more clear comments in boot-9.scm
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 ;;;; 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 ;;;; Free Software Foundation, Inc.
6 ;;;;
7 ;;;; This library is free software; you can redistribute it and/or
8 ;;;; modify it under the terms of the GNU Lesser General Public
9 ;;;; License as published by the Free Software Foundation; either
10 ;;;; version 3 of the License, or (at your option) any later version.
11 ;;;;
12 ;;;; This library is distributed in the hope that it will be useful,
13 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;;;; Lesser General Public License for more details.
16 ;;;;
17 ;;;; You should have received a copy of the GNU Lesser General Public
18 ;;;; License along with this library; if not, write to the Free Software
19 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 ;;;;
21
22 \f
23
24 ;;; Commentary:
25
26 ;;; This file is the first thing loaded into Guile. It adds many mundane
27 ;;; definitions and a few that are interesting.
28 ;;;
29 ;;; The module system (hence the hierarchical namespace) are defined in this
30 ;;; file.
31 ;;;
32
33 ;;; Code:
34
35 \f
36
37 ;; Before compiling, make sure any symbols are resolved in the (guile)
38 ;; module, the primary location of those symbols, rather than in
39 ;; (guile-user), the default module that we compile in.
40
41 (eval-when (compile)
42 (set-current-module (resolve-module '(guile))))
43
44 \f
45
46 ;;; {Error handling}
47 ;;;
48
49 ;; Define delimited continuation operators, and implement catch and throw in
50 ;; terms of them.
51
52 (define make-prompt-tag
53 (lambda* (#:optional (stem "prompt"))
54 (gensym stem)))
55
56 (define default-prompt-tag
57 ;; not sure if we should expose this to the user as a fluid
58 (let ((%default-prompt-tag (make-prompt-tag)))
59 (lambda ()
60 %default-prompt-tag)))
61
62 (define (call-with-prompt tag thunk handler)
63 (@prompt tag (thunk) handler))
64 (define (abort-to-prompt tag . args)
65 (@abort tag args))
66
67
68 ;; Define catch and with-throw-handler, using some common helper routines and a
69 ;; shared fluid. Hide the helpers in a lexical contour.
70
71 (define with-throw-handler #f)
72 (let ()
73 (define (default-exception-handler k . args)
74 (cond
75 ((eq? k 'quit)
76 (primitive-exit (cond
77 ((not (pair? args)) 0)
78 ((integer? (car args)) (car args))
79 ((not (car args)) 1)
80 (else 0))))
81 (else
82 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
83 (primitive-exit 1))))
84
85 (define %running-exception-handlers (make-fluid '()))
86 (define %exception-handler (make-fluid default-exception-handler))
87
88 (define (default-throw-handler prompt-tag catch-k)
89 (let ((prev (fluid-ref %exception-handler)))
90 (lambda (thrown-k . args)
91 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
92 (apply abort-to-prompt prompt-tag thrown-k args)
93 (apply prev thrown-k args)))))
94
95 (define (custom-throw-handler prompt-tag catch-k pre)
96 (let ((prev (fluid-ref %exception-handler)))
97 (lambda (thrown-k . args)
98 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
99 (let ((running (fluid-ref %running-exception-handlers)))
100 (with-fluids ((%running-exception-handlers (cons pre running)))
101 (if (not (memq pre running))
102 (apply pre thrown-k args))
103 ;; fall through
104 (if prompt-tag
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args))))
107 (apply prev thrown-k args)))))
108
109 (set! catch
110 (lambda* (k thunk handler #:optional pre-unwind-handler)
111 "Invoke @var{thunk} in the dynamic context of @var{handler} for
112 exceptions matching @var{key}. If thunk throws to the symbol
113 @var{key}, then @var{handler} is invoked this way:
114 @lisp
115 (handler key args ...)
116 @end lisp
117
118 @var{key} is a symbol or @code{#t}.
119
120 @var{thunk} takes no arguments. If @var{thunk} returns
121 normally, that is the return value of @code{catch}.
122
123 Handler is invoked outside the scope of its own @code{catch}.
124 If @var{handler} again throws to the same key, a new handler
125 from further up the call chain is invoked.
126
127 If the key is @code{#t}, then a throw to @emph{any} symbol will
128 match this call to @code{catch}.
129
130 If a @var{pre-unwind-handler} is given and @var{thunk} throws
131 an exception that matches @var{key}, Guile calls the
132 @var{pre-unwind-handler} before unwinding the dynamic state and
133 invoking the main @var{handler}. @var{pre-unwind-handler} should
134 be a procedure with the same signature as @var{handler}, that
135 is @code{(lambda (key . args))}. It is typically used to save
136 the stack at the point where the exception occurred, but can also
137 query other parts of the dynamic state at that point, such as
138 fluid values.
139
140 A @var{pre-unwind-handler} can exit either normally or non-locally.
141 If it exits normally, Guile unwinds the stack and dynamic context
142 and then calls the normal (third argument) handler. If it exits
143 non-locally, that exit determines the continuation."
144 (if (not (or (symbol? k) (eqv? k #t)))
145 (scm-error 'wrong-type-arg "catch"
146 "Wrong type argument in position ~a: ~a"
147 (list 1 k) (list k)))
148 (let ((tag (make-prompt-tag "catch")))
149 (call-with-prompt
150 tag
151 (lambda ()
152 (with-fluids
153 ((%exception-handler
154 (if pre-unwind-handler
155 (custom-throw-handler tag k pre-unwind-handler)
156 (default-throw-handler tag k))))
157 (thunk)))
158 (lambda (cont k . args)
159 (apply handler k args))))))
160
161 (set! with-throw-handler
162 (lambda (k thunk pre-unwind-handler)
163 "Add @var{handler} to the dynamic context as a throw handler
164 for key @var{k}, then invoke @var{thunk}."
165 (if (not (or (symbol? k) (eqv? k #t)))
166 (scm-error 'wrong-type-arg "with-throw-handler"
167 "Wrong type argument in position ~a: ~a"
168 (list 1 k) (list k)))
169 (with-fluids ((%exception-handler
170 (custom-throw-handler #f k pre-unwind-handler)))
171 (thunk))))
172
173 (set! throw
174 (lambda (key . args)
175 "Invoke the catch form matching @var{key}, passing @var{args} to the
176 @var{handler}.
177
178 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
179
180 If there is no handler at all, Guile prints an error and then exits."
181 (if (not (symbol? key))
182 ((fluid-ref %exception-handler) 'wrong-type-arg "throw"
183 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
184 (apply (fluid-ref %exception-handler) key args)))))
185
186
187 \f
188
189 ;;; {Language primitives}
190 ;;;
191
192 ;; These are are the procedural wrappers around the primitives of
193 ;; Guile's language: @apply, @call-with-current-continuation, etc.
194 ;;
195 ;; Usually, a call to a primitive is compiled specially. The compiler
196 ;; knows about all these kinds of expressions. But the primitives may
197 ;; be referenced not only as operators, but as values as well. These
198 ;; stub procedures are the "values" of apply, dynamic-wind, and other
199 ;; such primitives.
200 ;;
201 (define (apply fun . args)
202 (@apply fun (apply:nconc2last args)))
203 (define (call-with-current-continuation proc)
204 (@call-with-current-continuation proc))
205 (define (call-with-values producer consumer)
206 (@call-with-values producer consumer))
207 (define (dynamic-wind in thunk out)
208 "All three arguments must be 0-argument procedures.
209 Guard @var{in} is called, then @var{thunk}, then
210 guard @var{out}.
211
212 If, any time during the execution of @var{thunk}, the
213 continuation of the @code{dynamic_wind} expression is escaped
214 non-locally, @var{out} is called. If the continuation of
215 the dynamic-wind is re-entered, @var{in} is called. Thus
216 @var{in} and @var{out} may be called any number of
217 times.
218 @lisp
219 (define x 'normal-binding)
220 @result{} x
221 (define a-cont
222 (call-with-current-continuation
223 (lambda (escape)
224 (let ((old-x x))
225 (dynamic-wind
226 ;; in-guard:
227 ;;
228 (lambda () (set! x 'special-binding))
229
230 ;; thunk
231 ;;
232 (lambda () (display x) (newline)
233 (call-with-current-continuation escape)
234 (display x) (newline)
235 x)
236
237 ;; out-guard:
238 ;;
239 (lambda () (set! x old-x)))))))
240
241 ;; Prints:
242 special-binding
243 ;; Evaluates to:
244 @result{} a-cont
245 x
246 @result{} normal-binding
247 (a-cont #f)
248 ;; Prints:
249 special-binding
250 ;; Evaluates to:
251 @result{} a-cont ;; the value of the (define a-cont...)
252 x
253 @result{} normal-binding
254 a-cont
255 @result{} special-binding
256 @end lisp"
257 (@dynamic-wind in (thunk) out))
258
259 ;;;; Basic Port Code
260
261 ;;; Specifically, the parts of the low-level port code that are written in
262 ;;; Scheme rather than C.
263 ;;;
264 ;;; WARNING: the parts of this interface that refer to file ports
265 ;;; are going away. It would be gone already except that it is used
266 ;;; "internally" in a few places.
267
268
269 ;;; OPEN_READ, OPEN_WRITE, and OPEN_BOTH are used to request the
270 ;;; proper mode to open files in.
271 ;;;
272 ;;; If we want to support systems that do CRLF->LF translation, like
273 ;;; Windows, then we should have a symbol in scmconfig.h made visible
274 ;;; to the Scheme level that we can test here, and autoconf magic to
275 ;;; #define it when appropriate. Windows will probably just have a
276 ;;; hand-generated scmconfig.h file.
277 (define OPEN_READ "r")
278 (define OPEN_WRITE "w")
279 (define OPEN_BOTH "r+")
280
281 (define *null-device* "/dev/null")
282
283 (define (open-input-file str)
284 "Takes a string naming an existing file and returns an input port
285 capable of delivering characters from the file. If the file
286 cannot be opened, an error is signalled."
287 (open-file str OPEN_READ))
288
289 (define (open-output-file str)
290 "Takes a string naming an output file to be created and returns an
291 output port capable of writing characters to a new file by that
292 name. If the file cannot be opened, an error is signalled. If a
293 file with the given name already exists, the effect is unspecified."
294 (open-file str OPEN_WRITE))
295
296 (define (open-io-file str)
297 "Open file with name STR for both input and output."
298 (open-file str OPEN_BOTH))
299
300 (define (call-with-input-file str proc)
301 "PROC should be a procedure of one argument, and STR should be a
302 string naming a file. The file must
303 already exist. These procedures call PROC
304 with one argument: the port obtained by opening the named file for
305 input or output. If the file cannot be opened, an error is
306 signalled. If the procedure returns, then the port is closed
307 automatically and the values yielded by the procedure are returned.
308 If the procedure does not return, then the port will not be closed
309 automatically unless it is possible to prove that the port will
310 never again be used for a read or write operation."
311 (let ((p (open-input-file str)))
312 (call-with-values
313 (lambda () (proc p))
314 (lambda vals
315 (close-input-port p)
316 (apply values vals)))))
317
318 (define (call-with-output-file str proc)
319 "PROC should be a procedure of one argument, and STR should be a
320 string naming a file. The behaviour is unspecified if the file
321 already exists. These procedures call PROC
322 with one argument: the port obtained by opening the named file for
323 input or output. If the file cannot be opened, an error is
324 signalled. If the procedure returns, then the port is closed
325 automatically and the values yielded by the procedure are returned.
326 If the procedure does not return, then the port will not be closed
327 automatically unless it is possible to prove that the port will
328 never again be used for a read or write operation."
329 (let ((p (open-output-file str)))
330 (call-with-values
331 (lambda () (proc p))
332 (lambda vals
333 (close-output-port p)
334 (apply values vals)))))
335
336 (define (with-input-from-port port thunk)
337 (let* ((swaports (lambda () (set! port (set-current-input-port port)))))
338 (dynamic-wind swaports thunk swaports)))
339
340 (define (with-output-to-port port thunk)
341 (let* ((swaports (lambda () (set! port (set-current-output-port port)))))
342 (dynamic-wind swaports thunk swaports)))
343
344 (define (with-error-to-port port thunk)
345 (let* ((swaports (lambda () (set! port (set-current-error-port port)))))
346 (dynamic-wind swaports thunk swaports)))
347
348 (define (with-input-from-file file thunk)
349 "THUNK must be a procedure of no arguments, and FILE must be a
350 string naming a file. The file must already exist. The file is opened for
351 input, an input port connected to it is made
352 the default value returned by `current-input-port',
353 and the THUNK is called with no arguments.
354 When the THUNK returns, the port is closed and the previous
355 default is restored. Returns the values yielded by THUNK. If an
356 escape procedure is used to escape from the continuation of these
357 procedures, their behavior is implementation dependent."
358 (call-with-input-file file
359 (lambda (p) (with-input-from-port p thunk))))
360
361 (define (with-output-to-file file thunk)
362 "THUNK must be a procedure of no arguments, and FILE must be a
363 string naming a file. The effect is unspecified if the file already exists.
364 The file is opened for output, an output port connected to it is made
365 the default value returned by `current-output-port',
366 and the THUNK is called with no arguments.
367 When the THUNK returns, the port is closed and the previous
368 default is restored. Returns the values yielded by THUNK. If an
369 escape procedure is used to escape from the continuation of these
370 procedures, their behavior is implementation dependent."
371 (call-with-output-file file
372 (lambda (p) (with-output-to-port p thunk))))
373
374 (define (with-error-to-file file thunk)
375 "THUNK must be a procedure of no arguments, and FILE must be a
376 string naming a file. The effect is unspecified if the file already exists.
377 The file is opened for output, an output port connected to it is made
378 the default value returned by `current-error-port',
379 and the THUNK is called with no arguments.
380 When the THUNK returns, the port is closed and the previous
381 default is restored. Returns the values yielded by THUNK. If an
382 escape procedure is used to escape from the continuation of these
383 procedures, their behavior is implementation dependent."
384 (call-with-output-file file
385 (lambda (p) (with-error-to-port p thunk))))
386
387 (define (with-input-from-string string thunk)
388 "THUNK must be a procedure of no arguments.
389 The test of STRING is opened for
390 input, an input port connected to it is made,
391 and the THUNK is called with no arguments.
392 When the THUNK returns, the port is closed.
393 Returns the values yielded by THUNK. If an
394 escape procedure is used to escape from the continuation of these
395 procedures, their behavior is implementation dependent."
396 (call-with-input-string string
397 (lambda (p) (with-input-from-port p thunk))))
398
399 (define (with-output-to-string thunk)
400 "Calls THUNK and returns its output as a string."
401 (call-with-output-string
402 (lambda (p) (with-output-to-port p thunk))))
403
404 (define (with-error-to-string thunk)
405 "Calls THUNK and returns its error output as a string."
406 (call-with-output-string
407 (lambda (p) (with-error-to-port p thunk))))
408
409 (define the-eof-object (call-with-input-string "" (lambda (p) (read-char p))))
410
411 \f
412
413 ;;; {Simple Debugging Tools}
414 ;;;
415
416 ;; peek takes any number of arguments, writes them to the
417 ;; current ouput port, and returns the last argument.
418 ;; It is handy to wrap around an expression to look at
419 ;; a value each time is evaluated, e.g.:
420 ;;
421 ;; (+ 10 (troublesome-fn))
422 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
423 ;;
424
425 (define (peek . stuff)
426 (newline)
427 (display ";;; ")
428 (write stuff)
429 (newline)
430 (car (last-pair stuff)))
431
432 (define pk peek)
433
434 ;; Temporary definition; replaced later.
435 (define current-warning-port current-error-port)
436
437 (define (warn . stuff)
438 (with-output-to-port (current-warning-port)
439 (lambda ()
440 (newline)
441 (display ";;; WARNING ")
442 (display stuff)
443 (newline)
444 (car (last-pair stuff)))))
445
446 \f
447
448 ;;; {Features}
449 ;;;
450
451 (define (provide sym)
452 (if (not (memq sym *features*))
453 (set! *features* (cons sym *features*))))
454
455 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
456 ;; provided? also checks to see if the module is available. We should do that
457 ;; too, but don't.
458
459 (define (provided? feature)
460 (and (memq feature *features*) #t))
461
462 \f
463
464 ;;; {Structs}
465 ;;;
466
467 (define (make-struct/no-tail vtable . args)
468 (apply make-struct vtable 0 args))
469
470 \f
471
472 ;;; Boot versions of `map' and `for-each', enough to get the expander
473 ;;; running.
474 ;;;
475 (define map
476 (case-lambda
477 ((f l)
478 (let map1 ((l l))
479 (if (null? l)
480 '()
481 (cons (f (car l)) (map1 (cdr l))))))
482 ((f l1 l2)
483 (let map2 ((l1 l1) (l2 l2))
484 (if (null? l1)
485 '()
486 (cons (f (car l1) (car l2))
487 (map2 (cdr l1) (cdr l2))))))
488 ((f l1 . rest)
489 (let lp ((l1 l1) (rest rest))
490 (if (null? l1)
491 '()
492 (cons (apply f (car l1) (map car rest))
493 (lp (cdr l1) (map cdr rest))))))))
494
495 (define for-each
496 (case-lambda
497 ((f l)
498 (let for-each1 ((l l))
499 (if (pair? l)
500 (begin
501 (f (car l))
502 (for-each1 (cdr l))))))
503 ((f l1 l2)
504 (let for-each2 ((l1 l1) (l2 l2))
505 (if (pair? l1)
506 (begin
507 (f (car l1) (car l2))
508 (for-each2 (cdr l1) (cdr l2))))))
509 ((f l1 . rest)
510 (let lp ((l1 l1) (rest rest))
511 (if (pair? l1)
512 (begin
513 (apply f (car l1) (map car rest))
514 (lp (cdr l1) (map cdr rest))))))))
515
516 ;;; {and-map and or-map}
517 ;;;
518 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
519 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
520 ;;;
521
522 ;; and-map f l
523 ;;
524 ;; Apply f to successive elements of l until exhaustion or f returns #f.
525 ;; If returning early, return #f. Otherwise, return the last value returned
526 ;; by f. If f has never been called because l is empty, return #t.
