lambda* in catch
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 \f
44
45 ;;; {Error handling}
46 ;;;
47
48 ;; Define delimited continuation operators, and implement catch and throw in
49 ;; terms of them.
50
51 (define make-prompt-tag
52 (lambda* (#:optional (stem "prompt"))
53 (gensym stem)))
54
55 (define default-prompt-tag
56 ;; not sure if we should expose this to the user as a fluid
57 (let ((%default-prompt-tag (make-prompt-tag)))
58 (lambda ()
59 %default-prompt-tag)))
60
61 (define (call-with-prompt tag thunk handler)
62 (@prompt tag (thunk) handler))
63 (define (abort-to-prompt tag . args)
64 (@abort tag args))
65
66
67 ;; Define catch and with-throw-handler, using some common helper routines and a
68 ;; shared fluid. Hide the helpers in a lexical contour.
69
70 (let ()
71 ;; Ideally we'd like to be able to give these default values for all threads,
72 ;; even threads not created by Guile; but alack, that does not currently seem
73 ;; possible. So wrap the getters in thunks.
74 (define %running-exception-handlers (make-fluid))
75 (define %exception-handler (make-fluid))
76
77 (define (running-exception-handlers)
78 (or (fluid-ref %running-exception-handlers)
79 (begin
80 (fluid-set! %running-exception-handlers '())
81 '())))
82 (define (exception-handler)
83 (or (fluid-ref %exception-handler)
84 (begin
85 (fluid-set! %exception-handler default-exception-handler)
86 default-exception-handler)))
87
88 (define (default-exception-handler k . args)
89 (cond
90 ((eq? k 'quit)
91 (primitive-exit (cond
92 ((not (pair? args)) 0)
93 ((integer? (car args)) (car args))
94 ((not (car args)) 1)
95 (else 0))))
96 (else
97 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
98 (primitive-exit 1))))
99
100 (define (default-throw-handler prompt-tag catch-k)
101 (let ((prev (exception-handler)))
102 (lambda (thrown-k . args)
103 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
104 (apply abort-to-prompt prompt-tag thrown-k args)
105 (apply prev thrown-k args)))))
106
107 (define (custom-throw-handler prompt-tag catch-k pre)
108 (let ((prev (exception-handler)))
109 (lambda (thrown-k . args)
110 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
111 (let ((running (running-exception-handlers)))
112 (with-fluids ((%running-exception-handlers (cons pre running)))
113 (if (not (memq pre running))
114 (apply pre thrown-k args))
115 ;; fall through
116 (if prompt-tag
117 (apply abort-to-prompt prompt-tag thrown-k args)
118 (apply prev thrown-k args))))
119 (apply prev thrown-k args)))))
120
121 (define! 'catch
122 (lambda* (k thunk handler #:optional pre-unwind-handler)
123 "Invoke @var{thunk} in the dynamic context of @var{handler} for
124 exceptions matching @var{key}. If thunk throws to the symbol
125 @var{key}, then @var{handler} is invoked this way:
126 @lisp
127 (handler key args ...)
128 @end lisp
129
130 @var{key} is a symbol or @code{#t}.
131
132 @var{thunk} takes no arguments. If @var{thunk} returns
133 normally, that is the return value of @code{catch}.
134
135 Handler is invoked outside the scope of its own @code{catch}.
136 If @var{handler} again throws to the same key, a new handler
137 from further up the call chain is invoked.
138
139 If the key is @code{#t}, then a throw to @emph{any} symbol will
140 match this call to @code{catch}.
141
142 If a @var{pre-unwind-handler} is given and @var{thunk} throws
143 an exception that matches @var{key}, Guile calls the
144 @var{pre-unwind-handler} before unwinding the dynamic state and
145 invoking the main @var{handler}. @var{pre-unwind-handler} should
146 be a procedure with the same signature as @var{handler}, that
147 is @code{(lambda (key . args))}. It is typically used to save
148 the stack at the point where the exception occurred, but can also
149 query other parts of the dynamic state at that point, such as
150 fluid values.
151
152 A @var{pre-unwind-handler} can exit either normally or non-locally.
153 If it exits normally, Guile unwinds the stack and dynamic context
154 and then calls the normal (third argument) handler. If it exits
155 non-locally, that exit determines the continuation."
156 (if (not (or (symbol? k) (eqv? k #t)))
157 (scm-error "catch" 'wrong-type-arg
158 "Wrong type argument in position ~a: ~a"
159 (list 1 k) (list k)))
160 (let ((tag (make-prompt-tag "catch")))
161 (call-with-prompt
162 tag
163 (lambda ()
164 (with-fluids
165 ((%exception-handler
166 (if pre-unwind-handler
167 (custom-throw-handler tag k pre-unwind-handler)
168 (default-throw-handler tag k))))
169 (thunk)))
170 (lambda (cont k . args)
171 (apply handler k args))))))
172
173 (define! 'with-throw-handler
174 (lambda (k thunk pre-unwind-handler)
175 "Add @var{handler} to the dynamic context as a throw handler
176 for key @var{key}, then invoke @var{thunk}."
177 (if (not (or (symbol? k) (eqv? k #t)))
178 (scm-error "with-throw-handler" 'wrong-type-arg
179 "Wrong type argument in position ~a: ~a"
180 (list 1 k) (list k)))
181 (with-fluids ((%exception-handler
182 (custom-throw-handler #f k pre-unwind-handler)))
183 (thunk))))
184
185 (define! 'throw
186 (lambda (key . args)
187 "Invoke the catch form matching @var{key}, passing @var{args} to the
188 @var{handler}.
189
190 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
191
192 If there is no handler at all, Guile prints an error and then exits."
193 (if (not (symbol? key))
194 ((exception-handler) 'wrong-type-arg "throw"
195 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
196 (apply (exception-handler) key args)))))
197
198
199 \f
200
201 ;;; {R4RS compliance}
202 ;;;
203
204 (primitive-load-path "ice-9/r4rs")
205
206 \f
207
208 ;;; {Simple Debugging Tools}
209 ;;;
210
211 ;; peek takes any number of arguments, writes them to the
212 ;; current ouput port, and returns the last argument.
213 ;; It is handy to wrap around an expression to look at
214 ;; a value each time is evaluated, e.g.:
215 ;;
216 ;; (+ 10 (troublesome-fn))
217 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
218 ;;
219
220 (define (peek . stuff)
221 (newline)
222 (display ";;; ")
223 (write stuff)
224 (newline)
225 (car (last-pair stuff)))
226
227 (define pk peek)
228
229
230 (define (warn . stuff)
231 (with-output-to-port (current-error-port)
232 (lambda ()
233 (newline)
234 (display ";;; WARNING ")
235 (display stuff)
236 (newline)
237 (car (last-pair stuff)))))
238
239 \f
240
241 ;;; {Features}
242 ;;;
243
244 (define (provide sym)
245 (if (not (memq sym *features*))
246 (set! *features* (cons sym *features*))))
247
248 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
249 ;; provided? also checks to see if the module is available. We should do that
250 ;; too, but don't.
251
252 (define (provided? feature)
253 (and (memq feature *features*) #t))
254
255 \f
256
257 ;;; {and-map and or-map}
258 ;;;
259 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
260 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
261 ;;;
262
263 ;; and-map f l
264 ;;
265 ;; Apply f to successive elements of l until exhaustion or f returns #f.
266 ;; If returning early, return #f. Otherwise, return the last value returned
267 ;; by f. If f has never been called because l is empty, return #t.
268 ;;
269 (define (and-map f lst)
270 (let loop ((result #t)
271 (l lst))
272 (and result
273 (or (and (null? l)
274 result)
275 (loop (f (car l)) (cdr l))))))
276
277 ;; or-map f l
278 ;;
279 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
280 ;; If returning early, return the return value of f.
281 ;;
282 (define (or-map f lst)
283 (let loop ((result #f)
284 (l lst))
285 (or result
286 (and (not (null? l))
287 (loop (f (car l)) (cdr l))))))
288
289 \f
290
291 ;; let format alias simple-format until the more complete version is loaded
292
293 (define format simple-format)
294
295 ;; this is scheme wrapping the C code so the final pred call is a tail call,
296 ;; per SRFI-13 spec
297 (define (string-any char_pred s . rest)
298 (let ((start (if (null? rest)
299 0 (car rest)))
300 (end (if (or (null? rest) (null? (cdr rest)))
301 (string-length s) (cadr rest))))
302 (if (and (procedure? char_pred)
303 (> end start)
304 (<= end (string-length s))) ;; let c-code handle range error
305 (or (string-any-c-code char_pred s start (1- end))
306 (char_pred (string-ref s (1- end))))
307 (string-any-c-code char_pred s start end))))
308
309 ;; this is scheme wrapping the C code so the final pred call is a tail call,
310 ;; per SRFI-13 spec
311 (define (string-every char_pred s . rest)
312 (let ((start (if (null? rest)
313 0 (car rest)))
314 (end (if (or (null? rest) (null? (cdr rest)))
315 (string-length s) (cadr rest))))
316 (if (and (procedure? char_pred)
317 (> end start)
318 (<= end (string-length s))) ;; let c-code handle range error
319 (and (string-every-c-code char_pred s start (1- end))
320 (char_pred (string-ref s (1- end))))
321 (string-every-c-code char_pred s start end))))
322
323 ;; A variant of string-fill! that we keep for compatability
324 ;;
325 (define (substring-fill! str start end fill)
326 (string-fill! str fill start end))
327
328 \f
329
330 ;; Define a minimal stub of the module API for psyntax, before modules
331 ;; have booted.
332 (define (module-name x)
333 '(guile))
334 (define (module-define! module sym val)
335 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
336 (if v
337 (variable-set! v val)
338 (hashq-set! (%get-pre-modules-obarray) sym
339 (make-variable val)))))
340 (define (module-ref module sym)
341 (let ((v (module-variable module sym)))
342 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
343 (define (resolve-module . args)
344 #f)
345
346 ;; Input hook to syncase -- so that we might be able to pass annotated
347 ;; expressions in. Currently disabled. Maybe we should just use
348 ;; source-properties directly.
349 (define (annotation? x) #f)
350
351 ;; API provided by psyntax
352 (define syntax-violation #f)
353 (define datum->syntax #f)
354 (define syntax->datum #f)
355 (define identifier? #f)
356 (define generate-temporaries #f)
357 (define bound-identifier=? #f)
358 (define free-identifier=? #f)
359
360 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
361 ;; expanded macros, to dispatch an input against a set of patterns.
362 (define $sc-dispatch #f)
363
364 ;; Load it up!
365 (primitive-load-path "ice-9/psyntax-pp")
366 ;; The binding for `macroexpand' has now been overridden, making psyntax the
367 ;; expander now.
368
369 (define-syntax and
370 (syntax-rules ()
371 ((_) #t)
372 ((_ x) x)
373 ((_ x y ...) (if x (and y ...) #f))))
374
375 (define-syntax or
376 (syntax-rules ()
377 ((_) #f)
378 ((_ x) x)
379 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
380
381 ;; The "maybe-more" bits are something of a hack, so that we can support
382 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
383 ;; appreciated.
384 (define-syntax cond
385 (syntax-rules (=> else)
386 ((_ "maybe-more" test consequent)
387 (if test consequent))
388
389 ((_ "maybe-more" test consequent clause ...)
390 (if test consequent (cond clause ...)))
391
392 ((_ (else else1 else2 ...))
393 (begin else1 else2 ...))
394
395 ((_ (test => receiver) more-clause ...)
396 (let ((t test))
397 (cond "maybe-more" t (receiver t) more-clause ...)))
398
399 ((_ (generator guard => receiver) more-clause ...)
400 (call-with-values (lambda () generator)
401 (lambda t
402 (cond "maybe-more"
403 (apply guard t) (apply receiver t) more-clause ...))))
404
405 ((_ (test => receiver ...) more-clause ...)
406 (syntax-violation 'cond "wrong number of receiver expressions"
407 '(test => receiver ...)))
408 ((_ (generator guard => receiver ...) more-clause ...)
409 (syntax-violation 'cond "wrong number of receiver expressions"
410 '(generator guard => receiver ...)))
411
412 ((_ (test) more-clause ...)
413 (let ((t test))
414 (cond "maybe-more" t t more-clause ...)))
415
416 ((_ (test body1 body2 ...) more-clause ...)
417 (cond "maybe-more"
418 test (begin body1 body2 ...) more-clause ...))))
419
420 (define-syntax case
421 (syntax-rules (else)
422 ((case (key ...)
423 clauses ...)
424 (let ((atom-key (key ...)))
425 (case atom-key clauses ...)))
426 ((case key
427 (else result1 result2 ...))
428 (begin result1 result2 ...))
429 ((case key
430 ((atoms ...) result1 result2 ...))
431 (if (memv key '(atoms ...))
432 (begin result1 result2 ...)))
433 ((case key
434 ((atoms ...) result1 result2 ...)
435 clause clauses ...)
436 (if (memv key '(atoms ...))
437 (begin result1 result2 ...)
438 (case key clause clauses ...)))))
439
440 (define-syntax do
441 (syntax-rules ()
442 ((do ((var init step ...) ...)
443 (test expr ...)
444 command ...)
445 (letrec
446 ((loop
447 (lambda (var ...)
448 (if test
449 (begin
450 (if #f #f)
451 expr ...)
452 (begin
453 command
454 ...
455 (loop (do "step" var step ...)
456 ...))))))
457 (loop init ...)))
458 ((do "step" x)
459 x)
460 ((do "step" x y)
461 y)))
462
463 (define-syntax delay
464 (syntax-rules ()
465 ((_ exp) (make-promise (lambda () exp)))))
466
467 (include-from-path "ice-9/quasisyntax")
468
469 \f
470
471 ;;; {Defmacros}
472 ;;;
473
474 (define-syntax define-macro
475 (lambda (x)
476 "Define a defmacro."
477 (syntax-case x ()
478 ((_ (macro . args) doc body1 body ...)
479 (string? (syntax->datum #'doc))
480 #'(define-macro macro doc (lambda args body1 body ...)))
481 ((_ (macro . args) body ...)
482 #'(define-macro macro #f (lambda args body ...)))
483 ((_ macro doc transformer)
484 (or (string? (syntax->datum #'doc))
485 (not (syntax->datum #'doc)))
486 #'(define-syntax macro
487 (lambda (y)
488 doc
489 #((macro-type . defmacro)
490 (defmacro-args args))
491 (syntax-case y ()
492 ((_ . args)
493 (let ((v (syntax->datum #'args)))
494 (datum->syntax y (apply transformer v)))))))))))
495
496 (define-syntax defmacro
497 (lambda (x)
498 "Define a defmacro, with the old lispy defun syntax."
499 (syntax-case x ()
500 ((_ macro args doc body1 body ...)
501 (string? (syntax->datum #'doc))
502 #'(define-macro macro doc (lambda args body1 body ...)))
503 ((_ macro args body ...)
504 #'(define-macro macro #f (lambda args body ...))))))
505
506 (provide 'defmacro)
507
508 \f
509
510 ;;; {Deprecation}
511 ;;;
512 ;;; Depends on: defmacro
513 ;;;
514
515 (defmacro begin-deprecated forms
516 (if (include-deprecated-features)
517 `(begin ,@forms)
518 `(begin)))
519
520 \f
521
522 ;;; {Trivial Functions}
523 ;;;
524
525 (define (identity x) x)
526 (define (and=> value procedure) (and value (procedure value)))
527 (define call/cc call-with-current-continuation)
528
529 ;;; apply-to-args is functionally redundant with apply and, worse,
530 ;;; is less general than apply since it only takes two arguments.
531 ;;;
532 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
533 ;;; perform binding in many circumstances when the "let" family of
534 ;;; of forms don't cut it. E.g.:
535 ;;;
536 ;;; (apply-to-args (return-3d-mouse-coords)
537 ;;; (lambda (x y z)
538 ;;; ...))
539 ;;;
540
541 (define (apply-to-args args fn) (apply fn args))
542
543 (defmacro false-if-exception (expr)
544 `(catch #t
545 (lambda ()
546 ;; avoid saving backtraces inside false-if-exception
547 (with-fluids ((the-last-stack (fluid-ref the-last-stack)))
548 ,expr))
549 (lambda args #f)))
550
551 \f
552
553 ;;; {General Properties}
554 ;;;
555
556 ;; This is a more modern interface to properties. It will replace all
557 ;; other property-like things eventually.
