2150 (debug-options-interface
2151 (debug-options debug-enable debug-disable)
2152 (debug-set!)))
2153
2154 (define-option-interface
2155 (evaluator-traps-interface
2156 (traps trap-enable trap-disable)
2157 (trap-set!)))
2158
2159 (define-option-interface
2160 (read-options-interface
2161 (read-options read-enable read-disable)
2162 (read-set!)))
2163
2164 (define-option-interface
2165 (print-options-interface
2166 (print-options print-enable print-disable)
2167 (print-set!)))
2168
2169 \f
2170
2171 ;;; {Running Repls}
2172 ;;;
2173
2174 (define (repl read evaler print)
2175 (let loop ((source (read (current-input-port))))
2176 (print (evaler source))
2177 (loop (read (current-input-port)))))
2178
2179 ;; A provisional repl that acts like the SCM repl:
2180 ;;
2181 (define scm-repl-silent #f)
2182 (define (assert-repl-silence v) (set! scm-repl-silent v))
2183
2184 (define *unspecified* (if #f #f))
2185 (define (unspecified? v) (eq? v *unspecified*))
2186
2187 (define scm-repl-print-unspecified #f)
2188 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2189
2190 (define scm-repl-verbose #f)
2191 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2192
2193 (define scm-repl-prompt "guile> ")
2194
2195 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2196
2197 (define (default-lazy-handler key . args)
2198 (save-stack lazy-handler-dispatch)
2199 (apply throw key args))
2200
2201 (define enter-frame-handler default-lazy-handler)
2202 (define apply-frame-handler default-lazy-handler)
2203 (define exit-frame-handler default-lazy-handler)
2204
2205 (define (lazy-handler-dispatch key . args)
2206 (case key
2207 ((apply-frame)
2208 (apply apply-frame-handler key args))
2209 ((exit-frame)
2210 (apply exit-frame-handler key args))
2211 ((enter-frame)
2212 (apply enter-frame-handler key args))
2213 (else
2214 (apply default-lazy-handler key args))))
2215
2216 (define abort-hook (make-hook))
2217
2218 ;; these definitions are used if running a script.
2219 ;; otherwise redefined in error-catching-loop.
2220 (define (set-batch-mode?! arg) #t)
2221 (define (batch-mode?) #t)
2222
2223 (define (error-catching-loop thunk)
2224 (let ((status #f)
2225 (interactive #t))
2226 (define (loop first)
2227 (let ((next
2228 (catch #t
2229
2230 (lambda ()
2231 (lazy-catch #t
2232 (lambda ()
2233 (dynamic-wind
2234 (lambda () (unmask-signals))
2235 (lambda ()
2236 (with-traps
2237 (lambda ()
2238 (first)
2239
2240 ;; This line is needed because mark
2241 ;; doesn't do closures quite right.
2242 ;; Unreferenced locals should be
2243 ;; collected.
2244 ;;
2245 (set! first #f)
2246 (let loop ((v (thunk)))
2247 (loop (thunk)))
2248 #f)))
2249 (lambda () (mask-signals))))
2250
2251 lazy-handler-dispatch))
2252
2253 (lambda (key . args)
2254 (case key
2255 ((quit)
2256 (set! status args)
2257 #f)
2258
2259 ((switch-repl)
2260 (apply throw 'switch-repl args))
2261
2262 ((abort)
2263 ;; This is one of the closures that require
2264 ;; (set! first #f) above
2265 ;;
2266 (lambda ()
2267 (run-hook abort-hook)
2268 (force-output (current-output-port))
2269 (display "ABORT: " (current-error-port))
2270 (write args (current-error-port))
2271 (newline (current-error-port))
2272 (if interactive
2273 (begin
2274 (if (and
2275 (not has-shown-debugger-hint?)
2276 (not (memq 'backtrace
2277 (debug-options-interface)))
2278 (stack? (fluid-ref the-last-stack)))
2279 (begin
2280 (newline (current-error-port))
2281 (display
2282 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2283 (current-error-port))
2284 (set! has-shown-debugger-hint? #t)))
2285 (force-output (current-error-port)))
2286 (begin
2287 (primitive-exit 1)))
2288 (set! stack-saved? #f)))
2289
2290 (else
2291 ;; This is the other cons-leak closure...