527 ;;
528 (define (and-map f lst)
529 (let loop ((result #t)
530 (l lst))
531 (and result
532 (or (and (null? l)
533 result)
534 (loop (f (car l)) (cdr l))))))
535
536 ;; or-map f l
537 ;;
538 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
539 ;; If returning early, return the return value of f.
540 ;;
541 (define (or-map f lst)
542 (let loop ((result #f)
543 (l lst))
544 (or result
545 (and (not (null? l))
546 (loop (f (car l)) (cdr l))))))
547
548 \f
549
550 ;; let format alias simple-format until the more complete version is loaded
551
552 (define format simple-format)
553
554 ;; this is scheme wrapping the C code so the final pred call is a tail call,
555 ;; per SRFI-13 spec
556 (define string-any
557 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
558 (if (and (procedure? char_pred)
559 (> end start)
560 (<= end (string-length s))) ;; let c-code handle range error
561 (or (string-any-c-code char_pred s start (1- end))
562 (char_pred (string-ref s (1- end))))
563 (string-any-c-code char_pred s start end))))
564
565 ;; this is scheme wrapping the C code so the final pred call is a tail call,
566 ;; per SRFI-13 spec
567 (define string-every
568 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
569 (if (and (procedure? char_pred)
570 (> end start)
571 (<= end (string-length s))) ;; let c-code handle range error
572 (and (string-every-c-code char_pred s start (1- end))
573 (char_pred (string-ref s (1- end))))
574 (string-every-c-code char_pred s start end))))
575
576 ;; A variant of string-fill! that we keep for compatability
577 ;;
578 (define (substring-fill! str start end fill)
579 (string-fill! str fill start end))
580
581 \f
582
583 ;; Define a minimal stub of the module API for psyntax, before modules
584 ;; have booted.
585 (define (module-name x)
586 '(guile))
587 (define (module-add! module sym var)
588 (hashq-set! (%get-pre-modules-obarray) sym var))
589 (define (module-define! module sym val)
590 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
591 (if v
592 (variable-set! v val)
593 (module-add! (current-module) sym (make-variable val)))))
594 (define (module-ref module sym)
595 (let ((v (module-variable module sym)))
596 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
597 (define (resolve-module . args)
598 #f)
599
600 ;; API provided by psyntax
601 (define syntax-violation #f)
602 (define datum->syntax #f)
603 (define syntax->datum #f)
604 (define syntax-source #f)
605 (define identifier? #f)
606 (define generate-temporaries #f)
607 (define bound-identifier=? #f)
608 (define free-identifier=? #f)
609
610 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
611 ;; expanded macros, to dispatch an input against a set of patterns.
612 (define $sc-dispatch #f)
613
614 ;; Load it up!
615 (primitive-load-path "ice-9/psyntax-pp")
616 ;; The binding for `macroexpand' has now been overridden, making psyntax the
617 ;; expander now.
618
619 (define-syntax and
620 (syntax-rules ()
621 ((_) #t)
622 ((_ x) x)
623 ((_ x y ...) (if x (and y ...) #f))))
624
625 (define-syntax or
626 (syntax-rules ()
627 ((_) #f)
628 ((_ x) x)
629 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
630
631 (include-from-path "ice-9/quasisyntax")
632
633 (define-syntax-rule (when test stmt stmt* ...)
634 (if test (begin stmt stmt* ...)))
635
636 (define-syntax-rule (unless test stmt stmt* ...)
637 (if (not test) (begin stmt stmt* ...)))
638
639 (define-syntax cond
640 (lambda (whole-expr)
641 (define (fold f seed xs)
642 (let loop ((xs xs) (seed seed))
643 (if (null? xs) seed
644 (loop (cdr xs) (f (car xs) seed)))))
645 (define (reverse-map f xs)
646 (fold (lambda (x seed) (cons (f x) seed))
647 '() xs))
648 (syntax-case whole-expr ()
649 ((_ clause clauses ...)
650 #`(begin
651 #,@(fold (lambda (clause-builder tail)
652 (clause-builder tail))
653 #'()
654 (reverse-map
655 (lambda (clause)
656 (define* (bad-clause #:optional (msg "invalid clause"))
657 (syntax-violation 'cond msg whole-expr clause))
658 (syntax-case clause (=> else)
659 ((else e e* ...)
660 (lambda (tail)
661 (if (null? tail)
662 #'((begin e e* ...))
663 (bad-clause "else must be the last clause"))))
664 ((else . _) (bad-clause))
665 ((test => receiver)
666 (lambda (tail)
667 #`((let ((t test))
668 (if t
669 (receiver t)
670 #,@tail)))))
671 ((test => receiver ...)
672 (bad-clause "wrong number of receiver expressions"))
673 ((generator guard => receiver)
674 (lambda (tail)
675 #`((call-with-values (lambda () generator)
676 (lambda vals
677 (if (apply guard vals)
678 (apply receiver vals)
679 #,@tail))))))
680 ((generator guard => receiver ...)
681 (bad-clause "wrong number of receiver expressions"))
682 ((test)
683 (lambda (tail)
684 #`((let ((t test))
685 (if t t #,@tail)))))
686 ((test e e* ...)
687 (lambda (tail)
688 #`((if test
689 (begin e e* ...)
690 #,@tail))))
691 (_ (bad-clause))))
692 #'(clause clauses ...))))))))
693
694 (define-syntax case
695 (lambda (whole-expr)
696 (define (fold f seed xs)
697 (let loop ((xs xs) (seed seed))
698 (if (null? xs) seed
699 (loop (cdr xs) (f (car xs) seed)))))
700 (define (fold2 f a b xs)
701 (let loop ((xs xs) (a a) (b b))
702 (if (null? xs) (values a b)
703 (call-with-values
704 (lambda () (f (car xs) a b))
705 (lambda (a b)
706 (loop (cdr xs) a b))))))
707 (define (reverse-map-with-seed f seed xs)
708 (fold2 (lambda (x ys seed)
709 (call-with-values
710 (lambda () (f x seed))
711 (lambda (y seed)
712 (values (cons y ys) seed))))
713 '() seed xs))
714 (syntax-case whole-expr ()
715 ((_ expr clause clauses ...)
716 (with-syntax ((key #'key))
717 #`(let ((key expr))
718 #,@(fold
719 (lambda (clause-builder tail)
720 (clause-builder tail))
721 #'()
722 (reverse-map-with-seed
723 (lambda (clause seen)
724 (define* (bad-clause #:optional (msg "invalid clause"))
725 (syntax-violation 'case msg whole-expr clause))
726 (syntax-case clause ()
727 ((test . rest)
728 (with-syntax
729 ((clause-expr
730 (syntax-case #'rest (=>)
731 ((=> receiver) #'(receiver key))
732 ((=> receiver ...)
733 (bad-clause
734 "wrong number of receiver expressions"))
735 ((e e* ...) #'(begin e e* ...))
736 (_ (bad-clause)))))
737 (syntax-case #'test (else)
738 ((datums ...)
739 (let ((seen
740 (fold
741 (lambda (datum seen)
742 (define (warn-datum type)
743 ((@ (system base message)
744 warning)
745 type
746 (append (source-properties datum)
747 (source-properties
748 (syntax->datum #'test)))
749 datum
750 (syntax->datum clause)
751 (syntax->datum whole-expr)))
752 (if (memv datum seen)
753 (warn-datum 'duplicate-case-datum))
754 (if (or (pair? datum)
755 (array? datum)
756 (generalized-vector? datum))
757 (warn-datum 'bad-case-datum))
758 (cons datum seen))
759 seen
760 (map syntax->datum #'(datums ...)))))
761 (values (lambda (tail)
762 #`((if (memv key '(datums ...))
763 clause-expr
764 #,@tail)))
765 seen)))
766 (else (values (lambda (tail)
767 (if (null? tail)
768 #'(clause-expr)
769 (bad-clause
770 "else must be the last clause")))
771 seen))
772 (_ (bad-clause)))))
773 (_ (bad-clause))))
774 '() #'(clause clauses ...)))))))))
775
776 (define-syntax do
777 (syntax-rules ()
778 ((do ((var init step ...) ...)
779 (test expr ...)
780 command ...)
781 (letrec
782 ((loop
783 (lambda (var ...)
784 (if test
785 (begin
786 (if #f #f)
787 expr ...)
788 (begin
789 command
790 ...
791 (loop (do "step" var step ...)
792 ...))))))
793 (loop init ...)))
794 ((do "step" x)
795 x)
796 ((do "step" x y)
797 y)))
798
799 (define-syntax-rule (delay exp)
800 (make-promise (lambda () exp)))
801
802 (define-syntax current-source-location
803 (lambda (x)
804 (syntax-case x ()
805 ((_)
806 (with-syntax ((s (datum->syntax x (syntax-source x))))
807 #''s)))))
808
809 ;; We provide this accessor out of convenience. current-line and
810 ;; current-column aren't so interesting, because they distort what they
811 ;; are measuring; better to use syntax-source from a macro.
812 ;;
813 (define-syntax current-filename
814 (lambda (x)
815 "A macro that expands to the current filename: the filename that
816 the (current-filename) form appears in. Expands to #f if this
817 information is unavailable."
818 (false-if-exception
819 (canonicalize-path (assq-ref (syntax-source x) 'filename)))))
820
821 (define-syntax-rule (define-once sym val)
822 (define sym
823 (if (module-locally-bound? (current-module) 'sym) sym val)))
824
825 ;;; The real versions of `map' and `for-each', with cycle detection, and
826 ;;; that use reverse! instead of recursion in the case of `map'.
827 ;;;
828 (define map
829 (case-lambda
830 ((f l)
831 (let map1 ((hare l) (tortoise l) (move? #f) (out '()))
832 (if (pair? hare)
833 (if move?
834 (if (eq? tortoise hare)
835 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
836 (list l) #f)
837 (map1 (cdr hare) (cdr tortoise) #f
838 (cons (f (car hare)) out)))
839 (map1 (cdr hare) tortoise #t
840 (cons (f (car hare)) out)))
841 (if (null? hare)
842 (reverse! out)
843 (scm-error 'wrong-type-arg "map" "Not a list: ~S"
844 (list l) #f)))))
845
846 ((f l1 l2)
847 (let map2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f) (out '()))
848 (cond
849 ((pair? h1)
850 (cond
851 ((not (pair? h2))
852 (scm-error 'wrong-type-arg "map"
853 (if (list? h2)
854 "List of wrong length: ~S"
855 "Not a list: ~S")
856 (list l2) #f))
857 ((not move?)
858 (map2 (cdr h1) (cdr h2) t1 t2 #t
859 (cons (f (car h1) (car h2)) out)))
860 ((eq? t1 h1)
861 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
862 (list l1) #f))
863 ((eq? t2 h2)
864 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
865 (list l2) #f))
866 (else
867 (map2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f
868 (cons (f (car h1) (car h2)) out)))))
869
870 ((and (null? h1) (null? h2))
871 (reverse! out))
872
873 ((null? h1)
874 (scm-error 'wrong-type-arg "map"
875 (if (list? h2)
876 "List of wrong length: ~S"
877 "Not a list: ~S")
878 (list l2) #f))
879 (else
880 (scm-error 'wrong-type-arg "map"
881 "Not a list: ~S"
882 (list l1) #f)))))
883
884 ((f l1 . rest)
885 (let ((len (length l1)))
886 (let mapn ((rest rest))
887 (or (null? rest)
888 (if (= (length (car rest)) len)
889 (mapn (cdr rest))
890 (scm-error 'wrong-type-arg "map" "List of wrong length: ~S"
891 (list (car rest)) #f)))))
892 (let mapn ((l1 l1) (rest rest) (out '()))
893 (if (null? l1)
894 (reverse! out)
895 (mapn (cdr l1) (map cdr rest)
896 (cons (apply f (car l1) (map car rest)) out)))))))
897
898 (define map-in-order map)
899
900 (define for-each
901 (case-lambda
902 ((f l)
903 (let for-each1 ((hare l) (tortoise l) (move? #f))
904 (if (pair? hare)
905 (if move?
906 (if (eq? tortoise hare)
907 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
908 (list l) #f)
909 (begin
910 (f (car hare))
911 (for-each1 (cdr hare) (cdr tortoise) #f)))
912 (begin
913 (f (car hare))
914 (for-each1 (cdr hare) tortoise #t)))
915
916 (if (not (null? hare))
917 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
918 (list l) #f)))))
919
920 ((f l1 l2)
921 (let for-each2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f))
922 (cond
923 ((and (pair? h1) (pair? h2))
924 (cond
925 ((not move?)
926 (f (car h1) (car h2))
927 (for-each2 (cdr h1) (cdr h2) t1 t2 #t))
928 ((eq? t1 h1)
929 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
930 (list l1) #f))
931 ((eq? t2 h2)
932 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
933 (list l2) #f))
934 (else
935 (f (car h1) (car h2))
936 (for-each2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f))))
937
938 ((if (null? h1)
939 (or (null? h2) (pair? h2))
940 (and (pair? h1) (null? h2)))
941 (if #f #f))
942
943 ((list? h1)
944 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
945 (list h2) #f))
946 (else
947 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
948 (list h1) #f)))))
949
950 ((f l1 . rest)
951 (let ((len (length l1)))
952 (let for-eachn ((rest rest))
953 (or (null? rest)
954 (if (= (length (car rest)) len)
955 (for-eachn (cdr rest))
956 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
957 (list (car rest)) #f)))))
958
959 (let for-eachn ((l1 l1) (rest rest))
960 (if (pair? l1)
961 (begin
962 (apply f (car l1) (map car rest))
963 (for-eachn (cdr l1) (map cdr rest))))))))
964
965
966 \f
967
968 ;;;
969 ;;; Extensible exception printing.
970 ;;;
971
972 (define set-exception-printer! #f)
973 ;; There is already a definition of print-exception from backtrace.c
974 ;; that we will override.
975
976 (let ((exception-printers '()))
977 (define (print-location frame port)
978 (let ((source (and=> frame frame-source)))
979 ;; source := (addr . (filename . (line . column)))
980 (if source
981 (let ((filename (or (cadr source) "<unnamed port>"))
982 (line (caddr source))
983 (col (cdddr source)))
984 (format port "~a:~a:~a: " filename (1+ line) col))
985 (format port "ERROR: "))))
986
987 (set! set-exception-printer!
988 (lambda (key proc)
989 (set! exception-printers (acons key proc exception-printers))))
990
991 (set! print-exception
992 (lambda (port frame key args)
993 (define (default-printer)
994 (format port "Throw to key `~a' with args `~s'." key args))
995
996 (if frame
997 (let ((proc (frame-procedure frame)))
998 (print-location frame port)
999 (format port "In procedure ~a:\n"
1000 (or (procedure-name proc) proc))))
1001
1002 (print-location frame port)
1003 (catch #t
1004 (lambda ()
1005 (let ((printer (assq-ref exception-printers key)))
1006 (if printer
1007 (printer port key args default-printer)
1008 (default-printer))))
1009 (lambda (k . args)
1010 (format port "Error while printing exception.")))
1011 (newline port)
1012 (force-output port))))
1013
1014 ;;;
1015 ;;; Printers for those keys thrown by Guile.
1016 ;;;
1017 (let ()
1018 (define (scm-error-printer port key args default-printer)
1019 ;; Abuse case-lambda as a pattern matcher, given that we don't have
1020 ;; ice-9 match at this point.
1021 (apply (case-lambda
1022 ((subr msg args . rest)
1023 (if subr
1024 (format port "In procedure ~a: " subr))
1025 (apply format port msg (or args '())))
1026 (_ (default-printer)))
1027 args))
1028
1029 (define (syntax-error-printer port key args default-printer)
1030 (apply (case-lambda
1031 ((who what where form subform . extra)
1032 (format port "Syntax error:\n")
1033 (if where
1034 (let ((file (or (assq-ref where 'filename) "unknown file"))
1035 (line (and=> (assq-ref where 'line) 1+))
1036 (col (assq-ref where 'column)))
1037 (format port "~a:~a:~a: " file line col))
1038 (format port "unknown location: "))
1039 (if who
1040 (format port "~a: " who))
1041 (format port "~a" what)
1042 (if subform
1043 (format port " in subform ~s of ~s" subform form)
1044 (if form
1045 (format port " in form ~s" form))))
1046 (_ (default-printer)))
1047 args))
1048
1049 (define (getaddrinfo-error-printer port key args default-printer)
1050 (format port "In procedure getaddrinfo: ~a" (gai-strerror (car args))))
1051
1052 (set-exception-printer! 'goops-error scm-error-printer)
1053 (set-exception-printer! 'host-not-found scm-error-printer)
1054 (set-exception-printer! 'keyword-argument-error scm-error-printer)
1055 (set-exception-printer! 'misc-error scm-error-printer)
1056 (set-exception-printer! 'no-data scm-error-printer)
1057 (set-exception-printer! 'no-recovery scm-error-printer)
1058 (set-exception-printer! 'null-pointer-error scm-error-printer)
1059 (set-exception-printer! 'out-of-range scm-error-printer)
1060 (set-exception-printer! 'program-error scm-error-printer)
1061 (set-exception-printer! 'read-error scm-error-printer)
1062 (set-exception-printer! 'regular-expression-syntax scm-error-printer)
1063 (set-exception-printer! 'signal scm-error-printer)
1064 (set-exception-printer! 'stack-overflow scm-error-printer)
1065 (set-exception-printer! 'system-error scm-error-printer)
1066 (set-exception-printer! 'try-again scm-error-printer)
1067 (set-exception-printer! 'unbound-variable scm-error-printer)
1068 (set-exception-printer! 'wrong-number-of-args scm-error-printer)
1069 (set-exception-printer! 'wrong-type-arg scm-error-printer)
1070
1071 (set-exception-printer! 'syntax-error syntax-error-printer)
1072
1073 (set-exception-printer! 'getaddrinfo-error getaddrinfo-error-printer))
1074
1075
1076 \f
1077
1078 ;;; {Defmacros}
1079 ;;;
1080
1081 (define-syntax define-macro
1082 (lambda (x)
1083 "Define a defmacro."
1084 (syntax-case x ()
1085 ((_ (macro . args) doc body1 body ...)
1086 (string? (syntax->datum #'doc))
1087 #'(define-macro macro doc (lambda args body1 body ...)))
