Merge commit '7337d56d5714227865aeca2b40b6bd97cce296d2' into boehm-demers-weiser-gc
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @page
8 @node Simple Data Types
9 @section Simple Generic Data Types
10
11 This chapter describes those of Guile's simple data types which are
12 primarily used for their role as items of generic data. By
13 @dfn{simple} we mean data types that are not primarily used as
14 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15 For the documentation of such @dfn{compound} data types, see
16 @ref{Compound Data Types}.
17
18 @c One of the great strengths of Scheme is that there is no straightforward
19 @c distinction between ``data'' and ``functionality''. For example,
20 @c Guile's support for dynamic linking could be described:
21
22 @c @itemize @bullet
23 @c @item
24 @c either in a ``data-centric'' way, as the behaviour and properties of the
25 @c ``dynamically linked object'' data type, and the operations that may be
26 @c applied to instances of this type
27
28 @c @item
29 @c or in a ``functionality-centric'' way, as the set of procedures that
30 @c constitute Guile's support for dynamic linking, in the context of the
31 @c module system.
32 @c @end itemize
33
34 @c The contents of this chapter are, therefore, a matter of judgment. By
35 @c @dfn{generic}, we mean to select those data types whose typical use as
36 @c @emph{data} in a wide variety of programming contexts is more important
37 @c than their use in the implementation of a particular piece of
38 @c @emph{functionality}. The last section of this chapter provides
39 @c references for all the data types that are documented not here but in a
40 @c ``functionality-centric'' way elsewhere in the manual.
41
42 @menu
43 * Booleans:: True/false values.
44 * Numbers:: Numerical data types.
45 * Characters:: Single characters.
46 * Character Sets:: Sets of characters.
47 * Strings:: Sequences of characters.
48 * Regular Expressions:: Pattern matching and substitution.
49 * Symbols:: Symbols.
50 * Keywords:: Self-quoting, customizable display keywords.
51 * Other Types:: "Functionality-centric" data types.
52 @end menu
53
54
55 @node Booleans
56 @subsection Booleans
57 @tpindex Booleans
58
59 The two boolean values are @code{#t} for true and @code{#f} for false.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond} (@pxref{if
83 cond case}), where a group of subexpressions will be evaluated only if a
84 @var{condition} expression evaluates to ``true'', ``true'' means any
85 value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Primitive Numerics:: Primitive numeric functions.
187 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
188 * Random:: Random number generation.
189 @end menu
190
191
192 @node Numerical Tower
193 @subsubsection Scheme's Numerical ``Tower''
194 @rnindex number?
195
196 Scheme's numerical ``tower'' consists of the following categories of
197 numbers:
198
199 @table @dfn
200 @item integers
201 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203 @item rationals
204 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206 pi (an irrational number) doesn't. These include integers
207 (@math{@var{n}/1}).
208
209 @item real numbers
210 The set of numbers that describes all possible positions along a
211 one-dimensional line. This includes rationals as well as irrational
212 numbers.
213
214 @item complex numbers
215 The set of numbers that describes all possible positions in a two
216 dimensional space. This includes real as well as imaginary numbers
217 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219 @minus{}1.)
220 @end table
221
222 It is called a tower because each category ``sits on'' the one that
223 follows it, in the sense that every integer is also a rational, every
224 rational is also real, and every real number is also a complex number
225 (but with zero imaginary part).
226
227 In addition to the classification into integers, rationals, reals and
228 complex numbers, Scheme also distinguishes between whether a number is
229 represented exactly or not. For example, the result of
230 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
231 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232 Instead, it stores an inexact approximation, using the C type
233 @code{double}.
234
235 Guile can represent exact rationals of any magnitude, inexact
236 rationals that fit into a C @code{double}, and inexact complex numbers
237 with @code{double} real and imaginary parts.
238
239 The @code{number?} predicate may be applied to any Scheme value to
240 discover whether the value is any of the supported numerical types.
241
242 @deffn {Scheme Procedure} number? obj
243 @deffnx {C Function} scm_number_p (obj)
244 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245 @end deffn
246
247 For example:
248
249 @lisp
250 (number? 3)
251 @result{} #t
252
253 (number? "hello there!")
254 @result{} #f
255
256 (define pi 3.141592654)
257 (number? pi)
258 @result{} #t
259 @end lisp
260
261 @deftypefn {C Function} int scm_is_number (SCM obj)
262 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263 @end deftypefn
264
265 The next few subsections document each of Guile's numerical data types
266 in detail.
267
268 @node Integers
269 @subsubsection Integers
270
271 @tpindex Integer numbers
272
273 @rnindex integer?
274
275 Integers are whole numbers, that is numbers with no fractional part,
276 such as 2, 83, and @minus{}3789.
277
278 Integers in Guile can be arbitrarily big, as shown by the following
279 example.
280
281 @lisp
282 (define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288 (factorial 3)
289 @result{} 6
290
291 (factorial 20)
292 @result{} 2432902008176640000
293
294 (- (factorial 45))
295 @result{} -119622220865480194561963161495657715064383733760000000000
296 @end lisp
297
298 Readers whose background is in programming languages where integers are
299 limited by the need to fit into just 4 or 8 bytes of memory may find
300 this surprising, or suspect that Guile's representation of integers is
301 inefficient. In fact, Guile achieves a near optimal balance of
302 convenience and efficiency by using the host computer's native
303 representation of integers where possible, and a more general
304 representation where the required number does not fit in the native
305 form. Conversion between these two representations is automatic and
306 completely invisible to the Scheme level programmer.
307
308 The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309 inexact integers. They are explained in detail in the next section,
310 together with reals and rationals.
311
312 C has a host of different integer types, and Guile offers a host of
313 functions to convert between them and the @code{SCM} representation.
314 For example, a C @code{int} can be handled with @code{scm_to_int} and
315 @code{scm_from_int}. Guile also defines a few C integer types of its
316 own, to help with differences between systems.
317
318 C integer types that are not covered can be handled with the generic
319 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320 signed types, or with @code{scm_to_unsigned_integer} and
321 @code{scm_from_unsigned_integer} for unsigned types.
322
323 Scheme integers can be exact and inexact. For example, a number
324 written as @code{3.0} with an explicit decimal-point is inexact, but
325 it is also an integer. The functions @code{integer?} and
326 @code{scm_is_integer} report true for such a number, but the functions
327 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328 allow exact integers and thus report false. Likewise, the conversion
329 functions like @code{scm_to_signed_integer} only accept exact
330 integers.
331
332 The motivation for this behavior is that the inexactness of a number
333 should not be lost silently. If you want to allow inexact integers,
334 you can explicitely insert a call to @code{inexact->exact} or to its C
335 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336 be converted by this call into exact integers; inexact non-integers
337 will become exact fractions.)
338
339 @deffn {Scheme Procedure} integer? x
340 @deffnx {C Function} scm_integer_p (x)
341 Return @code{#t} if @var{x} is an exact or inexact integer number, else
342 @code{#f}.
343
344 @lisp
345 (integer? 487)
346 @result{} #t
347
348 (integer? 3.0)
349 @result{} #t
350
351 (integer? -3.4)
352 @result{} #f
353
354 (integer? +inf.0)
355 @result{} #t
356 @end lisp
357 @end deffn
358
359 @deftypefn {C Function} int scm_is_integer (SCM x)
360 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361 @end deftypefn
362
363 @defvr {C Type} scm_t_int8
364 @defvrx {C Type} scm_t_uint8
365 @defvrx {C Type} scm_t_int16
366 @defvrx {C Type} scm_t_uint16
367 @defvrx {C Type} scm_t_int32
368 @defvrx {C Type} scm_t_uint32
369 @defvrx {C Type} scm_t_int64
370 @defvrx {C Type} scm_t_uint64
371 @defvrx {C Type} scm_t_intmax
372 @defvrx {C Type} scm_t_uintmax
373 The C types are equivalent to the corresponding ISO C types but are
374 defined on all platforms, with the exception of @code{scm_t_int64} and
375 @code{scm_t_uint64}, which are only defined when a 64-bit type is
376 available. For example, @code{scm_t_int8} is equivalent to
377 @code{int8_t}.
378
379 You can regard these definitions as a stop-gap measure until all
380 platforms provide these types. If you know that all the platforms
381 that you are interested in already provide these types, it is better
382 to use them directly instead of the types provided by Guile.
383 @end defvr
384
385 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387 Return @code{1} when @var{x} represents an exact integer that is
388 between @var{min} and @var{max}, inclusive.
389
390 These functions can be used to check whether a @code{SCM} value will
391 fit into a given range, such as the range of a given C integer type.
392 If you just want to convert a @code{SCM} value to a given C integer
393 type, use one of the conversion functions directly.
394 @end deftypefn
395
396 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398 When @var{x} represents an exact integer that is between @var{min} and
399 @var{max} inclusive, return that integer. Else signal an error,
400 either a `wrong-type' error when @var{x} is not an exact integer, or
401 an `out-of-range' error when it doesn't fit the given range.
402 @end deftypefn
403
404 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406 Return the @code{SCM} value that represents the integer @var{x}. This
407 function will always succeed and will always return an exact number.
408 @end deftypefn
409
410 @deftypefn {C Function} char scm_to_char (SCM x)
411 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413 @deftypefnx {C Function} short scm_to_short (SCM x)
414 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415 @deftypefnx {C Function} int scm_to_int (SCM x)
416 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417 @deftypefnx {C Function} long scm_to_long (SCM x)
418 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433 When @var{x} represents an exact integer that fits into the indicated
434 C type, return that integer. Else signal an error, either a
435 `wrong-type' error when @var{x} is not an exact integer, or an
436 `out-of-range' error when it doesn't fit the given range.
437
438 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440 the corresponding types are.
441 @end deftypefn
442
443 @deftypefn {C Function} SCM scm_from_char (char x)
444 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
445 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446 @deftypefnx {C Function} SCM scm_from_short (short x)
447 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448 @deftypefnx {C Function} SCM scm_from_int (int x)
449 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450 @deftypefnx {C Function} SCM scm_from_long (long x)
451 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
453 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466 Return the @code{SCM} value that represents the integer @var{x}.
467 These functions will always succeed and will always return an exact
468 number.
469 @end deftypefn
470
471 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472 Assign @var{val} to the multiple precision integer @var{rop}.
473 @var{val} must be an exact integer, otherwise an error will be
474 signalled. @var{rop} must have been initialized with @code{mpz_init}
475 before this function is called. When @var{rop} is no longer needed
476 the occupied space must be freed with @code{mpz_clear}.
477 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478 @end deftypefn
479
480 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
481 Return the @code{SCM} value that represents @var{val}.
482 @end deftypefn
483
484 @node Reals and Rationals
485 @subsubsection Real and Rational Numbers
486 @tpindex Real numbers
487 @tpindex Rational numbers
488
489 @rnindex real?
490 @rnindex rational?
491
492 Mathematically, the real numbers are the set of numbers that describe
493 all possible points along a continuous, infinite, one-dimensional line.
494 The rational numbers are the set of all numbers that can be written as
495 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496 All rational numbers are also real, but there are real numbers that
497 are not rational, for example @m{\sqrt2, the square root of 2}, and
498 @m{\pi,pi}.
499
500 Guile can represent both exact and inexact rational numbers, but it
501 can not represent irrational numbers. Exact rationals are represented
502 by storing the numerator and denominator as two exact integers.
503 Inexact rationals are stored as floating point numbers using the C
504 type @code{double}.
505
506 Exact rationals are written as a fraction of integers. There must be
507 no whitespace around the slash:
508
509 @lisp
510 1/2
511 -22/7
512 @end lisp
513
514 Even though the actual encoding of inexact rationals is in binary, it
515 may be helpful to think of it as a decimal number with a limited
516 number of significant figures and a decimal point somewhere, since
517 this corresponds to the standard notation for non-whole numbers. For
518 example:
519
520 @lisp
521 0.34
522 -0.00000142857931198
523 -5648394822220000000000.0
524 4.0
525 @end lisp
526
527 The limited precision of Guile's encoding means that any ``real'' number
528 in Guile can be written in a rational form, by multiplying and then dividing
529 by sufficient powers of 10 (or in fact, 2). For example,
530 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
531 100000000000000000. In Guile's current incarnation, therefore, the
532 @code{rational?} and @code{real?} predicates are equivalent.
533
534
535 Dividing by an exact zero leads to a error message, as one might
536 expect. However, dividing by an inexact zero does not produce an
537 error. Instead, the result of the division is either plus or minus
538 infinity, depending on the sign of the divided number.
539
540 The infinities are written @samp{+inf.0} and @samp{-inf.0},
541 respectivly. This syntax is also recognized by @code{read} as an
542 extension to the usual Scheme syntax.
543
544 Dividing zero by zero yields something that is not a number at all:
545 @samp{+nan.0}. This is the special `not a number' value.
546
547 On platforms that follow @acronym{IEEE} 754 for their floating point
548 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
549 are implemented using the corresponding @acronym{IEEE} 754 values.
550 They behave in arithmetic operations like @acronym{IEEE} 754 describes
551 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
552
553 The infinities are inexact integers and are considered to be both even
554 and odd. While @samp{+nan.0} is not @code{=} to itself, it is
555 @code{eqv?} to itself.
556
557 To test for the special values, use the functions @code{inf?} and
558 @code{nan?}.
559
560 @deffn {Scheme Procedure} real? obj
561 @deffnx {C Function} scm_real_p (obj)
562 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
563 that the sets of integer and rational values form subsets of the set
564 of real numbers, so the predicate will also be fulfilled if @var{obj}
565 is an integer number or a rational number.
566 @end deffn
567
568 @deffn {Scheme Procedure} rational? x
569 @deffnx {C Function} scm_rational_p (x)
570 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
571 Note that the set of integer values forms a subset of the set of
572 rational numbers, i. e. the predicate will also be fulfilled if
573 @var{x} is an integer number.
574
575 Since Guile can not represent irrational numbers, every number
576 satisfying @code{real?} also satisfies @code{rational?} in Guile.
577 @end deffn
578
579 @deffn {Scheme Procedure} rationalize x eps
580 @deffnx {C Function} scm_rationalize (x, eps)
581 Returns the @emph{simplest} rational number differing
582 from @var{x} by no more than @var{eps}.
583
584 As required by @acronym{R5RS}, @code{rationalize} only returns an
585 exact result when both its arguments are exact. Thus, you might need
586 to use @code{inexact->exact} on the arguments.
587
588 @lisp
589 (rationalize (inexact->exact 1.2) 1/100)
590 @result{} 6/5
591 @end lisp
592
593 @end deffn
594
595 @deffn {Scheme Procedure} inf? x
596 @deffnx {C Function} scm_inf_p (x)
597 Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
598 @code{#f} otherwise.
599 @end deffn
600
601 @deffn {Scheme Procedure} nan? x
602 @deffnx {C Function} scm_nan_p (x)
603 Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
604 @end deffn
605
606 @deffn {Scheme Procedure} nan
607 @deffnx {C Function} scm_nan ()
608 Return NaN.
609 @end deffn
610
611 @deffn {Scheme Procedure} inf
612 @deffnx {C Function} scm_inf ()
613 Return Inf.
614 @end deffn
615
616 @deffn {Scheme Procedure} numerator x
617 @deffnx {C Function} scm_numerator (x)
618 Return the numerator of the rational number @var{x}.
619 @end deffn
620
621 @deffn {Scheme Procedure} denominator x
622 @deffnx {C Function} scm_denominator (x)
623 Return the denominator of the rational number @var{x}.
624 @end deffn
625
626 @deftypefn {C Function} int scm_is_real (SCM val)
627 @deftypefnx {C Function} int scm_is_rational (SCM val)
628 Equivalent to @code{scm_is_true (scm_real_p (val))} and
629 @code{scm_is_true (scm_rational_p (val))}, respectively.
630 @end deftypefn
631
632 @deftypefn {C Function} double scm_to_double (SCM val)
633 Returns the number closest to @var{val} that is representable as a
634 @code{double}. Returns infinity for a @var{val} that is too large in
635 magnitude. The argument @var{val} must be a real number.
636 @end deftypefn
637
638 @deftypefn {C Function} SCM scm_from_double (double val)
639 Return the @code{SCM} value that representats @var{val}. The returned
640 value is inexact according to the predicate @code{inexact?}, but it
641 will be exactly equal to @var{val}.
642 @end deftypefn
643
644 @node Complex Numbers
645 @subsubsection Complex Numbers
646 @tpindex Complex numbers
647
648 @rnindex complex?
649
650 Complex numbers are the set of numbers that describe all possible points
651 in a two-dimensional space. The two coordinates of a particular point
652 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
653 the complex number that describes that point.
654
655 In Guile, complex numbers are written in rectangular form as the sum of
656 their real and imaginary parts, using the symbol @code{i} to indicate
657 the imaginary part.
658
659 @lisp
660 3+4i
661 @result{}
662 3.0+4.0i
663
664 (* 3-8i 2.3+0.3i)
665 @result{}
666 9.3-17.5i
667 @end lisp
668
669 @cindex polar form
670 @noindent
671 Polar form can also be used, with an @samp{@@} between magnitude and
672 angle,
673
674 @lisp
675 1@@3.141592 @result{} -1.0 (approx)
676 -1@@1.57079 @result{} 0.0-1.0i (approx)
677 @end lisp
678
679 Guile represents a complex number with a non-zero imaginary part as a
680 pair of inexact rationals, so the real and imaginary parts of a
681 complex number have the same properties of inexactness and limited
682 precision as single inexact rational numbers. Guile can not represent
683 exact complex numbers with non-zero imaginary parts.
684
685 @deffn {Scheme Procedure} complex? z
686 @deffnx {C Function} scm_complex_p (z)
687 Return @code{#t} if @var{x} is a complex number, @code{#f}
688 otherwise. Note that the sets of real, rational and integer
689 values form subsets of the set of complex numbers, i. e. the
690 predicate will also be fulfilled if @var{x} is a real,
691 rational or integer number.
692 @end deffn
693
694 @deftypefn {C Function} int scm_is_complex (SCM val)
695 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
696 @end deftypefn
697
698 @node Exactness
699 @subsubsection Exact and Inexact Numbers
700 @tpindex Exact numbers
701 @tpindex Inexact numbers
702
703 @rnindex exact?
704 @rnindex inexact?
705 @rnindex exact->inexact
706 @rnindex inexact->exact
707
708 R5RS requires that a calculation involving inexact numbers always
709 produces an inexact result. To meet this requirement, Guile
710 distinguishes between an exact integer value such as @samp{5} and the
711 corresponding inexact real value which, to the limited precision
712 available, has no fractional part, and is printed as @samp{5.0}. Guile
713 will only convert the latter value to the former when forced to do so by
714 an invocation of the @code{inexact->exact} procedure.
715
716 @deffn {Scheme Procedure} exact? z
717 @deffnx {C Function} scm_exact_p (z)
718 Return @code{#t} if the number @var{z} is exact, @code{#f}
719 otherwise.
720
721 @lisp
722 (exact? 2)
723 @result{} #t
724
725 (exact? 0.5)
726 @result{} #f
727
728 (exact? (/ 2))
729 @result{} #t
730 @end lisp
731
732 @end deffn
733
734 @deffn {Scheme Procedure} inexact? z
735 @deffnx {C Function} scm_inexact_p (z)
736 Return @code{#t} if the number @var{z} is inexact, @code{#f}
737 else.
738 @end deffn
739
740 @deffn {Scheme Procedure} inexact->exact z
741 @deffnx {C Function} scm_inexact_to_exact (z)
742 Return an exact number that is numerically closest to @var{z}, when
743 there is one. For inexact rationals, Guile returns the exact rational
744 that is numerically equal to the inexact rational. Inexact complex
745 numbers with a non-zero imaginary part can not be made exact.
746
747 @lisp
748 (inexact->exact 0.5)
749 @result{} 1/2
750 @end lisp
751
752 The following happens because 12/10 is not exactly representable as a
753 @code{double} (on most platforms). However, when reading a decimal
754 number that has been marked exact with the ``#e'' prefix, Guile is
755 able to represent it correctly.
756
757 @lisp
758 (inexact->exact 1.2)
759 @result{} 5404319552844595/4503599627370496
760
761 #e1.2
762 @result{} 6/5
763 @end lisp
764
765 @end deffn
766
767 @c begin (texi-doc-string "guile" "exact->inexact")
768 @deffn {Scheme Procedure} exact->inexact z
769 @deffnx {C Function} scm_exact_to_inexact (z)
770 Convert the number @var{z} to its inexact representation.
771 @end deffn
772
773
774 @node Number Syntax
775 @subsubsection Read Syntax for Numerical Data
776
777 The read syntax for integers is a string of digits, optionally
778 preceded by a minus or plus character, a code indicating the
779 base in which the integer is encoded, and a code indicating whether
780 the number is exact or inexact. The supported base codes are:
781
782 @table @code
783 @item #b
784 @itemx #B
785 the integer is written in binary (base 2)
786
787 @item #o
788 @itemx #O
789 the integer is written in octal (base 8)
790
791 @item #d
792 @itemx #D
793 the integer is written in decimal (base 10)
794
795 @item #x
796 @itemx #X
797 the integer is written in hexadecimal (base 16)
798 @end table
799
800 If the base code is omitted, the integer is assumed to be decimal. The
801 following examples show how these base codes are used.