2292 (lambda ()
2293 (cond ((= (length args) 4)
2294 (apply handle-system-error key args))
2295 (else
2296 (apply bad-throw key args))))))))))
2297 (if next (loop next) status)))
2298 (set! set-batch-mode?! (lambda (arg)
2299 (cond (arg
2300 (set! interactive #f)
2301 (restore-signals))
2302 (#t
2303 (error "sorry, not implemented")))))
2304 (set! batch-mode? (lambda () (not interactive)))
2305 (loop (lambda () #t))))
2306
2307 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2308 (define before-signal-stack (make-fluid))
2309 (define stack-saved? #f)
2310
2311 (define (save-stack . narrowing)
2312 (or stack-saved?
2313 (cond ((not (memq 'debug (debug-options-interface)))
2314 (fluid-set! the-last-stack #f)
2315 (set! stack-saved? #t))
2316 (else
2317 (fluid-set!
2318 the-last-stack
2319 (case (stack-id #t)
2320 ((repl-stack)
2321 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2322 ((load-stack)
2323 (apply make-stack #t save-stack 0 #t 0 narrowing))
2324 ((tk-stack)
2325 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2326 ((#t)
2327 (apply make-stack #t save-stack 0 1 narrowing))
2328 (else
2329 (let ((id (stack-id #t)))
2330 (and (procedure? id)
2331 (apply make-stack #t save-stack id #t 0 narrowing))))))
2332 (set! stack-saved? #t)))))
2333
2334 (define before-error-hook (make-hook))
2335 (define after-error-hook (make-hook))
2336 (define before-backtrace-hook (make-hook))
2337 (define after-backtrace-hook (make-hook))
2338
2339 (define has-shown-debugger-hint? #f)
2340
2341 (define (handle-system-error key . args)
2342 (let ((cep (current-error-port)))
2343 (cond ((not (stack? (fluid-ref the-last-stack))))
2344 ((memq 'backtrace (debug-options-interface))
2345 (run-hook before-backtrace-hook)
2346 (newline cep)
2347 (display "Backtrace:\n")
2348 (display-backtrace (fluid-ref the-last-stack) cep)
2349 (newline cep)
2350 (run-hook after-backtrace-hook)))
2351 (run-hook before-error-hook)
2352 (apply display-error (fluid-ref the-last-stack) cep args)
2353 (run-hook after-error-hook)
2354 (force-output cep)
2355 (throw 'abort key)))
2356
2357 (define (quit . args)
2358 (apply throw 'quit args))
2359
2360 (define exit quit)
2361
2362 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2363
2364 ;; Replaced by C code:
2365 ;;(define (backtrace)
2366 ;; (if (fluid-ref the-last-stack)
2367 ;; (begin
2368 ;; (newline)
2369 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2370 ;; (newline)
2371 ;; (if (and (not has-shown-backtrace-hint?)
2372 ;; (not (memq 'backtrace (debug-options-interface))))
2373 ;; (begin
2374 ;; (display
2375 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2376 ;;automatically if an error occurs in the future.\n")
2377 ;; (set! has-shown-backtrace-hint? #t))))
2378 ;; (display "No backtrace available.\n")))
2379
2380 (define (error-catching-repl r e p)
2381 (error-catching-loop
2382 (lambda ()
2383 (call-with-values (lambda () (e (r)))
2384 (lambda the-values (for-each p the-values))))))
2385
2386 (define (gc-run-time)
2387 (cdr (assq 'gc-time-taken (gc-stats))))
2388
2389 (define before-read-hook (make-hook))
2390 (define after-read-hook (make-hook))
2391 (define before-eval-hook (make-hook 1))
2392 (define after-eval-hook (make-hook 1))
2393 (define before-print-hook (make-hook 1))
2394 (define after-print-hook (make-hook 1))
2395
2396 ;;; The default repl-reader function. We may override this if we've
2397 ;;; the readline library.