1088 ((_ (macro . args) body ...)
1089 #'(define-macro macro #f (lambda args body ...)))
1090 ((_ macro doc transformer)
1091 (or (string? (syntax->datum #'doc))
1092 (not (syntax->datum #'doc)))
1093 #'(define-syntax macro
1094 (lambda (y)
1095 doc
1096 #((macro-type . defmacro)
1097 (defmacro-args args))
1098 (syntax-case y ()
1099 ((_ . args)
1100 (let ((v (syntax->datum #'args)))
1101 (datum->syntax y (apply transformer v)))))))))))
1102
1103 (define-syntax defmacro
1104 (lambda (x)
1105 "Define a defmacro, with the old lispy defun syntax."
1106 (syntax-case x ()
1107 ((_ macro args doc body1 body ...)
1108 (string? (syntax->datum #'doc))
1109 #'(define-macro macro doc (lambda args body1 body ...)))
1110 ((_ macro args body ...)
1111 #'(define-macro macro #f (lambda args body ...))))))
1112
1113 (provide 'defmacro)
1114
1115 \f
1116
1117 ;;; {Deprecation}
1118 ;;;
1119
1120 (define-syntax begin-deprecated
1121 (lambda (x)
1122 (syntax-case x ()
1123 ((_ form form* ...)
1124 (if (include-deprecated-features)
1125 #'(begin form form* ...)
1126 #'(begin))))))
1127
1128 \f
1129
1130 ;;; {Trivial Functions}
1131 ;;;
1132
1133 (define (identity x) x)
1134
1135 (define (compose proc . rest)
1136 "Compose PROC with the procedures in REST, such that the last one in
1137 REST is applied first and PROC last, and return the resulting procedure.
1138 The given procedures must have compatible arity."
1139 (if (null? rest)
1140 proc
1141 (let ((g (apply compose rest)))
1142 (lambda args
1143 (call-with-values (lambda () (apply g args)) proc)))))
1144
1145 (define (negate proc)
1146 "Return a procedure with the same arity as PROC that returns the `not'
1147 of PROC's result."
1148 (lambda args
1149 (not (apply proc args))))
1150
1151 (define (const value)
1152 "Return a procedure that accepts any number of arguments and returns
1153 VALUE."
1154 (lambda _
1155 value))
1156
1157 (define (and=> value procedure) (and value (procedure value)))
1158 (define call/cc call-with-current-continuation)
1159
1160 (define-syntax-rule (false-if-exception expr)
1161 (catch #t
1162 (lambda () expr)
1163 (lambda (k . args) #f)))
1164
1165 \f
1166
1167 ;;; {General Properties}
1168 ;;;
1169
1170 ;; Properties are a lispy way to associate random info with random objects.
1171 ;; Traditionally properties are implemented as an alist or a plist actually
1172 ;; pertaining to the object in question.
1173 ;;
1174 ;; These "object properties" have the advantage that they can be associated with
1175 ;; any object, even if the object has no plist. Object properties are good when
1176 ;; you are extending pre-existing objects in unexpected ways. They also present
1177 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
1178 ;; type that always has properties, it's often still best to store those
1179 ;; properties within the object itself.
1180
1181 (define (make-object-property)
1182 ;; Weak tables are thread-safe.
1183 (let ((prop (make-weak-key-hash-table)))
1184 (make-procedure-with-setter
1185 (lambda (obj) (hashq-ref prop obj))
1186 (lambda (obj val) (hashq-set! prop obj val)))))
1187
1188
1189 \f
1190
1191 ;;; {Symbol Properties}
1192 ;;;
1193
1194 ;;; Symbol properties are something you see in old Lisp code. In most current
1195 ;;; Guile code, symbols are not used as a data structure -- they are used as
1196 ;;; keys into other data structures.
1197
1198 (define (symbol-property sym prop)
1199 (let ((pair (assoc prop (symbol-pref sym))))
1200 (and pair (cdr pair))))
1201
1202 (define (set-symbol-property! sym prop val)
1203 (let ((pair (assoc prop (symbol-pref sym))))
1204 (if pair
1205 (set-cdr! pair val)
1206 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
1207
1208 (define (symbol-property-remove! sym prop)
1209 (let ((pair (assoc prop (symbol-pref sym))))
1210 (if pair
1211 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
1212
1213 \f
1214
1215 ;;; {Arrays}
1216 ;;;
1217
1218 (define (array-shape a)
1219 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
1220 (array-dimensions a)))
1221
1222 \f
1223
1224 ;;; {Keywords}
1225 ;;;
1226
1227 ;;; It's much better if you can use lambda* / define*, of course.
1228
1229 (define (kw-arg-ref args kw)
1230 (let ((rem (member kw args)))
1231 (and rem (pair? (cdr rem)) (cadr rem))))
1232
1233 \f
1234
1235 ;;; {Structs}
1236 ;;;
1237
1238 (define (struct-layout s)
1239 (struct-ref (struct-vtable s) vtable-index-layout))
1240
1241 \f
1242
1243 ;;; {Records}
1244 ;;;
1245
1246 ;; Printing records: by default, records are printed as
1247 ;;
1248 ;; #<type-name field1: val1 field2: val2 ...>
1249 ;;
1250 ;; You can change that by giving a custom printing function to
1251 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
1252 ;; will be called like
1253 ;;
1254 ;; (<printer> object port)
1255 ;;
1256 ;; It should print OBJECT to PORT.
1257
1258 (define (inherit-print-state old-port new-port)
1259 (if (get-print-state old-port)
1260 (port-with-print-state new-port (get-print-state old-port))
1261 new-port))
1262
1263 ;; 0: type-name, 1: fields, 2: constructor
1264 (define record-type-vtable
1265 (let ((s (make-vtable (string-append standard-vtable-fields "prprpw")
1266 (lambda (s p)
1267 (display "#<record-type " p)
1268 (display (record-type-name s) p)
1269 (display ">" p)))))
1270 (set-struct-vtable-name! s 'record-type)
1271 s))
1272
1273 (define (record-type? obj)
1274 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
1275
1276 (define* (make-record-type type-name fields #:optional printer)
1277 ;; Pre-generate constructors for nfields < 20.
1278 (define-syntax make-constructor
1279 (lambda (x)
1280 (define *max-static-argument-count* 20)
1281 (define (make-formals n)
1282 (let lp ((i 0))
1283 (if (< i n)
1284 (cons (datum->syntax
1285 x
1286 (string->symbol
1287 (string (integer->char (+ (char->integer #\a) i)))))
1288 (lp (1+ i)))
1289 '())))
1290 (syntax-case x ()
1291 ((_ rtd exp) (not (identifier? #'exp))
1292 #'(let ((n exp))
1293 (make-constructor rtd n)))
1294 ((_ rtd nfields)
1295 #`(case nfields
1296 #,@(let lp ((n 0))
1297 (if (< n *max-static-argument-count*)
1298 (cons (with-syntax (((formal ...) (make-formals n))
1299 (n n))
1300 #'((n)
1301 (lambda (formal ...)
1302 (make-struct rtd 0 formal ...))))
1303 (lp (1+ n)))
1304 '()))
1305 (else
1306 (lambda args
1307 (if (= (length args) nfields)
1308 (apply make-struct rtd 0 args)
1309 (scm-error 'wrong-number-of-args
1310 (format #f "make-~a" type-name)
1311 "Wrong number of arguments" '() #f)))))))))
1312
1313 (define (default-record-printer s p)
1314 (display "#<" p)
1315 (display (record-type-name (record-type-descriptor s)) p)
1316 (let loop ((fields (record-type-fields (record-type-descriptor s)))
1317 (off 0))
1318 (cond
1319 ((not (null? fields))
1320 (display " " p)
1321 (display (car fields) p)
1322 (display ": " p)
1323 (display (struct-ref s off) p)
1324 (loop (cdr fields) (+ 1 off)))))
1325 (display ">" p))
1326
1327 (let ((rtd (make-struct record-type-vtable 0
1328 (make-struct-layout
1329 (apply string-append
1330 (map (lambda (f) "pw") fields)))
1331 (or printer default-record-printer)
1332 type-name
1333 (copy-tree fields))))
1334 (struct-set! rtd (+ vtable-offset-user 2)
1335 (make-constructor rtd (length fields)))
1336 ;; Temporary solution: Associate a name to the record type descriptor
1337 ;; so that the object system can create a wrapper class for it.
1338 (set-struct-vtable-name! rtd (if (symbol? type-name)
1339 type-name
1340 (string->symbol type-name)))
1341 rtd))
1342
1343 (define (record-type-name obj)
1344 (if (record-type? obj)
1345 (struct-ref obj vtable-offset-user)
1346 (error 'not-a-record-type obj)))
1347
1348 (define (record-type-fields obj)
1349 (if (record-type? obj)
1350 (struct-ref obj (+ 1 vtable-offset-user))
1351 (error 'not-a-record-type obj)))
1352
1353 (define* (record-constructor rtd #:optional field-names)
1354 (if (not field-names)
1355 (struct-ref rtd (+ 2 vtable-offset-user))
1356 (primitive-eval
1357 `(lambda ,field-names
1358 (make-struct ',rtd 0 ,@(map (lambda (f)
1359 (if (memq f field-names)
1360 f
1361 #f))
1362 (record-type-fields rtd)))))))
1363
1364 (define (record-predicate rtd)
1365 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
1366
1367 (define (%record-type-error rtd obj) ;; private helper
1368 (or (eq? rtd (record-type-descriptor obj))
1369 (scm-error 'wrong-type-arg "%record-type-check"
1370 "Wrong type record (want `~S'): ~S"
1371 (list (record-type-name rtd) obj)
1372 #f)))
1373
1374 (define (record-accessor rtd field-name)
1375 (let ((pos (list-index (record-type-fields rtd) field-name)))
1376 (if (not pos)
1377 (error 'no-such-field field-name))
1378 (lambda (obj)
1379 (if (eq? (struct-vtable obj) rtd)
1380 (struct-ref obj pos)
1381 (%record-type-error rtd obj)))))
1382
1383 (define (record-modifier rtd field-name)
1384 (let ((pos (list-index (record-type-fields rtd) field-name)))
1385 (if (not pos)
1386 (error 'no-such-field field-name))
1387 (lambda (obj val)
1388 (if (eq? (struct-vtable obj) rtd)
1389 (struct-set! obj pos val)
1390 (%record-type-error rtd obj)))))
1391
1392 (define (record? obj)
1393 (and (struct? obj) (record-type? (struct-vtable obj))))
1394
1395 (define (record-type-descriptor obj)
1396 (if (struct? obj)
1397 (struct-vtable obj)
1398 (error 'not-a-record obj)))
1399
1400 (provide 'record)
1401
1402 \f
1403
1404 ;;; {Booleans}
1405 ;;;
1406
1407 (define (->bool x) (not (not x)))
1408
1409 \f
1410
1411 ;;; {Symbols}
1412 ;;;
1413
1414 (define (symbol-append . args)
1415 (string->symbol (apply string-append (map symbol->string args))))
1416
1417 (define (list->symbol . args)
1418 (string->symbol (apply list->string args)))
1419
1420 (define (symbol . args)
1421 (string->symbol (apply string args)))
1422
1423 \f
1424
1425 ;;; {Lists}
1426 ;;;
1427
1428 (define (list-index l k)
1429 (let loop ((n 0)
1430 (l l))
1431 (and (not (null? l))
1432 (if (eq? (car l) k)
1433 n
1434 (loop (+ n 1) (cdr l))))))
1435
1436 \f
1437
1438 ;; Load `posix.scm' even when not (provided? 'posix) so that we get the
1439 ;; `stat' accessors.
1440 (primitive-load-path "ice-9/posix")
1441
1442 (if (provided? 'socket)
1443 (primitive-load-path "ice-9/networking"))
1444
1445 ;; For reference, Emacs file-exists-p uses stat in this same way.
1446 (define file-exists?
1447 (if (provided? 'posix)
1448 (lambda (str)
1449 (->bool (stat str #f)))
1450 (lambda (str)
1451 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
1452 (lambda args #f))))
1453 (if port (begin (close-port port) #t)
1454 #f)))))
1455
1456 (define file-is-directory?
1457 (if (provided? 'posix)
1458 (lambda (str)
1459 (eq? (stat:type (stat str)) 'directory))
1460 (lambda (str)
1461 (let ((port (catch 'system-error
1462 (lambda () (open-file (string-append str "/.")
1463 OPEN_READ))
1464 (lambda args #f))))
1465 (if port (begin (close-port port) #t)
1466 #f)))))
1467
1468 (define (system-error-errno args)
1469 (if (eq? (car args) 'system-error)
1470 (car (list-ref args 4))
1471 #f))
1472
1473 \f
1474
1475 ;;; {Error Handling}
1476 ;;;
1477
1478 (define error
1479 (case-lambda
1480 (()
1481 (scm-error 'misc-error #f "?" #f #f))
1482 ((message . args)
1483 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
1484 (scm-error 'misc-error #f msg (cons message args) #f)))))
1485
1486 \f
1487
1488 ;;; {Time Structures}
1489 ;;;
1490
1491 (define (tm:sec obj) (vector-ref obj 0))
1492 (define (tm:min obj) (vector-ref obj 1))
1493 (define (tm:hour obj) (vector-ref obj 2))
1494 (define (tm:mday obj) (vector-ref obj 3))
1495 (define (tm:mon obj) (vector-ref obj 4))
1496 (define (tm:year obj) (vector-ref obj 5))
1497 (define (tm:wday obj) (vector-ref obj 6))
1498 (define (tm:yday obj) (vector-ref obj 7))
1499 (define (tm:isdst obj) (vector-ref obj 8))
1500 (define (tm:gmtoff obj) (vector-ref obj 9))
1501 (define (tm:zone obj) (vector-ref obj 10))
1502
1503 (define (set-tm:sec obj val) (vector-set! obj 0 val))
1504 (define (set-tm:min obj val) (vector-set! obj 1 val))
1505 (define (set-tm:hour obj val) (vector-set! obj 2 val))
1506 (define (set-tm:mday obj val) (vector-set! obj 3 val))
1507 (define (set-tm:mon obj val) (vector-set! obj 4 val))
1508 (define (set-tm:year obj val) (vector-set! obj 5 val))
1509 (define (set-tm:wday obj val) (vector-set! obj 6 val))
1510 (define (set-tm:yday obj val) (vector-set! obj 7 val))
1511 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
1512 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
1513 (define (set-tm:zone obj val) (vector-set! obj 10 val))
1514
1515 (define (tms:clock obj) (vector-ref obj 0))
1516 (define (tms:utime obj) (vector-ref obj 1))
1517 (define (tms:stime obj) (vector-ref obj 2))
1518 (define (tms:cutime obj) (vector-ref obj 3))
1519 (define (tms:cstime obj) (vector-ref obj 4))
1520
1521 \f
1522
1523 ;;; {File Descriptors and Ports}
1524 ;;;
1525
1526 (define file-position ftell)
1527 (define* (file-set-position port offset #:optional (whence SEEK_SET))
1528 (seek port offset whence))
1529
1530 (define (move->fdes fd/port fd)
1531 (cond ((integer? fd/port)
1532 (dup->fdes fd/port fd)
1533 (close fd/port)
1534 fd)
1535 (else
1536 (primitive-move->fdes fd/port fd)
1537 (set-port-revealed! fd/port 1)
1538 fd/port)))
1539
1540 (define (release-port-handle port)
1541 (let ((revealed (port-revealed port)))
1542 (if (> revealed 0)
1543 (set-port-revealed! port (- revealed 1)))))
1544
1545 (define dup->port
1546 (case-lambda
1547 ((port/fd mode)
1548 (fdopen (dup->fdes port/fd) mode))
1549 ((port/fd mode new-fd)
1550 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
1551 (set-port-revealed! port 1)
1552 port))))
1553
1554 (define dup->inport
1555 (case-lambda
1556 ((port/fd)
1557 (dup->port port/fd "r"))
1558 ((port/fd new-fd)
1559 (dup->port port/fd "r" new-fd))))
1560
1561 (define dup->outport
1562 (case-lambda
1563 ((port/fd)
1564 (dup->port port/fd "w"))
1565 ((port/fd new-fd)
1566 (dup->port port/fd "w" new-fd))))
1567
1568 (define dup
1569 (case-lambda
1570 ((port/fd)
1571 (if (integer? port/fd)
1572 (dup->fdes port/fd)
1573 (dup->port port/fd (port-mode port/fd))))
1574 ((port/fd new-fd)
1575 (if (integer? port/fd)
1576 (dup->fdes port/fd new-fd)
1577 (dup->port port/fd (port-mode port/fd) new-fd)))))
1578
1579 (define (duplicate-port port modes)
1580 (dup->port port modes))
1581
1582 (define (fdes->inport fdes)
1583 (let loop ((rest-ports (fdes->ports fdes)))
1584 (cond ((null? rest-ports)
1585 (let ((result (fdopen fdes "r")))
1586 (set-port-revealed! result 1)
1587 result))
1588 ((input-port? (car rest-ports))
1589 (set-port-revealed! (car rest-ports)
1590 (+ (port-revealed (car rest-ports)) 1))
1591 (car rest-ports))
1592 (else
1593 (loop (cdr rest-ports))))))
1594
1595 (define (fdes->outport fdes)
1596 (let loop ((rest-ports (fdes->ports fdes)))
1597 (cond ((null? rest-ports)
1598 (let ((result (fdopen fdes "w")))
1599 (set-port-revealed! result 1)
1600 result))
1601 ((output-port? (car rest-ports))
1602 (set-port-revealed! (car rest-ports)
1603 (+ (port-revealed (car rest-ports)) 1))
1604 (car rest-ports))
1605 (else
1606 (loop (cdr rest-ports))))))
1607
1608 (define (port->fdes port)
1609 (set-port-revealed! port (+ (port-revealed port) 1))
1610 (fileno port))
1611
1612 (define (setenv name value)
1613 (if value
1614 (putenv (string-append name "=" value))
1615 (putenv name)))
1616
1617 (define (unsetenv name)
1618 "Remove the entry for NAME from the environment."
