generic vector ops to own file
[bpt/guile.git] / libguile / random.c
1 /* Copyright (C) 1999,2000,2001, 2003, 2005, 2006, 2009 Free Software Foundation, Inc.
2 * This library is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU Lesser General Public License
4 * as published by the Free Software Foundation; either version 3 of
5 * the License, or (at your option) any later version.
6 *
7 * This library is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * Lesser General Public License for more details.
11 *
12 * You should have received a copy of the GNU Lesser General Public
13 * License along with this library; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
15 * 02110-1301 USA
16 */
17
18
19
20 /* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
21
22 #ifdef HAVE_CONFIG_H
23 # include <config.h>
24 #endif
25
26 #include "libguile/_scm.h"
27
28 #include <gmp.h>
29 #include <stdio.h>
30 #include <math.h>
31 #include <string.h>
32 #include "libguile/smob.h"
33 #include "libguile/numbers.h"
34 #include "libguile/feature.h"
35 #include "libguile/strings.h"
36 #include "libguile/arrays.h"
37 #include "libguile/srfi-4.h"
38 #include "libguile/vectors.h"
39 #include "libguile/generalized-vectors.h"
40
41 #include "libguile/validate.h"
42 #include "libguile/random.h"
43
44 \f
45 /*
46 * A plugin interface for RNGs
47 *
48 * Using this interface, it is possible for the application to tell
49 * libguile to use a different RNG. This is desirable if it is
50 * necessary to use the same RNG everywhere in the application in
51 * order to prevent interference, if the application uses RNG
52 * hardware, or if the application has special demands on the RNG.
53 *
54 * Look in random.h and how the default generator is "plugged in" in
55 * scm_init_random().
56 */
57
58 scm_t_rng scm_the_rng;
59
60 \f
61 /*
62 * The prepackaged RNG
63 *
64 * This is the MWC (Multiply With Carry) random number generator
65 * described by George Marsaglia at the Department of Statistics and
66 * Supercomputer Computations Research Institute, The Florida State
67 * University (http://stat.fsu.edu/~geo).
68 *
69 * It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
70 * passes all tests in the DIEHARD test suite
71 * (http://stat.fsu.edu/~geo/diehard.html)
72 */
73
74 #define A 2131995753UL
75
76 #ifndef M_PI
77 #define M_PI 3.14159265359
78 #endif
79
80 #if SCM_HAVE_T_UINT64
81
82 unsigned long
83 scm_i_uniform32 (scm_t_i_rstate *state)
84 {
85 scm_t_uint64 x = (scm_t_uint64) A * state->w + state->c;
86 scm_t_uint32 w = x & 0xffffffffUL;
87 state->w = w;
88 state->c = x >> 32L;
89 return w;
90 }
91
92 #else
93
94 /* ww This is a portable version of the same RNG without 64 bit
95 * * aa arithmetic.
96 * ----
97 * xx It is only intended to provide identical behaviour on
98 * xx platforms without 8 byte longs or long longs until
99 * xx someone has implemented the routine in assembler code.