2398 (define repl-reader
2399 (lambda (prompt)
2400 (display prompt)
2401 (force-output)
2402 (run-hook before-read-hook)
2403 (read (current-input-port))))
2404
2405 (define (scm-style-repl)
2406
2407 (letrec (
2408 (start-gc-rt #f)
2409 (start-rt #f)
2410 (repl-report-start-timing (lambda ()
2411 (set! start-gc-rt (gc-run-time))
2412 (set! start-rt (get-internal-run-time))))
2413 (repl-report (lambda ()
2414 (display ";;; ")
2415 (display (inexact->exact
2416 (* 1000 (/ (- (get-internal-run-time) start-rt)
2417 internal-time-units-per-second))))
2418 (display " msec (")
2419 (display (inexact->exact
2420 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2421 internal-time-units-per-second))))
2422 (display " msec in gc)\n")))
2423
2424 (consume-trailing-whitespace
2425 (lambda ()
2426 (let ((ch (peek-char)))
2427 (cond
2428 ((eof-object? ch))
2429 ((or (char=? ch #\space) (char=? ch #\tab))
2430 (read-char)
2431 (consume-trailing-whitespace))
2432 ((char=? ch #\newline)
2433 (read-char))))))
2434 (-read (lambda ()
2435 (let ((val
2436 (let ((prompt (cond ((string? scm-repl-prompt)
2437 scm-repl-prompt)
2438 ((thunk? scm-repl-prompt)
2439 (scm-repl-prompt))
2440 (scm-repl-prompt "> ")
2441 (else ""))))
2442 (repl-reader prompt))))
2443
2444 ;; As described in R4RS, the READ procedure updates the
2445 ;; port to point to the first character past the end of
2446 ;; the external representation of the object. This
2447 ;; means that it doesn't consume the newline typically
2448 ;; found after an expression. This means that, when
2449 ;; debugging Guile with GDB, GDB gets the newline, which
2450 ;; it often interprets as a "continue" command, making
2451 ;; breakpoints kind of useless. So, consume any
2452 ;; trailing newline here, as well as any whitespace
2453 ;; before it.
2454 ;; But not if EOF, for control-D.
2455 (if (not (eof-object? val))
2456 (consume-trailing-whitespace))
2457 (run-hook after-read-hook)
2458 (if (eof-object? val)
2459 (begin
2460 (repl-report-start-timing)
2461 (if scm-repl-verbose
2462 (begin
2463 (newline)
2464 (display ";;; EOF -- quitting")
2465 (newline)))
2466 (quit 0)))
2467 val)))
2468
2469 (-eval (lambda (sourc)
2470 (repl-report-start-timing)
2471 (run-hook before-eval-hook sourc)
2472 (let ((val (start-stack 'repl-stack
2473 ;; If you change this procedure
2474 ;; (primitive-eval), please also
2475 ;; modify the repl-stack case in
2476 ;; save-stack so that stack cutting
2477 ;; continues to work.
2478 (primitive-eval sourc))))
2479 (run-hook after-eval-hook sourc)
2480 val)))
2481
2482
2483 (-print (let ((maybe-print (lambda (result)
2484 (if (or scm-repl-print-unspecified
2485 (not (unspecified? result)))
2486 (begin
2487 (write result)
2488 (newline))))))
2489 (lambda (result)
2490 (if (not scm-repl-silent)
2491 (begin
2492 (run-hook before-print-hook result)
2493 (maybe-print result)
2494 (run-hook after-print-hook result)
2495 (if scm-repl-verbose
2496 (repl-report))
2497 (force-output))))))
2498
2499 (-quit (lambda (args)
2500 (if scm-repl-verbose
2501 (begin
2502 (display ";;; QUIT executed, repl exitting")
2503 (newline)
2504 (repl-report)))
2505 args))
2506
2507 (-abort (lambda ()
2508 (if scm-repl-verbose
2509 (begin
2510 (display ";;; ABORT executed.")
2511 (newline)
2512 (repl-report)))
2513 (repl -read -eval -print))))
2514
2515 (let ((status (error-catching-repl -read
2516 -eval
2517 -print)))
2518 (-quit status))))
2519
2520
2521 \f
2522 ;;; {IOTA functions: generating lists of numbers}
2523
2524 (define (iota n)
2525 (let loop ((count (1- n)) (result '()))
2526 (if (< count 0) result
2527 (loop (1- count) (cons count result)))))
2528
2529 \f
2530 ;;; {While}
2531 ;;;
2532 ;;; with `continue' and `break'.