1619 (putenv name))
1620
1621 \f
1622
1623 ;;; {Load Paths}
1624 ;;;
1625
1626 (define (in-vicinity vicinity file)
1627 (let ((tail (let ((len (string-length vicinity)))
1628 (if (zero? len)
1629 #f
1630 (string-ref vicinity (- len 1))))))
1631 (string-append vicinity
1632 (if (or (not tail)
1633 (eq? tail #\/))
1634 ""
1635 "/")
1636 file)))
1637
1638 \f
1639
1640 ;;; {Help for scm_shell}
1641 ;;;
1642 ;;; The argument-processing code used by Guile-based shells generates
1643 ;;; Scheme code based on the argument list. This page contains help
1644 ;;; functions for the code it generates.
1645 ;;;
1646
1647 (define (command-line) (program-arguments))
1648
1649 ;; This is mostly for the internal use of the code generated by
1650 ;; scm_compile_shell_switches.
1651
1652 (define (load-user-init)
1653 (let* ((home (or (getenv "HOME")
1654 (false-if-exception (passwd:dir (getpwuid (getuid))))
1655 "/")) ;; fallback for cygwin etc.
1656 (init-file (in-vicinity home ".guile")))
1657 (if (file-exists? init-file)
1658 (primitive-load init-file))))
1659
1660 \f
1661
1662 ;;; {The interpreter stack}
1663 ;;;
1664
1665 ;; %stacks defined in stacks.c
1666 (define (%start-stack tag thunk)
1667 (let ((prompt-tag (make-prompt-tag "start-stack")))
1668 (call-with-prompt
1669 prompt-tag
1670 (lambda ()
1671 (with-fluids ((%stacks (acons tag prompt-tag
1672 (or (fluid-ref %stacks) '()))))
1673 (thunk)))
1674 (lambda (k . args)
1675 (%start-stack tag (lambda () (apply k args)))))))
1676
1677 (define-syntax-rule (start-stack tag exp)
1678 (%start-stack tag (lambda () exp)))
1679
1680 \f
1681
1682 ;;; {Loading by paths}
1683 ;;;
1684
1685 ;;; Load a Scheme source file named NAME, searching for it in the
1686 ;;; directories listed in %load-path, and applying each of the file
1687 ;;; name extensions listed in %load-extensions.
1688 (define (load-from-path name)
1689 (start-stack 'load-stack
1690 (primitive-load-path name)))
1691
1692 (define-syntax-rule (add-to-load-path elt)
1693 "Add ELT to Guile's load path, at compile-time and at run-time."
1694 (eval-when (compile load eval)
1695 (set! %load-path (cons elt %load-path))))
1696
1697 (define %load-verbosely #f)
1698 (define (assert-load-verbosity v) (set! %load-verbosely v))
1699
1700 (define (%load-announce file)
1701 (if %load-verbosely
1702 (with-output-to-port (current-warning-port)
1703 (lambda ()
1704 (display ";;; ")
1705 (display "loading ")
1706 (display file)
1707 (newline)
1708 (force-output)))))
1709
1710 (set! %load-hook %load-announce)
1711
1712 \f
1713
1714 ;;; {Reader Extensions}
1715 ;;;
1716 ;;; Reader code for various "#c" forms.
1717 ;;;
1718
1719 (define read-eval? (make-fluid #f))
1720 (read-hash-extend #\.
1721 (lambda (c port)
1722 (if (fluid-ref read-eval?)
1723 (eval (read port) (interaction-environment))
1724 (error
1725 "#. read expansion found and read-eval? is #f."))))
1726
1727 \f
1728
1729 ;;; {Low Level Modules}
1730 ;;;
1731 ;;; These are the low level data structures for modules.
1732 ;;;
1733 ;;; Every module object is of the type 'module-type', which is a record
1734 ;;; consisting of the following members:
1735 ;;;
1736 ;;; - eval-closure: the function that defines for its module the strategy that
1737 ;;; shall be followed when looking up symbols in the module.
1738 ;;;
1739 ;;; An eval-closure is a function taking two arguments: the symbol to be
1740 ;;; looked up and a boolean value telling whether a binding for the symbol
1741 ;;; should be created if it does not exist yet. If the symbol lookup
1742 ;;; succeeded (either because an existing binding was found or because a new
1743 ;;; binding was created), a variable object representing the binding is
1744 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1745 ;;; closure does not take the module to be searched as an argument: During
1746 ;;; construction of the eval-closure, the eval-closure has to store the
1747 ;;; module it belongs to in its environment. This means, that any
1748 ;;; eval-closure can belong to only one module.
1749 ;;;
1750 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1751 ;;; special cases of eval-closures are to be distinguished: During startup
1752 ;;; the module system is not yet activated. In this phase, no modules are
1753 ;;; defined and all bindings are automatically stored by the system in the
1754 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1755 ;;; functions which require an eval-closure as their argument need to be
1756 ;;; passed the value #f.
1757 ;;;
1758 ;;; The other two special cases of eval-closures are the
1759 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1760 ;;; behave equally for the case that no new binding is to be created. The
1761 ;;; difference between the two comes in, when the boolean argument to the
1762 ;;; eval-closure indicates that a new binding shall be created if it is not
1763 ;;; found.
1764 ;;;
1765 ;;; Given that no new binding shall be created, both standard eval-closures
1766 ;;; define the following standard strategy of searching bindings in the
1767 ;;; module: First, the module's obarray is searched for the symbol. Second,
1768 ;;; if no binding for the symbol was found in the module's obarray, the
1769 ;;; module's binder procedure is exececuted. If this procedure did not
1770 ;;; return a binding for the symbol, the modules referenced in the module's
1771 ;;; uses list are recursively searched for a binding of the symbol. If the
1772 ;;; binding can not be found in these modules also, the symbol lookup has
1773 ;;; failed.
1774 ;;;
1775 ;;; If a new binding shall be created, the standard-interface-eval-closure
1776 ;;; immediately returns indicating failure. That is, it does not even try
1777 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1778 ;;; first search the obarray, and if no binding was found there, would
1779 ;;; create a new binding in the obarray, therefore not calling the binder
1780 ;;; procedure or searching the modules in the uses list.
1781 ;;;
1782 ;;; The explanation of the following members obarray, binder and uses
1783 ;;; assumes that the symbol lookup follows the strategy that is defined in
1784 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1785 ;;;
1786 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1787 ;;; hash table, the definitions are found that are local to the module (that
1788 ;;; is, not imported from other modules). When looking up bindings in the
1789 ;;; module, this hash table is searched first.
1790 ;;;
1791 ;;; - binder: either #f or a function taking a module and a symbol argument.
1792 ;;; If it is a function it is called after the obarray has been
1793 ;;; unsuccessfully searched for a binding. It then can provide bindings
1794 ;;; that would otherwise not be found locally in the module.
1795 ;;;
1796 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1797 ;;; These modules are the third place queried for bindings after the obarray
1798 ;;; has been unsuccessfully searched and the binder function did not deliver
1799 ;;; a result either.
1800 ;;;
1801 ;;; - transformer: either #f or a function taking a scheme expression as
1802 ;;; delivered by read. If it is a function, it will be called to perform
1803 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1804 ;;; expression. The output of the transformer function will then be passed
1805 ;;; to Guile's internal memoizer. This means that the output must be valid
1806 ;;; scheme code. The only exception is, that the output may make use of the
1807 ;;; syntax extensions provided to identify the modules that a binding
1808 ;;; belongs to.
1809 ;;;
1810 ;;; - name: the name of the module. This is used for all kinds of printing
1811 ;;; outputs. In certain places the module name also serves as a way of
1812 ;;; identification. When adding a module to the uses list of another
1813 ;;; module, it is made sure that the new uses list will not contain two
1814 ;;; modules of the same name.
1815 ;;;
1816 ;;; - kind: classification of the kind of module. The value is (currently?)
1817 ;;; only used for printing. It has no influence on how a module is treated.
1818 ;;; Currently the following values are used when setting the module kind:
1819 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1820 ;;; is set, it defaults to 'module.
1821 ;;;
1822 ;;; - duplicates-handlers: a list of procedures that get called to make a
1823 ;;; choice between two duplicate bindings when name clashes occur. See the
1824 ;;; `duplicate-handlers' global variable below.
1825 ;;;
1826 ;;; - observers: a list of procedures that get called when the module is
1827 ;;; modified.
1828 ;;;
1829 ;;; - weak-observers: a weak-key hash table of procedures that get called
1830 ;;; when the module is modified. See `module-observe-weak' for details.
1831 ;;;
1832 ;;; In addition, the module may (must?) contain a binding for
1833 ;;; `%module-public-interface'. This variable should be bound to a module
1834 ;;; representing the exported interface of a module. See the
1835 ;;; `module-public-interface' and `module-export!' procedures.
1836 ;;;
1837 ;;; !!! warning: The interface to lazy binder procedures is going
1838 ;;; to be changed in an incompatible way to permit all the basic
1839 ;;; module ops to be virtualized.
1840 ;;;
1841 ;;; (make-module size use-list lazy-binding-proc) => module
1842 ;;; module-{obarray,uses,binder}[|-set!]
1843 ;;; (module? obj) => [#t|#f]
1844 ;;; (module-locally-bound? module symbol) => [#t|#f]
1845 ;;; (module-bound? module symbol) => [#t|#f]
1846 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1847 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1848 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1849 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1850 ;;; (module-symbol-binding module symbol opt-value)
1851 ;;; => [ <obj> | opt-value | an error occurs ]
1852 ;;; (module-make-local-var! module symbol) => #<variable...>
1853 ;;; (module-add! module symbol var) => unspecified
1854 ;;; (module-remove! module symbol) => unspecified
1855 ;;; (module-for-each proc module) => unspecified
1856 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1857 ;;; (set-current-module module) => unspecified
1858 ;;; (current-module) => #<module...>
1859 ;;;
1860 ;;;
1861
1862 \f
1863
1864 ;;; {Printing Modules}
1865 ;;;
1866
1867 ;; This is how modules are printed. You can re-define it.
1868 (define (%print-module mod port)
1869 (display "#<" port)
1870 (display (or (module-kind mod) "module") port)
1871 (display " " port)
1872 (display (module-name mod) port)
1873 (display " " port)
1874 (display (number->string (object-address mod) 16) port)
1875 (display ">" port))
1876
1877 (letrec-syntax
1878 ;; Locally extend the syntax to allow record accessors to be defined at
1879 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1880 ;; the setters, in order to allow for redefinition of the record type; not
1881 ;; relevant in the case of modules, but perhaps if we make this public, it
1882 ;; could matter.
1883
1884 ((define-record-type
1885 (lambda (x)
1886 (define (make-id scope . fragments)
1887 (datum->syntax scope
1888 (apply symbol-append
1889 (map (lambda (x)
1890 (if (symbol? x) x (syntax->datum x)))
1891 fragments))))
1892
1893 (define (getter rtd type-name field slot)
1894 #`(define #,(make-id rtd type-name '- field)
1895 (let ((rtd #,rtd))
1896 (lambda (#,type-name)
1897 (if (eq? (struct-vtable #,type-name) rtd)
1898 (struct-ref #,type-name #,slot)
1899 (%record-type-error rtd #,type-name))))))
1900
1901 (define (setter rtd type-name field slot)
1902 #`(define #,(make-id rtd 'set- type-name '- field '!)
1903 (let ((rtd #,rtd))
1904 (lambda (#,type-name val)
1905 (if (eq? (struct-vtable #,type-name) rtd)
1906 (struct-set! #,type-name #,slot val)
1907 (%record-type-error rtd #,type-name))))))
1908
1909 (define (accessors rtd type-name fields n exp)
1910 (syntax-case fields ()
1911 (() exp)
1912 (((field #:no-accessors) field* ...) (identifier? #'field)
1913 (accessors rtd type-name #'(field* ...) (1+ n)
1914 exp))
1915 (((field #:no-setter) field* ...) (identifier? #'field)
1916 (accessors rtd type-name #'(field* ...) (1+ n)
1917 #`(begin #,exp
1918 #,(getter rtd type-name #'field n))))
1919 (((field #:no-getter) field* ...) (identifier? #'field)
1920 (accessors rtd type-name #'(field* ...) (1+ n)
1921 #`(begin #,exp
1922 #,(setter rtd type-name #'field n))))
1923 ((field field* ...) (identifier? #'field)
1924 (accessors rtd type-name #'(field* ...) (1+ n)
1925 #`(begin #,exp
1926 #,(getter rtd type-name #'field n)
1927 #,(setter rtd type-name #'field n))))))
1928
1929 (define (predicate rtd type-name fields exp)
1930 (accessors
1931 rtd type-name fields 0
1932 #`(begin
1933 #,exp
1934 (define (#,(make-id rtd type-name '?) obj)
1935 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1936
1937 (define (field-list fields)
1938 (syntax-case fields ()
1939 (() '())
1940 (((f . opts) . rest) (identifier? #'f)
1941 (cons #'f (field-list #'rest)))
1942 ((f . rest) (identifier? #'f)
1943 (cons #'f (field-list #'rest)))))
1944
1945 (define (constructor rtd type-name fields exp)
1946 (let ((ctor (make-id rtd type-name '-constructor))
1947 (args (field-list fields)))
1948 (predicate rtd type-name fields
1949 #`(begin #,exp
1950 (define #,ctor
1951 (let ((rtd #,rtd))
1952 (lambda #,args
1953 (make-struct rtd 0 #,@args))))
1954 (struct-set! #,rtd (+ vtable-offset-user 2)
1955 #,ctor)))))
1956
1957 (define (type type-name printer fields)
1958 (define (make-layout)
1959 (let lp ((fields fields) (slots '()))
1960 (syntax-case fields ()
1961 (() (datum->syntax #'here
1962 (make-struct-layout
1963 (apply string-append slots))))
1964 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1965
1966 (let ((rtd (make-id type-name type-name '-type)))
1967 (constructor rtd type-name fields
1968 #`(begin
1969 (define #,rtd
1970 (make-struct record-type-vtable 0
1971 '#,(make-layout)
1972 #,printer
1973 '#,type-name
1974 '#,(field-list fields)))
1975 (set-struct-vtable-name! #,rtd '#,type-name)))))
1976
1977 (syntax-case x ()
1978 ((_ type-name printer (field ...))
1979 (type #'type-name #'printer #'(field ...)))))))
1980
1981 ;; module-type
1982 ;;
1983 ;; A module is characterized by an obarray in which local symbols
1984 ;; are interned, a list of modules, "uses", from which non-local
1985 ;; bindings can be inherited, and an optional lazy-binder which
1986 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1987 ;; bindings that would otherwise not be found locally in the module.
1988 ;;
1989 ;; NOTE: If you change the set of fields or their order, you also need to
1990 ;; change the constants in libguile/modules.h.
1991 ;;
1992 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1993 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1994 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1995 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1996 ;;
1997 (define-record-type module
1998 (lambda (obj port) (%print-module obj port))
1999 (obarray
2000 uses
2001 binder
2002 eval-closure
2003 (transformer #:no-getter)
2004 (name #:no-getter)
2005 kind
2006 duplicates-handlers
2007 (import-obarray #:no-setter)
2008 observers
2009 (weak-observers #:no-setter)
2010 version
2011 submodules
2012 submodule-binder
2013 public-interface
2014 filename)))
2015
2016
2017 ;; make-module &opt size uses binder
2018 ;;
2019 ;; Create a new module, perhaps with a particular size of obarray,
2020 ;; initial uses list, or binding procedure.
2021 ;;
2022 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
2023 (if (not (integer? size))
2024 (error "Illegal size to make-module." size))
2025 (if (not (and (list? uses)
2026 (and-map module? uses)))
2027 (error "Incorrect use list." uses))
2028 (if (and binder (not (procedure? binder)))
2029 (error
2030 "Lazy-binder expected to be a procedure or #f." binder))
2031
2032 (let ((module (module-constructor (make-hash-table size)
2033 uses binder #f macroexpand
2034 #f #f #f
2035 (make-hash-table)
2036 '()
2037 (make-weak-key-hash-table 31) #f
2038 (make-hash-table 7) #f #f #f)))
2039
2040 ;; We can't pass this as an argument to module-constructor,
2041 ;; because we need it to close over a pointer to the module
2042 ;; itself.
2043 (set-module-eval-closure! module (standard-eval-closure module))
2044
2045 module))
2046
2047
2048 \f
2049
2050 ;;; {Observer protocol}
2051 ;;;
2052
2053 (define (module-observe module proc)
2054 (set-module-observers! module (cons proc (module-observers module)))
2055 (cons module proc))
2056
2057 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
2058 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
2059 ;; be any Scheme object). PROC is invoked and passed MODULE any time
2060 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
2061 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
2062 ;; for instance).
2063
2064 ;; The two-argument version is kept for backward compatibility: when called
2065 ;; with two arguments, the observer gets unregistered when closure PROC
2066 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
2067 (hashq-set! (module-weak-observers module) observer-id proc))
2068
2069 (define (module-unobserve token)
2070 (let ((module (car token))
2071 (id (cdr token)))
2072 (if (integer? id)
2073 (hash-remove! (module-weak-observers module) id)
2074 (set-module-observers! module (delq1! id (module-observers module)))))
2075 *unspecified*)
2076
2077 (define module-defer-observers #f)
2078 (define module-defer-observers-mutex (make-mutex 'recursive))
2079 (define module-defer-observers-table (make-hash-table))
2080
2081 (define (module-modified m)
2082 (if module-defer-observers
2083 (hash-set! module-defer-observers-table m #t)
2084 (module-call-observers m)))
2085
2086 ;;; This function can be used to delay calls to observers so that they
2087 ;;; can be called once only in the face of massive updating of modules.
2088 ;;;
2089 (define (call-with-deferred-observers thunk)
2090 (dynamic-wind
2091 (lambda ()
2092 (lock-mutex module-defer-observers-mutex)
2093 (set! module-defer-observers #t))
2094 thunk
2095 (lambda ()
2096 (set! module-defer-observers #f)
2097 (hash-for-each (lambda (m dummy)
2098 (module-call-observers m))
2099 module-defer-observers-table)
2100 (hash-clear! module-defer-observers-table)
2101 (unlock-mutex module-defer-observers-mutex))))
2102
2103 (define (module-call-observers m)
2104 (for-each (lambda (proc) (proc m)) (module-observers m))
2105
2106 ;; We assume that weak observers don't (un)register themselves as they are
2107 ;; called since this would preclude proper iteration over the hash table
2108 ;; elements.
