(turn-on-debugging): New function, to be used by
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 ;;;; As a special exception, the Free Software Foundation gives permission
21 ;;;; for additional uses of the text contained in its release of GUILE.
22 ;;;;
23 ;;;; The exception is that, if you link the GUILE library with other files
24 ;;;; to produce an executable, this does not by itself cause the
25 ;;;; resulting executable to be covered by the GNU General Public License.
26 ;;;; Your use of that executable is in no way restricted on account of
27 ;;;; linking the GUILE library code into it.
28 ;;;;
29 ;;;; This exception does not however invalidate any other reasons why
30 ;;;; the executable file might be covered by the GNU General Public License.
31 ;;;;
32 ;;;; This exception applies only to the code released by the
33 ;;;; Free Software Foundation under the name GUILE. If you copy
34 ;;;; code from other Free Software Foundation releases into a copy of
35 ;;;; GUILE, as the General Public License permits, the exception does
36 ;;;; not apply to the code that you add in this way. To avoid misleading
37 ;;;; anyone as to the status of such modified files, you must delete
38 ;;;; this exception notice from them.
39 ;;;;
40 ;;;; If you write modifications of your own for GUILE, it is your choice
41 ;;;; whether to permit this exception to apply to your modifications.
42 ;;;; If you do not wish that, delete this exception notice.
43 ;;;;
44 \f
45
46 ;;; Commentary:
47
48 ;;; This file is the first thing loaded into Guile. It adds many mundane
49 ;;; definitions and a few that are interesting.
50 ;;;
51 ;;; The module system (hence the hierarchical namespace) are defined in this
52 ;;; file.
53 ;;;
54
55 ;;; Code:
56
57 \f
58 ;;; {Deprecation}
59 ;;;
60
61 ;; We don't have macros here, but we do want to define
62 ;; `begin-deprecated' early.
63
64 (define begin-deprecated
65 (procedure->memoizing-macro
66 (lambda (exp env)
67 (if (include-deprecated-features)
68 `(begin ,@(cdr exp))
69 `#f))))
70
71 \f
72 ;;; {Features}
73 ;;
74
75 (define (provide sym)
76 (if (not (memq sym *features*))
77 (set! *features* (cons sym *features*))))
78
79 ;;; Return #t iff FEATURE is available to this Guile interpreter.
80 ;;; In SLIB, provided? also checks to see if the module is available.
81 ;;; We should do that too, but don't.
82 (define (provided? feature)
83 (and (memq feature *features*) #t))
84
85 (begin-deprecated
86 (define feature? provided?))
87
88 ;;; let format alias simple-format until the more complete version is loaded
89 (define format simple-format)
90
91 \f
92 ;;; {R4RS compliance}
93
94 (primitive-load-path "ice-9/r4rs.scm")
95
96 \f
97 ;;; {Simple Debugging Tools}
98 ;;
99
100
101 ;; peek takes any number of arguments, writes them to the
102 ;; current ouput port, and returns the last argument.
103 ;; It is handy to wrap around an expression to look at
104 ;; a value each time is evaluated, e.g.:
105 ;;
106 ;; (+ 10 (troublesome-fn))
107 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
108 ;;
109
110 (define (peek . stuff)
111 (newline)
112 (display ";;; ")
113 (write stuff)
114 (newline)
115 (car (last-pair stuff)))
116
117 (define pk peek)
118
119 (define (warn . stuff)
120 (with-output-to-port (current-error-port)
121 (lambda ()
122 (newline)
123 (display ";;; WARNING ")
124 (display stuff)
125 (newline)
126 (car (last-pair stuff)))))
127
128 \f
129 ;;; {Trivial Functions}
130 ;;;
131
132 (define (identity x) x)
133 (define (1+ n) (+ n 1))
134 (define (1- n) (+ n -1))
135 (define (and=> value procedure) (and value (procedure value)))
136 (define (make-hash-table k) (make-vector k '()))
137
138 ;;; apply-to-args is functionally redundant with apply and, worse,
139 ;;; is less general than apply since it only takes two arguments.
140 ;;;
141 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
142 ;;; perform binding in many circumstances when the "let" family of
143 ;;; of forms don't cut it. E.g.:
144 ;;;
145 ;;; (apply-to-args (return-3d-mouse-coords)
146 ;;; (lambda (x y z)
147 ;;; ...))
148 ;;;
149
150 (define (apply-to-args args fn) (apply fn args))
151
152 \f
153
154 ;;; {Integer Math}
155 ;;;
156
157 (define (ipow-by-squaring x k acc proc)
158 (cond ((zero? k) acc)
159 ((= 1 k) (proc acc x))
160 (else (ipow-by-squaring (proc x x)
161 (quotient k 2)
162 (if (even? k) acc (proc acc x))
163 proc))))
164
165 \f
166 ;;; {Symbol Properties}
167 ;;;
168
169 (define (symbol-property sym prop)
170 (let ((pair (assoc prop (symbol-pref sym))))
171 (and pair (cdr pair))))
172
173 (define (set-symbol-property! sym prop val)
174 (let ((pair (assoc prop (symbol-pref sym))))
175 (if pair
176 (set-cdr! pair val)
177 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
178
179 (define (symbol-property-remove! sym prop)
180 (let ((pair (assoc prop (symbol-pref sym))))
181 (if pair
182 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
183
184 ;;; {General Properties}
185 ;;;
186
187 ;; This is a more modern interface to properties. It will replace all
188 ;; other property-like things eventually.
189
190 (define (make-object-property)
191 (let ((prop (primitive-make-property #f)))
192 (make-procedure-with-setter
193 (lambda (obj) (primitive-property-ref prop obj))
194 (lambda (obj val) (primitive-property-set! prop obj val)))))
195
196 \f
197
198 ;;; {Arrays}
199 ;;;
200
201 (if (provided? 'array)
202 (primitive-load-path "ice-9/arrays.scm"))
203
204 \f
205 ;;; {Keywords}
206 ;;;
207
208 (define (symbol->keyword symbol)
209 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
210
211 (define (keyword->symbol kw)
212 (let ((sym (symbol->string (keyword-dash-symbol kw))))
213 (string->symbol (substring sym 1 (string-length sym)))))
214
215 (define (kw-arg-ref args kw)
216 (let ((rem (member kw args)))
217 (and rem (pair? (cdr rem)) (cadr rem))))
218
219 \f
220
221 ;;; {Structs}
222
223 (define (struct-layout s)
224 (struct-ref (struct-vtable s) vtable-index-layout))
225
226 \f
227
228 ;;; Environments
229
230 (define the-environment
231 (procedure->syntax
232 (lambda (x e)
233 e)))
234
235 (define the-root-environment (the-environment))
236
237 (define (environment-module env)
238 (let ((closure (and (pair? env) (car (last-pair env)))))
239 (and closure (procedure-property closure 'module))))
240
241 \f
242 ;;; {Records}
243 ;;;
244
245 ;; Printing records: by default, records are printed as
246 ;;
247 ;; #<type-name field1: val1 field2: val2 ...>
248 ;;
249 ;; You can change that by giving a custom printing function to
250 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
251 ;; will be called like
252 ;;
253 ;; (<printer> object port)
254 ;;
255 ;; It should print OBJECT to PORT.
256
257 (define (inherit-print-state old-port new-port)
258 (if (get-print-state old-port)
259 (port-with-print-state new-port (get-print-state old-port))
260 new-port))
261
262 ;; 0: type-name, 1: fields
263 (define record-type-vtable
264 (make-vtable-vtable "prpr" 0
265 (lambda (s p)
266 (cond ((eq? s record-type-vtable)
267 (display "#<record-type-vtable>" p))
268 (else
269 (display "#<record-type " p)
270 (display (record-type-name s) p)
271 (display ">" p))))))
272
273 (define (record-type? obj)
274 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
275
276 (define (make-record-type type-name fields . opt)
277 (let ((printer-fn (and (pair? opt) (car opt))))
278 (let ((struct (make-struct record-type-vtable 0
279 (make-struct-layout
280 (apply string-append
281 (map (lambda (f) "pw") fields)))
282 (or printer-fn
283 (lambda (s p)
284 (display "#<" p)
285 (display type-name p)
286 (let loop ((fields fields)
287 (off 0))
288 (cond
289 ((not (null? fields))
290 (display " " p)
291 (display (car fields) p)
292 (display ": " p)
293 (display (struct-ref s off) p)
294 (loop (cdr fields) (+ 1 off)))))
295 (display ">" p)))
296 type-name
297 (copy-tree fields))))
298 ;; Temporary solution: Associate a name to the record type descriptor
299 ;; so that the object system can create a wrapper class for it.
300 (set-struct-vtable-name! struct (if (symbol? type-name)
301 type-name
302 (string->symbol type-name)))
303 struct)))
304
305 (define (record-type-name obj)
306 (if (record-type? obj)
307 (struct-ref obj vtable-offset-user)
308 (error 'not-a-record-type obj)))
309
310 (define (record-type-fields obj)
311 (if (record-type? obj)
312 (struct-ref obj (+ 1 vtable-offset-user))
313 (error 'not-a-record-type obj)))
314
315 (define (record-constructor rtd . opt)
316 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
317 (local-eval `(lambda ,field-names
318 (make-struct ',rtd 0 ,@(map (lambda (f)
319 (if (memq f field-names)
320 f
321 #f))
322 (record-type-fields rtd))))
323 the-root-environment)))
324
325 (define (record-predicate rtd)
326 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
327
328 (define (record-accessor rtd field-name)
329 (let* ((pos (list-index (record-type-fields rtd) field-name)))
330 (if (not pos)
331 (error 'no-such-field field-name))
332 (local-eval `(lambda (obj)
333 (and (eq? ',rtd (record-type-descriptor obj))
334 (struct-ref obj ,pos)))
335 the-root-environment)))
336
337 (define (record-modifier rtd field-name)
338 (let* ((pos (list-index (record-type-fields rtd) field-name)))
339 (if (not pos)
340 (error 'no-such-field field-name))
341 (local-eval `(lambda (obj val)
342 (and (eq? ',rtd (record-type-descriptor obj))
343 (struct-set! obj ,pos val)))
344 the-root-environment)))
345
346
347 (define (record? obj)
348 (and (struct? obj) (record-type? (struct-vtable obj))))
349
350 (define (record-type-descriptor obj)
351 (if (struct? obj)
352 (struct-vtable obj)
353 (error 'not-a-record obj)))
354
355 (provide 'record)
356
357 \f
358 ;;; {Booleans}
359 ;;;
360
361 (define (->bool x) (not (not x)))
362
363 \f
364 ;;; {Symbols}
365 ;;;
366
367 (define (symbol-append . args)
368 (string->symbol (apply string-append (map symbol->string args))))
369
370 (define (list->symbol . args)
371 (string->symbol (apply list->string args)))
372
373 (define (symbol . args)
374 (string->symbol (apply string args)))
375
376 \f
377 ;;; {Lists}
378 ;;;
379
380 (define (list-index l k)
381 (let loop ((n 0)
382 (l l))
383 (and (not (null? l))
384 (if (eq? (car l) k)
385 n
386 (loop (+ n 1) (cdr l))))))
387
388 (define (make-list n . init)
389 (if (pair? init) (set! init (car init)))
390 (let loop ((answer '())
391 (n n))
392 (if (<= n 0)
393 answer
394 (loop (cons init answer) (- n 1)))))
395
396 \f
397 ;;; {and-map and or-map}
398 ;;;
399 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
400 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
401 ;;;
402
403 ;; and-map f l
404 ;;
405 ;; Apply f to successive elements of l until exhaustion or f returns #f.
406 ;; If returning early, return #f. Otherwise, return the last value returned
407 ;; by f. If f has never been called because l is empty, return #t.
408 ;;
409 (define (and-map f lst)
410 (let loop ((result #t)
411 (l lst))
412 (and result
413 (or (and (null? l)
414 result)
415 (loop (f (car l)) (cdr l))))))
416
417 ;; or-map f l
418 ;;
419 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
420 ;; If returning early, return the return value of f.
421 ;;
422 (define (or-map f lst)
423 (let loop ((result #f)
424 (l lst))
425 (or result
426 (and (not (null? l))
427 (loop (f (car l)) (cdr l))))))
428
429 \f
430
431 (if (provided? 'posix)
432 (primitive-load-path "ice-9/posix.scm"))
433
434 (if (provided? 'socket)
435 (primitive-load-path "ice-9/networking.scm"))
436
437 (define file-exists?
438 (if (provided? 'posix)
439 (lambda (str)
440 (access? str F_OK))
441 (lambda (str)
442 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
443 (lambda args #f))))
444 (if port (begin (close-port port) #t)
445 #f)))))
446
447 (define file-is-directory?
448 (if (provided? 'posix)
449 (lambda (str)
450 (eq? (stat:type (stat str)) 'directory))
451 (lambda (str)
452 (let ((port (catch 'system-error
453 (lambda () (open-file (string-append str "/.")
454 OPEN_READ))
455 (lambda args #f))))
456 (if port (begin (close-port port) #t)
457 #f)))))
458
459 (define (has-suffix? str suffix)
460 (let ((sufl (string-length suffix))
461 (sl (string-length str)))
462 (and (> sl sufl)
463 (string=? (substring str (- sl sufl) sl) suffix))))
464
465 (define (system-error-errno args)
466 (if (eq? (car args) 'system-error)
467 (car (list-ref args 4))
468 #f))
469
470 \f
471 ;;; {Error Handling}
472 ;;;
473
474 (define (error . args)
475 (save-stack)
476 (if (null? args)
477 (scm-error 'misc-error #f "?" #f #f)
478 (let loop ((msg "~A")
479 (rest (cdr args)))
480 (if (not (null? rest))
481 (loop (string-append msg " ~S")
482 (cdr rest))
483 (scm-error 'misc-error #f msg args #f)))))
484
485 ;; bad-throw is the hook that is called upon a throw to a an unhandled
486 ;; key (unless the throw has four arguments, in which case
487 ;; it's usually interpreted as an error throw.)
488 ;; If the key has a default handler (a throw-handler-default property),
489 ;; it is applied to the throw.
490 ;;
491 (define (bad-throw key . args)
492 (let ((default (symbol-property key 'throw-handler-default)))
493 (or (and default (apply default key args))
494 (apply error "unhandled-exception:" key args))))
495
496 \f
497
498 (define (tm:sec obj) (vector-ref obj 0))
499 (define (tm:min obj) (vector-ref obj 1))
500 (define (tm:hour obj) (vector-ref obj 2))
501 (define (tm:mday obj) (vector-ref obj 3))
502 (define (tm:mon obj) (vector-ref obj 4))
503 (define (tm:year obj) (vector-ref obj 5))
504 (define (tm:wday obj) (vector-ref obj 6))
505 (define (tm:yday obj) (vector-ref obj 7))
506 (define (tm:isdst obj) (vector-ref obj 8))
507 (define (tm:gmtoff obj) (vector-ref obj 9))
508 (define (tm:zone obj) (vector-ref obj 10))
509
510 (define (set-tm:sec obj val) (vector-set! obj 0 val))
511 (define (set-tm:min obj val) (vector-set! obj 1 val))
512 (define (set-tm:hour obj val) (vector-set! obj 2 val))
513 (define (set-tm:mday obj val) (vector-set! obj 3 val))
514 (define (set-tm:mon obj val) (vector-set! obj 4 val))
515 (define (set-tm:year obj val) (vector-set! obj 5 val))
516 (define (set-tm:wday obj val) (vector-set! obj 6 val))
517 (define (set-tm:yday obj val) (vector-set! obj 7 val))
518 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
519 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
520 (define (set-tm:zone obj val) (vector-set! obj 10 val))
521
522 (define (tms:clock obj) (vector-ref obj 0))
523 (define (tms:utime obj) (vector-ref obj 1))
524 (define (tms:stime obj) (vector-ref obj 2))
525 (define (tms:cutime obj) (vector-ref obj 3))
526 (define (tms:cstime obj) (vector-ref obj 4))
527
528 (define (file-position . args) (apply ftell args))
529 (define (file-set-position . args) (apply fseek args))
530
531 (define (move->fdes fd/port fd)
532 (cond ((integer? fd/port)
533 (dup->fdes fd/port fd)
534 (close fd/port)
535 fd)
536 (else
537 (primitive-move->fdes fd/port fd)
538 (set-port-revealed! fd/port 1)
539 fd/port)))
540
541 (define (release-port-handle port)
542 (let ((revealed (port-revealed port)))
543 (if (> revealed 0)
544 (set-port-revealed! port (- revealed 1)))))
545
546 (define (dup->port port/fd mode . maybe-fd)
547 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
548 mode)))
549 (if (pair? maybe-fd)
550 (set-port-revealed! port 1))
551 port))
552
553 (define (dup->inport port/fd . maybe-fd)
554 (apply dup->port port/fd "r" maybe-fd))
555
556 (define (dup->outport port/fd . maybe-fd)
557 (apply dup->port port/fd "w" maybe-fd))
558
559 (define (dup port/fd . maybe-fd)
560 (if (integer? port/fd)
561 (apply dup->fdes port/fd maybe-fd)
562 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
563
564 (define (duplicate-port port modes)
565 (dup->port port modes))
566
567 (define (fdes->inport fdes)
568 (let loop ((rest-ports (fdes->ports fdes)))
569 (cond ((null? rest-ports)
570 (let ((result (fdopen fdes "r")))
571 (set-port-revealed! result 1)
572 result))
573 ((input-port? (car rest-ports))
574 (set-port-revealed! (car rest-ports)
575 (+ (port-revealed (car rest-ports)) 1))
576 (car rest-ports))
577 (else
578 (loop (cdr rest-ports))))))
579
580 (define (fdes->outport fdes)
581 (let loop ((rest-ports (fdes->ports fdes)))
582 (cond ((null? rest-ports)
583 (let ((result (fdopen fdes "w")))
584 (set-port-revealed! result 1)
585 result))
586 ((output-port? (car rest-ports))
587 (set-port-revealed! (car rest-ports)
588 (+ (port-revealed (car rest-ports)) 1))
589 (car rest-ports))
590 (else
591 (loop (cdr rest-ports))))))
592
593 (define (port->fdes port)
594 (set-port-revealed! port (+ (port-revealed port) 1))
595 (fileno port))
596
597 (define (setenv name value)
598 (if value
599 (putenv (string-append name "=" value))
600 (putenv name)))
601
602 \f
603 ;;; {Load Paths}
604 ;;;
605
606 ;;; Here for backward compatability
607 ;;
608 (define scheme-file-suffix (lambda () ".scm"))
609
610 (define (in-vicinity vicinity file)
611 (let ((tail (let ((len (string-length vicinity)))
612 (if (zero? len)
613 #f
614 (string-ref vicinity (- len 1))))))
615 (string-append vicinity
616 (if (or (not tail)
617 (eq? tail #\/))
618 ""
619 "/")
620 file)))
621
622 \f
623 ;;; {Help for scm_shell}
624 ;;; The argument-processing code used by Guile-based shells generates
625 ;;; Scheme code based on the argument list. This page contains help
626 ;;; functions for the code it generates.
627
628 (define (command-line) (program-arguments))
629
630 ;; This is mostly for the internal use of the code generated by
631 ;; scm_compile_shell_switches.
632
633 (define (turn-on-debugging)
634 (debug-enable 'debug)
635 (debug-enable 'backtrace)
636 (read-enable 'positions))
637
638 (define (load-user-init)
639 (let* ((home (or (getenv "HOME")
640 (false-if-exception (passwd:dir (getpwuid (getuid))))
641 "/")) ;; fallback for cygwin etc.
642 (init-file (in-vicinity home ".guile")))
643 (if (file-exists? init-file)
644 (primitive-load init-file))))
645
646 \f
647 ;;; {Loading by paths}
648
649 ;;; Load a Scheme source file named NAME, searching for it in the
650 ;;; directories listed in %load-path, and applying each of the file
651 ;;; name extensions listed in %load-extensions.
652 (define (load-from-path name)
653 (start-stack 'load-stack
654 (primitive-load-path name)))
655
656
657 \f
658 ;;; {Transcendental Functions}
659 ;;;
660 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
661 ;;; Written by Jerry D. Hedden, (C) FSF.
662 ;;; See the file `COPYING' for terms applying to this program.
663 ;;;
664
665 (define (exp z)
666 (if (real? z) ($exp z)
667 (make-polar ($exp (real-part z)) (imag-part z))))
668
669 (define (log z)
670 (if (and (real? z) (>= z 0))
671 ($log z)
672 (make-rectangular ($log (magnitude z)) (angle z))))
673
674 (define (sqrt z)
675 (if (real? z)
676 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
677 ($sqrt z))
678 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
679
680 (define expt
681 (let ((integer-expt integer-expt))
682 (lambda (z1 z2)
683 (cond ((integer? z2)
684 (if (>= z2 0)
685 (integer-expt z1 z2)
686 (/ 1 (integer-expt z1 (- z2)))))
687 ((and (real? z2) (real? z1) (>= z1 0))
688 ($expt z1 z2))
689 (else
690 (exp (* z2 (log z1))))))))
691
692 (define (sinh z)
693 (if (real? z) ($sinh z)
694 (let ((x (real-part z)) (y (imag-part z)))
695 (make-rectangular (* ($sinh x) ($cos y))
696 (* ($cosh x) ($sin y))))))
697 (define (cosh z)
698 (if (real? z) ($cosh z)
699 (let ((x (real-part z)) (y (imag-part z)))
700 (make-rectangular (* ($cosh x) ($cos y))
701 (* ($sinh x) ($sin y))))))
702 (define (tanh z)
703 (if (real? z) ($tanh z)
704 (let* ((x (* 2 (real-part z)))
705 (y (* 2 (imag-part z)))
706 (w (+ ($cosh x) ($cos y))))
707 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
708
709 (define (asinh z)
710 (if (real? z) ($asinh z)
711 (log (+ z (sqrt (+ (* z z) 1))))))
712
713 (define (acosh z)
714 (if (and (real? z) (>= z 1))
715 ($acosh z)
716 (log (+ z (sqrt (- (* z z) 1))))))
717
718 (define (atanh z)
719 (if (and (real? z) (> z -1) (< z 1))
720 ($atanh z)
721 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
722
723 (define (sin z)
724 (if (real? z) ($sin z)
725 (let ((x (real-part z)) (y (imag-part z)))
726 (make-rectangular (* ($sin x) ($cosh y))
727 (* ($cos x) ($sinh y))))))
728 (define (cos z)
729 (if (real? z) ($cos z)
730 (let ((x (real-part z)) (y (imag-part z)))
731 (make-rectangular (* ($cos x) ($cosh y))
732 (- (* ($sin x) ($sinh y)))))))
733 (define (tan z)
734 (if (real? z) ($tan z)
735 (let* ((x (* 2 (real-part z)))
736 (y (* 2 (imag-part z)))
737 (w (+ ($cos x) ($cosh y))))
738 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
739
740 (define (asin z)
741 (if (and (real? z) (>= z -1) (<= z 1))
742 ($asin z)
743 (* -i (asinh (* +i z)))))
744
745 (define (acos z)
746 (if (and (real? z) (>= z -1) (<= z 1))
747 ($acos z)
748 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
749
750 (define (atan z . y)
751 (if (null? y)
752 (if (real? z) ($atan z)
753 (/ (log (/ (- +i z) (+ +i z))) +2i))
754 ($atan2 z (car y))))
755
756 (define (log10 arg)
757 (/ (log arg) (log 10)))
758
759 \f
760
761 ;;; {Reader Extensions}
762 ;;;
763
764 ;;; Reader code for various "#c" forms.
765 ;;;
766
767 (read-hash-extend #\' (lambda (c port)
768 (read port)))
769
770 (define read-eval? (make-fluid))
771 (fluid-set! read-eval? #f)
772 (read-hash-extend #\.
773 (lambda (c port)
774 (if (fluid-ref read-eval?)
