merge from master to elisp
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009
4 @c Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @page
8 @node Simple Data Types
9 @section Simple Generic Data Types
10
11 This chapter describes those of Guile's simple data types which are
12 primarily used for their role as items of generic data. By
13 @dfn{simple} we mean data types that are not primarily used as
14 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
15 For the documentation of such @dfn{compound} data types, see
16 @ref{Compound Data Types}.
17
18 @c One of the great strengths of Scheme is that there is no straightforward
19 @c distinction between ``data'' and ``functionality''. For example,
20 @c Guile's support for dynamic linking could be described:
21
22 @c @itemize @bullet
23 @c @item
24 @c either in a ``data-centric'' way, as the behaviour and properties of the
25 @c ``dynamically linked object'' data type, and the operations that may be
26 @c applied to instances of this type
27
28 @c @item
29 @c or in a ``functionality-centric'' way, as the set of procedures that
30 @c constitute Guile's support for dynamic linking, in the context of the
31 @c module system.
32 @c @end itemize
33
34 @c The contents of this chapter are, therefore, a matter of judgment. By
35 @c @dfn{generic}, we mean to select those data types whose typical use as
36 @c @emph{data} in a wide variety of programming contexts is more important
37 @c than their use in the implementation of a particular piece of
38 @c @emph{functionality}. The last section of this chapter provides
39 @c references for all the data types that are documented not here but in a
40 @c ``functionality-centric'' way elsewhere in the manual.
41
42 @menu
43 * Booleans:: True/false values.
44 * Numbers:: Numerical data types.
45 * Characters:: Single characters.
46 * Character Sets:: Sets of characters.
47 * Strings:: Sequences of characters.
48 * Bytevectors:: Sequences of bytes.
49 * Regular Expressions:: Pattern matching and substitution.
50 * Symbols:: Symbols.
51 * Keywords:: Self-quoting, customizable display keywords.
52 * Other Types:: "Functionality-centric" data types.
53 @end menu
54
55
56 @node Booleans
57 @subsection Booleans
58 @tpindex Booleans
59
60 The two boolean values are @code{#t} for true and @code{#f} for false.
61
62 Boolean values are returned by predicate procedures, such as the general
63 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
64 (@pxref{Equality}) and numerical and string comparison operators like
65 @code{string=?} (@pxref{String Comparison}) and @code{<=}
66 (@pxref{Comparison}).
67
68 @lisp
69 (<= 3 8)
70 @result{} #t
71
72 (<= 3 -3)
73 @result{} #f
74
75 (equal? "house" "houses")
76 @result{} #f
77
78 (eq? #f #f)
79 @result{}
80 #t
81 @end lisp
82
83 In test condition contexts like @code{if} and @code{cond} (@pxref{if
84 cond case}), where a group of subexpressions will be evaluated only if a
85 @var{condition} expression evaluates to ``true'', ``true'' means any
86 value at all except @code{#f}.
87
88 @lisp
89 (if #t "yes" "no")
90 @result{} "yes"
91
92 (if 0 "yes" "no")
93 @result{} "yes"
94
95 (if #f "yes" "no")
96 @result{} "no"
97 @end lisp
98
99 A result of this asymmetry is that typical Scheme source code more often
100 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
101 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
102 not necessary to represent an @code{if} or @code{cond} true value.
103
104 It is important to note that @code{#f} is @strong{not} equivalent to any
105 other Scheme value. In particular, @code{#f} is not the same as the
106 number 0 (like in C and C++), and not the same as the ``empty list''
107 (like in some Lisp dialects).
108
109 In C, the two Scheme boolean values are available as the two constants
110 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
111 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
112 false when used in C conditionals. In order to test for it, use
113 @code{scm_is_false} or @code{scm_is_true}.
114
115 @rnindex not
116 @deffn {Scheme Procedure} not x
117 @deffnx {C Function} scm_not (x)
118 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
119 @end deffn
120
121 @rnindex boolean?
122 @deffn {Scheme Procedure} boolean? obj
123 @deffnx {C Function} scm_boolean_p (obj)
124 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
125 return @code{#f}.
126 @end deffn
127
128 @deftypevr {C Macro} SCM SCM_BOOL_T
129 The @code{SCM} representation of the Scheme object @code{#t}.
130 @end deftypevr
131
132 @deftypevr {C Macro} SCM SCM_BOOL_F
133 The @code{SCM} representation of the Scheme object @code{#f}.
134 @end deftypevr
135
136 @deftypefn {C Function} int scm_is_true (SCM obj)
137 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
138 @end deftypefn
139
140 @deftypefn {C Function} int scm_is_false (SCM obj)
141 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
142 @end deftypefn
143
144 @deftypefn {C Function} int scm_is_bool (SCM obj)
145 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
146 return @code{0}.
147 @end deftypefn
148
149 @deftypefn {C Function} SCM scm_from_bool (int val)
150 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
151 @end deftypefn
152
153 @deftypefn {C Function} int scm_to_bool (SCM val)
154 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
155 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
156
157 You should probably use @code{scm_is_true} instead of this function
158 when you just want to test a @code{SCM} value for trueness.
159 @end deftypefn
160
161 @node Numbers
162 @subsection Numerical data types
163 @tpindex Numbers
164
165 Guile supports a rich ``tower'' of numerical types --- integer,
166 rational, real and complex --- and provides an extensive set of
167 mathematical and scientific functions for operating on numerical
168 data. This section of the manual documents those types and functions.
169
170 You may also find it illuminating to read R5RS's presentation of numbers
171 in Scheme, which is particularly clear and accessible: see
172 @ref{Numbers,,,r5rs,R5RS}.
173
174 @menu
175 * Numerical Tower:: Scheme's numerical "tower".
176 * Integers:: Whole numbers.
177 * Reals and Rationals:: Real and rational numbers.
178 * Complex Numbers:: Complex numbers.
179 * Exactness:: Exactness and inexactness.
180 * Number Syntax:: Read syntax for numerical data.
181 * Integer Operations:: Operations on integer values.
182 * Comparison:: Comparison predicates.
183 * Conversion:: Converting numbers to and from strings.
184 * Complex:: Complex number operations.
185 * Arithmetic:: Arithmetic functions.
186 * Scientific:: Scientific functions.
187 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
188 * Random:: Random number generation.
189 @end menu
190
191
192 @node Numerical Tower
193 @subsubsection Scheme's Numerical ``Tower''
194 @rnindex number?
195
196 Scheme's numerical ``tower'' consists of the following categories of
197 numbers:
198
199 @table @dfn
200 @item integers
201 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
202
203 @item rationals
204 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
205 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
206 pi (an irrational number) doesn't. These include integers
207 (@math{@var{n}/1}).
208
209 @item real numbers
210 The set of numbers that describes all possible positions along a
211 one-dimensional line. This includes rationals as well as irrational
212 numbers.
213
214 @item complex numbers
215 The set of numbers that describes all possible positions in a two
216 dimensional space. This includes real as well as imaginary numbers
217 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
218 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
219 @minus{}1.)
220 @end table
221
222 It is called a tower because each category ``sits on'' the one that
223 follows it, in the sense that every integer is also a rational, every
224 rational is also real, and every real number is also a complex number
225 (but with zero imaginary part).
226
227 In addition to the classification into integers, rationals, reals and
228 complex numbers, Scheme also distinguishes between whether a number is
229 represented exactly or not. For example, the result of
230 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
231 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
232 Instead, it stores an inexact approximation, using the C type
233 @code{double}.
234
235 Guile can represent exact rationals of any magnitude, inexact
236 rationals that fit into a C @code{double}, and inexact complex numbers
237 with @code{double} real and imaginary parts.
238
239 The @code{number?} predicate may be applied to any Scheme value to
240 discover whether the value is any of the supported numerical types.
241
242 @deffn {Scheme Procedure} number? obj
243 @deffnx {C Function} scm_number_p (obj)
244 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
245 @end deffn
246
247 For example:
248
249 @lisp
250 (number? 3)
251 @result{} #t
252
253 (number? "hello there!")
254 @result{} #f
255
256 (define pi 3.141592654)
257 (number? pi)
258 @result{} #t
259 @end lisp
260
261 @deftypefn {C Function} int scm_is_number (SCM obj)
262 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
263 @end deftypefn
264
265 The next few subsections document each of Guile's numerical data types
266 in detail.
267
268 @node Integers
269 @subsubsection Integers
270
271 @tpindex Integer numbers
272
273 @rnindex integer?
274
275 Integers are whole numbers, that is numbers with no fractional part,
276 such as 2, 83, and @minus{}3789.
277
278 Integers in Guile can be arbitrarily big, as shown by the following
279 example.
280
281 @lisp
282 (define (factorial n)
283 (let loop ((n n) (product 1))
284 (if (= n 0)
285 product
286 (loop (- n 1) (* product n)))))
287
288 (factorial 3)
289 @result{} 6
290
291 (factorial 20)
292 @result{} 2432902008176640000
293
294 (- (factorial 45))
295 @result{} -119622220865480194561963161495657715064383733760000000000
296 @end lisp
297
298 Readers whose background is in programming languages where integers are
299 limited by the need to fit into just 4 or 8 bytes of memory may find
300 this surprising, or suspect that Guile's representation of integers is
301 inefficient. In fact, Guile achieves a near optimal balance of
302 convenience and efficiency by using the host computer's native
303 representation of integers where possible, and a more general
304 representation where the required number does not fit in the native
305 form. Conversion between these two representations is automatic and
306 completely invisible to the Scheme level programmer.
307
308 The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
309 inexact integers. They are explained in detail in the next section,
310 together with reals and rationals.
311
312 C has a host of different integer types, and Guile offers a host of
313 functions to convert between them and the @code{SCM} representation.
314 For example, a C @code{int} can be handled with @code{scm_to_int} and
315 @code{scm_from_int}. Guile also defines a few C integer types of its
316 own, to help with differences between systems.
317
318 C integer types that are not covered can be handled with the generic
319 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
320 signed types, or with @code{scm_to_unsigned_integer} and
321 @code{scm_from_unsigned_integer} for unsigned types.
322
323 Scheme integers can be exact and inexact. For example, a number
324 written as @code{3.0} with an explicit decimal-point is inexact, but
325 it is also an integer. The functions @code{integer?} and
326 @code{scm_is_integer} report true for such a number, but the functions
327 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
328 allow exact integers and thus report false. Likewise, the conversion
329 functions like @code{scm_to_signed_integer} only accept exact
330 integers.
331
332 The motivation for this behavior is that the inexactness of a number
333 should not be lost silently. If you want to allow inexact integers,
334 you can explicitly insert a call to @code{inexact->exact} or to its C
335 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
336 be converted by this call into exact integers; inexact non-integers
337 will become exact fractions.)
338
339 @deffn {Scheme Procedure} integer? x
340 @deffnx {C Function} scm_integer_p (x)
341 Return @code{#t} if @var{x} is an exact or inexact integer number, else
342 @code{#f}.
343
344 @lisp
345 (integer? 487)
346 @result{} #t
347
348 (integer? 3.0)
349 @result{} #t
350
351 (integer? -3.4)
352 @result{} #f
353
354 (integer? +inf.0)
355 @result{} #t
356 @end lisp
357 @end deffn
358
359 @deftypefn {C Function} int scm_is_integer (SCM x)
360 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
361 @end deftypefn
362
363 @defvr {C Type} scm_t_int8
364 @defvrx {C Type} scm_t_uint8
365 @defvrx {C Type} scm_t_int16
366 @defvrx {C Type} scm_t_uint16
367 @defvrx {C Type} scm_t_int32
368 @defvrx {C Type} scm_t_uint32
369 @defvrx {C Type} scm_t_int64
370 @defvrx {C Type} scm_t_uint64
371 @defvrx {C Type} scm_t_intmax
372 @defvrx {C Type} scm_t_uintmax
373 The C types are equivalent to the corresponding ISO C types but are
374 defined on all platforms, with the exception of @code{scm_t_int64} and
375 @code{scm_t_uint64}, which are only defined when a 64-bit type is
376 available. For example, @code{scm_t_int8} is equivalent to
377 @code{int8_t}.
378
379 You can regard these definitions as a stop-gap measure until all
380 platforms provide these types. If you know that all the platforms
381 that you are interested in already provide these types, it is better
382 to use them directly instead of the types provided by Guile.
383 @end defvr
384
385 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
386 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
387 Return @code{1} when @var{x} represents an exact integer that is
388 between @var{min} and @var{max}, inclusive.
389
390 These functions can be used to check whether a @code{SCM} value will
391 fit into a given range, such as the range of a given C integer type.
392 If you just want to convert a @code{SCM} value to a given C integer
393 type, use one of the conversion functions directly.
394 @end deftypefn
395
396 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
397 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
398 When @var{x} represents an exact integer that is between @var{min} and
399 @var{max} inclusive, return that integer. Else signal an error,
400 either a `wrong-type' error when @var{x} is not an exact integer, or
401 an `out-of-range' error when it doesn't fit the given range.
402 @end deftypefn
403
404 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
405 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
406 Return the @code{SCM} value that represents the integer @var{x}. This
407 function will always succeed and will always return an exact number.
408 @end deftypefn
409
410 @deftypefn {C Function} char scm_to_char (SCM x)
411 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
412 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
413 @deftypefnx {C Function} short scm_to_short (SCM x)
414 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
415 @deftypefnx {C Function} int scm_to_int (SCM x)
416 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
417 @deftypefnx {C Function} long scm_to_long (SCM x)
418 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
419 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
420 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
421 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
422 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
423 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
424 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
425 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
426 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
427 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
428 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
429 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
430 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
431 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
432 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
433 When @var{x} represents an exact integer that fits into the indicated
434 C type, return that integer. Else signal an error, either a
435 `wrong-type' error when @var{x} is not an exact integer, or an
436 `out-of-range' error when it doesn't fit the given range.
437
438 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
439 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
440 the corresponding types are.
441 @end deftypefn
442
443 @deftypefn {C Function} SCM scm_from_char (char x)
444 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
445 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
446 @deftypefnx {C Function} SCM scm_from_short (short x)
447 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
448 @deftypefnx {C Function} SCM scm_from_int (int x)
449 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
450 @deftypefnx {C Function} SCM scm_from_long (long x)
451 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
452 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
453 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
454 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
455 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
456 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
457 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
458 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
459 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
460 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
461 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
462 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
463 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
464 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
465 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
466 Return the @code{SCM} value that represents the integer @var{x}.
467 These functions will always succeed and will always return an exact
468 number.
469 @end deftypefn
470
471 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
472 Assign @var{val} to the multiple precision integer @var{rop}.
473 @var{val} must be an exact integer, otherwise an error will be
474 signalled. @var{rop} must have been initialized with @code{mpz_init}
475 before this function is called. When @var{rop} is no longer needed
476 the occupied space must be freed with @code{mpz_clear}.
477 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
478 @end deftypefn
479
480 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
481 Return the @code{SCM} value that represents @var{val}.
482 @end deftypefn
483
484 @node Reals and Rationals
485 @subsubsection Real and Rational Numbers
486 @tpindex Real numbers
487 @tpindex Rational numbers
488
489 @rnindex real?
490 @rnindex rational?
491
492 Mathematically, the real numbers are the set of numbers that describe
493 all possible points along a continuous, infinite, one-dimensional line.
494 The rational numbers are the set of all numbers that can be written as
495 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
496 All rational numbers are also real, but there are real numbers that
497 are not rational, for example @m{\sqrt2, the square root of 2}, and
498 @m{\pi,pi}.
499
500 Guile can represent both exact and inexact rational numbers, but it
501 can not represent irrational numbers. Exact rationals are represented
502 by storing the numerator and denominator as two exact integers.
503 Inexact rationals are stored as floating point numbers using the C
504 type @code{double}.
505
506 Exact rationals are written as a fraction of integers. There must be
507 no whitespace around the slash:
508
509 @lisp
510 1/2
511 -22/7
512 @end lisp
513
514 Even though the actual encoding of inexact rationals is in binary, it
515 may be helpful to think of it as a decimal number with a limited
516 number of significant figures and a decimal point somewhere, since
517 this corresponds to the standard notation for non-whole numbers. For
518 example:
519
520 @lisp
521 0.34
522 -0.00000142857931198
523 -5648394822220000000000.0
524 4.0
525 @end lisp
526
527 The limited precision of Guile's encoding means that any ``real'' number
528 in Guile can be written in a rational form, by multiplying and then dividing
529 by sufficient powers of 10 (or in fact, 2). For example,
530 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
531 100000000000000000. In Guile's current incarnation, therefore, the
532 @code{rational?} and @code{real?} predicates are equivalent.
533
534
535 Dividing by an exact zero leads to a error message, as one might
536 expect. However, dividing by an inexact zero does not produce an
537 error. Instead, the result of the division is either plus or minus
538 infinity, depending on the sign of the divided number.
539
540 The infinities are written @samp{+inf.0} and @samp{-inf.0},
541 respectively. This syntax is also recognized by @code{read} as an
542 extension to the usual Scheme syntax.
543
544 Dividing zero by zero yields something that is not a number at all:
545 @samp{+nan.0}. This is the special `not a number' value.
546
547 On platforms that follow @acronym{IEEE} 754 for their floating point
548 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
549 are implemented using the corresponding @acronym{IEEE} 754 values.
550 They behave in arithmetic operations like @acronym{IEEE} 754 describes
551 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
552
553 The infinities are inexact integers and are considered to be both even
554 and odd. While @samp{+nan.0} is not @code{=} to itself, it is
555 @code{eqv?} to itself.
556
557 To test for the special values, use the functions @code{inf?} and
558 @code{nan?}.
559
560 @deffn {Scheme Procedure} real? obj
561 @deffnx {C Function} scm_real_p (obj)
562 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
563 that the sets of integer and rational values form subsets of the set
564 of real numbers, so the predicate will also be fulfilled if @var{obj}
565 is an integer number or a rational number.
566 @end deffn
567
568 @deffn {Scheme Procedure} rational? x
569 @deffnx {C Function} scm_rational_p (x)
570 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
571 Note that the set of integer values forms a subset of the set of
572 rational numbers, i. e. the predicate will also be fulfilled if
573 @var{x} is an integer number.