2109 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
2110
2111 \f
2112
2113 ;;; {Module Searching in General}
2114 ;;;
2115 ;;; We sometimes want to look for properties of a symbol
2116 ;;; just within the obarray of one module. If the property
2117 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
2118 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
2119 ;;;
2120 ;;;
2121 ;;; Other times, we want to test for a symbol property in the obarray
2122 ;;; of M and, if it is not found there, try each of the modules in the
2123 ;;; uses list of M. This is the normal way of testing for some
2124 ;;; property, so we state these properties without qualification as
2125 ;;; in: ``The symbol 'fnord is interned in module M because it is
2126 ;;; interned locally in module M2 which is a member of the uses list
2127 ;;; of M.''
2128 ;;;
2129
2130 ;; module-search fn m
2131 ;;
2132 ;; return the first non-#f result of FN applied to M and then to
2133 ;; the modules in the uses of m, and so on recursively. If all applications
2134 ;; return #f, then so does this function.
2135 ;;
2136 (define (module-search fn m v)
2137 (define (loop pos)
2138 (and (pair? pos)
2139 (or (module-search fn (car pos) v)
2140 (loop (cdr pos)))))
2141 (or (fn m v)
2142 (loop (module-uses m))))
2143
2144
2145 ;;; {Is a symbol bound in a module?}
2146 ;;;
2147 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
2148 ;;; of S in M has been set to some well-defined value.
2149 ;;;
2150
2151 ;; module-locally-bound? module symbol
2152 ;;
2153 ;; Is a symbol bound (interned and defined) locally in a given module?
2154 ;;
2155 (define (module-locally-bound? m v)
2156 (let ((var (module-local-variable m v)))
2157 (and var
2158 (variable-bound? var))))
2159
2160 ;; module-bound? module symbol
2161 ;;
2162 ;; Is a symbol bound (interned and defined) anywhere in a given module
2163 ;; or its uses?
2164 ;;
2165 (define (module-bound? m v)
2166 (let ((var (module-variable m v)))
2167 (and var
2168 (variable-bound? var))))
2169
2170 ;;; {Is a symbol interned in a module?}
2171 ;;;
2172 ;;; Symbol S in Module M is interned if S occurs in
2173 ;;; of S in M has been set to some well-defined value.
2174 ;;;
2175 ;;; It is possible to intern a symbol in a module without providing
2176 ;;; an initial binding for the corresponding variable. This is done
2177 ;;; with:
2178 ;;; (module-add! module symbol (make-undefined-variable))
2179 ;;;
2180 ;;; In that case, the symbol is interned in the module, but not
2181 ;;; bound there. The unbound symbol shadows any binding for that
2182 ;;; symbol that might otherwise be inherited from a member of the uses list.
2183 ;;;
2184
2185 (define (module-obarray-get-handle ob key)
2186 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
2187
2188 (define (module-obarray-ref ob key)
2189 ((if (symbol? key) hashq-ref hash-ref) ob key))
2190
2191 (define (module-obarray-set! ob key val)
2192 ((if (symbol? key) hashq-set! hash-set!) ob key val))
2193
2194 (define (module-obarray-remove! ob key)
2195 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
2196
2197 ;; module-symbol-locally-interned? module symbol
2198 ;;
2199 ;; is a symbol interned (not neccessarily defined) locally in a given module
2200 ;; or its uses? Interned symbols shadow inherited bindings even if
2201 ;; they are not themselves bound to a defined value.
2202 ;;
2203 (define (module-symbol-locally-interned? m v)
2204 (not (not (module-obarray-get-handle (module-obarray m) v))))
2205
2206 ;; module-symbol-interned? module symbol
2207 ;;
2208 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
2209 ;; or its uses? Interned symbols shadow inherited bindings even if
2210 ;; they are not themselves bound to a defined value.
2211 ;;
2212 (define (module-symbol-interned? m v)
2213 (module-search module-symbol-locally-interned? m v))
2214
2215
2216 ;;; {Mapping modules x symbols --> variables}
2217 ;;;
2218
2219 ;; module-local-variable module symbol
2220 ;; return the local variable associated with a MODULE and SYMBOL.
2221 ;;
2222 ;;; This function is very important. It is the only function that can
2223 ;;; return a variable from a module other than the mutators that store
2224 ;;; new variables in modules. Therefore, this function is the location
2225 ;;; of the "lazy binder" hack.
2226 ;;;
2227 ;;; If symbol is defined in MODULE, and if the definition binds symbol
2228 ;;; to a variable, return that variable object.
2229 ;;;
2230 ;;; If the symbols is not found at first, but the module has a lazy binder,
2231 ;;; then try the binder.
2232 ;;;
2233 ;;; If the symbol is not found at all, return #f.
2234 ;;;
2235 ;;; (This is now written in C, see `modules.c'.)
2236 ;;;
2237
2238 ;;; {Mapping modules x symbols --> bindings}
2239 ;;;
2240 ;;; These are similar to the mapping to variables, except that the
2241 ;;; variable is dereferenced.
2242 ;;;
2243
2244 ;; module-symbol-binding module symbol opt-value
2245 ;;
2246 ;; return the binding of a variable specified by name within
2247 ;; a given module, signalling an error if the variable is unbound.
2248 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2249 ;; return OPT-VALUE.
2250 ;;
2251 (define (module-symbol-local-binding m v . opt-val)
2252 (let ((var (module-local-variable m v)))
2253 (if (and var (variable-bound? var))
2254 (variable-ref var)
2255 (if (not (null? opt-val))
2256 (car opt-val)
2257 (error "Locally unbound variable." v)))))
2258
2259 ;; module-symbol-binding module symbol opt-value
2260 ;;
2261 ;; return the binding of a variable specified by name within
2262 ;; a given module, signalling an error if the variable is unbound.
2263 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2264 ;; return OPT-VALUE.
2265 ;;
2266 (define (module-symbol-binding m v . opt-val)
2267 (let ((var (module-variable m v)))
2268 (if (and var (variable-bound? var))
2269 (variable-ref var)
2270 (if (not (null? opt-val))
2271 (car opt-val)
2272 (error "Unbound variable." v)))))
2273
2274
2275 \f
2276
2277 ;;; {Adding Variables to Modules}
2278 ;;;
2279
2280 ;; module-make-local-var! module symbol
2281 ;;
2282 ;; ensure a variable for V in the local namespace of M.
2283 ;; If no variable was already there, then create a new and uninitialzied
2284 ;; variable.
2285 ;;
2286 ;; This function is used in modules.c.
2287 ;;
2288 (define (module-make-local-var! m v)
2289 (or (let ((b (module-obarray-ref (module-obarray m) v)))
2290 (and (variable? b)
2291 (begin
2292 ;; Mark as modified since this function is called when
2293 ;; the standard eval closure defines a binding
2294 (module-modified m)
2295 b)))
2296
2297 ;; Create a new local variable.
2298 (let ((local-var (make-undefined-variable)))
2299 (module-add! m v local-var)
2300 local-var)))
2301
2302 ;; module-ensure-local-variable! module symbol
2303 ;;
2304 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
2305 ;; there is no binding for SYMBOL, create a new uninitialized
2306 ;; variable. Return the local variable.
2307 ;;
2308 (define (module-ensure-local-variable! module symbol)
2309 (or (module-local-variable module symbol)
2310 (let ((var (make-undefined-variable)))
2311 (module-add! module symbol var)
2312 var)))
2313
2314 ;; module-add! module symbol var
2315 ;;
2316 ;; ensure a particular variable for V in the local namespace of M.
2317 ;;
2318 (define (module-add! m v var)
2319 (if (not (variable? var))
2320 (error "Bad variable to module-add!" var))
2321 (module-obarray-set! (module-obarray m) v var)
2322 (module-modified m))
2323
2324 ;; module-remove!
2325 ;;
2326 ;; make sure that a symbol is undefined in the local namespace of M.
2327 ;;
2328 (define (module-remove! m v)
2329 (module-obarray-remove! (module-obarray m) v)
2330 (module-modified m))
2331
2332 (define (module-clear! m)
2333 (hash-clear! (module-obarray m))
2334 (module-modified m))
2335
2336 ;; MODULE-FOR-EACH -- exported
2337 ;;
2338 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
2339 ;;
2340 (define (module-for-each proc module)
2341 (hash-for-each proc (module-obarray module)))
2342
2343 (define (module-map proc module)
2344 (hash-map->list proc (module-obarray module)))
2345
2346 ;; Submodules
2347 ;;
2348 ;; Modules exist in a separate namespace from values, because you generally do
2349 ;; not want the name of a submodule, which you might not even use, to collide
2350 ;; with local variables that happen to be named the same as the submodule.
2351 ;;
2352 (define (module-ref-submodule module name)
2353 (or (hashq-ref (module-submodules module) name)
2354 (and (module-submodule-binder module)
2355 ((module-submodule-binder module) module name))))
2356
2357 (define (module-define-submodule! module name submodule)
2358 (hashq-set! (module-submodules module) name submodule))
2359
2360 \f
2361
2362 ;;; {Module-based Loading}
2363 ;;;
2364
2365 (define (save-module-excursion thunk)
2366 (let ((inner-module (current-module))
2367 (outer-module #f))
2368 (dynamic-wind (lambda ()
2369 (set! outer-module (current-module))
2370 (set-current-module inner-module)
2371 (set! inner-module #f))
2372 thunk
2373 (lambda ()
2374 (set! inner-module (current-module))
2375 (set-current-module outer-module)
2376 (set! outer-module #f)))))
2377
2378 \f
2379
2380 ;;; {MODULE-REF -- exported}
2381 ;;;
2382
2383 ;; Returns the value of a variable called NAME in MODULE or any of its
2384 ;; used modules. If there is no such variable, then if the optional third
2385 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2386 ;;
2387 (define (module-ref module name . rest)
2388 (let ((variable (module-variable module name)))
2389 (if (and variable (variable-bound? variable))
2390 (variable-ref variable)
2391 (if (null? rest)
2392 (error "No variable named" name 'in module)
2393 (car rest) ; default value
2394 ))))
2395
2396 ;; MODULE-SET! -- exported
2397 ;;
2398 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2399 ;; to VALUE; if there is no such variable, an error is signaled.
2400 ;;
2401 (define (module-set! module name value)
2402 (let ((variable (module-variable module name)))
2403 (if variable
2404 (variable-set! variable value)
2405 (error "No variable named" name 'in module))))
2406
2407 ;; MODULE-DEFINE! -- exported
2408 ;;
2409 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2410 ;; variable, it is added first.
2411 ;;
2412 (define (module-define! module name value)
2413 (let ((variable (module-local-variable module name)))
2414 (if variable
2415 (begin
2416 (variable-set! variable value)
2417 (module-modified module))
2418 (let ((variable (make-variable value)))
2419 (module-add! module name variable)))))
2420
2421 ;; MODULE-DEFINED? -- exported
2422 ;;
2423 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2424 ;; uses)
2425 ;;
2426 (define (module-defined? module name)
2427 (let ((variable (module-variable module name)))
2428 (and variable (variable-bound? variable))))
2429
2430 ;; MODULE-USE! module interface
2431 ;;
2432 ;; Add INTERFACE to the list of interfaces used by MODULE.
2433 ;;
2434 (define (module-use! module interface)
2435 (if (not (or (eq? module interface)
2436 (memq interface (module-uses module))))
2437 (begin
2438 ;; Newly used modules must be appended rather than consed, so that
2439 ;; `module-variable' traverses the use list starting from the first
2440 ;; used module.
2441 (set-module-uses! module (append (module-uses module)
2442 (list interface)))
2443 (hash-clear! (module-import-obarray module))
2444 (module-modified module))))
2445
2446 ;; MODULE-USE-INTERFACES! module interfaces
2447 ;;
2448 ;; Same as MODULE-USE!, but only notifies module observers after all
2449 ;; interfaces are added to the inports list.
2450 ;;
2451 (define (module-use-interfaces! module interfaces)
2452 (let* ((cur (module-uses module))
2453 (new (let lp ((in interfaces) (out '()))
2454 (if (null? in)
2455 (reverse out)
2456 (lp (cdr in)
2457 (let ((iface (car in)))
2458 (if (or (memq iface cur) (memq iface out))
2459 out
2460 (cons iface out))))))))
2461 (set-module-uses! module (append cur new))
2462 (hash-clear! (module-import-obarray module))
2463 (module-modified module)))
2464
2465 \f
2466
2467 ;;; {Recursive Namespaces}
2468 ;;;
2469 ;;; A hierarchical namespace emerges if we consider some module to be
2470 ;;; root, and submodules of that module to be nested namespaces.
2471 ;;;
2472 ;;; The routines here manage variable names in hierarchical namespace.
2473 ;;; Each variable name is a list of elements, looked up in successively nested
2474 ;;; modules.
2475 ;;;
2476 ;;; (nested-ref some-root-module '(foo bar baz))
2477 ;;; => <value of a variable named baz in the submodule bar of
2478 ;;; the submodule foo of some-root-module>
2479 ;;;
2480 ;;;
2481 ;;; There are:
2482 ;;;
2483 ;;; ;; a-root is a module
2484 ;;; ;; name is a list of symbols
2485 ;;;
2486 ;;; nested-ref a-root name
2487 ;;; nested-set! a-root name val
2488 ;;; nested-define! a-root name val
2489 ;;; nested-remove! a-root name
2490 ;;;
2491 ;;; These functions manipulate values in namespaces. For referencing the
2492 ;;; namespaces themselves, use the following:
2493 ;;;
2494 ;;; nested-ref-module a-root name
2495 ;;; nested-define-module! a-root name mod
2496 ;;;
2497 ;;; (current-module) is a natural choice for a root so for convenience there are
2498 ;;; also:
2499 ;;;
2500 ;;; local-ref name == nested-ref (current-module) name
2501 ;;; local-set! name val == nested-set! (current-module) name val
2502 ;;; local-define name val == nested-define! (current-module) name val
2503 ;;; local-remove name == nested-remove! (current-module) name
2504 ;;; local-ref-module name == nested-ref-module (current-module) name
2505 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2506 ;;;
2507
2508
2509 (define (nested-ref root names)
2510 (if (null? names)
2511 root
2512 (let loop ((cur root)
2513 (head (car names))
2514 (tail (cdr names)))
2515 (if (null? tail)
2516 (module-ref cur head #f)
2517 (let ((cur (module-ref-submodule cur head)))
2518 (and cur
2519 (loop cur (car tail) (cdr tail))))))))
2520
2521 (define (nested-set! root names val)
2522 (let loop ((cur root)
2523 (head (car names))
2524 (tail (cdr names)))
2525 (if (null? tail)
2526 (module-set! cur head val)
2527 (let ((cur (module-ref-submodule cur head)))
2528 (if (not cur)
2529 (error "failed to resolve module" names)
2530 (loop cur (car tail) (cdr tail)))))))
2531
2532 (define (nested-define! root names val)
2533 (let loop ((cur root)
2534 (head (car names))
2535 (tail (cdr names)))
2536 (if (null? tail)
2537 (module-define! cur head val)
2538 (let ((cur (module-ref-submodule cur head)))
2539 (if (not cur)
2540 (error "failed to resolve module" names)
2541 (loop cur (car tail) (cdr tail)))))))
2542
2543 (define (nested-remove! root names)
2544 (let loop ((cur root)
2545 (head (car names))
2546 (tail (cdr names)))
2547 (if (null? tail)
2548 (module-remove! cur head)
2549 (let ((cur (module-ref-submodule cur head)))
2550 (if (not cur)
2551 (error "failed to resolve module" names)
2552 (loop cur (car tail) (cdr tail)))))))
2553
2554
2555 (define (nested-ref-module root names)
2556 (let loop ((cur root)
2557 (names names))
2558 (if (null? names)
2559 cur
2560 (let ((cur (module-ref-submodule cur (car names))))
2561 (and cur
2562 (loop cur (cdr names)))))))
2563
2564 (define (nested-define-module! root names module)
2565 (if (null? names)
2566 (error "can't redefine root module" root module)
2567 (let loop ((cur root)
2568 (head (car names))
2569 (tail (cdr names)))
2570 (if (null? tail)
2571 (module-define-submodule! cur head module)
2572 (let ((cur (or (module-ref-submodule cur head)
2573 (let ((m (make-module 31)))
2574 (set-module-kind! m 'directory)
2575 (set-module-name! m (append (module-name cur)
2576 (list head)))
2577 (module-define-submodule! cur head m)
2578 m))))
2579 (loop cur (car tail) (cdr tail)))))))
2580
2581
2582 (define (local-ref names)
2583 (nested-ref (current-module) names))
2584
2585 (define (local-set! names val)
2586 (nested-set! (current-module) names val))
2587
2588 (define (local-define names val)
2589 (nested-define! (current-module) names val))
2590
2591 (define (local-remove names)
2592 (nested-remove! (current-module) names))
2593
2594 (define (local-ref-module names)
2595 (nested-ref-module (current-module) names))
2596
2597 (define (local-define-module names mod)
2598 (nested-define-module! (current-module) names mod))
2599
2600
2601
2602 \f
2603
2604 ;;; {The (guile) module}
2605 ;;;
2606 ;;; The standard module, which has the core Guile bindings. Also called the
2607 ;;; "root module", as it is imported by many other modules, but it is not
2608 ;;; necessarily the root of anything; and indeed, the module named '() might be
2609 ;;; better thought of as a root.
2610 ;;;
2611
2612 (define (set-system-module! m s)
2613 (set-procedure-property! (module-eval-closure m) 'system-module s))
2614
2615 ;; The root module uses the pre-modules-obarray as its obarray. This
2616 ;; special obarray accumulates all bindings that have been established
2617 ;; before the module system is fully booted.
2618 ;;
2619 ;; (The obarray continues to be used by code that has been closed over
2620 ;; before the module system has been booted.)
2621 ;;
2622 (define the-root-module
2623 (let ((m (make-module 0)))
2624 (set-module-obarray! m (%get-pre-modules-obarray))
2625 (set-module-name! m '(guile))
2626 (set-system-module! m #t)
2627 m))
2628
2629 ;; The root interface is a module that uses the same obarray as the
2630 ;; root module. It does not allow new definitions, tho.