802
803 @lisp
804 -13
805 @result{} -13
806
807 #d-13
808 @result{} -13
809
810 #x-13
811 @result{} -19
812
813 #b+1101
814 @result{} 13
815
816 #o377
817 @result{} 255
818 @end lisp
819
820 The codes for indicating exactness (which can, incidentally, be applied
821 to all numerical values) are:
822
823 @table @code
824 @item #e
825 @itemx #E
826 the number is exact
827
828 @item #i
829 @itemx #I
830 the number is inexact.
831 @end table
832
833 If the exactness indicator is omitted, the number is exact unless it
834 contains a radix point. Since Guile can not represent exact complex
835 numbers, an error is signalled when asking for them.
836
837 @lisp
838 (exact? 1.2)
839 @result{} #f
840
841 (exact? #e1.2)
842 @result{} #t
843
844 (exact? #e+1i)
845 ERROR: Wrong type argument
846 @end lisp
847
848 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
849 plus and minus infinity, respectively. The value must be written
850 exactly as shown, that is, they always must have a sign and exactly
851 one zero digit after the decimal point. It also understands
852 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
853 The sign is ignored for `not-a-number' and the value is always printed
854 as @samp{+nan.0}.
855
856 @node Integer Operations
857 @subsubsection Operations on Integer Values
858 @rnindex odd?
859 @rnindex even?
860 @rnindex quotient
861 @rnindex remainder
862 @rnindex modulo
863 @rnindex gcd
864 @rnindex lcm
865
866 @deffn {Scheme Procedure} odd? n
867 @deffnx {C Function} scm_odd_p (n)
868 Return @code{#t} if @var{n} is an odd number, @code{#f}
869 otherwise.
870 @end deffn
871
872 @deffn {Scheme Procedure} even? n
873 @deffnx {C Function} scm_even_p (n)
874 Return @code{#t} if @var{n} is an even number, @code{#f}
875 otherwise.
876 @end deffn
877
878 @c begin (texi-doc-string "guile" "quotient")
879 @c begin (texi-doc-string "guile" "remainder")
880 @deffn {Scheme Procedure} quotient n d
881 @deffnx {Scheme Procedure} remainder n d
882 @deffnx {C Function} scm_quotient (n, d)
883 @deffnx {C Function} scm_remainder (n, d)
884 Return the quotient or remainder from @var{n} divided by @var{d}. The
885 quotient is rounded towards zero, and the remainder will have the same
886 sign as @var{n}. In all cases quotient and remainder satisfy
887 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
888
889 @lisp
890 (remainder 13 4) @result{} 1
891 (remainder -13 4) @result{} -1
892 @end lisp
893 @end deffn
894
895 @c begin (texi-doc-string "guile" "modulo")
896 @deffn {Scheme Procedure} modulo n d
897 @deffnx {C Function} scm_modulo (n, d)
898 Return the remainder from @var{n} divided by @var{d}, with the same
899 sign as @var{d}.
900
901 @lisp
902 (modulo 13 4) @result{} 1
903 (modulo -13 4) @result{} 3
904 (modulo 13 -4) @result{} -3
905 (modulo -13 -4) @result{} -1
906 @end lisp
907 @end deffn
908
909 @c begin (texi-doc-string "guile" "gcd")
910 @deffn {Scheme Procedure} gcd x@dots{}
911 @deffnx {C Function} scm_gcd (x, y)
912 Return the greatest common divisor of all arguments.
913 If called without arguments, 0 is returned.
914
915 The C function @code{scm_gcd} always takes two arguments, while the
916 Scheme function can take an arbitrary number.
917 @end deffn
918
919 @c begin (texi-doc-string "guile" "lcm")
920 @deffn {Scheme Procedure} lcm x@dots{}
921 @deffnx {C Function} scm_lcm (x, y)
922 Return the least common multiple of the arguments.
923 If called without arguments, 1 is returned.
924
925 The C function @code{scm_lcm} always takes two arguments, while the
926 Scheme function can take an arbitrary number.
927 @end deffn
928
929 @deffn {Scheme Procedure} modulo-expt n k m
930 @deffnx {C Function} scm_modulo_expt (n, k, m)
931 Return @var{n} raised to the integer exponent
932 @var{k}, modulo @var{m}.
933
934 @lisp
935 (modulo-expt 2 3 5)
936 @result{} 3
937 @end lisp
938 @end deffn
939
940 @node Comparison
941 @subsubsection Comparison Predicates
942 @rnindex zero?
943 @rnindex positive?
944 @rnindex negative?
945
946 The C comparison functions below always takes two arguments, while the
947 Scheme functions can take an arbitrary number. Also keep in mind that
948 the C functions return one of the Scheme boolean values
949 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
950 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
951 y))} when testing the two Scheme numbers @code{x} and @code{y} for
952 equality, for example.
953
954 @c begin (texi-doc-string "guile" "=")
955 @deffn {Scheme Procedure} =
956 @deffnx {C Function} scm_num_eq_p (x, y)
957 Return @code{#t} if all parameters are numerically equal.
958 @end deffn
959
960 @c begin (texi-doc-string "guile" "<")
961 @deffn {Scheme Procedure} <
962 @deffnx {C Function} scm_less_p (x, y)
963 Return @code{#t} if the list of parameters is monotonically
964 increasing.
965 @end deffn
966
967 @c begin (texi-doc-string "guile" ">")
968 @deffn {Scheme Procedure} >
969 @deffnx {C Function} scm_gr_p (x, y)
970 Return @code{#t} if the list of parameters is monotonically
971 decreasing.
972 @end deffn
973
974 @c begin (texi-doc-string "guile" "<=")
975 @deffn {Scheme Procedure} <=
976 @deffnx {C Function} scm_leq_p (x, y)
977 Return @code{#t} if the list of parameters is monotonically
978 non-decreasing.
979 @end deffn
980
981 @c begin (texi-doc-string "guile" ">=")
982 @deffn {Scheme Procedure} >=
983 @deffnx {C Function} scm_geq_p (x, y)
984 Return @code{#t} if the list of parameters is monotonically
985 non-increasing.
986 @end deffn
987
988 @c begin (texi-doc-string "guile" "zero?")
989 @deffn {Scheme Procedure} zero? z
990 @deffnx {C Function} scm_zero_p (z)
991 Return @code{#t} if @var{z} is an exact or inexact number equal to
992 zero.
993 @end deffn
994
995 @c begin (texi-doc-string "guile" "positive?")
996 @deffn {Scheme Procedure} positive? x
997 @deffnx {C Function} scm_positive_p (x)
998 Return @code{#t} if @var{x} is an exact or inexact number greater than
999 zero.
1000 @end deffn
1001
1002 @c begin (texi-doc-string "guile" "negative?")
1003 @deffn {Scheme Procedure} negative? x
1004 @deffnx {C Function} scm_negative_p (x)
1005 Return @code{#t} if @var{x} is an exact or inexact number less than
1006 zero.
1007 @end deffn
1008
1009
1010 @node Conversion
1011 @subsubsection Converting Numbers To and From Strings
1012 @rnindex number->string
1013 @rnindex string->number
1014
1015 The following procedures read and write numbers according to their
1016 external representation as defined by R5RS (@pxref{Lexical structure,
1017 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1018 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1019 i18n)} module}, for locale-dependent number parsing.
1020
1021 @deffn {Scheme Procedure} number->string n [radix]
1022 @deffnx {C Function} scm_number_to_string (n, radix)
1023 Return a string holding the external representation of the
1024 number @var{n} in the given @var{radix}. If @var{n} is
1025 inexact, a radix of 10 will be used.
1026 @end deffn
1027
1028 @deffn {Scheme Procedure} string->number string [radix]
1029 @deffnx {C Function} scm_string_to_number (string, radix)
1030 Return a number of the maximally precise representation
1031 expressed by the given @var{string}. @var{radix} must be an
1032 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1033 is a default radix that may be overridden by an explicit radix
1034 prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1035 supplied, then the default radix is 10. If string is not a
1036 syntactically valid notation for a number, then
1037 @code{string->number} returns @code{#f}.
1038 @end deffn
1039
1040 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1041 As per @code{string->number} above, but taking a C string, as pointer
1042 and length. The string characters should be in the current locale
1043 encoding (@code{locale} in the name refers only to that, there's no
1044 locale-dependent parsing).
1045 @end deftypefn
1046
1047
1048 @node Complex
1049 @subsubsection Complex Number Operations
1050 @rnindex make-rectangular
1051 @rnindex make-polar
1052 @rnindex real-part
1053 @rnindex imag-part
1054 @rnindex magnitude
1055 @rnindex angle
1056
1057 @deffn {Scheme Procedure} make-rectangular real imaginary
1058 @deffnx {C Function} scm_make_rectangular (real, imaginary)
1059 Return a complex number constructed of the given @var{real} and
1060 @var{imaginary} parts.
1061 @end deffn
1062
1063 @deffn {Scheme Procedure} make-polar x y
1064 @deffnx {C Function} scm_make_polar (x, y)
1065 @cindex polar form
1066 Return the complex number @var{x} * e^(i * @var{y}).
1067 @end deffn
1068
1069 @c begin (texi-doc-string "guile" "real-part")
1070 @deffn {Scheme Procedure} real-part z
1071 @deffnx {C Function} scm_real_part (z)
1072 Return the real part of the number @var{z}.
1073 @end deffn
1074
1075 @c begin (texi-doc-string "guile" "imag-part")
1076 @deffn {Scheme Procedure} imag-part z
1077 @deffnx {C Function} scm_imag_part (z)
1078 Return the imaginary part of the number @var{z}.
1079 @end deffn
1080
1081 @c begin (texi-doc-string "guile" "magnitude")
1082 @deffn {Scheme Procedure} magnitude z
1083 @deffnx {C Function} scm_magnitude (z)
1084 Return the magnitude of the number @var{z}. This is the same as
1085 @code{abs} for real arguments, but also allows complex numbers.
1086 @end deffn
1087
1088 @c begin (texi-doc-string "guile" "angle")
1089 @deffn {Scheme Procedure} angle z
1090 @deffnx {C Function} scm_angle (z)
1091 Return the angle of the complex number @var{z}.
1092 @end deffn
1093
1094 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1095 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1096 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1097 respectively, but these functions take @code{double}s as their
1098 arguments.
1099 @end deftypefn
1100
1101 @deftypefn {C Function} double scm_c_real_part (z)
1102 @deftypefnx {C Function} double scm_c_imag_part (z)
1103 Returns the real or imaginary part of @var{z} as a @code{double}.
1104 @end deftypefn
1105
1106 @deftypefn {C Function} double scm_c_magnitude (z)
1107 @deftypefnx {C Function} double scm_c_angle (z)
1108 Returns the magnitude or angle of @var{z} as a @code{double}.
1109 @end deftypefn
1110
1111
1112 @node Arithmetic
1113 @subsubsection Arithmetic Functions
1114 @rnindex max
1115 @rnindex min
1116 @rnindex +
1117 @rnindex *
1118 @rnindex -
1119 @rnindex /
1120 @findex 1+
1121 @findex 1-
1122 @rnindex abs
1123 @rnindex floor
1124 @rnindex ceiling
1125 @rnindex truncate
1126 @rnindex round
1127
1128 The C arithmetic functions below always takes two arguments, while the
1129 Scheme functions can take an arbitrary number. When you need to
1130 invoke them with just one argument, for example to compute the
1131 equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1132 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1133
1134 @c begin (texi-doc-string "guile" "+")
1135 @deffn {Scheme Procedure} + z1 @dots{}
1136 @deffnx {C Function} scm_sum (z1, z2)
1137 Return the sum of all parameter values. Return 0 if called without any
1138 parameters.
1139 @end deffn
1140
1141 @c begin (texi-doc-string "guile" "-")
1142 @deffn {Scheme Procedure} - z1 z2 @dots{}
1143 @deffnx {C Function} scm_difference (z1, z2)
1144 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1145 the sum of all but the first argument are subtracted from the first
1146 argument.
1147 @end deffn
1148
1149 @c begin (texi-doc-string "guile" "*")
1150 @deffn {Scheme Procedure} * z1 @dots{}
1151 @deffnx {C Function} scm_product (z1, z2)
1152 Return the product of all arguments. If called without arguments, 1 is
1153 returned.
1154 @end deffn
1155
1156 @c begin (texi-doc-string "guile" "/")
1157 @deffn {Scheme Procedure} / z1 z2 @dots{}
1158 @deffnx {C Function} scm_divide (z1, z2)
1159 Divide the first argument by the product of the remaining arguments. If
1160 called with one argument @var{z1}, 1/@var{z1} is returned.
1161 @end deffn
1162
1163 @deffn {Scheme Procedure} 1+ z
1164 @deffnx {C Function} scm_oneplus (z)
1165 Return @math{@var{z} + 1}.
1166 @end deffn
1167
1168 @deffn {Scheme Procedure} 1- z
1169 @deffnx {C function} scm_oneminus (z)
1170 Return @math{@var{z} - 1}.
1171 @end deffn
1172
1173 @c begin (texi-doc-string "guile" "abs")
1174 @deffn {Scheme Procedure} abs x
1175 @deffnx {C Function} scm_abs (x)
1176 Return the absolute value of @var{x}.
1177
1178 @var{x} must be a number with zero imaginary part. To calculate the
1179 magnitude of a complex number, use @code{magnitude} instead.
1180 @end deffn
1181
1182 @c begin (texi-doc-string "guile" "max")
1183 @deffn {Scheme Procedure} max x1 x2 @dots{}
1184 @deffnx {C Function} scm_max (x1, x2)
1185 Return the maximum of all parameter values.
1186 @end deffn
1187
1188 @c begin (texi-doc-string "guile" "min")
1189 @deffn {Scheme Procedure} min x1 x2 @dots{}
1190 @deffnx {C Function} scm_min (x1, x2)
1191 Return the minimum of all parameter values.
1192 @end deffn
1193
1194 @c begin (texi-doc-string "guile" "truncate")
1195 @deffn {Scheme Procedure} truncate x
1196 @deffnx {C Function} scm_truncate_number (x)
1197 Round the inexact number @var{x} towards zero.
1198 @end deffn
1199
1200 @c begin (texi-doc-string "guile" "round")
1201 @deffn {Scheme Procedure} round x
1202 @deffnx {C Function} scm_round_number (x)
1203 Round the inexact number @var{x} to the nearest integer. When exactly
1204 halfway between two integers, round to the even one.
1205 @end deffn
1206
1207 @c begin (texi-doc-string "guile" "floor")
1208 @deffn {Scheme Procedure} floor x
1209 @deffnx {C Function} scm_floor (x)
1210 Round the number @var{x} towards minus infinity.
1211 @end deffn
1212
1213 @c begin (texi-doc-string "guile" "ceiling")
1214 @deffn {Scheme Procedure} ceiling x
1215 @deffnx {C Function} scm_ceiling (x)
1216 Round the number @var{x} towards infinity.
1217 @end deffn
1218
1219 @deftypefn {C Function} double scm_c_truncate (double x)
1220 @deftypefnx {C Function} double scm_c_round (double x)
1221 Like @code{scm_truncate_number} or @code{scm_round_number},
1222 respectively, but these functions take and return @code{double}
1223 values.
1224 @end deftypefn
1225
1226 @node Scientific
1227 @subsubsection Scientific Functions
1228
1229 The following procedures accept any kind of number as arguments,
1230 including complex numbers.
1231
1232 @rnindex sqrt
1233 @c begin (texi-doc-string "guile" "sqrt")
1234 @deffn {Scheme Procedure} sqrt z
1235 Return the square root of @var{z}. Of the two possible roots
1236 (positive and negative), the one with the a positive real part is
1237 returned, or if that's zero then a positive imaginary part. Thus,
1238
1239 @example
1240 (sqrt 9.0) @result{} 3.0
1241 (sqrt -9.0) @result{} 0.0+3.0i
1242 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1243 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1244 @end example
1245 @end deffn
1246
1247 @rnindex expt
1248 @c begin (texi-doc-string "guile" "expt")
1249 @deffn {Scheme Procedure} expt z1 z2
1250 Return @var{z1} raised to the power of @var{z2}.
1251 @end deffn
1252
1253 @rnindex sin
1254 @c begin (texi-doc-string "guile" "sin")
1255 @deffn {Scheme Procedure} sin z
1256 Return the sine of @var{z}.
1257 @end deffn
1258
1259 @rnindex cos
1260 @c begin (texi-doc-string "guile" "cos")
1261 @deffn {Scheme Procedure} cos z
1262 Return the cosine of @var{z}.
1263 @end deffn
1264
1265 @rnindex tan
1266 @c begin (texi-doc-string "guile" "tan")
1267 @deffn {Scheme Procedure} tan z
1268 Return the tangent of @var{z}.
1269 @end deffn
1270
1271 @rnindex asin
1272 @c begin (texi-doc-string "guile" "asin")
1273 @deffn {Scheme Procedure} asin z
1274 Return the arcsine of @var{z}.
1275 @end deffn
1276
1277 @rnindex acos
1278 @c begin (texi-doc-string "guile" "acos")
1279 @deffn {Scheme Procedure} acos z
1280 Return the arccosine of @var{z}.
1281 @end deffn
1282
1283 @rnindex atan
1284 @c begin (texi-doc-string "guile" "atan")
1285 @deffn {Scheme Procedure} atan z
1286 @deffnx {Scheme Procedure} atan y x
1287 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1288 @end deffn
1289
1290 @rnindex exp
1291 @c begin (texi-doc-string "guile" "exp")
1292 @deffn {Scheme Procedure} exp z
1293 Return e to the power of @var{z}, where e is the base of natural
1294 logarithms (2.71828@dots{}).
1295 @end deffn
1296
1297 @rnindex log
1298 @c begin (texi-doc-string "guile" "log")
1299 @deffn {Scheme Procedure} log z
1300 Return the natural logarithm of @var{z}.
1301 @end deffn
1302
1303 @c begin (texi-doc-string "guile" "log10")
1304 @deffn {Scheme Procedure} log10 z
1305 Return the base 10 logarithm of @var{z}.
1306 @end deffn
1307
1308 @c begin (texi-doc-string "guile" "sinh")
1309 @deffn {Scheme Procedure} sinh z
1310 Return the hyperbolic sine of @var{z}.
1311 @end deffn
1312
1313 @c begin (texi-doc-string "guile" "cosh")
1314 @deffn {Scheme Procedure} cosh z
1315 Return the hyperbolic cosine of @var{z}.
1316 @end deffn
1317
1318 @c begin (texi-doc-string "guile" "tanh")
1319 @deffn {Scheme Procedure} tanh z
1320 Return the hyperbolic tangent of @var{z}.
1321 @end deffn
1322
1323 @c begin (texi-doc-string "guile" "asinh")
1324 @deffn {Scheme Procedure} asinh z
1325 Return the hyperbolic arcsine of @var{z}.
1326 @end deffn
1327
1328 @c begin (texi-doc-string "guile" "acosh")
1329 @deffn {Scheme Procedure} acosh z
1330 Return the hyperbolic arccosine of @var{z}.
1331 @end deffn
1332
1333 @c begin (texi-doc-string "guile" "atanh")
1334 @deffn {Scheme Procedure} atanh z
1335 Return the hyperbolic arctangent of @var{z}.
1336 @end deffn
1337
1338
1339 @node Primitive Numerics
1340 @subsubsection Primitive Numeric Functions
1341
1342 Many of Guile's numeric procedures which accept any kind of numbers as
1343 arguments, including complex numbers, are implemented as Scheme
1344 procedures that use the following real number-based primitives. These
1345 primitives signal an error if they are called with complex arguments.
1346
1347 @c begin (texi-doc-string "guile" "$abs")
1348 @deffn {Scheme Procedure} $abs x
1349 Return the absolute value of @var{x}.
1350 @end deffn
1351
1352 @c begin (texi-doc-string "guile" "$sqrt")
1353 @deffn {Scheme Procedure} $sqrt x
1354 Return the square root of @var{x}.
1355 @end deffn
1356
1357 @deffn {Scheme Procedure} $expt x y
1358 @deffnx {C Function} scm_sys_expt (x, y)
1359 Return @var{x} raised to the power of @var{y}. This
1360 procedure does not accept complex arguments.
1361 @end deffn
1362
1363 @c begin (texi-doc-string "guile" "$sin")
1364 @deffn {Scheme Procedure} $sin x
1365 Return the sine of @var{x}.
1366 @end deffn
1367
1368 @c begin (texi-doc-string "guile" "$cos")
1369 @deffn {Scheme Procedure} $cos x
1370 Return the cosine of @var{x}.
1371 @end deffn
1372
1373 @c begin (texi-doc-string "guile" "$tan")
1374 @deffn {Scheme Procedure} $tan x
1375 Return the tangent of @var{x}.
1376 @end deffn
1377
1378 @c begin (texi-doc-string "guile" "$asin")
1379 @deffn {Scheme Procedure} $asin x
1380 Return the arcsine of @var{x}.
1381 @end deffn
1382
1383 @c begin (texi-doc-string "guile" "$acos")
1384 @deffn {Scheme Procedure} $acos x
1385 Return the arccosine of @var{x}.
1386 @end deffn
1387
1388 @c begin (texi-doc-string "guile" "$atan")
1389 @deffn {Scheme Procedure} $atan x
1390 Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
1391 @math{PI/2}.
1392 @end deffn
1393
1394 @deffn {Scheme Procedure} $atan2 x y
1395 @deffnx {C Function} scm_sys_atan2 (x, y)
1396 Return the arc tangent of the two arguments @var{x} and
1397 @var{y}. This is similar to calculating the arc tangent of
1398 @var{x} / @var{y}, except that the signs of both arguments
1399 are used to determine the quadrant of the result. This
1400 procedure does not accept complex arguments.