574
575 Since Guile can not represent irrational numbers, every number
576 satisfying @code{real?} also satisfies @code{rational?} in Guile.
577 @end deffn
578
579 @deffn {Scheme Procedure} rationalize x eps
580 @deffnx {C Function} scm_rationalize (x, eps)
581 Returns the @emph{simplest} rational number differing
582 from @var{x} by no more than @var{eps}.
583
584 As required by @acronym{R5RS}, @code{rationalize} only returns an
585 exact result when both its arguments are exact. Thus, you might need
586 to use @code{inexact->exact} on the arguments.
587
588 @lisp
589 (rationalize (inexact->exact 1.2) 1/100)
590 @result{} 6/5
591 @end lisp
592
593 @end deffn
594
595 @deffn {Scheme Procedure} inf? x
596 @deffnx {C Function} scm_inf_p (x)
597 Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
598 @code{#f} otherwise.
599 @end deffn
600
601 @deffn {Scheme Procedure} nan? x
602 @deffnx {C Function} scm_nan_p (x)
603 Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
604 @end deffn
605
606 @deffn {Scheme Procedure} nan
607 @deffnx {C Function} scm_nan ()
608 Return NaN.
609 @end deffn
610
611 @deffn {Scheme Procedure} inf
612 @deffnx {C Function} scm_inf ()
613 Return Inf.
614 @end deffn
615
616 @deffn {Scheme Procedure} numerator x
617 @deffnx {C Function} scm_numerator (x)
618 Return the numerator of the rational number @var{x}.
619 @end deffn
620
621 @deffn {Scheme Procedure} denominator x
622 @deffnx {C Function} scm_denominator (x)
623 Return the denominator of the rational number @var{x}.
624 @end deffn
625
626 @deftypefn {C Function} int scm_is_real (SCM val)
627 @deftypefnx {C Function} int scm_is_rational (SCM val)
628 Equivalent to @code{scm_is_true (scm_real_p (val))} and
629 @code{scm_is_true (scm_rational_p (val))}, respectively.
630 @end deftypefn
631
632 @deftypefn {C Function} double scm_to_double (SCM val)
633 Returns the number closest to @var{val} that is representable as a
634 @code{double}. Returns infinity for a @var{val} that is too large in
635 magnitude. The argument @var{val} must be a real number.
636 @end deftypefn
637
638 @deftypefn {C Function} SCM scm_from_double (double val)
639 Return the @code{SCM} value that represents @var{val}. The returned
640 value is inexact according to the predicate @code{inexact?}, but it
641 will be exactly equal to @var{val}.
642 @end deftypefn
643
644 @node Complex Numbers
645 @subsubsection Complex Numbers
646 @tpindex Complex numbers
647
648 @rnindex complex?
649
650 Complex numbers are the set of numbers that describe all possible points
651 in a two-dimensional space. The two coordinates of a particular point
652 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
653 the complex number that describes that point.
654
655 In Guile, complex numbers are written in rectangular form as the sum of
656 their real and imaginary parts, using the symbol @code{i} to indicate
657 the imaginary part.
658
659 @lisp
660 3+4i
661 @result{}
662 3.0+4.0i
663
664 (* 3-8i 2.3+0.3i)
665 @result{}
666 9.3-17.5i
667 @end lisp
668
669 @cindex polar form
670 @noindent
671 Polar form can also be used, with an @samp{@@} between magnitude and
672 angle,
673
674 @lisp
675 1@@3.141592 @result{} -1.0 (approx)
676 -1@@1.57079 @result{} 0.0-1.0i (approx)
677 @end lisp
678
679 Guile represents a complex number with a non-zero imaginary part as a
680 pair of inexact rationals, so the real and imaginary parts of a
681 complex number have the same properties of inexactness and limited
682 precision as single inexact rational numbers. Guile can not represent
683 exact complex numbers with non-zero imaginary parts.
684
685 @deffn {Scheme Procedure} complex? z
686 @deffnx {C Function} scm_complex_p (z)
687 Return @code{#t} if @var{x} is a complex number, @code{#f}
688 otherwise. Note that the sets of real, rational and integer
689 values form subsets of the set of complex numbers, i. e. the
690 predicate will also be fulfilled if @var{x} is a real,
691 rational or integer number.
692 @end deffn
693
694 @deftypefn {C Function} int scm_is_complex (SCM val)
695 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
696 @end deftypefn
697
698 @node Exactness
699 @subsubsection Exact and Inexact Numbers
700 @tpindex Exact numbers
701 @tpindex Inexact numbers
702
703 @rnindex exact?
704 @rnindex inexact?
705 @rnindex exact->inexact
706 @rnindex inexact->exact
707
708 R5RS requires that a calculation involving inexact numbers always
709 produces an inexact result. To meet this requirement, Guile
710 distinguishes between an exact integer value such as @samp{5} and the
711 corresponding inexact real value which, to the limited precision
712 available, has no fractional part, and is printed as @samp{5.0}. Guile
713 will only convert the latter value to the former when forced to do so by
714 an invocation of the @code{inexact->exact} procedure.
715
716 @deffn {Scheme Procedure} exact? z
717 @deffnx {C Function} scm_exact_p (z)
718 Return @code{#t} if the number @var{z} is exact, @code{#f}
719 otherwise.
720
721 @lisp
722 (exact? 2)
723 @result{} #t
724
725 (exact? 0.5)
726 @result{} #f
727
728 (exact? (/ 2))
729 @result{} #t
730 @end lisp
731
732 @end deffn
733
734 @deffn {Scheme Procedure} inexact? z
735 @deffnx {C Function} scm_inexact_p (z)
736 Return @code{#t} if the number @var{z} is inexact, @code{#f}
737 else.
738 @end deffn
739
740 @deffn {Scheme Procedure} inexact->exact z
741 @deffnx {C Function} scm_inexact_to_exact (z)
742 Return an exact number that is numerically closest to @var{z}, when
743 there is one. For inexact rationals, Guile returns the exact rational
744 that is numerically equal to the inexact rational. Inexact complex
745 numbers with a non-zero imaginary part can not be made exact.
746
747 @lisp
748 (inexact->exact 0.5)
749 @result{} 1/2
750 @end lisp
751
752 The following happens because 12/10 is not exactly representable as a
753 @code{double} (on most platforms). However, when reading a decimal
754 number that has been marked exact with the ``#e'' prefix, Guile is
755 able to represent it correctly.
756
757 @lisp
758 (inexact->exact 1.2)
759 @result{} 5404319552844595/4503599627370496
760
761 #e1.2
762 @result{} 6/5
763 @end lisp
764
765 @end deffn
766
767 @c begin (texi-doc-string "guile" "exact->inexact")
768 @deffn {Scheme Procedure} exact->inexact z
769 @deffnx {C Function} scm_exact_to_inexact (z)
770 Convert the number @var{z} to its inexact representation.
771 @end deffn
772
773
774 @node Number Syntax
775 @subsubsection Read Syntax for Numerical Data
776
777 The read syntax for integers is a string of digits, optionally
778 preceded by a minus or plus character, a code indicating the
779 base in which the integer is encoded, and a code indicating whether
780 the number is exact or inexact. The supported base codes are:
781
782 @table @code
783 @item #b
784 @itemx #B
785 the integer is written in binary (base 2)
786
787 @item #o
788 @itemx #O
789 the integer is written in octal (base 8)
790
791 @item #d
792 @itemx #D
793 the integer is written in decimal (base 10)
794
795 @item #x
796 @itemx #X
797 the integer is written in hexadecimal (base 16)
798 @end table
799
800 If the base code is omitted, the integer is assumed to be decimal. The
801 following examples show how these base codes are used.
802
803 @lisp
804 -13
805 @result{} -13
806
807 #d-13
808 @result{} -13
809
810 #x-13
811 @result{} -19
812
813 #b+1101
814 @result{} 13
815
816 #o377
817 @result{} 255
818 @end lisp
819
820 The codes for indicating exactness (which can, incidentally, be applied
821 to all numerical values) are:
822
823 @table @code
824 @item #e
825 @itemx #E
826 the number is exact
827
828 @item #i
829 @itemx #I
830 the number is inexact.
831 @end table
832
833 If the exactness indicator is omitted, the number is exact unless it
834 contains a radix point. Since Guile can not represent exact complex
835 numbers, an error is signalled when asking for them.
836
837 @lisp
838 (exact? 1.2)
839 @result{} #f
840
841 (exact? #e1.2)
842 @result{} #t
843
844 (exact? #e+1i)
845 ERROR: Wrong type argument
846 @end lisp
847
848 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
849 plus and minus infinity, respectively. The value must be written
850 exactly as shown, that is, they always must have a sign and exactly
851 one zero digit after the decimal point. It also understands
852 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
853 The sign is ignored for `not-a-number' and the value is always printed
854 as @samp{+nan.0}.
855
856 @node Integer Operations
857 @subsubsection Operations on Integer Values
858 @rnindex odd?
859 @rnindex even?
860 @rnindex quotient
861 @rnindex remainder
862 @rnindex modulo
863 @rnindex gcd
864 @rnindex lcm
865
866 @deffn {Scheme Procedure} odd? n
867 @deffnx {C Function} scm_odd_p (n)
868 Return @code{#t} if @var{n} is an odd number, @code{#f}
869 otherwise.
870 @end deffn
871
872 @deffn {Scheme Procedure} even? n
873 @deffnx {C Function} scm_even_p (n)
874 Return @code{#t} if @var{n} is an even number, @code{#f}
875 otherwise.
876 @end deffn
877
878 @c begin (texi-doc-string "guile" "quotient")
879 @c begin (texi-doc-string "guile" "remainder")
880 @deffn {Scheme Procedure} quotient n d
881 @deffnx {Scheme Procedure} remainder n d
882 @deffnx {C Function} scm_quotient (n, d)
883 @deffnx {C Function} scm_remainder (n, d)
884 Return the quotient or remainder from @var{n} divided by @var{d}. The
885 quotient is rounded towards zero, and the remainder will have the same
886 sign as @var{n}. In all cases quotient and remainder satisfy
887 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
888
889 @lisp
890 (remainder 13 4) @result{} 1
891 (remainder -13 4) @result{} -1
892 @end lisp
893 @end deffn
894
895 @c begin (texi-doc-string "guile" "modulo")
896 @deffn {Scheme Procedure} modulo n d
897 @deffnx {C Function} scm_modulo (n, d)
898 Return the remainder from @var{n} divided by @var{d}, with the same
899 sign as @var{d}.
900
901 @lisp
902 (modulo 13 4) @result{} 1
903 (modulo -13 4) @result{} 3
904 (modulo 13 -4) @result{} -3
905 (modulo -13 -4) @result{} -1
906 @end lisp
907 @end deffn
908
909 @c begin (texi-doc-string "guile" "gcd")
910 @deffn {Scheme Procedure} gcd x@dots{}
911 @deffnx {C Function} scm_gcd (x, y)
912 Return the greatest common divisor of all arguments.
913 If called without arguments, 0 is returned.
914
915 The C function @code{scm_gcd} always takes two arguments, while the
916 Scheme function can take an arbitrary number.
917 @end deffn
918
919 @c begin (texi-doc-string "guile" "lcm")
920 @deffn {Scheme Procedure} lcm x@dots{}
921 @deffnx {C Function} scm_lcm (x, y)
922 Return the least common multiple of the arguments.
923 If called without arguments, 1 is returned.
924
925 The C function @code{scm_lcm} always takes two arguments, while the
926 Scheme function can take an arbitrary number.
927 @end deffn
928
929 @deffn {Scheme Procedure} modulo-expt n k m
930 @deffnx {C Function} scm_modulo_expt (n, k, m)
931 Return @var{n} raised to the integer exponent
932 @var{k}, modulo @var{m}.
933
934 @lisp
935 (modulo-expt 2 3 5)
936 @result{} 3
937 @end lisp
938 @end deffn
939
940 @node Comparison
941 @subsubsection Comparison Predicates
942 @rnindex zero?
943 @rnindex positive?
944 @rnindex negative?
945
946 The C comparison functions below always takes two arguments, while the
947 Scheme functions can take an arbitrary number. Also keep in mind that
948 the C functions return one of the Scheme boolean values
949 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
950 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
951 y))} when testing the two Scheme numbers @code{x} and @code{y} for
952 equality, for example.
953
954 @c begin (texi-doc-string "guile" "=")
955 @deffn {Scheme Procedure} =
956 @deffnx {C Function} scm_num_eq_p (x, y)
957 Return @code{#t} if all parameters are numerically equal.
958 @end deffn
959
960 @c begin (texi-doc-string "guile" "<")
961 @deffn {Scheme Procedure} <
962 @deffnx {C Function} scm_less_p (x, y)
963 Return @code{#t} if the list of parameters is monotonically
964 increasing.
965 @end deffn
966
967 @c begin (texi-doc-string "guile" ">")
968 @deffn {Scheme Procedure} >
969 @deffnx {C Function} scm_gr_p (x, y)
970 Return @code{#t} if the list of parameters is monotonically
971 decreasing.
972 @end deffn
973
974 @c begin (texi-doc-string "guile" "<=")
975 @deffn {Scheme Procedure} <=
976 @deffnx {C Function} scm_leq_p (x, y)
977 Return @code{#t} if the list of parameters is monotonically
978 non-decreasing.
979 @end deffn
980
981 @c begin (texi-doc-string "guile" ">=")
982 @deffn {Scheme Procedure} >=
983 @deffnx {C Function} scm_geq_p (x, y)
984 Return @code{#t} if the list of parameters is monotonically
985 non-increasing.
986 @end deffn
987
988 @c begin (texi-doc-string "guile" "zero?")
989 @deffn {Scheme Procedure} zero? z
990 @deffnx {C Function} scm_zero_p (z)
991 Return @code{#t} if @var{z} is an exact or inexact number equal to
992 zero.
993 @end deffn
994
995 @c begin (texi-doc-string "guile" "positive?")
996 @deffn {Scheme Procedure} positive? x
997 @deffnx {C Function} scm_positive_p (x)
998 Return @code{#t} if @var{x} is an exact or inexact number greater than
999 zero.
1000 @end deffn
1001
1002 @c begin (texi-doc-string "guile" "negative?")
1003 @deffn {Scheme Procedure} negative? x
1004 @deffnx {C Function} scm_negative_p (x)
1005 Return @code{#t} if @var{x} is an exact or inexact number less than
1006 zero.
1007 @end deffn
1008
1009
1010 @node Conversion
1011 @subsubsection Converting Numbers To and From Strings
1012 @rnindex number->string
1013 @rnindex string->number
1014
1015 The following procedures read and write numbers according to their
1016 external representation as defined by R5RS (@pxref{Lexical structure,
1017 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1018 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1019 i18n)} module}, for locale-dependent number parsing.
1020
1021 @deffn {Scheme Procedure} number->string n [radix]
1022 @deffnx {C Function} scm_number_to_string (n, radix)
1023 Return a string holding the external representation of the
1024 number @var{n} in the given @var{radix}. If @var{n} is
1025 inexact, a radix of 10 will be used.
1026 @end deffn
1027
1028 @deffn {Scheme Procedure} string->number string [radix]
1029 @deffnx {C Function} scm_string_to_number (string, radix)
1030 Return a number of the maximally precise representation
1031 expressed by the given @var{string}. @var{radix} must be an
1032 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1033 is a default radix that may be overridden by an explicit radix
1034 prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
1035 supplied, then the default radix is 10. If string is not a
1036 syntactically valid notation for a number, then
1037 @code{string->number} returns @code{#f}.
1038 @end deffn
1039
1040 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1041 As per @code{string->number} above, but taking a C string, as pointer
1042 and length. The string characters should be in the current locale
1043 encoding (@code{locale} in the name refers only to that, there's no
1044 locale-dependent parsing).
1045 @end deftypefn
1046
1047
1048 @node Complex
1049 @subsubsection Complex Number Operations
1050 @rnindex make-rectangular
1051 @rnindex make-polar
1052 @rnindex real-part
1053 @rnindex imag-part
1054 @rnindex magnitude
1055 @rnindex angle
1056
1057 @deffn {Scheme Procedure} make-rectangular real imaginary
1058 @deffnx {C Function} scm_make_rectangular (real, imaginary)
1059 Return a complex number constructed of the given @var{real} and
1060 @var{imaginary} parts.
1061 @end deffn
1062
1063 @deffn {Scheme Procedure} make-polar x y
1064 @deffnx {C Function} scm_make_polar (x, y)
1065 @cindex polar form
1066 Return the complex number @var{x} * e^(i * @var{y}).
1067 @end deffn
1068
1069 @c begin (texi-doc-string "guile" "real-part")
1070 @deffn {Scheme Procedure} real-part z
1071 @deffnx {C Function} scm_real_part (z)
1072 Return the real part of the number @var{z}.
1073 @end deffn
1074
1075 @c begin (texi-doc-string "guile" "imag-part")
1076 @deffn {Scheme Procedure} imag-part z
1077 @deffnx {C Function} scm_imag_part (z)
1078 Return the imaginary part of the number @var{z}.
1079 @end deffn
1080
1081 @c begin (texi-doc-string "guile" "magnitude")
1082 @deffn {Scheme Procedure} magnitude z
1083 @deffnx {C Function} scm_magnitude (z)
1084 Return the magnitude of the number @var{z}. This is the same as
1085 @code{abs} for real arguments, but also allows complex numbers.
1086 @end deffn
1087
1088 @c begin (texi-doc-string "guile" "angle")
1089 @deffn {Scheme Procedure} angle z
1090 @deffnx {C Function} scm_angle (z)
1091 Return the angle of the complex number @var{z}.
1092 @end deffn
1093
1094 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1095 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1096 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1097 respectively, but these functions take @code{double}s as their
1098 arguments.