2631 ;;
2632 (define the-scm-module
2633 (let ((m (make-module 0)))
2634 (set-module-obarray! m (%get-pre-modules-obarray))
2635 (set-module-eval-closure! m (standard-interface-eval-closure m))
2636 (set-module-name! m '(guile))
2637 (set-module-kind! m 'interface)
2638 (set-system-module! m #t)
2639
2640 ;; In Guile 1.8 and earlier M was its own public interface.
2641 (set-module-public-interface! m m)
2642
2643 m))
2644
2645 (set-module-public-interface! the-root-module the-scm-module)
2646
2647 \f
2648
2649 ;; Now that we have a root module, even though modules aren't fully booted,
2650 ;; expand the definition of resolve-module.
2651 ;;
2652 (define (resolve-module name . args)
2653 (if (equal? name '(guile))
2654 the-root-module
2655 (error "unexpected module to resolve during module boot" name)))
2656
2657 ;; Cheat. These bindings are needed by modules.c, but we don't want
2658 ;; to move their real definition here because that would be unnatural.
2659 ;;
2660 (define define-module* #f)
2661 (define process-use-modules #f)
2662 (define module-export! #f)
2663 (define default-duplicate-binding-procedures #f)
2664
2665 ;; This boots the module system. All bindings needed by modules.c
2666 ;; must have been defined by now.
2667 ;;
2668 (set-current-module the-root-module)
2669
2670
2671 \f
2672
2673 ;; Now that modules are booted, give module-name its final definition.
2674 ;;
2675 (define module-name
2676 (let ((accessor (record-accessor module-type 'name)))
2677 (lambda (mod)
2678 (or (accessor mod)
2679 (let ((name (list (gensym))))
2680 ;; Name MOD and bind it in the module root so that it's visible to
2681 ;; `resolve-module'. This is important as `psyntax' stores module
2682 ;; names and relies on being able to `resolve-module' them.
2683 (set-module-name! mod name)
2684 (nested-define-module! (resolve-module '() #f) name mod)
2685 (accessor mod))))))
2686
2687 (define (make-modules-in module name)
2688 (or (nested-ref-module module name)
2689 (let ((m (make-module 31)))
2690 (set-module-kind! m 'directory)
2691 (set-module-name! m (append (module-name module) name))
2692 (nested-define-module! module name m)
2693 m)))
2694
2695 (define (beautify-user-module! module)
2696 (let ((interface (module-public-interface module)))
2697 (if (or (not interface)
2698 (eq? interface module))
2699 (let ((interface (make-module 31)))
2700 (set-module-name! interface (module-name module))
2701 (set-module-version! interface (module-version module))
2702 (set-module-kind! interface 'interface)
2703 (set-module-public-interface! module interface))))
2704 (if (and (not (memq the-scm-module (module-uses module)))
2705 (not (eq? module the-root-module)))
2706 ;; Import the default set of bindings (from the SCM module) in MODULE.
2707 (module-use! module the-scm-module)))
2708
2709 (define (version-matches? version-ref target)
2710 (define (sub-versions-match? v-refs t)
2711 (define (sub-version-matches? v-ref t)
2712 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2713 (cond
2714 ((number? v-ref) (eqv? v-ref t))
2715 ((list? v-ref)
2716 (case (car v-ref)
2717 ((>=) (>= t (cadr v-ref)))
2718 ((<=) (<= t (cadr v-ref)))
2719 ((and) (and-map matches? (cdr v-ref)))
2720 ((or) (or-map matches? (cdr v-ref)))
2721 ((not) (not (matches? (cadr v-ref))))
2722 (else (error "Invalid sub-version reference" v-ref))))
2723 (else (error "Invalid sub-version reference" v-ref)))))
2724 (or (null? v-refs)
2725 (and (not (null? t))
2726 (sub-version-matches? (car v-refs) (car t))
2727 (sub-versions-match? (cdr v-refs) (cdr t)))))
2728
2729 (let ((matches? (lambda (v) (version-matches? v target))))
2730 (or (null? version-ref)
2731 (case (car version-ref)
2732 ((and) (and-map matches? (cdr version-ref)))
2733 ((or) (or-map matches? (cdr version-ref)))
2734 ((not) (not (matches? (cadr version-ref))))
2735 (else (sub-versions-match? version-ref target))))))
2736
2737 (define (make-fresh-user-module)
2738 (let ((m (make-module)))
2739 (beautify-user-module! m)
2740 m))
2741
2742 ;; NOTE: This binding is used in libguile/modules.c.
2743 ;;
2744 (define resolve-module
2745 (let ((root (make-module)))
2746 (set-module-name! root '())
2747 ;; Define the-root-module as '(guile).
2748 (module-define-submodule! root 'guile the-root-module)
2749
2750 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2751 (let ((already (nested-ref-module root name)))
2752 (cond
2753 ((and already
2754 (or (not autoload) (module-public-interface already)))
2755 ;; A hit, a palpable hit.
2756 (if (and version
2757 (not (version-matches? version (module-version already))))
2758 (error "incompatible module version already loaded" name))
2759 already)
2760 (autoload
2761 ;; Try to autoload the module, and recurse.
2762 (try-load-module name version)
2763 (resolve-module name #f #:ensure ensure))
2764 (else
2765 ;; No module found (or if one was, it had no public interface), and
2766 ;; we're not autoloading. Make an empty module if #:ensure is true.
2767 (or already
2768 (and ensure
2769 (make-modules-in root name)))))))))
2770
2771
2772 (define (try-load-module name version)
2773 (try-module-autoload name version))
2774
2775 (define (reload-module m)
2776 "Revisit the source file corresponding to the module @var{m}."
2777 (let ((f (module-filename m)))
2778 (if f
2779 (save-module-excursion
2780 (lambda ()
2781 ;; Re-set the initial environment, as in try-module-autoload.
2782 (set-current-module (make-fresh-user-module))
2783 (primitive-load-path f)
2784 m))
2785 ;; Though we could guess, we *should* know it.
2786 (error "unknown file name for module" m))))
2787
2788 (define (purify-module! module)
2789 "Removes bindings in MODULE which are inherited from the (guile) module."
2790 (let ((use-list (module-uses module)))
2791 (if (and (pair? use-list)
2792 (eq? (car (last-pair use-list)) the-scm-module))
2793 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2794
2795 ;; Return a module that is an interface to the module designated by
2796 ;; NAME.
2797 ;;
2798 ;; `resolve-interface' takes four keyword arguments:
2799 ;;
2800 ;; #:select SELECTION
2801 ;;
2802 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2803 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2804 ;; is the name in the used module and SEEN is the name in the using
2805 ;; module. Note that SEEN is also passed through RENAMER, below. The
2806 ;; default is to select all bindings. If you specify no selection but
2807 ;; a renamer, only the bindings that already exist in the used module
2808 ;; are made available in the interface. Bindings that are added later
2809 ;; are not picked up.
2810 ;;
2811 ;; #:hide BINDINGS
2812 ;;
2813 ;; BINDINGS is a list of bindings which should not be imported.
2814 ;;
2815 ;; #:prefix PREFIX
2816 ;;
2817 ;; PREFIX is a symbol that will be appended to each exported name.
2818 ;; The default is to not perform any renaming.
2819 ;;
2820 ;; #:renamer RENAMER
2821 ;;
2822 ;; RENAMER is a procedure that takes a symbol and returns its new
2823 ;; name. The default is not perform any renaming.
2824 ;;
2825 ;; Signal "no code for module" error if module name is not resolvable
2826 ;; or its public interface is not available. Signal "no binding"
2827 ;; error if selected binding does not exist in the used module.
2828 ;;
2829 (define* (resolve-interface name #:key
2830 (select #f)
2831 (hide '())
2832 (prefix #f)
2833 (renamer (if prefix
2834 (symbol-prefix-proc prefix)
2835 identity))
2836 version)
2837 (let* ((module (resolve-module name #t version #:ensure #f))
2838 (public-i (and module (module-public-interface module))))
2839 (and (or (not module) (not public-i))
2840 (error "no code for module" name))
2841 (if (and (not select) (null? hide) (eq? renamer identity))
2842 public-i
2843 (let ((selection (or select (module-map (lambda (sym var) sym)
2844 public-i)))
2845 (custom-i (make-module 31)))
2846 (set-module-kind! custom-i 'custom-interface)
2847 (set-module-name! custom-i name)
2848 ;; XXX - should use a lazy binder so that changes to the
2849 ;; used module are picked up automatically.
2850 (for-each (lambda (bspec)
2851 (let* ((direct? (symbol? bspec))
2852 (orig (if direct? bspec (car bspec)))
2853 (seen (if direct? bspec (cdr bspec)))
2854 (var (or (module-local-variable public-i orig)
2855 (module-local-variable module orig)
2856 (error
2857 ;; fixme: format manually for now
2858 (simple-format
2859 #f "no binding `~A' in module ~A"
2860 orig name)))))
2861 (if (memq orig hide)
2862 (set! hide (delq! orig hide))
2863 (module-add! custom-i
2864 (renamer seen)
2865 var))))
2866 selection)
2867 ;; Check that we are not hiding bindings which don't exist
2868 (for-each (lambda (binding)
2869 (if (not (module-local-variable public-i binding))
2870 (error
2871 (simple-format
2872 #f "no binding `~A' to hide in module ~A"
2873 binding name))))
2874 hide)
2875 custom-i))))
2876
2877 (define (symbol-prefix-proc prefix)
2878 (lambda (symbol)
2879 (symbol-append prefix symbol)))
2880
2881 ;; This function is called from "modules.c". If you change it, be
2882 ;; sure to update "modules.c" as well.
2883
2884 (define* (define-module* name
2885 #:key filename pure version (duplicates '())
2886 (imports '()) (exports '()) (replacements '())
2887 (re-exports '()) (autoloads '()) transformer)
2888 (define (list-of pred l)
2889 (or (null? l)
2890 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2891 (define (valid-export? x)
2892 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2893 (define (valid-autoload? x)
2894 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
2895
2896 (define (resolve-imports imports)
2897 (define (resolve-import import-spec)
2898 (if (list? import-spec)
2899 (apply resolve-interface import-spec)
2900 (error "unexpected use-module specification" import-spec)))
2901 (let lp ((imports imports) (out '()))
2902 (cond
2903 ((null? imports) (reverse! out))
2904 ((pair? imports)
2905 (lp (cdr imports)
2906 (cons (resolve-import (car imports)) out)))
2907 (else (error "unexpected tail of imports list" imports)))))
2908
2909 ;; We could add a #:no-check arg, set by the define-module macro, if
2910 ;; these checks are taking too much time.
2911 ;;
2912 (let ((module (resolve-module name #f)))
2913 (beautify-user-module! module)
2914 (if filename
2915 (set-module-filename! module filename))
2916 (if pure
2917 (purify-module! module))
2918 (if version
2919 (begin
2920 (if (not (list-of integer? version))
2921 (error "expected list of integers for version"))
2922 (set-module-version! module version)
2923 (set-module-version! (module-public-interface module) version)))
2924 (let ((imports (resolve-imports imports)))
2925 (call-with-deferred-observers
2926 (lambda ()
2927 (if (pair? imports)
2928 (module-use-interfaces! module imports))
2929 (if (list-of valid-export? exports)
2930 (if (pair? exports)
2931 (module-export! module exports))
2932 (error "expected exports to be a list of symbols or symbol pairs"))
2933 (if (list-of valid-export? replacements)
2934 (if (pair? replacements)
2935 (module-replace! module replacements))
2936 (error "expected replacements to be a list of symbols or symbol pairs"))
2937 (if (list-of valid-export? re-exports)
2938 (if (pair? re-exports)
2939 (module-re-export! module re-exports))
2940 (error "expected re-exports to be a list of symbols or symbol pairs"))
2941 ;; FIXME
2942 (if (not (null? autoloads))
2943 (apply module-autoload! module autoloads))
2944 ;; Wait until modules have been loaded to resolve duplicates
2945 ;; handlers.
2946 (if (pair? duplicates)
2947 (let ((handlers (lookup-duplicates-handlers duplicates)))
2948 (set-module-duplicates-handlers! module handlers))))))
2949
2950 (if transformer
2951 (if (and (pair? transformer) (list-of symbol? transformer))
2952 (let ((iface (resolve-interface transformer))
2953 (sym (car (last-pair transformer))))
2954 (set-module-transformer! module (module-ref iface sym)))
2955 (error "expected transformer to be a module name" transformer)))
2956
2957 (run-hook module-defined-hook module)
2958 module))
2959
2960 ;; `module-defined-hook' is a hook that is run whenever a new module
2961 ;; is defined. Its members are called with one argument, the new
2962 ;; module.
2963 (define module-defined-hook (make-hook 1))
2964
2965 \f
2966
2967 ;;; {Autoload}
2968 ;;;
2969
2970 (define (make-autoload-interface module name bindings)
2971 (let ((b (lambda (a sym definep)
2972 (and (memq sym bindings)
2973 (let ((i (module-public-interface (resolve-module name))))
2974 (if (not i)
2975 (error "missing interface for module" name))
2976 (let ((autoload (memq a (module-uses module))))
2977 ;; Replace autoload-interface with actual interface if
2978 ;; that has not happened yet.
2979 (if (pair? autoload)
2980 (set-car! autoload i)))
2981 (module-local-variable i sym))))))
2982 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2983 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2984 (make-hash-table 0) #f #f #f)))
2985
2986 (define (module-autoload! module . args)
2987 "Have @var{module} automatically load the module named @var{name} when one
2988 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2989 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2990 module '(ice-9 q) '(make-q q-length))}."
2991 (let loop ((args args))
2992 (cond ((null? args)
2993 #t)
2994 ((null? (cdr args))
2995 (error "invalid name+binding autoload list" args))
2996 (else
2997 (let ((name (car args))
2998 (bindings (cadr args)))
2999 (module-use! module (make-autoload-interface module
3000 name bindings))
3001 (loop (cddr args)))))))
3002
3003
3004 \f
3005
3006 ;;; {Autoloading modules}
3007 ;;;
3008
3009 (define autoloads-in-progress '())
3010
3011 ;; This function is called from "modules.c". If you change it, be
3012 ;; sure to update "modules.c" as well.
3013
3014 (define* (try-module-autoload module-name #:optional version)
3015 (let* ((reverse-name (reverse module-name))
3016 (name (symbol->string (car reverse-name)))
3017 (dir-hint-module-name (reverse (cdr reverse-name)))
3018 (dir-hint (apply string-append
3019 (map (lambda (elt)
3020 (string-append (symbol->string elt) "/"))
3021 dir-hint-module-name))))
3022 (resolve-module dir-hint-module-name #f)
3023 (and (not (autoload-done-or-in-progress? dir-hint name))
3024 (let ((didit #f))
3025 (dynamic-wind
3026 (lambda () (autoload-in-progress! dir-hint name))
3027 (lambda ()
3028 (with-fluids ((current-reader #f))
3029 (save-module-excursion
3030 (lambda ()
3031 ;; The initial environment when loading a module is a fresh
3032 ;; user module.
3033 (set-current-module (make-fresh-user-module))
3034 ;; Here we could allow some other search strategy (other than
3035 ;; primitive-load-path), for example using versions encoded
3036 ;; into the file system -- but then we would have to figure
3037 ;; out how to locate the compiled file, do auto-compilation,
3038 ;; etc. Punt for now, and don't use versions when locating
3039 ;; the file.
3040 (primitive-load-path (in-vicinity dir-hint name) #f)
3041 (set! didit #t)))))
3042 (lambda () (set-autoloaded! dir-hint name didit)))
3043 didit))))
3044
3045 \f
3046
3047 ;;; {Dynamic linking of modules}
3048 ;;;
3049
3050 (define autoloads-done '((guile . guile)))
3051
3052 (define (autoload-done-or-in-progress? p m)
3053 (let ((n (cons p m)))
3054 (->bool (or (member n autoloads-done)
3055 (member n autoloads-in-progress)))))
3056
3057 (define (autoload-done! p m)
3058 (let ((n (cons p m)))
3059 (set! autoloads-in-progress
3060 (delete! n autoloads-in-progress))
3061 (or (member n autoloads-done)
3062 (set! autoloads-done (cons n autoloads-done)))))
3063
3064 (define (autoload-in-progress! p m)
3065 (let ((n (cons p m)))
3066 (set! autoloads-done
3067 (delete! n autoloads-done))
3068 (set! autoloads-in-progress (cons n autoloads-in-progress))))
3069
3070 (define (set-autoloaded! p m done?)
3071 (if done?
3072 (autoload-done! p m)
3073 (let ((n (cons p m)))
3074 (set! autoloads-done (delete! n autoloads-done))
3075 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
3076
3077 \f
3078
3079 ;;; {Run-time options}
3080 ;;;
3081
3082 (define-syntax define-option-interface
3083 (syntax-rules ()
3084 ((_ (interface (options enable disable) (option-set!)))
3085 (begin
3086 (define options
3087 (case-lambda
3088 (() (interface))
3089 ((arg)
3090 (if (list? arg)
3091 (begin (interface arg) (interface))
3092 (for-each
3093 (lambda (option)
3094 (apply (lambda (name value documentation)
3095 (display name)
3096 (if (< (string-length (symbol->string name)) 8)
3097 (display #\tab))
3098 (display #\tab)
3099 (display value)
3100 (display #\tab)
3101 (display documentation)
3102 (newline))
3103 option))
3104 (interface #t))))))
3105 (define (enable . flags)
3106 (interface (append flags (interface)))
3107 (interface))
3108 (define (disable . flags)
3109 (let ((options (interface)))
3110 (for-each (lambda (flag) (set! options (delq! flag options)))
3111 flags)
3112 (interface options)
3113 (interface)))
3114 (define-syntax-rule (option-set! opt val)
3115 (eval-when (eval load compile expand)
3116 (options (append (options) (list 'opt val)))))))))
3117
3118 (define-option-interface
3119 (debug-options-interface
3120 (debug-options debug-enable debug-disable)
3121 (debug-set!)))
3122
3123 (define-option-interface
3124 (read-options-interface
3125 (read-options read-enable read-disable)
3126 (read-set!)))
3127
3128 (define-option-interface
3129 (print-options-interface
3130 (print-options print-enable print-disable)
3131 (print-set!)))
3132
3133 \f
3134
3135 ;;; {The Unspecified Value}
3136 ;;;
3137 ;;; Currently Guile represents unspecified values via one particular value,
3138 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
3139 ;;; future if we could replace this with a return of 0 values, though.
3140 ;;;
3141
3142 (define-syntax *unspecified*
3143 (identifier-syntax (if #f #f)))
3144
3145 (define (unspecified? v) (eq? v *unspecified*))
3146
3147
3148 \f
3149
3150 ;;; {Parameters}
3151 ;;;
3152
3153 (define <parameter>
3154 ;; Three fields: the procedure itself, the fluid, and the converter.
3155 (make-struct <applicable-struct-vtable> 0 'pwprpr))
3156 (set-struct-vtable-name! <parameter> '<parameter>)
3157
3158 (define* (make-parameter init #:optional (conv (lambda (x) x)))
3159 (let ((fluid (make-fluid (conv init))))
3160 (make-struct <parameter> 0
3161 (case-lambda
3162 (() (fluid-ref fluid))
3163 ((x) (let ((prev (fluid-ref fluid)))
3164 (fluid-set! fluid (conv x))
3165 prev)))
3166 fluid conv)))
3167
3168 (define (parameter? x)
3169 (and (struct? x) (eq? (struct-vtable x) <parameter>)))
3170
3171 (define (parameter-fluid p)
3172 (if (parameter? p)
3173 (struct-ref p 1)
3174 (scm-error 'wrong-type-arg "parameter-fluid"
3175 "Not a parameter: ~S" (list p) #f)))
3176
3177 (define (parameter-converter p)
3178 (if (parameter? p)
3179 (struct-ref p 2)
3180 (scm-error 'wrong-type-arg "parameter-fluid"
3181 "Not a parameter: ~S" (list p) #f)))
3182
3183 (define-syntax parameterize
3184 (lambda (x)
3185 (syntax-case x ()
3186 ((_ ((param value) ...) body body* ...)
3187 (with-syntax (((p ...) (generate-temporaries #'(param ...))))
3188 #'(let ((p param) ...)
3189 (if (not (parameter? p))
3190 (scm-error 'wrong-type-arg "parameterize"
3191 "Not a parameter: ~S" (list p) #f))
3192 ...
3193 (with-fluids (((struct-ref p 1) ((struct-ref p 2) value))
3194 ...)
3195 body body* ...)))))))
3196
3197 \f
3198 ;;;
3199 ;;; Current ports as parameters.
3200 ;;;
3201
3202 (let ((fluid->parameter
3203 (lambda (fluid conv)
3204 (make-struct <parameter> 0
3205 (case-lambda
3206 (() (fluid-ref fluid))
3207 ((x) (let ((prev (fluid-ref fluid)))
3208 (fluid-set! fluid (conv x))
3209 prev)))
3210 fluid conv))))
3211 (define-syntax-rule (port-parameterize! binding fluid predicate msg)
3212 (begin
3213 (set! binding (fluid->parameter (module-ref (current-module) 'fluid)
3214 (lambda (x)
3215 (if (predicate x) x
3216 (error msg x)))))
3217 (module-remove! (current-module) 'fluid)))
3218
3219 (port-parameterize! current-input-port %current-input-port-fluid
3220 input-port? "expected an input port")
3221 (port-parameterize! current-output-port %current-output-port-fluid
3222 output-port? "expected an output port")
3223 (port-parameterize! current-error-port %current-error-port-fluid
3224 output-port? "expected an output port"))
3225
3226
3227 \f
3228 ;;;
3229 ;;; Warnings.
3230 ;;;
3231
3232 (define current-warning-port
3233 (make-parameter (current-error-port)
3234 (lambda (x)
3235 (if (output-port? x)
3236 x
3237 (error "expected an output port" x)))))
3238
3239
3240 \f
3241
3242 ;;; {Running Repls}
3243 ;;;
3244
3245 (define *repl-stack* (make-fluid '()))
3246
3247 ;; Programs can call `batch-mode?' to see if they are running as part of a
3248 ;; script or if they are running interactively. REPL implementations ensure that
3249 ;; `batch-mode?' returns #f during their extent.
3250 ;;
3251 (define (batch-mode?)
3252 (null? (fluid-ref *repl-stack*)))
3253
3254 ;; Programs can re-enter batch mode, for example after a fork, by calling
3255 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
3256 ;; to abort to the outermost prompt, and call a thunk there.
3257 ;;
3258 (define (ensure-batch-mode!)
3259 (set! batch-mode? (lambda () #t)))
3260
3261 (define (quit . args)
3262 (apply throw 'quit args))
3263
3264 (define exit quit)
3265
3266 (define (gc-run-time)
3267 (cdr (assq 'gc-time-taken (gc-stats))))
3268
3269 (define abort-hook (make-hook))
3270 (define before-error-hook (make-hook))
3271 (define after-error-hook (make-hook))
3272 (define before-backtrace-hook (make-hook))
3273 (define after-backtrace-hook (make-hook))
3274
3275 (define before-read-hook (make-hook))
3276 (define after-read-hook (make-hook))
3277 (define before-eval-hook (make-hook 1))
3278 (define after-eval-hook (make-hook 1))
3279 (define before-print-hook (make-hook 1))
3280 (define after-print-hook (make-hook 1))
3281
3282 ;;; This hook is run at the very end of an interactive session.
3283 ;;;
3284 (define exit-hook (make-hook))
3285
3286 ;;; The default repl-reader function. We may override this if we've
3287 ;;; the readline library.
3288 (define repl-reader
3289 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
3290 (if (not (char-ready?))
3291 (begin
3292 (display (if (string? prompt) prompt (prompt)))
3293 ;; An interesting situation. The printer resets the column to
3294 ;; 0 by printing a newline, but we then advance it by printing
3295 ;; the prompt. However the port-column of the output port
3296 ;; does not typically correspond with the actual column on the
3297 ;; screen, because the input is echoed back! Since the
3298 ;; input is line-buffered and thus ends with a newline, the
3299 ;; output will really start on column zero. So, here we zero
3300 ;; it out. See bug 9664.
3301 ;;
3302 ;; Note that for similar reasons, the output-line will not
3303 ;; reflect the actual line on the screen. But given the
3304 ;; possibility of multiline input, the fix is not as
3305 ;; straightforward, so we don't bother.
3306 ;;
3307 ;; Also note that the readline implementation papers over
3308 ;; these concerns, because it's readline itself printing the
3309 ;; prompt, and not Guile.
3310 (set-port-column! (current-output-port) 0)))
3311 (force-output)
3312 (run-hook before-read-hook)
3313 ((or reader read) (current-input-port))))
3314
3315
3316 \f
3317
3318 ;;; {IOTA functions: generating lists of numbers}
3319 ;;;
3320
3321 (define (iota n)
3322 (let loop ((count (1- n)) (result '()))
3323 (if (< count 0) result
3324 (loop (1- count) (cons count result)))))
3325
3326 \f
3327
3328 ;;; {While}
3329 ;;;
3330 ;;; with `continue' and `break'.
3331 ;;;
3332
3333 ;; The inliner will remove the prompts at compile-time if it finds that
3334 ;; `continue' or `break' are not used.
3335 ;;
3336 (define-syntax while
3337 (lambda (x)
3338 (syntax-case x ()
3339 ((while cond body ...)
3340 #`(let ((break-tag (make-prompt-tag "break"))
3341 (continue-tag (make-prompt-tag "continue")))
3342 (call-with-prompt
3343 break-tag
3344 (lambda ()
3345 (define-syntax #,(datum->syntax #'while 'break)
3346 (lambda (x)
3347 (syntax-case x ()
3348 ((_ arg (... ...))
3349 #'(abort-to-prompt break-tag arg (... ...)))
3350 (_
3351 #'(lambda args
3352 (apply abort-to-prompt break-tag args))))))
3353 (let lp ()
3354 (call-with-prompt
3355 continue-tag
3356 (lambda ()
3357 (define-syntax #,(datum->syntax #'while 'continue)
3358 (lambda (x)
3359 (syntax-case x ()
3360 ((_)
3361 #'(abort-to-prompt continue-tag))
3362 ((_ . args)
3363 (syntax-violation 'continue "too many arguments" x))
3364 (_
3365 #'(lambda ()
3366 (abort-to-prompt continue-tag))))))
3367 (do () ((not cond) #f) body ...))
3368 (lambda (k) (lp)))))
3369 (lambda (k . args)
3370 (if (null? args)
3371 #t
3372 (apply values args)))))))))
3373
3374
3375 \f
3376
3377 ;;; {Module System Macros}
3378 ;;;
3379
3380 ;; Return a list of expressions that evaluate to the appropriate
3381 ;; arguments for resolve-interface according to SPEC.
3382
3383 (eval-when (compile)
3384 (if (memq 'prefix (read-options))
3385 (error "boot-9 must be compiled with #:kw, not :kw")))
3386
3387 (define (keyword-like-symbol->keyword sym)
3388 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3389
3390 (define-syntax define-module
3391 (lambda (x)
3392 (define (keyword-like? stx)
3393 (let ((dat (syntax->datum stx)))
3394 (and (symbol? dat)
3395 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3396 (define (->keyword sym)
3397 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3398
3399 (define (parse-iface args)
3400 (let loop ((in args) (out '()))
3401 (syntax-case in ()
3402 (() (reverse! out))
3403 ;; The user wanted #:foo, but wrote :foo. Fix it.
3404 ((sym . in) (keyword-like? #'sym)
3405 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3406 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3407 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3408 ((#:renamer renamer . in)
3409 (loop #'in (cons* #',renamer #:renamer out)))
3410 ((kw val . in)
3411 (loop #'in (cons* #'val #'kw out))))))
3412
3413 (define (parse args imp exp rex rep aut)
3414 ;; Just quote everything except #:use-module and #:use-syntax. We
3415 ;; need to know about all arguments regardless since we want to turn
3416 ;; symbols that look like keywords into real keywords, and the
3417 ;; keyword args in a define-module form are not regular
3418 ;; (i.e. no-backtrace doesn't take a value).
3419 (syntax-case args ()
3420 (()
3421 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
3422 (exp (if (null? exp) '() #`(#:exports '#,exp)))
3423 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
3424 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
3425 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
3426 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
3427 ;; The user wanted #:foo, but wrote :foo. Fix it.
3428 ((sym . args) (keyword-like? #'sym)
3429 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
3430 imp exp rex rep aut))
3431 ((kw . args) (not (keyword? (syntax->datum #'kw)))
3432 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3433 ((#:no-backtrace . args)
3434 ;; Ignore this one.
3435 (parse #'args imp exp rex rep aut))
3436 ((#:pure . args)
3437 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
3438 ((kw)
3439 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3440 ((#:version (v ...) . args)
3441 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
3442 ((#:duplicates (d ...) . args)
3443 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
3444 ((#:filename f . args)
3445 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
3446 ((#:use-module (name name* ...) . args)
3447 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3448 (parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut))
3449 ((#:use-syntax (name name* ...) . args)
3450 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3451 #`(#:transformer '(name name* ...)
3452 . #,(parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut)))
3453 ((#:use-module ((name name* ...) arg ...) . args)
3454 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3455 (parse #'args
3456 #`(#,@imp ((name name* ...) #,@(parse-iface #'(arg ...))))
3457 exp rex rep aut))
3458 ((#:export (ex ...) . args)
3459 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3460 ((#:export-syntax (ex ...) . args)
3461 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3462 ((#:re-export (re ...) . args)
3463 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3464 ((#:re-export-syntax (re ...) . args)
3465 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3466 ((#:replace (r ...) . args)
3467 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3468 ((#:replace-syntax (r ...) . args)
3469 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3470 ((#:autoload name bindings . args)
3471 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
3472 ((kw val . args)
3473 (syntax-violation 'define-module "unknown keyword or bad argument"
3474 #'kw #'val))))
3475
3476 (syntax-case x ()
3477 ((_ (name name* ...) arg ...)
3478 (and-map symbol? (syntax->datum #'(name name* ...)))
3479 (with-syntax (((quoted-arg ...)
3480 (parse #'(arg ...) '() '() '() '() '()))
3481 ;; Ideally the filename is either a string or #f;
3482 ;; this hack is to work around a case in which
3483 ;; port-filename returns a symbol (`socket') for
3484 ;; sockets.
3485 (filename (let ((f (assq-ref (or (syntax-source x) '())
3486 'filename)))
3487 (and (string? f) f))))
3488 #'(eval-when (eval load compile expand)
3489 (let ((m (define-module* '(name name* ...)
3490 #:filename filename quoted-arg ...)))
3491 (set-current-module m)
3492 m)))))))
3493
3494 ;; The guts of the use-modules macro. Add the interfaces of the named
3495 ;; modules to the use-list of the current module, in order.
3496
3497 ;; This function is called by "modules.c". If you change it, be sure
3498 ;; to change scm_c_use_module as well.
3499
3500 (define (process-use-modules module-interface-args)
3501 (let ((interfaces (map (lambda (mif-args)
3502 (or (apply resolve-interface mif-args)
3503 (error "no such module" mif-args)))
3504 module-interface-args)))
3505 (call-with-deferred-observers
3506 (lambda ()
3507 (module-use-interfaces! (current-module) interfaces)))))
3508
3509 (define-syntax use-modules
3510 (lambda (x)
3511 (define (keyword-like? stx)
3512 (let ((dat (syntax->datum stx)))
3513 (and (symbol? dat)
3514 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3515 (define (->keyword sym)
3516 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3517
3518 (define (quotify-iface args)
3519 (let loop ((in args) (out '()))
3520 (syntax-case in ()
3521 (() (reverse! out))
3522 ;; The user wanted #:foo, but wrote :foo. Fix it.
3523 ((sym . in) (keyword-like? #'sym)
3524 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3525 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3526 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3527 ((#:renamer renamer . in)
3528 (loop #'in (cons* #'renamer #:renamer out)))
3529 ((kw val . in)
3530 (loop #'in (cons* #''val #'kw out))))))
3531
3532 (define (quotify specs)
3533 (let lp ((in specs) (out '()))
3534 (syntax-case in ()
3535 (() (reverse out))
3536 (((name name* ...) . in)
3537 (and-map symbol? (syntax->datum #'(name name* ...)))
3538 (lp #'in (cons #''((name name* ...)) out)))
3539 ((((name name* ...) arg ...) . in)
3540 (and-map symbol? (syntax->datum #'(name name* ...)))
3541 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3542 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3543 out)))))))
3544
3545 (syntax-case x ()
3546 ((_ spec ...)
3547 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3548 #'(eval-when (eval load compile expand)
3549 (process-use-modules (list quoted-args ...))
3550 *unspecified*))))))
3551
3552 (include-from-path "ice-9/r6rs-libraries")
3553
3554 (define-syntax-rule (define-private foo bar)
3555 (define foo bar))
3556
3557 (define-syntax define-public
3558 (syntax-rules ()
3559 ((_ (name . args) . body)
3560 (define-public name (lambda args . body)))
3561 ((_ name val)
3562 (begin
3563 (define name val)
3564 (export name)))))
3565
3566 (define-syntax-rule (defmacro-public name args body ...)
3567 (begin
3568 (defmacro name args body ...)
3569 (export-syntax name)))
3570
3571 ;; And now for the most important macro.
3572 (define-syntax-rule (λ formals body ...)
3573 (lambda formals body ...))
3574
3575 \f
3576 ;; Export a local variable
3577
3578 ;; This function is called from "modules.c". If you change it, be
3579 ;; sure to update "modules.c" as well.
3580
3581 (define (module-export! m names)
3582 (let ((public-i (module-public-interface m)))
3583 (for-each (lambda (name)
3584 (let* ((internal-name (if (pair? name) (car name) name))
3585 (external-name (if (pair? name) (cdr name) name))
3586 (var (module-ensure-local-variable! m internal-name)))
3587 (module-add! public-i external-name var)))
3588 names)))
3589
3590 (define (module-replace! m names)
3591 (let ((public-i (module-public-interface m)))
3592 (for-each (lambda (name)
3593 (let* ((internal-name (if (pair? name) (car name) name))
3594 (external-name (if (pair? name) (cdr name) name))
3595 (var (module-ensure-local-variable! m internal-name)))
3596 ;; FIXME: use a bit on variables instead of object
3597 ;; properties.
3598 (set-object-property! var 'replace #t)
3599 (module-add! public-i external-name var)))
3600 names)))
3601
3602 ;; Export all local variables from a module
3603 ;;
3604 (define (module-export-all! mod)
3605 (define (fresh-interface!)
3606 (let ((iface (make-module)))
3607 (set-module-name! iface (module-name mod))
3608 (set-module-version! iface (module-version mod))
3609 (set-module-kind! iface 'interface)
3610 (set-module-public-interface! mod iface)
3611 iface))
3612 (let ((iface (or (module-public-interface mod)
3613 (fresh-interface!))))
3614 (set-module-obarray! iface (module-obarray mod))))
3615
3616 ;; Re-export a imported variable
3617 ;;
3618 (define (module-re-export! m names)
3619 (let ((public-i (module-public-interface m)))
3620 (for-each (lambda (name)
3621 (let* ((internal-name (if (pair? name) (car name) name))
3622 (external-name (if (pair? name) (cdr name) name))
3623 (var (module-variable m internal-name)))
3624 (cond ((not var)
3625 (error "Undefined variable:" internal-name))
3626 ((eq? var (module-local-variable m internal-name))
3627 (error "re-exporting local variable:" internal-name))
3628 (else
3629 (module-add! public-i external-name var)))))
3630 names)))
3631
3632 (define-syntax-rule (export name ...)
3633 (eval-when (eval load compile expand)
3634 (call-with-deferred-observers
3635 (lambda ()
3636 (module-export! (current-module) '(name ...))))))
3637
3638 (define-syntax-rule (re-export name ...)
3639 (eval-when (eval load compile expand)
3640 (call-with-deferred-observers
3641 (lambda ()
3642 (module-re-export! (current-module) '(name ...))))))
3643
3644 (define-syntax-rule (export! name ...)