1401 @end deffn
1402
1403 @c begin (texi-doc-string "guile" "$exp")
1404 @deffn {Scheme Procedure} $exp x
1405 Return e to the power of @var{x}, where e is the base of natural
1406 logarithms (2.71828@dots{}).
1407 @end deffn
1408
1409 @c begin (texi-doc-string "guile" "$log")
1410 @deffn {Scheme Procedure} $log x
1411 Return the natural logarithm of @var{x}.
1412 @end deffn
1413
1414 @c begin (texi-doc-string "guile" "$sinh")
1415 @deffn {Scheme Procedure} $sinh x
1416 Return the hyperbolic sine of @var{x}.
1417 @end deffn
1418
1419 @c begin (texi-doc-string "guile" "$cosh")
1420 @deffn {Scheme Procedure} $cosh x
1421 Return the hyperbolic cosine of @var{x}.
1422 @end deffn
1423
1424 @c begin (texi-doc-string "guile" "$tanh")
1425 @deffn {Scheme Procedure} $tanh x
1426 Return the hyperbolic tangent of @var{x}.
1427 @end deffn
1428
1429 @c begin (texi-doc-string "guile" "$asinh")
1430 @deffn {Scheme Procedure} $asinh x
1431 Return the hyperbolic arcsine of @var{x}.
1432 @end deffn
1433
1434 @c begin (texi-doc-string "guile" "$acosh")
1435 @deffn {Scheme Procedure} $acosh x
1436 Return the hyperbolic arccosine of @var{x}.
1437 @end deffn
1438
1439 @c begin (texi-doc-string "guile" "$atanh")
1440 @deffn {Scheme Procedure} $atanh x
1441 Return the hyperbolic arctangent of @var{x}.
1442 @end deffn
1443
1444 C functions for the above are provided by the standard mathematics
1445 library. Naturally these expect and return @code{double} arguments
1446 (@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).
1447
1448 @multitable {xx} {Scheme Procedure} {C Function}
1449 @item @tab Scheme Procedure @tab C Function
1450
1451 @item @tab @code{$abs} @tab @code{fabs}
1452 @item @tab @code{$sqrt} @tab @code{sqrt}
1453 @item @tab @code{$sin} @tab @code{sin}
1454 @item @tab @code{$cos} @tab @code{cos}
1455 @item @tab @code{$tan} @tab @code{tan}
1456 @item @tab @code{$asin} @tab @code{asin}
1457 @item @tab @code{$acos} @tab @code{acos}
1458 @item @tab @code{$atan} @tab @code{atan}
1459 @item @tab @code{$atan2} @tab @code{atan2}
1460 @item @tab @code{$exp} @tab @code{exp}
1461 @item @tab @code{$expt} @tab @code{pow}
1462 @item @tab @code{$log} @tab @code{log}
1463 @item @tab @code{$sinh} @tab @code{sinh}
1464 @item @tab @code{$cosh} @tab @code{cosh}
1465 @item @tab @code{$tanh} @tab @code{tanh}
1466 @item @tab @code{$asinh} @tab @code{asinh}
1467 @item @tab @code{$acosh} @tab @code{acosh}
1468 @item @tab @code{$atanh} @tab @code{atanh}
1469 @end multitable
1470
1471 @code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
1472 not be available on older systems. Guile provides the following
1473 equivalents (on all systems).
1474
1475 @deftypefn {C Function} double scm_asinh (double x)
1476 @deftypefnx {C Function} double scm_acosh (double x)
1477 @deftypefnx {C Function} double scm_atanh (double x)
1478 Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
1479 respectively.
1480 @end deftypefn
1481
1482
1483 @node Bitwise Operations
1484 @subsubsection Bitwise Operations
1485
1486 For the following bitwise functions, negative numbers are treated as
1487 infinite precision twos-complements. For instance @math{-6} is bits
1488 @math{@dots{}111010}, with infinitely many ones on the left. It can
1489 be seen that adding 6 (binary 110) to such a bit pattern gives all
1490 zeros.
1491
1492 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1493 @deffnx {C Function} scm_logand (n1, n2)
1494 Return the bitwise @sc{and} of the integer arguments.
1495
1496 @lisp
1497 (logand) @result{} -1
1498 (logand 7) @result{} 7
1499 (logand #b111 #b011 #b001) @result{} 1
1500 @end lisp
1501 @end deffn
1502
1503 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1504 @deffnx {C Function} scm_logior (n1, n2)
1505 Return the bitwise @sc{or} of the integer arguments.
1506
1507 @lisp
1508 (logior) @result{} 0
1509 (logior 7) @result{} 7
1510 (logior #b000 #b001 #b011) @result{} 3
1511 @end lisp
1512 @end deffn
1513
1514 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1515 @deffnx {C Function} scm_loxor (n1, n2)
1516 Return the bitwise @sc{xor} of the integer arguments. A bit is
1517 set in the result if it is set in an odd number of arguments.
1518
1519 @lisp
1520 (logxor) @result{} 0
1521 (logxor 7) @result{} 7
1522 (logxor #b000 #b001 #b011) @result{} 2
1523 (logxor #b000 #b001 #b011 #b011) @result{} 1
1524 @end lisp
1525 @end deffn
1526
1527 @deffn {Scheme Procedure} lognot n
1528 @deffnx {C Function} scm_lognot (n)
1529 Return the integer which is the ones-complement of the integer
1530 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1531
1532 @lisp
1533 (number->string (lognot #b10000000) 2)
1534 @result{} "-10000001"
1535 (number->string (lognot #b0) 2)
1536 @result{} "-1"
1537 @end lisp
1538 @end deffn
1539
1540 @deffn {Scheme Procedure} logtest j k
1541 @deffnx {C Function} scm_logtest (j, k)
1542 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1543 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1544 calculating the @code{logand}, just testing for non-zero.
1545
1546 @lisp
1547 (logtest #b0100 #b1011) @result{} #f
1548 (logtest #b0100 #b0111) @result{} #t
1549 @end lisp
1550 @end deffn
1551
1552 @deffn {Scheme Procedure} logbit? index j
1553 @deffnx {C Function} scm_logbit_p (index, j)
1554 Test whether bit number @var{index} in @var{j} is set. @var{index}
1555 starts from 0 for the least significant bit.
1556
1557 @lisp
1558 (logbit? 0 #b1101) @result{} #t
1559 (logbit? 1 #b1101) @result{} #f
1560 (logbit? 2 #b1101) @result{} #t
1561 (logbit? 3 #b1101) @result{} #t
1562 (logbit? 4 #b1101) @result{} #f
1563 @end lisp
1564 @end deffn
1565
1566 @deffn {Scheme Procedure} ash n cnt
1567 @deffnx {C Function} scm_ash (n, cnt)
1568 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1569 @var{cnt} is negative. This is an ``arithmetic'' shift.
1570
1571 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1572 when @var{cnt} is negative it's a division, rounded towards negative
1573 infinity. (Note that this is not the same rounding as @code{quotient}
1574 does.)
1575
1576 With @var{n} viewed as an infinite precision twos complement,
1577 @code{ash} means a left shift introducing zero bits, or a right shift
1578 dropping bits.
1579
1580 @lisp
1581 (number->string (ash #b1 3) 2) @result{} "1000"
1582 (number->string (ash #b1010 -1) 2) @result{} "101"
1583
1584 ;; -23 is bits ...11101001, -6 is bits ...111010
1585 (ash -23 -2) @result{} -6
1586 @end lisp
1587 @end deffn
1588
1589 @deffn {Scheme Procedure} logcount n
1590 @deffnx {C Function} scm_logcount (n)
1591 Return the number of bits in integer @var{n}. If @var{n} is
1592 positive, the 1-bits in its binary representation are counted.
1593 If negative, the 0-bits in its two's-complement binary
1594 representation are counted. If zero, 0 is returned.
1595
1596 @lisp
1597 (logcount #b10101010)
1598 @result{} 4
1599 (logcount 0)
1600 @result{} 0
1601 (logcount -2)
1602 @result{} 1
1603 @end lisp
1604 @end deffn
1605
1606 @deffn {Scheme Procedure} integer-length n
1607 @deffnx {C Function} scm_integer_length (n)
1608 Return the number of bits necessary to represent @var{n}.
1609
1610 For positive @var{n} this is how many bits to the most significant one
1611 bit. For negative @var{n} it's how many bits to the most significant
1612 zero bit in twos complement form.
1613
1614 @lisp
1615 (integer-length #b10101010) @result{} 8
1616 (integer-length #b1111) @result{} 4
1617 (integer-length 0) @result{} 0
1618 (integer-length -1) @result{} 0
1619 (integer-length -256) @result{} 8
1620 (integer-length -257) @result{} 9
1621 @end lisp
1622 @end deffn
1623
1624 @deffn {Scheme Procedure} integer-expt n k
1625 @deffnx {C Function} scm_integer_expt (n, k)
1626 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1627 integer, @var{n} can be any number.
1628
1629 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1630 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1631 @math{0^0} is 1.
1632
1633 @lisp
1634 (integer-expt 2 5) @result{} 32
1635 (integer-expt -3 3) @result{} -27
1636 (integer-expt 5 -3) @result{} 1/125
1637 (integer-expt 0 0) @result{} 1
1638 @end lisp
1639 @end deffn
1640
1641 @deffn {Scheme Procedure} bit-extract n start end
1642 @deffnx {C Function} scm_bit_extract (n, start, end)
1643 Return the integer composed of the @var{start} (inclusive)
1644 through @var{end} (exclusive) bits of @var{n}. The
1645 @var{start}th bit becomes the 0-th bit in the result.
1646
1647 @lisp
1648 (number->string (bit-extract #b1101101010 0 4) 2)
1649 @result{} "1010"
1650 (number->string (bit-extract #b1101101010 4 9) 2)
1651 @result{} "10110"
1652 @end lisp
1653 @end deffn
1654
1655
1656 @node Random
1657 @subsubsection Random Number Generation
1658
1659 Pseudo-random numbers are generated from a random state object, which
1660 can be created with @code{seed->random-state}. The @var{state}
1661 parameter to the various functions below is optional, it defaults to
1662 the state object in the @code{*random-state*} variable.
1663
1664 @deffn {Scheme Procedure} copy-random-state [state]
1665 @deffnx {C Function} scm_copy_random_state (state)
1666 Return a copy of the random state @var{state}.
1667 @end deffn
1668
1669 @deffn {Scheme Procedure} random n [state]
1670 @deffnx {C Function} scm_random (n, state)
1671 Return a number in [0, @var{n}).
1672
1673 Accepts a positive integer or real n and returns a
1674 number of the same type between zero (inclusive) and
1675 @var{n} (exclusive). The values returned have a uniform
1676 distribution.
1677 @end deffn
1678
1679 @deffn {Scheme Procedure} random:exp [state]
1680 @deffnx {C Function} scm_random_exp (state)
1681 Return an inexact real in an exponential distribution with mean
1682 1. For an exponential distribution with mean @var{u} use @code{(*
1683 @var{u} (random:exp))}.
1684 @end deffn
1685
1686 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1687 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1688 Fills @var{vect} with inexact real random numbers the sum of whose
1689 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1690 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1691 the coordinates are uniformly distributed over the surface of the unit
1692 n-sphere.
1693 @end deffn
1694
1695 @deffn {Scheme Procedure} random:normal [state]
1696 @deffnx {C Function} scm_random_normal (state)
1697 Return an inexact real in a normal distribution. The distribution
1698 used has mean 0 and standard deviation 1. For a normal distribution
1699 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1700 (* @var{d} (random:normal)))}.
1701 @end deffn
1702
1703 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1704 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1705 Fills @var{vect} with inexact real random numbers that are
1706 independent and standard normally distributed
1707 (i.e., with mean 0 and variance 1).
1708 @end deffn
1709
1710 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1711 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1712 Fills @var{vect} with inexact real random numbers the sum of whose
1713 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1714 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1715 the coordinates are uniformly distributed within the unit
1716 @var{n}-sphere.
1717 @c FIXME: What does this mean, particularly the n-sphere part?
1718 @end deffn
1719
1720 @deffn {Scheme Procedure} random:uniform [state]
1721 @deffnx {C Function} scm_random_uniform (state)
1722 Return a uniformly distributed inexact real random number in
1723 [0,1).
1724 @end deffn
1725
1726 @deffn {Scheme Procedure} seed->random-state seed
1727 @deffnx {C Function} scm_seed_to_random_state (seed)
1728 Return a new random state using @var{seed}.
1729 @end deffn
1730
1731 @defvar *random-state*
1732 The global random state used by the above functions when the
1733 @var{state} parameter is not given.
1734 @end defvar
1735
1736
1737 @node Characters
1738 @subsection Characters
1739 @tpindex Characters
1740
1741 In Scheme, a character literal is written as @code{#\@var{name}} where
1742 @var{name} is the name of the character that you want. Printable
1743 characters have their usual single character name; for example,
1744 @code{#\a} is a lower case @code{a}.
1745
1746 Most of the ``control characters'' (those below codepoint 32) in the
1747 @acronym{ASCII} character set, as well as the space, may be referred
1748 to by longer names: for example, @code{#\tab}, @code{#\esc},
1749 @code{#\stx}, and so on. The following table describes the
1750 @acronym{ASCII} names for each character.
1751
1752 @multitable @columnfractions .25 .25 .25 .25
1753 @item 0 = @code{#\nul}
1754 @tab 1 = @code{#\soh}
1755 @tab 2 = @code{#\stx}
1756 @tab 3 = @code{#\etx}
1757 @item 4 = @code{#\eot}
1758 @tab 5 = @code{#\enq}
1759 @tab 6 = @code{#\ack}
1760 @tab 7 = @code{#\bel}
1761 @item 8 = @code{#\bs}
1762 @tab 9 = @code{#\ht}
1763 @tab 10 = @code{#\nl}
1764 @tab 11 = @code{#\vt}
1765 @item 12 = @code{#\np}
1766 @tab 13 = @code{#\cr}
1767 @tab 14 = @code{#\so}
1768 @tab 15 = @code{#\si}
1769 @item 16 = @code{#\dle}
1770 @tab 17 = @code{#\dc1}
1771 @tab 18 = @code{#\dc2}
1772 @tab 19 = @code{#\dc3}
1773 @item 20 = @code{#\dc4}
1774 @tab 21 = @code{#\nak}
1775 @tab 22 = @code{#\syn}
1776 @tab 23 = @code{#\etb}
1777 @item 24 = @code{#\can}
1778 @tab 25 = @code{#\em}
1779 @tab 26 = @code{#\sub}
1780 @tab 27 = @code{#\esc}
1781 @item 28 = @code{#\fs}
1782 @tab 29 = @code{#\gs}
1783 @tab 30 = @code{#\rs}
1784 @tab 31 = @code{#\us}
1785 @item 32 = @code{#\sp}
1786 @end multitable
1787
1788 The ``delete'' character (octal 177) may be referred to with the name
1789 @code{#\del}.
1790
1791 Several characters have more than one name:
1792
1793 @multitable {@code{#\backspace}} {Original}
1794 @item Alias @tab Original
1795 @item @code{#\space} @tab @code{#\sp}
1796 @item @code{#\newline} @tab @code{#\nl}
1797 @item @code{#\tab} @tab @code{#\ht}
1798 @item @code{#\backspace} @tab @code{#\bs}
1799 @item @code{#\return} @tab @code{#\cr}
1800 @item @code{#\page} @tab @code{#\np}
1801 @item @code{#\null} @tab @code{#\nul}
1802 @end multitable
1803
1804 @rnindex char?
1805 @deffn {Scheme Procedure} char? x
1806 @deffnx {C Function} scm_char_p (x)
1807 Return @code{#t} iff @var{x} is a character, else @code{#f}.
1808 @end deffn
1809
1810 @rnindex char=?
1811 @deffn {Scheme Procedure} char=? x y
1812 Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
1813 @end deffn
1814
1815 @rnindex char<?
1816 @deffn {Scheme Procedure} char<? x y
1817 Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
1818 else @code{#f}.
1819 @end deffn
1820
1821 @rnindex char<=?
1822 @deffn {Scheme Procedure} char<=? x y
1823 Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1824 @acronym{ASCII} sequence, else @code{#f}.
1825 @end deffn
1826
1827 @rnindex char>?
1828 @deffn {Scheme Procedure} char>? x y
1829 Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1830 sequence, else @code{#f}.
1831 @end deffn
1832
1833 @rnindex char>=?
1834 @deffn {Scheme Procedure} char>=? x y
1835 Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1836 @acronym{ASCII} sequence, else @code{#f}.
1837 @end deffn
1838
1839 @rnindex char-ci=?
1840 @deffn {Scheme Procedure} char-ci=? x y
1841 Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
1842 case, else @code{#f}.
1843 @end deffn
1844
1845 @rnindex char-ci<?
1846 @deffn {Scheme Procedure} char-ci<? x y
1847 Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
1848 ignoring case, else @code{#f}.
1849 @end deffn
1850
1851 @rnindex char-ci<=?
1852 @deffn {Scheme Procedure} char-ci<=? x y
1853 Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
1854 @acronym{ASCII} sequence ignoring case, else @code{#f}.
1855 @end deffn
1856
1857 @rnindex char-ci>?
1858 @deffn {Scheme Procedure} char-ci>? x y
1859 Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
1860 sequence ignoring case, else @code{#f}.
1861 @end deffn
1862
1863 @rnindex char-ci>=?
1864 @deffn {Scheme Procedure} char-ci>=? x y
1865 Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
1866 @acronym{ASCII} sequence ignoring case, else @code{#f}.
1867 @end deffn
1868
1869 @rnindex char-alphabetic?
1870 @deffn {Scheme Procedure} char-alphabetic? chr
1871 @deffnx {C Function} scm_char_alphabetic_p (chr)
1872 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
1873 @end deffn
1874
1875 @rnindex char-numeric?
1876 @deffn {Scheme Procedure} char-numeric? chr
1877 @deffnx {C Function} scm_char_numeric_p (chr)
1878 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
1879 @end deffn
1880
1881 @rnindex char-whitespace?
1882 @deffn {Scheme Procedure} char-whitespace? chr
1883 @deffnx {C Function} scm_char_whitespace_p (chr)
1884 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
1885 @end deffn
1886
1887 @rnindex char-upper-case?
1888 @deffn {Scheme Procedure} char-upper-case? chr
1889 @deffnx {C Function} scm_char_upper_case_p (chr)
1890 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
1891 @end deffn
1892
1893 @rnindex char-lower-case?
1894 @deffn {Scheme Procedure} char-lower-case? chr
1895 @deffnx {C Function} scm_char_lower_case_p (chr)
1896 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
1897 @end deffn
1898
1899 @deffn {Scheme Procedure} char-is-both? chr
1900 @deffnx {C Function} scm_char_is_both_p (chr)
1901 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
1902 @code{#f}.
1903 @end deffn
1904
1905 @rnindex char->integer
1906 @deffn {Scheme Procedure} char->integer chr
1907 @deffnx {C Function} scm_char_to_integer (chr)
1908 Return the number corresponding to ordinal position of @var{chr} in the
1909 @acronym{ASCII} sequence.
1910 @end deffn
1911
1912 @rnindex integer->char
1913 @deffn {Scheme Procedure} integer->char n
1914 @deffnx {C Function} scm_integer_to_char (n)
1915 Return the character at position @var{n} in the @acronym{ASCII} sequence.
1916 @end deffn
1917
1918 @rnindex char-upcase
1919 @deffn {Scheme Procedure} char-upcase chr
1920 @deffnx {C Function} scm_char_upcase (chr)
1921 Return the uppercase character version of @var{chr}.
1922 @end deffn
1923
1924 @rnindex char-downcase
1925 @deffn {Scheme Procedure} char-downcase chr
1926 @deffnx {C Function} scm_char_downcase (chr)
1927 Return the lowercase character version of @var{chr}.
1928 @end deffn
1929
1930 @node Character Sets
1931 @subsection Character Sets
1932
1933 The features described in this section correspond directly to SRFI-14.
1934
1935 The data type @dfn{charset} implements sets of characters
1936 (@pxref{Characters}). Because the internal representation of
1937 character sets is not visible to the user, a lot of procedures for
1938 handling them are provided.
1939
1940 Character sets can be created, extended, tested for the membership of a
1941 characters and be compared to other character sets.
1942
1943 The Guile implementation of character sets currently deals only with
1944 8-bit characters. In the future, when Guile gets support for
1945 international character sets, this will change, but the functions
1946 provided here will always then be able to efficiently cope with very
1947 large character sets.
1948
1949 @menu
1950 * Character Set Predicates/Comparison::
1951 * Iterating Over Character Sets:: Enumerate charset elements.
1952 * Creating Character Sets:: Making new charsets.
1953 * Querying Character Sets:: Test charsets for membership etc.
1954 * Character-Set Algebra:: Calculating new charsets.
1955 * Standard Character Sets:: Variables containing predefined charsets.
1956 @end menu
1957
1958 @node Character Set Predicates/Comparison
1959 @subsubsection Character Set Predicates/Comparison
1960
1961 Use these procedures for testing whether an object is a character set,
1962 or whether several character sets are equal or subsets of each other.
1963 @code{char-set-hash} can be used for calculating a hash value, maybe for
1964 usage in fast lookup procedures.
1965
1966 @deffn {Scheme Procedure} char-set? obj
1967 @deffnx {C Function} scm_char_set_p (obj)
1968 Return @code{#t} if @var{obj} is a character set, @code{#f}
1969 otherwise.