100 * xxcc
101 * ----
102 * ccww
103 */
104
105 #define L(x) ((x) & 0xffff)
106 #define H(x) ((x) >> 16)
107
108 unsigned long
109 scm_i_uniform32 (scm_t_i_rstate *state)
110 {
111 scm_t_uint32 x1 = L (A) * L (state->w);
112 scm_t_uint32 x2 = L (A) * H (state->w);
113 scm_t_uint32 x3 = H (A) * L (state->w);
114 scm_t_uint32 w = L (x1) + L (state->c);
115 scm_t_uint32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w);
116 scm_t_uint32 x4 = H (A) * H (state->w);
117 state->w = w = (L (m) << 16) + L (w);
118 state->c = H (x2) + H (x3) + x4 + H (m);
119 return w;
120 }
121
122 #endif
123
124 void
125 scm_i_init_rstate (scm_t_i_rstate *state, const char *seed, int n)
126 {
127 scm_t_uint32 w = 0L;
128 scm_t_uint32 c = 0L;
129 int i, m;
130 for (i = 0; i < n; ++i)
131 {
132 m = i % 8;
133 if (m < 4)
134 w += seed[i] << (8 * m);
135 else
136 c += seed[i] << (8 * (m - 4));
137 }
138 if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
139 ++c;
140 state->w = w;
141 state->c = c;
142 }
143
144 scm_t_i_rstate *
145 scm_i_copy_rstate (scm_t_i_rstate *state)
146 {
147 scm_t_rstate *new_state = scm_malloc (scm_the_rng.rstate_size);
148 return memcpy (new_state, state, scm_the_rng.rstate_size);
149 }
150
151 \f
152 /*
153 * Random number library functions
154 */
155
156 scm_t_rstate *
157 scm_c_make_rstate (const char *seed, int n)
158 {
159 scm_t_rstate *state = scm_malloc (scm_the_rng.rstate_size);
160 state->reserved0 = 0;
161 scm_the_rng.init_rstate (state, seed, n);
162 return state;
163 }
164
165
166 scm_t_rstate *
167 scm_c_default_rstate ()
168 #define FUNC_NAME "scm_c_default_rstate"
169 {
170 SCM state = SCM_VARIABLE_REF (scm_var_random_state);
171 if (!SCM_RSTATEP (state))
172 SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
173 return SCM_RSTATE (state);
174 }
175 #undef FUNC_NAME
176
177
178 inline double
179 scm_c_uniform01 (scm_t_rstate *state)
180 {
181 double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
182 return ((x + (double) scm_the_rng.random_bits (state))
183 / (double) 0xffffffffUL);
184 }
185
186 double
187 scm_c_normal01 (scm_t_rstate *state)
188 {
189 if (state->reserved0)
190 {
191 state->reserved0 = 0;
192 return state->reserved1;
193 }
194 else
195 {
196 double r, a, n;
197
198 r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
199 a = 2.0 * M_PI * scm_c_uniform01 (state);
200
201 n = r * sin (a);
202 state->reserved1 = r * cos (a);
203 state->reserved0 = 1;
204
205 return n;
206 }
207 }
208
209 double
210 scm_c_exp1 (scm_t_rstate *state)
211 {
212 return - log (scm_c_uniform01 (state));
213 }
214
215 unsigned char scm_masktab[256];
216
217 unsigned long
218 scm_c_random (scm_t_rstate *state, unsigned long m)
219 {
220 unsigned int r, mask;
221 mask = (m < 0x100
222 ? scm_masktab[m]
223 : (m < 0x10000
224 ? scm_masktab[m >> 8] << 8 | 0xff
225 : (m < 0x1000000
226 ? scm_masktab[m >> 16] << 16 | 0xffff
227 : scm_masktab[m >> 24] << 24 | 0xffffff)));
228 while ((r = scm_the_rng.random_bits (state) & mask) >= m);
229 return r;
230 }
231
232 /*
233 SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
234
235 Takes a random state (source of random bits) and a bignum m.
236 Returns a bignum b, 0 <= b < m.
237
238 It does this by allocating a bignum b with as many base 65536 digits
239 as m, filling b with random bits (in 32 bit chunks) up to the most
240 significant 1 in m, and, finally checking if the resultant b is too
241 large (>= m). If too large, we simply repeat the process again. (It
242 is important to throw away all generated random bits if b >= m,
243 otherwise we'll end up with a distorted distribution.)