2533 ;;;
2534
2535 (defmacro while (cond . body)
2536 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2537 (break (lambda val (apply throw 'break val))))
2538 (catch 'break
2539 (lambda () (continue))
2540 (lambda v (cadr v)))))
2541
2542 ;;; {collect}
2543 ;;;
2544 ;;; Similar to `begin' but returns a list of the results of all constituent
2545 ;;; forms instead of the result of the last form.
2546 ;;; (The definition relies on the current left-to-right
2547 ;;; order of evaluation of operands in applications.)
2548
2549 (defmacro collect forms
2550 (cons 'list forms))
2551
2552 ;;; {with-fluids}
2553
2554 ;; with-fluids is a convenience wrapper for the builtin procedure
2555 ;; `with-fluids*'. The syntax is just like `let':
2556 ;;
2557 ;; (with-fluids ((fluid val)
2558 ;; ...)
2559 ;; body)
2560
2561 (defmacro with-fluids (bindings . body)
2562 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2563 (lambda () ,@body)))
2564
2565 \f
2566
2567 ;;; {Macros}
2568 ;;;
2569
2570 ;; actually....hobbit might be able to hack these with a little
2571 ;; coaxing
2572 ;;
2573
2574 (defmacro define-macro (first . rest)
2575 (let ((name (if (symbol? first) first (car first)))
2576 (transformer
2577 (if (symbol? first)
2578 (car rest)
2579 `(lambda ,(cdr first) ,@rest))))
2580 `(eval-case
2581 ((load-toplevel)
2582 (define ,name (defmacro:transformer ,transformer)))
2583 (else
2584 (error "define-macro can only be used at the top level")))))
2585
2586
2587 (defmacro define-syntax-macro (first . rest)
2588 (let ((name (if (symbol? first) first (car first)))
2589 (transformer
2590 (if (symbol? first)
2591 (car rest)
2592 `(lambda ,(cdr first) ,@rest))))
2593 `(eval-case
2594 ((load-toplevel)
2595 (define ,name (defmacro:syntax-transformer ,transformer)))
2596 (else
2597 (error "define-syntax-macro can only be used at the top level")))))
2598
2599 \f
2600 ;;; {Module System Macros}
2601 ;;;
2602
2603 (defmacro define-module args
2604 `(eval-case
2605 ((load-toplevel)
2606 (process-define-module ',args))
2607 (else
2608 (error "define-module can only be used at the top level"))))
2609
2610 ;; the guts of the use-modules macro. add the interfaces of the named
2611 ;; modules to the use-list of the current module, in order
2612 (define (process-use-modules module-interface-specs)
2613 (for-each (lambda (mif-spec)
2614 (let ((mod-iface (resolve-interface mif-spec)))
2615 (or mod-iface
2616 (error "no such module" mif-spec))
2617 (module-use! (current-module) mod-iface)))
2618 module-interface-specs))
2619
2620 (defmacro use-modules modules
2621 `(eval-case
2622 ((load-toplevel)
2623 (process-use-modules ',modules))
2624 (else
2625 (error "use-modules can only be used at the top level"))))
2626
2627 (defmacro use-syntax (spec)
2628 `(eval-case
2629 ((load-toplevel)
2630 ,@(if (pair? spec)
2631 `((process-use-modules ',(list spec))
2632 (set-module-transformer! (current-module)
2633 ,(car (last-pair spec))))
2634 `((set-module-transformer! (current-module) ,spec)))
2635 (fluid-set! scm:eval-transformer (module-transformer (current-module))))
2636 (else
2637 (error "use-syntax can only be used at the top level"))))
2638
2639 (define define-private define)
2640
2641 (defmacro define-public args
2642 (define (syntax)
2643 (error "bad syntax" (list 'define-public args)))
2644 (define (defined-name n)
2645 (cond
2646 ((symbol? n) n)
2647 ((pair? n) (defined-name (car n)))
2648 (else (syntax))))
2649 (cond
2650 ((null? args)
2651 (syntax))
2652 (#t
2653 (let ((name (defined-name (car args))))
2654 `(begin
2655 (eval-case ((load-toplevel) (export ,name)))
2656 (define-private ,@args))))))
2657
2658 (defmacro defmacro-public args
2659 (define (syntax)
2660 (error "bad syntax" (list 'defmacro-public args)))
2661 (define (defined-name n)
2662 (cond
2663 ((symbol? n) n)
2664 (else (syntax))))
2665 (cond
2666 ((null? args)
2667 (syntax))
2668 (#t
2669 (let ((name (defined-name (car args))))
2670 `(begin
2671 (eval-case ((load-toplevel) (export ,name)))
2672 (defmacro ,@args))))))
2673
2674 (define (module-export! m names)
2675 (let ((public-i (module-public-interface m)))