1099 @end deftypefn
1100
1101 @deftypefn {C Function} double scm_c_real_part (z)
1102 @deftypefnx {C Function} double scm_c_imag_part (z)
1103 Returns the real or imaginary part of @var{z} as a @code{double}.
1104 @end deftypefn
1105
1106 @deftypefn {C Function} double scm_c_magnitude (z)
1107 @deftypefnx {C Function} double scm_c_angle (z)
1108 Returns the magnitude or angle of @var{z} as a @code{double}.
1109 @end deftypefn
1110
1111
1112 @node Arithmetic
1113 @subsubsection Arithmetic Functions
1114 @rnindex max
1115 @rnindex min
1116 @rnindex +
1117 @rnindex *
1118 @rnindex -
1119 @rnindex /
1120 @findex 1+
1121 @findex 1-
1122 @rnindex abs
1123 @rnindex floor
1124 @rnindex ceiling
1125 @rnindex truncate
1126 @rnindex round
1127
1128 The C arithmetic functions below always takes two arguments, while the
1129 Scheme functions can take an arbitrary number. When you need to
1130 invoke them with just one argument, for example to compute the
1131 equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1132 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1133
1134 @c begin (texi-doc-string "guile" "+")
1135 @deffn {Scheme Procedure} + z1 @dots{}
1136 @deffnx {C Function} scm_sum (z1, z2)
1137 Return the sum of all parameter values. Return 0 if called without any
1138 parameters.
1139 @end deffn
1140
1141 @c begin (texi-doc-string "guile" "-")
1142 @deffn {Scheme Procedure} - z1 z2 @dots{}
1143 @deffnx {C Function} scm_difference (z1, z2)
1144 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1145 the sum of all but the first argument are subtracted from the first
1146 argument.
1147 @end deffn
1148
1149 @c begin (texi-doc-string "guile" "*")
1150 @deffn {Scheme Procedure} * z1 @dots{}
1151 @deffnx {C Function} scm_product (z1, z2)
1152 Return the product of all arguments. If called without arguments, 1 is
1153 returned.
1154 @end deffn
1155
1156 @c begin (texi-doc-string "guile" "/")
1157 @deffn {Scheme Procedure} / z1 z2 @dots{}
1158 @deffnx {C Function} scm_divide (z1, z2)
1159 Divide the first argument by the product of the remaining arguments. If
1160 called with one argument @var{z1}, 1/@var{z1} is returned.
1161 @end deffn
1162
1163 @deffn {Scheme Procedure} 1+ z
1164 @deffnx {C Function} scm_oneplus (z)
1165 Return @math{@var{z} + 1}.
1166 @end deffn
1167
1168 @deffn {Scheme Procedure} 1- z
1169 @deffnx {C function} scm_oneminus (z)
1170 Return @math{@var{z} - 1}.
1171 @end deffn
1172
1173 @c begin (texi-doc-string "guile" "abs")
1174 @deffn {Scheme Procedure} abs x
1175 @deffnx {C Function} scm_abs (x)
1176 Return the absolute value of @var{x}.
1177
1178 @var{x} must be a number with zero imaginary part. To calculate the
1179 magnitude of a complex number, use @code{magnitude} instead.
1180 @end deffn
1181
1182 @c begin (texi-doc-string "guile" "max")
1183 @deffn {Scheme Procedure} max x1 x2 @dots{}
1184 @deffnx {C Function} scm_max (x1, x2)
1185 Return the maximum of all parameter values.
1186 @end deffn
1187
1188 @c begin (texi-doc-string "guile" "min")
1189 @deffn {Scheme Procedure} min x1 x2 @dots{}
1190 @deffnx {C Function} scm_min (x1, x2)
1191 Return the minimum of all parameter values.
1192 @end deffn
1193
1194 @c begin (texi-doc-string "guile" "truncate")
1195 @deffn {Scheme Procedure} truncate x
1196 @deffnx {C Function} scm_truncate_number (x)
1197 Round the inexact number @var{x} towards zero.
1198 @end deffn
1199
1200 @c begin (texi-doc-string "guile" "round")
1201 @deffn {Scheme Procedure} round x
1202 @deffnx {C Function} scm_round_number (x)
1203 Round the inexact number @var{x} to the nearest integer. When exactly
1204 halfway between two integers, round to the even one.
1205 @end deffn
1206
1207 @c begin (texi-doc-string "guile" "floor")
1208 @deffn {Scheme Procedure} floor x
1209 @deffnx {C Function} scm_floor (x)
1210 Round the number @var{x} towards minus infinity.
1211 @end deffn
1212
1213 @c begin (texi-doc-string "guile" "ceiling")
1214 @deffn {Scheme Procedure} ceiling x
1215 @deffnx {C Function} scm_ceiling (x)
1216 Round the number @var{x} towards infinity.
1217 @end deffn
1218
1219 @deftypefn {C Function} double scm_c_truncate (double x)
1220 @deftypefnx {C Function} double scm_c_round (double x)
1221 Like @code{scm_truncate_number} or @code{scm_round_number},
1222 respectively, but these functions take and return @code{double}
1223 values.
1224 @end deftypefn
1225
1226 @node Scientific
1227 @subsubsection Scientific Functions
1228
1229 The following procedures accept any kind of number as arguments,
1230 including complex numbers.
1231
1232 @rnindex sqrt
1233 @c begin (texi-doc-string "guile" "sqrt")
1234 @deffn {Scheme Procedure} sqrt z
1235 Return the square root of @var{z}. Of the two possible roots
1236 (positive and negative), the one with the a positive real part is
1237 returned, or if that's zero then a positive imaginary part. Thus,
1238
1239 @example
1240 (sqrt 9.0) @result{} 3.0
1241 (sqrt -9.0) @result{} 0.0+3.0i
1242 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1243 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1244 @end example
1245 @end deffn
1246
1247 @rnindex expt
1248 @c begin (texi-doc-string "guile" "expt")
1249 @deffn {Scheme Procedure} expt z1 z2
1250 Return @var{z1} raised to the power of @var{z2}.
1251 @end deffn
1252
1253 @rnindex sin
1254 @c begin (texi-doc-string "guile" "sin")
1255 @deffn {Scheme Procedure} sin z
1256 Return the sine of @var{z}.
1257 @end deffn
1258
1259 @rnindex cos
1260 @c begin (texi-doc-string "guile" "cos")
1261 @deffn {Scheme Procedure} cos z
1262 Return the cosine of @var{z}.
1263 @end deffn
1264
1265 @rnindex tan
1266 @c begin (texi-doc-string "guile" "tan")
1267 @deffn {Scheme Procedure} tan z
1268 Return the tangent of @var{z}.
1269 @end deffn
1270
1271 @rnindex asin
1272 @c begin (texi-doc-string "guile" "asin")
1273 @deffn {Scheme Procedure} asin z
1274 Return the arcsine of @var{z}.
1275 @end deffn
1276
1277 @rnindex acos
1278 @c begin (texi-doc-string "guile" "acos")
1279 @deffn {Scheme Procedure} acos z
1280 Return the arccosine of @var{z}.
1281 @end deffn
1282
1283 @rnindex atan
1284 @c begin (texi-doc-string "guile" "atan")
1285 @deffn {Scheme Procedure} atan z
1286 @deffnx {Scheme Procedure} atan y x
1287 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1288 @end deffn
1289
1290 @rnindex exp
1291 @c begin (texi-doc-string "guile" "exp")
1292 @deffn {Scheme Procedure} exp z
1293 Return e to the power of @var{z}, where e is the base of natural
1294 logarithms (2.71828@dots{}).
1295 @end deffn
1296
1297 @rnindex log
1298 @c begin (texi-doc-string "guile" "log")
1299 @deffn {Scheme Procedure} log z
1300 Return the natural logarithm of @var{z}.
1301 @end deffn
1302
1303 @c begin (texi-doc-string "guile" "log10")
1304 @deffn {Scheme Procedure} log10 z
1305 Return the base 10 logarithm of @var{z}.
1306 @end deffn
1307
1308 @c begin (texi-doc-string "guile" "sinh")
1309 @deffn {Scheme Procedure} sinh z
1310 Return the hyperbolic sine of @var{z}.
1311 @end deffn
1312
1313 @c begin (texi-doc-string "guile" "cosh")
1314 @deffn {Scheme Procedure} cosh z
1315 Return the hyperbolic cosine of @var{z}.
1316 @end deffn
1317
1318 @c begin (texi-doc-string "guile" "tanh")
1319 @deffn {Scheme Procedure} tanh z
1320 Return the hyperbolic tangent of @var{z}.
1321 @end deffn
1322
1323 @c begin (texi-doc-string "guile" "asinh")
1324 @deffn {Scheme Procedure} asinh z
1325 Return the hyperbolic arcsine of @var{z}.
1326 @end deffn
1327
1328 @c begin (texi-doc-string "guile" "acosh")
1329 @deffn {Scheme Procedure} acosh z
1330 Return the hyperbolic arccosine of @var{z}.
1331 @end deffn
1332
1333 @c begin (texi-doc-string "guile" "atanh")
1334 @deffn {Scheme Procedure} atanh z
1335 Return the hyperbolic arctangent of @var{z}.
1336 @end deffn
1337
1338
1339 @node Bitwise Operations
1340 @subsubsection Bitwise Operations
1341
1342 For the following bitwise functions, negative numbers are treated as
1343 infinite precision twos-complements. For instance @math{-6} is bits
1344 @math{@dots{}111010}, with infinitely many ones on the left. It can
1345 be seen that adding 6 (binary 110) to such a bit pattern gives all
1346 zeros.
1347
1348 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1349 @deffnx {C Function} scm_logand (n1, n2)
1350 Return the bitwise @sc{and} of the integer arguments.
1351
1352 @lisp
1353 (logand) @result{} -1
1354 (logand 7) @result{} 7
1355 (logand #b111 #b011 #b001) @result{} 1
1356 @end lisp
1357 @end deffn
1358
1359 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1360 @deffnx {C Function} scm_logior (n1, n2)
1361 Return the bitwise @sc{or} of the integer arguments.
1362
1363 @lisp
1364 (logior) @result{} 0
1365 (logior 7) @result{} 7
1366 (logior #b000 #b001 #b011) @result{} 3
1367 @end lisp
1368 @end deffn
1369
1370 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1371 @deffnx {C Function} scm_loxor (n1, n2)
1372 Return the bitwise @sc{xor} of the integer arguments. A bit is
1373 set in the result if it is set in an odd number of arguments.
1374
1375 @lisp
1376 (logxor) @result{} 0
1377 (logxor 7) @result{} 7
1378 (logxor #b000 #b001 #b011) @result{} 2
1379 (logxor #b000 #b001 #b011 #b011) @result{} 1
1380 @end lisp
1381 @end deffn
1382
1383 @deffn {Scheme Procedure} lognot n
1384 @deffnx {C Function} scm_lognot (n)
1385 Return the integer which is the ones-complement of the integer
1386 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1387
1388 @lisp
1389 (number->string (lognot #b10000000) 2)
1390 @result{} "-10000001"
1391 (number->string (lognot #b0) 2)
1392 @result{} "-1"
1393 @end lisp
1394 @end deffn
1395
1396 @deffn {Scheme Procedure} logtest j k
1397 @deffnx {C Function} scm_logtest (j, k)
1398 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1399 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1400 calculating the @code{logand}, just testing for non-zero.
1401
1402 @lisp
1403 (logtest #b0100 #b1011) @result{} #f
1404 (logtest #b0100 #b0111) @result{} #t
1405 @end lisp
1406 @end deffn
1407
1408 @deffn {Scheme Procedure} logbit? index j
1409 @deffnx {C Function} scm_logbit_p (index, j)
1410 Test whether bit number @var{index} in @var{j} is set. @var{index}
1411 starts from 0 for the least significant bit.
1412
1413 @lisp
1414 (logbit? 0 #b1101) @result{} #t
1415 (logbit? 1 #b1101) @result{} #f
1416 (logbit? 2 #b1101) @result{} #t
1417 (logbit? 3 #b1101) @result{} #t
1418 (logbit? 4 #b1101) @result{} #f
1419 @end lisp
1420 @end deffn
1421
1422 @deffn {Scheme Procedure} ash n cnt
1423 @deffnx {C Function} scm_ash (n, cnt)
1424 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1425 @var{cnt} is negative. This is an ``arithmetic'' shift.
1426
1427 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1428 when @var{cnt} is negative it's a division, rounded towards negative
1429 infinity. (Note that this is not the same rounding as @code{quotient}
1430 does.)
1431
1432 With @var{n} viewed as an infinite precision twos complement,
1433 @code{ash} means a left shift introducing zero bits, or a right shift
1434 dropping bits.
1435
1436 @lisp
1437 (number->string (ash #b1 3) 2) @result{} "1000"
1438 (number->string (ash #b1010 -1) 2) @result{} "101"
1439
1440 ;; -23 is bits ...11101001, -6 is bits ...111010
1441 (ash -23 -2) @result{} -6
1442 @end lisp
1443 @end deffn
1444
1445 @deffn {Scheme Procedure} logcount n
1446 @deffnx {C Function} scm_logcount (n)
1447 Return the number of bits in integer @var{n}. If @var{n} is
1448 positive, the 1-bits in its binary representation are counted.
1449 If negative, the 0-bits in its two's-complement binary
1450 representation are counted. If zero, 0 is returned.
1451
1452 @lisp
1453 (logcount #b10101010)
1454 @result{} 4
1455 (logcount 0)
1456 @result{} 0
1457 (logcount -2)
1458 @result{} 1
1459 @end lisp
1460 @end deffn
1461
1462 @deffn {Scheme Procedure} integer-length n
1463 @deffnx {C Function} scm_integer_length (n)
1464 Return the number of bits necessary to represent @var{n}.
1465
1466 For positive @var{n} this is how many bits to the most significant one
1467 bit. For negative @var{n} it's how many bits to the most significant
1468 zero bit in twos complement form.
1469
1470 @lisp
1471 (integer-length #b10101010) @result{} 8
1472 (integer-length #b1111) @result{} 4
1473 (integer-length 0) @result{} 0
1474 (integer-length -1) @result{} 0
1475 (integer-length -256) @result{} 8
1476 (integer-length -257) @result{} 9
1477 @end lisp
1478 @end deffn
1479
1480 @deffn {Scheme Procedure} integer-expt n k
1481 @deffnx {C Function} scm_integer_expt (n, k)
1482 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1483 integer, @var{n} can be any number.
1484
1485 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1486 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1487 @math{0^0} is 1.
1488
1489 @lisp
1490 (integer-expt 2 5) @result{} 32
1491 (integer-expt -3 3) @result{} -27
1492 (integer-expt 5 -3) @result{} 1/125
1493 (integer-expt 0 0) @result{} 1
1494 @end lisp
1495 @end deffn
1496
1497 @deffn {Scheme Procedure} bit-extract n start end
1498 @deffnx {C Function} scm_bit_extract (n, start, end)
1499 Return the integer composed of the @var{start} (inclusive)
1500 through @var{end} (exclusive) bits of @var{n}. The
1501 @var{start}th bit becomes the 0-th bit in the result.
1502
1503 @lisp
1504 (number->string (bit-extract #b1101101010 0 4) 2)
1505 @result{} "1010"
1506 (number->string (bit-extract #b1101101010 4 9) 2)
1507 @result{} "10110"
1508 @end lisp
1509 @end deffn
1510
1511
1512 @node Random
1513 @subsubsection Random Number Generation
1514
1515 Pseudo-random numbers are generated from a random state object, which
1516 can be created with @code{seed->random-state}. The @var{state}
1517 parameter to the various functions below is optional, it defaults to
1518 the state object in the @code{*random-state*} variable.
1519
1520 @deffn {Scheme Procedure} copy-random-state [state]
1521 @deffnx {C Function} scm_copy_random_state (state)
1522 Return a copy of the random state @var{state}.
1523 @end deffn
1524
1525 @deffn {Scheme Procedure} random n [state]
1526 @deffnx {C Function} scm_random (n, state)
1527 Return a number in [0, @var{n}).
1528
1529 Accepts a positive integer or real n and returns a
1530 number of the same type between zero (inclusive) and
1531 @var{n} (exclusive). The values returned have a uniform
1532 distribution.
1533 @end deffn
1534
1535 @deffn {Scheme Procedure} random:exp [state]
1536 @deffnx {C Function} scm_random_exp (state)
1537 Return an inexact real in an exponential distribution with mean
1538 1. For an exponential distribution with mean @var{u} use @code{(*
1539 @var{u} (random:exp))}.
1540 @end deffn
1541
1542 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1543 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1544 Fills @var{vect} with inexact real random numbers the sum of whose
1545 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1546 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1547 the coordinates are uniformly distributed over the surface of the unit
1548 n-sphere.
1549 @end deffn
1550
1551 @deffn {Scheme Procedure} random:normal [state]
1552 @deffnx {C Function} scm_random_normal (state)
1553 Return an inexact real in a normal distribution. The distribution
1554 used has mean 0 and standard deviation 1. For a normal distribution
1555 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1556 (* @var{d} (random:normal)))}.
1557 @end deffn
1558
1559 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1560 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1561 Fills @var{vect} with inexact real random numbers that are
1562 independent and standard normally distributed
1563 (i.e., with mean 0 and variance 1).
1564 @end deffn
1565
1566 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1567 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1568 Fills @var{vect} with inexact real random numbers the sum of whose
1569 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1570 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1571 the coordinates are uniformly distributed within the unit
1572 @var{n}-sphere.
1573 @c FIXME: What does this mean, particularly the n-sphere part?
1574 @end deffn
1575
1576 @deffn {Scheme Procedure} random:uniform [state]
1577 @deffnx {C Function} scm_random_uniform (state)
1578 Return a uniformly distributed inexact real random number in
1579 [0,1).
1580 @end deffn
1581
1582 @deffn {Scheme Procedure} seed->random-state seed
1583 @deffnx {C Function} scm_seed_to_random_state (seed)
1584 Return a new random state using @var{seed}.
1585 @end deffn
1586
1587 @defvar *random-state*
1588 The global random state used by the above functions when the
1589 @var{state} parameter is not given.
1590 @end defvar
1591
1592 Note that the initial value of @code{*random-state*} is the same every
1593 time Guile starts up. Therefore, if you don't pass a @var{state}
1594 parameter to the above procedures, and you don't set
1595 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1596 @code{your-seed} is something that @emph{isn't} the same every time,
1597 you'll get the same sequence of ``random'' numbers on every run.