1970 @end deffn
1971
1972 @deffn {Scheme Procedure} char-set= . char_sets
1973 @deffnx {C Function} scm_char_set_eq (char_sets)
1974 Return @code{#t} if all given character sets are equal.
1975 @end deffn
1976
1977 @deffn {Scheme Procedure} char-set<= . char_sets
1978 @deffnx {C Function} scm_char_set_leq (char_sets)
1979 Return @code{#t} if every character set @var{cs}i is a subset
1980 of character set @var{cs}i+1.
1981 @end deffn
1982
1983 @deffn {Scheme Procedure} char-set-hash cs [bound]
1984 @deffnx {C Function} scm_char_set_hash (cs, bound)
1985 Compute a hash value for the character set @var{cs}. If
1986 @var{bound} is given and non-zero, it restricts the
1987 returned value to the range 0 @dots{} @var{bound - 1}.
1988 @end deffn
1989
1990 @c ===================================================================
1991
1992 @node Iterating Over Character Sets
1993 @subsubsection Iterating Over Character Sets
1994
1995 Character set cursors are a means for iterating over the members of a
1996 character sets. After creating a character set cursor with
1997 @code{char-set-cursor}, a cursor can be dereferenced with
1998 @code{char-set-ref}, advanced to the next member with
1999 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2000 element of the set can be checked with @code{end-of-char-set?}.
2001
2002 Additionally, mapping and (un-)folding procedures for character sets are
2003 provided.
2004
2005 @deffn {Scheme Procedure} char-set-cursor cs
2006 @deffnx {C Function} scm_char_set_cursor (cs)
2007 Return a cursor into the character set @var{cs}.
2008 @end deffn
2009
2010 @deffn {Scheme Procedure} char-set-ref cs cursor
2011 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2012 Return the character at the current cursor position
2013 @var{cursor} in the character set @var{cs}. It is an error to
2014 pass a cursor for which @code{end-of-char-set?} returns true.
2015 @end deffn
2016
2017 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2018 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2019 Advance the character set cursor @var{cursor} to the next
2020 character in the character set @var{cs}. It is an error if the
2021 cursor given satisfies @code{end-of-char-set?}.
2022 @end deffn
2023
2024 @deffn {Scheme Procedure} end-of-char-set? cursor
2025 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2026 Return @code{#t} if @var{cursor} has reached the end of a
2027 character set, @code{#f} otherwise.
2028 @end deffn
2029
2030 @deffn {Scheme Procedure} char-set-fold kons knil cs
2031 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2032 Fold the procedure @var{kons} over the character set @var{cs},
2033 initializing it with @var{knil}.
2034 @end deffn
2035
2036 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2037 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2038 This is a fundamental constructor for character sets.
2039 @itemize @bullet
2040 @item @var{g} is used to generate a series of ``seed'' values
2041 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2042 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2043 @item @var{p} tells us when to stop -- when it returns true
2044 when applied to one of the seed values.
2045 @item @var{f} maps each seed value to a character. These
2046 characters are added to the base character set @var{base_cs} to
2047 form the result; @var{base_cs} defaults to the empty set.
2048 @end itemize
2049 @end deffn
2050
2051 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2052 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2053 This is a fundamental constructor for character sets.
2054 @itemize @bullet
2055 @item @var{g} is used to generate a series of ``seed'' values
2056 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2057 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2058 @item @var{p} tells us when to stop -- when it returns true
2059 when applied to one of the seed values.
2060 @item @var{f} maps each seed value to a character. These
2061 characters are added to the base character set @var{base_cs} to
2062 form the result; @var{base_cs} defaults to the empty set.
2063 @end itemize
2064 @end deffn
2065
2066 @deffn {Scheme Procedure} char-set-for-each proc cs
2067 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2068 Apply @var{proc} to every character in the character set
2069 @var{cs}. The return value is not specified.
2070 @end deffn
2071
2072 @deffn {Scheme Procedure} char-set-map proc cs
2073 @deffnx {C Function} scm_char_set_map (proc, cs)
2074 Map the procedure @var{proc} over every character in @var{cs}.
2075 @var{proc} must be a character -> character procedure.
2076 @end deffn
2077
2078 @c ===================================================================
2079
2080 @node Creating Character Sets
2081 @subsubsection Creating Character Sets
2082
2083 New character sets are produced with these procedures.
2084
2085 @deffn {Scheme Procedure} char-set-copy cs
2086 @deffnx {C Function} scm_char_set_copy (cs)
2087 Return a newly allocated character set containing all
2088 characters in @var{cs}.
2089 @end deffn
2090
2091 @deffn {Scheme Procedure} char-set . rest
2092 @deffnx {C Function} scm_char_set (rest)
2093 Return a character set containing all given characters.
2094 @end deffn
2095
2096 @deffn {Scheme Procedure} list->char-set list [base_cs]
2097 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2098 Convert the character list @var{list} to a character set. If
2099 the character set @var{base_cs} is given, the character in this
2100 set are also included in the result.
2101 @end deffn
2102
2103 @deffn {Scheme Procedure} list->char-set! list base_cs
2104 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2105 Convert the character list @var{list} to a character set. The
2106 characters are added to @var{base_cs} and @var{base_cs} is
2107 returned.
2108 @end deffn
2109
2110 @deffn {Scheme Procedure} string->char-set str [base_cs]
2111 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2112 Convert the string @var{str} to a character set. If the
2113 character set @var{base_cs} is given, the characters in this
2114 set are also included in the result.
2115 @end deffn
2116
2117 @deffn {Scheme Procedure} string->char-set! str base_cs
2118 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2119 Convert the string @var{str} to a character set. The
2120 characters from the string are added to @var{base_cs}, and
2121 @var{base_cs} is returned.
2122 @end deffn
2123
2124 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2125 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2126 Return a character set containing every character from @var{cs}
2127 so that it satisfies @var{pred}. If provided, the characters
2128 from @var{base_cs} are added to the result.
2129 @end deffn
2130
2131 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2132 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2133 Return a character set containing every character from @var{cs}
2134 so that it satisfies @var{pred}. The characters are added to
2135 @var{base_cs} and @var{base_cs} is returned.
2136 @end deffn
2137
2138 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2139 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2140 Return a character set containing all characters whose
2141 character codes lie in the half-open range
2142 [@var{lower},@var{upper}).
2143
2144 If @var{error} is a true value, an error is signalled if the
2145 specified range contains characters which are not contained in
2146 the implemented character range. If @var{error} is @code{#f},
2147 these characters are silently left out of the resultung
2148 character set.
2149
2150 The characters in @var{base_cs} are added to the result, if
2151 given.
2152 @end deffn
2153
2154 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2155 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2156 Return a character set containing all characters whose
2157 character codes lie in the half-open range
2158 [@var{lower},@var{upper}).
2159
2160 If @var{error} is a true value, an error is signalled if the
2161 specified range contains characters which are not contained in
2162 the implemented character range. If @var{error} is @code{#f},
2163 these characters are silently left out of the resultung
2164 character set.
2165
2166 The characters are added to @var{base_cs} and @var{base_cs} is
2167 returned.
2168 @end deffn
2169
2170 @deffn {Scheme Procedure} ->char-set x
2171 @deffnx {C Function} scm_to_char_set (x)
2172 Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
2173 @end deffn
2174
2175 @c ===================================================================
2176
2177 @node Querying Character Sets
2178 @subsubsection Querying Character Sets
2179
2180 Access the elements and other information of a character set with these
2181 procedures.
2182
2183 @deffn {Scheme Procedure} char-set-size cs
2184 @deffnx {C Function} scm_char_set_size (cs)
2185 Return the number of elements in character set @var{cs}.
2186 @end deffn
2187
2188 @deffn {Scheme Procedure} char-set-count pred cs
2189 @deffnx {C Function} scm_char_set_count (pred, cs)
2190 Return the number of the elements int the character set
2191 @var{cs} which satisfy the predicate @var{pred}.
2192 @end deffn
2193
2194 @deffn {Scheme Procedure} char-set->list cs
2195 @deffnx {C Function} scm_char_set_to_list (cs)
2196 Return a list containing the elements of the character set
2197 @var{cs}.
2198 @end deffn
2199
2200 @deffn {Scheme Procedure} char-set->string cs
2201 @deffnx {C Function} scm_char_set_to_string (cs)
2202 Return a string containing the elements of the character set
2203 @var{cs}. The order in which the characters are placed in the
2204 string is not defined.
2205 @end deffn
2206
2207 @deffn {Scheme Procedure} char-set-contains? cs ch
2208 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2209 Return @code{#t} iff the character @var{ch} is contained in the
2210 character set @var{cs}.
2211 @end deffn
2212
2213 @deffn {Scheme Procedure} char-set-every pred cs
2214 @deffnx {C Function} scm_char_set_every (pred, cs)
2215 Return a true value if every character in the character set
2216 @var{cs} satisfies the predicate @var{pred}.
2217 @end deffn
2218
2219 @deffn {Scheme Procedure} char-set-any pred cs
2220 @deffnx {C Function} scm_char_set_any (pred, cs)
2221 Return a true value if any character in the character set
2222 @var{cs} satisfies the predicate @var{pred}.
2223 @end deffn
2224
2225 @c ===================================================================
2226
2227 @node Character-Set Algebra
2228 @subsubsection Character-Set Algebra
2229
2230 Character sets can be manipulated with the common set algebra operation,
2231 such as union, complement, intersection etc. All of these procedures
2232 provide side-effecting variants, which modify their character set
2233 argument(s).
2234
2235 @deffn {Scheme Procedure} char-set-adjoin cs . rest
2236 @deffnx {C Function} scm_char_set_adjoin (cs, rest)
2237 Add all character arguments to the first argument, which must
2238 be a character set.
2239 @end deffn
2240
2241 @deffn {Scheme Procedure} char-set-delete cs . rest
2242 @deffnx {C Function} scm_char_set_delete (cs, rest)
2243 Delete all character arguments from the first argument, which
2244 must be a character set.
2245 @end deffn
2246
2247 @deffn {Scheme Procedure} char-set-adjoin! cs . rest
2248 @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2249 Add all character arguments to the first argument, which must
2250 be a character set.
2251 @end deffn
2252
2253 @deffn {Scheme Procedure} char-set-delete! cs . rest
2254 @deffnx {C Function} scm_char_set_delete_x (cs, rest)
2255 Delete all character arguments from the first argument, which
2256 must be a character set.
2257 @end deffn
2258
2259 @deffn {Scheme Procedure} char-set-complement cs
2260 @deffnx {C Function} scm_char_set_complement (cs)
2261 Return the complement of the character set @var{cs}.
2262 @end deffn
2263
2264 @deffn {Scheme Procedure} char-set-union . rest
2265 @deffnx {C Function} scm_char_set_union (rest)
2266 Return the union of all argument character sets.
2267 @end deffn
2268
2269 @deffn {Scheme Procedure} char-set-intersection . rest
2270 @deffnx {C Function} scm_char_set_intersection (rest)
2271 Return the intersection of all argument character sets.
2272 @end deffn
2273
2274 @deffn {Scheme Procedure} char-set-difference cs1 . rest
2275 @deffnx {C Function} scm_char_set_difference (cs1, rest)
2276 Return the difference of all argument character sets.
2277 @end deffn
2278
2279 @deffn {Scheme Procedure} char-set-xor . rest
2280 @deffnx {C Function} scm_char_set_xor (rest)
2281 Return the exclusive-or of all argument character sets.
2282 @end deffn
2283
2284 @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2285 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2286 Return the difference and the intersection of all argument
2287 character sets.
2288 @end deffn
2289
2290 @deffn {Scheme Procedure} char-set-complement! cs
2291 @deffnx {C Function} scm_char_set_complement_x (cs)
2292 Return the complement of the character set @var{cs}.
2293 @end deffn
2294
2295 @deffn {Scheme Procedure} char-set-union! cs1 . rest
2296 @deffnx {C Function} scm_char_set_union_x (cs1, rest)
2297 Return the union of all argument character sets.
2298 @end deffn
2299
2300 @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2301 @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2302 Return the intersection of all argument character sets.
2303 @end deffn
2304
2305 @deffn {Scheme Procedure} char-set-difference! cs1 . rest
2306 @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2307 Return the difference of all argument character sets.
2308 @end deffn
2309
2310 @deffn {Scheme Procedure} char-set-xor! cs1 . rest
2311 @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2312 Return the exclusive-or of all argument character sets.
2313 @end deffn
2314
2315 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2316 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2317 Return the difference and the intersection of all argument
2318 character sets.
2319 @end deffn
2320
2321 @c ===================================================================
2322
2323 @node Standard Character Sets
2324 @subsubsection Standard Character Sets
2325
2326 In order to make the use of the character set data type and procedures
2327 useful, several predefined character set variables exist.
2328
2329 @cindex codeset
2330 @cindex charset
2331 @cindex locale
2332
2333 Currently, the contents of these character sets are recomputed upon a
2334 successful @code{setlocale} call (@pxref{Locales}) in order to reflect
2335 the characters available in the current locale's codeset. For
2336 instance, @code{char-set:letter} contains 52 characters under an ASCII
2337 locale (e.g., the default @code{C} locale) and 117 characters under an
2338 ISO-8859-1 (``Latin-1'') locale.
2339
2340 @defvr {Scheme Variable} char-set:lower-case
2341 @defvrx {C Variable} scm_char_set_lower_case
2342 All lower-case characters.
2343 @end defvr
2344
2345 @defvr {Scheme Variable} char-set:upper-case
2346 @defvrx {C Variable} scm_char_set_upper_case
2347 All upper-case characters.
2348 @end defvr
2349
2350 @defvr {Scheme Variable} char-set:title-case
2351 @defvrx {C Variable} scm_char_set_title_case
2352 This is empty, because ASCII has no titlecase characters.
2353 @end defvr
2354
2355 @defvr {Scheme Variable} char-set:letter
2356 @defvrx {C Variable} scm_char_set_letter
2357 All letters, e.g. the union of @code{char-set:lower-case} and
2358 @code{char-set:upper-case}.
2359 @end defvr
2360
2361 @defvr {Scheme Variable} char-set:digit
2362 @defvrx {C Variable} scm_char_set_digit
2363 All digits.
2364 @end defvr
2365
2366 @defvr {Scheme Variable} char-set:letter+digit
2367 @defvrx {C Variable} scm_char_set_letter_and_digit
2368 The union of @code{char-set:letter} and @code{char-set:digit}.
2369 @end defvr
2370
2371 @defvr {Scheme Variable} char-set:graphic
2372 @defvrx {C Variable} scm_char_set_graphic
2373 All characters which would put ink on the paper.
2374 @end defvr
2375
2376 @defvr {Scheme Variable} char-set:printing
2377 @defvrx {C Variable} scm_char_set_printing
2378 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2379 @end defvr
2380
2381 @defvr {Scheme Variable} char-set:whitespace
2382 @defvrx {C Variable} scm_char_set_whitespace
2383 All whitespace characters.
2384 @end defvr
2385
2386 @defvr {Scheme Variable} char-set:blank
2387 @defvrx {C Variable} scm_char_set_blank
2388 All horizontal whitespace characters, that is @code{#\space} and
2389 @code{#\tab}.
2390 @end defvr
2391
2392 @defvr {Scheme Variable} char-set:iso-control
2393 @defvrx {C Variable} scm_char_set_iso_control
2394 The ISO control characters with the codes 0--31 and 127.
2395 @end defvr
2396
2397 @defvr {Scheme Variable} char-set:punctuation
2398 @defvrx {C Variable} scm_char_set_punctuation
2399 The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2400 @end defvr
2401
2402 @defvr {Scheme Variable} char-set:symbol
2403 @defvrx {C Variable} scm_char_set_symbol
2404 The characters @code{$+<=>^`|~}.
2405 @end defvr
2406
2407 @defvr {Scheme Variable} char-set:hex-digit
2408 @defvrx {C Variable} scm_char_set_hex_digit
2409 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2410 @end defvr
2411
2412 @defvr {Scheme Variable} char-set:ascii
2413 @defvrx {C Variable} scm_char_set_ascii
2414 All ASCII characters.
2415 @end defvr
2416
2417 @defvr {Scheme Variable} char-set:empty
2418 @defvrx {C Variable} scm_char_set_empty
2419 The empty character set.
2420 @end defvr
2421
2422 @defvr {Scheme Variable} char-set:full
2423 @defvrx {C Variable} scm_char_set_full
2424 This character set contains all possible characters.
2425 @end defvr
2426
2427 @node Strings
2428 @subsection Strings
2429 @tpindex Strings
2430
2431 Strings are fixed-length sequences of characters. They can be created
2432 by calling constructor procedures, but they can also literally get
2433 entered at the @acronym{REPL} or in Scheme source files.
2434
2435 @c Guile provides a rich set of string processing procedures, because text
2436 @c handling is very important when Guile is used as a scripting language.
2437
2438 Strings always carry the information about how many characters they are
2439 composed of with them, so there is no special end-of-string character,
2440 like in C. That means that Scheme strings can contain any character,
2441 even the @samp{#\nul} character @samp{\0}.
2442
2443 To use strings efficiently, you need to know a bit about how Guile
2444 implements them. In Guile, a string consists of two parts, a head and
2445 the actual memory where the characters are stored. When a string (or
2446 a substring of it) is copied, only a new head gets created, the memory
2447 is usually not copied. The two heads start out pointing to the same
2448 memory.
2449
2450 When one of these two strings is modified, as with @code{string-set!},
2451 their common memory does get copied so that each string has its own
2452 memory and modifying one does not accidently modify the other as well.
2453 Thus, Guile's strings are `copy on write'; the actual copying of their
2454 memory is delayed until one string is written to.
2455
2456 This implementation makes functions like @code{substring} very
2457 efficient in the common case that no modifications are done to the
2458 involved strings.
2459
2460 If you do know that your strings are getting modified right away, you
2461 can use @code{substring/copy} instead of @code{substring}. This
2462 function performs the copy immediately at the time of creation. This
2463 is more efficient, especially in a multi-threaded program. Also,
2464 @code{substring/copy} can avoid the problem that a short substring
2465 holds on to the memory of a very large original string that could
2466 otherwise be recycled.
2467
2468 If you want to avoid the copy altogether, so that modifications of one
2469 string show up in the other, you can use @code{substring/shared}. The
2470 strings created by this procedure are called @dfn{mutation sharing
2471 substrings} since the substring and the original string share
2472 modifications to each other.
2473
2474 If you want to prevent modifications, use @code{substring/read-only}.
2475
2476 Guile provides all procedures of SRFI-13 and a few more.
2477
2478 @menu
2479 * String Syntax:: Read syntax for strings.
2480 * String Predicates:: Testing strings for certain properties.
2481 * String Constructors:: Creating new string objects.
2482 * List/String Conversion:: Converting from/to lists of characters.
2483 * String Selection:: Select portions from strings.
2484 * String Modification:: Modify parts or whole strings.
2485 * String Comparison:: Lexicographic ordering predicates.
2486 * String Searching:: Searching in strings.
2487 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2488 * Reversing and Appending Strings:: Appending strings to form a new string.
2489 * Mapping Folding and Unfolding:: Iterating over strings.
2490 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2491 * Conversion to/from C::
2492 @end menu
2493
2494 @node String Syntax
2495 @subsubsection String Read Syntax
2496
2497 @c In the following @code is used to get a good font in TeX etc, but
2498 @c is omitted for Info format, so as not to risk any confusion over
2499 @c whether surrounding ` ' quotes are part of the escape or are
2500 @c special in a string (they're not).
2501
2502 The read syntax for strings is an arbitrarily long sequence of
2503 characters enclosed in double quotes (@nicode{"}).
2504
2505 Backslash is an escape character and can be used to insert the
2506 following special characters. @nicode{\"} and @nicode{\\} are R5RS
2507 standard, the rest are Guile extensions, notice they follow C string
2508 syntax.
2509
2510 @table @asis
2511 @item @nicode{\\}
2512 Backslash character.
2513
2514 @item @nicode{\"}
2515 Double quote character (an unescaped @nicode{"} is otherwise the end
2516 of the string).
2517
2518 @item @nicode{\0}
2519 NUL character (ASCII 0).
2520
2521 @item @nicode{\a}
2522 Bell character (ASCII 7).
2523
2524 @item @nicode{\f}
2525 Formfeed character (ASCII 12).
2526
2527 @item @nicode{\n}
2528 Newline character (ASCII 10).
2529
2530 @item @nicode{\r}
2531 Carriage return character (ASCII 13).
2532
2533 @item @nicode{\t}
2534 Tab character (ASCII 9).
2535
2536 @item @nicode{\v}
2537 Vertical tab character (ASCII 11).
2538
2539 @item @nicode{\xHH}
2540 Character code given by two hexadecimal digits. For example
2541 @nicode{\x7f} for an ASCII DEL (127).
2542 @end table
2543
2544 @noindent
2545 The following are examples of string literals:
2546
2547 @lisp
2548 "foo"
2549 "bar plonk"
2550 "Hello World"
2551 "\"Hi\", he said."
2552 @end lisp
2553
2554
2555 @node String Predicates
2556 @subsubsection String Predicates
2557
2558 The following procedures can be used to check whether a given string
2559 fulfills some specified property.
2560
2561 @rnindex string?
2562 @deffn {Scheme Procedure} string? obj
2563 @deffnx {C Function} scm_string_p (obj)
2564 Return @code{#t} if @var{obj} is a string, else @code{#f}.
2565 @end deffn
2566
2567 @deftypefn {C Function} int scm_is_string (SCM obj)
2568 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2569 @end deftypefn
2570
2571 @deffn {Scheme Procedure} string-null? str
2572 @deffnx {C Function} scm_string_null_p (str)
2573 Return @code{#t} if @var{str}'s length is zero, and
2574 @code{#f} otherwise.