2676 (for-each (lambda (name)
2677 ;; Make sure there is a local variable:
2678 (module-define! m name (module-ref m name #f))
2679 ;; Make sure that local is exported:
2680 (module-add! public-i name (module-variable m name)))
2681 names)))
2682
2683 (defmacro export names
2684 `(eval-case
2685 ((load-toplevel)
2686 (module-export! (current-module) ',names))
2687 (else
2688 (error "export can only be used at the top level"))))
2689
2690 (define export-syntax export)
2691
2692
2693 (define load load-module)
2694
2695 \f
2696
2697 ;;; {`cond-expand' for SRFI-0 support.}
2698 ;;;
2699 ;;; This syntactic form expands into different commands or
2700 ;;; definitions, depending on the features provided by the Scheme
2701 ;;; implementation.
2702 ;;;
2703 ;;; Syntax:
2704 ;;;
2705 ;;; <cond-expand>
2706 ;;; --> (cond-expand <cond-expand-clause>+)
2707 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2708 ;;; <cond-expand-clause>
2709 ;;; --> (<feature-requirement> <command-or-definition>*)
2710 ;;; <feature-requirement>
2711 ;;; --> <feature-identifier>
2712 ;;; | (and <feature-requirement>*)
2713 ;;; | (or <feature-requirement>*)
2714 ;;; | (not <feature-requirement>)
2715 ;;; <feature-identifier>
2716 ;;; --> <a symbol which is the name or alias of a SRFI>
2717 ;;;
2718 ;;; Additionally, this implementation provides the
2719 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2720 ;;; determine the implementation type and the supported standard.
2721 ;;;
2722 ;;; Currently, the following feature identifiers are supported:
2723 ;;;
2724 ;;; guile r5rs srfi-0
2725 ;;;
2726 ;;; Remember to update the features list when adding more SRFIs.
2727
2728 (define cond-expand-features
2729 ;; Adjust the above comment when changing this.
2730 '(guile r5rs srfi-0))
2731
2732 (define-macro (cond-expand clause . clauses)
2733
2734 (let ((clauses (cons clause clauses))
2735 (syntax-error (lambda (cl)
2736 (error "invalid clause in `cond-expand'" cl))))
2737 (letrec
2738 ((test-clause
2739 (lambda (clause)
2740 (cond
2741 ((symbol? clause)
2742 (memq clause cond-expand-features))
2743 ((pair? clause)
2744 (cond
2745 ((eq? 'and (car clause))
2746 (let lp ((l (cdr clause)))
2747 (cond ((null? l)
2748 #t)
2749 ((pair? l)
2750 (and (test-clause (car l)) (lp (cdr l))))
2751 (else
2752 (syntax-error clause)))))
2753 ((eq? 'or (car clause))
2754 (let lp ((l (cdr clause)))
2755 (cond ((null? l)
2756 #f)
2757 ((pair? l)
2758 (or (test-clause (car l)) (lp (cdr l))))
2759 (else
2760 (syntax-error clause)))))
2761 ((eq? 'not (car clause))
2762 (cond ((not (pair? (cdr clause)))
2763 (syntax-error clause))
2764 ((pair? (cddr clause))
2765 ((syntax-error clause))))
2766 (not (test-clause (cadr clause))))
2767 (else
2768 (syntax-error clause))))
2769 (else
2770 (syntax-error clause))))))
2771 (let lp ((c clauses))
2772 (cond
2773 ((null? c)
2774 (error "Unfulfilled `cond-expand'"))
2775 ((not (pair? c))
2776 (syntax-error c))
2777 ((not (pair? (car c)))
2778 (syntax-error (car c)))
2779 ((test-clause (caar c))
2780 `(begin ,@(cdar c)))
2781 ((eq? (caar c) 'else)
2782 (if (pair? (cdr c))
2783 (syntax-error c))
2784 `(begin ,@(cdar c)))
2785 (else
2786 (lp (cdr c))))))))
2787
2788 ;; This procedure gets called from the startup code with a list of
2789 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
2790 ;;
2791 (define (use-srfis srfis)
2792 (let lp ((s srfis))
2793 (if (pair? s)
2794 (let* ((srfi (string->symbol
2795 (string-append "srfi-" (number->string (car s)))))
2796 (mod (resolve-interface (list 'srfi srfi))))
2797 (module-use! (current-module) mod)
2798 (set! cond-expand-features
2799 (append cond-expand-features (list srfi)))
2800 (lp (cdr s))))))
2801
2802 \f
2803
2804 ;;; {Load emacs interface support if emacs option is given.}
2805
2806 (define (named-module-use! user usee)
2807 (module-use! (resolve-module user) (resolve-module usee)))
2808
2809 (define (load-emacs-interface)
2810 (and (provided? 'debug-extensions)
2811 (debug-enable 'backtrace))
2812 (named-module-use! '(guile-user) '(ice-9 emacs)))
2813
2814 \f
2815
2816 (define using-readline?