558
559 (define (make-object-property)
560 (let ((prop (primitive-make-property #f)))
561 (make-procedure-with-setter
562 (lambda (obj) (primitive-property-ref prop obj))
563 (lambda (obj val) (primitive-property-set! prop obj val)))))
564
565 \f
566
567 ;;; {Symbol Properties}
568 ;;;
569
570 (define (symbol-property sym prop)
571 (let ((pair (assoc prop (symbol-pref sym))))
572 (and pair (cdr pair))))
573
574 (define (set-symbol-property! sym prop val)
575 (let ((pair (assoc prop (symbol-pref sym))))
576 (if pair
577 (set-cdr! pair val)
578 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
579
580 (define (symbol-property-remove! sym prop)
581 (let ((pair (assoc prop (symbol-pref sym))))
582 (if pair
583 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
584
585 \f
586
587 ;;; {Arrays}
588 ;;;
589
590 (define (array-shape a)
591 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
592 (array-dimensions a)))
593
594 \f
595
596 ;;; {Keywords}
597 ;;;
598
599 (define (kw-arg-ref args kw)
600 (let ((rem (member kw args)))
601 (and rem (pair? (cdr rem)) (cadr rem))))
602
603 \f
604
605 ;;; {Structs}
606 ;;;
607
608 (define (struct-layout s)
609 (struct-ref (struct-vtable s) vtable-index-layout))
610
611 \f
612
613 ;;; {Records}
614 ;;;
615
616 ;; Printing records: by default, records are printed as
617 ;;
618 ;; #<type-name field1: val1 field2: val2 ...>
619 ;;
620 ;; You can change that by giving a custom printing function to
621 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
622 ;; will be called like
623 ;;
624 ;; (<printer> object port)
625 ;;
626 ;; It should print OBJECT to PORT.
627
628 (define (inherit-print-state old-port new-port)
629 (if (get-print-state old-port)
630 (port-with-print-state new-port (get-print-state old-port))
631 new-port))
632
633 ;; 0: type-name, 1: fields, 2: constructor
634 (define record-type-vtable
635 ;; FIXME: This should just call make-vtable, not make-vtable-vtable; but for
636 ;; that we need to expose the bare vtable-vtable to Scheme.
637 (make-vtable-vtable "prprpw" 0
638 (lambda (s p)
639 (cond ((eq? s record-type-vtable)
640 (display "#<record-type-vtable>" p))
641 (else
642 (display "#<record-type " p)
643 (display (record-type-name s) p)
644 (display ">" p))))))
645
646 (define (record-type? obj)
647 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
648
649 (define (make-record-type type-name fields . opt)
650 ;; Pre-generate constructors for nfields < 20.
651 (define-syntax make-constructor
652 (lambda (x)
653 (define *max-static-argument-count* 20)
654 (define (make-formals n)
655 (let lp ((i 0))
656 (if (< i n)
657 (cons (datum->syntax
658 x
659 (string->symbol
660 (string (integer->char (+ (char->integer #\a) i)))))
661 (lp (1+ i)))
662 '())))
663 (syntax-case x ()
664 ((_ rtd exp) (not (identifier? #'exp))
665 #'(let ((n exp))
666 (make-constructor rtd n)))
667 ((_ rtd nfields)
668 #`(case nfields
669 #,@(let lp ((n 0))
670 (if (< n *max-static-argument-count*)
671 (cons (with-syntax (((formal ...) (make-formals n))
672 (n n))
673 #'((n)
674 (lambda (formal ...)
675 (make-struct rtd 0 formal ...))))
676 (lp (1+ n)))
677 '()))
678 (else
679 (lambda args
680 (if (= (length args) nfields)
681 (apply make-struct rtd 0 args)
682 (scm-error 'wrong-number-of-args
683 (format #f "make-~a" type-name)
684 "Wrong number of arguments" '() #f)))))))))
685
686 (define (default-record-printer s p)
687 (display "#<" p)
688 (display (record-type-name (record-type-descriptor s)) p)
689 (let loop ((fields (record-type-fields (record-type-descriptor s)))
690 (off 0))
691 (cond
692 ((not (null? fields))
693 (display " " p)
694 (display (car fields) p)
695 (display ": " p)
696 (display (struct-ref s off) p)
697 (loop (cdr fields) (+ 1 off)))))
698 (display ">" p))
699
700 (let ((rtd (make-struct record-type-vtable 0
701 (make-struct-layout
702 (apply string-append
703 (map (lambda (f) "pw") fields)))
704 (or (and (pair? opt) (car opt))
705 default-record-printer)
706 type-name
707 (copy-tree fields))))
708 (struct-set! rtd (+ vtable-offset-user 2)
709 (make-constructor rtd (length fields)))
710 ;; Temporary solution: Associate a name to the record type descriptor
711 ;; so that the object system can create a wrapper class for it.
712 (set-struct-vtable-name! rtd (if (symbol? type-name)
713 type-name
714 (string->symbol type-name)))
715 rtd))
716
717 (define (record-type-name obj)
718 (if (record-type? obj)
719 (struct-ref obj vtable-offset-user)
720 (error 'not-a-record-type obj)))
721
722 (define (record-type-fields obj)
723 (if (record-type? obj)
724 (struct-ref obj (+ 1 vtable-offset-user))
725 (error 'not-a-record-type obj)))
726
727 (define (record-constructor rtd . opt)
728 (if (null? opt)
729 (struct-ref rtd (+ 2 vtable-offset-user))
730 (let ((field-names (car opt)))
731 (primitive-eval
732 `(lambda ,field-names
733 (make-struct ',rtd 0 ,@(map (lambda (f)
734 (if (memq f field-names)
735 f
736 #f))
737 (record-type-fields rtd))))))))
738
739 (define (record-predicate rtd)
740 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
741
742 (define (%record-type-error rtd obj) ;; private helper
743 (or (eq? rtd (record-type-descriptor obj))
744 (scm-error 'wrong-type-arg "%record-type-check"
745 "Wrong type record (want `~S'): ~S"
746 (list (record-type-name rtd) obj)
747 #f)))
748
749 (define (record-accessor rtd field-name)
750 (let ((pos (list-index (record-type-fields rtd) field-name)))
751 (if (not pos)
752 (error 'no-such-field field-name))
753 (lambda (obj)
754 (if (eq? (struct-vtable obj) rtd)
755 (struct-ref obj pos)
756 (%record-type-error rtd obj)))))
757
758 (define (record-modifier rtd field-name)
759 (let ((pos (list-index (record-type-fields rtd) field-name)))
760 (if (not pos)
761 (error 'no-such-field field-name))
762 (lambda (obj val)
763 (if (eq? (struct-vtable obj) rtd)
764 (struct-set! obj pos val)
765 (%record-type-error rtd obj)))))
766
767 (define (record? obj)
768 (and (struct? obj) (record-type? (struct-vtable obj))))
769
770 (define (record-type-descriptor obj)
771 (if (struct? obj)
772 (struct-vtable obj)
773 (error 'not-a-record obj)))
774
775 (provide 'record)
776
777 \f
778
779 ;;; {Booleans}
780 ;;;
781
782 (define (->bool x) (not (not x)))
783
784 \f
785
786 ;;; {Symbols}
787 ;;;
788
789 (define (symbol-append . args)
790 (string->symbol (apply string-append (map symbol->string args))))
791
792 (define (list->symbol . args)
793 (string->symbol (apply list->string args)))
794
795 (define (symbol . args)
796 (string->symbol (apply string args)))
797
798 \f
799
800 ;;; {Lists}
801 ;;;
802
803 (define (list-index l k)
804 (let loop ((n 0)
805 (l l))
806 (and (not (null? l))
807 (if (eq? (car l) k)
808 n
809 (loop (+ n 1) (cdr l))))))
810
811 \f
812
813 (if (provided? 'posix)
814 (primitive-load-path "ice-9/posix"))
815
816 (if (provided? 'socket)
817 (primitive-load-path "ice-9/networking"))
818
819 ;; For reference, Emacs file-exists-p uses stat in this same way.
820 (define file-exists?
821 (if (provided? 'posix)
822 (lambda (str)
823 (->bool (stat str #f)))
824 (lambda (str)
825 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
826 (lambda args #f))))
827 (if port (begin (close-port port) #t)
828 #f)))))
829
830 (define file-is-directory?
831 (if (provided? 'posix)
832 (lambda (str)
833 (eq? (stat:type (stat str)) 'directory))
834 (lambda (str)
835 (let ((port (catch 'system-error
836 (lambda () (open-file (string-append str "/.")
837 OPEN_READ))
838 (lambda args #f))))
839 (if port (begin (close-port port) #t)
840 #f)))))
841
842 (define (has-suffix? str suffix)
843 (string-suffix? suffix str))
844
845 (define (system-error-errno args)
846 (if (eq? (car args) 'system-error)
847 (car (list-ref args 4))
848 #f))
849
850 \f
851
852 ;;; {Error Handling}
853 ;;;
854
855 (define (error . args)
856 (save-stack)
857 (if (null? args)
858 (scm-error 'misc-error #f "?" #f #f)
859 (let loop ((msg "~A")
860 (rest (cdr args)))
861 (if (not (null? rest))
862 (loop (string-append msg " ~S")
863 (cdr rest))
864 (scm-error 'misc-error #f msg args #f)))))
865
866 ;; bad-throw is the hook that is called upon a throw to a an unhandled
867 ;; key (unless the throw has four arguments, in which case
868 ;; it's usually interpreted as an error throw.)
869 ;; If the key has a default handler (a throw-handler-default property),
870 ;; it is applied to the throw.
871 ;;
872 (define (bad-throw key . args)
873 (let ((default (symbol-property key 'throw-handler-default)))
874 (or (and default (apply default key args))
875 (apply error "unhandled-exception:" key args))))
876
877 \f
878
879 (define (tm:sec obj) (vector-ref obj 0))
880 (define (tm:min obj) (vector-ref obj 1))
881 (define (tm:hour obj) (vector-ref obj 2))
882 (define (tm:mday obj) (vector-ref obj 3))
883 (define (tm:mon obj) (vector-ref obj 4))
884 (define (tm:year obj) (vector-ref obj 5))
885 (define (tm:wday obj) (vector-ref obj 6))
886 (define (tm:yday obj) (vector-ref obj 7))
887 (define (tm:isdst obj) (vector-ref obj 8))
888 (define (tm:gmtoff obj) (vector-ref obj 9))
889 (define (tm:zone obj) (vector-ref obj 10))
890
891 (define (set-tm:sec obj val) (vector-set! obj 0 val))
892 (define (set-tm:min obj val) (vector-set! obj 1 val))
893 (define (set-tm:hour obj val) (vector-set! obj 2 val))
894 (define (set-tm:mday obj val) (vector-set! obj 3 val))
895 (define (set-tm:mon obj val) (vector-set! obj 4 val))
896 (define (set-tm:year obj val) (vector-set! obj 5 val))
897 (define (set-tm:wday obj val) (vector-set! obj 6 val))
898 (define (set-tm:yday obj val) (vector-set! obj 7 val))
899 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
900 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
901 (define (set-tm:zone obj val) (vector-set! obj 10 val))
902
903 (define (tms:clock obj) (vector-ref obj 0))
904 (define (tms:utime obj) (vector-ref obj 1))
905 (define (tms:stime obj) (vector-ref obj 2))
906 (define (tms:cutime obj) (vector-ref obj 3))
907 (define (tms:cstime obj) (vector-ref obj 4))
908
909 (define file-position ftell)
910 (define (file-set-position port offset . whence)
911 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
912 (seek port offset whence)))
913
914 (define (move->fdes fd/port fd)
915 (cond ((integer? fd/port)
916 (dup->fdes fd/port fd)
917 (close fd/port)
918 fd)
919 (else
920 (primitive-move->fdes fd/port fd)
921 (set-port-revealed! fd/port 1)
922 fd/port)))
923
924 (define (release-port-handle port)
925 (let ((revealed (port-revealed port)))
926 (if (> revealed 0)
927 (set-port-revealed! port (- revealed 1)))))
928
929 (define (dup->port port/fd mode . maybe-fd)
930 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
931 mode)))
932 (if (pair? maybe-fd)
933 (set-port-revealed! port 1))
934 port))
935
936 (define (dup->inport port/fd . maybe-fd)
937 (apply dup->port port/fd "r" maybe-fd))
938
939 (define (dup->outport port/fd . maybe-fd)
940 (apply dup->port port/fd "w" maybe-fd))
941
942 (define (dup port/fd . maybe-fd)
943 (if (integer? port/fd)
944 (apply dup->fdes port/fd maybe-fd)
945 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
946
947 (define (duplicate-port port modes)
948 (dup->port port modes))
949
950 (define (fdes->inport fdes)
951 (let loop ((rest-ports (fdes->ports fdes)))
952 (cond ((null? rest-ports)
953 (let ((result (fdopen fdes "r")))
954 (set-port-revealed! result 1)
955 result))
956 ((input-port? (car rest-ports))
957 (set-port-revealed! (car rest-ports)
958 (+ (port-revealed (car rest-ports)) 1))
959 (car rest-ports))
960 (else
961 (loop (cdr rest-ports))))))
962
963 (define (fdes->outport fdes)
964 (let loop ((rest-ports (fdes->ports fdes)))
965 (cond ((null? rest-ports)
966 (let ((result (fdopen fdes "w")))
967 (set-port-revealed! result 1)
968 result))
969 ((output-port? (car rest-ports))
970 (set-port-revealed! (car rest-ports)
971 (+ (port-revealed (car rest-ports)) 1))
972 (car rest-ports))
973 (else
974 (loop (cdr rest-ports))))))
975
976 (define (port->fdes port)
977 (set-port-revealed! port (+ (port-revealed port) 1))
978 (fileno port))
979
980 (define (setenv name value)
981 (if value
982 (putenv (string-append name "=" value))
983 (putenv name)))
984
985 (define (unsetenv name)
986 "Remove the entry for NAME from the environment."
987 (putenv name))
988
989 \f
990
991 ;;; {Load Paths}
992 ;;;
993
994 ;;; Here for backward compatability
995 ;;
996 (define scheme-file-suffix (lambda () ".scm"))
997
998 (define (in-vicinity vicinity file)
999 (let ((tail (let ((len (string-length vicinity)))
1000 (if (zero? len)
1001 #f
1002 (string-ref vicinity (- len 1))))))
1003 (string-append vicinity
1004 (if (or (not tail)
1005 (eq? tail #\/))
1006 ""
1007 "/")
1008 file)))
1009
1010 \f
1011
1012 ;;; {Help for scm_shell}
1013 ;;;
1014 ;;; The argument-processing code used by Guile-based shells generates
1015 ;;; Scheme code based on the argument list. This page contains help
1016 ;;; functions for the code it generates.
1017 ;;;
1018
1019 (define (command-line) (program-arguments))
1020
1021 ;; This is mostly for the internal use of the code generated by
1022 ;; scm_compile_shell_switches.
1023
1024 (define (turn-on-debugging)
1025 (debug-enable 'debug)
1026 (debug-enable 'backtrace)
1027 (read-enable 'positions))
1028
1029 (define (load-user-init)
1030 (let* ((home (or (getenv "HOME")
1031 (false-if-exception (passwd:dir (getpwuid (getuid))))
1032 "/")) ;; fallback for cygwin etc.
1033 (init-file (in-vicinity home ".guile")))
1034 (if (file-exists? init-file)
1035 (primitive-load init-file))))
1036
1037 \f
1038
1039 ;;; {The interpreter stack}
1040 ;;;
1041
1042 ;; %stacks defined in stacks.c
1043 (define (%start-stack tag thunk)
1044 (let ((prompt-tag (make-prompt-tag "start-stack")))
1045 (call-with-prompt
1046 prompt-tag
1047 (lambda ()
1048 (with-fluids ((%stacks (acons tag prompt-tag
1049 (or (fluid-ref %stacks) '()))))
1050 (thunk)))
1051 (lambda (k . args)
1052 (%start-stack tag (lambda () (apply k args)))))))
1053 (define-syntax start-stack
1054 (syntax-rules ()
1055 ((_ tag exp)
1056 (%start-stack tag (lambda () exp)))))
1057
1058 \f
1059
1060 ;;; {Loading by paths}
1061 ;;;
1062
1063 ;;; Load a Scheme source file named NAME, searching for it in the
1064 ;;; directories listed in %load-path, and applying each of the file
1065 ;;; name extensions listed in %load-extensions.
1066 (define (load-from-path name)
1067 (start-stack 'load-stack
1068 (primitive-load-path name)))
1069
1070 (define %load-verbosely #f)
1071 (define (assert-load-verbosity v) (set! %load-verbosely v))
1072
1073 (define (%load-announce file)
1074 (if %load-verbosely
1075 (with-output-to-port (current-error-port)
1076 (lambda ()
1077 (display ";;; ")
1078 (display "loading ")
1079 (display file)
1080 (newline)
1081 (force-output)))))
1082
1083 (set! %load-hook %load-announce)
1084
1085 (define (load name . reader)
1086 ;; Returns the .go file corresponding to `name'. Does not search load
1087 ;; paths, only the fallback path. If the .go file is missing or out of
1088 ;; date, and autocompilation is enabled, will try autocompilation, just
1089 ;; as primitive-load-path does internally. primitive-load is
1090 ;; unaffected. Returns #f if autocompilation failed or was disabled.