2575 @lisp
2576 (string-null? "") @result{} #t
2577 y @result{} "foo"
2578 (string-null? y) @result{} #f
2579 @end lisp
2580 @end deffn
2581
2582 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
2583 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
2584 Check if @var{char_pred} is true for any character in string @var{s}.
2585
2586 @var{char_pred} can be a character to check for any equal to that, or
2587 a character set (@pxref{Character Sets}) to check for any in that set,
2588 or a predicate procedure to call.
2589
2590 For a procedure, calls @code{(@var{char_pred} c)} are made
2591 successively on the characters from @var{start} to @var{end}. If
2592 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2593 stops and that return value is the return from @code{string-any}. The
2594 call on the last character (ie.@: at @math{@var{end}-1}), if that
2595 point is reached, is a tail call.
2596
2597 If there are no characters in @var{s} (ie.@: @var{start} equals
2598 @var{end}) then the return is @code{#f}.
2599 @end deffn
2600
2601 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
2602 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
2603 Check if @var{char_pred} is true for every character in string
2604 @var{s}.
2605
2606 @var{char_pred} can be a character to check for every character equal
2607 to that, or a character set (@pxref{Character Sets}) to check for
2608 every character being in that set, or a predicate procedure to call.
2609
2610 For a procedure, calls @code{(@var{char_pred} c)} are made
2611 successively on the characters from @var{start} to @var{end}. If
2612 @var{char_pred} returns @code{#f}, @code{string-every} stops and
2613 returns @code{#f}. The call on the last character (ie.@: at
2614 @math{@var{end}-1}), if that point is reached, is a tail call and the
2615 return from that call is the return from @code{string-every}.
2616
2617 If there are no characters in @var{s} (ie.@: @var{start} equals
2618 @var{end}) then the return is @code{#t}.
2619 @end deffn
2620
2621 @node String Constructors
2622 @subsubsection String Constructors
2623
2624 The string constructor procedures create new string objects, possibly
2625 initializing them with some specified character data. See also
2626 @xref{String Selection}, for ways to create strings from existing
2627 strings.
2628
2629 @c FIXME::martin: list->string belongs into `List/String Conversion'
2630
2631 @deffn {Scheme Procedure} string char@dots{}
2632 @rnindex string
2633 Return a newly allocated string made from the given character
2634 arguments.
2635
2636 @example
2637 (string #\x #\y #\z) @result{} "xyz"
2638 (string) @result{} ""
2639 @end example
2640 @end deffn
2641
2642 @deffn {Scheme Procedure} list->string lst
2643 @deffnx {C Function} scm_string (lst)
2644 @rnindex list->string
2645 Return a newly allocated string made from a list of characters.
2646
2647 @example
2648 (list->string '(#\a #\b #\c)) @result{} "abc"
2649 @end example
2650 @end deffn
2651
2652 @deffn {Scheme Procedure} reverse-list->string lst
2653 @deffnx {C Function} scm_reverse_list_to_string (lst)
2654 Return a newly allocated string made from a list of characters, in
2655 reverse order.
2656
2657 @example
2658 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2659 @end example
2660 @end deffn
2661
2662 @rnindex make-string
2663 @deffn {Scheme Procedure} make-string k [chr]
2664 @deffnx {C Function} scm_make_string (k, chr)
2665 Return a newly allocated string of
2666 length @var{k}. If @var{chr} is given, then all elements of
2667 the string are initialized to @var{chr}, otherwise the contents
2668 of the @var{string} are unspecified.
2669 @end deffn
2670
2671 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2672 Like @code{scm_make_string}, but expects the length as a
2673 @code{size_t}.
2674 @end deftypefn
2675
2676 @deffn {Scheme Procedure} string-tabulate proc len
2677 @deffnx {C Function} scm_string_tabulate (proc, len)
2678 @var{proc} is an integer->char procedure. Construct a string
2679 of size @var{len} by applying @var{proc} to each index to
2680 produce the corresponding string element. The order in which
2681 @var{proc} is applied to the indices is not specified.
2682 @end deffn
2683
2684 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2685 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2686 Append the string in the string list @var{ls}, using the string
2687 @var{delim} as a delimiter between the elements of @var{ls}.
2688 @var{grammar} is a symbol which specifies how the delimiter is
2689 placed between the strings, and defaults to the symbol
2690 @code{infix}.
2691
2692 @table @code
2693 @item infix
2694 Insert the separator between list elements. An empty string
2695 will produce an empty list.
2696 @item string-infix
2697 Like @code{infix}, but will raise an error if given the empty
2698 list.
2699 @item suffix
2700 Insert the separator after every list element.
2701 @item prefix
2702 Insert the separator before each list element.
2703 @end table
2704 @end deffn
2705
2706 @node List/String Conversion
2707 @subsubsection List/String conversion
2708
2709 When processing strings, it is often convenient to first convert them
2710 into a list representation by using the procedure @code{string->list},
2711 work with the resulting list, and then convert it back into a string.
2712 These procedures are useful for similar tasks.
2713
2714 @rnindex string->list
2715 @deffn {Scheme Procedure} string->list str [start [end]]
2716 @deffnx {C Function} scm_substring_to_list (str, start, end)
2717 @deffnx {C Function} scm_string_to_list (str)
2718 Convert the string @var{str} into a list of characters.
2719 @end deffn
2720
2721 @deffn {Scheme Procedure} string-split str chr
2722 @deffnx {C Function} scm_string_split (str, chr)
2723 Split the string @var{str} into the a list of the substrings delimited
2724 by appearances of the character @var{chr}. Note that an empty substring
2725 between separator characters will result in an empty string in the
2726 result list.
2727
2728 @lisp
2729 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2730 @result{}
2731 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
2732
2733 (string-split "::" #\:)
2734 @result{}
2735 ("" "" "")
2736
2737 (string-split "" #\:)
2738 @result{}
2739 ("")
2740 @end lisp
2741 @end deffn
2742
2743
2744 @node String Selection
2745 @subsubsection String Selection
2746
2747 Portions of strings can be extracted by these procedures.
2748 @code{string-ref} delivers individual characters whereas
2749 @code{substring} can be used to extract substrings from longer strings.
2750
2751 @rnindex string-length
2752 @deffn {Scheme Procedure} string-length string
2753 @deffnx {C Function} scm_string_length (string)
2754 Return the number of characters in @var{string}.
2755 @end deffn
2756
2757 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
2758 Return the number of characters in @var{str} as a @code{size_t}.
2759 @end deftypefn
2760
2761 @rnindex string-ref
2762 @deffn {Scheme Procedure} string-ref str k
2763 @deffnx {C Function} scm_string_ref (str, k)
2764 Return character @var{k} of @var{str} using zero-origin
2765 indexing. @var{k} must be a valid index of @var{str}.
2766 @end deffn
2767
2768 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2769 Return character @var{k} of @var{str} using zero-origin
2770 indexing. @var{k} must be a valid index of @var{str}.
2771 @end deftypefn
2772
2773 @rnindex string-copy
2774 @deffn {Scheme Procedure} string-copy str [start [end]]
2775 @deffnx {C Function} scm_substring_copy (str, start, end)
2776 @deffnx {C Function} scm_string_copy (str)
2777 Return a copy of the given string @var{str}.
2778
2779 The returned string shares storage with @var{str} initially, but it is
2780 copied as soon as one of the two strings is modified.
2781 @end deffn
2782
2783 @rnindex substring
2784 @deffn {Scheme Procedure} substring str start [end]
2785 @deffnx {C Function} scm_substring (str, start, end)
2786 Return a new string formed from the characters
2787 of @var{str} beginning with index @var{start} (inclusive) and
2788 ending with index @var{end} (exclusive).
2789 @var{str} must be a string, @var{start} and @var{end} must be
2790 exact integers satisfying:
2791
2792 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
2793
2794 The returned string shares storage with @var{str} initially, but it is
2795 copied as soon as one of the two strings is modified.
2796 @end deffn
2797
2798 @deffn {Scheme Procedure} substring/shared str start [end]
2799 @deffnx {C Function} scm_substring_shared (str, start, end)
2800 Like @code{substring}, but the strings continue to share their storage
2801 even if they are modified. Thus, modifications to @var{str} show up
2802 in the new string, and vice versa.
2803 @end deffn
2804
2805 @deffn {Scheme Procedure} substring/copy str start [end]
2806 @deffnx {C Function} scm_substring_copy (str, start, end)
2807 Like @code{substring}, but the storage for the new string is copied
2808 immediately.
2809 @end deffn
2810
2811 @deffn {Scheme Procedure} substring/read-only str start [end]
2812 @deffnx {C Function} scm_substring_read_only (str, start, end)
2813 Like @code{substring}, but the resulting string can not be modified.
2814 @end deffn
2815
2816 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2817 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2818 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
2819 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
2820 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2821 @end deftypefn
2822
2823 @deffn {Scheme Procedure} string-take s n
2824 @deffnx {C Function} scm_string_take (s, n)
2825 Return the @var{n} first characters of @var{s}.
2826 @end deffn
2827
2828 @deffn {Scheme Procedure} string-drop s n
2829 @deffnx {C Function} scm_string_drop (s, n)
2830 Return all but the first @var{n} characters of @var{s}.
2831 @end deffn
2832
2833 @deffn {Scheme Procedure} string-take-right s n
2834 @deffnx {C Function} scm_string_take_right (s, n)
2835 Return the @var{n} last characters of @var{s}.
2836 @end deffn
2837
2838 @deffn {Scheme Procedure} string-drop-right s n
2839 @deffnx {C Function} scm_string_drop_right (s, n)
2840 Return all but the last @var{n} characters of @var{s}.
2841 @end deffn
2842
2843 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
2844 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
2845 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
2846 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
2847 Take characters @var{start} to @var{end} from the string @var{s} and
2848 either pad with @var{char} or truncate them to give @var{len}
2849 characters.
2850
2851 @code{string-pad} pads or truncates on the left, so for example
2852
2853 @example
2854 (string-pad "x" 3) @result{} " x"
2855 (string-pad "abcde" 3) @result{} "cde"
2856 @end example
2857
2858 @code{string-pad-right} pads or truncates on the right, so for example
2859
2860 @example
2861 (string-pad-right "x" 3) @result{} "x "
2862 (string-pad-right "abcde" 3) @result{} "abc"
2863 @end example
2864 @end deffn
2865
2866 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2867 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2868 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2869 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2870 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2871 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2872 Trim occurrances of @var{char_pred} from the ends of @var{s}.
2873
2874 @code{string-trim} trims @var{char_pred} characters from the left
2875 (start) of the string, @code{string-trim-right} trims them from the
2876 right (end) of the string, @code{string-trim-both} trims from both
2877 ends.
2878
2879 @var{char_pred} can be a character, a character set, or a predicate
2880 procedure to call on each character. If @var{char_pred} is not given
2881 the default is whitespace as per @code{char-set:whitespace}
2882 (@pxref{Standard Character Sets}).
2883
2884 @example
2885 (string-trim " x ") @result{} "x "
2886 (string-trim-right "banana" #\a) @result{} "banan"
2887 (string-trim-both ".,xy:;" char-set:punctuation)
2888 @result{} "xy"
2889 (string-trim-both "xyzzy" (lambda (c)
2890 (or (eqv? c #\x)
2891 (eqv? c #\y))))
2892 @result{} "zz"
2893 @end example
2894 @end deffn
2895
2896 @node String Modification
2897 @subsubsection String Modification
2898
2899 These procedures are for modifying strings in-place. This means that the
2900 result of the operation is not a new string; instead, the original string's
2901 memory representation is modified.
2902
2903 @rnindex string-set!
2904 @deffn {Scheme Procedure} string-set! str k chr
2905 @deffnx {C Function} scm_string_set_x (str, k, chr)
2906 Store @var{chr} in element @var{k} of @var{str} and return
2907 an unspecified value. @var{k} must be a valid index of
2908 @var{str}.
2909 @end deffn
2910
2911 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2912 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2913 @end deftypefn
2914
2915 @rnindex string-fill!
2916 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
2917 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
2918 @deffnx {C Function} scm_string_fill_x (str, chr)
2919 Stores @var{chr} in every element of the given @var{str} and
2920 returns an unspecified value.
2921 @end deffn
2922
2923 @deffn {Scheme Procedure} substring-fill! str start end fill
2924 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2925 Change every character in @var{str} between @var{start} and
2926 @var{end} to @var{fill}.
2927
2928 @lisp
2929 (define y "abcdefg")
2930 (substring-fill! y 1 3 #\r)
2931 y
2932 @result{} "arrdefg"
2933 @end lisp
2934 @end deffn
2935
2936 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2937 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2938 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2939 into @var{str2} beginning at position @var{start2}.
2940 @var{str1} and @var{str2} can be the same string.
2941 @end deffn
2942
2943 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2944 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2945 Copy the sequence of characters from index range [@var{start},
2946 @var{end}) in string @var{s} to string @var{target}, beginning
2947 at index @var{tstart}. The characters are copied left-to-right
2948 or right-to-left as needed -- the copy is guaranteed to work,
2949 even if @var{target} and @var{s} are the same string. It is an
2950 error if the copy operation runs off the end of the target
2951 string.
2952 @end deffn
2953
2954
2955 @node String Comparison
2956 @subsubsection String Comparison
2957
2958 The procedures in this section are similar to the character ordering
2959 predicates (@pxref{Characters}), but are defined on character sequences.
2960
2961 The first set is specified in R5RS and has names that end in @code{?}.
2962 The second set is specified in SRFI-13 and the names have no ending
2963 @code{?}. The predicates ending in @code{-ci} ignore the character case
2964 when comparing strings. @xref{Text Collation, the @code{(ice-9
2965 i18n)} module}, for locale-dependent string comparison.
2966
2967 @rnindex string=?
2968 @deffn {Scheme Procedure} string=? s1 s2
2969 Lexicographic equality predicate; return @code{#t} if the two
2970 strings are the same length and contain the same characters in
2971 the same positions, otherwise return @code{#f}.
2972
2973 The procedure @code{string-ci=?} treats upper and lower case
2974 letters as though they were the same character, but
2975 @code{string=?} treats upper and lower case as distinct
2976 characters.
2977 @end deffn
2978
2979 @rnindex string<?
2980 @deffn {Scheme Procedure} string<? s1 s2
2981 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2982 is lexicographically less than @var{s2}.
2983 @end deffn
2984
2985 @rnindex string<=?
2986 @deffn {Scheme Procedure} string<=? s1 s2
2987 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2988 is lexicographically less than or equal to @var{s2}.
2989 @end deffn
2990
2991 @rnindex string>?
2992 @deffn {Scheme Procedure} string>? s1 s2
2993 Lexicographic ordering predicate; return @code{#t} if @var{s1}
2994 is lexicographically greater than @var{s2}.
2995 @end deffn
2996
2997 @rnindex string>=?
2998 @deffn {Scheme Procedure} string>=? s1 s2
2999 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3000 is lexicographically greater than or equal to @var{s2}.
3001 @end deffn
3002
3003 @rnindex string-ci=?
3004 @deffn {Scheme Procedure} string-ci=? s1 s2
3005 Case-insensitive string equality predicate; return @code{#t} if
3006 the two strings are the same length and their component
3007 characters match (ignoring case) at each position; otherwise
3008 return @code{#f}.
3009 @end deffn
3010
3011 @rnindex string-ci<?
3012 @deffn {Scheme Procedure} string-ci<? s1 s2
3013 Case insensitive lexicographic ordering predicate; return
3014 @code{#t} if @var{s1} is lexicographically less than @var{s2}
3015 regardless of case.
3016 @end deffn
3017
3018 @rnindex string<=?
3019 @deffn {Scheme Procedure} string-ci<=? s1 s2
3020 Case insensitive lexicographic ordering predicate; return
3021 @code{#t} if @var{s1} is lexicographically less than or equal
3022 to @var{s2} regardless of case.
3023 @end deffn
3024
3025 @rnindex string-ci>?
3026 @deffn {Scheme Procedure} string-ci>? s1 s2
3027 Case insensitive lexicographic ordering predicate; return
3028 @code{#t} if @var{s1} is lexicographically greater than
3029 @var{s2} regardless of case.
3030 @end deffn
3031
3032 @rnindex string-ci>=?
3033 @deffn {Scheme Procedure} string-ci>=? s1 s2
3034 Case insensitive lexicographic ordering predicate; return
3035 @code{#t} if @var{s1} is lexicographically greater than or
3036 equal to @var{s2} regardless of case.
3037 @end deffn
3038
3039 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3040 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3041 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3042 mismatch index, depending upon whether @var{s1} is less than,
3043 equal to, or greater than @var{s2}. The mismatch index is the
3044 largest index @var{i} such that for every 0 <= @var{j} <
3045 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3046 @var{i} is the first position that does not match.
3047 @end deffn
3048
3049 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3050 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3051 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3052 mismatch index, depending upon whether @var{s1} is less than,
3053 equal to, or greater than @var{s2}. The mismatch index is the
3054 largest index @var{i} such that for every 0 <= @var{j} <
3055 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3056 @var{i} is the first position that does not match. The
3057 character comparison is done case-insensitively.
3058 @end deffn
3059
3060 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3061 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3062 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3063 value otherwise.
3064 @end deffn
3065
3066 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3067 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3068 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3069 value otherwise.
3070 @end deffn
3071
3072 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3073 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3074 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3075 true value otherwise.
3076 @end deffn
3077
3078 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3079 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3080 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3081 true value otherwise.
3082 @end deffn
3083
3084 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3085 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3086 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3087 value otherwise.
3088 @end deffn
3089
3090 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3091 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3092 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3093 otherwise.
3094 @end deffn
3095
3096 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3097 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3098 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3099 value otherwise. The character comparison is done
3100 case-insensitively.
3101 @end deffn
3102
3103 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3104 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3105 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3106 value otherwise. The character comparison is done
3107 case-insensitively.
3108 @end deffn
3109
3110 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3111 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3112 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3113 true value otherwise. The character comparison is done
3114 case-insensitively.
3115 @end deffn
3116
3117 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3118 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3119 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3120 true value otherwise. The character comparison is done
3121 case-insensitively.
3122 @end deffn
3123
3124 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3125 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3126 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3127 value otherwise. The character comparison is done
3128 case-insensitively.
3129 @end deffn
3130
3131 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3132 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3133 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3134 otherwise. The character comparison is done
3135 case-insensitively.
3136 @end deffn
3137
3138 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3139 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3140 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3141 @end deffn
3142
3143 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3144 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3145 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3146 @end deffn
3147
3148 @node String Searching
3149 @subsubsection String Searching
3150
3151 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3152 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3153 Search through the string @var{s} from left to right, returning
3154 the index of the first occurence of a character which
3155
3156 @itemize @bullet
3157 @item
3158 equals @var{char_pred}, if it is character,
3159
3160 @item
3161 satisifies the predicate @var{char_pred}, if it is a procedure,
3162
3163 @item
3164 is in the set @var{char_pred}, if it is a character set.
3165 @end itemize
3166 @end deffn
3167
3168 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3169 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3170 Search through the string @var{s} from right to left, returning
3171 the index of the last occurence of a character which
3172
3173 @itemize @bullet
3174 @item
3175 equals @var{char_pred}, if it is character,
3176
3177 @item
3178 satisifies the predicate @var{char_pred}, if it is a procedure,
3179
3180 @item
3181 is in the set if @var{char_pred} is a character set.
3182 @end itemize
3183 @end deffn
3184
3185 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3186 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3187 Return the length of the longest common prefix of the two
3188 strings.
3189 @end deffn
3190
3191 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3192 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3193 Return the length of the longest common prefix of the two
3194 strings, ignoring character case.
3195 @end deffn
3196
3197 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3198 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3199 Return the length of the longest common suffix of the two
3200 strings.
3201 @end deffn
3202
3203 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3204 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3205 Return the length of the longest common suffix of the two
3206 strings, ignoring character case.
3207 @end deffn
3208
3209 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3210 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3211 Is @var{s1} a prefix of @var{s2}?
3212 @end deffn
3213
3214 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3215 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3216 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3217 @end deffn
3218
3219 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3220 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3221 Is @var{s1} a suffix of @var{s2}?
3222 @end deffn
3223
3224 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3225 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3226 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3227 @end deffn
3228
3229 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3230 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3231 Search through the string @var{s} from right to left, returning
3232 the index of the last occurence of a character which
3233
3234 @itemize @bullet
3235 @item
3236 equals @var{char_pred}, if it is character,
3237
3238 @item
3239 satisifies the predicate @var{char_pred}, if it is a procedure,
3240
3241 @item
3242 is in the set if @var{char_pred} is a character set.
3243 @end itemize
3244 @end deffn
3245
3246 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3247 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3248 Search through the string @var{s} from left to right, returning
3249 the index of the first occurence of a character which
3250
3251 @itemize @bullet
3252 @item
3253 does not equal @var{char_pred}, if it is character,
3254
3255 @item
3256 does not satisify the predicate @var{char_pred}, if it is a
3257 procedure,
3258
3259 @item
3260 is not in the set if @var{char_pred} is a character set.
3261 @end itemize
3262 @end deffn
3263
3264 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3265 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3266 Search through the string @var{s} from right to left, returning
3267 the index of the last occurence of a character which
3268
3269 @itemize @bullet
3270 @item
3271 does not equal @var{char_pred}, if it is character,
3272
3273 @item
3274 does not satisfy the predicate @var{char_pred}, if it is a
3275 procedure,
3276
3277 @item
3278 is not in the set if @var{char_pred} is a character set.