1598
1599 For example, unless the relevant source code has changed, @code{(map
1600 random (cdr (iota 30)))}, if the first use of random numbers since
1601 Guile started up, will always give:
1602
1603 @lisp
1604 (map random (cdr (iota 19)))
1605 @result{}
1606 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1607 @end lisp
1608
1609 To use the time of day as the random seed, you can use code like this:
1610
1611 @lisp
1612 (let ((time (gettimeofday)))
1613 (set! *random-state*
1614 (seed->random-state (+ (car time)
1615 (cdr time)))))
1616 @end lisp
1617
1618 @noindent
1619 And then (depending on the time of day, of course):
1620
1621 @lisp
1622 (map random (cdr (iota 19)))
1623 @result{}
1624 (0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
1625 @end lisp
1626
1627 For security applications, such as password generation, you should use
1628 more bits of seed. Otherwise an open source password generator could
1629 be attacked by guessing the seed@dots{} but that's a subject for
1630 another manual.
1631
1632
1633 @node Characters
1634 @subsection Characters
1635 @tpindex Characters
1636
1637 In Scheme, there is a data type to describe a single character.
1638
1639 Defining what exactly a character @emph{is} can be more complicated
1640 than it seems. Guile follows the advice of R6RS and uses The Unicode
1641 Standard to help define what a character is. So, for Guile, a
1642 character is anything in the Unicode Character Database.
1643
1644 @cindex code point
1645 @cindex Unicode code point
1646
1647 The Unicode Character Database is basically a table of characters
1648 indexed using integers called 'code points'. Valid code points are in
1649 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1650 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1651
1652 @cindex designated code point
1653 @cindex code point, designated
1654
1655 Any code point that has been assigned to a character or that has
1656 otherwise been given a meaning by Unicode is called a 'designated code
1657 point'. Most of the designated code points, about 200,000 of them,
1658 indicate characters, accents or other combining marks that modify
1659 other characters, symbols, whitespace, and control characters. Some
1660 are not characters but indicators that suggest how to format or
1661 display neighboring characters.
1662
1663 @cindex reserved code point
1664 @cindex code point, reserved
1665
1666 If a code point is not a designated code point -- if it has not been
1667 assigned to a character by The Unicode Standard -- it is a 'reserved
1668 code point', meaning that they are reserved for future use. Most of
1669 the code points, about 800,000, are 'reserved code points'.
1670
1671 By convention, a Unicode code point is written as
1672 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1673 this convenient notation is not valid code. Guile does not interpret
1674 ``U+XXXX'' as a character.
1675
1676 In Scheme, a character literal is written as @code{#\@var{name}} where
1677 @var{name} is the name of the character that you want. Printable
1678 characters have their usual single character name; for example,
1679 @code{#\a} is a lower case @code{a}.
1680
1681 Some of the code points are 'combining characters' that are not meant
1682 to be printed by themselves but are instead meant to modify the
1683 appearance of the previous character. For combining characters, an
1684 alternate form of the character literal is @code{#\} followed by
1685 U+25CC (a small, dotted circle), followed by the combining character.
1686 This allows the combining character to be drawn on the circle, not on
1687 the backslash of @code{#\}.
1688
1689 Many of the non-printing characters, such as whitespace characters and
1690 control characters, also have names.
1691
1692 The most commonly used non-printing characters are space and
1693 newline. Their character names are @code{#\space} and
1694 @code{#\newline}. There are also names for all of the ``C0 control
1695 characters'' (those with code points below 32). The following table
1696 describes the names for each character.
1697
1698 @multitable @columnfractions .25 .25 .25 .25
1699 @item 0 = @code{#\nul}
1700 @tab 1 = @code{#\soh}
1701 @tab 2 = @code{#\stx}
1702 @tab 3 = @code{#\etx}
1703 @item 4 = @code{#\eot}
1704 @tab 5 = @code{#\enq}
1705 @tab 6 = @code{#\ack}
1706 @tab 7 = @code{#\bel}
1707 @item 8 = @code{#\bs}
1708 @tab 9 = @code{#\ht}
1709 @tab 10 = @code{#\lf}
1710 @tab 11 = @code{#\vt}
1711 @item 12 = @code{#\ff}
1712 @tab 13 = @code{#\cr}
1713 @tab 14 = @code{#\so}
1714 @tab 15 = @code{#\si}
1715 @item 16 = @code{#\dle}
1716 @tab 17 = @code{#\dc1}
1717 @tab 18 = @code{#\dc2}
1718 @tab 19 = @code{#\dc3}
1719 @item 20 = @code{#\dc4}
1720 @tab 21 = @code{#\nak}
1721 @tab 22 = @code{#\syn}
1722 @tab 23 = @code{#\etb}
1723 @item 24 = @code{#\can}
1724 @tab 25 = @code{#\em}
1725 @tab 26 = @code{#\sub}
1726 @tab 27 = @code{#\esc}
1727 @item 28 = @code{#\fs}
1728 @tab 29 = @code{#\gs}
1729 @tab 30 = @code{#\rs}
1730 @tab 31 = @code{#\us}
1731 @item 32 = @code{#\sp}
1732 @end multitable
1733
1734 The ``delete'' character (code point U+007F) may be referred to with the
1735 name @code{#\del}.
1736
1737 One might note that the space character has two names --
1738 @code{#\space} and @code{#\sp} -- as does the newline character.
1739 Several other non-printing characters have more than one name, for the
1740 sake of compatibility with previous versions.
1741
1742 @multitable {@code{#\backspace}} {Preferred}
1743 @item Alternate @tab Standard
1744 @item @code{#\sp} @tab @code{#\space}
1745 @item @code{#\nl} @tab @code{#\newline}
1746 @item @code{#\lf} @tab @code{#\newline}
1747 @item @code{#\tab} @tab @code{#\ht}
1748 @item @code{#\backspace} @tab @code{#\bs}
1749 @item @code{#\return} @tab @code{#\cr}
1750 @item @code{#\page} @tab @code{#\ff}
1751 @item @code{#\np} @tab @code{#\ff}
1752 @item @code{#\null} @tab @code{#\nul}
1753 @end multitable
1754
1755 Characters may also be written using their code point values. They can
1756 be written with as an octal number, such as @code{#\10} for
1757 @code{#\bs} or @code{#\177} for @code{#\del}.
1758
1759 @rnindex char?
1760 @deffn {Scheme Procedure} char? x
1761 @deffnx {C Function} scm_char_p (x)
1762 Return @code{#t} iff @var{x} is a character, else @code{#f}.
1763 @end deffn
1764
1765 Fundamentally, the character comparison operations below are
1766 numeric comparisons of the character's code points.
1767
1768 @rnindex char=?
1769 @deffn {Scheme Procedure} char=? x y
1770 Return @code{#t} iff code point of @var{x} is equal to the code point
1771 of @var{y}, else @code{#f}.
1772 @end deffn
1773
1774 @rnindex char<?
1775 @deffn {Scheme Procedure} char<? x y
1776 Return @code{#t} iff the code point of @var{x} is less than the code
1777 point of @var{y}, else @code{#f}.
1778 @end deffn
1779
1780 @rnindex char<=?
1781 @deffn {Scheme Procedure} char<=? x y
1782 Return @code{#t} iff the code point of @var{x} is less than or equal
1783 to the code point of @var{y}, else @code{#f}.
1784 @end deffn
1785
1786 @rnindex char>?
1787 @deffn {Scheme Procedure} char>? x y
1788 Return @code{#t} iff the code point of @var{x} is greater than the
1789 code point of @var{y}, else @code{#f}.
1790 @end deffn
1791
1792 @rnindex char>=?
1793 @deffn {Scheme Procedure} char>=? x y
1794 Return @code{#t} iff the code point of @var{x} is greater than or
1795 equal to the code point of @var{y}, else @code{#f}.
1796 @end deffn
1797
1798 @cindex case folding
1799
1800 Case-insensitive character comparisons use @emph{Unicode case
1801 folding}. In case folding comparisons, if a character is lowercase
1802 and has an uppercase form that can be expressed as a single character,
1803 it is converted to uppercase before comparison. All other characters
1804 undergo no conversion before the comparison occurs. This includes the
1805 German sharp S (Eszett) which is not uppercased before conversion
1806 because its uppercase form has two characters. Unicode case folding
1807 is language independent: it uses rules that are generally true, but,
1808 it cannot cover all cases for all languages.
1809
1810 @rnindex char-ci=?
1811 @deffn {Scheme Procedure} char-ci=? x y
1812 Return @code{#t} iff the case-folded code point of @var{x} is the same
1813 as the case-folded code point of @var{y}, else @code{#f}.
1814 @end deffn
1815
1816 @rnindex char-ci<?
1817 @deffn {Scheme Procedure} char-ci<? x y
1818 Return @code{#t} iff the case-folded code point of @var{x} is less
1819 than the case-folded code point of @var{y}, else @code{#f}.
1820 @end deffn
1821
1822 @rnindex char-ci<=?
1823 @deffn {Scheme Procedure} char-ci<=? x y
1824 Return @code{#t} iff the case-folded code point of @var{x} is less
1825 than or equal to the case-folded code point of @var{y}, else
1826 @code{#f}.
1827 @end deffn
1828
1829 @rnindex char-ci>?
1830 @deffn {Scheme Procedure} char-ci>? x y
1831 Return @code{#t} iff the case-folded code point of @var{x} is greater
1832 than the case-folded code point of @var{y}, else @code{#f}.
1833 @end deffn
1834
1835 @rnindex char-ci>=?
1836 @deffn {Scheme Procedure} char-ci>=? x y
1837 Return @code{#t} iff the case-folded code point of @var{x} is greater
1838 than or equal to the case-folded code point of @var{y}, else
1839 @code{#f}.
1840 @end deffn
1841
1842 @rnindex char-alphabetic?
1843 @deffn {Scheme Procedure} char-alphabetic? chr
1844 @deffnx {C Function} scm_char_alphabetic_p (chr)
1845 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
1846 @end deffn
1847
1848 @rnindex char-numeric?
1849 @deffn {Scheme Procedure} char-numeric? chr
1850 @deffnx {C Function} scm_char_numeric_p (chr)
1851 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
1852 @end deffn
1853
1854 @rnindex char-whitespace?
1855 @deffn {Scheme Procedure} char-whitespace? chr
1856 @deffnx {C Function} scm_char_whitespace_p (chr)
1857 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
1858 @end deffn
1859
1860 @rnindex char-upper-case?
1861 @deffn {Scheme Procedure} char-upper-case? chr
1862 @deffnx {C Function} scm_char_upper_case_p (chr)
1863 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
1864 @end deffn
1865
1866 @rnindex char-lower-case?
1867 @deffn {Scheme Procedure} char-lower-case? chr
1868 @deffnx {C Function} scm_char_lower_case_p (chr)
1869 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
1870 @end deffn
1871
1872 @deffn {Scheme Procedure} char-is-both? chr
1873 @deffnx {C Function} scm_char_is_both_p (chr)
1874 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
1875 @code{#f}.
1876 @end deffn
1877
1878 @rnindex char->integer
1879 @deffn {Scheme Procedure} char->integer chr
1880 @deffnx {C Function} scm_char_to_integer (chr)
1881 Return the code point of @var{chr}.
1882 @end deffn
1883
1884 @rnindex integer->char
1885 @deffn {Scheme Procedure} integer->char n
1886 @deffnx {C Function} scm_integer_to_char (n)
1887 Return the character that has code point @var{n}. The integer @var{n}
1888 must be a valid code point. Valid code points are in the ranges 0 to
1889 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
1890 @end deffn
1891
1892 @rnindex char-upcase
1893 @deffn {Scheme Procedure} char-upcase chr
1894 @deffnx {C Function} scm_char_upcase (chr)
1895 Return the uppercase character version of @var{chr}.
1896 @end deffn
1897
1898 @rnindex char-downcase
1899 @deffn {Scheme Procedure} char-downcase chr
1900 @deffnx {C Function} scm_char_downcase (chr)
1901 Return the lowercase character version of @var{chr}.
1902 @end deffn
1903
1904 @node Character Sets
1905 @subsection Character Sets
1906
1907 The features described in this section correspond directly to SRFI-14.
1908
1909 The data type @dfn{charset} implements sets of characters
1910 (@pxref{Characters}). Because the internal representation of
1911 character sets is not visible to the user, a lot of procedures for
1912 handling them are provided.
1913
1914 Character sets can be created, extended, tested for the membership of a
1915 characters and be compared to other character sets.
1916
1917 @menu
1918 * Character Set Predicates/Comparison::
1919 * Iterating Over Character Sets:: Enumerate charset elements.
1920 * Creating Character Sets:: Making new charsets.
1921 * Querying Character Sets:: Test charsets for membership etc.
1922 * Character-Set Algebra:: Calculating new charsets.
1923 * Standard Character Sets:: Variables containing predefined charsets.
1924 @end menu
1925
1926 @node Character Set Predicates/Comparison
1927 @subsubsection Character Set Predicates/Comparison
1928
1929 Use these procedures for testing whether an object is a character set,
1930 or whether several character sets are equal or subsets of each other.
1931 @code{char-set-hash} can be used for calculating a hash value, maybe for
1932 usage in fast lookup procedures.
1933
1934 @deffn {Scheme Procedure} char-set? obj
1935 @deffnx {C Function} scm_char_set_p (obj)
1936 Return @code{#t} if @var{obj} is a character set, @code{#f}
1937 otherwise.
1938 @end deffn
1939
1940 @deffn {Scheme Procedure} char-set= . char_sets
1941 @deffnx {C Function} scm_char_set_eq (char_sets)
1942 Return @code{#t} if all given character sets are equal.
1943 @end deffn
1944
1945 @deffn {Scheme Procedure} char-set<= . char_sets
1946 @deffnx {C Function} scm_char_set_leq (char_sets)
1947 Return @code{#t} if every character set @var{cs}i is a subset
1948 of character set @var{cs}i+1.
1949 @end deffn
1950
1951 @deffn {Scheme Procedure} char-set-hash cs [bound]
1952 @deffnx {C Function} scm_char_set_hash (cs, bound)
1953 Compute a hash value for the character set @var{cs}. If
1954 @var{bound} is given and non-zero, it restricts the
1955 returned value to the range 0 @dots{} @var{bound - 1}.
1956 @end deffn
1957
1958 @c ===================================================================
1959
1960 @node Iterating Over Character Sets
1961 @subsubsection Iterating Over Character Sets
1962
1963 Character set cursors are a means for iterating over the members of a
1964 character sets. After creating a character set cursor with
1965 @code{char-set-cursor}, a cursor can be dereferenced with
1966 @code{char-set-ref}, advanced to the next member with
1967 @code{char-set-cursor-next}. Whether a cursor has passed past the last
1968 element of the set can be checked with @code{end-of-char-set?}.
1969
1970 Additionally, mapping and (un-)folding procedures for character sets are
1971 provided.
1972
1973 @deffn {Scheme Procedure} char-set-cursor cs
1974 @deffnx {C Function} scm_char_set_cursor (cs)
1975 Return a cursor into the character set @var{cs}.
1976 @end deffn
1977
1978 @deffn {Scheme Procedure} char-set-ref cs cursor
1979 @deffnx {C Function} scm_char_set_ref (cs, cursor)
1980 Return the character at the current cursor position
1981 @var{cursor} in the character set @var{cs}. It is an error to
1982 pass a cursor for which @code{end-of-char-set?} returns true.
1983 @end deffn
1984
1985 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
1986 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
1987 Advance the character set cursor @var{cursor} to the next
1988 character in the character set @var{cs}. It is an error if the
1989 cursor given satisfies @code{end-of-char-set?}.
1990 @end deffn
1991
1992 @deffn {Scheme Procedure} end-of-char-set? cursor
1993 @deffnx {C Function} scm_end_of_char_set_p (cursor)
1994 Return @code{#t} if @var{cursor} has reached the end of a
1995 character set, @code{#f} otherwise.
1996 @end deffn
1997
1998 @deffn {Scheme Procedure} char-set-fold kons knil cs
1999 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2000 Fold the procedure @var{kons} over the character set @var{cs},
2001 initializing it with @var{knil}.
2002 @end deffn
2003
2004 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2005 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2006 This is a fundamental constructor for character sets.
2007 @itemize @bullet
2008 @item @var{g} is used to generate a series of ``seed'' values
2009 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2010 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2011 @item @var{p} tells us when to stop -- when it returns true
2012 when applied to one of the seed values.
2013 @item @var{f} maps each seed value to a character. These
2014 characters are added to the base character set @var{base_cs} to
2015 form the result; @var{base_cs} defaults to the empty set.
2016 @end itemize
2017 @end deffn
2018
2019 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2020 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2021 This is a fundamental constructor for character sets.
2022 @itemize @bullet
2023 @item @var{g} is used to generate a series of ``seed'' values
2024 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2025 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2026 @item @var{p} tells us when to stop -- when it returns true
2027 when applied to one of the seed values.
2028 @item @var{f} maps each seed value to a character. These
2029 characters are added to the base character set @var{base_cs} to
2030 form the result; @var{base_cs} defaults to the empty set.
2031 @end itemize
2032 @end deffn
2033
2034 @deffn {Scheme Procedure} char-set-for-each proc cs
2035 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2036 Apply @var{proc} to every character in the character set
2037 @var{cs}. The return value is not specified.
2038 @end deffn
2039
2040 @deffn {Scheme Procedure} char-set-map proc cs
2041 @deffnx {C Function} scm_char_set_map (proc, cs)
2042 Map the procedure @var{proc} over every character in @var{cs}.
2043 @var{proc} must be a character -> character procedure.
2044 @end deffn
2045
2046 @c ===================================================================
2047
2048 @node Creating Character Sets
2049 @subsubsection Creating Character Sets
2050
2051 New character sets are produced with these procedures.
2052
2053 @deffn {Scheme Procedure} char-set-copy cs
2054 @deffnx {C Function} scm_char_set_copy (cs)
2055 Return a newly allocated character set containing all
2056 characters in @var{cs}.
2057 @end deffn
2058
2059 @deffn {Scheme Procedure} char-set . rest
2060 @deffnx {C Function} scm_char_set (rest)
2061 Return a character set containing all given characters.
2062 @end deffn
2063
2064 @deffn {Scheme Procedure} list->char-set list [base_cs]
2065 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2066 Convert the character list @var{list} to a character set. If
2067 the character set @var{base_cs} is given, the character in this
2068 set are also included in the result.