1091 ;;
1092 ;; NB: Unless we need to compile the file, this function should not cause
1093 ;; (system base compile) to be loaded up. For that reason compiled-file-name
1094 ;; partially duplicates functionality from (system base compile).
1095 (define (compiled-file-name canon-path)
1096 (and %compile-fallback-path
1097 (string-append
1098 %compile-fallback-path
1099 ;; no need for '/' separator here, canon-path is absolute
1100 canon-path
1101 (cond ((or (null? %load-compiled-extensions)
1102 (string-null? (car %load-compiled-extensions)))
1103 (warn "invalid %load-compiled-extensions"
1104 %load-compiled-extensions)
1105 ".go")
1106 (else (car %load-compiled-extensions))))))
1107 (define (fresh-compiled-file-name go-path)
1108 (catch #t
1109 (lambda ()
1110 (let* ((scmstat (stat name))
1111 (gostat (stat go-path #f)))
1112 (if (and gostat (= (stat:mtime gostat) (stat:mtime scmstat)))
1113 go-path
1114 (begin
1115 (if gostat
1116 (format (current-error-port)
1117 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
1118 name go-path))
1119 (cond
1120 (%load-should-autocompile
1121 (%warn-autocompilation-enabled)
1122 (format (current-error-port) ";;; compiling ~a\n" name)
1123 (let ((cfn ((@ (system base compile) compile-file) name
1124 #:env (current-module))))
1125 (format (current-error-port) ";;; compiled ~a\n" cfn)
1126 cfn))
1127 (else #f))))))
1128 (lambda (k . args)
1129 (format (current-error-port)
1130 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
1131 name k args)
1132 #f)))
1133 (with-fluids ((current-reader (and (pair? reader) (car reader))))
1134 (let ((cfn (and=> (and=> (false-if-exception (canonicalize-path name))
1135 compiled-file-name)
1136 fresh-compiled-file-name)))
1137 (if cfn
1138 (load-compiled cfn)
1139 (start-stack 'load-stack
1140 (primitive-load name))))))
1141
1142 \f
1143
1144 ;;; {Reader Extensions}
1145 ;;;
1146 ;;; Reader code for various "#c" forms.
1147 ;;;
1148
1149 (define read-eval? (make-fluid))
1150 (fluid-set! read-eval? #f)
1151 (read-hash-extend #\.
1152 (lambda (c port)
1153 (if (fluid-ref read-eval?)
1154 (eval (read port) (interaction-environment))
1155 (error
1156 "#. read expansion found and read-eval? is #f."))))
1157
1158 \f
1159
1160 ;;; {Command Line Options}
1161 ;;;
1162
1163 (define (get-option argv kw-opts kw-args return)
1164 (cond
1165 ((null? argv)
1166 (return #f #f argv))
1167
1168 ((or (not (eq? #\- (string-ref (car argv) 0)))
1169 (eq? (string-length (car argv)) 1))
1170 (return 'normal-arg (car argv) (cdr argv)))
1171
1172 ((eq? #\- (string-ref (car argv) 1))
1173 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
1174 (string-length (car argv))))
1175 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
1176 (kw-opt? (member kw kw-opts))
1177 (kw-arg? (member kw kw-args))
1178 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
1179 (substring (car argv)
1180 (+ kw-arg-pos 1)
1181 (string-length (car argv))))
1182 (and kw-arg?
1183 (begin (set! argv (cdr argv)) (car argv))))))
1184 (if (or kw-opt? kw-arg?)
1185 (return kw arg (cdr argv))
1186 (return 'usage-error kw (cdr argv)))))
1187
1188 (else
1189 (let* ((char (substring (car argv) 1 2))
1190 (kw (symbol->keyword char)))
1191 (cond
1192
1193 ((member kw kw-opts)
1194 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1195 (new-argv (if (= 0 (string-length rest-car))
1196 (cdr argv)
1197 (cons (string-append "-" rest-car) (cdr argv)))))
1198 (return kw #f new-argv)))
1199
1200 ((member kw kw-args)
1201 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1202 (arg (if (= 0 (string-length rest-car))
1203 (cadr argv)
1204 rest-car))
1205 (new-argv (if (= 0 (string-length rest-car))
1206 (cddr argv)
1207 (cdr argv))))
1208 (return kw arg new-argv)))
1209
1210 (else (return 'usage-error kw argv)))))))
1211
1212 (define (for-next-option proc argv kw-opts kw-args)
1213 (let loop ((argv argv))
1214 (get-option argv kw-opts kw-args
1215 (lambda (opt opt-arg argv)
1216 (and opt (proc opt opt-arg argv loop))))))
1217
1218 (define (display-usage-report kw-desc)
1219 (for-each
1220 (lambda (kw)
1221 (or (eq? (car kw) #t)
1222 (eq? (car kw) 'else)
1223 (let* ((opt-desc kw)
1224 (help (cadr opt-desc))
1225 (opts (car opt-desc))
1226 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1227 (arg-name (if (string? (car opts))
1228 (string-append "<" (car opts) ">")
1229 ""))
1230 (left-part (string-append
1231 (with-output-to-string
1232 (lambda ()
1233 (map (lambda (x) (display (keyword->symbol x)) (display " "))
1234 opts-proper)))
1235 arg-name))
1236 (middle-part (if (and (< (string-length left-part) 30)
1237 (< (string-length help) 40))
1238 (make-string (- 30 (string-length left-part)) #\ )
1239 "\n\t")))
1240 (display left-part)
1241 (display middle-part)
1242 (display help)
1243 (newline))))
1244 kw-desc))
1245
1246
1247
1248 (define (transform-usage-lambda cases)
1249 (let* ((raw-usage (delq! 'else (map car cases)))
1250 (usage-sans-specials (map (lambda (x)
1251 (or (and (not (list? x)) x)
1252 (and (symbol? (car x)) #t)
1253 (and (boolean? (car x)) #t)
1254 x))
1255 raw-usage))
1256 (usage-desc (delq! #t usage-sans-specials))
1257 (kw-desc (map car usage-desc))
1258 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1259 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1260 (transmogrified-cases (map (lambda (case)
1261 (cons (let ((opts (car case)))
1262 (if (or (boolean? opts) (eq? 'else opts))
1263 opts
1264 (cond
1265 ((symbol? (car opts)) opts)
1266 ((boolean? (car opts)) opts)
1267 ((string? (caar opts)) (cdar opts))
1268 (else (car opts)))))
1269 (cdr case)))
1270 cases)))
1271 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1272 (lambda (%argv)
1273 (let %next-arg ((%argv %argv))
1274 (get-option %argv
1275 ',kw-opts
1276 ',kw-args
1277 (lambda (%opt %arg %new-argv)
1278 (case %opt
1279 ,@ transmogrified-cases))))))))
1280
1281
1282 \f
1283
1284 ;;; {Low Level Modules}
1285 ;;;
1286 ;;; These are the low level data structures for modules.
1287 ;;;
1288 ;;; Every module object is of the type 'module-type', which is a record
1289 ;;; consisting of the following members:
1290 ;;;
1291 ;;; - eval-closure: the function that defines for its module the strategy that
1292 ;;; shall be followed when looking up symbols in the module.
1293 ;;;
1294 ;;; An eval-closure is a function taking two arguments: the symbol to be
1295 ;;; looked up and a boolean value telling whether a binding for the symbol
1296 ;;; should be created if it does not exist yet. If the symbol lookup
1297 ;;; succeeded (either because an existing binding was found or because a new
1298 ;;; binding was created), a variable object representing the binding is
1299 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1300 ;;; closure does not take the module to be searched as an argument: During
1301 ;;; construction of the eval-closure, the eval-closure has to store the
1302 ;;; module it belongs to in its environment. This means, that any
1303 ;;; eval-closure can belong to only one module.
1304 ;;;
1305 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1306 ;;; special cases of eval-closures are to be distinguished: During startup
1307 ;;; the module system is not yet activated. In this phase, no modules are
1308 ;;; defined and all bindings are automatically stored by the system in the
1309 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1310 ;;; functions which require an eval-closure as their argument need to be
1311 ;;; passed the value #f.
1312 ;;;
1313 ;;; The other two special cases of eval-closures are the
1314 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1315 ;;; behave equally for the case that no new binding is to be created. The
1316 ;;; difference between the two comes in, when the boolean argument to the
1317 ;;; eval-closure indicates that a new binding shall be created if it is not
1318 ;;; found.
1319 ;;;
1320 ;;; Given that no new binding shall be created, both standard eval-closures
1321 ;;; define the following standard strategy of searching bindings in the
1322 ;;; module: First, the module's obarray is searched for the symbol. Second,
1323 ;;; if no binding for the symbol was found in the module's obarray, the
1324 ;;; module's binder procedure is exececuted. If this procedure did not
1325 ;;; return a binding for the symbol, the modules referenced in the module's
1326 ;;; uses list are recursively searched for a binding of the symbol. If the
1327 ;;; binding can not be found in these modules also, the symbol lookup has
1328 ;;; failed.
1329 ;;;
1330 ;;; If a new binding shall be created, the standard-interface-eval-closure
1331 ;;; immediately returns indicating failure. That is, it does not even try
1332 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1333 ;;; first search the obarray, and if no binding was found there, would
1334 ;;; create a new binding in the obarray, therefore not calling the binder
1335 ;;; procedure or searching the modules in the uses list.
1336 ;;;
1337 ;;; The explanation of the following members obarray, binder and uses
1338 ;;; assumes that the symbol lookup follows the strategy that is defined in
1339 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1340 ;;;
1341 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1342 ;;; hash table, the definitions are found that are local to the module (that
1343 ;;; is, not imported from other modules). When looking up bindings in the
1344 ;;; module, this hash table is searched first.
1345 ;;;
1346 ;;; - binder: either #f or a function taking a module and a symbol argument.
1347 ;;; If it is a function it is called after the obarray has been
1348 ;;; unsuccessfully searched for a binding. It then can provide bindings
1349 ;;; that would otherwise not be found locally in the module.
1350 ;;;
1351 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1352 ;;; These modules are the third place queried for bindings after the obarray
1353 ;;; has been unsuccessfully searched and the binder function did not deliver
1354 ;;; a result either.
1355 ;;;
1356 ;;; - transformer: either #f or a function taking a scheme expression as
1357 ;;; delivered by read. If it is a function, it will be called to perform
1358 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1359 ;;; expression. The output of the transformer function will then be passed
1360 ;;; to Guile's internal memoizer. This means that the output must be valid
1361 ;;; scheme code. The only exception is, that the output may make use of the
1362 ;;; syntax extensions provided to identify the modules that a binding
1363 ;;; belongs to.
1364 ;;;
1365 ;;; - name: the name of the module. This is used for all kinds of printing
1366 ;;; outputs. In certain places the module name also serves as a way of
1367 ;;; identification. When adding a module to the uses list of another
1368 ;;; module, it is made sure that the new uses list will not contain two
1369 ;;; modules of the same name.
1370 ;;;
1371 ;;; - kind: classification of the kind of module. The value is (currently?)
1372 ;;; only used for printing. It has no influence on how a module is treated.
1373 ;;; Currently the following values are used when setting the module kind:
1374 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1375 ;;; is set, it defaults to 'module.
1376 ;;;
1377 ;;; - duplicates-handlers: a list of procedures that get called to make a
1378 ;;; choice between two duplicate bindings when name clashes occur. See the
1379 ;;; `duplicate-handlers' global variable below.
1380 ;;;
1381 ;;; - observers: a list of procedures that get called when the module is
1382 ;;; modified.
1383 ;;;
1384 ;;; - weak-observers: a weak-key hash table of procedures that get called
1385 ;;; when the module is modified. See `module-observe-weak' for details.
1386 ;;;
1387 ;;; In addition, the module may (must?) contain a binding for
1388 ;;; `%module-public-interface'. This variable should be bound to a module
1389 ;;; representing the exported interface of a module. See the
1390 ;;; `module-public-interface' and `module-export!' procedures.
1391 ;;;
1392 ;;; !!! warning: The interface to lazy binder procedures is going
1393 ;;; to be changed in an incompatible way to permit all the basic
1394 ;;; module ops to be virtualized.
1395 ;;;
1396 ;;; (make-module size use-list lazy-binding-proc) => module
1397 ;;; module-{obarray,uses,binder}[|-set!]
1398 ;;; (module? obj) => [#t|#f]
1399 ;;; (module-locally-bound? module symbol) => [#t|#f]
1400 ;;; (module-bound? module symbol) => [#t|#f]
1401 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1402 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1403 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1404 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1405 ;;; (module-symbol-binding module symbol opt-value)
1406 ;;; => [ <obj> | opt-value | an error occurs ]
1407 ;;; (module-make-local-var! module symbol) => #<variable...>
1408 ;;; (module-add! module symbol var) => unspecified
1409 ;;; (module-remove! module symbol) => unspecified
1410 ;;; (module-for-each proc module) => unspecified
1411 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1412 ;;; (set-current-module module) => unspecified
1413 ;;; (current-module) => #<module...>
1414 ;;;
1415 ;;;
1416
1417 \f
1418
1419 ;;; {Printing Modules}
1420 ;;;
1421
1422 ;; This is how modules are printed. You can re-define it.
1423 (define (%print-module mod port)
1424 (display "#<" port)
1425 (display (or (module-kind mod) "module") port)
1426 (display " " port)
1427 (display (module-name mod) port)
1428 (display " " port)
1429 (display (number->string (object-address mod) 16) port)
1430 (display ">" port))
1431
1432 (letrec-syntax
1433 ;; Locally extend the syntax to allow record accessors to be defined at
1434 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1435 ;; the setters, in order to allow for redefinition of the record type; not
1436 ;; relevant in the case of modules, but perhaps if we make this public, it
1437 ;; could matter.
1438
1439 ((define-record-type
1440 (lambda (x)
1441 (define (make-id scope . fragments)
1442 (datum->syntax #'scope
1443 (apply symbol-append
1444 (map (lambda (x)
1445 (if (symbol? x) x (syntax->datum x)))
1446 fragments))))
1447
1448 (define (getter rtd type-name field slot)
1449 #`(define #,(make-id rtd type-name '- field)
1450 (let ((rtd #,rtd))
1451 (lambda (#,type-name)
1452 (if (eq? (struct-vtable #,type-name) rtd)
1453 (struct-ref #,type-name #,slot)
1454 (%record-type-error rtd #,type-name))))))
1455
1456 (define (setter rtd type-name field slot)
1457 #`(define #,(make-id rtd 'set- type-name '- field '!)
1458 (let ((rtd #,rtd))
1459 (lambda (#,type-name val)
1460 (if (eq? (struct-vtable #,type-name) rtd)
1461 (struct-set! #,type-name #,slot val)
1462 (%record-type-error rtd #,type-name))))))
1463
1464 (define (accessors rtd type-name fields n exp)
1465 (syntax-case fields ()
1466 (() exp)
1467 (((field #:no-accessors) field* ...) (identifier? #'field)
1468 (accessors rtd type-name #'(field* ...) (1+ n)
1469 exp))
1470 (((field #:no-setter) field* ...) (identifier? #'field)
1471 (accessors rtd type-name #'(field* ...) (1+ n)
1472 #`(begin #,exp
1473 #,(getter rtd type-name #'field n))))
1474 (((field #:no-getter) field* ...) (identifier? #'field)
1475 (accessors rtd type-name #'(field* ...) (1+ n)
1476 #`(begin #,exp
1477 #,(setter rtd type-name #'field n))))
1478 ((field field* ...) (identifier? #'field)
1479 (accessors rtd type-name #'(field* ...) (1+ n)
1480 #`(begin #,exp
1481 #,(getter rtd type-name #'field n)
1482 #,(setter rtd type-name #'field n))))))
1483
1484 (define (predicate rtd type-name fields exp)
1485 (accessors
1486 rtd type-name fields 0
1487 #`(begin
1488 #,exp
1489 (define (#,(make-id rtd type-name '?) obj)
1490 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1491
1492 (define (field-list fields)
1493 (syntax-case fields ()
1494 (() '())
1495 (((f . opts) . rest) (identifier? #'f)
1496 (cons #'f (field-list #'rest)))
1497 ((f . rest) (identifier? #'f)
1498 (cons #'f (field-list #'rest)))))
1499
1500 (define (constructor rtd type-name fields exp)
1501 (let ((ctor (make-id rtd type-name '-constructor))
1502 (args (field-list fields)))
1503 (predicate rtd type-name fields
1504 #`(begin #,exp
1505 (define #,ctor
1506 (let ((rtd #,rtd))
1507 (lambda #,args
1508 (make-struct rtd 0 #,@args))))
1509 (struct-set! #,rtd (+ vtable-offset-user 2)
1510 #,ctor)))))
1511
1512 (define (type type-name printer fields)
1513 (define (make-layout)
1514 (let lp ((fields fields) (slots '()))
1515 (syntax-case fields ()
1516 (() (datum->syntax #'here
1517 (make-struct-layout
1518 (apply string-append slots))))
1519 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1520
1521 (let ((rtd (make-id type-name type-name '-type)))
1522 (constructor rtd type-name fields
1523 #`(begin
1524 (define #,rtd
1525 (make-struct record-type-vtable 0
1526 '#,(make-layout)
1527 #,printer
1528 '#,type-name
1529 '#,(field-list fields)))
1530 (set-struct-vtable-name! #,rtd '#,type-name)))))
1531
1532 (syntax-case x ()
1533 ((_ type-name printer (field ...))