244
245 */
246
247 SCM
248 scm_c_random_bignum (scm_t_rstate *state, SCM m)
249 {
250 SCM result = scm_i_mkbig ();
251 const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2);
252 /* how many bits would only partially fill the last unsigned long? */
253 const size_t end_bits = m_bits % (sizeof (unsigned long) * SCM_CHAR_BIT);
254 unsigned long *random_chunks = NULL;
255 const unsigned long num_full_chunks =
256 m_bits / (sizeof (unsigned long) * SCM_CHAR_BIT);
257 const unsigned long num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
258
259 /* we know the result will be this big */
260 mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits);
261
262 random_chunks =
263 (unsigned long *) scm_gc_calloc (num_chunks * sizeof (unsigned long),
264 "random bignum chunks");
265
266 do
267 {
268 unsigned long *current_chunk = random_chunks + (num_chunks - 1);
269 unsigned long chunks_left = num_chunks;
270
271 mpz_set_ui (SCM_I_BIG_MPZ (result), 0);
272
273 if (end_bits)
274 {
275 /* generate a mask with ones in the end_bits position, i.e. if
276 end_bits is 3, then we'd have a mask of ...0000000111 */
277 const unsigned long rndbits = scm_the_rng.random_bits (state);
278 int rshift = (sizeof (unsigned long) * SCM_CHAR_BIT) - end_bits;
279 unsigned long mask = ((unsigned long) ULONG_MAX) >> rshift;
280 unsigned long highest_bits = rndbits & mask;
281 *current_chunk-- = highest_bits;
282 chunks_left--;
283 }
284
285 while (chunks_left)
286 {
287 /* now fill in the remaining unsigned long sized chunks */
288 *current_chunk-- = scm_the_rng.random_bits (state);
289 chunks_left--;
290 }
291 mpz_import (SCM_I_BIG_MPZ (result),
292 num_chunks,
293 -1,
294 sizeof (unsigned long),
295 0,
296 0,
297 random_chunks);
298 /* if result >= m, regenerate it (it is important to regenerate
299 all bits in order not to get a distorted distribution) */
300 } while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0);
301 scm_gc_free (random_chunks,
302 num_chunks * sizeof (unsigned long),
303 "random bignum chunks");
304 return scm_i_normbig (result);
305 }
306
307 /*
308 * Scheme level representation of random states.
309 */
310
311 scm_t_bits scm_tc16_rstate;
312
313 static SCM
314 make_rstate (scm_t_rstate *state)
315 {
316 SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
317 }
318
319 static size_t
320 rstate_free (SCM rstate)
321 {
322 free (SCM_RSTATE (rstate));
323 return 0;
324 }
325
326 /*
327 * Scheme level interface.
328 */
329
330 SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_from_locale_string ("URL:http://stat.fsu.edu/~geo/diehard.html")));
331
332 SCM_DEFINE (scm_random, "random", 1, 1, 0,
333 (SCM n, SCM state),
334 "Return a number in [0, N).\n"
335 "\n"
336 "Accepts a positive integer or real n and returns a\n"
337 "number of the same type between zero (inclusive) and\n"
338 "N (exclusive). The values returned have a uniform\n"
339 "distribution.\n"
340 "\n"
341 "The optional argument @var{state} must be of the type produced\n"
342 "by @code{seed->random-state}. It defaults to the value of the\n"
343 "variable @var{*random-state*}. This object is used to maintain\n"
344 "the state of the pseudo-random-number generator and is altered\n"
345 "as a side effect of the random operation.")
346 #define FUNC_NAME s_scm_random
347 {
348 if (SCM_UNBNDP (state))
349 state = SCM_VARIABLE_REF (scm_var_random_state);
350 SCM_VALIDATE_RSTATE (2, state);
351 if (SCM_I_INUMP (n))
352 {
353 unsigned long m = SCM_I_INUM (n);
354 SCM_ASSERT_RANGE (1, n, m > 0);
355 return scm_from_ulong (scm_c_random (SCM_RSTATE (state), m));
356 }
357 SCM_VALIDATE_NIM (1, n);
358 if (SCM_REALP (n))
359 return scm_from_double (SCM_REAL_VALUE (n)
360 * scm_c_uniform01 (SCM_RSTATE (state)));
361
362 if (!SCM_BIGP (n))
363 SCM_WRONG_TYPE_ARG (1, n);
364 return scm_c_random_bignum (SCM_RSTATE (state), n);
365 }
366 #undef FUNC_NAME
367
368 SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
369 (SCM state),
370 "Return a copy of the random state @var{state}.")
371 #define FUNC_NAME s_scm_copy_random_state
372 {
373 if (SCM_UNBNDP (state))
374 state = SCM_VARIABLE_REF (scm_var_random_state);
375 SCM_VALIDATE_RSTATE (1, state);
376 return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
377 }
378 #undef FUNC_NAME
379
380 SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
381 (SCM seed),
382 "Return a new random state using @var{seed}.")
383 #define FUNC_NAME s_scm_seed_to_random_state
384 {
385 SCM res;
386 if (SCM_NUMBERP (seed))
387 seed = scm_number_to_string (seed, SCM_UNDEFINED);
388 SCM_VALIDATE_STRING (1, seed);
389 res = make_rstate (scm_c_make_rstate (scm_i_string_chars (seed),
390 scm_i_string_length (seed)));
391 scm_remember_upto_here_1 (seed);
392 return res;
393
394 }
395 #undef FUNC_NAME
396
397 SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
398 (SCM state),
399 "Return a uniformly distributed inexact real random number in\n"
400 "[0,1).")
401 #define FUNC_NAME s_scm_random_uniform
402 {
403 if (SCM_UNBNDP (state))
404 state = SCM_VARIABLE_REF (scm_var_random_state);
405 SCM_VALIDATE_RSTATE (1, state);
406 return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
407 }
408 #undef FUNC_NAME
409
410 SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
411 (SCM state),
412 "Return an inexact real in a normal distribution. The\n"
413 "distribution used has mean 0 and standard deviation 1. For a\n"
414 "normal distribution with mean m and standard deviation d use\n"
415 "@code{(+ m (* d (random:normal)))}.")
416 #define FUNC_NAME s_scm_random_normal
417 {
418 if (SCM_UNBNDP (state))
419 state = SCM_VARIABLE_REF (scm_var_random_state);
420 SCM_VALIDATE_RSTATE (1, state);
421 return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
422 }
423 #undef FUNC_NAME
424
425 static void
426 vector_scale_x (SCM v, double c)
427 {
428 size_t n;
429 if (scm_is_simple_vector (v))
430 {
431 n = SCM_SIMPLE_VECTOR_LENGTH (v);
432 while (n-- > 0)
433 SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n)) *= c;
434 }
435 else
436 {
437 /* must be a f64vector. */
438 scm_t_array_handle handle;
439 size_t i, len;
440 ssize_t inc;
441 double *elts;
442
443 elts = scm_f64vector_writable_elements (v, &handle, &len, &inc);
444
445 for (i = 0; i < len; i++, elts += inc)
446 *elts *= c;
447
448 scm_array_handle_release (&handle);
449 }
450 }
451
452 static double
453 vector_sum_squares (SCM v)
454 {
455 double x, sum = 0.0;
456 size_t n;
457 if (scm_is_simple_vector (v))
458 {
459 n = SCM_SIMPLE_VECTOR_LENGTH (v);
460 while (n-- > 0)
461 {
462 x = SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n));
463 sum += x * x;
464 }
465 }
466 else
467 {
468 /* must be a f64vector. */
469 scm_t_array_handle handle;
470 size_t i, len;
471 ssize_t inc;
472 const double *elts;
473
474 elts = scm_f64vector_elements (v, &handle, &len, &inc);
475
476 for (i = 0; i < len; i++, elts += inc)
477 {
478 x = *elts;
479 sum += x * x;
480 }
481
482 scm_array_handle_release (&handle);
483 }
484 return sum;
485 }
486
487 /* For the uniform distribution on the solid sphere, note that in
488 * this distribution the length r of the vector has cumulative
489 * distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
490 * generated as r=u^(1/n).
491 */
492 SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
493 (SCM v, SCM state),
494 "Fills @var{vect} with inexact real random numbers the sum of\n"
495 "whose squares is less than 1.0. Thinking of @var{vect} as\n"
496 "coordinates in space of dimension @var{n} @math{=}\n"
497 "@code{(vector-length @var{vect})}, the coordinates are\n"
498 "uniformly distributed within the unit @var{n}-sphere.")