3279 @end itemize
3280 @end deffn
3281
3282 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3283 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3284 Return the count of the number of characters in the string
3285 @var{s} which
3286
3287 @itemize @bullet
3288 @item
3289 equals @var{char_pred}, if it is character,
3290
3291 @item
3292 satisifies the predicate @var{char_pred}, if it is a procedure.
3293
3294 @item
3295 is in the set @var{char_pred}, if it is a character set.
3296 @end itemize
3297 @end deffn
3298
3299 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3300 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3301 Does string @var{s1} contain string @var{s2}? Return the index
3302 in @var{s1} where @var{s2} occurs as a substring, or false.
3303 The optional start/end indices restrict the operation to the
3304 indicated substrings.
3305 @end deffn
3306
3307 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3308 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3309 Does string @var{s1} contain string @var{s2}? Return the index
3310 in @var{s1} where @var{s2} occurs as a substring, or false.
3311 The optional start/end indices restrict the operation to the
3312 indicated substrings. Character comparison is done
3313 case-insensitively.
3314 @end deffn
3315
3316 @node Alphabetic Case Mapping
3317 @subsubsection Alphabetic Case Mapping
3318
3319 These are procedures for mapping strings to their upper- or lower-case
3320 equivalents, respectively, or for capitalizing strings.
3321
3322 @deffn {Scheme Procedure} string-upcase str [start [end]]
3323 @deffnx {C Function} scm_substring_upcase (str, start, end)
3324 @deffnx {C Function} scm_string_upcase (str)
3325 Upcase every character in @code{str}.
3326 @end deffn
3327
3328 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3329 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3330 @deffnx {C Function} scm_string_upcase_x (str)
3331 Destructively upcase every character in @code{str}.
3332
3333 @lisp
3334 (string-upcase! y)
3335 @result{} "ARRDEFG"
3336 y
3337 @result{} "ARRDEFG"
3338 @end lisp
3339 @end deffn
3340
3341 @deffn {Scheme Procedure} string-downcase str [start [end]]
3342 @deffnx {C Function} scm_substring_downcase (str, start, end)
3343 @deffnx {C Function} scm_string_downcase (str)
3344 Downcase every character in @var{str}.
3345 @end deffn
3346
3347 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3348 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3349 @deffnx {C Function} scm_string_downcase_x (str)
3350 Destructively downcase every character in @var{str}.
3351
3352 @lisp
3353 y
3354 @result{} "ARRDEFG"
3355 (string-downcase! y)
3356 @result{} "arrdefg"
3357 y
3358 @result{} "arrdefg"
3359 @end lisp
3360 @end deffn
3361
3362 @deffn {Scheme Procedure} string-capitalize str
3363 @deffnx {C Function} scm_string_capitalize (str)
3364 Return a freshly allocated string with the characters in
3365 @var{str}, where the first character of every word is
3366 capitalized.
3367 @end deffn
3368
3369 @deffn {Scheme Procedure} string-capitalize! str
3370 @deffnx {C Function} scm_string_capitalize_x (str)
3371 Upcase the first character of every word in @var{str}
3372 destructively and return @var{str}.
3373
3374 @lisp
3375 y @result{} "hello world"
3376 (string-capitalize! y) @result{} "Hello World"
3377 y @result{} "Hello World"
3378 @end lisp
3379 @end deffn
3380
3381 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3382 @deffnx {C Function} scm_string_titlecase (str, start, end)
3383 Titlecase every first character in a word in @var{str}.
3384 @end deffn
3385
3386 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3387 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3388 Destructively titlecase every first character in a word in
3389 @var{str}.
3390 @end deffn
3391
3392 @node Reversing and Appending Strings
3393 @subsubsection Reversing and Appending Strings
3394
3395 @deffn {Scheme Procedure} string-reverse str [start [end]]
3396 @deffnx {C Function} scm_string_reverse (str, start, end)
3397 Reverse the string @var{str}. The optional arguments
3398 @var{start} and @var{end} delimit the region of @var{str} to
3399 operate on.
3400 @end deffn
3401
3402 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3403 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3404 Reverse the string @var{str} in-place. The optional arguments
3405 @var{start} and @var{end} delimit the region of @var{str} to
3406 operate on. The return value is unspecified.
3407 @end deffn
3408
3409 @rnindex string-append
3410 @deffn {Scheme Procedure} string-append . args
3411 @deffnx {C Function} scm_string_append (args)
3412 Return a newly allocated string whose characters form the
3413 concatenation of the given strings, @var{args}.
3414
3415 @example
3416 (let ((h "hello "))
3417 (string-append h "world"))
3418 @result{} "hello world"
3419 @end example
3420 @end deffn
3421
3422 @deffn {Scheme Procedure} string-append/shared . ls
3423 @deffnx {C Function} scm_string_append_shared (ls)
3424 Like @code{string-append}, but the result may share memory
3425 with the argument strings.
3426 @end deffn
3427
3428 @deffn {Scheme Procedure} string-concatenate ls
3429 @deffnx {C Function} scm_string_concatenate (ls)
3430 Append the elements of @var{ls} (which must be strings)
3431 together into a single string. Guaranteed to return a freshly
3432 allocated string.
3433 @end deffn
3434
3435 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3436 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3437 Without optional arguments, this procedure is equivalent to
3438
3439 @smalllisp
3440 (string-concatenate (reverse ls))
3441 @end smalllisp
3442
3443 If the optional argument @var{final_string} is specified, it is
3444 consed onto the beginning to @var{ls} before performing the
3445 list-reverse and string-concatenate operations. If @var{end}
3446 is given, only the characters of @var{final_string} up to index
3447 @var{end} are used.
3448
3449 Guaranteed to return a freshly allocated string.
3450 @end deffn
3451
3452 @deffn {Scheme Procedure} string-concatenate/shared ls
3453 @deffnx {C Function} scm_string_concatenate_shared (ls)
3454 Like @code{string-concatenate}, but the result may share memory
3455 with the strings in the list @var{ls}.
3456 @end deffn
3457
3458 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3459 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3460 Like @code{string-concatenate-reverse}, but the result may
3461 share memory with the the strings in the @var{ls} arguments.
3462 @end deffn
3463
3464 @node Mapping Folding and Unfolding
3465 @subsubsection Mapping, Folding, and Unfolding
3466
3467 @deffn {Scheme Procedure} string-map proc s [start [end]]
3468 @deffnx {C Function} scm_string_map (proc, s, start, end)
3469 @var{proc} is a char->char procedure, it is mapped over
3470 @var{s}. The order in which the procedure is applied to the
3471 string elements is not specified.
3472 @end deffn
3473
3474 @deffn {Scheme Procedure} string-map! proc s [start [end]]
3475 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
3476 @var{proc} is a char->char procedure, it is mapped over
3477 @var{s}. The order in which the procedure is applied to the
3478 string elements is not specified. The string @var{s} is
3479 modified in-place, the return value is not specified.
3480 @end deffn
3481
3482 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
3483 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
3484 @var{proc} is mapped over @var{s} in left-to-right order. The
3485 return value is not specified.
3486 @end deffn
3487
3488 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3489 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
3490 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3491 right.
3492
3493 For example, to change characters to alternately upper and lower case,
3494
3495 @example
3496 (define str (string-copy "studly"))
3497 (string-for-each-index (lambda (i)
3498 (string-set! str i
3499 ((if (even? i) char-upcase char-downcase)
3500 (string-ref str i))))
3501 str)
3502 str @result{} "StUdLy"
3503 @end example
3504 @end deffn
3505
3506 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3507 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3508 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3509 as the terminating element, from left to right. @var{kons}
3510 must expect two arguments: The actual character and the last
3511 result of @var{kons}' application.
3512 @end deffn
3513
3514 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3515 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3516 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3517 as the terminating element, from right to left. @var{kons}
3518 must expect two arguments: The actual character and the last
3519 result of @var{kons}' application.
3520 @end deffn
3521
3522 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3523 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3524 @itemize @bullet
3525 @item @var{g} is used to generate a series of @emph{seed}
3526 values from the initial @var{seed}: @var{seed}, (@var{g}
3527 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3528 @dots{}
3529 @item @var{p} tells us when to stop -- when it returns true
3530 when applied to one of these seed values.
3531 @item @var{f} maps each seed value to the corresponding
3532 character in the result string. These chars are assembled
3533 into the string in a left-to-right order.
3534 @item @var{base} is the optional initial/leftmost portion
3535 of the constructed string; it default to the empty
3536 string.
3537 @item @var{make_final} is applied to the terminal seed
3538 value (on which @var{p} returns true) to produce
3539 the final/rightmost portion of the constructed string.
3540 The default is nothing extra.
3541 @end itemize
3542 @end deffn
3543
3544 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3545 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3546 @itemize @bullet
3547 @item @var{g} is used to generate a series of @emph{seed}
3548 values from the initial @var{seed}: @var{seed}, (@var{g}
3549 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3550 @dots{}
3551 @item @var{p} tells us when to stop -- when it returns true
3552 when applied to one of these seed values.
3553 @item @var{f} maps each seed value to the corresponding
3554 character in the result string. These chars are assembled
3555 into the string in a right-to-left order.
3556 @item @var{base} is the optional initial/rightmost portion
3557 of the constructed string; it default to the empty
3558 string.
3559 @item @var{make_final} is applied to the terminal seed
3560 value (on which @var{p} returns true) to produce
3561 the final/leftmost portion of the constructed string.
3562 It defaults to @code{(lambda (x) )}.
3563 @end itemize
3564 @end deffn
3565
3566 @node Miscellaneous String Operations
3567 @subsubsection Miscellaneous String Operations
3568
3569 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3570 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3571 This is the @emph{extended substring} procedure that implements
3572 replicated copying of a substring of some string.
3573
3574 @var{s} is a string, @var{start} and @var{end} are optional
3575 arguments that demarcate a substring of @var{s}, defaulting to
3576 0 and the length of @var{s}. Replicate this substring up and
3577 down index space, in both the positive and negative directions.
3578 @code{xsubstring} returns the substring of this string
3579 beginning at index @var{from}, and ending at @var{to}, which
3580 defaults to @var{from} + (@var{end} - @var{start}).
3581 @end deffn
3582
3583 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3584 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3585 Exactly the same as @code{xsubstring}, but the extracted text
3586 is written into the string @var{target} starting at index
3587 @var{tstart}. The operation is not defined if @code{(eq?
3588 @var{target} @var{s})} or these arguments share storage -- you
3589 cannot copy a string on top of itself.
3590 @end deffn
3591
3592 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3593 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3594 Return the string @var{s1}, but with the characters
3595 @var{start1} @dots{} @var{end1} replaced by the characters
3596 @var{start2} @dots{} @var{end2} from @var{s2}.
3597 @end deffn
3598
3599 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3600 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3601 Split the string @var{s} into a list of substrings, where each
3602 substring is a maximal non-empty contiguous sequence of
3603 characters from the character set @var{token_set}, which
3604 defaults to @code{char-set:graphic}.
3605 If @var{start} or @var{end} indices are provided, they restrict
3606 @code{string-tokenize} to operating on the indicated substring
3607 of @var{s}.
3608 @end deffn
3609
3610 @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3611 @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3612 Filter the string @var{s}, retaining only those characters which
3613 satisfy @var{char_pred}.
3614
3615 If @var{char_pred} is a procedure, it is applied to each character as
3616 a predicate, if it is a character, it is tested for equality and if it
3617 is a character set, it is tested for membership.
3618 @end deffn
3619
3620 @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3621 @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3622 Delete characters satisfying @var{char_pred} from @var{s}.
3623
3624 If @var{char_pred} is a procedure, it is applied to each character as
3625 a predicate, if it is a character, it is tested for equality and if it
3626 is a character set, it is tested for membership.
3627 @end deffn
3628
3629 @node Conversion to/from C
3630 @subsubsection Conversion to/from C
3631
3632 When creating a Scheme string from a C string or when converting a
3633 Scheme string to a C string, the concept of character encoding becomes
3634 important.
3635
3636 In C, a string is just a sequence of bytes, and the character encoding
3637 describes the relation between these bytes and the actual characters
3638 that make up the string. For Scheme strings, character encoding is
3639 not an issue (most of the time), since in Scheme you never get to see
3640 the bytes, only the characters.
3641
3642 Well, ideally, anyway. Right now, Guile simply equates Scheme
3643 characters and bytes, ignoring the possibility of multi-byte encodings
3644 completely. This will change in the future, where Guile will use
3645 Unicode codepoints as its characters and UTF-8 or some other encoding
3646 as its internal encoding. When you exclusively use the functions
3647 listed in this section, you are `future-proof'.
3648
3649 Converting a Scheme string to a C string will often allocate fresh
3650 memory to hold the result. You must take care that this memory is
3651 properly freed eventually. In many cases, this can be achieved by
3652 using @code{scm_dynwind_free} inside an appropriate dynwind context,
3653 @xref{Dynamic Wind}.
3654
3655 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3656 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3657 Creates a new Scheme string that has the same contents as @var{str}
3658 when interpreted in the current locale character encoding.
3659
3660 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3661
3662 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3663 @var{str} in bytes, and @var{str} does not need to be null-terminated.
3664 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3665 null-terminated and the real length will be found with @code{strlen}.
3666 @end deftypefn
3667
3668 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
3669 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3670 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3671 respectively, but also frees @var{str} with @code{free} eventually.
3672 Thus, you can use this function when you would free @var{str} anyway
3673 immediately after creating the Scheme string. In certain cases, Guile
3674 can then use @var{str} directly as its internal representation.
3675 @end deftypefn
3676
3677 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3678 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
3679 Returns a C string in the current locale encoding with the same
3680 contents as @var{str}. The C string must be freed with @code{free}
3681 eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
3682 Wind}.
3683
3684 For @code{scm_to_locale_string}, the returned string is
3685 null-terminated and an error is signalled when @var{str} contains
3686 @code{#\nul} characters.
3687
3688 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3689 @var{str} might contain @code{#\nul} characters and the length of the
3690 returned string in bytes is stored in @code{*@var{lenp}}. The
3691 returned string will not be null-terminated in this case. If
3692 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3693 @code{scm_to_locale_string}.
3694 @end deftypefn
3695
3696 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3697 Puts @var{str} as a C string in the current locale encoding into the
3698 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3699 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3700 more than that. No terminating @code{'\0'} will be stored.
3701
3702 The return value of @code{scm_to_locale_stringbuf} is the number of
3703 bytes that are needed for all of @var{str}, regardless of whether
3704 @var{buf} was large enough to hold them. Thus, when the return value
3705 is larger than @var{max_len}, only @var{max_len} bytes have been
3706 stored and you probably need to try again with a larger buffer.
3707 @end deftypefn
3708
3709 @node Regular Expressions
3710 @subsection Regular Expressions
3711 @tpindex Regular expressions
3712
3713 @cindex regular expressions
3714 @cindex regex
3715 @cindex emacs regexp
3716
3717 A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
3718 describes a whole class of strings. A full description of regular
3719 expressions and their syntax is beyond the scope of this manual;
3720 an introduction can be found in the Emacs manual (@pxref{Regexps,
3721 , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
3722 in many general Unix reference books.
3723
3724 If your system does not include a POSIX regular expression library,
3725 and you have not linked Guile with a third-party regexp library such
3726 as Rx, these functions will not be available. You can tell whether
3727 your Guile installation includes regular expression support by
3728 checking whether @code{(provided? 'regex)} returns true.
3729
3730 The following regexp and string matching features are provided by the
3731 @code{(ice-9 regex)} module. Before using the described functions,
3732 you should load this module by executing @code{(use-modules (ice-9
3733 regex))}.
3734
3735 @menu
3736 * Regexp Functions:: Functions that create and match regexps.
3737 * Match Structures:: Finding what was matched by a regexp.
3738 * Backslash Escapes:: Removing the special meaning of regexp
3739 meta-characters.
3740 @end menu
3741
3742
3743 @node Regexp Functions
3744 @subsubsection Regexp Functions
3745
3746 By default, Guile supports POSIX extended regular expressions.
3747 That means that the characters @samp{(}, @samp{)}, @samp{+} and
3748 @samp{?} are special, and must be escaped if you wish to match the
3749 literal characters.
3750
3751 This regular expression interface was modeled after that
3752 implemented by SCSH, the Scheme Shell. It is intended to be
3753 upwardly compatible with SCSH regular expressions.
3754
3755 Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
3756 strings, since the underlying C functions treat that as the end of
3757 string. If there's a zero byte an error is thrown.
3758
3759 Patterns and input strings are treated as being in the locale
3760 character set if @code{setlocale} has been called (@pxref{Locales}),
3761 and in a multibyte locale this includes treating multi-byte sequences
3762 as a single character. (Guile strings are currently merely bytes,
3763 though this may change in the future, @xref{Conversion to/from C}.)
3764
3765 @deffn {Scheme Procedure} string-match pattern str [start]
3766 Compile the string @var{pattern} into a regular expression and compare
3767 it with @var{str}. The optional numeric argument @var{start} specifies
3768 the position of @var{str} at which to begin matching.
3769
3770 @code{string-match} returns a @dfn{match structure} which
3771 describes what, if anything, was matched by the regular
3772 expression. @xref{Match Structures}. If @var{str} does not match
3773 @var{pattern} at all, @code{string-match} returns @code{#f}.
3774 @end deffn
3775
3776 Two examples of a match follow. In the first example, the pattern
3777 matches the four digits in the match string. In the second, the pattern
3778 matches nothing.
3779
3780 @example
3781 (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
3782 @result{} #("blah2002" (4 . 8))
3783
3784 (string-match "[A-Za-z]" "123456")
3785 @result{} #f
3786 @end example
3787
3788 Each time @code{string-match} is called, it must compile its
3789 @var{pattern} argument into a regular expression structure. This
3790 operation is expensive, which makes @code{string-match} inefficient if
3791 the same regular expression is used several times (for example, in a
3792 loop). For better performance, you can compile a regular expression in
3793 advance and then match strings against the compiled regexp.
3794
3795 @deffn {Scheme Procedure} make-regexp pat flag@dots{}
3796 @deffnx {C Function} scm_make_regexp (pat, flaglst)
3797 Compile the regular expression described by @var{pat}, and
3798 return the compiled regexp structure. If @var{pat} does not
3799 describe a legal regular expression, @code{make-regexp} throws
3800 a @code{regular-expression-syntax} error.
3801
3802 The @var{flag} arguments change the behavior of the compiled
3803 regular expression. The following values may be supplied:
3804
3805 @defvar regexp/icase
3806 Consider uppercase and lowercase letters to be the same when
3807 matching.
3808 @end defvar
3809
3810 @defvar regexp/newline
3811 If a newline appears in the target string, then permit the
3812 @samp{^} and @samp{$} operators to match immediately after or
3813 immediately before the newline, respectively. Also, the
3814 @samp{.} and @samp{[^...]} operators will never match a newline
3815 character. The intent of this flag is to treat the target
3816 string as a buffer containing many lines of text, and the
3817 regular expression as a pattern that may match a single one of
3818 those lines.
3819 @end defvar
3820
3821 @defvar regexp/basic
3822 Compile a basic (``obsolete'') regexp instead of the extended
3823 (``modern'') regexps that are the default. Basic regexps do
3824 not consider @samp{|}, @samp{+} or @samp{?} to be special
3825 characters, and require the @samp{@{...@}} and @samp{(...)}
3826 metacharacters to be backslash-escaped (@pxref{Backslash
3827 Escapes}). There are several other differences between basic
3828 and extended regular expressions, but these are the most
3829 significant.
3830 @end defvar
3831
3832 @defvar regexp/extended
3833 Compile an extended regular expression rather than a basic
3834 regexp. This is the default behavior; this flag will not
3835 usually be needed. If a call to @code{make-regexp} includes
3836 both @code{regexp/basic} and @code{regexp/extended} flags, the
3837 one which comes last will override the earlier one.
3838 @end defvar
3839 @end deffn
3840
3841 @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
3842 @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
3843 Match the compiled regular expression @var{rx} against
3844 @code{str}. If the optional integer @var{start} argument is
3845 provided, begin matching from that position in the string.
3846 Return a match structure describing the results of the match,
3847 or @code{#f} if no match could be found.
3848
3849 The @var{flags} argument changes the matching behavior. The following
3850 flag values may be supplied, use @code{logior} (@pxref{Bitwise
3851 Operations}) to combine them,
3852
3853 @defvar regexp/notbol
3854 Consider that the @var{start} offset into @var{str} is not the
3855 beginning of a line and should not match operator @samp{^}.
3856
3857 If @var{rx} was created with the @code{regexp/newline} option above,
3858 @samp{^} will still match after a newline in @var{str}.
3859 @end defvar
3860
3861 @defvar regexp/noteol
3862 Consider that the end of @var{str} is not the end of a line and should
3863 not match operator @samp{$}.
3864
3865 If @var{rx} was created with the @code{regexp/newline} option above,
3866 @samp{$} will still match before a newline in @var{str}.
3867 @end defvar
3868 @end deffn
3869
3870 @lisp
3871 ;; Regexp to match uppercase letters
3872 (define r (make-regexp "[A-Z]*"))
3873
3874 ;; Regexp to match letters, ignoring case
3875 (define ri (make-regexp "[A-Z]*" regexp/icase))
3876
3877 ;; Search for bob using regexp r
3878 (match:substring (regexp-exec r "bob"))
3879 @result{} "" ; no match
3880
3881 ;; Search for bob using regexp ri
3882 (match:substring (regexp-exec ri "Bob"))
3883 @result{} "Bob" ; matched case insensitive
3884 @end lisp
3885
3886 @deffn {Scheme Procedure} regexp? obj
3887 @deffnx {C Function} scm_regexp_p (obj)
3888 Return @code{#t} if @var{obj} is a compiled regular expression,
3889 or @code{#f} otherwise.