2069 @end deffn
2070
2071 @deffn {Scheme Procedure} list->char-set! list base_cs
2072 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2073 Convert the character list @var{list} to a character set. The
2074 characters are added to @var{base_cs} and @var{base_cs} is
2075 returned.
2076 @end deffn
2077
2078 @deffn {Scheme Procedure} string->char-set str [base_cs]
2079 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2080 Convert the string @var{str} to a character set. If the
2081 character set @var{base_cs} is given, the characters in this
2082 set are also included in the result.
2083 @end deffn
2084
2085 @deffn {Scheme Procedure} string->char-set! str base_cs
2086 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2087 Convert the string @var{str} to a character set. The
2088 characters from the string are added to @var{base_cs}, and
2089 @var{base_cs} is returned.
2090 @end deffn
2091
2092 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2093 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2094 Return a character set containing every character from @var{cs}
2095 so that it satisfies @var{pred}. If provided, the characters
2096 from @var{base_cs} are added to the result.
2097 @end deffn
2098
2099 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2100 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2101 Return a character set containing every character from @var{cs}
2102 so that it satisfies @var{pred}. The characters are added to
2103 @var{base_cs} and @var{base_cs} is returned.
2104 @end deffn
2105
2106 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2107 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2108 Return a character set containing all characters whose
2109 character codes lie in the half-open range
2110 [@var{lower},@var{upper}).
2111
2112 If @var{error} is a true value, an error is signalled if the
2113 specified range contains characters which are not contained in
2114 the implemented character range. If @var{error} is @code{#f},
2115 these characters are silently left out of the resulting
2116 character set.
2117
2118 The characters in @var{base_cs} are added to the result, if
2119 given.
2120 @end deffn
2121
2122 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2123 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2124 Return a character set containing all characters whose
2125 character codes lie in the half-open range
2126 [@var{lower},@var{upper}).
2127
2128 If @var{error} is a true value, an error is signalled if the
2129 specified range contains characters which are not contained in
2130 the implemented character range. If @var{error} is @code{#f},
2131 these characters are silently left out of the resulting
2132 character set.
2133
2134 The characters are added to @var{base_cs} and @var{base_cs} is
2135 returned.
2136 @end deffn
2137
2138 @deffn {Scheme Procedure} ->char-set x
2139 @deffnx {C Function} scm_to_char_set (x)
2140 Coerces x into a char-set. @var{x} may be a string, character or
2141 char-set. A string is converted to the set of its constituent
2142 characters; a character is converted to a singleton set; a char-set is
2143 returned as-is.
2144 @end deffn
2145
2146 @c ===================================================================
2147
2148 @node Querying Character Sets
2149 @subsubsection Querying Character Sets
2150
2151 Access the elements and other information of a character set with these
2152 procedures.
2153
2154 @deffn {Scheme Procedure} %char-set-dump cs
2155 Returns an association list containing debugging information
2156 for @var{cs}. The association list has the following entries.
2157 @table @code
2158 @item char-set
2159 The char-set itself
2160 @item len
2161 The number of groups of contiguous code points the char-set
2162 contains
2163 @item ranges
2164 A list of lists where each sublist is a range of code points
2165 and their associated characters
2166 @end table
2167 The return value of this function cannot be relied upon to be
2168 consistent between versions of Guile and should not be used in code.
2169 @end deffn
2170
2171 @deffn {Scheme Procedure} char-set-size cs
2172 @deffnx {C Function} scm_char_set_size (cs)
2173 Return the number of elements in character set @var{cs}.
2174 @end deffn
2175
2176 @deffn {Scheme Procedure} char-set-count pred cs
2177 @deffnx {C Function} scm_char_set_count (pred, cs)
2178 Return the number of the elements int the character set
2179 @var{cs} which satisfy the predicate @var{pred}.
2180 @end deffn
2181
2182 @deffn {Scheme Procedure} char-set->list cs
2183 @deffnx {C Function} scm_char_set_to_list (cs)
2184 Return a list containing the elements of the character set
2185 @var{cs}.
2186 @end deffn
2187
2188 @deffn {Scheme Procedure} char-set->string cs
2189 @deffnx {C Function} scm_char_set_to_string (cs)
2190 Return a string containing the elements of the character set
2191 @var{cs}. The order in which the characters are placed in the
2192 string is not defined.
2193 @end deffn
2194
2195 @deffn {Scheme Procedure} char-set-contains? cs ch
2196 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2197 Return @code{#t} iff the character @var{ch} is contained in the
2198 character set @var{cs}.
2199 @end deffn
2200
2201 @deffn {Scheme Procedure} char-set-every pred cs
2202 @deffnx {C Function} scm_char_set_every (pred, cs)
2203 Return a true value if every character in the character set
2204 @var{cs} satisfies the predicate @var{pred}.
2205 @end deffn
2206
2207 @deffn {Scheme Procedure} char-set-any pred cs
2208 @deffnx {C Function} scm_char_set_any (pred, cs)
2209 Return a true value if any character in the character set
2210 @var{cs} satisfies the predicate @var{pred}.
2211 @end deffn
2212
2213 @c ===================================================================
2214
2215 @node Character-Set Algebra
2216 @subsubsection Character-Set Algebra
2217
2218 Character sets can be manipulated with the common set algebra operation,
2219 such as union, complement, intersection etc. All of these procedures
2220 provide side-effecting variants, which modify their character set
2221 argument(s).
2222
2223 @deffn {Scheme Procedure} char-set-adjoin cs . rest
2224 @deffnx {C Function} scm_char_set_adjoin (cs, rest)
2225 Add all character arguments to the first argument, which must
2226 be a character set.
2227 @end deffn
2228
2229 @deffn {Scheme Procedure} char-set-delete cs . rest
2230 @deffnx {C Function} scm_char_set_delete (cs, rest)
2231 Delete all character arguments from the first argument, which
2232 must be a character set.
2233 @end deffn
2234
2235 @deffn {Scheme Procedure} char-set-adjoin! cs . rest
2236 @deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
2237 Add all character arguments to the first argument, which must
2238 be a character set.
2239 @end deffn
2240
2241 @deffn {Scheme Procedure} char-set-delete! cs . rest
2242 @deffnx {C Function} scm_char_set_delete_x (cs, rest)
2243 Delete all character arguments from the first argument, which
2244 must be a character set.
2245 @end deffn
2246
2247 @deffn {Scheme Procedure} char-set-complement cs
2248 @deffnx {C Function} scm_char_set_complement (cs)
2249 Return the complement of the character set @var{cs}.
2250 @end deffn
2251
2252 Note that the complement of a character set is likely to contain many
2253 reserved code points (code points that are not associated with
2254 characters). It may be helpful to modify the output of
2255 @code{char-set-complement} by computing its intersection with the set
2256 of designated code points, @code{char-set:designated}.
2257
2258 @deffn {Scheme Procedure} char-set-union . rest
2259 @deffnx {C Function} scm_char_set_union (rest)
2260 Return the union of all argument character sets.
2261 @end deffn
2262
2263 @deffn {Scheme Procedure} char-set-intersection . rest
2264 @deffnx {C Function} scm_char_set_intersection (rest)
2265 Return the intersection of all argument character sets.
2266 @end deffn
2267
2268 @deffn {Scheme Procedure} char-set-difference cs1 . rest
2269 @deffnx {C Function} scm_char_set_difference (cs1, rest)
2270 Return the difference of all argument character sets.
2271 @end deffn
2272
2273 @deffn {Scheme Procedure} char-set-xor . rest
2274 @deffnx {C Function} scm_char_set_xor (rest)
2275 Return the exclusive-or of all argument character sets.
2276 @end deffn
2277
2278 @deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
2279 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
2280 Return the difference and the intersection of all argument
2281 character sets.
2282 @end deffn
2283
2284 @deffn {Scheme Procedure} char-set-complement! cs
2285 @deffnx {C Function} scm_char_set_complement_x (cs)
2286 Return the complement of the character set @var{cs}.
2287 @end deffn
2288
2289 @deffn {Scheme Procedure} char-set-union! cs1 . rest
2290 @deffnx {C Function} scm_char_set_union_x (cs1, rest)
2291 Return the union of all argument character sets.
2292 @end deffn
2293
2294 @deffn {Scheme Procedure} char-set-intersection! cs1 . rest
2295 @deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
2296 Return the intersection of all argument character sets.
2297 @end deffn
2298
2299 @deffn {Scheme Procedure} char-set-difference! cs1 . rest
2300 @deffnx {C Function} scm_char_set_difference_x (cs1, rest)
2301 Return the difference of all argument character sets.
2302 @end deffn
2303
2304 @deffn {Scheme Procedure} char-set-xor! cs1 . rest
2305 @deffnx {C Function} scm_char_set_xor_x (cs1, rest)
2306 Return the exclusive-or of all argument character sets.
2307 @end deffn
2308
2309 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
2310 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
2311 Return the difference and the intersection of all argument
2312 character sets.
2313 @end deffn
2314
2315 @c ===================================================================
2316
2317 @node Standard Character Sets
2318 @subsubsection Standard Character Sets
2319
2320 In order to make the use of the character set data type and procedures
2321 useful, several predefined character set variables exist.
2322
2323 @cindex codeset
2324 @cindex charset
2325 @cindex locale
2326
2327 These character sets are locale independent and are not recomputed
2328 upon a @code{setlocale} call. They contain characters from the whole
2329 range of Unicode code points. For instance, @code{char-set:letter}
2330 contains about 94,000 characters.
2331
2332 @defvr {Scheme Variable} char-set:lower-case
2333 @defvrx {C Variable} scm_char_set_lower_case
2334 All lower-case characters.
2335 @end defvr
2336
2337 @defvr {Scheme Variable} char-set:upper-case
2338 @defvrx {C Variable} scm_char_set_upper_case
2339 All upper-case characters.
2340 @end defvr
2341
2342 @defvr {Scheme Variable} char-set:title-case
2343 @defvrx {C Variable} scm_char_set_title_case
2344 All single characters that function as if they were an upper-case
2345 letter followed by a lower-case letter.
2346 @end defvr
2347
2348 @defvr {Scheme Variable} char-set:letter
2349 @defvrx {C Variable} scm_char_set_letter
2350 All letters. This includes @code{char-set:lower-case},
2351 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2352 letters that have no case at all. For example, Chinese and Japanese
2353 characters typically have no concept of case.
2354 @end defvr
2355
2356 @defvr {Scheme Variable} char-set:digit
2357 @defvrx {C Variable} scm_char_set_digit
2358 All digits.
2359 @end defvr
2360
2361 @defvr {Scheme Variable} char-set:letter+digit
2362 @defvrx {C Variable} scm_char_set_letter_and_digit
2363 The union of @code{char-set:letter} and @code{char-set:digit}.
2364 @end defvr
2365
2366 @defvr {Scheme Variable} char-set:graphic
2367 @defvrx {C Variable} scm_char_set_graphic
2368 All characters which would put ink on the paper.
2369 @end defvr
2370
2371 @defvr {Scheme Variable} char-set:printing
2372 @defvrx {C Variable} scm_char_set_printing
2373 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2374 @end defvr
2375
2376 @defvr {Scheme Variable} char-set:whitespace
2377 @defvrx {C Variable} scm_char_set_whitespace
2378 All whitespace characters.
2379 @end defvr
2380
2381 @defvr {Scheme Variable} char-set:blank
2382 @defvrx {C Variable} scm_char_set_blank
2383 All horizontal whitespace characters, which notably includes
2384 @code{#\space} and @code{#\tab}.
2385 @end defvr
2386
2387 @defvr {Scheme Variable} char-set:iso-control
2388 @defvrx {C Variable} scm_char_set_iso_control
2389 The ISO control characters are the C0 control characters (U+0000 to
2390 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2391 U+009F).
2392 @end defvr
2393
2394 @defvr {Scheme Variable} char-set:punctuation
2395 @defvrx {C Variable} scm_char_set_punctuation
2396 All punctuation characters, such as the characters
2397 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2398 @end defvr
2399
2400 @defvr {Scheme Variable} char-set:symbol
2401 @defvrx {C Variable} scm_char_set_symbol
2402 All symbol characters, such as the characters @code{$+<=>^`|~}.
2403 @end defvr
2404
2405 @defvr {Scheme Variable} char-set:hex-digit
2406 @defvrx {C Variable} scm_char_set_hex_digit
2407 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2408 @end defvr
2409
2410 @defvr {Scheme Variable} char-set:ascii
2411 @defvrx {C Variable} scm_char_set_ascii
2412 All ASCII characters.
2413 @end defvr
2414
2415 @defvr {Scheme Variable} char-set:empty
2416 @defvrx {C Variable} scm_char_set_empty
2417 The empty character set.
2418 @end defvr
2419
2420 @defvr {Scheme Variable} char-set:designated
2421 @defvrx {C Variable} scm_char_set_designated
2422 This character set contains all designated code points. This includes
2423 all the code points to which Unicode has assigned a character or other
2424 meaning.
2425 @end defvr
2426
2427 @defvr {Scheme Variable} char-set:full
2428 @defvrx {C Variable} scm_char_set_full
2429 This character set contains all possible code points. This includes
2430 both designated and reserved code points.
2431 @end defvr
2432
2433 @node Strings
2434 @subsection Strings
2435 @tpindex Strings
2436
2437 Strings are fixed-length sequences of characters. They can be created
2438 by calling constructor procedures, but they can also literally get
2439 entered at the @acronym{REPL} or in Scheme source files.
2440
2441 @c Guile provides a rich set of string processing procedures, because text
2442 @c handling is very important when Guile is used as a scripting language.
2443
2444 Strings always carry the information about how many characters they are
2445 composed of with them, so there is no special end-of-string character,
2446 like in C. That means that Scheme strings can contain any character,
2447 even the @samp{#\nul} character @samp{\0}.
2448
2449 To use strings efficiently, you need to know a bit about how Guile
2450 implements them. In Guile, a string consists of two parts, a head and
2451 the actual memory where the characters are stored. When a string (or
2452 a substring of it) is copied, only a new head gets created, the memory
2453 is usually not copied. The two heads start out pointing to the same
2454 memory.
2455
2456 When one of these two strings is modified, as with @code{string-set!},
2457 their common memory does get copied so that each string has its own
2458 memory and modifying one does not accidentally modify the other as well.
2459 Thus, Guile's strings are `copy on write'; the actual copying of their
2460 memory is delayed until one string is written to.
2461
2462 This implementation makes functions like @code{substring} very
2463 efficient in the common case that no modifications are done to the
2464 involved strings.
2465
2466 If you do know that your strings are getting modified right away, you
2467 can use @code{substring/copy} instead of @code{substring}. This
2468 function performs the copy immediately at the time of creation. This
2469 is more efficient, especially in a multi-threaded program. Also,
2470 @code{substring/copy} can avoid the problem that a short substring
2471 holds on to the memory of a very large original string that could
2472 otherwise be recycled.
2473
2474 If you want to avoid the copy altogether, so that modifications of one
2475 string show up in the other, you can use @code{substring/shared}. The
2476 strings created by this procedure are called @dfn{mutation sharing
2477 substrings} since the substring and the original string share
2478 modifications to each other.
2479
2480 If you want to prevent modifications, use @code{substring/read-only}.
2481
2482 Guile provides all procedures of SRFI-13 and a few more.
2483
2484 @menu
2485 * String Syntax:: Read syntax for strings.
2486 * String Predicates:: Testing strings for certain properties.
2487 * String Constructors:: Creating new string objects.
2488 * List/String Conversion:: Converting from/to lists of characters.
2489 * String Selection:: Select portions from strings.
2490 * String Modification:: Modify parts or whole strings.
2491 * String Comparison:: Lexicographic ordering predicates.
2492 * String Searching:: Searching in strings.
2493 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2494 * Reversing and Appending Strings:: Appending strings to form a new string.
2495 * Mapping Folding and Unfolding:: Iterating over strings.
2496 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2497 * Conversion to/from C::
2498 @end menu
2499
2500 @node String Syntax
2501 @subsubsection String Read Syntax
2502
2503 @c In the following @code is used to get a good font in TeX etc, but
2504 @c is omitted for Info format, so as not to risk any confusion over
2505 @c whether surrounding ` ' quotes are part of the escape or are
2506 @c special in a string (they're not).
2507
2508 The read syntax for strings is an arbitrarily long sequence of
2509 characters enclosed in double quotes (@nicode{"}).
2510
2511 Backslash is an escape character and can be used to insert the
2512 following special characters. @nicode{\"} and @nicode{\\} are R5RS
2513 standard, the rest are Guile extensions, notice they follow C string
2514 syntax.
2515
2516 @table @asis
2517 @item @nicode{\\}
2518 Backslash character.
2519
2520 @item @nicode{\"}
2521 Double quote character (an unescaped @nicode{"} is otherwise the end
2522 of the string).
2523
2524 @item @nicode{\0}
2525 NUL character (ASCII 0).
2526
2527 @item @nicode{\a}
2528 Bell character (ASCII 7).
2529
2530 @item @nicode{\f}
2531 Formfeed character (ASCII 12).
2532
2533 @item @nicode{\n}
2534 Newline character (ASCII 10).
2535
2536 @item @nicode{\r}
2537 Carriage return character (ASCII 13).
2538
2539 @item @nicode{\t}
2540 Tab character (ASCII 9).
2541
2542 @item @nicode{\v}
2543 Vertical tab character (ASCII 11).
2544
2545 @item @nicode{\xHH}
2546 Character code given by two hexadecimal digits. For example
2547 @nicode{\x7f} for an ASCII DEL (127).
2548
2549 @item @nicode{\uHHHH}
2550 Character code given by four hexadecimal digits. For example
2551 @nicode{\u0100} for a capital A with macron (U+0100).
2552
2553 @item @nicode{\UHHHHHH}
2554 Character code given by six hexadecimal digits. For example
2555 @nicode{\U010402}.
2556 @end table
2557
2558 @noindent
2559 The following are examples of string literals:
2560
2561 @lisp
2562 "foo"
2563 "bar plonk"
2564 "Hello World"
2565 "\"Hi\", he said."
2566 @end lisp
2567
2568
2569 @node String Predicates
2570 @subsubsection String Predicates
2571
2572 The following procedures can be used to check whether a given string
2573 fulfills some specified property.
2574
2575 @rnindex string?
2576 @deffn {Scheme Procedure} string? obj
2577 @deffnx {C Function} scm_string_p (obj)
2578 Return @code{#t} if @var{obj} is a string, else @code{#f}.
2579 @end deffn
2580
2581 @deftypefn {C Function} int scm_is_string (SCM obj)
2582 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
2583 @end deftypefn
2584
2585 @deffn {Scheme Procedure} string-null? str
2586 @deffnx {C Function} scm_string_null_p (str)
2587 Return @code{#t} if @var{str}'s length is zero, and
2588 @code{#f} otherwise.
2589 @lisp
2590 (string-null? "") @result{} #t
2591 y @result{} "foo"
2592 (string-null? y) @result{} #f
2593 @end lisp
2594 @end deffn
2595
2596 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
2597 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
2598 Check if @var{char_pred} is true for any character in string @var{s}.
2599
2600 @var{char_pred} can be a character to check for any equal to that, or
2601 a character set (@pxref{Character Sets}) to check for any in that set,
2602 or a predicate procedure to call.
2603
2604 For a procedure, calls @code{(@var{char_pred} c)} are made
2605 successively on the characters from @var{start} to @var{end}. If
2606 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
2607 stops and that return value is the return from @code{string-any}. The
2608 call on the last character (ie.@: at @math{@var{end}-1}), if that
2609 point is reached, is a tail call.
2610
2611 If there are no characters in @var{s} (ie.@: @var{start} equals
2612 @var{end}) then the return is @code{#f}.
2613 @end deffn
2614
2615 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
2616 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
2617 Check if @var{char_pred} is true for every character in string
2618 @var{s}.
2619
2620 @var{char_pred} can be a character to check for every character equal
2621 to that, or a character set (@pxref{Character Sets}) to check for
2622 every character being in that set, or a predicate procedure to call.
2623
2624 For a procedure, calls @code{(@var{char_pred} c)} are made
2625 successively on the characters from @var{start} to @var{end}. If
2626 @var{char_pred} returns @code{#f}, @code{string-every} stops and
2627 returns @code{#f}. The call on the last character (ie.@: at
2628 @math{@var{end}-1}), if that point is reached, is a tail call and the
2629 return from that call is the return from @code{string-every}.
2630
2631 If there are no characters in @var{s} (ie.@: @var{start} equals
2632 @var{end}) then the return is @code{#t}.
2633 @end deffn
2634
2635 @node String Constructors
2636 @subsubsection String Constructors
2637
2638 The string constructor procedures create new string objects, possibly
2639 initializing them with some specified character data. See also
2640 @xref{String Selection}, for ways to create strings from existing
2641 strings.
2642
2643 @c FIXME::martin: list->string belongs into `List/String Conversion'
2644
2645 @deffn {Scheme Procedure} string char@dots{}
2646 @rnindex string
2647 Return a newly allocated string made from the given character
2648 arguments.
2649
2650 @example
2651 (string #\x #\y #\z) @result{} "xyz"
2652 (string) @result{} ""
2653 @end example
2654 @end deffn
2655
2656 @deffn {Scheme Procedure} list->string lst
2657 @deffnx {C Function} scm_string (lst)
2658 @rnindex list->string
2659 Return a newly allocated string made from a list of characters.
2660
2661 @example
2662 (list->string '(#\a #\b #\c)) @result{} "abc"
2663 @end example
2664 @end deffn
2665
2666 @deffn {Scheme Procedure} reverse-list->string lst
2667 @deffnx {C Function} scm_reverse_list_to_string (lst)
2668 Return a newly allocated string made from a list of characters, in
2669 reverse order.
2670
2671 @example
2672 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
2673 @end example
2674 @end deffn
2675
2676 @rnindex make-string
2677 @deffn {Scheme Procedure} make-string k [chr]
2678 @deffnx {C Function} scm_make_string (k, chr)
2679 Return a newly allocated string of
2680 length @var{k}. If @var{chr} is given, then all elements of
2681 the string are initialized to @var{chr}, otherwise the contents
2682 of the @var{string} are unspecified.
2683 @end deffn
2684
2685 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
2686 Like @code{scm_make_string}, but expects the length as a
2687 @code{size_t}.
2688 @end deftypefn
2689
2690 @deffn {Scheme Procedure} string-tabulate proc len
2691 @deffnx {C Function} scm_string_tabulate (proc, len)
2692 @var{proc} is an integer->char procedure. Construct a string
2693 of size @var{len} by applying @var{proc} to each index to
2694 produce the corresponding string element. The order in which
2695 @var{proc} is applied to the indices is not specified.
2696 @end deffn
2697
2698 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
2699 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
2700 Append the string in the string list @var{ls}, using the string
2701 @var{delim} as a delimiter between the elements of @var{ls}.
2702 @var{grammar} is a symbol which specifies how the delimiter is
2703 placed between the strings, and defaults to the symbol
2704 @code{infix}.
2705
2706 @table @code
2707 @item infix
2708 Insert the separator between list elements. An empty string
2709 will produce an empty list.
2710 @item string-infix
2711 Like @code{infix}, but will raise an error if given the empty
2712 list.
2713 @item suffix
2714 Insert the separator after every list element.
2715 @item prefix
2716 Insert the separator before each list element.
2717 @end table
2718 @end deffn
2719
2720 @node List/String Conversion
2721 @subsubsection List/String conversion
2722
2723 When processing strings, it is often convenient to first convert them
2724 into a list representation by using the procedure @code{string->list},
2725 work with the resulting list, and then convert it back into a string.
2726 These procedures are useful for similar tasks.
2727
2728 @rnindex string->list
2729 @deffn {Scheme Procedure} string->list str [start [end]]
2730 @deffnx {C Function} scm_substring_to_list (str, start, end)
2731 @deffnx {C Function} scm_string_to_list (str)
2732 Convert the string @var{str} into a list of characters.
2733 @end deffn
2734
2735 @deffn {Scheme Procedure} string-split str chr
2736 @deffnx {C Function} scm_string_split (str, chr)
2737 Split the string @var{str} into the a list of the substrings delimited
2738 by appearances of the character @var{chr}. Note that an empty substring
2739 between separator characters will result in an empty string in the
2740 result list.
2741
2742 @lisp
2743 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
2744 @result{}
2745 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
2746
2747 (string-split "::" #\:)
2748 @result{}
2749 ("" "" "")
2750
2751 (string-split "" #\:)
2752 @result{}
2753 ("")
2754 @end lisp
2755 @end deffn
2756
2757
2758 @node String Selection
2759 @subsubsection String Selection
2760
2761 Portions of strings can be extracted by these procedures.
2762 @code{string-ref} delivers individual characters whereas
2763 @code{substring} can be used to extract substrings from longer strings.
2764
2765 @rnindex string-length
2766 @deffn {Scheme Procedure} string-length string
2767 @deffnx {C Function} scm_string_length (string)
2768 Return the number of characters in @var{string}.
2769 @end deffn
2770
2771 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
2772 Return the number of characters in @var{str} as a @code{size_t}.
2773 @end deftypefn
2774
2775 @rnindex string-ref
2776 @deffn {Scheme Procedure} string-ref str k
2777 @deffnx {C Function} scm_string_ref (str, k)
2778 Return character @var{k} of @var{str} using zero-origin
2779 indexing. @var{k} must be a valid index of @var{str}.
2780 @end deffn
2781
2782 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
2783 Return character @var{k} of @var{str} using zero-origin
2784 indexing. @var{k} must be a valid index of @var{str}.
2785 @end deftypefn
2786
2787 @rnindex string-copy
2788 @deffn {Scheme Procedure} string-copy str [start [end]]
2789 @deffnx {C Function} scm_substring_copy (str, start, end)
2790 @deffnx {C Function} scm_string_copy (str)
2791 Return a copy of the given string @var{str}.
2792
2793 The returned string shares storage with @var{str} initially, but it is
2794 copied as soon as one of the two strings is modified.
2795 @end deffn
2796
2797 @rnindex substring
2798 @deffn {Scheme Procedure} substring str start [end]
2799 @deffnx {C Function} scm_substring (str, start, end)
2800 Return a new string formed from the characters
2801 of @var{str} beginning with index @var{start} (inclusive) and
2802 ending with index @var{end} (exclusive).
2803 @var{str} must be a string, @var{start} and @var{end} must be
2804 exact integers satisfying:
2805
2806 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
2807
2808 The returned string shares storage with @var{str} initially, but it is
2809 copied as soon as one of the two strings is modified.
2810 @end deffn
2811
2812 @deffn {Scheme Procedure} substring/shared str start [end]
2813 @deffnx {C Function} scm_substring_shared (str, start, end)
2814 Like @code{substring}, but the strings continue to share their storage
2815 even if they are modified. Thus, modifications to @var{str} show up
2816 in the new string, and vice versa.
2817 @end deffn
2818
2819 @deffn {Scheme Procedure} substring/copy str start [end]
2820 @deffnx {C Function} scm_substring_copy (str, start, end)
2821 Like @code{substring}, but the storage for the new string is copied
2822 immediately.
2823 @end deffn
2824
2825 @deffn {Scheme Procedure} substring/read-only str start [end]
2826 @deffnx {C Function} scm_substring_read_only (str, start, end)
2827 Like @code{substring}, but the resulting string can not be modified.
2828 @end deffn
2829
2830 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
2831 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
2832 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
2833 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
2834 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
2835 @end deftypefn
2836
2837 @deffn {Scheme Procedure} string-take s n
2838 @deffnx {C Function} scm_string_take (s, n)
2839 Return the @var{n} first characters of @var{s}.
2840 @end deffn
2841
2842 @deffn {Scheme Procedure} string-drop s n
2843 @deffnx {C Function} scm_string_drop (s, n)
2844 Return all but the first @var{n} characters of @var{s}.
2845 @end deffn
2846
2847 @deffn {Scheme Procedure} string-take-right s n
2848 @deffnx {C Function} scm_string_take_right (s, n)
2849 Return the @var{n} last characters of @var{s}.
2850 @end deffn
2851
2852 @deffn {Scheme Procedure} string-drop-right s n
2853 @deffnx {C Function} scm_string_drop_right (s, n)
2854 Return all but the last @var{n} characters of @var{s}.
2855 @end deffn
2856
2857 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
2858 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
2859 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
2860 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
2861 Take characters @var{start} to @var{end} from the string @var{s} and
2862 either pad with @var{char} or truncate them to give @var{len}
2863 characters.
2864
2865 @code{string-pad} pads or truncates on the left, so for example
2866
2867 @example
2868 (string-pad "x" 3) @result{} " x"
2869 (string-pad "abcde" 3) @result{} "cde"
2870 @end example
2871
2872 @code{string-pad-right} pads or truncates on the right, so for example
2873
2874 @example
2875 (string-pad-right "x" 3) @result{} "x "
2876 (string-pad-right "abcde" 3) @result{} "abc"
2877 @end example
2878 @end deffn
2879
2880 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
2881 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
2882 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
2883 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
2884 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
2885 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
2886 Trim occurrences of @var{char_pred} from the ends of @var{s}.
2887
2888 @code{string-trim} trims @var{char_pred} characters from the left
2889 (start) of the string, @code{string-trim-right} trims them from the
2890 right (end) of the string, @code{string-trim-both} trims from both
2891 ends.
2892
2893 @var{char_pred} can be a character, a character set, or a predicate
2894 procedure to call on each character. If @var{char_pred} is not given
2895 the default is whitespace as per @code{char-set:whitespace}
2896 (@pxref{Standard Character Sets}).
2897
2898 @example
2899 (string-trim " x ") @result{} "x "
2900 (string-trim-right "banana" #\a) @result{} "banan"
2901 (string-trim-both ".,xy:;" char-set:punctuation)
2902 @result{} "xy"
2903 (string-trim-both "xyzzy" (lambda (c)
2904 (or (eqv? c #\x)
2905 (eqv? c #\y))))
2906 @result{} "zz"
2907 @end example
2908 @end deffn
2909
2910 @node String Modification
2911 @subsubsection String Modification
2912
2913 These procedures are for modifying strings in-place. This means that the
2914 result of the operation is not a new string; instead, the original string's
2915 memory representation is modified.
2916
2917 @rnindex string-set!
2918 @deffn {Scheme Procedure} string-set! str k chr
2919 @deffnx {C Function} scm_string_set_x (str, k, chr)
2920 Store @var{chr} in element @var{k} of @var{str} and return
2921 an unspecified value. @var{k} must be a valid index of
2922 @var{str}.
2923 @end deffn
2924
2925 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
2926 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
2927 @end deftypefn
2928
2929 @rnindex string-fill!
2930 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
2931 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
2932 @deffnx {C Function} scm_string_fill_x (str, chr)
2933 Stores @var{chr} in every element of the given @var{str} and
2934 returns an unspecified value.
2935 @end deffn
2936
2937 @deffn {Scheme Procedure} substring-fill! str start end fill
2938 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
2939 Change every character in @var{str} between @var{start} and
2940 @var{end} to @var{fill}.
2941
2942 @lisp
2943 (define y "abcdefg")
2944 (substring-fill! y 1 3 #\r)
2945 y
2946 @result{} "arrdefg"
2947 @end lisp
2948 @end deffn
2949
2950 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
2951 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
2952 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
2953 into @var{str2} beginning at position @var{start2}.
2954 @var{str1} and @var{str2} can be the same string.
2955 @end deffn
2956
2957 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
2958 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
2959 Copy the sequence of characters from index range [@var{start},
2960 @var{end}) in string @var{s} to string @var{target}, beginning
2961 at index @var{tstart}. The characters are copied left-to-right
2962 or right-to-left as needed -- the copy is guaranteed to work,
2963 even if @var{target} and @var{s} are the same string. It is an
2964 error if the copy operation runs off the end of the target
2965 string.
2966 @end deffn
2967
2968
2969 @node String Comparison
2970 @subsubsection String Comparison
2971
2972 The procedures in this section are similar to the character ordering
2973 predicates (@pxref{Characters}), but are defined on character sequences.
2974
2975 The first set is specified in R5RS and has names that end in @code{?}.
2976 The second set is specified in SRFI-13 and the names have not ending
2977 @code{?}.
2978
2979 The predicates ending in @code{-ci} ignore the character case
2980 when comparing strings. For now, case-insensitive comparison is done
2981 using the R5RS rules, where every lower-case character that has a
2982 single character upper-case form is converted to uppercase before
2983 comparison. See @xref{Text Collation, the @code{(ice-9
2984 i18n)} module}, for locale-dependent string comparison.
2985
2986 @rnindex string=?
2987 @deffn {Scheme Procedure} string=? s1 s2
2988 Lexicographic equality predicate; return @code{#t} if the two
2989 strings are the same length and contain the same characters in
2990 the same positions, otherwise return @code{#f}.
2991
2992 The procedure @code{string-ci=?} treats upper and lower case
2993 letters as though they were the same character, but
2994 @code{string=?} treats upper and lower case as distinct
2995 characters.
2996 @end deffn
2997
2998 @rnindex string<?
2999 @deffn {Scheme Procedure} string<? s1 s2
3000 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3001 is lexicographically less than @var{s2}.
3002 @end deffn
3003
3004 @rnindex string<=?
3005 @deffn {Scheme Procedure} string<=? s1 s2
3006 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3007 is lexicographically less than or equal to @var{s2}.
3008 @end deffn
3009
3010 @rnindex string>?
3011 @deffn {Scheme Procedure} string>? s1 s2
3012 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3013 is lexicographically greater than @var{s2}.
3014 @end deffn
3015
3016 @rnindex string>=?
3017 @deffn {Scheme Procedure} string>=? s1 s2
3018 Lexicographic ordering predicate; return @code{#t} if @var{s1}
3019 is lexicographically greater than or equal to @var{s2}.
3020 @end deffn
3021
3022 @rnindex string-ci=?
3023 @deffn {Scheme Procedure} string-ci=? s1 s2
3024 Case-insensitive string equality predicate; return @code{#t} if
3025 the two strings are the same length and their component
3026 characters match (ignoring case) at each position; otherwise
3027 return @code{#f}.
3028 @end deffn
3029
3030 @rnindex string-ci<?
3031 @deffn {Scheme Procedure} string-ci<? s1 s2
3032 Case insensitive lexicographic ordering predicate; return
3033 @code{#t} if @var{s1} is lexicographically less than @var{s2}
3034 regardless of case.
3035 @end deffn
3036
3037 @rnindex string<=?
3038 @deffn {Scheme Procedure} string-ci<=? s1 s2
3039 Case insensitive lexicographic ordering predicate; return
3040 @code{#t} if @var{s1} is lexicographically less than or equal
3041 to @var{s2} regardless of case.
3042 @end deffn
3043
3044 @rnindex string-ci>?
3045 @deffn {Scheme Procedure} string-ci>? s1 s2
3046 Case insensitive lexicographic ordering predicate; return
3047 @code{#t} if @var{s1} is lexicographically greater than
3048 @var{s2} regardless of case.
3049 @end deffn
3050
3051 @rnindex string-ci>=?
3052 @deffn {Scheme Procedure} string-ci>=? s1 s2
3053 Case insensitive lexicographic ordering predicate; return
3054 @code{#t} if @var{s1} is lexicographically greater than or
3055 equal to @var{s2} regardless of case.
3056 @end deffn
3057
3058 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3059 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3060 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3061 mismatch index, depending upon whether @var{s1} is less than,
3062 equal to, or greater than @var{s2}. The mismatch index is the
3063 largest index @var{i} such that for every 0 <= @var{j} <
3064 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3065 @var{i} is the first position that does not match.
3066 @end deffn
3067
3068 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3069 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3070 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3071 mismatch index, depending upon whether @var{s1} is less than,
3072 equal to, or greater than @var{s2}. The mismatch index is the
3073 largest index @var{i} such that for every 0 <= @var{j} <
3074 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3075 @var{i} is the first position that does not match. The
3076 character comparison is done case-insensitively.