1534 (type #'type-name #'printer #'(field ...)))))))
1535
1536 ;; module-type
1537 ;;
1538 ;; A module is characterized by an obarray in which local symbols
1539 ;; are interned, a list of modules, "uses", from which non-local
1540 ;; bindings can be inherited, and an optional lazy-binder which
1541 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1542 ;; bindings that would otherwise not be found locally in the module.
1543 ;;
1544 ;; NOTE: If you change the set of fields or their order, you also need to
1545 ;; change the constants in libguile/modules.h.
1546 ;;
1547 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1548 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1549 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1550 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1551 ;;
1552 (define-record-type module
1553 (lambda (obj port) (%print-module obj port))
1554 (obarray
1555 uses
1556 binder
1557 eval-closure
1558 (transformer #:no-getter)
1559 (name #:no-getter)
1560 kind
1561 duplicates-handlers
1562 (import-obarray #:no-setter)
1563 observers
1564 (weak-observers #:no-setter)
1565 version
1566 submodules
1567 submodule-binder
1568 public-interface)))
1569
1570
1571 ;; make-module &opt size uses binder
1572 ;;
1573 ;; Create a new module, perhaps with a particular size of obarray,
1574 ;; initial uses list, or binding procedure.
1575 ;;
1576 (define make-module
1577 (lambda args
1578
1579 (define (parse-arg index default)
1580 (if (> (length args) index)
1581 (list-ref args index)
1582 default))
1583
1584 (define %default-import-size
1585 ;; Typical number of imported bindings actually used by a module.
1586 600)
1587
1588 (if (> (length args) 3)
1589 (error "Too many args to make-module." args))
1590
1591 (let ((size (parse-arg 0 31))
1592 (uses (parse-arg 1 '()))
1593 (binder (parse-arg 2 #f)))
1594
1595 (if (not (integer? size))
1596 (error "Illegal size to make-module." size))
1597 (if (not (and (list? uses)
1598 (and-map module? uses)))
1599 (error "Incorrect use list." uses))
1600 (if (and binder (not (procedure? binder)))
1601 (error
1602 "Lazy-binder expected to be a procedure or #f." binder))
1603
1604 (let ((module (module-constructor (make-hash-table size)
1605 uses binder #f macroexpand
1606 #f #f #f
1607 (make-hash-table %default-import-size)
1608 '()
1609 (make-weak-key-hash-table 31) #f
1610 (make-hash-table 7) #f #f)))
1611
1612 ;; We can't pass this as an argument to module-constructor,
1613 ;; because we need it to close over a pointer to the module
1614 ;; itself.
1615 (set-module-eval-closure! module (standard-eval-closure module))
1616
1617 module))))
1618
1619
1620 \f
1621
1622 ;;; {Observer protocol}
1623 ;;;
1624
1625 (define (module-observe module proc)
1626 (set-module-observers! module (cons proc (module-observers module)))
1627 (cons module proc))
1628
1629 (define (module-observe-weak module observer-id . proc)
1630 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1631 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1632 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1633 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1634 ;; for instance).
1635
1636 ;; The two-argument version is kept for backward compatibility: when called
1637 ;; with two arguments, the observer gets unregistered when closure PROC
1638 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1639
1640 (let ((proc (if (null? proc) observer-id (car proc))))
1641 (hashq-set! (module-weak-observers module) observer-id proc)))
1642
1643 (define (module-unobserve token)
1644 (let ((module (car token))
1645 (id (cdr token)))
1646 (if (integer? id)
1647 (hash-remove! (module-weak-observers module) id)
1648 (set-module-observers! module (delq1! id (module-observers module)))))
1649 *unspecified*)
1650
1651 (define module-defer-observers #f)
1652 (define module-defer-observers-mutex (make-mutex 'recursive))
1653 (define module-defer-observers-table (make-hash-table))
1654
1655 (define (module-modified m)
1656 (if module-defer-observers
1657 (hash-set! module-defer-observers-table m #t)
1658 (module-call-observers m)))
1659
1660 ;;; This function can be used to delay calls to observers so that they
1661 ;;; can be called once only in the face of massive updating of modules.
1662 ;;;
1663 (define (call-with-deferred-observers thunk)
1664 (dynamic-wind
1665 (lambda ()
1666 (lock-mutex module-defer-observers-mutex)
1667 (set! module-defer-observers #t))
1668 thunk
1669 (lambda ()
1670 (set! module-defer-observers #f)
1671 (hash-for-each (lambda (m dummy)
1672 (module-call-observers m))
1673 module-defer-observers-table)
1674 (hash-clear! module-defer-observers-table)
1675 (unlock-mutex module-defer-observers-mutex))))
1676
1677 (define (module-call-observers m)
1678 (for-each (lambda (proc) (proc m)) (module-observers m))
1679
1680 ;; We assume that weak observers don't (un)register themselves as they are
1681 ;; called since this would preclude proper iteration over the hash table
1682 ;; elements.
1683 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1684
1685 \f
1686
1687 ;;; {Module Searching in General}
1688 ;;;
1689 ;;; We sometimes want to look for properties of a symbol
1690 ;;; just within the obarray of one module. If the property
1691 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1692 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1693 ;;;
1694 ;;;
1695 ;;; Other times, we want to test for a symbol property in the obarray
1696 ;;; of M and, if it is not found there, try each of the modules in the
1697 ;;; uses list of M. This is the normal way of testing for some
1698 ;;; property, so we state these properties without qualification as
1699 ;;; in: ``The symbol 'fnord is interned in module M because it is
1700 ;;; interned locally in module M2 which is a member of the uses list
1701 ;;; of M.''
1702 ;;;
1703
1704 ;; module-search fn m
1705 ;;
1706 ;; return the first non-#f result of FN applied to M and then to
1707 ;; the modules in the uses of m, and so on recursively. If all applications
1708 ;; return #f, then so does this function.
1709 ;;
1710 (define (module-search fn m v)
1711 (define (loop pos)
1712 (and (pair? pos)
1713 (or (module-search fn (car pos) v)
1714 (loop (cdr pos)))))
1715 (or (fn m v)
1716 (loop (module-uses m))))
1717
1718
1719 ;;; {Is a symbol bound in a module?}
1720 ;;;
1721 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1722 ;;; of S in M has been set to some well-defined value.
1723 ;;;
1724
1725 ;; module-locally-bound? module symbol
1726 ;;
1727 ;; Is a symbol bound (interned and defined) locally in a given module?
1728 ;;
1729 (define (module-locally-bound? m v)
1730 (let ((var (module-local-variable m v)))
1731 (and var
1732 (variable-bound? var))))
1733
1734 ;; module-bound? module symbol
1735 ;;
1736 ;; Is a symbol bound (interned and defined) anywhere in a given module
1737 ;; or its uses?
1738 ;;
1739 (define (module-bound? m v)
1740 (let ((var (module-variable m v)))
1741 (and var
1742 (variable-bound? var))))
1743
1744 ;;; {Is a symbol interned in a module?}
1745 ;;;
1746 ;;; Symbol S in Module M is interned if S occurs in
1747 ;;; of S in M has been set to some well-defined value.
1748 ;;;
1749 ;;; It is possible to intern a symbol in a module without providing
1750 ;;; an initial binding for the corresponding variable. This is done
1751 ;;; with:
1752 ;;; (module-add! module symbol (make-undefined-variable))
1753 ;;;
1754 ;;; In that case, the symbol is interned in the module, but not
1755 ;;; bound there. The unbound symbol shadows any binding for that
1756 ;;; symbol that might otherwise be inherited from a member of the uses list.
1757 ;;;
1758
1759 (define (module-obarray-get-handle ob key)
1760 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1761
1762 (define (module-obarray-ref ob key)
1763 ((if (symbol? key) hashq-ref hash-ref) ob key))
1764
1765 (define (module-obarray-set! ob key val)
1766 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1767
1768 (define (module-obarray-remove! ob key)
1769 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1770
1771 ;; module-symbol-locally-interned? module symbol
1772 ;;
1773 ;; is a symbol interned (not neccessarily defined) locally in a given module
1774 ;; or its uses? Interned symbols shadow inherited bindings even if
1775 ;; they are not themselves bound to a defined value.
1776 ;;
1777 (define (module-symbol-locally-interned? m v)
1778 (not (not (module-obarray-get-handle (module-obarray m) v))))
1779
1780 ;; module-symbol-interned? module symbol
1781 ;;
1782 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1783 ;; or its uses? Interned symbols shadow inherited bindings even if
1784 ;; they are not themselves bound to a defined value.
1785 ;;
1786 (define (module-symbol-interned? m v)
1787 (module-search module-symbol-locally-interned? m v))
1788
1789
1790 ;;; {Mapping modules x symbols --> variables}
1791 ;;;
1792
1793 ;; module-local-variable module symbol
1794 ;; return the local variable associated with a MODULE and SYMBOL.
1795 ;;
1796 ;;; This function is very important. It is the only function that can
1797 ;;; return a variable from a module other than the mutators that store
1798 ;;; new variables in modules. Therefore, this function is the location
1799 ;;; of the "lazy binder" hack.
1800 ;;;
1801 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1802 ;;; to a variable, return that variable object.
1803 ;;;
1804 ;;; If the symbols is not found at first, but the module has a lazy binder,
1805 ;;; then try the binder.
1806 ;;;
1807 ;;; If the symbol is not found at all, return #f.
1808 ;;;
1809 ;;; (This is now written in C, see `modules.c'.)
1810 ;;;
1811
1812 ;;; {Mapping modules x symbols --> bindings}
1813 ;;;
1814 ;;; These are similar to the mapping to variables, except that the
1815 ;;; variable is dereferenced.
1816 ;;;
1817
1818 ;; module-symbol-binding module symbol opt-value
1819 ;;
1820 ;; return the binding of a variable specified by name within
1821 ;; a given module, signalling an error if the variable is unbound.
1822 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1823 ;; return OPT-VALUE.
1824 ;;
1825 (define (module-symbol-local-binding m v . opt-val)
1826 (let ((var (module-local-variable m v)))
1827 (if (and var (variable-bound? var))
1828 (variable-ref var)
1829 (if (not (null? opt-val))
1830 (car opt-val)
1831 (error "Locally unbound variable." v)))))
1832
1833 ;; module-symbol-binding module symbol opt-value
1834 ;;
1835 ;; return the binding of a variable specified by name within
1836 ;; a given module, signalling an error if the variable is unbound.
1837 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1838 ;; return OPT-VALUE.
1839 ;;
1840 (define (module-symbol-binding m v . opt-val)
1841 (let ((var (module-variable m v)))
1842 (if (and var (variable-bound? var))
1843 (variable-ref var)
1844 (if (not (null? opt-val))
1845 (car opt-val)
1846 (error "Unbound variable." v)))))
1847
1848
1849 \f
1850
1851 ;;; {Adding Variables to Modules}
1852 ;;;
1853
1854 ;; module-make-local-var! module symbol
1855 ;;
1856 ;; ensure a variable for V in the local namespace of M.
1857 ;; If no variable was already there, then create a new and uninitialzied
1858 ;; variable.
1859 ;;
1860 ;; This function is used in modules.c.
1861 ;;
1862 (define (module-make-local-var! m v)
1863 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1864 (and (variable? b)
1865 (begin
1866 ;; Mark as modified since this function is called when
1867 ;; the standard eval closure defines a binding
1868 (module-modified m)
1869 b)))
1870
1871 ;; Create a new local variable.
1872 (let ((local-var (make-undefined-variable)))
1873 (module-add! m v local-var)
1874 local-var)))
1875
1876 ;; module-ensure-local-variable! module symbol
1877 ;;
1878 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1879 ;; there is no binding for SYMBOL, create a new uninitialized
1880 ;; variable. Return the local variable.
1881 ;;
1882 (define (module-ensure-local-variable! module symbol)
1883 (or (module-local-variable module symbol)
1884 (let ((var (make-undefined-variable)))
1885 (module-add! module symbol var)
1886 var)))
1887
1888 ;; module-add! module symbol var
1889 ;;
1890 ;; ensure a particular variable for V in the local namespace of M.
1891 ;;
1892 (define (module-add! m v var)
1893 (if (not (variable? var))
1894 (error "Bad variable to module-add!" var))
1895 (module-obarray-set! (module-obarray m) v var)
1896 (module-modified m))
1897
1898 ;; module-remove!
1899 ;;
1900 ;; make sure that a symbol is undefined in the local namespace of M.
1901 ;;
1902 (define (module-remove! m v)
1903 (module-obarray-remove! (module-obarray m) v)
1904 (module-modified m))
1905
1906 (define (module-clear! m)
1907 (hash-clear! (module-obarray m))
1908 (module-modified m))
1909
1910 ;; MODULE-FOR-EACH -- exported
1911 ;;
1912 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1913 ;;
1914 (define (module-for-each proc module)
1915 (hash-for-each proc (module-obarray module)))
1916
1917 (define (module-map proc module)
1918 (hash-map->list proc (module-obarray module)))
1919
1920 ;; Submodules
1921 ;;
1922 ;; Modules exist in a separate namespace from values, because you generally do
1923 ;; not want the name of a submodule, which you might not even use, to collide
1924 ;; with local variables that happen to be named the same as the submodule.
1925 ;;
1926 (define (module-ref-submodule module name)
1927 (or (hashq-ref (module-submodules module) name)
1928 (and (module-submodule-binder module)
1929 ((module-submodule-binder module) module name))))
1930
1931 (define (module-define-submodule! module name submodule)
1932 (hashq-set! (module-submodules module) name submodule))
1933
1934 \f
1935
1936 ;;; {Low Level Bootstrapping}
1937 ;;;
1938
1939 ;; make-root-module
1940
1941 ;; A root module uses the pre-modules-obarray as its obarray. This
1942 ;; special obarray accumulates all bindings that have been established
1943 ;; before the module system is fully booted.
1944 ;;
1945 ;; (The obarray continues to be used by code that has been closed over
1946 ;; before the module system has been booted.)
1947
1948 (define (make-root-module)
1949 (let ((m (make-module 0)))
1950 (set-module-obarray! m (%get-pre-modules-obarray))
1951 m))
1952
1953 ;; make-scm-module
1954
1955 ;; The root interface is a module that uses the same obarray as the
1956 ;; root module. It does not allow new definitions, tho.
1957
1958 (define (make-scm-module)
1959 (let ((m (make-module 0)))
1960 (set-module-obarray! m (%get-pre-modules-obarray))
1961 (set-module-eval-closure! m (standard-interface-eval-closure m))
1962 m))
1963
1964
1965 \f
1966
1967 ;;; {Module-based Loading}
1968 ;;;
1969
1970 (define (save-module-excursion thunk)
1971 (let ((inner-module (current-module))
1972 (outer-module #f))
1973 (dynamic-wind (lambda ()
1974 (set! outer-module (current-module))
1975 (set-current-module inner-module)
1976 (set! inner-module #f))
1977 thunk
1978 (lambda ()
1979 (set! inner-module (current-module))
1980 (set-current-module outer-module)
1981 (set! outer-module #f)))))
1982
1983 (define basic-load load)
1984
1985 (define (load-module filename . reader)
1986 (save-module-excursion
1987 (lambda ()
1988 (let ((oldname (and (current-load-port)
1989 (port-filename (current-load-port)))))
1990 (apply basic-load
1991 (if (and oldname
1992 (> (string-length filename) 0)
1993 (not (char=? (string-ref filename 0) #\/))
1994 (not (string=? (dirname oldname) ".")))
1995 (string-append (dirname oldname) "/" filename)
1996 filename)
1997 reader)))))
1998
1999
2000 \f
2001
2002 ;;; {MODULE-REF -- exported}
2003 ;;;
2004
2005 ;; Returns the value of a variable called NAME in MODULE or any of its
2006 ;; used modules. If there is no such variable, then if the optional third
2007 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2008 ;;
2009 (define (module-ref module name . rest)
2010 (let ((variable (module-variable module name)))
2011 (if (and variable (variable-bound? variable))
2012 (variable-ref variable)
2013 (if (null? rest)
2014 (error "No variable named" name 'in module)
2015 (car rest) ; default value
2016 ))))
2017
2018 ;; MODULE-SET! -- exported
2019 ;;
2020 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2021 ;; to VALUE; if there is no such variable, an error is signaled.