3890 @end deffn
3891
3892 @sp 1
3893 @deffn {Scheme Procedure} list-matches regexp str [flags]
3894 Return a list of match structures which are the non-overlapping
3895 matches of @var{regexp} in @var{str}. @var{regexp} can be either a
3896 pattern string or a compiled regexp. The @var{flags} argument is as
3897 per @code{regexp-exec} above.
3898
3899 @example
3900 (map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
3901 @result{} ("abc" "def")
3902 @end example
3903 @end deffn
3904
3905 @deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
3906 Apply @var{proc} to the non-overlapping matches of @var{regexp} in
3907 @var{str}, to build a result. @var{regexp} can be either a pattern
3908 string or a compiled regexp. The @var{flags} argument is as per
3909 @code{regexp-exec} above.
3910
3911 @var{proc} is called as @code{(@var{proc} match prev)} where
3912 @var{match} is a match structure and @var{prev} is the previous return
3913 from @var{proc}. For the first call @var{prev} is the given
3914 @var{init} parameter. @code{fold-matches} returns the final value
3915 from @var{proc}.
3916
3917 For example to count matches,
3918
3919 @example
3920 (fold-matches "[a-z][0-9]" "abc x1 def y2" 0
3921 (lambda (match count)
3922 (1+ count)))
3923 @result{} 2
3924 @end example
3925 @end deffn
3926
3927 @sp 1
3928 Regular expressions are commonly used to find patterns in one string
3929 and replace them with the contents of another string. The following
3930 functions are convenient ways to do this.
3931
3932 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
3933 @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
3934 Write to @var{port} selected parts of the match structure @var{match}.
3935 Or if @var{port} is @code{#f} then form a string from those parts and
3936 return that.
3937
3938 Each @var{item} specifies a part to be written, and may be one of the
3939 following,
3940
3941 @itemize @bullet
3942 @item
3943 A string. String arguments are written out verbatim.
3944
3945 @item
3946 An integer. The submatch with that number is written
3947 (@code{match:substring}). Zero is the entire match.
3948
3949 @item
3950 The symbol @samp{pre}. The portion of the matched string preceding
3951 the regexp match is written (@code{match:prefix}).
3952
3953 @item
3954 The symbol @samp{post}. The portion of the matched string following
3955 the regexp match is written (@code{match:suffix}).
3956 @end itemize
3957
3958 For example, changing a match and retaining the text before and after,
3959
3960 @example
3961 (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
3962 'pre "37" 'post)
3963 @result{} "number 37 is good"
3964 @end example
3965
3966 Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
3967 re-ordering and hyphenating the fields.
3968
3969 @lisp
3970 (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
3971 (define s "Date 20020429 12am.")
3972 (regexp-substitute #f (string-match date-regex s)
3973 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
3974 @result{} "Date 04-29-2002 12am. (20020429)"
3975 @end lisp
3976 @end deffn
3977
3978
3979 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
3980 @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
3981 @cindex search and replace
3982 Write to @var{port} selected parts of matches of @var{regexp} in
3983 @var{target}. If @var{port} is @code{#f} then form a string from
3984 those parts and return that. @var{regexp} can be a string or a
3985 compiled regex.
3986
3987 This is similar to @code{regexp-substitute}, but allows global
3988 substitutions on @var{target}. Each @var{item} behaves as per
3989 @code{regexp-substitute}, with the following differences,
3990
3991 @itemize @bullet
3992 @item
3993 A function. Called as @code{(@var{item} match)} with the match
3994 structure for the @var{regexp} match, it should return a string to be
3995 written to @var{port}.
3996
3997 @item
3998 The symbol @samp{post}. This doesn't output anything, but instead
3999 causes @code{regexp-substitute/global} to recurse on the unmatched
4000 portion of @var{target}.
4001
4002 This @emph{must} be supplied to perform a global search and replace on
4003 @var{target}; without it @code{regexp-substitute/global} returns after
4004 a single match and output.
4005 @end itemize
4006
4007 For example, to collapse runs of tabs and spaces to a single hyphen
4008 each,
4009
4010 @example
4011 (regexp-substitute/global #f "[ \t]+" "this is the text"
4012 'pre "-" 'post)
4013 @result{} "this-is-the-text"
4014 @end example
4015
4016 Or using a function to reverse the letters in each word,
4017
4018 @example
4019 (regexp-substitute/global #f "[a-z]+" "to do and not-do"
4020 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4021 @result{} "ot od dna ton-od"
4022 @end example
4023
4024 Without the @code{post} symbol, just one regexp match is made. For
4025 example the following is the date example from
4026 @code{regexp-substitute} above, without the need for the separate
4027 @code{string-match} call.
4028
4029 @lisp
4030 (define date-regex "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4031 (define s "Date 20020429 12am.")
4032 (regexp-substitute/global #f date-regex s
4033 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4034
4035 @result{} "Date 04-29-2002 12am. (20020429)"
4036 @end lisp
4037 @end deffn
4038
4039
4040 @node Match Structures
4041 @subsubsection Match Structures
4042
4043 @cindex match structures
4044
4045 A @dfn{match structure} is the object returned by @code{string-match} and
4046 @code{regexp-exec}. It describes which portion of a string, if any,
4047 matched the given regular expression. Match structures include: a
4048 reference to the string that was checked for matches; the starting and
4049 ending positions of the regexp match; and, if the regexp included any
4050 parenthesized subexpressions, the starting and ending positions of each
4051 submatch.
4052
4053 In each of the regexp match functions described below, the @code{match}
4054 argument must be a match structure returned by a previous call to
4055 @code{string-match} or @code{regexp-exec}. Most of these functions
4056 return some information about the original target string that was
4057 matched against a regular expression; we will call that string
4058 @var{target} for easy reference.
4059
4060 @c begin (scm-doc-string "regex.scm" "regexp-match?")
4061 @deffn {Scheme Procedure} regexp-match? obj
4062 Return @code{#t} if @var{obj} is a match structure returned by a
4063 previous call to @code{regexp-exec}, or @code{#f} otherwise.
4064 @end deffn
4065
4066 @c begin (scm-doc-string "regex.scm" "match:substring")
4067 @deffn {Scheme Procedure} match:substring match [n]
4068 Return the portion of @var{target} matched by subexpression number
4069 @var{n}. Submatch 0 (the default) represents the entire regexp match.
4070 If the regular expression as a whole matched, but the subexpression
4071 number @var{n} did not match, return @code{#f}.
4072 @end deffn
4073
4074 @lisp
4075 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4076 (match:substring s)
4077 @result{} "2002"
4078
4079 ;; match starting at offset 6 in the string
4080 (match:substring
4081 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4082 @result{} "7654"
4083 @end lisp
4084
4085 @c begin (scm-doc-string "regex.scm" "match:start")
4086 @deffn {Scheme Procedure} match:start match [n]
4087 Return the starting position of submatch number @var{n}.
4088 @end deffn
4089
4090 In the following example, the result is 4, since the match starts at
4091 character index 4:
4092
4093 @lisp
4094 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4095 (match:start s)
4096 @result{} 4
4097 @end lisp
4098
4099 @c begin (scm-doc-string "regex.scm" "match:end")
4100 @deffn {Scheme Procedure} match:end match [n]
4101 Return the ending position of submatch number @var{n}.
4102 @end deffn
4103
4104 In the following example, the result is 8, since the match runs between
4105 characters 4 and 8 (i.e. the ``2002'').
4106
4107 @lisp
4108 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4109 (match:end s)
4110 @result{} 8
4111 @end lisp
4112
4113 @c begin (scm-doc-string "regex.scm" "match:prefix")
4114 @deffn {Scheme Procedure} match:prefix match
4115 Return the unmatched portion of @var{target} preceding the regexp match.
4116
4117 @lisp
4118 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4119 (match:prefix s)
4120 @result{} "blah"
4121 @end lisp
4122 @end deffn
4123
4124 @c begin (scm-doc-string "regex.scm" "match:suffix")
4125 @deffn {Scheme Procedure} match:suffix match
4126 Return the unmatched portion of @var{target} following the regexp match.
4127 @end deffn
4128
4129 @lisp
4130 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4131 (match:suffix s)
4132 @result{} "foo"
4133 @end lisp
4134
4135 @c begin (scm-doc-string "regex.scm" "match:count")
4136 @deffn {Scheme Procedure} match:count match
4137 Return the number of parenthesized subexpressions from @var{match}.
4138 Note that the entire regular expression match itself counts as a
4139 subexpression, and failed submatches are included in the count.
4140 @end deffn
4141
4142 @c begin (scm-doc-string "regex.scm" "match:string")
4143 @deffn {Scheme Procedure} match:string match
4144 Return the original @var{target} string.
4145 @end deffn
4146
4147 @lisp
4148 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4149 (match:string s)
4150 @result{} "blah2002foo"
4151 @end lisp
4152
4153
4154 @node Backslash Escapes
4155 @subsubsection Backslash Escapes
4156
4157 Sometimes you will want a regexp to match characters like @samp{*} or
4158 @samp{$} exactly. For example, to check whether a particular string
4159 represents a menu entry from an Info node, it would be useful to match
4160 it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4161 because the asterisk is a metacharacter, it won't match the @samp{*} at
4162 the beginning of the string. In this case, we want to make the first
4163 asterisk un-magic.
4164
4165 You can do this by preceding the metacharacter with a backslash
4166 character @samp{\}. (This is also called @dfn{quoting} the
4167 metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4168 sees a backslash in a regular expression, it considers the following
4169 glyph to be an ordinary character, no matter what special meaning it
4170 would ordinarily have. Therefore, we can make the above example work by
4171 changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4172 the regular expression engine to match only a single asterisk in the
4173 target string.
4174
4175 Since the backslash is itself a metacharacter, you may force a regexp to
4176 match a backslash in the target string by preceding the backslash with
4177 itself. For example, to find variable references in a @TeX{} program,
4178 you might want to find occurrences of the string @samp{\let\} followed
4179 by any number of alphabetic characters. The regular expression
4180 @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4181 regexp each match a single backslash in the target string.
4182
4183 @c begin (scm-doc-string "regex.scm" "regexp-quote")
4184 @deffn {Scheme Procedure} regexp-quote str
4185 Quote each special character found in @var{str} with a backslash, and
4186 return the resulting string.
4187 @end deffn
4188
4189 @strong{Very important:} Using backslash escapes in Guile source code
4190 (as in Emacs Lisp or C) can be tricky, because the backslash character
4191 has special meaning for the Guile reader. For example, if Guile
4192 encounters the character sequence @samp{\n} in the middle of a string
4193 while processing Scheme code, it replaces those characters with a
4194 newline character. Similarly, the character sequence @samp{\t} is
4195 replaced by a horizontal tab. Several of these @dfn{escape sequences}
4196 are processed by the Guile reader before your code is executed.
4197 Unrecognized escape sequences are ignored: if the characters @samp{\*}
4198 appear in a string, they will be translated to the single character
4199 @samp{*}.
4200
4201 This translation is obviously undesirable for regular expressions, since
4202 we want to be able to include backslashes in a string in order to
4203 escape regexp metacharacters. Therefore, to make sure that a backslash
4204 is preserved in a string in your Guile program, you must use @emph{two}
4205 consecutive backslashes:
4206
4207 @lisp
4208 (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4209 @end lisp
4210
4211 The string in this example is preprocessed by the Guile reader before
4212 any code is executed. The resulting argument to @code{make-regexp} is
4213 the string @samp{^\* [^:]*}, which is what we really want.
4214
4215 This also means that in order to write a regular expression that matches
4216 a single backslash character, the regular expression string in the
4217 source code must include @emph{four} backslashes. Each consecutive pair
4218 of backslashes gets translated by the Guile reader to a single
4219 backslash, and the resulting double-backslash is interpreted by the
4220 regexp engine as matching a single backslash character. Hence:
4221
4222 @lisp
4223 (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4224 @end lisp
4225
4226 The reason for the unwieldiness of this syntax is historical. Both
4227 regular expression pattern matchers and Unix string processing systems
4228 have traditionally used backslashes with the special meanings
4229 described above. The POSIX regular expression specification and ANSI C
4230 standard both require these semantics. Attempting to abandon either
4231 convention would cause other kinds of compatibility problems, possibly
4232 more severe ones. Therefore, without extending the Scheme reader to
4233 support strings with different quoting conventions (an ungainly and
4234 confusing extension when implemented in other languages), we must adhere
4235 to this cumbersome escape syntax.
4236
4237
4238 @node Symbols
4239 @subsection Symbols
4240 @tpindex Symbols
4241
4242 Symbols in Scheme are widely used in three ways: as items of discrete
4243 data, as lookup keys for alists and hash tables, and to denote variable
4244 references.
4245
4246 A @dfn{symbol} is similar to a string in that it is defined by a
4247 sequence of characters. The sequence of characters is known as the
4248 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4249 name doesn't include any characters that could be confused with other
4250 elements of Scheme syntax --- a symbol is written in a Scheme program by
4251 writing the sequence of characters that make up the name, @emph{without}
4252 any quotation marks or other special syntax. For example, the symbol
4253 whose name is ``multiply-by-2'' is written, simply:
4254
4255 @lisp
4256 multiply-by-2
4257 @end lisp
4258
4259 Notice how this differs from a @emph{string} with contents
4260 ``multiply-by-2'', which is written with double quotation marks, like
4261 this:
4262
4263 @lisp
4264 "multiply-by-2"
4265 @end lisp
4266
4267 Looking beyond how they are written, symbols are different from strings
4268 in two important respects.
4269
4270 The first important difference is uniqueness. If the same-looking
4271 string is read twice from two different places in a program, the result
4272 is two @emph{different} string objects whose contents just happen to be
4273 the same. If, on the other hand, the same-looking symbol is read twice
4274 from two different places in a program, the result is the @emph{same}
4275 symbol object both times.
4276
4277 Given two read symbols, you can use @code{eq?} to test whether they are
4278 the same (that is, have the same name). @code{eq?} is the most
4279 efficient comparison operator in Scheme, and comparing two symbols like
4280 this is as fast as comparing, for example, two numbers. Given two
4281 strings, on the other hand, you must use @code{equal?} or
4282 @code{string=?}, which are much slower comparison operators, to
4283 determine whether the strings have the same contents.
4284
4285 @lisp
4286 (define sym1 (quote hello))
4287 (define sym2 (quote hello))
4288 (eq? sym1 sym2) @result{} #t
4289
4290 (define str1 "hello")
4291 (define str2 "hello")
4292 (eq? str1 str2) @result{} #f
4293 (equal? str1 str2) @result{} #t
4294 @end lisp
4295
4296 The second important difference is that symbols, unlike strings, are not
4297 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4298 example above: @code{(quote hello)} evaluates to the symbol named
4299 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4300 symbol named "hello" and evaluated as a variable reference @dots{} about
4301 which more below (@pxref{Symbol Variables}).
4302
4303 @menu
4304 * Symbol Data:: Symbols as discrete data.
4305 * Symbol Keys:: Symbols as lookup keys.
4306 * Symbol Variables:: Symbols as denoting variables.
4307 * Symbol Primitives:: Operations related to symbols.
4308 * Symbol Props:: Function slots and property lists.
4309 * Symbol Read Syntax:: Extended read syntax for symbols.
4310 * Symbol Uninterned:: Uninterned symbols.
4311 @end menu
4312
4313
4314 @node Symbol Data
4315 @subsubsection Symbols as Discrete Data
4316
4317 Numbers and symbols are similar to the extent that they both lend
4318 themselves to @code{eq?} comparison. But symbols are more descriptive
4319 than numbers, because a symbol's name can be used directly to describe
4320 the concept for which that symbol stands.
4321
4322 For example, imagine that you need to represent some colours in a
4323 computer program. Using numbers, you would have to choose arbitrarily
4324 some mapping between numbers and colours, and then take care to use that
4325 mapping consistently:
4326
4327 @lisp
4328 ;; 1=red, 2=green, 3=purple
4329
4330 (if (eq? (colour-of car) 1)
4331 ...)
4332 @end lisp
4333
4334 @noindent
4335 You can make the mapping more explicit and the code more readable by
4336 defining constants:
4337
4338 @lisp
4339 (define red 1)
4340 (define green 2)
4341 (define purple 3)
4342
4343 (if (eq? (colour-of car) red)
4344 ...)
4345 @end lisp
4346
4347 @noindent
4348 But the simplest and clearest approach is not to use numbers at all, but
4349 symbols whose names specify the colours that they refer to:
4350
4351 @lisp
4352 (if (eq? (colour-of car) 'red)
4353 ...)
4354 @end lisp
4355
4356 The descriptive advantages of symbols over numbers increase as the set
4357 of concepts that you want to describe grows. Suppose that a car object
4358 can have other properties as well, such as whether it has or uses:
4359
4360 @itemize @bullet
4361 @item
4362 automatic or manual transmission
4363 @item
4364 leaded or unleaded fuel
4365 @item
4366 power steering (or not).
4367 @end itemize
4368
4369 @noindent
4370 Then a car's combined property set could be naturally represented and
4371 manipulated as a list of symbols:
4372
4373 @lisp
4374 (properties-of car1)
4375 @result{}
4376 (red manual unleaded power-steering)
4377
4378 (if (memq 'power-steering (properties-of car1))
4379 (display "Unfit people can drive this car.\n")
4380 (display "You'll need strong arms to drive this car!\n"))
4381 @print{}
4382 Unfit people can drive this car.
4383 @end lisp
4384
4385 Remember, the fundamental property of symbols that we are relying on
4386 here is that an occurrence of @code{'red} in one part of a program is an
4387 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
4388 another part of a program; this means that symbols can usefully be
4389 compared using @code{eq?}. At the same time, symbols have naturally
4390 descriptive names. This combination of efficiency and descriptive power
4391 makes them ideal for use as discrete data.
4392
4393
4394 @node Symbol Keys
4395 @subsubsection Symbols as Lookup Keys
4396
4397 Given their efficiency and descriptive power, it is natural to use
4398 symbols as the keys in an association list or hash table.
4399
4400 To illustrate this, consider a more structured representation of the car
4401 properties example from the preceding subsection. Rather than
4402 mixing all the properties up together in a flat list, we could use an
4403 association list like this:
4404
4405 @lisp
4406 (define car1-properties '((colour . red)
4407 (transmission . manual)
4408 (fuel . unleaded)
4409 (steering . power-assisted)))
4410 @end lisp
4411
4412 Notice how this structure is more explicit and extensible than the flat
4413 list. For example it makes clear that @code{manual} refers to the
4414 transmission rather than, say, the windows or the locking of the car.
4415 It also allows further properties to use the same symbols among their
4416 possible values without becoming ambiguous:
4417
4418 @lisp
4419 (define car1-properties '((colour . red)
4420 (transmission . manual)
4421 (fuel . unleaded)
4422 (steering . power-assisted)
4423 (seat-colour . red)
4424 (locking . manual)))
4425 @end lisp
4426
4427 With a representation like this, it is easy to use the efficient
4428 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4429 extract or change individual pieces of information:
4430
4431 @lisp
4432 (assq-ref car1-properties 'fuel) @result{} unleaded
4433 (assq-ref car1-properties 'transmission) @result{} manual
4434
4435 (assq-set! car1-properties 'seat-colour 'black)
4436 @result{}
4437 ((colour . red)
4438 (transmission . manual)
4439 (fuel . unleaded)
4440 (steering . power-assisted)
4441 (seat-colour . black)
4442 (locking . manual)))
4443 @end lisp
4444
4445 Hash tables also have keys, and exactly the same arguments apply to the
4446 use of symbols in hash tables as in association lists. The hash value
4447 that Guile uses to decide where to add a symbol-keyed entry to a hash
4448 table can be obtained by calling the @code{symbol-hash} procedure:
4449
4450 @deffn {Scheme Procedure} symbol-hash symbol
4451 @deffnx {C Function} scm_symbol_hash (symbol)
4452 Return a hash value for @var{symbol}.
4453 @end deffn
4454
4455 See @ref{Hash Tables} for information about hash tables in general, and
4456 for why you might choose to use a hash table rather than an association
4457 list.
4458
4459
4460 @node Symbol Variables
4461 @subsubsection Symbols as Denoting Variables
4462
4463 When an unquoted symbol in a Scheme program is evaluated, it is
4464 interpreted as a variable reference, and the result of the evaluation is
4465 the appropriate variable's value.
4466
4467 For example, when the expression @code{(string-length "abcd")} is read
4468 and evaluated, the sequence of characters @code{string-length} is read
4469 as the symbol whose name is "string-length". This symbol is associated
4470 with a variable whose value is the procedure that implements string
4471 length calculation. Therefore evaluation of the @code{string-length}
4472 symbol results in that procedure.
4473
4474 The details of the connection between an unquoted symbol and the
4475 variable to which it refers are explained elsewhere. See @ref{Binding
4476 Constructs}, for how associations between symbols and variables are
4477 created, and @ref{Modules}, for how those associations are affected by
4478 Guile's module system.
4479
4480
4481 @node Symbol Primitives
4482 @subsubsection Operations Related to Symbols
4483
4484 Given any Scheme value, you can determine whether it is a symbol using
4485 the @code{symbol?} primitive:
4486
4487 @rnindex symbol?