775 (eval (read port) (interaction-environment))
776 (error
777 "#. read expansion found and read-eval? is #f."))))
778
779 \f
780 ;;; {Command Line Options}
781 ;;;
782
783 (define (get-option argv kw-opts kw-args return)
784 (cond
785 ((null? argv)
786 (return #f #f argv))
787
788 ((or (not (eq? #\- (string-ref (car argv) 0)))
789 (eq? (string-length (car argv)) 1))
790 (return 'normal-arg (car argv) (cdr argv)))
791
792 ((eq? #\- (string-ref (car argv) 1))
793 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
794 (string-length (car argv))))
795 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
796 (kw-opt? (member kw kw-opts))
797 (kw-arg? (member kw kw-args))
798 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
799 (substring (car argv)
800 (+ kw-arg-pos 1)
801 (string-length (car argv))))
802 (and kw-arg?
803 (begin (set! argv (cdr argv)) (car argv))))))
804 (if (or kw-opt? kw-arg?)
805 (return kw arg (cdr argv))
806 (return 'usage-error kw (cdr argv)))))
807
808 (else
809 (let* ((char (substring (car argv) 1 2))
810 (kw (symbol->keyword char)))
811 (cond
812
813 ((member kw kw-opts)
814 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
815 (new-argv (if (= 0 (string-length rest-car))
816 (cdr argv)
817 (cons (string-append "-" rest-car) (cdr argv)))))
818 (return kw #f new-argv)))
819
820 ((member kw kw-args)
821 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
822 (arg (if (= 0 (string-length rest-car))
823 (cadr argv)
824 rest-car))
825 (new-argv (if (= 0 (string-length rest-car))
826 (cddr argv)
827 (cdr argv))))
828 (return kw arg new-argv)))
829
830 (else (return 'usage-error kw argv)))))))
831
832 (define (for-next-option proc argv kw-opts kw-args)
833 (let loop ((argv argv))
834 (get-option argv kw-opts kw-args
835 (lambda (opt opt-arg argv)
836 (and opt (proc opt opt-arg argv loop))))))
837
838 (define (display-usage-report kw-desc)
839 (for-each
840 (lambda (kw)
841 (or (eq? (car kw) #t)
842 (eq? (car kw) 'else)
843 (let* ((opt-desc kw)
844 (help (cadr opt-desc))
845 (opts (car opt-desc))
846 (opts-proper (if (string? (car opts)) (cdr opts) opts))
847 (arg-name (if (string? (car opts))
848 (string-append "<" (car opts) ">")
849 ""))
850 (left-part (string-append
851 (with-output-to-string
852 (lambda ()
853 (map (lambda (x) (display (keyword-symbol x)) (display " "))
854 opts-proper)))
855 arg-name))
856 (middle-part (if (and (< (string-length left-part) 30)
857 (< (string-length help) 40))
858 (make-string (- 30 (string-length left-part)) #\ )
859 "\n\t")))
860 (display left-part)
861 (display middle-part)
862 (display help)
863 (newline))))
864 kw-desc))
865
866
867
868 (define (transform-usage-lambda cases)
869 (let* ((raw-usage (delq! 'else (map car cases)))
870 (usage-sans-specials (map (lambda (x)
871 (or (and (not (list? x)) x)
872 (and (symbol? (car x)) #t)
873 (and (boolean? (car x)) #t)
874 x))
875 raw-usage))
876 (usage-desc (delq! #t usage-sans-specials))
877 (kw-desc (map car usage-desc))
878 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
879 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
880 (transmogrified-cases (map (lambda (case)
881 (cons (let ((opts (car case)))
882 (if (or (boolean? opts) (eq? 'else opts))
883 opts
884 (cond
885 ((symbol? (car opts)) opts)
886 ((boolean? (car opts)) opts)
887 ((string? (caar opts)) (cdar opts))
888 (else (car opts)))))
889 (cdr case)))
890 cases)))
891 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
892 (lambda (%argv)
893 (let %next-arg ((%argv %argv))
894 (get-option %argv
895 ',kw-opts
896 ',kw-args
897 (lambda (%opt %arg %new-argv)
898 (case %opt
899 ,@ transmogrified-cases))))))))
900
901
902 \f
903
904 ;;; {Low Level Modules}
905 ;;;
906 ;;; These are the low level data structures for modules.
907 ;;;
908 ;;; !!! warning: The interface to lazy binder procedures is going
909 ;;; to be changed in an incompatible way to permit all the basic
910 ;;; module ops to be virtualized.
911 ;;;
912 ;;; (make-module size use-list lazy-binding-proc) => module
913 ;;; module-{obarray,uses,binder}[|-set!]
914 ;;; (module? obj) => [#t|#f]
915 ;;; (module-locally-bound? module symbol) => [#t|#f]
916 ;;; (module-bound? module symbol) => [#t|#f]
917 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
918 ;;; (module-symbol-interned? module symbol) => [#t|#f]
919 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
920 ;;; (module-variable module symbol) => [#<variable ...> | #f]
921 ;;; (module-symbol-binding module symbol opt-value)
922 ;;; => [ <obj> | opt-value | an error occurs ]
923 ;;; (module-make-local-var! module symbol) => #<variable...>
924 ;;; (module-add! module symbol var) => unspecified
925 ;;; (module-remove! module symbol) => unspecified
926 ;;; (module-for-each proc module) => unspecified
927 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
928 ;;; (set-current-module module) => unspecified
929 ;;; (current-module) => #<module...>
930 ;;;
931 ;;;
932
933 \f
934 ;;; {Printing Modules}
935 ;; This is how modules are printed. You can re-define it.
936 ;; (Redefining is actually more complicated than simply redefining
937 ;; %print-module because that would only change the binding and not
938 ;; the value stored in the vtable that determines how record are
939 ;; printed. Sigh.)
940
941 (define (%print-module mod port) ; unused args: depth length style table)
942 (display "#<" port)
943 (display (or (module-kind mod) "module") port)
944 (let ((name (module-name mod)))
945 (if name
946 (begin
947 (display " " port)
948 (display name port))))
949 (display " " port)
950 (display (number->string (object-address mod) 16) port)
951 (display ">" port))
952
953 ;; module-type
954 ;;
955 ;; A module is characterized by an obarray in which local symbols
956 ;; are interned, a list of modules, "uses", from which non-local
957 ;; bindings can be inherited, and an optional lazy-binder which
958 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
959 ;; bindings that would otherwise not be found locally in the module.
960 ;;
961 ;; NOTE: If you change here, you also need to change libguile/modules.h.
962 ;;
963 (define module-type
964 (make-record-type 'module
965 '(obarray uses binder eval-closure transformer name kind
966 observers weak-observers observer-id)
967 %print-module))
968
969 ;; make-module &opt size uses binder
970 ;;
971 ;; Create a new module, perhaps with a particular size of obarray,
972 ;; initial uses list, or binding procedure.
973 ;;
974 (define make-module
975 (lambda args
976
977 (define (parse-arg index default)
978 (if (> (length args) index)
979 (list-ref args index)
980 default))
981
982 (if (> (length args) 3)
983 (error "Too many args to make-module." args))
984
985 (let ((size (parse-arg 0 1021))
986 (uses (parse-arg 1 '()))
987 (binder (parse-arg 2 #f)))
988
989 (if (not (integer? size))
990 (error "Illegal size to make-module." size))
991 (if (not (and (list? uses)
992 (and-map module? uses)))
993 (error "Incorrect use list." uses))
994 (if (and binder (not (procedure? binder)))
995 (error
996 "Lazy-binder expected to be a procedure or #f." binder))
997
998 (let ((module (module-constructor (make-vector size '())
999 uses binder #f #f #f #f
1000 '()
1001 (make-weak-value-hash-table 31)
1002 0)))
1003
1004 ;; We can't pass this as an argument to module-constructor,
1005 ;; because we need it to close over a pointer to the module
1006 ;; itself.
1007 (set-module-eval-closure! module (standard-eval-closure module))
1008
1009 module))))
1010
1011 (define module-constructor (record-constructor module-type))
1012 (define module-obarray (record-accessor module-type 'obarray))
1013 (define set-module-obarray! (record-modifier module-type 'obarray))
1014 (define module-uses (record-accessor module-type 'uses))
1015 (define set-module-uses! (record-modifier module-type 'uses))
1016 (define module-binder (record-accessor module-type 'binder))
1017 (define set-module-binder! (record-modifier module-type 'binder))
1018
1019 ;; NOTE: This binding is used in libguile/modules.c.
1020 (define module-eval-closure (record-accessor module-type 'eval-closure))
1021
1022 (define module-transformer (record-accessor module-type 'transformer))
1023 (define set-module-transformer! (record-modifier module-type 'transformer))
1024 (define module-name (record-accessor module-type 'name))
1025 (define set-module-name! (record-modifier module-type 'name))
1026 (define module-kind (record-accessor module-type 'kind))
1027 (define set-module-kind! (record-modifier module-type 'kind))
1028 (define module-observers (record-accessor module-type 'observers))
1029 (define set-module-observers! (record-modifier module-type 'observers))
1030 (define module-weak-observers (record-accessor module-type 'weak-observers))
1031 (define module-observer-id (record-accessor module-type 'observer-id))
1032 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1033 (define module? (record-predicate module-type))
1034
1035 (define set-module-eval-closure!
1036 (let ((setter (record-modifier module-type 'eval-closure)))
1037 (lambda (module closure)
1038 (setter module closure)
1039 ;; Make it possible to lookup the module from the environment.
1040 ;; This implementation is correct since an eval closure can belong
1041 ;; to maximally one module.
1042 (set-procedure-property! closure 'module module))))
1043
1044 \f
1045 ;;; {Observer protocol}
1046 ;;;
1047
1048 (define (module-observe module proc)
1049 (set-module-observers! module (cons proc (module-observers module)))
1050 (cons module proc))
1051
1052 (define (module-observe-weak module proc)
1053 (let ((id (module-observer-id module)))
1054 (hash-set! (module-weak-observers module) id proc)
1055 (set-module-observer-id! module (+ 1 id))
1056 (cons module id)))
1057
1058 (define (module-unobserve token)
1059 (let ((module (car token))
1060 (id (cdr token)))
1061 (if (integer? id)
1062 (hash-remove! (module-weak-observers module) id)
1063 (set-module-observers! module (delq1! id (module-observers module)))))
1064 *unspecified*)
1065
1066 (define (module-modified m)
1067 (for-each (lambda (proc) (proc m)) (module-observers m))
1068 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1069
1070 \f
1071 ;;; {Module Searching in General}
1072 ;;;
1073 ;;; We sometimes want to look for properties of a symbol
1074 ;;; just within the obarray of one module. If the property
1075 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1076 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1077 ;;;
1078 ;;;
1079 ;;; Other times, we want to test for a symbol property in the obarray
1080 ;;; of M and, if it is not found there, try each of the modules in the
1081 ;;; uses list of M. This is the normal way of testing for some
1082 ;;; property, so we state these properties without qualification as
1083 ;;; in: ``The symbol 'fnord is interned in module M because it is
1084 ;;; interned locally in module M2 which is a member of the uses list
1085 ;;; of M.''
1086 ;;;
1087
1088 ;; module-search fn m
1089 ;;
1090 ;; return the first non-#f result of FN applied to M and then to
1091 ;; the modules in the uses of m, and so on recursively. If all applications
1092 ;; return #f, then so does this function.
1093 ;;
1094 (define (module-search fn m v)
1095 (define (loop pos)
1096 (and (pair? pos)
1097 (or (module-search fn (car pos) v)
1098 (loop (cdr pos)))))
1099 (or (fn m v)
1100 (loop (module-uses m))))
1101
1102
1103 ;;; {Is a symbol bound in a module?}
1104 ;;;
1105 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1106 ;;; of S in M has been set to some well-defined value.
1107 ;;;
1108
1109 ;; module-locally-bound? module symbol
1110 ;;
1111 ;; Is a symbol bound (interned and defined) locally in a given module?
1112 ;;
1113 (define (module-locally-bound? m v)
1114 (let ((var (module-local-variable m v)))
1115 (and var
1116 (variable-bound? var))))
1117
1118 ;; module-bound? module symbol
1119 ;;
1120 ;; Is a symbol bound (interned and defined) anywhere in a given module
1121 ;; or its uses?
1122 ;;
1123 (define (module-bound? m v)
1124 (module-search module-locally-bound? m v))
1125
1126 ;;; {Is a symbol interned in a module?}
1127 ;;;
1128 ;;; Symbol S in Module M is interned if S occurs in
1129 ;;; of S in M has been set to some well-defined value.
1130 ;;;
1131 ;;; It is possible to intern a symbol in a module without providing
1132 ;;; an initial binding for the corresponding variable. This is done
1133 ;;; with:
1134 ;;; (module-add! module symbol (make-undefined-variable))
1135 ;;;
1136 ;;; In that case, the symbol is interned in the module, but not
1137 ;;; bound there. The unbound symbol shadows any binding for that
1138 ;;; symbol that might otherwise be inherited from a member of the uses list.
1139 ;;;
1140
1141 (define (module-obarray-get-handle ob key)
1142 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1143
1144 (define (module-obarray-ref ob key)
1145 ((if (symbol? key) hashq-ref hash-ref) ob key))
1146
1147 (define (module-obarray-set! ob key val)
1148 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1149
1150 (define (module-obarray-remove! ob key)
1151 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1152
1153 ;; module-symbol-locally-interned? module symbol
1154 ;;
1155 ;; is a symbol interned (not neccessarily defined) locally in a given module
1156 ;; or its uses? Interned symbols shadow inherited bindings even if
1157 ;; they are not themselves bound to a defined value.
1158 ;;
1159 (define (module-symbol-locally-interned? m v)
1160 (not (not (module-obarray-get-handle (module-obarray m) v))))
1161
1162 ;; module-symbol-interned? module symbol
1163 ;;
1164 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1165 ;; or its uses? Interned symbols shadow inherited bindings even if
1166 ;; they are not themselves bound to a defined value.
1167 ;;
1168 (define (module-symbol-interned? m v)
1169 (module-search module-symbol-locally-interned? m v))
1170
1171
1172 ;;; {Mapping modules x symbols --> variables}
1173 ;;;
1174
1175 ;; module-local-variable module symbol
1176 ;; return the local variable associated with a MODULE and SYMBOL.
1177 ;;
1178 ;;; This function is very important. It is the only function that can
1179 ;;; return a variable from a module other than the mutators that store
1180 ;;; new variables in modules. Therefore, this function is the location
1181 ;;; of the "lazy binder" hack.
1182 ;;;
1183 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1184 ;;; to a variable, return that variable object.
1185 ;;;
1186 ;;; If the symbols is not found at first, but the module has a lazy binder,
1187 ;;; then try the binder.
1188 ;;;
1189 ;;; If the symbol is not found at all, return #f.
1190 ;;;
1191 (define (module-local-variable m v)
1192 ; (caddr
1193 ; (list m v
1194 (let ((b (module-obarray-ref (module-obarray m) v)))
1195 (or (and (variable? b) b)
1196 (and (module-binder m)
1197 ((module-binder m) m v #f)))))
1198 ;))
1199
1200 ;; module-variable module symbol
1201 ;;
1202 ;; like module-local-variable, except search the uses in the
1203 ;; case V is not found in M.
1204 ;;
1205 ;; NOTE: This function is superseded with C code (see modules.c)
1206 ;;; when using the standard eval closure.
1207 ;;
1208 (define (module-variable m v)
1209 (module-search module-local-variable m v))
1210
1211
1212 ;;; {Mapping modules x symbols --> bindings}
1213 ;;;
1214 ;;; These are similar to the mapping to variables, except that the
1215 ;;; variable is dereferenced.
1216 ;;;
1217
1218 ;; module-symbol-binding module symbol opt-value
1219 ;;
1220 ;; return the binding of a variable specified by name within
1221 ;; a given module, signalling an error if the variable is unbound.
1222 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1223 ;; return OPT-VALUE.
1224 ;;
1225 (define (module-symbol-local-binding m v . opt-val)
1226 (let ((var (module-local-variable m v)))
1227 (if var
1228 (variable-ref var)
1229 (if (not (null? opt-val))
1230 (car opt-val)
1231 (error "Locally unbound variable." v)))))
1232
1233 ;; module-symbol-binding module symbol opt-value
1234 ;;
1235 ;; return the binding of a variable specified by name within
1236 ;; a given module, signalling an error if the variable is unbound.
1237 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1238 ;; return OPT-VALUE.
1239 ;;
1240 (define (module-symbol-binding m v . opt-val)
1241 (let ((var (module-variable m v)))
1242 (if var
1243 (variable-ref var)
1244 (if (not (null? opt-val))
1245 (car opt-val)
1246 (error "Unbound variable." v)))))
1247
1248
1249 \f
1250 ;;; {Adding Variables to Modules}
1251 ;;;
1252 ;;;
1253
1254
1255 ;; module-make-local-var! module symbol
1256 ;;
1257 ;; ensure a variable for V in the local namespace of M.
1258 ;; If no variable was already there, then create a new and uninitialzied
1259 ;; variable.
1260 ;;
1261 (define (module-make-local-var! m v)
1262 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1263 (and (variable? b)
1264 (begin
1265 (module-modified m)
1266 b)))
1267 (and (module-binder m)
1268 ((module-binder m) m v #t))
1269 (begin
1270 (let ((answer (make-undefined-variable)))
1271 (module-obarray-set! (module-obarray m) v answer)
1272 (module-modified m)
1273 answer))))
1274
1275 ;; module-ensure-local-variable! module symbol
1276 ;;
1277 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1278 ;; there is no binding for SYMBOL, create a new uninitialized
1279 ;; variable. Return the local variable.
1280 ;;
1281 (define (module-ensure-local-variable! module symbol)
1282 (or (module-local-variable module symbol)
1283 (let ((var (make-undefined-variable)))
1284 (module-add! module symbol var)
1285 var)))
1286
1287 ;; module-add! module symbol var
1288 ;;
1289 ;; ensure a particular variable for V in the local namespace of M.
1290 ;;
1291 (define (module-add! m v var)
1292 (if (not (variable? var))
1293 (error "Bad variable to module-add!" var))
1294 (module-obarray-set! (module-obarray m) v var)
1295 (module-modified m))
1296
1297 ;; module-remove!
1298 ;;
1299 ;; make sure that a symbol is undefined in the local namespace of M.
1300 ;;
1301 (define (module-remove! m v)
1302 (module-obarray-remove! (module-obarray m) v)
1303 (module-modified m))
1304
1305 (define (module-clear! m)
1306 (vector-fill! (module-obarray m) '())
1307 (module-modified m))
1308
1309 ;; MODULE-FOR-EACH -- exported
1310 ;;
1311 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1312 ;;
1313 (define (module-for-each proc module)
1314 (let ((obarray (module-obarray module)))
1315 (do ((index 0 (+ index 1))
1316 (end (vector-length obarray)))
1317 ((= index end))
1318 (for-each
1319 (lambda (bucket)
1320 (proc (car bucket) (cdr bucket)))
1321 (vector-ref obarray index)))))
1322
1323
1324 (define (module-map proc module)
1325 (let* ((obarray (module-obarray module))
1326 (end (vector-length obarray)))
1327
1328 (let loop ((i 0)
1329 (answer '()))
1330 (if (= i end)
1331 answer
1332 (loop (+ 1 i)
1333 (append!
1334 (map (lambda (bucket)
1335 (proc (car bucket) (cdr bucket)))
1336 (vector-ref obarray i))
1337 answer))))))
1338 \f
1339
1340 ;;; {Low Level Bootstrapping}
1341 ;;;
1342
1343 ;; make-root-module
1344
1345 ;; A root module uses the pre-modules-obarray as its obarray. This
1346 ;; special obarray accumulates all bindings that have been established
1347 ;; before the module system is fully booted.
1348 ;;
1349 ;; (The obarray continues to be used by code that has been closed over
1350 ;; before the module system has been booted.)
1351
1352 (define (make-root-module)
1353 (let ((m (make-module 0)))
1354 (set-module-obarray! m (%get-pre-modules-obarray))
1355 m))
1356
1357 ;; make-scm-module
1358
1359 ;; The root interface is a module that uses the same obarray as the
1360 ;; root module. It does not allow new definitions, tho.
1361
1362 (define (make-scm-module)
1363 (let ((m (make-module 0)))
1364 (set-module-obarray! m (%get-pre-modules-obarray))
1365 (set-module-eval-closure! m (standard-interface-eval-closure m))
1366 m))
1367
1368
1369 \f
1370 ;;; {Module-based Loading}
1371 ;;;
1372
1373 (define (save-module-excursion thunk)
1374 (let ((inner-module (current-module))
1375 (outer-module #f))
1376 (dynamic-wind (lambda ()
1377 (set! outer-module (current-module))
1378 (set-current-module inner-module)
1379 (set! inner-module #f))
1380 thunk
1381 (lambda ()
1382 (set! inner-module (current-module))
1383 (set-current-module outer-module)
1384 (set! outer-module #f)))))
1385
1386 (define basic-load load)
1387
1388 (define (load-module filename)
1389 (save-module-excursion
1390 (lambda ()
1391 (let ((oldname (and (current-load-port)
1392 (port-filename (current-load-port)))))
1393 (basic-load (if (and oldname
1394 (> (string-length filename) 0)
1395 (not (char=? (string-ref filename 0) #\/))
1396 (not (string=? (dirname oldname) ".")))
1397 (string-append (dirname oldname) "/" filename)
1398 filename))))))
1399
1400
1401 \f
1402 ;;; {MODULE-REF -- exported}
1403 ;;
1404 ;; Returns the value of a variable called NAME in MODULE or any of its
1405 ;; used modules. If there is no such variable, then if the optional third
1406 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1407 ;;
1408 (define (module-ref module name . rest)
1409 (let ((variable (module-variable module name)))
1410 (if (and variable (variable-bound? variable))
1411 (variable-ref variable)
1412 (if (null? rest)
1413 (error "No variable named" name 'in module)
1414 (car rest) ; default value
1415 ))))
1416
1417 ;; MODULE-SET! -- exported
1418 ;;
1419 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1420 ;; to VALUE; if there is no such variable, an error is signaled.
1421 ;;
1422 (define (module-set! module name value)
1423 (let ((variable (module-variable module name)))
1424 (if variable
1425 (variable-set! variable value)
1426 (error "No variable named" name 'in module))))
1427
1428 ;; MODULE-DEFINE! -- exported
1429 ;;
1430 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1431 ;; variable, it is added first.
1432 ;;
1433 (define (module-define! module name value)
1434 (let ((variable (module-local-variable module name)))
1435 (if variable
1436 (begin
1437 (variable-set! variable value)
1438 (module-modified module))
1439 (let ((variable (make-variable value)))
1440 (module-add! module name variable)))))
1441
1442 ;; MODULE-DEFINED? -- exported
1443 ;;
1444 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1445 ;; uses)
1446 ;;
1447 (define (module-defined? module name)
1448 (let ((variable (module-variable module name)))
1449 (and variable (variable-bound? variable))))
1450
1451 ;; MODULE-USE! module interface
1452 ;;
1453 ;; Add INTERFACE to the list of interfaces used by MODULE.
1454 ;;
1455 (define (module-use! module interface)
1456 (set-module-uses! module
1457 (cons interface (delq! interface (module-uses module))))
1458 (module-modified module))
1459
1460 \f
1461 ;;; {Recursive Namespaces}
1462 ;;;
1463 ;;;
1464 ;;; A hierarchical namespace emerges if we consider some module to be
1465 ;;; root, and variables bound to modules as nested namespaces.
1466 ;;;
1467 ;;; The routines in this file manage variable names in hierarchical namespace.
1468 ;;; Each variable name is a list of elements, looked up in successively nested
1469 ;;; modules.
1470 ;;;
1471 ;;; (nested-ref some-root-module '(foo bar baz))
1472 ;;; => <value of a variable named baz in the module bound to bar in
1473 ;;; the module bound to foo in some-root-module>
1474 ;;;
1475 ;;;
1476 ;;; There are:
1477 ;;;
1478 ;;; ;; a-root is a module
1479 ;;; ;; name is a list of symbols
1480 ;;;
1481 ;;; nested-ref a-root name
1482 ;;; nested-set! a-root name val
1483 ;;; nested-define! a-root name val
1484 ;;; nested-remove! a-root name
1485 ;;;
1486 ;;;
1487 ;;; (current-module) is a natural choice for a-root so for convenience there are
1488 ;;; also:
1489 ;;;
1490 ;;; local-ref name == nested-ref (current-module) name
1491 ;;; local-set! name val == nested-set! (current-module) name val
1492 ;;; local-define! name val == nested-define! (current-module) name val
1493 ;;; local-remove! name == nested-remove! (current-module) name
1494 ;;;
1495
1496
1497 (define (nested-ref root names)
1498 (let loop ((cur root)
1499 (elts names))
1500 (cond
1501 ((null? elts) cur)
1502 ((not (module? cur)) #f)
1503 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1504
1505 (define (nested-set! root names val)
1506 (let loop ((cur root)
1507 (elts names))
1508 (if (null? (cdr elts))
1509 (module-set! cur (car elts) val)
1510 (loop (module-ref cur (car elts)) (cdr elts)))))
1511
1512 (define (nested-define! root names val)
1513 (let loop ((cur root)
1514 (elts names))
1515 (if (null? (cdr elts))
1516 (module-define! cur (car elts) val)
1517 (loop (module-ref cur (car elts)) (cdr elts)))))
1518
1519 (define (nested-remove! root names)
1520 (let loop ((cur root)
1521 (elts names))
1522 (if (null? (cdr elts))
1523 (module-remove! cur (car elts))
1524 (loop (module-ref cur (car elts)) (cdr elts)))))
1525
1526 (define (local-ref names) (nested-ref (current-module) names))
1527 (define (local-set! names val) (nested-set! (current-module) names val))
1528 (define (local-define names val) (nested-define! (current-module) names val))
1529 (define (local-remove names) (nested-remove! (current-module) names))
1530
1531
1532 \f
1533 ;;; {The (app) module}
1534 ;;;
1535 ;;; The root of conventionally named objects not directly in the top level.
1536 ;;;
1537 ;;; (app modules)
1538 ;;; (app modules guile)
1539 ;;;
1540 ;;; The directory of all modules and the standard root module.
1541 ;;;
1542
1543 (define (module-public-interface m)
1544 (module-ref m '%module-public-interface #f))
1545 (define (set-module-public-interface! m i)
1546 (module-define! m '%module-public-interface i))
1547 (define (set-system-module! m s)
1548 (set-procedure-property! (module-eval-closure m) 'system-module s))
1549 (define the-root-module (make-root-module))
1550 (define the-scm-module (make-scm-module))
1551 (set-module-public-interface! the-root-module the-scm-module)
1552 (set-module-name! the-root-module '(guile))
1553 (set-module-name! the-scm-module '(guile))
1554 (set-module-kind! the-scm-module 'interface)
1555 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1556
1557 ;; NOTE: This binding is used in libguile/modules.c.
1558 ;;
1559 (define (make-modules-in module name)
1560 (if (null? name)
1561 module
1562 (cond
1563 ((module-ref module (car name) #f)
1564 => (lambda (m) (make-modules-in m (cdr name))))
1565 (else (let ((m (make-module 31)))
1566 (set-module-kind! m 'directory)
1567 (set-module-name! m (append (or (module-name module)
1568 '())
1569 (list (car name))))
1570 (module-define! module (car name) m)
1571 (make-modules-in m (cdr name)))))))
1572
1573 (define (beautify-user-module! module)
1574 (let ((interface (module-public-interface module)))
1575 (if (or (not interface)
1576 (eq? interface module))
1577 (let ((interface (make-module 31)))
1578 (set-module-name! interface (module-name module))
1579 (set-module-kind! interface 'interface)
1580 (set-module-public-interface! module interface))))
1581 (if (and (not (memq the-scm-module (module-uses module)))
1582 (not (eq? module the-root-module)))
1583 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1584
1585 ;; NOTE: This binding is used in libguile/modules.c.
1586 ;;
1587 (define (resolve-module name . maybe-autoload)
1588 (let ((full-name (append '(app modules) name)))
1589 (let ((already (local-ref full-name)))
1590 (if already
1591 ;; The module already exists...
1592 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1593 (not (module-public-interface already)))
1594 ;; ...but we are told to load and it doesn't contain source, so
1595 (begin
1596 (try-load-module name)
1597 already)
1598 ;; simply return it.
1599 already)
1600 (begin
1601 ;; Try to autoload it if we are told so
1602 (if (or (null? maybe-autoload) (car maybe-autoload))
1603 (try-load-module name))
1604 ;; Get/create it.
1605 (make-modules-in (current-module) full-name))))))
1606
1607 ;; Cheat. These bindings are needed by modules.c, but we don't want
1608 ;; to move their real definition here because that would be unnatural.
1609 ;;
1610 (define try-module-autoload #f)
1611 (define process-define-module #f)
1612 (define process-use-modules #f)
1613 (define module-export! #f)
1614
1615 ;; This boots the module system. All bindings needed by modules.c
1616 ;; must have been defined by now.
1617 ;;
1618 (set-current-module the-root-module)
1619
1620 (define app (make-module 31))
1621 (local-define '(app modules) (make-module 31))
1622 (local-define '(app modules guile) the-root-module)
1623
1624 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1625
1626 (define (try-load-module name)
1627 (try-module-autoload name))
1628
1629 (define (purify-module! module)
1630 "Removes bindings in MODULE which are inherited from the (guile) module."
1631 (let ((use-list (module-uses module)))
1632 (if (and (pair? use-list)
1633 (eq? (car (last-pair use-list)) the-scm-module))
1634 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1635
1636 ;; Return a module that is a interface to the module designated by
1637 ;; NAME.
1638 ;;
1639 ;; `resolve-interface' takes two keyword arguments:
1640 ;;
1641 ;; #:select SELECTION
1642 ;;
1643 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1644 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1645 ;; is the name in the used module and SEEN is the name in the using
1646 ;; module. Note that SEEN is also passed through RENAMER, below. The
1647 ;; default is to select all bindings. If you specify no selection but
1648 ;; a renamer, only the bindings that already exists in the used module
1649 ;; are made available in the interface. Bindings that are added later
1650 ;; are not picked up.
1651 ;;
1652 ;; #:renamer RENAMER
1653 ;;
1654 ;; RENAMER is a procedure that takes a symbol and returns its new
1655 ;; name. The default is to not perform any renaming.
1656 ;;
1657 ;; Signal "no code for module" error if module name is not resolvable
1658 ;; or its public interface is not available. Signal "no binding"
1659 ;; error if selected binding does not exist in the used module.
1660 ;;
1661 (define (resolve-interface name . args)
1662
1663 (define (get-keyword-arg args kw def)
1664 (cond ((memq kw args)
1665 => (lambda (kw-arg)
1666 (if (null? (cdr kw-arg))
1667 (error "keyword without value: " kw))
1668 (cadr kw-arg)))
1669 (else
1670 def)))
1671
1672 (let* ((select (get-keyword-arg args #:select #f))
1673 (renamer (get-keyword-arg args #:renamer identity))
1674 (module (resolve-module name))
1675 (public-i (and module (module-public-interface module))))
1676 (and (or (not module) (not public-i))
1677 (error "no code for module" name))
1678 (if (and (not select) (eq? renamer identity))
1679 public-i
1680 (let ((selection (or select (module-map (lambda (sym var) sym)
1681 public-i)))
1682 (custom-i (make-module 31)))
1683 (set-module-kind! custom-i 'interface)
1684 ;; XXX - should use a lazy binder so that changes to the
1685 ;; used module are picked up automatically.
1686 (for-each (lambda (bspec)
1687 (let* ((direct? (symbol? bspec))
1688 (orig (if direct? bspec (car bspec)))
1689 (seen (if direct? bspec (cdr bspec))))
1690 (module-add! custom-i (renamer seen)
1691 (or (module-local-variable public-i orig)
1692 (module-local-variable module orig)
1693 (error
1694 ;; fixme: format manually for now
1695 (simple-format
1696 #f "no binding `~A' in module ~A"
1697 orig name))))))
1698 selection)
1699 custom-i))))
1700
1701 (define (symbol-prefix-proc prefix)
1702 (lambda (symbol)
1703 (symbol-append prefix symbol)))
1704
1705 (define (process-define-module args)
1706 (let* ((module-id (car args))
1707 (module (resolve-module module-id #f))
1708 (kws (cdr args))
1709 (unrecognized (lambda (arg)
1710 (error "unrecognized define-module argument" arg))))
1711 (beautify-user-module! module)
1712 (let loop ((kws kws)
1713 (reversed-interfaces '())
1714 (exports '())
1715 (re-exports '()))
1716 (if (null? kws)
1717 (begin
1718 (for-each (lambda (interface)
1719 (module-use! module interface))
1720 (reverse reversed-interfaces))
1721 (module-export! module exports)
1722 (module-re-export! module re-exports))
1723 (case (car kws)
1724 ((#:use-module #:use-syntax)
1725 (or (pair? (cdr kws))
1726 (unrecognized kws))
1727 (let* ((interface-args (cadr kws))
1728 (interface (apply resolve-interface interface-args)))
1729 (and (eq? (car kws) #:use-syntax)
1730 (or (symbol? (caar interface-args))
1731 (error "invalid module name for use-syntax"
1732 (car interface-args)))
1733 (set-module-transformer!
1734 module
1735 (module-ref interface
1736 (car (last-pair (car interface-args)))
1737 #f)))
1738 (loop (cddr kws)
1739 (cons interface reversed-interfaces)
1740 exports
1741 re-exports)))
1742 ((#:autoload)
1743 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1744 (unrecognized kws))
1745 (loop (cdddr kws)
1746 (cons (make-autoload-interface module
1747 (cadr kws)
1748 (caddr kws))
1749 reversed-interfaces)
1750 exports
1751 re-exports))
1752 ((#:no-backtrace)
1753 (set-system-module! module #t)
1754 (loop (cdr kws) reversed-interfaces exports re-exports))
1755 ((#:pure)
1756 (purify-module! module)
1757 (loop (cdr kws) reversed-interfaces exports re-exports))
1758 ((#:export #:export-syntax)
1759 (or (pair? (cdr kws))
1760 (unrecognized kws))
1761 (loop (cddr kws)
1762 reversed-interfaces
1763 (append (cadr kws) exports)
1764 re-exports))
1765 ((#:re-export #:re-export-syntax)
1766 (or (pair? (cdr kws))
1767 (unrecognized kws))
1768 (loop (cddr kws)
1769 reversed-interfaces
1770 exports
1771 (append (cadr kws) re-exports)))
1772 (else
1773 (unrecognized kws)))))
1774 module))
1775
1776 ;;; {Autoload}
1777
1778 (define (make-autoload-interface module name bindings)
1779 (let ((b (lambda (a sym definep)
1780 (and (memq sym bindings)
1781 (let ((i (module-public-interface (resolve-module name))))
1782 (if (not i)
1783 (error "missing interface for module" name))
1784 ;; Replace autoload-interface with interface
1785 (set-car! (memq a (module-uses module)) i)
1786 (module-local-variable i sym))))))
1787 (module-constructor #() '() b #f #f name 'autoload
1788 '() (make-weak-value-hash-table 31) 0)))
1789
1790 ;;; {Compiled module}
1791
1792 (define load-compiled #f)
1793
1794 \f
1795 ;;; {Autoloading modules}
1796
1797 (define autoloads-in-progress '())
1798
1799 (define (try-module-autoload module-name)
1800 (let* ((reverse-name (reverse module-name))
1801 (name (symbol->string (car reverse-name)))
1802 (dir-hint-module-name (reverse (cdr reverse-name)))
1803 (dir-hint (apply string-append
1804 (map (lambda (elt)
1805 (string-append (symbol->string elt) "/"))
1806 dir-hint-module-name))))
1807 (resolve-module dir-hint-module-name #f)
1808 (and (not (autoload-done-or-in-progress? dir-hint name))
1809 (let ((didit #f))
1810 (define (load-file proc file)
1811 (save-module-excursion (lambda () (proc file)))
1812 (set! didit #t))
1813 (dynamic-wind
1814 (lambda () (autoload-in-progress! dir-hint name))
1815 (lambda ()
1816 (let ((file (in-vicinity dir-hint name)))
1817 (cond ((and load-compiled
1818 (%search-load-path (string-append file ".go")))
1819 => (lambda (full)
1820 (load-file load-compiled full)))
1821 ((%search-load-path file)
1822 => (lambda (full)
1823 (load-file primitive-load full))))))
1824 (lambda () (set-autoloaded! dir-hint name didit)))
1825 didit))))
1826
1827 \f
1828 ;;; Dynamic linking of modules
1829
1830 (define autoloads-done '((guile . guile)))
1831
1832 (define (autoload-done-or-in-progress? p m)
1833 (let ((n (cons p m)))
1834 (->bool (or (member n autoloads-done)
1835 (member n autoloads-in-progress)))))
1836
1837 (define (autoload-done! p m)
1838 (let ((n (cons p m)))
1839 (set! autoloads-in-progress
1840 (delete! n autoloads-in-progress))
1841 (or (member n autoloads-done)
1842 (set! autoloads-done (cons n autoloads-done)))))
1843
1844 (define (autoload-in-progress! p m)
1845 (let ((n (cons p m)))
1846 (set! autoloads-done
1847 (delete! n autoloads-done))
1848 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1849
1850 (define (set-autoloaded! p m done?)
1851 (if done?
1852 (autoload-done! p m)
1853 (let ((n (cons p m)))
1854 (set! autoloads-done (delete! n autoloads-done))
1855 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1856
1857
1858
1859 \f
1860 ;; {EVAL-CASE}
1861 ;;
1862 ;; (eval-case ((situation*) forms)* (else forms)?)
1863 ;;
1864 ;; Evaluate certain code based on the situation that eval-case is used
1865 ;; in. The only defined situation right now is `load-toplevel' which
1866 ;; triggers for code evaluated at the top-level, for example from the
1867 ;; REPL or when loading a file.
1868
1869 (define eval-case
1870 (procedure->memoizing-macro
1871 (lambda (exp env)
1872 (define (toplevel-env? env)
1873 (or (not (pair? env)) (not (pair? (car env)))))
1874 (define (syntax)
1875 (error "syntax error in eval-case"))
1876 (let loop ((clauses (cdr exp)))
1877 (cond
1878 ((null? clauses)
1879 #f)
1880 ((not (list? (car clauses)))
1881 (syntax))
1882 ((eq? 'else (caar clauses))
1883 (or (null? (cdr clauses))
1884 (syntax))
1885 (cons 'begin (cdar clauses)))
1886 ((not (list? (caar clauses)))
1887 (syntax))
1888 ((and (toplevel-env? env)
1889 (memq 'load-toplevel (caar clauses)))
1890 (cons 'begin (cdar clauses)))
1891 (else
1892 (loop (cdr clauses))))))))
1893
1894 \f
1895 ;;; {Macros}
1896 ;;;
1897
1898 (define (primitive-macro? m)
1899 (and (macro? m)
1900 (not (macro-transformer m))))
1901
1902 ;;; {Defmacros}
1903 ;;;
1904 (define macro-table (make-weak-key-hash-table 523))
1905 (define xformer-table (make-weak-key-hash-table 523))
1906
1907 (define (defmacro? m) (hashq-ref macro-table m))
1908 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1909 (define (defmacro-transformer m) (hashq-ref xformer-table m))
1910 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
1911
1912 (define defmacro:transformer
1913 (lambda (f)
1914 (let* ((xform (lambda (exp env)
1915 (copy-tree (apply f (cdr exp)))))
1916 (a (procedure->memoizing-macro xform)))
1917 (assert-defmacro?! a)
1918 (set-defmacro-transformer! a f)
1919 a)))
1920
1921
1922 (define defmacro
1923 (let ((defmacro-transformer
1924 (lambda (name parms . body)
1925 (let ((transformer `(lambda ,parms ,@body)))
1926 `(eval-case
1927 ((load-toplevel)
1928 (define ,name (defmacro:transformer ,transformer)))
1929 (else
1930 (error "defmacro can only be used at the top level")))))))
1931 (defmacro:transformer defmacro-transformer)))
1932
1933 (define defmacro:syntax-transformer
1934 (lambda (f)
1935 (procedure->syntax
1936 (lambda (exp env)
1937 (copy-tree (apply f (cdr exp)))))))
1938
1939
1940 ;; XXX - should the definition of the car really be looked up in the
1941 ;; current module?
1942
1943 (define (macroexpand-1 e)
1944 (cond
1945 ((pair? e) (let* ((a (car e))
1946 (val (and (symbol? a) (local-ref (list a)))))
1947 (if (defmacro? val)
1948 (apply (defmacro-transformer val) (cdr e))
1949 e)))
1950 (#t e)))
1951
1952 (define (macroexpand e)
1953 (cond
1954 ((pair? e) (let* ((a (car e))
1955 (val (and (symbol? a) (local-ref (list a)))))
1956 (if (defmacro? val)
1957 (macroexpand (apply (defmacro-transformer val) (cdr e)))
1958 e)))
1959 (#t e)))
1960
1961 (provide 'defmacro)
1962
1963 \f
1964
1965 ;;; {Run-time options}
1966
1967 (define define-option-interface
1968 (let* ((option-name car)
1969 (option-value cadr)
1970 (option-documentation caddr)
1971
1972 (print-option (lambda (option)
1973 (display (option-name option))
1974 (if (< (string-length
1975 (symbol->string (option-name option)))
1976 8)
1977 (display #\tab))
1978 (display #\tab)
1979 (display (option-value option))
1980 (display #\tab)
1981 (display (option-documentation option))
1982 (newline)))
1983
1984 ;; Below follow the macros defining the run-time option interfaces.
1985
1986 (make-options (lambda (interface)
1987 `(lambda args
1988 (cond ((null? args) (,interface))
1989 ((list? (car args))
1990 (,interface (car args)) (,interface))
1991 (else (for-each ,print-option
1992 (,interface #t)))))))
1993
1994 (make-enable (lambda (interface)
1995 `(lambda flags
1996 (,interface (append flags (,interface)))
1997 (,interface))))
1998
1999 (make-disable (lambda (interface)
2000 `(lambda flags
2001 (let ((options (,interface)))
2002 (for-each (lambda (flag)
2003 (set! options (delq! flag options)))
2004 flags)
2005 (,interface options)
2006 (,interface)))))
2007
2008 (make-set! (lambda (interface)
2009 `((name exp)
2010 (,'quasiquote
2011 (begin (,interface (append (,interface)
2012 (list '(,'unquote name)
2013 (,'unquote exp))))
2014 (,interface)))))))
2015 (procedure->macro
2016 (lambda (exp env)
2017 (cons 'begin
2018 (let* ((option-group (cadr exp))
2019 (interface (car option-group)))
2020 (append (map (lambda (name constructor)
2021 `(define ,name
2022 ,(constructor interface)))
2023 (cadr option-group)
2024 (list make-options
2025 make-enable
2026 make-disable))
2027 (map (lambda (name constructor)
2028 `(defmacro ,name
2029 ,@(constructor interface)))
2030 (caddr option-group)
2031 (list make-set!)))))))))
2032
2033 (define-option-interface
2034 (eval-options-interface
2035 (eval-options eval-enable eval-disable)
2036 (eval-set!)))
2037
2038 (define-option-interface
2039 (debug-options-interface
2040 (debug-options debug-enable debug-disable)
2041 (debug-set!)))
2042
2043 (define-option-interface
2044 (evaluator-traps-interface
2045 (traps trap-enable trap-disable)
2046 (trap-set!)))
2047
2048 (define-option-interface
2049 (read-options-interface
2050 (read-options read-enable read-disable)
2051 (read-set!)))
2052
2053 (define-option-interface
2054 (print-options-interface
2055 (print-options print-enable print-disable)
2056 (print-set!)))
2057
2058 \f
2059
2060 ;;; {Running Repls}
2061 ;;;
2062
2063 (define (repl read evaler print)
2064 (let loop ((source (read (current-input-port))))
2065 (print (evaler source))
2066 (loop (read (current-input-port)))))
2067
2068 ;; A provisional repl that acts like the SCM repl:
2069 ;;
2070 (define scm-repl-silent #f)
2071 (define (assert-repl-silence v) (set! scm-repl-silent v))
2072
2073 (define *unspecified* (if #f #f))
2074 (define (unspecified? v) (eq? v *unspecified*))
2075
2076 (define scm-repl-print-unspecified #f)
2077 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2078
2079 (define scm-repl-verbose #f)
2080 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2081
2082 (define scm-repl-prompt "guile> ")
2083
2084 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2085
2086 (define (default-lazy-handler key . args)
2087 (save-stack lazy-handler-dispatch)
2088 (apply throw key args))
2089
2090 (define (lazy-handler-dispatch key . args)
2091 (apply default-lazy-handler key args))
2092
2093 (define abort-hook (make-hook))
2094
2095 ;; these definitions are used if running a script.
2096 ;; otherwise redefined in error-catching-loop.
2097 (define (set-batch-mode?! arg) #t)
2098 (define (batch-mode?) #t)
2099
2100 (define (error-catching-loop thunk)
2101 (let ((status #f)
2102 (interactive #t))
2103 (define (loop first)
2104 (let ((next
2105 (catch #t
2106
2107 (lambda ()
2108 (lazy-catch #t
2109 (lambda ()
2110 (dynamic-wind
2111 (lambda () (unmask-signals))
2112 (lambda ()
2113 (with-traps
2114 (lambda ()
2115 (first)
2116
2117 ;; This line is needed because mark
2118 ;; doesn't do closures quite right.
2119 ;; Unreferenced locals should be
2120 ;; collected.
2121 ;;
2122 (set! first #f)
2123 (let loop ((v (thunk)))
2124 (loop (thunk)))
2125 #f)))
2126 (lambda () (mask-signals))))
2127
2128 lazy-handler-dispatch))
2129
2130 (lambda (key . args)
2131 (case key
2132 ((quit)
2133 (set! status args)
2134 #f)
2135
2136 ((switch-repl)
2137 (apply throw 'switch-repl args))
2138
2139 ((abort)
2140 ;; This is one of the closures that require
2141 ;; (set! first #f) above
2142 ;;
2143 (lambda ()
2144 (run-hook abort-hook)
2145 (force-output (current-output-port))
2146 (display "ABORT: " (current-error-port))
2147 (write args (current-error-port))
2148 (newline (current-error-port))
2149 (if interactive
2150 (begin
2151 (if (and
2152 (not has-shown-debugger-hint?)
2153 (not (memq 'backtrace
2154 (debug-options-interface)))
2155 (stack? (fluid-ref the-last-stack)))
2156 (begin
2157 (newline (current-error-port))
2158 (display
2159 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2160 (current-error-port))
2161 (set! has-shown-debugger-hint? #t)))
2162 (force-output (current-error-port)))
2163 (begin
2164 (primitive-exit 1)))
2165 (set! stack-saved? #f)))
2166
2167 (else
2168 ;; This is the other cons-leak closure...
2169 (lambda ()
2170 (cond ((= (length args) 4)
2171 (apply handle-system-error key args))
2172 (else
2173 (apply bad-throw key args))))))))))
2174 (if next (loop next) status)))
2175 (set! set-batch-mode?! (lambda (arg)
2176 (cond (arg
2177 (set! interactive #f)
2178 (restore-signals))
2179 (#t
2180 (error "sorry, not implemented")))))
2181 (set! batch-mode? (lambda () (not interactive)))
2182 (loop (lambda () #t))))
2183
2184 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2185 (define before-signal-stack (make-fluid))
2186 (define stack-saved? #f)
2187
2188 (define (save-stack . narrowing)
2189 (or stack-saved?
2190 (cond ((not (memq 'debug (debug-options-interface)))
2191 (fluid-set! the-last-stack #f)
2192 (set! stack-saved? #t))
2193 (else
2194 (fluid-set!
2195 the-last-stack
2196 (case (stack-id #t)
2197 ((repl-stack)
2198 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2199 ((load-stack)
2200 (apply make-stack #t save-stack 0 #t 0 narrowing))
2201 ((tk-stack)
2202 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2203 ((#t)
2204 (apply make-stack #t save-stack 0 1 narrowing))
2205 (else
2206 (let ((id (stack-id #t)))
2207 (and (procedure? id)
2208 (apply make-stack #t save-stack id #t 0 narrowing))))))
2209 (set! stack-saved? #t)))))
2210
2211 (define before-error-hook (make-hook))
2212 (define after-error-hook (make-hook))
2213 (define before-backtrace-hook (make-hook))
2214 (define after-backtrace-hook (make-hook))
2215
2216 (define has-shown-debugger-hint? #f)
2217
2218 (define (handle-system-error key . args)
2219 (let ((cep (current-error-port)))
2220 (cond ((not (stack? (fluid-ref the-last-stack))))
2221 ((memq 'backtrace (debug-options-interface))
2222 (run-hook before-backtrace-hook)
2223 (newline cep)
2224 (display "Backtrace:\n")
2225 (display-backtrace (fluid-ref the-last-stack) cep)
2226 (newline cep)
2227 (run-hook after-backtrace-hook)))
2228 (run-hook before-error-hook)
2229 (apply display-error (fluid-ref the-last-stack) cep args)
2230 (run-hook after-error-hook)
2231 (force-output cep)
2232 (throw 'abort key)))
2233
2234 (define (quit . args)
2235 (apply throw 'quit args))
2236
2237 (define exit quit)
2238
2239 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2240
2241 ;; Replaced by C code:
2242 ;;(define (backtrace)
2243 ;; (if (fluid-ref the-last-stack)
2244 ;; (begin
2245 ;; (newline)
2246 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2247 ;; (newline)
2248 ;; (if (and (not has-shown-backtrace-hint?)
2249 ;; (not (memq 'backtrace (debug-options-interface))))
2250 ;; (begin
2251 ;; (display
2252 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2253 ;;automatically if an error occurs in the future.\n")
2254 ;; (set! has-shown-backtrace-hint? #t))))
2255 ;; (display "No backtrace available.\n")))
2256
2257 (define (error-catching-repl r e p)
2258 (error-catching-loop
2259 (lambda ()
2260 (call-with-values (lambda () (e (r)))
2261 (lambda the-values (for-each p the-values))))))
2262
2263 (define (gc-run-time)
2264 (cdr (assq 'gc-time-taken (gc-stats))))
2265
2266 (define before-read-hook (make-hook))
2267 (define after-read-hook (make-hook))
2268 (define before-eval-hook (make-hook 1))
2269 (define after-eval-hook (make-hook 1))
2270 (define before-print-hook (make-hook 1))
2271 (define after-print-hook (make-hook 1))
2272
2273 ;;; The default repl-reader function. We may override this if we've
2274 ;;; the readline library.
2275 (define repl-reader
2276 (lambda (prompt)
2277 (display prompt)
2278 (force-output)
2279 (run-hook before-read-hook)
2280 (read (current-input-port))))
2281
2282 (define (scm-style-repl)
2283
2284 (letrec (
2285 (start-gc-rt #f)
2286 (start-rt #f)
2287 (repl-report-start-timing (lambda ()
2288 (set! start-gc-rt (gc-run-time))
2289 (set! start-rt (get-internal-run-time))))
2290 (repl-report (lambda ()
2291 (display ";;; ")
2292 (display (inexact->exact
2293 (* 1000 (/ (- (get-internal-run-time) start-rt)
2294 internal-time-units-per-second))))
2295 (display " msec (")
2296 (display (inexact->exact
2297 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2298 internal-time-units-per-second))))
2299 (display " msec in gc)\n")))
2300
2301 (consume-trailing-whitespace
2302 (lambda ()
2303 (let ((ch (peek-char)))
2304 (cond
2305 ((eof-object? ch))
2306 ((or (char=? ch #\space) (char=? ch #\tab))
2307 (read-char)
2308 (consume-trailing-whitespace))
2309 ((char=? ch #\newline)
2310 (read-char))))))
2311 (-read (lambda ()
2312 (let ((val
2313 (let ((prompt (cond ((string? scm-repl-prompt)
2314 scm-repl-prompt)
2315 ((thunk? scm-repl-prompt)
2316 (scm-repl-prompt))
2317 (scm-repl-prompt "> ")
2318 (else ""))))
2319 (repl-reader prompt))))
2320
2321 ;; As described in R4RS, the READ procedure updates the
2322 ;; port to point to the first character past the end of
2323 ;; the external representation of the object. This
2324 ;; means that it doesn't consume the newline typically
2325 ;; found after an expression. This means that, when
2326 ;; debugging Guile with GDB, GDB gets the newline, which
2327 ;; it often interprets as a "continue" command, making
2328 ;; breakpoints kind of useless. So, consume any
2329 ;; trailing newline here, as well as any whitespace
2330 ;; before it.
2331 ;; But not if EOF, for control-D.
2332 (if (not (eof-object? val))
2333 (consume-trailing-whitespace))
2334 (run-hook after-read-hook)
2335 (if (eof-object? val)
2336 (begin
2337 (repl-report-start-timing)
2338 (if scm-repl-verbose
2339 (begin
2340 (newline)
2341 (display ";;; EOF -- quitting")
2342 (newline)))
2343 (quit 0)))
2344 val)))
2345
2346 (-eval (lambda (sourc)
2347 (repl-report-start-timing)
2348 (run-hook before-eval-hook sourc)
2349 (let ((val (start-stack 'repl-stack
2350 ;; If you change this procedure
2351 ;; (primitive-eval), please also
2352 ;; modify the repl-stack case in
2353 ;; save-stack so that stack cutting
2354 ;; continues to work.
2355 (primitive-eval sourc))))
2356 (run-hook after-eval-hook sourc)
2357 val)))
2358
2359
2360 (-print (let ((maybe-print (lambda (result)
2361 (if (or scm-repl-print-unspecified
2362 (not (unspecified? result)))
2363 (begin
2364 (write result)
2365 (newline))))))
2366 (lambda (result)
2367 (if (not scm-repl-silent)
2368 (begin
2369 (run-hook before-print-hook result)
2370 (maybe-print result)
2371 (run-hook after-print-hook result)
2372 (if scm-repl-verbose
2373 (repl-report))
2374 (force-output))))))
2375
2376 (-quit (lambda (args)
2377 (if scm-repl-verbose
2378 (begin
2379 (display ";;; QUIT executed, repl exitting")
2380 (newline)
2381 (repl-report)))
2382 args))
2383
2384 (-abort (lambda ()
2385 (if scm-repl-verbose
2386 (begin
2387 (display ";;; ABORT executed.")
2388 (newline)
2389 (repl-report)))
2390 (repl -read -eval -print))))
2391
2392 (let ((status (error-catching-repl -read
2393 -eval
2394 -print)))
2395 (-quit status))))
2396
2397
2398 \f
2399 ;;; {IOTA functions: generating lists of numbers}
2400
2401 (define (iota n)
2402 (let loop ((count (1- n)) (result '()))
2403 (if (< count 0) result
2404 (loop (1- count) (cons count result)))))
2405
2406 \f
2407 ;;; {While}
2408 ;;;
2409 ;;; with `continue' and `break'.
2410 ;;;
2411
2412 (defmacro while (cond . body)
2413 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2414 (break (lambda val (apply throw 'break val))))
2415 (catch 'break
2416 (lambda () (continue))
2417 (lambda v (cadr v)))))
2418
2419 ;;; {collect}
2420 ;;;
2421 ;;; Similar to `begin' but returns a list of the results of all constituent
2422 ;;; forms instead of the result of the last form.
2423 ;;; (The definition relies on the current left-to-right
2424 ;;; order of evaluation of operands in applications.)
2425
2426 (defmacro collect forms
2427 (cons 'list forms))
2428
2429 ;;; {with-fluids}
2430
2431 ;; with-fluids is a convenience wrapper for the builtin procedure
2432 ;; `with-fluids*'. The syntax is just like `let':
2433 ;;
2434 ;; (with-fluids ((fluid val)
2435 ;; ...)
2436 ;; body)
2437
2438 (defmacro with-fluids (bindings . body)
2439 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2440 (lambda () ,@body)))
2441
2442 \f
2443
2444 ;;; {Macros}
2445 ;;;
2446
2447 ;; actually....hobbit might be able to hack these with a little
2448 ;; coaxing
2449 ;;
2450
2451 (defmacro define-macro (first . rest)
2452 (let ((name (if (symbol? first) first (car first)))
2453 (transformer
2454 (if (symbol? first)
2455 (car rest)
2456 `(lambda ,(cdr first) ,@rest))))
2457 `(eval-case
2458 ((load-toplevel)
2459 (define ,name (defmacro:transformer ,transformer)))
2460 (else
2461 (error "define-macro can only be used at the top level")))))
2462
2463
2464 (defmacro define-syntax-macro (first . rest)
2465 (let ((name (if (symbol? first) first (car first)))
2466 (transformer
2467 (if (symbol? first)
2468 (car rest)
2469 `(lambda ,(cdr first) ,@rest))))
2470 `(eval-case
2471 ((load-toplevel)
2472 (define ,name (defmacro:syntax-transformer ,transformer)))
2473 (else
2474 (error "define-syntax-macro can only be used at the top level")))))
2475
2476 \f
2477 ;;; {Module System Macros}
2478 ;;;
2479
2480 ;; Return a list of expressions that evaluate to the appropriate
2481 ;; arguments for resolve-interface according to SPEC.
2482
2483 (define (compile-interface-spec spec)
2484 (define (make-keyarg sym key quote?)
2485 (cond ((or (memq sym spec)
2486 (memq key spec))
2487 => (lambda (rest)
2488 (if quote?
2489 (list key (list 'quote (cadr rest)))
2490 (list key (cadr rest)))))
2491 (else
2492 '())))
2493 (define (map-apply func list)
2494 (map (lambda (args) (apply func args)) list))
2495 (define keys
2496 ;; sym key quote?
2497 '((:select #:select #t)
2498 (:renamer #:renamer #f)))
2499 (if (not (pair? (car spec)))
2500 `(',spec)
2501 `(',(car spec)
2502 ,@(apply append (map-apply make-keyarg keys)))))
2503
2504 (define (keyword-like-symbol->keyword sym)
2505 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2506
2507 (define (compile-define-module-args args)
2508 ;; Just quote everything except #:use-module and #:use-syntax. We
2509 ;; need to know about all arguments regardless since we want to turn
2510 ;; symbols that look like keywords into real keywords, and the
2511 ;; keyword args in a define-module form are not regular
2512 ;; (i.e. no-backtrace doesn't take a value).
2513 (let loop ((compiled-args `((quote ,(car args))))
2514 (args (cdr args)))
2515 (cond ((null? args)
2516 (reverse! compiled-args))
2517 ;; symbol in keyword position
2518 ((symbol? (car args))
2519 (loop compiled-args
2520 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2521 ((memq (car args) '(#:no-backtrace #:pure))
2522 (loop (cons (car args) compiled-args)
2523 (cdr args)))
2524 ((null? (cdr args))
2525 (error "keyword without value:" (car args)))
2526 ((memq (car args) '(#:use-module #:use-syntax))
2527 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2528 (car args)
2529 compiled-args)
2530 (cddr args)))
2531 ((eq? (car args) #:autoload)
2532 (loop (cons* `(quote ,(caddr args))
2533 `(quote ,(cadr args))
2534 (car args)
2535 compiled-args)
2536 (cdddr args)))
2537 (else
2538 (loop (cons* `(quote ,(cadr args))
2539 (car args)
2540 compiled-args)
2541 (cddr args))))))
2542
2543 (defmacro define-module args
2544 `(eval-case
2545 ((load-toplevel)
2546 (let ((m (process-define-module
2547 (list ,@(compile-define-module-args args)))))
2548 (set-current-module m)
2549 m))
2550 (else
2551 (error "define-module can only be used at the top level"))))
2552
2553 ;; The guts of the use-modules macro. Add the interfaces of the named
2554 ;; modules to the use-list of the current module, in order.
2555
2556 (define (process-use-modules module-interface-args)
2557 (for-each (lambda (mif-args)
2558 (let ((mod-iface (apply resolve-interface mif-args)))
2559 (or mod-iface
2560 (error "no such module" mif-args))
2561 (module-use! (current-module) mod-iface)))
2562 module-interface-args))
2563
2564 (defmacro use-modules modules
2565 `(eval-case
2566 ((load-toplevel)
2567 (process-use-modules
2568 (list ,@(map (lambda (m)
2569 `(list ,@(compile-interface-spec m)))
2570 modules))))
2571 (else
2572 (error "use-modules can only be used at the top level"))))
2573
2574 (defmacro use-syntax (spec)
2575 `(eval-case
2576 ((load-toplevel)
2577 ,@(if (pair? spec)
2578 `((process-use-modules (list
2579 (list ,@(compile-interface-spec spec))))
2580 (set-module-transformer! (current-module)
2581 ,(car (last-pair spec))))
2582 `((set-module-transformer! (current-module) ,spec))))
2583 (else
2584 (error "use-syntax can only be used at the top level"))))
2585
2586 (define define-private define)
2587
2588 (defmacro define-public args
2589 (define (syntax)
2590 (error "bad syntax" (list 'define-public args)))
2591 (define (defined-name n)
2592 (cond
2593 ((symbol? n) n)
2594 ((pair? n) (defined-name (car n)))
2595 (else (syntax))))
2596 (cond
2597 ((null? args)
2598 (syntax))
2599 (#t
2600 (let ((name (defined-name (car args))))
2601 `(begin
2602 (define-private ,@args)
2603 (eval-case ((load-toplevel) (export ,name))))))))
2604
2605 (defmacro defmacro-public args
2606 (define (syntax)
2607 (error "bad syntax" (list 'defmacro-public args)))
2608 (define (defined-name n)
2609 (cond
2610 ((symbol? n) n)
2611 (else (syntax))))
2612 (cond
2613 ((null? args)
2614 (syntax))
2615 (#t
2616 (let ((name (defined-name (car args))))
2617 `(begin
2618 (eval-case ((load-toplevel) (export ,name)))
2619 (defmacro ,@args))))))
2620
2621 ;; Export a local variable
2622 ;;
2623 (define (module-export! m names)
2624 (let ((public-i (module-public-interface m)))
2625 (for-each (lambda (name)
2626 (let ((var (module-ensure-local-variable! m name)))
2627 (module-add! public-i name var)))
2628 names)))
2629
2630 ;; Re-export a imported variable
2631 ;;
2632 (define (module-re-export! m names)
2633 (let ((public-i (module-public-interface m)))
2634 (for-each (lambda (name)
2635 (let ((var (module-variable m name)))
2636 (cond ((not var)
2637 (error "Undefined variable:" name))
2638 ((eq? var (module-local-variable m name))
2639 (error "re-exporting local variable:" name))
2640 (else
2641 (module-add! public-i name var)))))
2642 names)))
2643
2644 (defmacro export names
2645 `(eval-case
2646 ((load-toplevel)
2647 (module-export! (current-module) ',names))
2648 (else
2649 (error "export can only be used at the top level"))))
2650
2651 (defmacro re-export names
2652 `(eval-case
2653 ((load-toplevel)
2654 (module-re-export! (current-module) ',names))
2655 (else
2656 (error "re-export can only be used at the top level"))))
2657
2658 (define export-syntax export)
2659 (define re-export-syntax re-export)
2660
2661
2662 (define load load-module)
2663
2664 \f
2665
2666 ;;; {`cond-expand' for SRFI-0 support.}
2667 ;;;
2668 ;;; This syntactic form expands into different commands or
2669 ;;; definitions, depending on the features provided by the Scheme
2670 ;;; implementation.
2671 ;;;
2672 ;;; Syntax:
2673 ;;;
2674 ;;; <cond-expand>
2675 ;;; --> (cond-expand <cond-expand-clause>+)
2676 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2677 ;;; <cond-expand-clause>
2678 ;;; --> (<feature-requirement> <command-or-definition>*)
2679 ;;; <feature-requirement>
2680 ;;; --> <feature-identifier>
2681 ;;; | (and <feature-requirement>*)
2682 ;;; | (or <feature-requirement>*)
2683 ;;; | (not <feature-requirement>)
2684 ;;; <feature-identifier>
2685 ;;; --> <a symbol which is the name or alias of a SRFI>
2686 ;;;
2687 ;;; Additionally, this implementation provides the
2688 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2689 ;;; determine the implementation type and the supported standard.
2690 ;;;
2691 ;;; Currently, the following feature identifiers are supported:
2692 ;;;
2693 ;;; guile r5rs srfi-0
2694 ;;;
2695 ;;; Remember to update the features list when adding more SRFIs.
2696
2697 (define %cond-expand-features
2698 ;; Adjust the above comment when changing this.
2699 '(guile r5rs srfi-0))
2700
2701 ;; This table maps module public interfaces to the list of features.
2702 ;;
2703 (define %cond-expand-table (make-hash-table 31))
2704
2705 ;; Add one or more features to the `cond-expand' feature list of the
2706 ;; module `module'.
2707 ;;
2708 (define (cond-expand-provide module features)
2709 (let ((mod (module-public-interface module)))
2710 (and mod
2711 (hashq-set! %cond-expand-table mod
2712 (append (hashq-ref %cond-expand-table mod '())
2713 features)))))
2714
2715 (define cond-expand
2716 (procedure->memoizing-macro
2717 (lambda (exp env)
2718 (let ((clauses (cdr exp))
2719 (syntax-error (lambda (cl)
2720 (error "invalid clause in `cond-expand'" cl))))
2721 (letrec
2722 ((test-clause
2723 (lambda (clause)
2724 (cond
2725 ((symbol? clause)
2726 (or (memq clause %cond-expand-features)
2727 (let lp ((uses (module-uses (env-module env))))
2728 (if (pair? uses)
2729 (or (memq clause
2730 (hashq-ref %cond-expand-table
2731 (car uses) '()))
2732 (lp (cdr uses)))
2733 #f))))
2734 ((pair? clause)
2735 (cond
2736 ((eq? 'and (car clause))
2737 (let lp ((l (cdr clause)))
2738 (cond ((null? l)
2739 #t)
2740 ((pair? l)
2741 (and (test-clause (car l)) (lp (cdr l))))
2742 (else
2743 (syntax-error clause)))))
2744 ((eq? 'or (car clause))
2745 (let lp ((l (cdr clause)))
2746 (cond ((null? l)
2747 #f)
2748 ((pair? l)
2749 (or (test-clause (car l)) (lp (cdr l))))
2750 (else
2751 (syntax-error clause)))))
2752 ((eq? 'not (car clause))
2753 (cond ((not (pair? (cdr clause)))
2754 (syntax-error clause))
2755 ((pair? (cddr clause))
2756 ((syntax-error clause))))
2757 (not (test-clause (cadr clause))))
2758 (else
2759 (syntax-error clause))))
2760 (else
2761 (syntax-error clause))))))
2762 (let lp ((c clauses))
2763 (cond
2764 ((null? c)
2765 (error "Unfulfilled `cond-expand'"))
2766 ((not (pair? c))
2767 (syntax-error c))
2768 ((not (pair? (car c)))
2769 (syntax-error (car c)))
2770 ((test-clause (caar c))
2771 `(begin ,@(cdar c)))
2772 ((eq? (caar c) 'else)
2773 (if (pair? (cdr c))
2774 (syntax-error c))
2775 `(begin ,@(cdar c)))
2776 (else
2777 (lp (cdr c))))))))))
2778
2779 ;; This procedure gets called from the startup code with a list of
2780 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
2781 ;;
2782 (define (use-srfis srfis)
2783 (let lp ((s srfis))
2784 (if (pair? s)
2785 (let* ((srfi (string->symbol
2786 (string-append "srfi-" (number->string (car s)))))
2787 (mod-i (resolve-interface (list 'srfi srfi))))
2788 (module-use! (current-module) mod-i)
2789 (lp (cdr s))))))
2790
2791 \f
2792
2793 ;;; {Load emacs interface support if emacs option is given.}
2794
2795 (define (named-module-use! user usee)
2796 (module-use! (resolve-module user) (resolve-interface usee)))
2797
2798 (define (load-emacs-interface)
2799 (and (provided? 'debug-extensions)
2800 (debug-enable 'backtrace))
2801 (named-module-use! '(guile-user) '(ice-9 emacs)))
2802
2803 \f
2804
2805 (define using-readline?
2806 (let ((using-readline? (make-fluid)))
2807 (make-procedure-with-setter
2808 (lambda () (fluid-ref using-readline?))
2809 (lambda (v) (fluid-set! using-readline? v)))))
2810
2811 (define (top-repl)
2812 (let ((guile-user-module (resolve-module '(guile-user))))
2813
2814 ;; Load emacs interface support if emacs option is given.
2815 (if (and (module-defined? the-root-module 'use-emacs-interface)
2816 (module-ref the-root-module 'use-emacs-interface))
2817 (load-emacs-interface))
2818
2819 ;; Use some convenient modules (in reverse order)
2820
2821 (if (provided? 'regex)
2822 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
2823 (if (provided? 'threads)
2824 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
2825 ;; load debugger on demand
2826 (module-use! guile-user-module
2827 (make-autoload-interface guile-user-module
2828 '(ice-9 debugger) '(debug)))
2829 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
2830 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
2831 ;; so that builtin bindings will be checked first
2832 (module-use! guile-user-module (resolve-interface '(guile)))
2833
2834 (set-current-module guile-user-module)
2835
2836 (let ((old-handlers #f)
2837 (signals (if (provided? 'posix)
2838 `((,SIGINT . "User interrupt")
2839 (,SIGFPE . "Arithmetic error")
2840 (,SIGBUS . "Bad memory access (bus error)")
2841 (,SIGSEGV
2842 . "Bad memory access (Segmentation violation)"))
2843 '())))
2844
2845 (dynamic-wind
2846
2847 ;; call at entry
2848 (lambda ()
2849 (let ((make-handler (lambda (msg)
2850 (lambda (sig)
2851 ;; Make a backup copy of the stack
2852 (fluid-set! before-signal-stack
2853 (fluid-ref the-last-stack))
2854 (save-stack %deliver-signals)
2855 (scm-error 'signal
2856 #f
2857 msg
2858 #f
2859 (list sig))))))
2860 (set! old-handlers
2861 (map (lambda (sig-msg)
2862 (sigaction (car sig-msg)
2863 (make-handler (cdr sig-msg))))
2864 signals))))
2865
2866 ;; the protected thunk.
2867 (lambda ()
2868 (let ((status (scm-style-repl)))
2869 (run-hook exit-hook)
2870 status))
2871
2872 ;; call at exit.
2873 (lambda ()
2874 (map (lambda (sig-msg old-handler)
2875 (if (not (car old-handler))
2876 ;; restore original C handler.
2877 (sigaction (car sig-msg) #f)
2878 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2879 (sigaction (car sig-msg)
2880 (car old-handler)
2881 (cdr old-handler))))
2882 signals old-handlers))))))
2883
2884 (defmacro false-if-exception (expr)
2885 `(catch #t (lambda () ,expr)
2886 (lambda args #f)))
2887
2888 ;;; This hook is run at the very end of an interactive session.
2889 ;;;
2890 (define exit-hook (make-hook))
2891
2892 \f
2893 (append! %load-path (list "."))
2894
2895 ;; Place the user in the guile-user module.
2896 ;;
2897
2898 (define-module (guile-user))
2899
2900 ;;; boot-9.scm ends here