2022 ;;
2023 (define (module-set! module name value)
2024 (let ((variable (module-variable module name)))
2025 (if variable
2026 (variable-set! variable value)
2027 (error "No variable named" name 'in module))))
2028
2029 ;; MODULE-DEFINE! -- exported
2030 ;;
2031 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2032 ;; variable, it is added first.
2033 ;;
2034 (define (module-define! module name value)
2035 (let ((variable (module-local-variable module name)))
2036 (if variable
2037 (begin
2038 (variable-set! variable value)
2039 (module-modified module))
2040 (let ((variable (make-variable value)))
2041 (module-add! module name variable)))))
2042
2043 ;; MODULE-DEFINED? -- exported
2044 ;;
2045 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2046 ;; uses)
2047 ;;
2048 (define (module-defined? module name)
2049 (let ((variable (module-variable module name)))
2050 (and variable (variable-bound? variable))))
2051
2052 ;; MODULE-USE! module interface
2053 ;;
2054 ;; Add INTERFACE to the list of interfaces used by MODULE.
2055 ;;
2056 (define (module-use! module interface)
2057 (if (not (or (eq? module interface)
2058 (memq interface (module-uses module))))
2059 (begin
2060 ;; Newly used modules must be appended rather than consed, so that
2061 ;; `module-variable' traverses the use list starting from the first
2062 ;; used module.
2063 (set-module-uses! module
2064 (append (filter (lambda (m)
2065 (not
2066 (equal? (module-name m)
2067 (module-name interface))))
2068 (module-uses module))
2069 (list interface)))
2070 (hash-clear! (module-import-obarray module))
2071 (module-modified module))))
2072
2073 ;; MODULE-USE-INTERFACES! module interfaces
2074 ;;
2075 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
2076 ;;
2077 (define (module-use-interfaces! module interfaces)
2078 (set-module-uses! module
2079 (append (module-uses module) interfaces))
2080 (hash-clear! (module-import-obarray module))
2081 (module-modified module))
2082
2083 \f
2084
2085 ;;; {Recursive Namespaces}
2086 ;;;
2087 ;;; A hierarchical namespace emerges if we consider some module to be
2088 ;;; root, and submodules of that module to be nested namespaces.
2089 ;;;
2090 ;;; The routines here manage variable names in hierarchical namespace.
2091 ;;; Each variable name is a list of elements, looked up in successively nested
2092 ;;; modules.
2093 ;;;
2094 ;;; (nested-ref some-root-module '(foo bar baz))
2095 ;;; => <value of a variable named baz in the submodule bar of
2096 ;;; the submodule foo of some-root-module>
2097 ;;;
2098 ;;;
2099 ;;; There are:
2100 ;;;
2101 ;;; ;; a-root is a module
2102 ;;; ;; name is a list of symbols
2103 ;;;
2104 ;;; nested-ref a-root name
2105 ;;; nested-set! a-root name val
2106 ;;; nested-define! a-root name val
2107 ;;; nested-remove! a-root name
2108 ;;;
2109 ;;; These functions manipulate values in namespaces. For referencing the
2110 ;;; namespaces themselves, use the following:
2111 ;;;
2112 ;;; nested-ref-module a-root name
2113 ;;; nested-define-module! a-root name mod
2114 ;;;
2115 ;;; (current-module) is a natural choice for a root so for convenience there are
2116 ;;; also:
2117 ;;;
2118 ;;; local-ref name == nested-ref (current-module) name
2119 ;;; local-set! name val == nested-set! (current-module) name val
2120 ;;; local-define name val == nested-define! (current-module) name val
2121 ;;; local-remove name == nested-remove! (current-module) name
2122 ;;; local-ref-module name == nested-ref-module (current-module) name
2123 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2124 ;;;
2125
2126
2127 (define (nested-ref root names)
2128 (if (null? names)
2129 root
2130 (let loop ((cur root)
2131 (head (car names))
2132 (tail (cdr names)))
2133 (if (null? tail)
2134 (module-ref cur head #f)
2135 (let ((cur (module-ref-submodule cur head)))
2136 (and cur
2137 (loop cur (car tail) (cdr tail))))))))
2138
2139 (define (nested-set! root names val)
2140 (let loop ((cur root)
2141 (head (car names))
2142 (tail (cdr names)))
2143 (if (null? tail)
2144 (module-set! cur head val)
2145 (let ((cur (module-ref-submodule cur head)))
2146 (if (not cur)
2147 (error "failed to resolve module" names)
2148 (loop cur (car tail) (cdr tail)))))))
2149
2150 (define (nested-define! root names val)
2151 (let loop ((cur root)
2152 (head (car names))
2153 (tail (cdr names)))
2154 (if (null? tail)
2155 (module-define! cur head val)
2156 (let ((cur (module-ref-submodule cur head)))
2157 (if (not cur)
2158 (error "failed to resolve module" names)
2159 (loop cur (car tail) (cdr tail)))))))
2160
2161 (define (nested-remove! root names)
2162 (let loop ((cur root)
2163 (head (car names))
2164 (tail (cdr names)))
2165 (if (null? tail)
2166 (module-remove! cur head)
2167 (let ((cur (module-ref-submodule cur head)))
2168 (if (not cur)
2169 (error "failed to resolve module" names)
2170 (loop cur (car tail) (cdr tail)))))))
2171
2172
2173 (define (nested-ref-module root names)
2174 (let loop ((cur root)
2175 (names names))
2176 (if (null? names)
2177 cur
2178 (let ((cur (module-ref-submodule cur (car names))))
2179 (and cur
2180 (loop cur (cdr names)))))))
2181
2182 (define (nested-define-module! root names module)
2183 (if (null? names)
2184 (error "can't redefine root module" root module)
2185 (let loop ((cur root)
2186 (head (car names))
2187 (tail (cdr names)))
2188 (if (null? tail)
2189 (module-define-submodule! cur head module)
2190 (let ((cur (or (module-ref-submodule cur head)
2191 (let ((m (make-module 31)))
2192 (set-module-kind! m 'directory)
2193 (set-module-name! m (append (module-name cur)
2194 (list head)))
2195 (module-define-submodule! cur head m)
2196 m))))
2197 (loop cur (car tail) (cdr tail)))))))
2198
2199
2200 (define (local-ref names) (nested-ref (current-module) names))
2201 (define (local-set! names val) (nested-set! (current-module) names val))
2202 (define (local-define names val) (nested-define! (current-module) names val))
2203 (define (local-remove names) (nested-remove! (current-module) names))
2204 (define (local-ref-module names) (nested-ref-module (current-module) names))
2205 (define (local-define-module names mod) (nested-define-module! (current-module) names mod))
2206
2207
2208
2209 \f
2210
2211 ;;; {The (guile) module}
2212 ;;;
2213 ;;; The standard module, which has the core Guile bindings. Also called the
2214 ;;; "root module", as it is imported by many other modules, but it is not
2215 ;;; necessarily the root of anything; and indeed, the module named '() might be
2216 ;;; better thought of as a root.
2217 ;;;
2218
2219 (define (set-system-module! m s)
2220 (set-procedure-property! (module-eval-closure m) 'system-module s))
2221 (define the-root-module (make-root-module))
2222 (define the-scm-module (make-scm-module))
2223 (set-module-public-interface! the-root-module the-scm-module)
2224 (set-module-name! the-root-module '(guile))
2225 (set-module-name! the-scm-module '(guile))
2226 (set-module-kind! the-scm-module 'interface)
2227 (set-system-module! the-root-module #t)
2228 (set-system-module! the-scm-module #t)
2229
2230
2231 \f
2232
2233 ;; Now that we have a root module, even though modules aren't fully booted,
2234 ;; expand the definition of resolve-module.
2235 ;;
2236 (define (resolve-module name . args)
2237 (if (equal? name '(guile))
2238 the-root-module
2239 (error "unexpected module to resolve during module boot" name)))
2240
2241 ;; Cheat. These bindings are needed by modules.c, but we don't want
2242 ;; to move their real definition here because that would be unnatural.
2243 ;;
2244 (define process-define-module #f)
2245 (define process-use-modules #f)
2246 (define module-export! #f)
2247 (define default-duplicate-binding-procedures #f)
2248
2249 ;; This boots the module system. All bindings needed by modules.c
2250 ;; must have been defined by now.
2251 ;;
2252 (set-current-module the-root-module)
2253
2254
2255 \f
2256
2257 ;; Now that modules are booted, give module-name its final definition.
2258 ;;
2259 (define module-name
2260 (let ((accessor (record-accessor module-type 'name)))
2261 (lambda (mod)
2262 (or (accessor mod)
2263 (let ((name (list (gensym))))
2264 ;; Name MOD and bind it in the module root so that it's visible to
2265 ;; `resolve-module'. This is important as `psyntax' stores module
2266 ;; names and relies on being able to `resolve-module' them.
2267 (set-module-name! mod name)
2268 (nested-define-module! (resolve-module '() #f) name mod)
2269 (accessor mod))))))
2270
2271 (define (make-modules-in module name)
2272 (or (nested-ref-module module name)
2273 (let ((m (make-module 31)))
2274 (set-module-kind! m 'directory)
2275 (set-module-name! m (append (module-name module) name))
2276 (nested-define-module! module name m)
2277 m)))
2278
2279 (define (beautify-user-module! module)
2280 (let ((interface (module-public-interface module)))
2281 (if (or (not interface)
2282 (eq? interface module))
2283 (let ((interface (make-module 31)))
2284 (set-module-name! interface (module-name module))
2285 (set-module-version! interface (module-version module))
2286 (set-module-kind! interface 'interface)
2287 (set-module-public-interface! module interface))))
2288 (if (and (not (memq the-scm-module (module-uses module)))
2289 (not (eq? module the-root-module)))
2290 ;; Import the default set of bindings (from the SCM module) in MODULE.
2291 (module-use! module the-scm-module)))
2292
2293 (define (version-matches? version-ref target)
2294 (define (any pred lst)
2295 (and (not (null? lst)) (or (pred (car lst)) (any pred (cdr lst)))))
2296 (define (every pred lst)
2297 (or (null? lst) (and (pred (car lst)) (every pred (cdr lst)))))
2298 (define (sub-versions-match? v-refs t)
2299 (define (sub-version-matches? v-ref t)
2300 (define (curried-sub-version-matches? v)
2301 (sub-version-matches? v t))
2302 (cond ((number? v-ref) (eqv? v-ref t))
2303 ((list? v-ref)
2304 (let ((cv (car v-ref)))
2305 (cond ((eq? cv '>=) (>= t (cadr v-ref)))
2306 ((eq? cv '<=) (<= t (cadr v-ref)))
2307 ((eq? cv 'and)
2308 (every curried-sub-version-matches? (cdr v-ref)))
2309 ((eq? cv 'or)
2310 (any curried-sub-version-matches? (cdr v-ref)))
2311 ((eq? cv 'not) (not (sub-version-matches? (cadr v-ref) t)))
2312 (else (error "Incompatible sub-version reference" cv)))))
2313 (else (error "Incompatible sub-version reference" v-ref))))
2314 (or (null? v-refs)
2315 (and (not (null? t))
2316 (sub-version-matches? (car v-refs) (car t))
2317 (sub-versions-match? (cdr v-refs) (cdr t)))))
2318 (define (curried-version-matches? v)
2319 (version-matches? v target))
2320 (or (null? version-ref)
2321 (let ((cv (car version-ref)))
2322 (cond ((eq? cv 'and) (every curried-version-matches? (cdr version-ref)))
2323 ((eq? cv 'or) (any curried-version-matches? (cdr version-ref)))
2324 ((eq? cv 'not) (not (version-matches? (cadr version-ref) target)))
2325 (else (sub-versions-match? version-ref target))))))
2326
2327 (define (find-versioned-module dir-hint name version-ref roots)
2328 (define (subdir-pair-less pair1 pair2)
2329 (define (numlist-less lst1 lst2)
2330 (or (null? lst2)
2331 (and (not (null? lst1))
2332 (cond ((> (car lst1) (car lst2)) #t)
2333 ((< (car lst1) (car lst2)) #f)
2334 (else (numlist-less (cdr lst1) (cdr lst2)))))))
2335 (numlist-less (car pair1) (car pair2)))
2336 (define (match-version-and-file pair)
2337 (and (version-matches? version-ref (car pair))
2338 (let ((filenames
2339 (filter (lambda (file)
2340 (let ((s (false-if-exception (stat file))))
2341 (and s (eq? (stat:type s) 'regular))))
2342 (map (lambda (ext)
2343 (string-append (cdr pair) "/" name ext))
2344 %load-extensions))))
2345 (and (not (null? filenames))
2346 (cons (car pair) (car filenames))))))
2347
2348 (define (match-version-recursive root-pairs leaf-pairs)
2349 (define (filter-subdirs root-pairs ret)
2350 (define (filter-subdir root-pair dstrm subdir-pairs)
2351 (let ((entry (readdir dstrm)))
2352 (if (eof-object? entry)
2353 subdir-pairs
2354 (let* ((subdir (string-append (cdr root-pair) "/" entry))
2355 (num (string->number entry))
2356 (num (and num (append (car root-pair) (list num)))))
2357 (if (and num (eq? (stat:type (stat subdir)) 'directory))
2358 (filter-subdir
2359 root-pair dstrm (cons (cons num subdir) subdir-pairs))
2360 (filter-subdir root-pair dstrm subdir-pairs))))))
2361
2362 (or (and (null? root-pairs) ret)
2363 (let* ((rp (car root-pairs))
2364 (dstrm (false-if-exception (opendir (cdr rp)))))
2365 (if dstrm
2366 (let ((subdir-pairs (filter-subdir rp dstrm '())))
2367 (closedir dstrm)
2368 (filter-subdirs (cdr root-pairs)
2369 (or (and (null? subdir-pairs) ret)
2370 (append ret subdir-pairs))))
2371 (filter-subdirs (cdr root-pairs) ret)))))
2372
2373 (or (and (null? root-pairs) leaf-pairs)
2374 (let ((matching-subdir-pairs (filter-subdirs root-pairs '())))
2375 (match-version-recursive
2376 matching-subdir-pairs
2377 (append leaf-pairs (filter pair? (map match-version-and-file
2378 matching-subdir-pairs)))))))
2379 (define (make-root-pair root)
2380 (cons '() (string-append root "/" dir-hint)))
2381
2382 (let* ((root-pairs (map make-root-pair roots))
2383 (matches (if (null? version-ref)
2384 (filter pair? (map match-version-and-file root-pairs))
2385 '()))
2386 (matches (append matches (match-version-recursive root-pairs '()))))
2387 (and (null? matches) (error "No matching modules found."))
2388 (cdar (sort matches subdir-pair-less))))
2389
2390 (define (make-fresh-user-module)
2391 (let ((m (make-module)))
2392 (beautify-user-module! m)
2393 m))
2394
2395 ;; NOTE: This binding is used in libguile/modules.c.
2396 ;;
2397 (define resolve-module
2398 (let ((root (make-module)))
2399 (set-module-name! root '())
2400 ;; Define the-root-module as '(guile).
2401 (module-define-submodule! root 'guile the-root-module)
2402
2403 (lambda (name . args) ;; #:optional (autoload #t) (version #f)
2404 (let* ((already (nested-ref-module root name))
2405 (numargs (length args))
2406 (autoload (or (= numargs 0) (car args)))
2407 (version (and (> numargs 1) (cadr args))))
2408 (cond
2409 ((and already
2410 (or (not autoload) (module-public-interface already)))
2411 ;; A hit, a palpable hit.
2412 (if (and version
2413 (not (version-matches? version (module-version already))))
2414 (error "incompatible module version already loaded" name))
2415 already)
2416 (autoload
2417 ;; Try to autoload the module, and recurse.
2418 (try-load-module name version)
2419 (resolve-module name #f))
2420 (else
2421 ;; No module found (or if one was, it had no public interface), and
2422 ;; we're not autoloading. Here's the weird semantics: we ensure
2423 ;; there's an empty module.
2424 (or already (make-modules-in root name))))))))
2425
2426
2427 (define (try-load-module name version)
2428 (try-module-autoload name version))
2429
2430 (define (purify-module! module)
2431 "Removes bindings in MODULE which are inherited from the (guile) module."
2432 (let ((use-list (module-uses module)))
2433 (if (and (pair? use-list)
2434 (eq? (car (last-pair use-list)) the-scm-module))
2435 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2436
2437 ;; Return a module that is an interface to the module designated by
2438 ;; NAME.
2439 ;;
2440 ;; `resolve-interface' takes four keyword arguments:
2441 ;;
2442 ;; #:select SELECTION
2443 ;;
2444 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2445 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2446 ;; is the name in the used module and SEEN is the name in the using
2447 ;; module. Note that SEEN is also passed through RENAMER, below. The
2448 ;; default is to select all bindings. If you specify no selection but
2449 ;; a renamer, only the bindings that already exist in the used module
2450 ;; are made available in the interface. Bindings that are added later
2451 ;; are not picked up.