4488 @deffn {Scheme Procedure} symbol? obj
4489 @deffnx {C Function} scm_symbol_p (obj)
4490 Return @code{#t} if @var{obj} is a symbol, otherwise return
4491 @code{#f}.
4492 @end deffn
4493
4494 @deftypefn {C Function} int scm_is_symbol (SCM val)
4495 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4496 @end deftypefn
4497
4498 Once you know that you have a symbol, you can obtain its name as a
4499 string by calling @code{symbol->string}. Note that Guile differs by
4500 default from R5RS on the details of @code{symbol->string} as regards
4501 case-sensitivity:
4502
4503 @rnindex symbol->string
4504 @deffn {Scheme Procedure} symbol->string s
4505 @deffnx {C Function} scm_symbol_to_string (s)
4506 Return the name of symbol @var{s} as a string. By default, Guile reads
4507 symbols case-sensitively, so the string returned will have the same case
4508 variation as the sequence of characters that caused @var{s} to be
4509 created.
4510
4511 If Guile is set to read symbols case-insensitively (as specified by
4512 R5RS), and @var{s} comes into being as part of a literal expression
4513 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4514 by a call to the @code{read} or @code{string-ci->symbol} procedures,
4515 Guile converts any alphabetic characters in the symbol's name to
4516 lower case before creating the symbol object, so the string returned
4517 here will be in lower case.
4518
4519 If @var{s} was created by @code{string->symbol}, the case of characters
4520 in the string returned will be the same as that in the string that was
4521 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4522 setting at the time @var{s} was created.
4523
4524 It is an error to apply mutation procedures like @code{string-set!} to
4525 strings returned by this procedure.
4526 @end deffn
4527
4528 Most symbols are created by writing them literally in code. However it
4529 is also possible to create symbols programmatically using the following
4530 @code{string->symbol} and @code{string-ci->symbol} procedures:
4531
4532 @rnindex string->symbol
4533 @deffn {Scheme Procedure} string->symbol string
4534 @deffnx {C Function} scm_string_to_symbol (string)
4535 Return the symbol whose name is @var{string}. This procedure can create
4536 symbols with names containing special characters or letters in the
4537 non-standard case, but it is usually a bad idea to create such symbols
4538 because in some implementations of Scheme they cannot be read as
4539 themselves.
4540 @end deffn
4541
4542 @deffn {Scheme Procedure} string-ci->symbol str
4543 @deffnx {C Function} scm_string_ci_to_symbol (str)
4544 Return the symbol whose name is @var{str}. If Guile is currently
4545 reading symbols case-insensitively, @var{str} is converted to lowercase
4546 before the returned symbol is looked up or created.
4547 @end deffn
4548
4549 The following examples illustrate Guile's detailed behaviour as regards
4550 the case-sensitivity of symbols:
4551
4552 @lisp
4553 (read-enable 'case-insensitive) ; R5RS compliant behaviour
4554
4555 (symbol->string 'flying-fish) @result{} "flying-fish"
4556 (symbol->string 'Martin) @result{} "martin"
4557 (symbol->string
4558 (string->symbol "Malvina")) @result{} "Malvina"
4559
4560 (eq? 'mISSISSIppi 'mississippi) @result{} #t
4561 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
4562 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
4563 (eq? 'LolliPop
4564 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4565 (string=? "K. Harper, M.D."
4566 (symbol->string
4567 (string->symbol "K. Harper, M.D."))) @result{} #t
4568
4569 (read-disable 'case-insensitive) ; Guile default behaviour
4570
4571 (symbol->string 'flying-fish) @result{} "flying-fish"
4572 (symbol->string 'Martin) @result{} "Martin"
4573 (symbol->string
4574 (string->symbol "Malvina")) @result{} "Malvina"
4575
4576 (eq? 'mISSISSIppi 'mississippi) @result{} #f
4577 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
4578 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
4579 (eq? 'LolliPop
4580 (string->symbol (symbol->string 'LolliPop))) @result{} #t
4581 (string=? "K. Harper, M.D."
4582 (symbol->string
4583 (string->symbol "K. Harper, M.D."))) @result{} #t
4584 @end lisp
4585
4586 From C, there are lower level functions that construct a Scheme symbol
4587 from a C string in the current locale encoding.
4588
4589 When you want to do more from C, you should convert between symbols
4590 and strings using @code{scm_symbol_to_string} and
4591 @code{scm_string_to_symbol} and work with the strings.
4592
4593 @deffn {C Function} scm_from_locale_symbol (const char *name)
4594 @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
4595 Construct and return a Scheme symbol whose name is specified by
4596 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
4597 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
4598 specified explicitly by @var{len}.
4599 @end deffn
4600
4601 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
4602 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
4603 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
4604 respectively, but also frees @var{str} with @code{free} eventually.
4605 Thus, you can use this function when you would free @var{str} anyway
4606 immediately after creating the Scheme string. In certain cases, Guile
4607 can then use @var{str} directly as its internal representation.
4608 @end deftypefn
4609
4610
4611 Finally, some applications, especially those that generate new Scheme
4612 code dynamically, need to generate symbols for use in the generated
4613 code. The @code{gensym} primitive meets this need:
4614
4615 @deffn {Scheme Procedure} gensym [prefix]
4616 @deffnx {C Function} scm_gensym (prefix)
4617 Create a new symbol with a name constructed from a prefix and a counter
4618 value. The string @var{prefix} can be specified as an optional
4619 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
4620 at each call. There is no provision for resetting the counter.
4621 @end deffn
4622
4623 The symbols generated by @code{gensym} are @emph{likely} to be unique,
4624 since their names begin with a space and it is only otherwise possible
4625 to generate such symbols if a programmer goes out of their way to do
4626 so. Uniqueness can be guaranteed by instead using uninterned symbols
4627 (@pxref{Symbol Uninterned}), though they can't be usefully written out
4628 and read back in.
4629
4630
4631 @node Symbol Props
4632 @subsubsection Function Slots and Property Lists
4633
4634 In traditional Lisp dialects, symbols are often understood as having
4635 three kinds of value at once:
4636
4637 @itemize @bullet
4638 @item
4639 a @dfn{variable} value, which is used when the symbol appears in
4640 code in a variable reference context
4641
4642 @item
4643 a @dfn{function} value, which is used when the symbol appears in
4644 code in a function name position (i.e. as the first element in an
4645 unquoted list)
4646
4647 @item
4648 a @dfn{property list} value, which is used when the symbol is given as
4649 the first argument to Lisp's @code{put} or @code{get} functions.
4650 @end itemize
4651
4652 Although Scheme (as one of its simplifications with respect to Lisp)
4653 does away with the distinction between variable and function namespaces,
4654 Guile currently retains some elements of the traditional structure in
4655 case they turn out to be useful when implementing translators for other
4656 languages, in particular Emacs Lisp.
4657
4658 Specifically, Guile symbols have two extra slots. for a symbol's
4659 property list, and for its ``function value.'' The following procedures
4660 are provided to access these slots.
4661
4662 @deffn {Scheme Procedure} symbol-fref symbol
4663 @deffnx {C Function} scm_symbol_fref (symbol)
4664 Return the contents of @var{symbol}'s @dfn{function slot}.
4665 @end deffn
4666
4667 @deffn {Scheme Procedure} symbol-fset! symbol value
4668 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
4669 Set the contents of @var{symbol}'s function slot to @var{value}.
4670 @end deffn
4671
4672 @deffn {Scheme Procedure} symbol-pref symbol
4673 @deffnx {C Function} scm_symbol_pref (symbol)
4674 Return the @dfn{property list} currently associated with @var{symbol}.
4675 @end deffn
4676
4677 @deffn {Scheme Procedure} symbol-pset! symbol value
4678 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
4679 Set @var{symbol}'s property list to @var{value}.
4680 @end deffn
4681
4682 @deffn {Scheme Procedure} symbol-property sym prop
4683 From @var{sym}'s property list, return the value for property
4684 @var{prop}. The assumption is that @var{sym}'s property list is an
4685 association list whose keys are distinguished from each other using
4686 @code{equal?}; @var{prop} should be one of the keys in that list. If
4687 the property list has no entry for @var{prop}, @code{symbol-property}
4688 returns @code{#f}.
4689 @end deffn
4690
4691 @deffn {Scheme Procedure} set-symbol-property! sym prop val
4692 In @var{sym}'s property list, set the value for property @var{prop} to
4693 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
4694 none already exists. For the structure of the property list, see
4695 @code{symbol-property}.
4696 @end deffn
4697
4698 @deffn {Scheme Procedure} symbol-property-remove! sym prop
4699 From @var{sym}'s property list, remove the entry for property
4700 @var{prop}, if there is one. For the structure of the property list,
4701 see @code{symbol-property}.
4702 @end deffn
4703
4704 Support for these extra slots may be removed in a future release, and it
4705 is probably better to avoid using them. For a more modern and Schemely
4706 approach to properties, see @ref{Object Properties}.
4707
4708
4709 @node Symbol Read Syntax
4710 @subsubsection Extended Read Syntax for Symbols
4711
4712 The read syntax for a symbol is a sequence of letters, digits, and
4713 @dfn{extended alphabetic characters}, beginning with a character that
4714 cannot begin a number. In addition, the special cases of @code{+},
4715 @code{-}, and @code{...} are read as symbols even though numbers can
4716 begin with @code{+}, @code{-} or @code{.}.
4717
4718 Extended alphabetic characters may be used within identifiers as if
4719 they were letters. The set of extended alphabetic characters is:
4720
4721 @example
4722 ! $ % & * + - . / : < = > ? @@ ^ _ ~
4723 @end example
4724
4725 In addition to the standard read syntax defined above (which is taken
4726 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
4727 Scheme})), Guile provides an extended symbol read syntax that allows the
4728 inclusion of unusual characters such as space characters, newlines and
4729 parentheses. If (for whatever reason) you need to write a symbol
4730 containing characters not mentioned above, you can do so as follows.
4731
4732 @itemize @bullet
4733 @item
4734 Begin the symbol with the characters @code{#@{},
4735
4736 @item
4737 write the characters of the symbol and
4738
4739 @item
4740 finish the symbol with the characters @code{@}#}.
4741 @end itemize
4742
4743 Here are a few examples of this form of read syntax. The first symbol
4744 needs to use extended syntax because it contains a space character, the
4745 second because it contains a line break, and the last because it looks
4746 like a number.
4747
4748 @lisp
4749 #@{foo bar@}#
4750
4751 #@{what
4752 ever@}#
4753
4754 #@{4242@}#
4755 @end lisp
4756
4757 Although Guile provides this extended read syntax for symbols,
4758 widespread usage of it is discouraged because it is not portable and not
4759 very readable.
4760
4761
4762 @node Symbol Uninterned
4763 @subsubsection Uninterned Symbols
4764
4765 What makes symbols useful is that they are automatically kept unique.
4766 There are no two symbols that are distinct objects but have the same
4767 name. But of course, there is no rule without exception. In addition
4768 to the normal symbols that have been discussed up to now, you can also
4769 create special @dfn{uninterned} symbols that behave slightly
4770 differently.
4771
4772 To understand what is different about them and why they might be useful,
4773 we look at how normal symbols are actually kept unique.
4774
4775 Whenever Guile wants to find the symbol with a specific name, for
4776 example during @code{read} or when executing @code{string->symbol}, it
4777 first looks into a table of all existing symbols to find out whether a
4778 symbol with the given name already exists. When this is the case, Guile
4779 just returns that symbol. When not, a new symbol with the name is
4780 created and entered into the table so that it can be found later.
4781
4782 Sometimes you might want to create a symbol that is guaranteed `fresh',
4783 i.e. a symbol that did not exist previously. You might also want to
4784 somehow guarantee that no one else will ever unintentionally stumble
4785 across your symbol in the future. These properties of a symbol are
4786 often needed when generating code during macro expansion. When
4787 introducing new temporary variables, you want to guarantee that they
4788 don't conflict with variables in other people's code.
4789
4790 The simplest way to arrange for this is to create a new symbol but
4791 not enter it into the global table of all symbols. That way, no one
4792 will ever get access to your symbol by chance. Symbols that are not in
4793 the table are called @dfn{uninterned}. Of course, symbols that
4794 @emph{are} in the table are called @dfn{interned}.
4795
4796 You create new uninterned symbols with the function @code{make-symbol}.
4797 You can test whether a symbol is interned or not with
4798 @code{symbol-interned?}.
4799
4800 Uninterned symbols break the rule that the name of a symbol uniquely
4801 identifies the symbol object. Because of this, they can not be written
4802 out and read back in like interned symbols. Currently, Guile has no
4803 support for reading uninterned symbols. Note that the function
4804 @code{gensym} does not return uninterned symbols for this reason.
4805
4806 @deffn {Scheme Procedure} make-symbol name
4807 @deffnx {C Function} scm_make_symbol (name)
4808 Return a new uninterned symbol with the name @var{name}. The returned
4809 symbol is guaranteed to be unique and future calls to
4810 @code{string->symbol} will not return it.
4811 @end deffn
4812
4813 @deffn {Scheme Procedure} symbol-interned? symbol
4814 @deffnx {C Function} scm_symbol_interned_p (symbol)
4815 Return @code{#t} if @var{symbol} is interned, otherwise return
4816 @code{#f}.
4817 @end deffn
4818
4819 For example:
4820
4821 @lisp
4822 (define foo-1 (string->symbol "foo"))
4823 (define foo-2 (string->symbol "foo"))
4824 (define foo-3 (make-symbol "foo"))
4825 (define foo-4 (make-symbol "foo"))
4826
4827 (eq? foo-1 foo-2)
4828 @result{} #t
4829 ; Two interned symbols with the same name are the same object,
4830
4831 (eq? foo-1 foo-3)
4832 @result{} #f
4833 ; but a call to make-symbol with the same name returns a
4834 ; distinct object.
4835
4836 (eq? foo-3 foo-4)
4837 @result{} #f
4838 ; A call to make-symbol always returns a new object, even for
4839 ; the same name.
4840
4841 foo-3
4842 @result{} #<uninterned-symbol foo 8085290>
4843 ; Uninterned symbols print differently from interned symbols,
4844
4845 (symbol? foo-3)
4846 @result{} #t
4847 ; but they are still symbols,
4848
4849 (symbol-interned? foo-3)
4850 @result{} #f
4851 ; just not interned.
4852 @end lisp
4853
4854
4855 @node Keywords
4856 @subsection Keywords
4857 @tpindex Keywords
4858
4859 Keywords are self-evaluating objects with a convenient read syntax that
4860 makes them easy to type.
4861
4862 Guile's keyword support conforms to R5RS, and adds a (switchable) read
4863 syntax extension to permit keywords to begin with @code{:} as well as
4864 @code{#:}.
4865
4866 @menu
4867 * Why Use Keywords?:: Motivation for keyword usage.
4868 * Coding With Keywords:: How to use keywords.
4869 * Keyword Read Syntax:: Read syntax for keywords.
4870 * Keyword Procedures:: Procedures for dealing with keywords.
4871 @end menu
4872
4873 @node Why Use Keywords?
4874 @subsubsection Why Use Keywords?
4875
4876 Keywords are useful in contexts where a program or procedure wants to be
4877 able to accept a large number of optional arguments without making its
4878 interface unmanageable.
4879
4880 To illustrate this, consider a hypothetical @code{make-window}
4881 procedure, which creates a new window on the screen for drawing into
4882 using some graphical toolkit. There are many parameters that the caller
4883 might like to specify, but which could also be sensibly defaulted, for
4884 example:
4885
4886 @itemize @bullet
4887 @item
4888 color depth -- Default: the color depth for the screen
4889
4890 @item
4891 background color -- Default: white
4892
4893 @item
4894 width -- Default: 600
4895
4896 @item
4897 height -- Default: 400
4898 @end itemize
4899
4900 If @code{make-window} did not use keywords, the caller would have to
4901 pass in a value for each possible argument, remembering the correct
4902 argument order and using a special value to indicate the default value
4903 for that argument:
4904
4905 @lisp
4906 (make-window 'default ;; Color depth
4907 'default ;; Background color
4908 800 ;; Width
4909 100 ;; Height
4910 @dots{}) ;; More make-window arguments
4911 @end lisp
4912
4913 With keywords, on the other hand, defaulted arguments are omitted, and
4914 non-default arguments are clearly tagged by the appropriate keyword. As
4915 a result, the invocation becomes much clearer:
4916
4917 @lisp
4918 (make-window #:width 800 #:height 100)
4919 @end lisp
4920
4921 On the other hand, for a simpler procedure with few arguments, the use
4922 of keywords would be a hindrance rather than a help. The primitive
4923 procedure @code{cons}, for example, would not be improved if it had to
4924 be invoked as
4925
4926 @lisp
4927 (cons #:car x #:cdr y)
4928 @end lisp
4929
4930 So the decision whether to use keywords or not is purely pragmatic: use
4931 them if they will clarify the procedure invocation at point of call.
4932
4933 @node Coding With Keywords
4934 @subsubsection Coding With Keywords
4935
4936 If a procedure wants to support keywords, it should take a rest argument
4937 and then use whatever means is convenient to extract keywords and their
4938 corresponding arguments from the contents of that rest argument.
4939
4940 The following example illustrates the principle: the code for
4941 @code{make-window} uses a helper procedure called
4942 @code{get-keyword-value} to extract individual keyword arguments from
4943 the rest argument.
4944
4945 @lisp
4946 (define (get-keyword-value args keyword default)
4947 (let ((kv (memq keyword args)))
4948 (if (and kv (>= (length kv) 2))
4949 (cadr kv)
4950 default)))
4951
4952 (define (make-window . args)
4953 (let ((depth (get-keyword-value args #:depth screen-depth))
4954 (bg (get-keyword-value args #:bg "white"))
4955 (width (get-keyword-value args #:width 800))
4956 (height (get-keyword-value args #:height 100))
4957 @dots{})
4958 @dots{}))
4959 @end lisp
4960
4961 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
4962 optargs)} module provides a set of powerful macros that you can use to
4963 implement keyword-supporting procedures like this:
4964
4965 @lisp
4966 (use-modules (ice-9 optargs))
4967
4968 (define (make-window . args)
4969 (let-keywords args #f ((depth screen-depth)
4970 (bg "white")
4971 (width 800)
4972 (height 100))
4973 ...))
4974 @end lisp
4975
4976 @noindent
4977 Or, even more economically, like this:
4978
4979 @lisp
4980 (use-modules (ice-9 optargs))
4981
4982 (define* (make-window #:key (depth screen-depth)
4983 (bg "white")
4984 (width 800)
4985 (height 100))
4986 ...)
4987 @end lisp
4988
4989 For further details on @code{let-keywords}, @code{define*} and other
4990 facilities provided by the @code{(ice-9 optargs)} module, see
4991 @ref{Optional Arguments}.
4992
4993
4994 @node Keyword Read Syntax
4995 @subsubsection Keyword Read Syntax
4996
4997 Guile, by default, only recognizes a keyword syntax that is compatible
4998 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
4999 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5000 external representation of the keyword named @code{NAME}. Keyword
5001 objects print using this syntax as well, so values containing keyword
5002 objects can be read back into Guile. When used in an expression,
5003 keywords are self-quoting objects.
5004
5005 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5006 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5007 of the form @code{:NAME} are read as symbols, as required by R5RS.
5008
5009 To enable and disable the alternative non-R5RS keyword syntax, you use
5010 the @code{read-set!} procedure documented in @ref{User level options
5011 interfaces} and @ref{Reader options}.
5012
5013 @smalllisp
5014 (read-set! keywords 'prefix)
5015
5016 #:type
5017 @result{}
5018 #:type
5019
5020 :type
5021 @result{}
5022 #:type
5023
5024 (read-set! keywords #f)
5025
5026 #:type
5027 @result{}
5028 #:type
5029
5030 :type
5031 @print{}
5032 ERROR: In expression :type:
5033 ERROR: Unbound variable: :type
5034 ABORT: (unbound-variable)
5035 @end smalllisp
5036
5037 @node Keyword Procedures
5038 @subsubsection Keyword Procedures
5039
5040 @deffn {Scheme Procedure} keyword? obj
5041 @deffnx {C Function} scm_keyword_p (obj)
5042 Return @code{#t} if the argument @var{obj} is a keyword, else
5043 @code{#f}.
5044 @end deffn
5045
5046 @deffn {Scheme Procedure} keyword->symbol keyword
5047 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5048 Return the symbol with the same name as @var{keyword}.
5049 @end deffn
5050
5051 @deffn {Scheme Procedure} symbol->keyword symbol
5052 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5053 Return the keyword with the same name as @var{symbol}.
5054 @end deffn
5055
5056 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5057 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5058 @end deftypefn
5059
5060 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5061 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5062 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5063 (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5064 (@var{str}, @var{len}))}, respectively.
5065 @end deftypefn
5066
5067 @node Other Types
5068 @subsection ``Functionality-Centric'' Data Types
5069
5070 Procedures and macros are documented in their own chapter: see
5071 @ref{Procedures and Macros}.
5072
5073 Variable objects are documented as part of the description of Guile's
5074 module system: see @ref{Variables}.
5075
5076 Asyncs, dynamic roots and fluids are described in the chapter on
5077 scheduling: see @ref{Scheduling}.
5078
5079 Hooks are documented in the chapter on general utility functions: see
5080 @ref{Hooks}.
5081
5082 Ports are described in the chapter on I/O: see @ref{Input and Output}.
5083
5084
5085 @c Local Variables:
5086 @c TeX-master: "guile.texi"
5087 @c End: