More distinguished handling of real and complex values.
[bpt/guile.git] / libguile / random.c
1 /* Copyright (C) 1999, 2000 Free Software Foundation, Inc.
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2, or (at your option)
5 * any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this software; see the file COPYING. If not, write to
14 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
15 * Boston, MA 02111-1307 USA
16 *
17 * As a special exception, the Free Software Foundation gives permission
18 * for additional uses of the text contained in its release of GUILE.
19 *
20 * The exception is that, if you link the GUILE library with other files
21 * to produce an executable, this does not by itself cause the
22 * resulting executable to be covered by the GNU General Public License.
23 * Your use of that executable is in no way restricted on account of
24 * linking the GUILE library code into it.
25 *
26 * This exception does not however invalidate any other reasons why
27 * the executable file might be covered by the GNU General Public License.
28 *
29 * This exception applies only to the code released by the
30 * Free Software Foundation under the name GUILE. If you copy
31 * code from other Free Software Foundation releases into a copy of
32 * GUILE, as the General Public License permits, the exception does
33 * not apply to the code that you add in this way. To avoid misleading
34 * anyone as to the status of such modified files, you must delete
35 * this exception notice from them.
36 *
37 * If you write modifications of your own for GUILE, it is your choice
38 * whether to permit this exception to apply to your modifications.
39 * If you do not wish that, delete this exception notice. */
40
41 /* Software engineering face-lift by Greg J. Badros, 11-Dec-1999,
42 gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */
43
44
45 /* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
46
47 #include "libguile/_scm.h"
48
49 #include <stdio.h>
50 #include <math.h>
51 #include "libguile/smob.h"
52 #include "libguile/numbers.h"
53 #include "libguile/feature.h"
54 #include "libguile/strings.h"
55 #include "libguile/vectors.h"
56
57 #include "libguile/validate.h"
58 #include "libguile/random.h"
59
60 \f
61 /*
62 * A plugin interface for RNGs
63 *
64 * Using this interface, it is possible for the application to tell
65 * libguile to use a different RNG. This is desirable if it is
66 * necessary to use the same RNG everywhere in the application in
67 * order to prevent interference, if the application uses RNG
68 * hardware, or if the application has special demands on the RNG.
69 *
70 * Look in random.h and how the default generator is "plugged in" in
71 * scm_init_random().
72 */
73
74 scm_rng scm_the_rng;
75
76 \f
77 /*
78 * The prepackaged RNG
79 *
80 * This is the MWC (Multiply With Carry) random number generator
81 * described by George Marsaglia at the Department of Statistics and
82 * Supercomputer Computations Research Institute, The Florida State
83 * University (http://stat.fsu.edu/~geo).
84 *
85 * It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
86 * passes all tests in the DIEHARD test suite
87 * (http://stat.fsu.edu/~geo/diehard.html)
88 */
89
90 #define A 2131995753UL
91
92 #if SIZEOF_LONG > 4
93 #if SIZEOF_INT > 4
94 #define LONG32 unsigned short
95 #else
96 #define LONG32 unsigned int
97 #endif
98 #define LONG64 unsigned long
99 #else
100 #define LONG32 unsigned long
101 #define LONG64 unsigned long long
102 #endif
103
104 #if SIZEOF_LONG > 4 || defined (HAVE_LONG_LONGS)
105
106 unsigned long
107 scm_i_uniform32 (scm_i_rstate *state)
108 {
109 LONG64 x = (LONG64) A * state->w + state->c;
110 LONG32 w = x & 0xffffffffUL;
111 state->w = w;
112 state->c = x >> 32L;
113 return w;
114 }
115
116 #else
117
118 /* ww This is a portable version of the same RNG without 64 bit
119 * * aa arithmetic.
120 * ----
121 * xx It is only intended to provide identical behaviour on
122 * xx platforms without 8 byte longs or long longs until
123 * xx someone has implemented the routine in assembler code.
124 * xxcc
125 * ----
126 * ccww
127 */
128
129 #define L(x) ((x) & 0xffff)
130 #define H(x) ((x) >> 16)
131
132 unsigned long
133 scm_i_uniform32 (scm_i_rstate *state)
134 {
135 LONG32 x1 = L (A) * L (state->w);
136 LONG32 x2 = L (A) * H (state->w);
137 LONG32 x3 = H (A) * L (state->w);
138 LONG32 w = L (x1) + L (state->c);
139 LONG32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w);
140 LONG32 x4 = H (A) * H (state->w);
141 state->w = w = (L (m) << 16) + L (w);
142 state->c = H (x2) + H (x3) + x4 + H (m);
143 return w;
144 }
145
146 #endif
147
148 void
149 scm_i_init_rstate (scm_i_rstate *state, char *seed, int n)
150 {
151 LONG32 w = 0L;
152 LONG32 c = 0L;
153 int i, m;
154 for (i = 0; i < n; ++i)
155 {
156 m = i % 8;
157 if (m < 4)
158 w += seed[i] << (8 * m);
159 else
160 c += seed[i] << (8 * (m - 4));
161 }
162 if ((w == 0 && c == 0) || (w == 0xffffffffUL && c == A - 1))
163 ++c;
164 state->w = w;
165 state->c = c;
166 }
167
168 scm_i_rstate *
169 scm_i_copy_rstate (scm_i_rstate *state)
170 {
171 scm_rstate *new_state = malloc (scm_the_rng.rstate_size);
172 if (new_state == 0)
173 scm_wta (SCM_MAKINUM (scm_the_rng.rstate_size),
174 (char *) SCM_NALLOC, "rstate");
175 return memcpy (new_state, state, scm_the_rng.rstate_size);
176 }
177
178 \f
179 /*
180 * Random number library functions
181 */
182
183 scm_rstate *
184 scm_c_make_rstate (char *seed, int n)
185 {
186 scm_rstate *state = malloc (scm_the_rng.rstate_size);
187 if (state == 0)
188 scm_wta (SCM_MAKINUM (scm_the_rng.rstate_size),
189 (char *) SCM_NALLOC,
190 "rstate");
191 state->reserved0 = 0;
192 scm_the_rng.init_rstate (state, seed, n);
193 return state;
194 }
195
196 scm_rstate *
197 scm_c_default_rstate ()
198 {
199 SCM state = SCM_CDR (scm_var_random_state);
200 SCM_ASSERT (SCM_RSTATEP (state),
201 state, "*random-state* contains bogus random state", 0);
202 return SCM_RSTATE (state);
203 }
204
205 inline double
206 scm_c_uniform01 (scm_rstate *state)
207 {
208 double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
209 return ((x + (double) scm_the_rng.random_bits (state))
210 / (double) 0xffffffffUL);
211 }
212
213 double
214 scm_c_normal01 (scm_rstate *state)
215 {
216 if (state->reserved0)
217 {
218 state->reserved0 = 0;
219 return state->reserved1;
220 }
221 else
222 {
223 double r, a, n;
224
225 r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
226 a = 2.0 * M_PI * scm_c_uniform01 (state);
227
228 n = r * sin (a);
229 state->reserved1 = r * cos (a);
230 state->reserved0 = 1;
231
232 return n;
233 }
234 }
235
236 double
237 scm_c_exp1 (scm_rstate *state)
238 {
239 return - log (scm_c_uniform01 (state));
240 }
241
242 unsigned char scm_masktab[256];
243
244 unsigned long
245 scm_c_random (scm_rstate *state, unsigned long m)
246 {
247 unsigned int r, mask;
248 mask = (m < 0x100
249 ? scm_masktab[m]
250 : (m < 0x10000
251 ? scm_masktab[m >> 8] << 8 | 0xff
252 : (m < 0x1000000
253 ? scm_masktab[m >> 16] << 16 | 0xffff
254 : scm_masktab[m >> 24] << 24 | 0xffffff)));
255 while ((r = scm_the_rng.random_bits (state) & mask) >= m);
256 return r;
257 }
258
259 SCM
260 scm_c_random_bignum (scm_rstate *state, SCM m)
261 {
262 SCM b;
263 int i, nd;
264 LONG32 *bits, mask, w;
265 nd = SCM_NUMDIGS (m);
266 /* calculate mask for most significant digit */
267 #if SIZEOF_INT == 4
268 /* 16 bit digits */
269 if (nd & 1)
270 {
271 /* fix most significant 16 bits */
272 unsigned short s = SCM_BDIGITS (m)[nd - 1];
273 mask = s < 0x100 ? scm_masktab[s] : scm_masktab[s >> 8] << 8 | 0xff;
274 }
275 else
276 #endif
277 {
278 /* fix most significant 32 bits */
279 #if SIZEOF_INT == 4
280 w = SCM_BDIGITS (m)[nd - 1] << 16 | SCM_BDIGITS (m)[nd - 2];
281 #else
282 w = SCM_BDIGITS (m)[nd - 1];
283 #endif
284 mask = (w < 0x10000
285 ? (w < 0x100
286 ? scm_masktab[w]
287 : scm_masktab[w >> 8] << 8 | 0xff)
288 : (w < 0x1000000
289 ? scm_masktab[w >> 16] << 16 | 0xffff
290 : scm_masktab[w >> 24] << 24 | 0xffffff));
291 }
292 b = scm_mkbig (nd, 0);
293 bits = (LONG32 *) SCM_BDIGITS (b);
294 do
295 {
296 i = nd;
297 /* treat most significant digit specially */
298 #if SIZEOF_INT == 4
299 /* 16 bit digits */
300 if (i & 1)
301 {
302 ((SCM_BIGDIG*) bits)[i - 1] = scm_the_rng.random_bits (state) & mask;
303 i /= 2;
304 }
305 else
306 #endif
307 {
308 /* fix most significant 32 bits */
309 #if SIZEOF_INT == 4
310 w = scm_the_rng.random_bits (state) & mask;
311 ((SCM_BIGDIG*) bits)[i - 2] = w & 0xffff;
312 ((SCM_BIGDIG*) bits)[i - 1] = w >> 16;
313 i = i / 2 - 1;
314 #else
315 i /= 2;
316 bits[--i] = scm_the_rng.random_bits (state) & mask;
317 #endif
318 }
319 /* now fill up the rest of the bignum */
320 while (i)
321 bits[--i] = scm_the_rng.random_bits (state);
322 b = scm_normbig (b);
323 if (SCM_INUMP (b))
324 return b;
325 } while (scm_bigcomp (b, m) <= 0);
326 return b;
327 }
328
329 /*
330 * Scheme level representation of random states.
331 */
332
333 long scm_tc16_rstate;
334
335 static SCM
336 make_rstate (scm_rstate *state)
337 {
338 SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
339 }
340
341 static scm_sizet
342 free_rstate (SCM rstate)
343 {
344 free (SCM_RSTATE (rstate));
345 return scm_the_rng.rstate_size;
346 }
347
348 /*
349 * Scheme level interface.
350 */
351
352 SCM_GLOBAL_VCELL_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_makfrom0str ("URL:http://stat.fsu.edu/~geo/diehard.html")));
353
354 SCM_DEFINE (scm_random, "random", 1, 1, 0,
355 (SCM n, SCM state),
356 "Return a number in [0,N).\n"
357 "\n"
358 "Accepts a positive integer or real n and returns a \n"
359 "number of the same type between zero (inclusive) and \n"
360 "N (exclusive). The values returned have a uniform \n"
361 "distribution.\n"
362 "\n"
363 "The optional argument STATE must be of the type produced by\n"
364 "`seed->random-state'. It defaults to the value of the variable\n"
365 "*random-state*. This object is used to maintain the state of\n"
366 "the pseudo-random-number generator and is altered as a side\n"
367 "effect of the random operation.\n"
368 "")
369 #define FUNC_NAME s_scm_random
370 {
371 if (SCM_UNBNDP (state))
372 state = SCM_CDR (scm_var_random_state);
373 SCM_VALIDATE_RSTATE (2,state);
374 if (SCM_INUMP (n))
375 {
376 unsigned long m = SCM_INUM (n);
377 SCM_ASSERT_RANGE (1,n,m > 0);
378 return SCM_MAKINUM (scm_c_random (SCM_RSTATE (state), m));
379 }
380 SCM_VALIDATE_NIM (1,n);
381 if (SCM_REALP (n))
382 return scm_make_real (SCM_REAL_VALUE (n)
383 * scm_c_uniform01 (SCM_RSTATE (state)));
384 SCM_VALIDATE_SMOB (1, n, big);
385 return scm_c_random_bignum (SCM_RSTATE (state), n);
386 }
387 #undef FUNC_NAME
388
389 SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
390 (SCM state),
391 "Return a copy of the random state STATE.")
392 #define FUNC_NAME s_scm_copy_random_state
393 {
394 if (SCM_UNBNDP (state))
395 state = SCM_CDR (scm_var_random_state);
396 SCM_VALIDATE_RSTATE (1,state);
397 return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
398 }
399 #undef FUNC_NAME
400
401 SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
402 (SCM seed),
403 "Return a new random state using SEED.")
404 #define FUNC_NAME s_scm_seed_to_random_state
405 {
406 if (SCM_NUMBERP (seed))
407 seed = scm_number_to_string (seed, SCM_UNDEFINED);
408 SCM_VALIDATE_STRING (1,seed);
409 return make_rstate (scm_c_make_rstate (SCM_ROCHARS (seed),
410 SCM_LENGTH (seed)));
411 }
412 #undef FUNC_NAME
413
414 SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
415 (SCM state),
416 "Returns a uniformly distributed inexact real random number in [0,1).")
417 #define FUNC_NAME s_scm_random_uniform
418 {
419 if (SCM_UNBNDP (state))
420 state = SCM_CDR (scm_var_random_state);
421 SCM_VALIDATE_RSTATE (1,state);
422 return scm_make_real (scm_c_uniform01 (SCM_RSTATE (state)));
423 }
424 #undef FUNC_NAME
425
426 SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
427 (SCM state),
428 "Returns an inexact real in a normal distribution.\n"
429 "The distribution used has mean 0 and standard deviation 1.\n"
430 "For a normal distribution with mean m and standard deviation\n"
431 "d use @code{(+ m (* d (random:normal)))}.\n"
432 "")
433 #define FUNC_NAME s_scm_random_normal
434 {
435 if (SCM_UNBNDP (state))
436 state = SCM_CDR (scm_var_random_state);
437 SCM_VALIDATE_RSTATE (1,state);
438 return scm_make_real (scm_c_normal01 (SCM_RSTATE (state)));
439 }
440 #undef FUNC_NAME
441
442 #ifdef HAVE_ARRAYS
443
444 static void
445 vector_scale (SCM v, double c)
446 {
447 int n = SCM_LENGTH (v);
448 if (SCM_VECTORP (v))
449 while (--n >= 0)
450 SCM_REAL_VALUE (SCM_VELTS (v)[n]) *= c;
451 else
452 while (--n >= 0)
453 ((double *) SCM_VELTS (v))[n] *= c;
454 }
455
456 static double
457 vector_sum_squares (SCM v)
458 {
459 double x, sum = 0.0;
460 int n = SCM_LENGTH (v);
461 if (SCM_VECTORP (v))
462 while (--n >= 0)
463 {
464 x = SCM_REAL_VALUE (SCM_VELTS (v)[n]);
465 sum += x * x;
466 }
467 else
468 while (--n >= 0)
469 {
470 x = ((double *) SCM_VELTS (v))[n];
471 sum += x * x;
472 }
473 return sum;
474 }
475
476 /* For the uniform distribution on the solid sphere, note that in
477 * this distribution the length r of the vector has cumulative
478 * distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
479 * generated as r=u^(1/n).