3077 @end deffn
3078
3079 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3080 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3081 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3082 value otherwise.
3083 @end deffn
3084
3085 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3086 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3087 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3088 value otherwise.
3089 @end deffn
3090
3091 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3092 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3093 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3094 true value otherwise.
3095 @end deffn
3096
3097 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3098 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3099 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3100 true value otherwise.
3101 @end deffn
3102
3103 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3104 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3105 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3106 value otherwise.
3107 @end deffn
3108
3109 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3110 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3111 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3112 otherwise.
3113 @end deffn
3114
3115 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3116 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3117 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3118 value otherwise. The character comparison is done
3119 case-insensitively.
3120 @end deffn
3121
3122 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3123 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3124 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3125 value otherwise. The character comparison is done
3126 case-insensitively.
3127 @end deffn
3128
3129 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3130 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3131 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3132 true value otherwise. The character comparison is done
3133 case-insensitively.
3134 @end deffn
3135
3136 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3137 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3138 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3139 true value otherwise. The character comparison is done
3140 case-insensitively.
3141 @end deffn
3142
3143 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3144 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3145 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3146 value otherwise. The character comparison is done
3147 case-insensitively.
3148 @end deffn
3149
3150 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3151 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3152 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3153 otherwise. The character comparison is done
3154 case-insensitively.
3155 @end deffn
3156
3157 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3158 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3159 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3160 @end deffn
3161
3162 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3163 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3164 Compute a hash value for @var{S}. the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3165 @end deffn
3166
3167 @node String Searching
3168 @subsubsection String Searching
3169
3170 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3171 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3172 Search through the string @var{s} from left to right, returning
3173 the index of the first occurrence of a character which
3174
3175 @itemize @bullet
3176 @item
3177 equals @var{char_pred}, if it is character,
3178
3179 @item
3180 satisfies the predicate @var{char_pred}, if it is a procedure,
3181
3182 @item
3183 is in the set @var{char_pred}, if it is a character set.
3184 @end itemize
3185 @end deffn
3186
3187 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3188 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3189 Search through the string @var{s} from right to left, returning
3190 the index of the last occurrence of a character which
3191
3192 @itemize @bullet
3193 @item
3194 equals @var{char_pred}, if it is character,
3195
3196 @item
3197 satisfies the predicate @var{char_pred}, if it is a procedure,
3198
3199 @item
3200 is in the set if @var{char_pred} is a character set.
3201 @end itemize
3202 @end deffn
3203
3204 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3205 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3206 Return the length of the longest common prefix of the two
3207 strings.
3208 @end deffn
3209
3210 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3211 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3212 Return the length of the longest common prefix of the two
3213 strings, ignoring character case.
3214 @end deffn
3215
3216 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3217 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3218 Return the length of the longest common suffix of the two
3219 strings.
3220 @end deffn
3221
3222 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3223 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3224 Return the length of the longest common suffix of the two
3225 strings, ignoring character case.
3226 @end deffn
3227
3228 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3229 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3230 Is @var{s1} a prefix of @var{s2}?
3231 @end deffn
3232
3233 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3234 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3235 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3236 @end deffn
3237
3238 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3239 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3240 Is @var{s1} a suffix of @var{s2}?
3241 @end deffn
3242
3243 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3244 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3245 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3246 @end deffn
3247
3248 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3249 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3250 Search through the string @var{s} from right to left, returning
3251 the index of the last occurrence of a character which
3252
3253 @itemize @bullet
3254 @item
3255 equals @var{char_pred}, if it is character,
3256
3257 @item
3258 satisfies the predicate @var{char_pred}, if it is a procedure,
3259
3260 @item
3261 is in the set if @var{char_pred} is a character set.
3262 @end itemize
3263 @end deffn
3264
3265 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3266 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3267 Search through the string @var{s} from left to right, returning
3268 the index of the first occurrence of a character which
3269
3270 @itemize @bullet
3271 @item
3272 does not equal @var{char_pred}, if it is character,
3273
3274 @item
3275 does not satisfy the predicate @var{char_pred}, if it is a
3276 procedure,
3277
3278 @item
3279 is not in the set if @var{char_pred} is a character set.
3280 @end itemize
3281 @end deffn
3282
3283 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3284 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3285 Search through the string @var{s} from right to left, returning
3286 the index of the last occurrence of a character which
3287
3288 @itemize @bullet
3289 @item
3290 does not equal @var{char_pred}, if it is character,
3291
3292 @item
3293 does not satisfy the predicate @var{char_pred}, if it is a
3294 procedure,
3295
3296 @item
3297 is not in the set if @var{char_pred} is a character set.
3298 @end itemize
3299 @end deffn
3300
3301 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3302 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3303 Return the count of the number of characters in the string
3304 @var{s} which
3305
3306 @itemize @bullet
3307 @item
3308 equals @var{char_pred}, if it is character,
3309
3310 @item
3311 satisfies the predicate @var{char_pred}, if it is a procedure.
3312
3313 @item
3314 is in the set @var{char_pred}, if it is a character set.
3315 @end itemize
3316 @end deffn
3317
3318 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3319 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3320 Does string @var{s1} contain string @var{s2}? Return the index
3321 in @var{s1} where @var{s2} occurs as a substring, or false.
3322 The optional start/end indices restrict the operation to the
3323 indicated substrings.
3324 @end deffn
3325
3326 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3327 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3328 Does string @var{s1} contain string @var{s2}? Return the index
3329 in @var{s1} where @var{s2} occurs as a substring, or false.
3330 The optional start/end indices restrict the operation to the
3331 indicated substrings. Character comparison is done
3332 case-insensitively.
3333 @end deffn
3334
3335 @node Alphabetic Case Mapping
3336 @subsubsection Alphabetic Case Mapping
3337
3338 These are procedures for mapping strings to their upper- or lower-case
3339 equivalents, respectively, or for capitalizing strings.
3340
3341 @deffn {Scheme Procedure} string-upcase str [start [end]]
3342 @deffnx {C Function} scm_substring_upcase (str, start, end)
3343 @deffnx {C Function} scm_string_upcase (str)
3344 Upcase every character in @code{str}.
3345 @end deffn
3346
3347 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3348 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3349 @deffnx {C Function} scm_string_upcase_x (str)
3350 Destructively upcase every character in @code{str}.
3351
3352 @lisp
3353 (string-upcase! y)
3354 @result{} "ARRDEFG"
3355 y
3356 @result{} "ARRDEFG"
3357 @end lisp
3358 @end deffn
3359
3360 @deffn {Scheme Procedure} string-downcase str [start [end]]
3361 @deffnx {C Function} scm_substring_downcase (str, start, end)
3362 @deffnx {C Function} scm_string_downcase (str)
3363 Downcase every character in @var{str}.
3364 @end deffn
3365
3366 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3367 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3368 @deffnx {C Function} scm_string_downcase_x (str)
3369 Destructively downcase every character in @var{str}.
3370
3371 @lisp
3372 y
3373 @result{} "ARRDEFG"
3374 (string-downcase! y)
3375 @result{} "arrdefg"
3376 y
3377 @result{} "arrdefg"
3378 @end lisp
3379 @end deffn
3380
3381 @deffn {Scheme Procedure} string-capitalize str
3382 @deffnx {C Function} scm_string_capitalize (str)
3383 Return a freshly allocated string with the characters in
3384 @var{str}, where the first character of every word is
3385 capitalized.
3386 @end deffn
3387
3388 @deffn {Scheme Procedure} string-capitalize! str
3389 @deffnx {C Function} scm_string_capitalize_x (str)
3390 Upcase the first character of every word in @var{str}
3391 destructively and return @var{str}.
3392
3393 @lisp
3394 y @result{} "hello world"
3395 (string-capitalize! y) @result{} "Hello World"
3396 y @result{} "Hello World"
3397 @end lisp
3398 @end deffn
3399
3400 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3401 @deffnx {C Function} scm_string_titlecase (str, start, end)
3402 Titlecase every first character in a word in @var{str}.
3403 @end deffn
3404
3405 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3406 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3407 Destructively titlecase every first character in a word in
3408 @var{str}.
3409 @end deffn
3410
3411 @node Reversing and Appending Strings
3412 @subsubsection Reversing and Appending Strings
3413
3414 @deffn {Scheme Procedure} string-reverse str [start [end]]
3415 @deffnx {C Function} scm_string_reverse (str, start, end)
3416 Reverse the string @var{str}. The optional arguments
3417 @var{start} and @var{end} delimit the region of @var{str} to
3418 operate on.
3419 @end deffn
3420
3421 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3422 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3423 Reverse the string @var{str} in-place. The optional arguments
3424 @var{start} and @var{end} delimit the region of @var{str} to
3425 operate on. The return value is unspecified.
3426 @end deffn
3427
3428 @rnindex string-append
3429 @deffn {Scheme Procedure} string-append . args
3430 @deffnx {C Function} scm_string_append (args)
3431 Return a newly allocated string whose characters form the
3432 concatenation of the given strings, @var{args}.
3433
3434 @example
3435 (let ((h "hello "))
3436 (string-append h "world"))
3437 @result{} "hello world"
3438 @end example
3439 @end deffn
3440
3441 @deffn {Scheme Procedure} string-append/shared . ls
3442 @deffnx {C Function} scm_string_append_shared (ls)
3443 Like @code{string-append}, but the result may share memory
3444 with the argument strings.
3445 @end deffn
3446
3447 @deffn {Scheme Procedure} string-concatenate ls
3448 @deffnx {C Function} scm_string_concatenate (ls)
3449 Append the elements of @var{ls} (which must be strings)
3450 together into a single string. Guaranteed to return a freshly
3451 allocated string.
3452 @end deffn
3453
3454 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3455 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3456 Without optional arguments, this procedure is equivalent to
3457
3458 @lisp
3459 (string-concatenate (reverse ls))
3460 @end lisp
3461
3462 If the optional argument @var{final_string} is specified, it is
3463 consed onto the beginning to @var{ls} before performing the
3464 list-reverse and string-concatenate operations. If @var{end}
3465 is given, only the characters of @var{final_string} up to index
3466 @var{end} are used.
3467
3468 Guaranteed to return a freshly allocated string.
3469 @end deffn
3470
3471 @deffn {Scheme Procedure} string-concatenate/shared ls
3472 @deffnx {C Function} scm_string_concatenate_shared (ls)
3473 Like @code{string-concatenate}, but the result may share memory
3474 with the strings in the list @var{ls}.
3475 @end deffn
3476
3477 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3478 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3479 Like @code{string-concatenate-reverse}, but the result may
3480 share memory with the the strings in the @var{ls} arguments.
3481 @end deffn
3482
3483 @node Mapping Folding and Unfolding
3484 @subsubsection Mapping, Folding, and Unfolding
3485
3486 @deffn {Scheme Procedure} string-map proc s [start [end]]
3487 @deffnx {C Function} scm_string_map (proc, s, start, end)
3488 @var{proc} is a char->char procedure, it is mapped over
3489 @var{s}. The order in which the procedure is applied to the
3490 string elements is not specified.
3491 @end deffn
3492
3493 @deffn {Scheme Procedure} string-map! proc s [start [end]]
3494 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
3495 @var{proc} is a char->char procedure, it is mapped over
3496 @var{s}. The order in which the procedure is applied to the
3497 string elements is not specified. The string @var{s} is
3498 modified in-place, the return value is not specified.
3499 @end deffn
3500
3501 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
3502 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
3503 @var{proc} is mapped over @var{s} in left-to-right order. The
3504 return value is not specified.
3505 @end deffn
3506
3507 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
3508 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
3509 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
3510 right.
3511
3512 For example, to change characters to alternately upper and lower case,
3513
3514 @example
3515 (define str (string-copy "studly"))
3516 (string-for-each-index
3517 (lambda (i)
3518 (string-set! str i
3519 ((if (even? i) char-upcase char-downcase)
3520 (string-ref str i))))
3521 str)
3522 str @result{} "StUdLy"
3523 @end example
3524 @end deffn
3525
3526 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
3527 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
3528 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3529 as the terminating element, from left to right. @var{kons}
3530 must expect two arguments: The actual character and the last
3531 result of @var{kons}' application.
3532 @end deffn
3533
3534 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
3535 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
3536 Fold @var{kons} over the characters of @var{s}, with @var{knil}
3537 as the terminating element, from right to left. @var{kons}
3538 must expect two arguments: The actual character and the last
3539 result of @var{kons}' application.
3540 @end deffn
3541
3542 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
3543 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
3544 @itemize @bullet
3545 @item @var{g} is used to generate a series of @emph{seed}
3546 values from the initial @var{seed}: @var{seed}, (@var{g}
3547 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3548 @dots{}
3549 @item @var{p} tells us when to stop -- when it returns true
3550 when applied to one of these seed values.
3551 @item @var{f} maps each seed value to the corresponding
3552 character in the result string. These chars are assembled
3553 into the string in a left-to-right order.
3554 @item @var{base} is the optional initial/leftmost portion
3555 of the constructed string; it default to the empty
3556 string.
3557 @item @var{make_final} is applied to the terminal seed
3558 value (on which @var{p} returns true) to produce
3559 the final/rightmost portion of the constructed string.
3560 The default is nothing extra.
3561 @end itemize
3562 @end deffn
3563
3564 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
3565 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
3566 @itemize @bullet
3567 @item @var{g} is used to generate a series of @emph{seed}
3568 values from the initial @var{seed}: @var{seed}, (@var{g}
3569 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
3570 @dots{}
3571 @item @var{p} tells us when to stop -- when it returns true
3572 when applied to one of these seed values.
3573 @item @var{f} maps each seed value to the corresponding
3574 character in the result string. These chars are assembled
3575 into the string in a right-to-left order.
3576 @item @var{base} is the optional initial/rightmost portion
3577 of the constructed string; it default to the empty
3578 string.
3579 @item @var{make_final} is applied to the terminal seed
3580 value (on which @var{p} returns true) to produce
3581 the final/leftmost portion of the constructed string.
3582 It defaults to @code{(lambda (x) )}.
3583 @end itemize
3584 @end deffn
3585
3586 @node Miscellaneous String Operations
3587 @subsubsection Miscellaneous String Operations
3588
3589 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
3590 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
3591 This is the @emph{extended substring} procedure that implements
3592 replicated copying of a substring of some string.
3593
3594 @var{s} is a string, @var{start} and @var{end} are optional
3595 arguments that demarcate a substring of @var{s}, defaulting to
3596 0 and the length of @var{s}. Replicate this substring up and
3597 down index space, in both the positive and negative directions.
3598 @code{xsubstring} returns the substring of this string
3599 beginning at index @var{from}, and ending at @var{to}, which
3600 defaults to @var{from} + (@var{end} - @var{start}).
3601 @end deffn
3602
3603 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
3604 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
3605 Exactly the same as @code{xsubstring}, but the extracted text
3606 is written into the string @var{target} starting at index
3607 @var{tstart}. The operation is not defined if @code{(eq?
3608 @var{target} @var{s})} or these arguments share storage -- you
3609 cannot copy a string on top of itself.
3610 @end deffn
3611
3612 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
3613 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
3614 Return the string @var{s1}, but with the characters
3615 @var{start1} @dots{} @var{end1} replaced by the characters
3616 @var{start2} @dots{} @var{end2} from @var{s2}.
3617 @end deffn
3618
3619 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
3620 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
3621 Split the string @var{s} into a list of substrings, where each
3622 substring is a maximal non-empty contiguous sequence of
3623 characters from the character set @var{token_set}, which
3624 defaults to @code{char-set:graphic}.
3625 If @var{start} or @var{end} indices are provided, they restrict
3626 @code{string-tokenize} to operating on the indicated substring
3627 of @var{s}.
3628 @end deffn
3629
3630 @deffn {Scheme Procedure} string-filter s char_pred [start [end]]
3631 @deffnx {C Function} scm_string_filter (s, char_pred, start, end)
3632 Filter the string @var{s}, retaining only those characters which
3633 satisfy @var{char_pred}.
3634
3635 If @var{char_pred} is a procedure, it is applied to each character as
3636 a predicate, if it is a character, it is tested for equality and if it
3637 is a character set, it is tested for membership.
3638 @end deffn
3639
3640 @deffn {Scheme Procedure} string-delete s char_pred [start [end]]
3641 @deffnx {C Function} scm_string_delete (s, char_pred, start, end)
3642 Delete characters satisfying @var{char_pred} from @var{s}.
3643
3644 If @var{char_pred} is a procedure, it is applied to each character as
3645 a predicate, if it is a character, it is tested for equality and if it
3646 is a character set, it is tested for membership.
3647 @end deffn
3648
3649 @node Conversion to/from C
3650 @subsubsection Conversion to/from C
3651
3652 When creating a Scheme string from a C string or when converting a
3653 Scheme string to a C string, the concept of character encoding becomes
3654 important.
3655
3656 In C, a string is just a sequence of bytes, and the character encoding
3657 describes the relation between these bytes and the actual characters
3658 that make up the string. For Scheme strings, character encoding is
3659 not an issue (most of the time), since in Scheme you never get to see
3660 the bytes, only the characters.
3661
3662 Well, ideally, anyway. Right now, Guile simply equates Scheme
3663 characters and bytes, ignoring the possibility of multi-byte encodings
3664 completely. This will change in the future, where Guile will use
3665 Unicode codepoints as its characters and UTF-8 or some other encoding
3666 as its internal encoding. When you exclusively use the functions
3667 listed in this section, you are `future-proof'.
3668
3669 Converting a Scheme string to a C string will often allocate fresh
3670 memory to hold the result. You must take care that this memory is
3671 properly freed eventually. In many cases, this can be achieved by
3672 using @code{scm_dynwind_free} inside an appropriate dynwind context,
3673 @xref{Dynamic Wind}.
3674
3675 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
3676 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
3677 Creates a new Scheme string that has the same contents as @var{str}
3678 when interpreted in the current locale character encoding.
3679
3680 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
3681
3682 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
3683 @var{str} in bytes, and @var{str} does not need to be null-terminated.
3684 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
3685 null-terminated and the real length will be found with @code{strlen}.
3686 @end deftypefn
3687
3688 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
3689 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
3690 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
3691 respectively, but also frees @var{str} with @code{free} eventually.