2452 ;;
2453 ;; #:hide BINDINGS
2454 ;;
2455 ;; BINDINGS is a list of bindings which should not be imported.
2456 ;;
2457 ;; #:prefix PREFIX
2458 ;;
2459 ;; PREFIX is a symbol that will be appended to each exported name.
2460 ;; The default is to not perform any renaming.
2461 ;;
2462 ;; #:renamer RENAMER
2463 ;;
2464 ;; RENAMER is a procedure that takes a symbol and returns its new
2465 ;; name. The default is not perform any renaming.
2466 ;;
2467 ;; Signal "no code for module" error if module name is not resolvable
2468 ;; or its public interface is not available. Signal "no binding"
2469 ;; error if selected binding does not exist in the used module.
2470 ;;
2471 (define (resolve-interface name . args)
2472
2473 (define (get-keyword-arg args kw def)
2474 (cond ((memq kw args)
2475 => (lambda (kw-arg)
2476 (if (null? (cdr kw-arg))
2477 (error "keyword without value: " kw))
2478 (cadr kw-arg)))
2479 (else
2480 def)))
2481
2482 (let* ((select (get-keyword-arg args #:select #f))
2483 (hide (get-keyword-arg args #:hide '()))
2484 (renamer (or (get-keyword-arg args #:renamer #f)
2485 (let ((prefix (get-keyword-arg args #:prefix #f)))
2486 (and prefix (symbol-prefix-proc prefix)))
2487 identity))
2488 (version (get-keyword-arg args #:version #f))
2489 (module (resolve-module name #t version))
2490 (public-i (and module (module-public-interface module))))
2491 (and (or (not module) (not public-i))
2492 (error "no code for module" name))
2493 (if (and (not select) (null? hide) (eq? renamer identity))
2494 public-i
2495 (let ((selection (or select (module-map (lambda (sym var) sym)
2496 public-i)))
2497 (custom-i (make-module 31)))
2498 (set-module-kind! custom-i 'custom-interface)
2499 (set-module-name! custom-i name)
2500 ;; XXX - should use a lazy binder so that changes to the
2501 ;; used module are picked up automatically.
2502 (for-each (lambda (bspec)
2503 (let* ((direct? (symbol? bspec))
2504 (orig (if direct? bspec (car bspec)))
2505 (seen (if direct? bspec (cdr bspec)))
2506 (var (or (module-local-variable public-i orig)
2507 (module-local-variable module orig)
2508 (error
2509 ;; fixme: format manually for now
2510 (simple-format
2511 #f "no binding `~A' in module ~A"
2512 orig name)))))
2513 (if (memq orig hide)
2514 (set! hide (delq! orig hide))
2515 (module-add! custom-i
2516 (renamer seen)
2517 var))))
2518 selection)
2519 ;; Check that we are not hiding bindings which don't exist
2520 (for-each (lambda (binding)
2521 (if (not (module-local-variable public-i binding))
2522 (error
2523 (simple-format
2524 #f "no binding `~A' to hide in module ~A"
2525 binding name))))
2526 hide)
2527 custom-i))))
2528
2529 (define (symbol-prefix-proc prefix)
2530 (lambda (symbol)
2531 (symbol-append prefix symbol)))
2532
2533 ;; This function is called from "modules.c". If you change it, be
2534 ;; sure to update "modules.c" as well.
2535
2536 (define (process-define-module args)
2537 (let* ((module-id (car args))
2538 (module (resolve-module module-id #f))
2539 (kws (cdr args))
2540 (unrecognized (lambda (arg)
2541 (error "unrecognized define-module argument" arg))))
2542 (beautify-user-module! module)
2543 (let loop ((kws kws)
2544 (reversed-interfaces '())
2545 (exports '())
2546 (re-exports '())
2547 (replacements '())
2548 (autoloads '()))
2549
2550 (if (null? kws)
2551 (call-with-deferred-observers
2552 (lambda ()
2553 (module-use-interfaces! module (reverse reversed-interfaces))
2554 (module-export! module exports)
2555 (module-replace! module replacements)
2556 (module-re-export! module re-exports)
2557 (if (not (null? autoloads))
2558 (apply module-autoload! module autoloads))))
2559 (case (car kws)
2560 ((#:use-module #:use-syntax)
2561 (or (pair? (cdr kws))
2562 (unrecognized kws))
2563 (cond
2564 ((equal? (caadr kws) '(ice-9 syncase))
2565 (issue-deprecation-warning
2566 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2567 (loop (cddr kws)
2568 reversed-interfaces
2569 exports
2570 re-exports
2571 replacements
2572 autoloads))
2573 (else
2574 (let* ((interface-args (cadr kws))
2575 (interface (apply resolve-interface interface-args)))
2576 (and (eq? (car kws) #:use-syntax)
2577 (or (symbol? (caar interface-args))
2578 (error "invalid module name for use-syntax"
2579 (car interface-args)))
2580 (set-module-transformer!
2581 module
2582 (module-ref interface
2583 (car (last-pair (car interface-args)))
2584 #f)))
2585 (loop (cddr kws)
2586 (cons interface reversed-interfaces)
2587 exports
2588 re-exports
2589 replacements
2590 autoloads)))))
2591 ((#:autoload)
2592 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2593 (unrecognized kws))
2594 (loop (cdddr kws)
2595 reversed-interfaces
2596 exports
2597 re-exports
2598 replacements
2599 (let ((name (cadr kws))
2600 (bindings (caddr kws)))
2601 (cons* name bindings autoloads))))
2602 ((#:no-backtrace)
2603 (set-system-module! module #t)
2604 (loop (cdr kws) reversed-interfaces exports re-exports
2605 replacements autoloads))
2606 ((#:pure)
2607 (purify-module! module)
2608 (loop (cdr kws) reversed-interfaces exports re-exports
2609 replacements autoloads))
2610 ((#:version)
2611 (or (pair? (cdr kws))
2612 (unrecognized kws))
2613 (let ((version (cadr kws)))
2614 (set-module-version! module version)
2615 (set-module-version! (module-public-interface module) version))
2616 (loop (cddr kws) reversed-interfaces exports re-exports
2617 replacements autoloads))
2618 ((#:duplicates)
2619 (if (not (pair? (cdr kws)))
2620 (unrecognized kws))
2621 (set-module-duplicates-handlers!
2622 module
2623 (lookup-duplicates-handlers (cadr kws)))
2624 (loop (cddr kws) reversed-interfaces exports re-exports
2625 replacements autoloads))
2626 ((#:export #:export-syntax)
2627 (or (pair? (cdr kws))
2628 (unrecognized kws))
2629 (loop (cddr kws)
2630 reversed-interfaces
2631 (append (cadr kws) exports)
2632 re-exports
2633 replacements
2634 autoloads))
2635 ((#:re-export #:re-export-syntax)
2636 (or (pair? (cdr kws))
2637 (unrecognized kws))
2638 (loop (cddr kws)
2639 reversed-interfaces
2640 exports
2641 (append (cadr kws) re-exports)
2642 replacements
2643 autoloads))
2644 ((#:replace #:replace-syntax)
2645 (or (pair? (cdr kws))
2646 (unrecognized kws))
2647 (loop (cddr kws)
2648 reversed-interfaces
2649 exports
2650 re-exports
2651 (append (cadr kws) replacements)
2652 autoloads))
2653 (else
2654 (unrecognized kws)))))
2655 (run-hook module-defined-hook module)
2656 module))
2657
2658 ;; `module-defined-hook' is a hook that is run whenever a new module
2659 ;; is defined. Its members are called with one argument, the new
2660 ;; module.
2661 (define module-defined-hook (make-hook 1))
2662
2663 \f
2664
2665 ;;; {Autoload}
2666 ;;;
2667
2668 (define (make-autoload-interface module name bindings)
2669 (let ((b (lambda (a sym definep)
2670 (and (memq sym bindings)
2671 (let ((i (module-public-interface (resolve-module name))))
2672 (if (not i)
2673 (error "missing interface for module" name))
2674 (let ((autoload (memq a (module-uses module))))
2675 ;; Replace autoload-interface with actual interface if
2676 ;; that has not happened yet.
2677 (if (pair? autoload)
2678 (set-car! autoload i)))
2679 (module-local-variable i sym))))))
2680 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2681 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2682 (make-hash-table 0) #f #f)))
2683
2684 (define (module-autoload! module . args)
2685 "Have @var{module} automatically load the module named @var{name} when one
2686 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2687 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2688 module '(ice-9 q) '(make-q q-length))}."
2689 (let loop ((args args))
2690 (cond ((null? args)
2691 #t)
2692 ((null? (cdr args))
2693 (error "invalid name+binding autoload list" args))
2694 (else
2695 (let ((name (car args))
2696 (bindings (cadr args)))
2697 (module-use! module (make-autoload-interface module
2698 name bindings))
2699 (loop (cddr args)))))))
2700
2701
2702 \f
2703
2704 ;;; {Autoloading modules}
2705 ;;;
2706
2707 (define autoloads-in-progress '())
2708
2709 ;; This function is called from "modules.c". If you change it, be
2710 ;; sure to update "modules.c" as well.
2711
2712 (define (try-module-autoload module-name . args)
2713 (let* ((reverse-name (reverse module-name))
2714 (name (symbol->string (car reverse-name)))
2715 (version (and (not (null? args)) (car args)))
2716 (dir-hint-module-name (reverse (cdr reverse-name)))
2717 (dir-hint (apply string-append
2718 (map (lambda (elt)
2719 (string-append (symbol->string elt) "/"))
2720 dir-hint-module-name))))
2721 (resolve-module dir-hint-module-name #f)
2722 (and (not (autoload-done-or-in-progress? dir-hint name))
2723 (let ((didit #f))
2724 (dynamic-wind
2725 (lambda () (autoload-in-progress! dir-hint name))
2726 (lambda ()
2727 (with-fluids ((current-reader #f))
2728 (save-module-excursion
2729 (lambda ()
2730 (if version
2731 (load (find-versioned-module
2732 dir-hint name version %load-path))
2733 (primitive-load-path (in-vicinity dir-hint name) #f))
2734 (set! didit #t)))))
2735 (lambda () (set-autoloaded! dir-hint name didit)))
2736 didit))))
2737
2738 \f
2739
2740 ;;; {Dynamic linking of modules}
2741 ;;;
2742
2743 (define autoloads-done '((guile . guile)))
2744
2745 (define (autoload-done-or-in-progress? p m)
2746 (let ((n (cons p m)))
2747 (->bool (or (member n autoloads-done)
2748 (member n autoloads-in-progress)))))
2749
2750 (define (autoload-done! p m)
2751 (let ((n (cons p m)))
2752 (set! autoloads-in-progress
2753 (delete! n autoloads-in-progress))
2754 (or (member n autoloads-done)
2755 (set! autoloads-done (cons n autoloads-done)))))
2756
2757 (define (autoload-in-progress! p m)
2758 (let ((n (cons p m)))
2759 (set! autoloads-done
2760 (delete! n autoloads-done))
2761 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2762
2763 (define (set-autoloaded! p m done?)
2764 (if done?
2765 (autoload-done! p m)
2766 (let ((n (cons p m)))
2767 (set! autoloads-done (delete! n autoloads-done))
2768 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2769
2770 \f
2771
2772 ;;; {Run-time options}
2773 ;;;
2774
2775 (defmacro define-option-interface (option-group)
2776 (let* ((option-name 'car)
2777 (option-value 'cadr)
2778 (option-documentation 'caddr)
2779
2780 ;; Below follow the macros defining the run-time option interfaces.
2781
2782 (make-options (lambda (interface)
2783 `(lambda args
2784 (cond ((null? args) (,interface))
2785 ((list? (car args))
2786 (,interface (car args)) (,interface))
2787 (else (for-each
2788 (lambda (option)
2789 (display (,option-name option))
2790 (if (< (string-length
2791 (symbol->string (,option-name option)))
2792 8)
2793 (display #\tab))
2794 (display #\tab)
2795 (display (,option-value option))
2796 (display #\tab)
2797 (display (,option-documentation option))
2798 (newline))
2799 (,interface #t)))))))
2800
2801 (make-enable (lambda (interface)
2802 `(lambda flags
2803 (,interface (append flags (,interface)))
2804 (,interface))))
2805
2806 (make-disable (lambda (interface)
2807 `(lambda flags
2808 (let ((options (,interface)))
2809 (for-each (lambda (flag)
2810 (set! options (delq! flag options)))
2811 flags)
2812 (,interface options)
2813 (,interface))))))
2814 (let* ((interface (car option-group))
2815 (options/enable/disable (cadr option-group)))
2816 `(begin
2817 (define ,(car options/enable/disable)
2818 ,(make-options interface))
2819 (define ,(cadr options/enable/disable)
2820 ,(make-enable interface))
2821 (define ,(caddr options/enable/disable)
2822 ,(make-disable interface))
2823 (defmacro ,(caaddr option-group) (opt val)
2824 `(,',(car options/enable/disable)
2825 (append (,',(car options/enable/disable))
2826 (list ',opt ,val))))))))
2827
2828 (define-option-interface
2829 (eval-options-interface
2830 (eval-options eval-enable eval-disable)
2831 (eval-set!)))
2832
2833 (define-option-interface
2834 (debug-options-interface
2835 (debug-options debug-enable debug-disable)
2836 (debug-set!)))
2837
2838 (define-option-interface
2839 (evaluator-traps-interface
2840 (traps trap-enable trap-disable)
2841 (trap-set!)))
2842
2843 (define-option-interface
2844 (read-options-interface
2845 (read-options read-enable read-disable)
2846 (read-set!)))
2847
2848 (define-option-interface
2849 (print-options-interface
2850 (print-options print-enable print-disable)
2851 (print-set!)))
2852
2853 \f
2854
2855 ;;; {Running Repls}
2856 ;;;
2857
2858 (define (repl read evaler print)
2859 (let loop ((source (read (current-input-port))))
2860 (print (evaler source))
2861 (loop (read (current-input-port)))))
2862
2863 ;; A provisional repl that acts like the SCM repl:
2864 ;;
2865 (define scm-repl-silent #f)
2866 (define (assert-repl-silence v) (set! scm-repl-silent v))
2867
2868 (define *unspecified* (if #f #f))
2869 (define (unspecified? v) (eq? v *unspecified*))
2870
2871 (define scm-repl-print-unspecified #f)
2872 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2873
2874 (define scm-repl-verbose #f)
2875 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2876
2877 (define scm-repl-prompt "guile> ")
2878
2879 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2880
2881 (define (default-pre-unwind-handler key . args)
2882 ;; Narrow by two more frames: this one, and the throw handler.
2883 (save-stack 2)
2884 (apply throw key args))
2885
2886 (begin-deprecated
2887 (define (pre-unwind-handler-dispatch key . args)
2888 (apply default-pre-unwind-handler key args)))
2889
2890 (define abort-hook (make-hook))
2891
2892 ;; these definitions are used if running a script.
2893 ;; otherwise redefined in error-catching-loop.
2894 (define (set-batch-mode?! arg) #t)
2895 (define (batch-mode?) #t)
2896
2897 (define (error-catching-loop thunk)
2898 (let ((status #f)
2899 (interactive #t))
2900 (define (loop first)
2901 (let ((next
2902 (catch #t
2903
2904 (lambda ()
2905 (call-with-unblocked-asyncs
2906 (lambda ()
2907 (with-traps
2908 (lambda ()
2909 (first)
2910
2911 ;; This line is needed because mark
2912 ;; doesn't do closures quite right.
2913 ;; Unreferenced locals should be
2914 ;; collected.
2915 (set! first #f)
2916 (let loop ((v (thunk)))
2917 (loop (thunk)))
2918 #f)))))
2919
2920 (lambda (key . args)
2921 (case key
2922 ((quit)
2923 (set! status args)
2924 #f)
2925
2926 ((switch-repl)
2927 (apply throw 'switch-repl args))
2928
2929 ((abort)
2930 ;; This is one of the closures that require
2931 ;; (set! first #f) above
2932 ;;
2933 (lambda ()
2934 (run-hook abort-hook)
2935 (force-output (current-output-port))
2936 (display "ABORT: " (current-error-port))
2937 (write args (current-error-port))
2938 (newline (current-error-port))
2939 (if interactive
2940 (begin
2941 (if (and
2942 (not has-shown-debugger-hint?)
2943 (not (memq 'backtrace
2944 (debug-options-interface)))
2945 (stack? (fluid-ref the-last-stack)))
2946 (begin
2947 (newline (current-error-port))
2948 (display
2949 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2950 (current-error-port))
2951 (set! has-shown-debugger-hint? #t)))
2952 (force-output (current-error-port)))
2953 (begin
2954 (primitive-exit 1)))
2955 (set! stack-saved? #f)))
2956
2957 (else
2958 ;; This is the other cons-leak closure...