2817 (let ((using-readline? (make-fluid)))
2818 (make-procedure-with-setter
2819 (lambda () (fluid-ref using-readline?))
2820 (lambda (v) (fluid-set! using-readline? v)))))
2821
2822 (define (top-repl)
2823
2824 ;; Load emacs interface support if emacs option is given.
2825 (if (and (module-defined? the-root-module 'use-emacs-interface)
2826 (module-ref the-root-module 'use-emacs-interface))
2827 (load-emacs-interface))
2828
2829 ;; Place the user in the guile-user module.
2830 (process-define-module
2831 '((guile-user)
2832 :use-module (guile) ;so that bindings will be checked here first
2833 :use-module (ice-9 session)
2834 :use-module (ice-9 debug)
2835 :autoload (ice-9 debugger) (debug))) ;load debugger on demand
2836 (and (provided? 'threads)
2837 (named-module-use! '(guile-user) '(ice-9 threads)))
2838 (and (provided? 'regex)
2839 (named-module-use! '(guile-user) '(ice-9 regex)))
2840
2841 (let ((old-handlers #f)
2842 (signals (if (provided? 'posix)
2843 `((,SIGINT . "User interrupt")
2844 (,SIGFPE . "Arithmetic error")
2845 (,SIGBUS . "Bad memory access (bus error)")
2846 (,SIGSEGV .
2847 "Bad memory access (Segmentation violation)"))
2848 '())))
2849
2850 (dynamic-wind
2851
2852 ;; call at entry
2853 (lambda ()
2854 (let ((make-handler (lambda (msg)
2855 (lambda (sig)
2856 ;; Make a backup copy of the stack
2857 (fluid-set! before-signal-stack
2858 (fluid-ref the-last-stack))
2859 (save-stack %deliver-signals)
2860 (scm-error 'signal
2861 #f
2862 msg
2863 #f
2864 (list sig))))))
2865 (set! old-handlers
2866 (map (lambda (sig-msg)
2867 (sigaction (car sig-msg)
2868 (make-handler (cdr sig-msg))))
2869 signals))))
2870
2871 ;; the protected thunk.
2872 (lambda ()
2873 (let ((status (scm-style-repl)))
2874 (run-hook exit-hook)
2875 status))
2876
2877 ;; call at exit.
2878 (lambda ()
2879 (map (lambda (sig-msg old-handler)
2880 (if (not (car old-handler))
2881 ;; restore original C handler.
2882 (sigaction (car sig-msg) #f)
2883 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2884 (sigaction (car sig-msg)
2885 (car old-handler)
2886 (cdr old-handler))))
2887 signals old-handlers)))))
2888
2889 (defmacro false-if-exception (expr)
2890 `(catch #t (lambda () ,expr)
2891 (lambda args #f)))
2892
2893 ;;; This hook is run at the very end of an interactive session.
2894 ;;;
2895 (define exit-hook (make-hook))
2896
2897 \f
2898 (define-module (guile))
2899
2900 (append! %load-path (cons "." '()))
2901
2902 ;;; boot-9.scm ends here