3645 (eval-when (eval load compile expand)
3646 (call-with-deferred-observers
3647 (lambda ()
3648 (module-replace! (current-module) '(name ...))))))
3649
3650 (define-syntax-rule (export-syntax name ...)
3651 (export name ...))
3652
3653 (define-syntax-rule (re-export-syntax name ...)
3654 (re-export name ...))
3655
3656 \f
3657
3658 ;;; {Parameters}
3659 ;;;
3660
3661 (define* (make-mutable-parameter init #:optional (converter identity))
3662 (let ((fluid (make-fluid (converter init))))
3663 (case-lambda
3664 (() (fluid-ref fluid))
3665 ((val) (fluid-set! fluid (converter val))))))
3666
3667
3668 \f
3669
3670 ;;; {Handling of duplicate imported bindings}
3671 ;;;
3672
3673 ;; Duplicate handlers take the following arguments:
3674 ;;
3675 ;; module importing module
3676 ;; name conflicting name
3677 ;; int1 old interface where name occurs
3678 ;; val1 value of binding in old interface
3679 ;; int2 new interface where name occurs
3680 ;; val2 value of binding in new interface
3681 ;; var previous resolution or #f
3682 ;; val value of previous resolution
3683 ;;
3684 ;; A duplicate handler can take three alternative actions:
3685 ;;
3686 ;; 1. return #f => leave responsibility to next handler
3687 ;; 2. exit with an error
3688 ;; 3. return a variable resolving the conflict
3689 ;;
3690
3691 (define duplicate-handlers
3692 (let ((m (make-module 7)))
3693
3694 (define (check module name int1 val1 int2 val2 var val)
3695 (scm-error 'misc-error
3696 #f
3697 "~A: `~A' imported from both ~A and ~A"
3698 (list (module-name module)
3699 name
3700 (module-name int1)
3701 (module-name int2))
3702 #f))
3703
3704 (define (warn module name int1 val1 int2 val2 var val)
3705 (format (current-warning-port)
3706 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3707 (module-name module)
3708 name
3709 (module-name int1)
3710 (module-name int2))
3711 #f)
3712
3713 (define (replace module name int1 val1 int2 val2 var val)
3714 (let ((old (or (and var (object-property var 'replace) var)
3715 (module-variable int1 name)))
3716 (new (module-variable int2 name)))
3717 (if (object-property old 'replace)
3718 (and (or (eq? old new)
3719 (not (object-property new 'replace)))
3720 old)
3721 (and (object-property new 'replace)
3722 new))))
3723
3724 (define (warn-override-core module name int1 val1 int2 val2 var val)
3725 (and (eq? int1 the-scm-module)
3726 (begin
3727 (format (current-warning-port)
3728 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3729 (module-name module)
3730 (module-name int2)
3731 name)
3732 (module-local-variable int2 name))))
3733
3734 (define (first module name int1 val1 int2 val2 var val)
3735 (or var (module-local-variable int1 name)))
3736
3737 (define (last module name int1 val1 int2 val2 var val)
3738 (module-local-variable int2 name))
3739
3740 (define (noop module name int1 val1 int2 val2 var val)
3741 #f)
3742
3743 (set-module-name! m 'duplicate-handlers)
3744 (set-module-kind! m 'interface)
3745 (module-define! m 'check check)
3746 (module-define! m 'warn warn)
3747 (module-define! m 'replace replace)
3748 (module-define! m 'warn-override-core warn-override-core)
3749 (module-define! m 'first first)
3750 (module-define! m 'last last)
3751 (module-define! m 'merge-generics noop)
3752 (module-define! m 'merge-accessors noop)
3753 m))
3754
3755 (define (lookup-duplicates-handlers handler-names)
3756 (and handler-names
3757 (map (lambda (handler-name)
3758 (or (module-symbol-local-binding
3759 duplicate-handlers handler-name #f)
3760 (error "invalid duplicate handler name:"
3761 handler-name)))
3762 (if (list? handler-names)
3763 handler-names
3764 (list handler-names)))))
3765
3766 (define default-duplicate-binding-procedures
3767 (make-mutable-parameter #f))
3768
3769 (define default-duplicate-binding-handler
3770 (make-mutable-parameter '(replace warn-override-core warn last)
3771 (lambda (handler-names)
3772 (default-duplicate-binding-procedures
3773 (lookup-duplicates-handlers handler-names))
3774 handler-names)))
3775
3776 \f
3777
3778 ;;; {`load'.}
3779 ;;;
3780 ;;; Load is tricky when combined with relative paths, compilation, and
3781 ;;; the file system. If a path is relative, what is it relative to? The
3782 ;;; path of the source file at the time it was compiled? The path of
3783 ;;; the compiled file? What if both or either were installed? And how
3784 ;;; do you get that information? Tricky, I say.
3785 ;;;
3786 ;;; To get around all of this, we're going to do something nasty, and
3787 ;;; turn `load' into a macro. That way it can know the path of the
3788 ;;; source file with respect to which it was invoked, so it can resolve
3789 ;;; relative paths with respect to the original source path.
3790 ;;;
3791 ;;; There is an exception, and that is that if the source file was in
3792 ;;; the load path when it was compiled, instead of looking up against
3793 ;;; the absolute source location, we load-from-path against the relative
3794 ;;; source location.
3795 ;;;
3796
3797 (define %auto-compilation-options
3798 ;; Default `compile-file' option when auto-compiling.
3799 '(#:warnings (unbound-variable arity-mismatch format)))
3800
3801 (define* (load-in-vicinity dir path #:optional reader)
3802 (define (canonical->suffix canon)
3803 (cond
3804 ((string-prefix? "/" canon) canon)
3805 ((and (> (string-length canon) 2)
3806 (eqv? (string-ref canon 1) #\:))
3807 ;; Paths like C:... transform to /C...
3808 (string-append "/" (substring canon 0 1) (substring canon 2)))
3809 (else canon)))
3810
3811 ;; Returns the .go file corresponding to `name'. Does not search load
3812 ;; paths, only the fallback path. If the .go file is missing or out of
3813 ;; date, and auto-compilation is enabled, will try auto-compilation, just
3814 ;; as primitive-load-path does internally. primitive-load is
3815 ;; unaffected. Returns #f if auto-compilation failed or was disabled.
3816 ;;
3817 ;; NB: Unless we need to compile the file, this function should not cause
3818 ;; (system base compile) to be loaded up. For that reason compiled-file-name
3819 ;; partially duplicates functionality from (system base compile).
3820 ;;
3821 (define (compiled-file-name canon-path)
3822 ;; FIXME: would probably be better just to append SHA1(canon-path)
3823 ;; to the %compile-fallback-path, to avoid deep directory stats.
3824 (and %compile-fallback-path
3825 (string-append
3826 %compile-fallback-path
3827 (canonical->suffix canon-path)
3828 (cond ((or (null? %load-compiled-extensions)
3829 (string-null? (car %load-compiled-extensions)))
3830 (warn "invalid %load-compiled-extensions"
3831 %load-compiled-extensions)
3832 ".go")
3833 (else (car %load-compiled-extensions))))))
3834
3835 (define (fresh-compiled-file-name name go-path)
3836 (catch #t
3837 (lambda ()
3838 (let* ((scmstat (stat name))
3839 (gostat (and (not %fresh-auto-compile)
3840 (stat go-path #f))))
3841 (if (and gostat
3842 (or (> (stat:mtime gostat) (stat:mtime scmstat))
3843 (and (= (stat:mtime gostat) (stat:mtime scmstat))
3844 (>= (stat:mtimensec gostat)
3845 (stat:mtimensec scmstat)))))
3846 go-path
3847 (begin
3848 (if gostat
3849 (format (current-warning-port)
3850 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
3851 name go-path))
3852 (cond
3853 (%load-should-auto-compile
3854 (%warn-auto-compilation-enabled)
3855 (format (current-warning-port) ";;; compiling ~a\n" name)
3856 (let ((cfn
3857 ((module-ref
3858 (resolve-interface '(system base compile))
3859 'compile-file)
3860 name
3861 #:opts %auto-compilation-options
3862 #:env (current-module))))
3863 (format (current-warning-port) ";;; compiled ~a\n" cfn)
3864 cfn))
3865 (else #f))))))
3866 (lambda (k . args)
3867 (format (current-warning-port)
3868 ";;; WARNING: compilation of ~a failed:\n" name)
3869 (for-each (lambda (s)
3870 (if (not (string-null? s))
3871 (format (current-warning-port) ";;; ~a\n" s)))
3872 (string-split
3873 (call-with-output-string
3874 (lambda (port) (print-exception port #f k args)))
3875 #\newline))
3876 #f)))
3877
3878 (define (absolute-path? path)
3879 (string-prefix? "/" path))
3880
3881 (define (load-absolute abs-path)
3882 (let ((cfn (let ((canon (false-if-exception (canonicalize-path abs-path))))
3883 (and canon
3884 (let ((go-path (compiled-file-name canon)))
3885 (and go-path
3886 (fresh-compiled-file-name abs-path go-path)))))))
3887 (if cfn
3888 (begin
3889 (if %load-hook
3890 (%load-hook abs-path))
3891 (load-compiled cfn))
3892 (start-stack 'load-stack
3893 (primitive-load abs-path)))))
3894
3895 (save-module-excursion
3896 (lambda ()
3897 (with-fluids ((current-reader reader)
3898 (%file-port-name-canonicalization 'relative))
3899 (cond
3900 ((or (absolute-path? path))
3901 (load-absolute path))
3902 ((absolute-path? dir)
3903 (load-absolute (in-vicinity dir path)))
3904 (else
3905 (load-from-path (in-vicinity dir path))))))))
3906
3907 (define-syntax load
3908 (make-variable-transformer
3909 (lambda (x)
3910 (let* ((src (syntax-source x))
3911 (file (and src (assq-ref src 'filename)))
3912 (dir (and (string? file) (dirname file))))
3913 (syntax-case x ()
3914 ((_ arg ...)
3915 #`(load-in-vicinity #,(or dir #'(getcwd)) arg ...))
3916 (id
3917 (identifier? #'id)
3918 #`(lambda args
3919 (apply load-in-vicinity #,(or dir #'(getcwd)) args))))))))
3920
3921 \f
3922
3923 ;;; {`cond-expand' for SRFI-0 support.}
3924 ;;;
3925 ;;; This syntactic form expands into different commands or
3926 ;;; definitions, depending on the features provided by the Scheme
3927 ;;; implementation.
3928 ;;;
3929 ;;; Syntax:
3930 ;;;
3931 ;;; <cond-expand>
3932 ;;; --> (cond-expand <cond-expand-clause>+)
3933 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3934 ;;; <cond-expand-clause>
3935 ;;; --> (<feature-requirement> <command-or-definition>*)
3936 ;;; <feature-requirement>
3937 ;;; --> <feature-identifier>
3938 ;;; | (and <feature-requirement>*)
3939 ;;; | (or <feature-requirement>*)
3940 ;;; | (not <feature-requirement>)
3941 ;;; <feature-identifier>
3942 ;;; --> <a symbol which is the name or alias of a SRFI>
3943 ;;;
3944 ;;; Additionally, this implementation provides the
3945 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3946 ;;; determine the implementation type and the supported standard.
3947 ;;;
3948 ;;; Currently, the following feature identifiers are supported:
3949 ;;;
3950 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3951 ;;;
3952 ;;; Remember to update the features list when adding more SRFIs.
3953 ;;;
3954
3955 (define %cond-expand-features
3956 ;; Adjust the above comment when changing this.
3957 '(guile
3958 guile-2
3959 r5rs
3960 srfi-0 ;; cond-expand itself
3961 srfi-4 ;; homogenous numeric vectors
3962 srfi-6 ;; open-input-string etc, in the guile core
3963 srfi-13 ;; string library
3964 srfi-14 ;; character sets
3965 srfi-23 ;; `error` procedure
3966 srfi-39 ;; parameterize
3967 srfi-55 ;; require-extension
3968 srfi-61 ;; general cond clause
3969 ))
3970
3971 ;; This table maps module public interfaces to the list of features.
3972 ;;
3973 (define %cond-expand-table (make-hash-table 31))
3974
3975 ;; Add one or more features to the `cond-expand' feature list of the
3976 ;; module `module'.
3977 ;;
3978 (define (cond-expand-provide module features)
3979 (let ((mod (module-public-interface module)))
3980 (and mod
3981 (hashq-set! %cond-expand-table mod
3982 (append (hashq-ref %cond-expand-table mod '())
3983 features)))))
3984
3985 (define-syntax cond-expand
3986 (lambda (x)
3987 (define (module-has-feature? mod sym)
3988 (or-map (lambda (mod)
3989 (memq sym (hashq-ref %cond-expand-table mod '())))
3990 (module-uses mod)))
3991
3992 (define (condition-matches? condition)
3993 (syntax-case condition (and or not)
3994 ((and c ...)
3995 (and-map condition-matches? #'(c ...)))
3996 ((or c ...)
3997 (or-map condition-matches? #'(c ...)))
3998 ((not c)
3999 (if (condition-matches? #'c) #f #t))
4000 (c
4001 (identifier? #'c)
4002 (let ((sym (syntax->datum #'c)))
4003 (if (memq sym %cond-expand-features)
4004 #t
4005 (module-has-feature? (current-module) sym))))))
4006
4007 (define (match clauses alternate)
4008 (syntax-case clauses ()
4009 (((condition form ...) . rest)
4010 (if (condition-matches? #'condition)
4011 #'(begin form ...)
4012 (match #'rest alternate)))
4013 (() (alternate))))
4014
4015 (syntax-case x (else)
4016 ((_ clause ... (else form ...))
4017 (match #'(clause ...)
4018 (lambda ()
4019 #'(begin form ...))))
4020 ((_ clause ...)
4021 (match #'(clause ...)
4022 (lambda ()
4023 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
4024
4025 ;; This procedure gets called from the startup code with a list of
4026 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
4027 ;;
4028 (define (use-srfis srfis)
4029 (process-use-modules
4030 (map (lambda (num)
4031 (list (list 'srfi (string->symbol
4032 (string-append "srfi-" (number->string num))))))
4033 srfis)))
4034
4035 \f
4036
4037 ;;; srfi-55: require-extension
4038 ;;;
4039
4040 (define-syntax require-extension
4041 (lambda (x)
4042 (syntax-case x (srfi)
4043 ((_ (srfi n ...))
4044 (and-map integer? (syntax->datum #'(n ...)))
4045 (with-syntax
4046 (((srfi-n ...)
4047 (map (lambda (n)
4048 (datum->syntax x (symbol-append 'srfi- n)))
4049 (map string->symbol
4050 (map number->string (syntax->datum #'(n ...)))))))
4051 #'(use-modules (srfi srfi-n) ...)))
4052 ((_ (type arg ...))
4053 (identifier? #'type)
4054 (syntax-violation 'require-extension "Not a recognized extension type"
4055 x)))))
4056
4057 \f
4058 ;;; Defining transparently inlinable procedures
4059 ;;;
4060
4061 (define-syntax define-inlinable
4062 ;; Define a macro and a procedure such that direct calls are inlined, via
4063 ;; the macro expansion, whereas references in non-call contexts refer to
4064 ;; the procedure. Inspired by the `define-integrable' macro by Dybvig et al.
4065 (lambda (x)
4066 ;; Use a space in the prefix to avoid potential -Wunused-toplevel
4067 ;; warning
4068 (define prefix (string->symbol "% "))
4069 (define (make-procedure-name name)
4070 (datum->syntax name
4071 (symbol-append prefix (syntax->datum name)
4072 '-procedure)))
4073
4074 (syntax-case x ()
4075 ((_ (name formals ...) body ...)
4076 (identifier? #'name)
4077 (with-syntax ((proc-name (make-procedure-name #'name))
4078 ((args ...) (generate-temporaries #'(formals ...))))
4079 #`(begin
4080 (define (proc-name formals ...)
4081 (syntax-parameterize ((name (identifier-syntax proc-name)))
4082 body ...))
4083 (define-syntax-parameter name
4084 (lambda (x)
4085 (syntax-case x ()
4086 ((_ args ...)
4087 #'((syntax-parameterize ((name (identifier-syntax proc-name)))
4088 (lambda (formals ...)
4089 body ...))
4090 args ...))
4091 (_
4092 (identifier? x)
4093 #'proc-name))))))))))
4094
4095 \f
4096
4097 (define using-readline?
4098 (let ((using-readline? (make-fluid)))
4099 (make-procedure-with-setter
4100 (lambda () (fluid-ref using-readline?))
4101 (lambda (v) (fluid-set! using-readline? v)))))
4102
4103 \f
4104
4105 ;;; {Deprecated stuff}
4106 ;;;
4107
4108 (begin-deprecated
4109 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
4110
4111 \f
4112
4113 ;;; SRFI-4 in the default environment. FIXME: we should figure out how
4114 ;;; to deprecate this.
4115 ;;;
4116
4117 ;; FIXME:
4118 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
4119
4120 \f
4121
4122 ;;; A few identifiers that need to be defined in this file are really
4123 ;;; internal implementation details. We shove them off into internal
4124 ;;; modules, removing them from the (guile) module.
4125 ;;;
4126
4127 (define-module (system syntax))
4128
4129 (let ()
4130 (define (steal-bindings! from to ids)
4131 (for-each
4132 (lambda (sym)
4133 (let ((v (module-local-variable from sym)))
4134 (module-remove! from sym)
4135 (module-add! to sym v)))
4136 ids)
4137 (module-export! to ids))
4138
4139 (steal-bindings! the-root-module (resolve-module '(system syntax))
4140 '(syntax-local-binding
4141 syntax-module
4142 syntax-locally-bound-identifiers
4143 syntax-session-id)))
4144
4145
4146 \f
4147
4148 ;;; Place the user in the guile-user module.
4149 ;;;
4150
4151 ;; Set filename to #f to prevent reload.
4152 (define-module (guile-user)
4153 #:autoload (system base compile) (compile compile-file)
4154 #:filename #f)
4155
4156 ;; Remain in the `(guile)' module at compilation-time so that the
4157 ;; `-Wunused-toplevel' warning works as expected.
4158 (eval-when (compile) (set-current-module the-root-module))
4159
4160 ;;; boot-9.scm ends here