2959 (lambda ()
2960 (cond ((= (length args) 4)
2961 (apply handle-system-error key args))
2962 (else
2963 (apply bad-throw key args)))))))
2964
2965 default-pre-unwind-handler)))
2966
2967 (if next (loop next) status)))
2968 (set! set-batch-mode?! (lambda (arg)
2969 (cond (arg
2970 (set! interactive #f)
2971 (restore-signals))
2972 (#t
2973 (error "sorry, not implemented")))))
2974 (set! batch-mode? (lambda () (not interactive)))
2975 (call-with-blocked-asyncs
2976 (lambda () (loop (lambda () #t))))))
2977
2978 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2979 (define before-signal-stack (make-fluid))
2980 ;; FIXME: stack-saved? is broken in the presence of threads.
2981 (define stack-saved? #f)
2982
2983 (define (save-stack . narrowing)
2984 (if (not stack-saved?)
2985 (begin
2986 (let ((stacks (fluid-ref %stacks)))
2987 (fluid-set! the-last-stack
2988 ;; (make-stack obj inner outer inner outer ...)
2989 ;;
2990 ;; In this case, cut away the make-stack frame, the
2991 ;; save-stack frame, and then narrow as specified by the
2992 ;; user, delimited by the nearest start-stack invocation,
2993 ;; if any.
2994 (apply make-stack #t
2995 2
2996 (if (pair? stacks) (cdar stacks) 0)
2997 narrowing)))
2998 (set! stack-saved? #t))))
2999
3000 (define before-error-hook (make-hook))
3001 (define after-error-hook (make-hook))
3002 (define before-backtrace-hook (make-hook))
3003 (define after-backtrace-hook (make-hook))
3004
3005 (define has-shown-debugger-hint? #f)
3006
3007 (define (handle-system-error key . args)
3008 (let ((cep (current-error-port)))
3009 (cond ((not (stack? (fluid-ref the-last-stack))))
3010 ((memq 'backtrace (debug-options-interface))
3011 (let ((highlights (if (or (eq? key 'wrong-type-arg)
3012 (eq? key 'out-of-range))
3013 (list-ref args 3)
3014 '())))
3015 (run-hook before-backtrace-hook)
3016 (newline cep)
3017 (display "Backtrace:\n")
3018 (display-backtrace (fluid-ref the-last-stack) cep
3019 #f #f highlights)
3020 (newline cep)
3021 (run-hook after-backtrace-hook))))
3022 (run-hook before-error-hook)
3023 (apply display-error (fluid-ref the-last-stack) cep args)
3024 (run-hook after-error-hook)
3025 (force-output cep)
3026 (throw 'abort key)))
3027
3028 (define (quit . args)
3029 (apply throw 'quit args))
3030
3031 (define exit quit)
3032
3033 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
3034
3035 ;; Replaced by C code:
3036 ;;(define (backtrace)
3037 ;; (if (fluid-ref the-last-stack)
3038 ;; (begin
3039 ;; (newline)
3040 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
3041 ;; (newline)
3042 ;; (if (and (not has-shown-backtrace-hint?)
3043 ;; (not (memq 'backtrace (debug-options-interface))))
3044 ;; (begin
3045 ;; (display
3046 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
3047 ;;automatically if an error occurs in the future.\n")
3048 ;; (set! has-shown-backtrace-hint? #t))))
3049 ;; (display "No backtrace available.\n")))
3050
3051 (define (error-catching-repl r e p)
3052 (error-catching-loop
3053 (lambda ()
3054 (call-with-values (lambda () (e (r)))
3055 (lambda the-values (for-each p the-values))))))
3056
3057 (define (gc-run-time)
3058 (cdr (assq 'gc-time-taken (gc-stats))))
3059
3060 (define before-read-hook (make-hook))
3061 (define after-read-hook (make-hook))
3062 (define before-eval-hook (make-hook 1))
3063 (define after-eval-hook (make-hook 1))
3064 (define before-print-hook (make-hook 1))
3065 (define after-print-hook (make-hook 1))
3066
3067 ;;; The default repl-reader function. We may override this if we've
3068 ;;; the readline library.
3069 (define repl-reader
3070 (lambda (prompt . reader)
3071 (if (not (char-ready?))
3072 (display (if (string? prompt) prompt (prompt))))
3073 (force-output)
3074 (run-hook before-read-hook)
3075 ((or (and (pair? reader) (car reader))
3076 (fluid-ref current-reader)
3077 read)
3078 (current-input-port))))
3079
3080 (define (scm-style-repl)
3081
3082 (letrec (
3083 (start-gc-rt #f)
3084 (start-rt #f)
3085 (repl-report-start-timing (lambda ()
3086 (set! start-gc-rt (gc-run-time))
3087 (set! start-rt (get-internal-run-time))))
3088 (repl-report (lambda ()
3089 (display ";;; ")
3090 (display (inexact->exact
3091 (* 1000 (/ (- (get-internal-run-time) start-rt)
3092 internal-time-units-per-second))))
3093 (display " msec (")
3094 (display (inexact->exact
3095 (* 1000 (/ (- (gc-run-time) start-gc-rt)
3096 internal-time-units-per-second))))
3097 (display " msec in gc)\n")))
3098
3099 (consume-trailing-whitespace
3100 (lambda ()
3101 (let ((ch (peek-char)))
3102 (cond
3103 ((eof-object? ch))
3104 ((or (char=? ch #\space) (char=? ch #\tab))
3105 (read-char)
3106 (consume-trailing-whitespace))
3107 ((char=? ch #\newline)
3108 (read-char))))))
3109 (-read (lambda ()
3110 (let ((val
3111 (let ((prompt (cond ((string? scm-repl-prompt)
3112 scm-repl-prompt)
3113 ((thunk? scm-repl-prompt)
3114 (scm-repl-prompt))
3115 (scm-repl-prompt "> ")
3116 (else ""))))
3117 (repl-reader prompt))))
3118
3119 ;; As described in R4RS, the READ procedure updates the
3120 ;; port to point to the first character past the end of
3121 ;; the external representation of the object. This
3122 ;; means that it doesn't consume the newline typically
3123 ;; found after an expression. This means that, when
3124 ;; debugging Guile with GDB, GDB gets the newline, which
3125 ;; it often interprets as a "continue" command, making
3126 ;; breakpoints kind of useless. So, consume any
3127 ;; trailing newline here, as well as any whitespace
3128 ;; before it.
3129 ;; But not if EOF, for control-D.
3130 (if (not (eof-object? val))
3131 (consume-trailing-whitespace))
3132 (run-hook after-read-hook)
3133 (if (eof-object? val)
3134 (begin
3135 (repl-report-start-timing)
3136 (if scm-repl-verbose
3137 (begin
3138 (newline)
3139 (display ";;; EOF -- quitting")
3140 (newline)))
3141 (quit 0)))
3142 val)))
3143
3144 (-eval (lambda (sourc)
3145 (repl-report-start-timing)
3146 (run-hook before-eval-hook sourc)
3147 (let ((val (start-stack 'repl-stack
3148 ;; If you change this procedure
3149 ;; (primitive-eval), please also
3150 ;; modify the repl-stack case in
3151 ;; save-stack so that stack cutting
3152 ;; continues to work.
3153 (primitive-eval sourc))))
3154 (run-hook after-eval-hook sourc)
3155 val)))
3156
3157
3158 (-print (let ((maybe-print (lambda (result)
3159 (if (or scm-repl-print-unspecified
3160 (not (unspecified? result)))
3161 (begin
3162 (write result)
3163 (newline))))))
3164 (lambda (result)
3165 (if (not scm-repl-silent)
3166 (begin
3167 (run-hook before-print-hook result)
3168 (maybe-print result)
3169 (run-hook after-print-hook result)
3170 (if scm-repl-verbose
3171 (repl-report))
3172 (force-output))))))
3173
3174 (-quit (lambda (args)
3175 (if scm-repl-verbose
3176 (begin
3177 (display ";;; QUIT executed, repl exitting")
3178 (newline)
3179 (repl-report)))
3180 args)))
3181
3182 (let ((status (error-catching-repl -read
3183 -eval
3184 -print)))
3185 (-quit status))))
3186
3187
3188 \f
3189
3190 ;;; {IOTA functions: generating lists of numbers}
3191 ;;;
3192
3193 (define (iota n)
3194 (let loop ((count (1- n)) (result '()))
3195 (if (< count 0) result
3196 (loop (1- count) (cons count result)))))
3197
3198 \f
3199
3200 ;;; {collect}
3201 ;;;
3202 ;;; Similar to `begin' but returns a list of the results of all constituent
3203 ;;; forms instead of the result of the last form.
3204 ;;; (The definition relies on the current left-to-right
3205 ;;; order of evaluation of operands in applications.)
3206 ;;;
3207
3208 (defmacro collect forms
3209 (cons 'list forms))
3210
3211 \f
3212
3213 ;;; {While}
3214 ;;;
3215 ;;; with `continue' and `break'.
3216 ;;;
3217
3218 ;; The inner `do' loop avoids re-establishing a catch every iteration,
3219 ;; that's only necessary if continue is actually used. A new key is
3220 ;; generated every time, so break and continue apply to their originating
3221 ;; `while' even when recursing.
3222 ;;
3223 ;; FIXME: This macro is unintentionally unhygienic with respect to let,
3224 ;; make-symbol, do, throw, catch, lambda, and not.
3225 ;;
3226 (define-macro (while cond . body)
3227 (let ((keyvar (make-symbol "while-keyvar")))
3228 `(let ((,keyvar (make-symbol "while-key")))
3229 (do ()
3230 ((catch ,keyvar
3231 (lambda ()
3232 (let ((break (lambda () (throw ,keyvar #t)))
3233 (continue (lambda () (throw ,keyvar #f))))
3234 (do ()
3235 ((not ,cond))
3236 ,@body)
3237 #t))
3238 (lambda (key arg)
3239 arg)))))))
3240
3241
3242 \f
3243
3244 ;;; {Module System Macros}
3245 ;;;
3246
3247 ;; Return a list of expressions that evaluate to the appropriate
3248 ;; arguments for resolve-interface according to SPEC.
3249
3250 (eval-when
3251 (compile)
3252 (if (memq 'prefix (read-options))
3253 (error "boot-9 must be compiled with #:kw, not :kw")))
3254
3255 (define (keyword-like-symbol->keyword sym)
3256 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3257
3258 ;; FIXME: we really need to clean up the guts of the module system.
3259 ;; We can compile to something better than process-define-module.
3260 (define-syntax define-module
3261 (lambda (x)
3262 (define (keyword-like? stx)
3263 (let ((dat (syntax->datum stx)))
3264 (and (symbol? dat)
3265 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3266 (define (->keyword sym)
3267 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3268
3269 (define (quotify-iface args)
3270 (let loop ((in args) (out '()))
3271 (syntax-case in ()
3272 (() (reverse! out))
3273 ;; The user wanted #:foo, but wrote :foo. Fix it.
3274 ((sym . in) (keyword-like? #'sym)
3275 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3276 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3277 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3278 ((#:renamer renamer . in)
3279 (loop #'in (cons* #'renamer #:renamer out)))
3280 ((kw val . in)
3281 (loop #'in (cons* #''val #'kw out))))))
3282
3283 (define (quotify args)
3284 ;; Just quote everything except #:use-module and #:use-syntax. We
3285 ;; need to know about all arguments regardless since we want to turn
3286 ;; symbols that look like keywords into real keywords, and the
3287 ;; keyword args in a define-module form are not regular
3288 ;; (i.e. no-backtrace doesn't take a value).
3289 (let loop ((in args) (out '()))
3290 (syntax-case in ()
3291 (() (reverse! out))
3292 ;; The user wanted #:foo, but wrote :foo. Fix it.
3293 ((sym . in) (keyword-like? #'sym)
3294 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3295 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3296 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3297 ((#:no-backtrace . in)
3298 (loop #'in (cons #:no-backtrace out)))
3299 ((#:pure . in)
3300 (loop #'in (cons #:pure out)))
3301 ((kw)
3302 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3303 ((use-module (name name* ...) . in)
3304 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
3305 (and-map symbol? (syntax->datum #'(name name* ...))))
3306 (loop #'in
3307 (cons* #''((name name* ...))
3308 #'use-module
3309 out)))
3310 ((use-module ((name name* ...) arg ...) . in)
3311 (and (memq (syntax->datum #'use-module) '(#:use-module #:use-syntax))
3312 (and-map symbol? (syntax->datum #'(name name* ...))))
3313 (loop #'in
3314 (cons* #`(list '(name name* ...) #,@(quotify-iface #'(arg ...)))
3315 #'use-module
3316 out)))
3317 ((#:autoload name bindings . in)
3318 (loop #'in (cons* #''bindings #''name #:autoload out)))
3319 ((kw val . in)
3320 (loop #'in (cons* #''val #'kw out))))))
3321
3322 (syntax-case x ()
3323 ((_ (name name* ...) arg ...)
3324 (with-syntax (((quoted-arg ...) (quotify #'(arg ...))))
3325 #'(eval-when (eval load compile expand)
3326 (let ((m (process-define-module
3327 (list '(name name* ...) quoted-arg ...))))
3328 (set-current-module m)
3329 m)))))))
3330
3331 ;; The guts of the use-modules macro. Add the interfaces of the named
3332 ;; modules to the use-list of the current module, in order.
3333
3334 ;; This function is called by "modules.c". If you change it, be sure
3335 ;; to change scm_c_use_module as well.
3336
3337 (define (process-use-modules module-interface-args)
3338 (let ((interfaces (map (lambda (mif-args)
3339 (or (apply resolve-interface mif-args)
3340 (error "no such module" mif-args)))
3341 module-interface-args)))
3342 (call-with-deferred-observers
3343 (lambda ()
3344 (module-use-interfaces! (current-module) interfaces)))))
3345
3346 (define-syntax use-modules
3347 (lambda (x)
3348 (define (keyword-like? stx)
3349 (let ((dat (syntax->datum stx)))
3350 (and (symbol? dat)
3351 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3352 (define (->keyword sym)
3353 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3354
3355 (define (quotify-iface args)
3356 (let loop ((in args) (out '()))
3357 (syntax-case in ()
3358 (() (reverse! out))
3359 ;; The user wanted #:foo, but wrote :foo. Fix it.
3360 ((sym . in) (keyword-like? #'sym)
3361 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3362 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3363 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3364 ((#:renamer renamer . in)
3365 (loop #'in (cons* #'renamer #:renamer out)))
3366 ((kw val . in)
3367 (loop #'in (cons* #''val #'kw out))))))
3368
3369 (define (quotify specs)
3370 (let lp ((in specs) (out '()))
3371 (syntax-case in ()
3372 (() (reverse out))
3373 (((name name* ...) . in)
3374 (and-map symbol? (syntax->datum #'(name name* ...)))
3375 (lp #'in (cons #''((name name* ...)) out)))
3376 ((((name name* ...) arg ...) . in)
3377 (and-map symbol? (syntax->datum #'(name name* ...)))
3378 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3379 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3380 out)))))))
3381
3382 (syntax-case x ()
3383 ((_ spec ...)
3384 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3385 #'(eval-when (eval load compile expand)
3386 (process-use-modules (list quoted-args ...))
3387 *unspecified*))))))
3388
3389 (define-syntax use-syntax
3390 (syntax-rules ()
3391 ((_ spec ...)
3392 (begin
3393 (eval-when (eval load compile expand)
3394 (issue-deprecation-warning
3395 "`use-syntax' is deprecated. Please contact guile-devel for more info."))
3396 (use-modules spec ...)))))
3397
3398 (include-from-path "ice-9/r6rs-libraries")
3399
3400 (define-syntax define-private
3401 (syntax-rules ()
3402 ((_ foo bar)
3403 (define foo bar))))
3404
3405 (define-syntax define-public
3406 (syntax-rules ()
3407 ((_ (name . args) . body)
3408 (define-public name (lambda args . body)))
3409 ((_ name val)
3410 (begin
3411 (define name val)
3412 (export name)))))
3413
3414 (define-syntax defmacro-public
3415 (syntax-rules ()
3416 ((_ name args . body)
3417 (begin
3418 (defmacro name args . body)
3419 (export-syntax name)))))
3420
3421 ;; And now for the most important macro.
3422 (define-syntax λ
3423 (syntax-rules ()
3424 ((_ formals body ...)
3425 (lambda formals body ...))))
3426
3427 \f
3428 ;; Export a local variable
3429
3430 ;; This function is called from "modules.c". If you change it, be
3431 ;; sure to update "modules.c" as well.
3432
3433 (define (module-export! m names)
3434 (let ((public-i (module-public-interface m)))
3435 (for-each (lambda (name)
3436 (let* ((internal-name (if (pair? name) (car name) name))
3437 (external-name (if (pair? name) (cdr name) name))
3438 (var (module-ensure-local-variable! m internal-name)))
3439 (module-add! public-i external-name var)))
3440 names)))
3441
3442 (define (module-replace! m names)
3443 (let ((public-i (module-public-interface m)))
3444 (for-each (lambda (name)
3445 (let* ((internal-name (if (pair? name) (car name) name))
3446 (external-name (if (pair? name) (cdr name) name))
3447 (var (module-ensure-local-variable! m internal-name)))
3448 (set-object-property! var 'replace #t)
3449 (module-add! public-i external-name var)))
3450 names)))
3451
3452 ;; Export all local variables from a module
3453 ;;
3454 (define (module-export-all! mod)
3455 (define (fresh-interface!)
3456 (let ((iface (make-module)))
3457 (set-module-name! iface (module-name mod))
3458 ;; for guile 2: (set-module-version! iface (module-version mod))
3459 (set-module-kind! iface 'interface)
3460 (set-module-public-interface! mod iface)
3461 iface))
3462 (let ((iface (or (module-public-interface mod)
3463 (fresh-interface!))))
3464 (set-module-obarray! iface (module-obarray mod))))
3465
3466 ;; Re-export a imported variable
3467 ;;
3468 (define (module-re-export! m names)
3469 (let ((public-i (module-public-interface m)))
3470 (for-each (lambda (name)
3471 (let* ((internal-name (if (pair? name) (car name) name))
3472 (external-name (if (pair? name) (cdr name) name))
3473 (var (module-variable m internal-name)))
3474 (cond ((not var)
3475 (error "Undefined variable:" internal-name))
3476 ((eq? var (module-local-variable m internal-name))
3477 (error "re-exporting local variable:" internal-name))
3478 (else
3479 (module-add! public-i external-name var)))))
3480 names)))
3481
3482 (define-syntax export
3483 (syntax-rules ()
3484 ((_ name ...)
3485 (eval-when (eval load compile expand)
3486 (call-with-deferred-observers
3487 (lambda ()
3488 (module-export! (current-module) '(name ...))))))))
3489
3490 (define-syntax re-export
3491 (syntax-rules ()
3492 ((_ name ...)
3493 (eval-when (eval load compile expand)
3494 (call-with-deferred-observers
3495 (lambda ()
3496 (module-re-export! (current-module) '(name ...))))))))
3497
3498 (define-syntax export-syntax
3499 (syntax-rules ()
3500 ((_ name ...)
3501 (export name ...))))
3502
3503 (define-syntax re-export-syntax
3504 (syntax-rules ()
3505 ((_ name ...)
3506 (re-export name ...))))
3507
3508 (define load load-module)
3509
3510 \f
3511
3512 ;;; {Parameters}
3513 ;;;
3514
3515 (define make-mutable-parameter
3516 (let ((make (lambda (fluid converter)
3517 (lambda args
3518 (if (null? args)
3519 (fluid-ref fluid)
3520 (fluid-set! fluid (converter (car args))))))))
3521 (lambda (init . converter)
3522 (let ((fluid (make-fluid))
3523 (converter (if (null? converter)
3524 identity
3525 (car converter))))
3526 (fluid-set! fluid (converter init))
3527 (make fluid converter)))))
3528
3529 \f
3530
3531 ;;; {Handling of duplicate imported bindings}
3532 ;;;
3533
3534 ;; Duplicate handlers take the following arguments:
3535 ;;
3536 ;; module importing module
3537 ;; name conflicting name
3538 ;; int1 old interface where name occurs
3539 ;; val1 value of binding in old interface
3540 ;; int2 new interface where name occurs
3541 ;; val2 value of binding in new interface
3542 ;; var previous resolution or #f
3543 ;; val value of previous resolution
3544 ;;
3545 ;; A duplicate handler can take three alternative actions:
3546 ;;
3547 ;; 1. return #f => leave responsibility to next handler
3548 ;; 2. exit with an error
3549 ;; 3. return a variable resolving the conflict
3550 ;;
3551
3552 (define duplicate-handlers
3553 (let ((m (make-module 7)))
3554
3555 (define (check module name int1 val1 int2 val2 var val)
3556 (scm-error 'misc-error
3557 #f
3558 "~A: `~A' imported from both ~A and ~A"
3559 (list (module-name module)
3560 name
3561 (module-name int1)
3562 (module-name int2))
3563 #f))
3564
3565 (define (warn module name int1 val1 int2 val2 var val)
3566 (format (current-error-port)
3567 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3568 (module-name module)
3569 name
3570 (module-name int1)
3571 (module-name int2))
3572 #f)
3573
3574 (define (replace module name int1 val1 int2 val2 var val)
3575 (let ((old (or (and var (object-property var 'replace) var)
3576 (module-variable int1 name)))
3577 (new (module-variable int2 name)))
3578 (if (object-property old 'replace)
3579 (and (or (eq? old new)
3580 (not (object-property new 'replace)))
3581 old)
3582 (and (object-property new 'replace)
3583 new))))
3584
3585 (define (warn-override-core module name int1 val1 int2 val2 var val)
3586 (and (eq? int1 the-scm-module)
3587 (begin
3588 (format (current-error-port)
3589 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3590 (module-name module)
3591 (module-name int2)
3592 name)
3593 (module-local-variable int2 name))))
3594
3595 (define (first module name int1 val1 int2 val2 var val)
3596 (or var (module-local-variable int1 name)))
3597
3598 (define (last module name int1 val1 int2 val2 var val)
3599 (module-local-variable int2 name))
3600
3601 (define (noop module name int1 val1 int2 val2 var val)
3602 #f)
3603
3604 (set-module-name! m 'duplicate-handlers)
3605 (set-module-kind! m 'interface)
3606 (module-define! m 'check check)
3607 (module-define! m 'warn warn)
3608 (module-define! m 'replace replace)
3609 (module-define! m 'warn-override-core warn-override-core)
3610 (module-define! m 'first first)
3611 (module-define! m 'last last)
3612 (module-define! m 'merge-generics noop)
3613 (module-define! m 'merge-accessors noop)
3614 m))
3615
3616 (define (lookup-duplicates-handlers handler-names)
3617 (and handler-names
3618 (map (lambda (handler-name)
3619 (or (module-symbol-local-binding
3620 duplicate-handlers handler-name #f)
3621 (error "invalid duplicate handler name:"
3622 handler-name)))
3623 (if (list? handler-names)
3624 handler-names
3625 (list handler-names)))))
3626
3627 (define default-duplicate-binding-procedures
3628 (make-mutable-parameter #f))
3629
3630 (define default-duplicate-binding-handler
3631 (make-mutable-parameter '(replace warn-override-core warn last)
3632 (lambda (handler-names)
3633 (default-duplicate-binding-procedures
3634 (lookup-duplicates-handlers handler-names))
3635 handler-names)))
3636
3637 \f
3638
3639 ;;; {`cond-expand' for SRFI-0 support.}
3640 ;;;
3641 ;;; This syntactic form expands into different commands or
3642 ;;; definitions, depending on the features provided by the Scheme
3643 ;;; implementation.
3644 ;;;
3645 ;;; Syntax:
3646 ;;;
3647 ;;; <cond-expand>
3648 ;;; --> (cond-expand <cond-expand-clause>+)
3649 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3650 ;;; <cond-expand-clause>
3651 ;;; --> (<feature-requirement> <command-or-definition>*)
3652 ;;; <feature-requirement>
3653 ;;; --> <feature-identifier>
3654 ;;; | (and <feature-requirement>*)
3655 ;;; | (or <feature-requirement>*)
3656 ;;; | (not <feature-requirement>)
3657 ;;; <feature-identifier>
3658 ;;; --> <a symbol which is the name or alias of a SRFI>
3659 ;;;
3660 ;;; Additionally, this implementation provides the
3661 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3662 ;;; determine the implementation type and the supported standard.
3663 ;;;
3664 ;;; Currently, the following feature identifiers are supported:
3665 ;;;
3666 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3667 ;;;
3668 ;;; Remember to update the features list when adding more SRFIs.
3669 ;;;
3670
3671 (define %cond-expand-features
3672 ;; Adjust the above comment when changing this.
3673 '(guile
3674 guile-2
3675 r5rs
3676 srfi-0 ;; cond-expand itself
3677 srfi-4 ;; homogenous numeric vectors
3678 srfi-6 ;; open-input-string etc, in the guile core
3679 srfi-13 ;; string library
3680 srfi-14 ;; character sets
3681 srfi-55 ;; require-extension
3682 srfi-61 ;; general cond clause
3683 ))
3684
3685 ;; This table maps module public interfaces to the list of features.
3686 ;;
3687 (define %cond-expand-table (make-hash-table 31))
3688
3689 ;; Add one or more features to the `cond-expand' feature list of the
3690 ;; module `module'.
3691 ;;
3692 (define (cond-expand-provide module features)
3693 (let ((mod (module-public-interface module)))
3694 (and mod
3695 (hashq-set! %cond-expand-table mod
3696 (append (hashq-ref %cond-expand-table mod '())
3697 features)))))
3698
3699 (define-macro (cond-expand . clauses)
3700 (let ((syntax-error (lambda (cl)
3701 (error "invalid clause in `cond-expand'" cl))))
3702 (letrec
3703 ((test-clause
3704 (lambda (clause)
3705 (cond
3706 ((symbol? clause)
3707 (or (memq clause %cond-expand-features)
3708 (let lp ((uses (module-uses (current-module))))
3709 (if (pair? uses)
3710 (or (memq clause
3711 (hashq-ref %cond-expand-table
3712 (car uses) '()))
3713 (lp (cdr uses)))
3714 #f))))
3715 ((pair? clause)
3716 (cond
3717 ((eq? 'and (car clause))
3718 (let lp ((l (cdr clause)))
3719 (cond ((null? l)
3720 #t)
3721 ((pair? l)
3722 (and (test-clause (car l)) (lp (cdr l))))
3723 (else
3724 (syntax-error clause)))))
3725 ((eq? 'or (car clause))
3726 (let lp ((l (cdr clause)))
3727 (cond ((null? l)
3728 #f)
3729 ((pair? l)
3730 (or (test-clause (car l)) (lp (cdr l))))
3731 (else
3732 (syntax-error clause)))))
3733 ((eq? 'not (car clause))
3734 (cond ((not (pair? (cdr clause)))
3735 (syntax-error clause))
3736 ((pair? (cddr clause))
3737 ((syntax-error clause))))
3738 (not (test-clause (cadr clause))))
3739 (else
3740 (syntax-error clause))))
3741 (else
3742 (syntax-error clause))))))
3743 (let lp ((c clauses))
3744 (cond
3745 ((null? c)
3746 (error "Unfulfilled `cond-expand'"))
3747 ((not (pair? c))
3748 (syntax-error c))
3749 ((not (pair? (car c)))
3750 (syntax-error (car c)))
3751 ((test-clause (caar c))
3752 `(begin ,@(cdar c)))
3753 ((eq? (caar c) 'else)
3754 (if (pair? (cdr c))
3755 (syntax-error c))
3756 `(begin ,@(cdar c)))
3757 (else
3758 (lp (cdr c))))))))
3759
3760 ;; This procedure gets called from the startup code with a list of
3761 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3762 ;;
3763 (define (use-srfis srfis)
3764 (process-use-modules
3765 (map (lambda (num)
3766 (list (list 'srfi (string->symbol
3767 (string-append "srfi-" (number->string num))))))
3768 srfis)))
3769
3770 \f
3771
3772 ;;; srfi-55: require-extension
3773 ;;;
3774
3775 (define-macro (require-extension extension-spec)
3776 ;; This macro only handles the srfi extension, which, at present, is
3777 ;; the only one defined by the standard.
3778 (if (not (pair? extension-spec))
3779 (scm-error 'wrong-type-arg "require-extension"
3780 "Not an extension: ~S" (list extension-spec) #f))
3781 (let ((extension (car extension-spec))
3782 (extension-args (cdr extension-spec)))
3783 (case extension
3784 ((srfi)
3785 (let ((use-list '()))
3786 (for-each
3787 (lambda (i)
3788 (if (not (integer? i))
3789 (scm-error 'wrong-type-arg "require-extension"
3790 "Invalid srfi name: ~S" (list i) #f))
3791 (let ((srfi-sym (string->symbol
3792 (string-append "srfi-" (number->string i)))))
3793 (if (not (memq srfi-sym %cond-expand-features))
3794 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3795 use-list)))))
3796 extension-args)
3797 (if (pair? use-list)
3798 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3799 `(begin ,@(reverse! use-list)))))
3800 (else
3801 (scm-error
3802 'wrong-type-arg "require-extension"
3803 "Not a recognized extension type: ~S" (list extension) #f)))))
3804
3805 \f
3806
3807 ;;; {Load emacs interface support if emacs option is given.}
3808 ;;;
3809
3810 (define (named-module-use! user usee)
3811 (module-use! (resolve-module user) (resolve-interface usee)))
3812
3813 (define (load-emacs-interface)
3814 (and (provided? 'debug-extensions)
3815 (debug-enable 'backtrace))
3816 (named-module-use! '(guile-user) '(ice-9 emacs)))
3817
3818 \f
3819
3820 (define using-readline?
3821 (let ((using-readline? (make-fluid)))
3822 (make-procedure-with-setter
3823 (lambda () (fluid-ref using-readline?))
3824 (lambda (v) (fluid-set! using-readline? v)))))
3825
3826 (define (top-repl)
3827 (let ((guile-user-module (resolve-module '(guile-user))))
3828
3829 ;; Load emacs interface support if emacs option is given.
3830 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3831 (module-ref guile-user-module 'use-emacs-interface))
3832 (load-emacs-interface))
3833
3834 ;; Use some convenient modules (in reverse order)
3835
3836 (set-current-module guile-user-module)
3837 (process-use-modules
3838 (append
3839 '(((ice-9 r5rs))
3840 ((ice-9 session))
3841 ((ice-9 debug)))
3842 (if (provided? 'regex)
3843 '(((ice-9 regex)))
3844 '())
3845 (if (provided? 'threads)
3846 '(((ice-9 threads)))
3847 '())))
3848 ;; load debugger on demand
3849 (module-autoload! guile-user-module '(system vm debug) '(debug))
3850
3851 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3852 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3853 ;; no effect.
3854 (let ((old-handlers #f)
3855 (start-repl (module-ref (resolve-interface '(system repl repl))
3856 'start-repl))
3857 (signals (if (provided? 'posix)
3858 `((,SIGINT . "User interrupt")
3859 (,SIGFPE . "Arithmetic error")
3860 (,SIGSEGV
3861 . "Bad memory access (Segmentation violation)"))
3862 '())))
3863 ;; no SIGBUS on mingw
3864 (if (defined? 'SIGBUS)
3865 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3866 signals)))
3867
3868 (dynamic-wind
3869
3870 ;; call at entry
3871 (lambda ()
3872 (let ((make-handler (lambda (msg)
3873 (lambda (sig)
3874 ;; Make a backup copy of the stack
3875 (fluid-set! before-signal-stack
3876 (fluid-ref the-last-stack))
3877 (save-stack 2)
3878 (scm-error 'signal
3879 #f
3880 msg
3881 #f
3882 (list sig))))))
3883 (set! old-handlers
3884 (map (lambda (sig-msg)
3885 (sigaction (car sig-msg)
3886 (make-handler (cdr sig-msg))))
3887 signals))))
3888
3889 ;; the protected thunk.
3890 (lambda ()
3891 (let ((status (start-repl 'scheme)))
3892 (run-hook exit-hook)
3893 status))
3894
3895 ;; call at exit.
3896 (lambda ()
3897 (map (lambda (sig-msg old-handler)
3898 (if (not (car old-handler))
3899 ;; restore original C handler.
3900 (sigaction (car sig-msg) #f)
3901 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3902 (sigaction (car sig-msg)
3903 (car old-handler)
3904 (cdr old-handler))))
3905 signals old-handlers))))))
3906
3907 ;;; This hook is run at the very end of an interactive session.
3908 ;;;
3909 (define exit-hook (make-hook))
3910
3911 \f
3912
3913 ;;; {Deprecated stuff}
3914 ;;;
3915
3916 (begin-deprecated
3917 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3918
3919 \f
3920
3921 ;;; Place the user in the guile-user module.
3922 ;;;
3923
3924 ;;; FIXME: annotate ?
3925 ;; (define (syncase exp)
3926 ;; (with-fluids ((expansion-eval-closure
3927 ;; (module-eval-closure (current-module))))
3928 ;; (deannotate/source-properties (macroexpand (annotate exp)))))
3929
3930 ;; FIXME:
3931 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3932
3933 (define-module (guile-user)
3934 #:autoload (system base compile) (compile))
3935
3936 ;; Remain in the `(guile)' module at compilation-time so that the
3937 ;; `-Wunused-toplevel' warning works as expected.
3938 (eval-when (compile) (set-current-module the-root-module))
3939
3940 ;;; boot-9.scm ends here