480 */
481 SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
482 (SCM v, SCM state),
483 "Fills vect with inexact real random numbers\n"
484 "the sum of whose squares is less than 1.0.\n"
485 "Thinking of vect as coordinates in space of \n"
486 "dimension n = (vector-length vect), the coordinates \n"
487 "are uniformly distributed within the unit n-shere.\n"
488 "The sum of the squares of the numbers is returned.\n"
489 "")
490 #define FUNC_NAME s_scm_random_solid_sphere_x
491 {
492 SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v);
493 if (SCM_UNBNDP (state))
494 state = SCM_CDR (scm_var_random_state);
495 SCM_VALIDATE_RSTATE (2,state);
496 scm_random_normal_vector_x (v, state);
497 vector_scale (v,
498 pow (scm_c_uniform01 (SCM_RSTATE (state)),
499 1.0 / SCM_LENGTH (v))
500 / sqrt (vector_sum_squares (v)));
501 return SCM_UNSPECIFIED;
502 }
503 #undef FUNC_NAME
504
505 SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
506 (SCM v, SCM state),
507 "Fills vect with inexact real random numbers\n"
508 "the sum of whose squares is equal to 1.0.\n"
509 "Thinking of vect as coordinates in space of \n"
510 "dimension n = (vector-length vect), the coordinates\n"
511 "are uniformly distributed over the surface of the \n"
512 "unit n-shere.\n"
513 "")
514 #define FUNC_NAME s_scm_random_hollow_sphere_x
515 {
516 SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v);
517 if (SCM_UNBNDP (state))
518 state = SCM_CDR (scm_var_random_state);
519 SCM_VALIDATE_RSTATE (2,state);
520 scm_random_normal_vector_x (v, state);
521 vector_scale (v, 1 / sqrt (vector_sum_squares (v)));
522 return SCM_UNSPECIFIED;
523 }
524 #undef FUNC_NAME
525
526
527 SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
528 (SCM v, SCM state),
529 "Fills vect with inexact real random numbers that are\n"
530 "independent and standard normally distributed\n"
531 "(i.e., with mean 0 and variance 1).\n"
532 "")
533 #define FUNC_NAME s_scm_random_normal_vector_x
534 {
535 int n;
536 SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v);
537 if (SCM_UNBNDP (state))
538 state = SCM_CDR (scm_var_random_state);
539 SCM_VALIDATE_RSTATE (2,state);
540 n = SCM_LENGTH (v);
541 if (SCM_VECTORP (v))
542 while (--n >= 0)
543 SCM_VELTS (v)[n] = scm_make_real (scm_c_normal01 (SCM_RSTATE (state)));
544 else
545 while (--n >= 0)
546 ((double *) SCM_VELTS (v))[n] = scm_c_normal01 (SCM_RSTATE (state));
547 return SCM_UNSPECIFIED;
548 }
549 #undef FUNC_NAME
550
551 #endif /* HAVE_ARRAYS */
552
553 SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
554 (SCM state),
555 "Returns an inexact real in an exponential distribution with mean 1.\n"
556 "For an exponential distribution with mean u use (* u (random:exp)).\n"
557 "")
558 #define FUNC_NAME s_scm_random_exp
559 {
560 if (SCM_UNBNDP (state))
561 state = SCM_CDR (scm_var_random_state);
562 SCM_VALIDATE_RSTATE (1,state);
563 return scm_make_real (scm_c_exp1 (SCM_RSTATE (state)));
564 }
565 #undef FUNC_NAME
566
567 void
568 scm_init_random ()
569 {
570 int i, m;
571 /* plug in default RNG */
572 scm_rng rng =
573 {
574 sizeof (scm_i_rstate),
575 (unsigned long (*)()) scm_i_uniform32,
576 (void (*)()) scm_i_init_rstate,
577 (scm_rstate *(*)()) scm_i_copy_rstate
578 };
579 scm_the_rng = rng;
580
581 scm_tc16_rstate = scm_make_smob_type_mfpe ("random-state", 0,
582 NULL, free_rstate, NULL, NULL);
583
584 for (m = 1; m <= 0x100; m <<= 1)
585 for (i = m >> 1; i < m; ++i)
586 scm_masktab[i] = m - 1;
587
588 #include "libguile/random.x"
589
590 /* Check that the assumptions about bits per bignum digit are correct. */
591 #if SIZEOF_INT == 4
592 m = 16;
593 #else
594 m = 32;
595 #endif
596 if (m != SCM_BITSPERDIG)
597 {
598 fprintf (stderr, "Internal inconsistency: Confused about bignum digit size in random.c\n");
599 exit (1);
600 }
601
602 scm_add_feature ("random");
603 }
604
605 /*
606 Local Variables:
607 c-file-style: "gnu"
608 End:
609 */