499 #define FUNC_NAME s_scm_random_solid_sphere_x
500 {
501 if (SCM_UNBNDP (state))
502 state = SCM_VARIABLE_REF (scm_var_random_state);
503 SCM_VALIDATE_RSTATE (2, state);
504 scm_random_normal_vector_x (v, state);
505 vector_scale_x (v,
506 pow (scm_c_uniform01 (SCM_RSTATE (state)),
507 1.0 / scm_c_generalized_vector_length (v))
508 / sqrt (vector_sum_squares (v)));
509 return SCM_UNSPECIFIED;
510 }
511 #undef FUNC_NAME
512
513 SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
514 (SCM v, SCM state),
515 "Fills vect with inexact real random numbers\n"
516 "the sum of whose squares is equal to 1.0.\n"
517 "Thinking of vect as coordinates in space of\n"
518 "dimension n = (vector-length vect), the coordinates\n"
519 "are uniformly distributed over the surface of the\n"
520 "unit n-sphere.")
521 #define FUNC_NAME s_scm_random_hollow_sphere_x
522 {
523 if (SCM_UNBNDP (state))
524 state = SCM_VARIABLE_REF (scm_var_random_state);
525 SCM_VALIDATE_RSTATE (2, state);
526 scm_random_normal_vector_x (v, state);
527 vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
528 return SCM_UNSPECIFIED;
529 }
530 #undef FUNC_NAME
531
532
533 SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
534 (SCM v, SCM state),
535 "Fills vect with inexact real random numbers that are\n"
536 "independent and standard normally distributed\n"
537 "(i.e., with mean 0 and variance 1).")
538 #define FUNC_NAME s_scm_random_normal_vector_x
539 {
540 long i;
541 scm_t_array_handle handle;
542 scm_t_array_dim *dim;
543
544 if (SCM_UNBNDP (state))
545 state = SCM_VARIABLE_REF (scm_var_random_state);
546 SCM_VALIDATE_RSTATE (2, state);
547
548 scm_generalized_vector_get_handle (v, &handle);
549 dim = scm_array_handle_dims (&handle);
550
551 if (scm_is_vector (v))
552 {
553 SCM *elts = scm_array_handle_writable_elements (&handle);
554 for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
555 *elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
556 }
557 else
558 {
559 /* must be a f64vector. */
560 double *elts = scm_array_handle_f64_writable_elements (&handle);
561 for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
562 *elts = scm_c_normal01 (SCM_RSTATE (state));
563 }
564
565 scm_array_handle_release (&handle);
566
567 return SCM_UNSPECIFIED;
568 }
569 #undef FUNC_NAME
570
571 SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
572 (SCM state),
573 "Return an inexact real in an exponential distribution with mean\n"
574 "1. For an exponential distribution with mean u use (* u\n"
575 "(random:exp)).")
576 #define FUNC_NAME s_scm_random_exp
577 {
578 if (SCM_UNBNDP (state))
579 state = SCM_VARIABLE_REF (scm_var_random_state);
580 SCM_VALIDATE_RSTATE (1, state);
581 return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
582 }
583 #undef FUNC_NAME
584
585 void
586 scm_init_random ()
587 {
588 int i, m;
589 /* plug in default RNG */
590 scm_t_rng rng =
591 {
592 sizeof (scm_t_i_rstate),
593 (unsigned long (*)()) scm_i_uniform32,
594 (void (*)()) scm_i_init_rstate,
595 (scm_t_rstate *(*)()) scm_i_copy_rstate
596 };
597 scm_the_rng = rng;
598
599 scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
600 scm_set_smob_free (scm_tc16_rstate, rstate_free);
601
602 for (m = 1; m <= 0x100; m <<= 1)
603 for (i = m >> 1; i < m; ++i)
604 scm_masktab[i] = m - 1;
605
606 #include "libguile/random.x"
607
608 scm_add_feature ("random");
609 }
610
611 /*
612 Local Variables:
613 c-file-style: "gnu"
614 End:
615 */