3692 Thus, you can use this function when you would free @var{str} anyway
3693 immediately after creating the Scheme string. In certain cases, Guile
3694 can then use @var{str} directly as its internal representation.
3695 @end deftypefn
3696
3697 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
3698 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
3699 Returns a C string in the current locale encoding with the same
3700 contents as @var{str}. The C string must be freed with @code{free}
3701 eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
3702 Wind}.
3703
3704 For @code{scm_to_locale_string}, the returned string is
3705 null-terminated and an error is signalled when @var{str} contains
3706 @code{#\nul} characters.
3707
3708 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
3709 @var{str} might contain @code{#\nul} characters and the length of the
3710 returned string in bytes is stored in @code{*@var{lenp}}. The
3711 returned string will not be null-terminated in this case. If
3712 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
3713 @code{scm_to_locale_string}.
3714 @end deftypefn
3715
3716 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
3717 Puts @var{str} as a C string in the current locale encoding into the
3718 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
3719 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
3720 more than that. No terminating @code{'\0'} will be stored.
3721
3722 The return value of @code{scm_to_locale_stringbuf} is the number of
3723 bytes that are needed for all of @var{str}, regardless of whether
3724 @var{buf} was large enough to hold them. Thus, when the return value
3725 is larger than @var{max_len}, only @var{max_len} bytes have been
3726 stored and you probably need to try again with a larger buffer.
3727 @end deftypefn
3728
3729 @node Bytevectors
3730 @subsection Bytevectors
3731
3732 @cindex bytevector
3733 @cindex R6RS
3734
3735 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevector)}
3736 module provides the programming interface specified by the
3737 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
3738 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
3739 interpret their contents in a number of ways: bytevector contents can be
3740 accessed as signed or unsigned integer of various sizes and endianness,
3741 as IEEE-754 floating point numbers, or as strings. It is a useful tool
3742 to encode and decode binary data.
3743
3744 The R6RS (Section 4.3.4) specifies an external representation for
3745 bytevectors, whereby the octets (integers in the range 0--255) contained
3746 in the bytevector are represented as a list prefixed by @code{#vu8}:
3747
3748 @lisp
3749 #vu8(1 53 204)
3750 @end lisp
3751
3752 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
3753 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
3754 they do not need to be quoted:
3755
3756 @lisp
3757 #vu8(1 53 204)
3758 @result{} #vu8(1 53 204)
3759 @end lisp
3760
3761 Bytevectors can be used with the binary input/output primitives of the
3762 R6RS (@pxref{R6RS I/O Ports}).
3763
3764 @menu
3765 * Bytevector Endianness:: Dealing with byte order.
3766 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
3767 * Bytevectors as Integers:: Interpreting bytes as integers.
3768 * Bytevectors and Integer Lists:: Converting to/from an integer list.
3769 * Bytevectors as Floats:: Interpreting bytes as real numbers.
3770 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
3771 * Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
3772 @end menu
3773
3774 @node Bytevector Endianness
3775 @subsubsection Endianness
3776
3777 @cindex endianness
3778 @cindex byte order
3779 @cindex word order
3780
3781 Some of the following procedures take an @var{endianness} parameter.
3782 The @dfn{endianness} is defined as the order of bytes in multi-byte
3783 numbers: numbers encoded in @dfn{big endian} have their most
3784 significant bytes written first, whereas numbers encoded in
3785 @dfn{little endian} have their least significant bytes
3786 first@footnote{Big-endian and little-endian are the most common
3787 ``endiannesses'', but others do exist. For instance, the GNU MP
3788 library allows @dfn{word order} to be specified independently of
3789 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
3790 Multiple Precision Arithmetic Library Manual}).}.
3791
3792 Little-endian is the native endianness of the IA32 architecture and
3793 its derivatives, while big-endian is native to SPARC and PowerPC,
3794 among others. The @code{native-endianness} procedure returns the
3795 native endianness of the machine it runs on.
3796
3797 @deffn {Scheme Procedure} native-endianness
3798 @deffnx {C Function} scm_native_endianness ()
3799 Return a value denoting the native endianness of the host machine.
3800 @end deffn
3801
3802 @deffn {Scheme Macro} endianness symbol
3803 Return an object denoting the endianness specified by @var{symbol}. If
3804 @var{symbol} is neither @code{big} nor @code{little} then an error is
3805 raised at expand-time.
3806 @end deffn
3807
3808 @defvr {C Variable} scm_endianness_big
3809 @defvrx {C Variable} scm_endianness_little
3810 The objects denoting big- and little-endianness, respectively.
3811 @end defvr
3812
3813
3814 @node Bytevector Manipulation
3815 @subsubsection Manipulating Bytevectors
3816
3817 Bytevectors can be created, copied, and analyzed with the following
3818 procedures and C functions.
3819
3820 @deffn {Scheme Procedure} make-bytevector len [fill]
3821 @deffnx {C Function} scm_make_bytevector (len, fill)
3822 @deffnx {C Function} scm_c_make_bytevector (size_t len)
3823 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
3824 is given, fill it with @var{fill}; @var{fill} must be in the range
3825 [-128,255].
3826 @end deffn
3827
3828 @deffn {Scheme Procedure} bytevector? obj
3829 @deffnx {C Function} scm_bytevector_p (obj)
3830 Return true if @var{obj} is a bytevector.
3831 @end deffn
3832
3833 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
3834 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
3835 @end deftypefn
3836
3837 @deffn {Scheme Procedure} bytevector-length bv
3838 @deffnx {C Function} scm_bytevector_length (bv)
3839 Return the length in bytes of bytevector @var{bv}.
3840 @end deffn
3841
3842 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
3843 Likewise, return the length in bytes of bytevector @var{bv}.
3844 @end deftypefn
3845
3846 @deffn {Scheme Procedure} bytevector=? bv1 bv2
3847 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
3848 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
3849 length and contents.
3850 @end deffn
3851
3852 @deffn {Scheme Procedure} bytevector-fill! bv fill
3853 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
3854 Fill bytevector @var{bv} with @var{fill}, a byte.
3855 @end deffn
3856
3857 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
3858 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
3859 Copy @var{len} bytes from @var{source} into @var{target}, starting
3860 reading from @var{source-start} (a positive index within @var{source})
3861 and start writing at @var{target-start}.
3862 @end deffn
3863
3864 @deffn {Scheme Procedure} bytevector-copy bv
3865 @deffnx {C Function} scm_bytevector_copy (bv)
3866 Return a newly allocated copy of @var{bv}.
3867 @end deffn
3868
3869 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
3870 Return the byte at @var{index} in bytevector @var{bv}.
3871 @end deftypefn
3872
3873 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
3874 Set the byte at @var{index} in @var{bv} to @var{value}.
3875 @end deftypefn
3876
3877 Low-level C macros are available. They do not perform any
3878 type-checking; as such they should be used with care.
3879
3880 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
3881 Return the length in bytes of bytevector @var{bv}.
3882 @end deftypefn
3883
3884 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
3885 Return a pointer to the contents of bytevector @var{bv}.
3886 @end deftypefn
3887
3888
3889 @node Bytevectors as Integers
3890 @subsubsection Interpreting Bytevector Contents as Integers
3891
3892 The contents of a bytevector can be interpreted as a sequence of
3893 integers of any given size, sign, and endianness.
3894
3895 @lisp
3896 (let ((bv (make-bytevector 4)))
3897 (bytevector-u8-set! bv 0 #x12)
3898 (bytevector-u8-set! bv 1 #x34)
3899 (bytevector-u8-set! bv 2 #x56)
3900 (bytevector-u8-set! bv 3 #x78)
3901
3902 (map (lambda (number)
3903 (number->string number 16))
3904 (list (bytevector-u8-ref bv 0)
3905 (bytevector-u16-ref bv 0 (endianness big))
3906 (bytevector-u32-ref bv 0 (endianness little)))))
3907
3908 @result{} ("12" "1234" "78563412")
3909 @end lisp
3910
3911 The most generic procedures to interpret bytevector contents as integers
3912 are described below.
3913
3914 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
3915 @deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
3916 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
3917 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
3918 Return the @var{size}-byte long unsigned (resp. signed) integer at
3919 index @var{index} in @var{bv}, decoded according to @var{endianness}.
3920 @end deffn
3921
3922 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
3923 @deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
3924 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
3925 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
3926 Set the @var{size}-byte long unsigned (resp. signed) integer at
3927 @var{index} to @var{value}, encoded according to @var{endianness}.
3928 @end deffn
3929
3930 The following procedures are similar to the ones above, but specialized
3931 to a given integer size:
3932
3933 @deffn {Scheme Procedure} bytevector-u8-ref bv index
3934 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
3935 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
3936 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
3937 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
3938 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
3939 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
3940 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
3941 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
3942 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
3943 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
3944 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
3945 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
3946 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
3947 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
3948 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
3949 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
3950 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
3951 @var{endianness}.
3952 @end deffn
3953
3954 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
3955 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
3956 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
3957 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
3958 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
3959 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
3960 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
3961 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
3962 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
3963 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
3964 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
3965 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
3966 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
3967 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
3968 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
3969 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
3970 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
3971 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
3972 @var{endianness}.
3973 @end deffn
3974
3975 Finally, a variant specialized for the host's endianness is available
3976 for each of these functions (with the exception of the @code{u8}
3977 accessors, for obvious reasons):
3978
3979 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
3980 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
3981 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
3982 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
3983 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
3984 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
3985 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
3986 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
3987 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
3988 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
3989 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
3990 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
3991 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
3992 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
3993 host's native endianness.
3994 @end deffn
3995
3996 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
3997 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
3998 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
3999 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4000 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4001 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4002 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4003 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4004 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4005 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4006 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4007 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4008 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4009 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4010 host's native endianness.
4011 @end deffn
4012
4013
4014 @node Bytevectors and Integer Lists
4015 @subsubsection Converting Bytevectors to/from Integer Lists
4016
4017 Bytevector contents can readily be converted to/from lists of signed or
4018 unsigned integers:
4019
4020 @lisp
4021 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4022 (endianness little) 2)
4023 @result{} (-1 -1)
4024 @end lisp
4025
4026 @deffn {Scheme Procedure} bytevector->u8-list bv
4027 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4028 Return a newly allocated list of unsigned 8-bit integers from the
4029 contents of @var{bv}.
4030 @end deffn
4031
4032 @deffn {Scheme Procedure} u8-list->bytevector lst
4033 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4034 Return a newly allocated bytevector consisting of the unsigned 8-bit
4035 integers listed in @var{lst}.
4036 @end deffn
4037
4038 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4039 @deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
4040 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4041 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4042 Return a list of unsigned (resp. signed) integers of @var{size} bytes
4043 representing the contents of @var{bv}, decoded according to
4044 @var{endianness}.
4045 @end deffn
4046
4047 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4048 @deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
4049 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4050 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4051 Return a new bytevector containing the unsigned (resp. signed) integers
4052 listed in @var{lst} and encoded on @var{size} bytes according to
4053 @var{endianness}.
4054 @end deffn
4055
4056 @node Bytevectors as Floats
4057 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4058
4059 @cindex IEEE-754 floating point numbers
4060
4061 Bytevector contents can also be accessed as IEEE-754 single- or
4062 double-precision floating point numbers (respectively 32 and 64-bit
4063 long) using the procedures described here.
4064
4065 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4066 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4067 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4068 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4069 Return the IEEE-754 single-precision floating point number from @var{bv}
4070 at @var{index} according to @var{endianness}.
4071 @end deffn
4072
4073 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4074 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4075 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4076 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4077 Store real number @var{value} in @var{bv} at @var{index} according to
4078 @var{endianness}.
4079 @end deffn
4080
4081 Specialized procedures are also available:
4082
4083 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4084 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4085 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4086 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4087 Return the IEEE-754 single-precision floating point number from @var{bv}
4088 at @var{index} according to the host's native endianness.
4089 @end deffn
4090
4091 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4092 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4093 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4094 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4095 Store real number @var{value} in @var{bv} at @var{index} according to
4096 the host's native endianness.
4097 @end deffn
4098
4099
4100 @node Bytevectors as Strings
4101 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4102
4103 @cindex Unicode string encoding
4104
4105 Bytevector contents can also be interpreted as Unicode strings encoded
4106 in one of the most commonly available encoding formats@footnote{Guile
4107 1.8 does @emph{not} support Unicode strings. Therefore, the procedures
4108 described here assume that Guile strings are internally encoded
4109 according to the current locale. For instance, if @code{$LC_CTYPE} is
4110 @code{fr_FR.ISO-8859-1}, then @code{string->utf-8} @i{et al.} will
4111 assume that Guile strings are Latin-1-encoded.}.
4112
4113 @lisp
4114 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4115 @result{} "cafe"
4116
4117 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4118 @result{} #vu8(99 97 102 195 169)
4119 @end lisp
4120
4121 @deffn {Scheme Procedure} string->utf8 str
4122 @deffnx {Scheme Procedure} string->utf16 str
4123 @deffnx {Scheme Procedure} string->utf32 str
4124 @deffnx {C Function} scm_string_to_utf8 (str)
4125 @deffnx {C Function} scm_string_to_utf16 (str)
4126 @deffnx {C Function} scm_string_to_utf32 (str)
4127 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4128 UTF-32 (aka. UCS-4) encoding of @var{str}.
4129 @end deffn
4130
4131 @deffn {Scheme Procedure} utf8->string utf
4132 @deffnx {Scheme Procedure} utf16->string utf
4133 @deffnx {Scheme Procedure} utf32->string utf
4134 @deffnx {C Function} scm_utf8_to_string (utf)
4135 @deffnx {C Function} scm_utf16_to_string (utf)
4136 @deffnx {C Function} scm_utf32_to_string (utf)
4137 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4138 or UTF-32-decoded contents of bytevector @var{utf}.
4139 @end deffn
4140
4141 @node Bytevectors as Generalized Vectors
4142 @subsubsection Accessing Bytevectors with the Generalized Vector API
4143
4144 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4145 with the @dfn{generalized vector} procedures (@pxref{Generalized
4146 Vectors}). This also allows bytevectors to be accessed using the
4147 generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4148 these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4149
4150 @example
4151 (define bv #vu8(0 1 2 3))
4152
4153 (generalized-vector? bv)
4154 @result{} #t
4155
4156 (generalized-vector-ref bv 2)
4157 @result{} 2
4158
4159 (generalized-vector-set! bv 2 77)
4160 (array-ref bv 2)
4161 @result{} 77
4162
4163 (array-type bv)
4164 @result{} vu8
4165 @end example
4166
4167
4168 @node Regular Expressions
4169 @subsection Regular Expressions
4170 @tpindex Regular expressions
4171
4172 @cindex regular expressions
4173 @cindex regex
4174 @cindex emacs regexp
4175
4176 A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
4177 describes a whole class of strings. A full description of regular
4178 expressions and their syntax is beyond the scope of this manual;
4179 an introduction can be found in the Emacs manual (@pxref{Regexps,
4180 , Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
4181 in many general Unix reference books.
4182
4183 If your system does not include a POSIX regular expression library,
4184 and you have not linked Guile with a third-party regexp library such
4185 as Rx, these functions will not be available. You can tell whether
4186 your Guile installation includes regular expression support by
4187 checking whether @code{(provided? 'regex)} returns true.
4188
4189 The following regexp and string matching features are provided by the
4190 @code{(ice-9 regex)} module. Before using the described functions,
4191 you should load this module by executing @code{(use-modules (ice-9
4192 regex))}.
4193
4194 @menu
4195 * Regexp Functions:: Functions that create and match regexps.
4196 * Match Structures:: Finding what was matched by a regexp.
4197 * Backslash Escapes:: Removing the special meaning of regexp
4198 meta-characters.
4199 @end menu
4200
4201
4202 @node Regexp Functions
4203 @subsubsection Regexp Functions
4204
4205 By default, Guile supports POSIX extended regular expressions.
4206 That means that the characters @samp{(}, @samp{)}, @samp{+} and
4207 @samp{?} are special, and must be escaped if you wish to match the
4208 literal characters.
4209
4210 This regular expression interface was modeled after that
4211 implemented by SCSH, the Scheme Shell. It is intended to be
4212 upwardly compatible with SCSH regular expressions.
4213
4214 Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
4215 strings, since the underlying C functions treat that as the end of
4216 string. If there's a zero byte an error is thrown.
4217
4218 Patterns and input strings are treated as being in the locale
4219 character set if @code{setlocale} has been called (@pxref{Locales}),
4220 and in a multibyte locale this includes treating multi-byte sequences
4221 as a single character. (Guile strings are currently merely bytes,
4222 though this may change in the future, @xref{Conversion to/from C}.)
4223
4224 @deffn {Scheme Procedure} string-match pattern str [start]
4225 Compile the string @var{pattern} into a regular expression and compare
4226 it with @var{str}. The optional numeric argument @var{start} specifies
4227 the position of @var{str} at which to begin matching.
4228
4229 @code{string-match} returns a @dfn{match structure} which
4230 describes what, if anything, was matched by the regular
4231 expression. @xref{Match Structures}. If @var{str} does not match
4232 @var{pattern} at all, @code{string-match} returns @code{#f}.
4233 @end deffn
4234
4235 Two examples of a match follow. In the first example, the pattern
4236 matches the four digits in the match string. In the second, the pattern
4237 matches nothing.
4238
4239 @example
4240 (string-match "[0-9][0-9][0-9][0-9]" "blah2002")
4241 @result{} #("blah2002" (4 . 8))
4242
4243 (string-match "[A-Za-z]" "123456")
4244 @result{} #f
4245 @end example
4246
4247 Each time @code{string-match} is called, it must compile its
4248 @var{pattern} argument into a regular expression structure. This
4249 operation is expensive, which makes @code{string-match} inefficient if
4250 the same regular expression is used several times (for example, in a
4251 loop). For better performance, you can compile a regular expression in
4252 advance and then match strings against the compiled regexp.
4253
4254 @deffn {Scheme Procedure} make-regexp pat flag@dots{}
4255 @deffnx {C Function} scm_make_regexp (pat, flaglst)
4256 Compile the regular expression described by @var{pat}, and
4257 return the compiled regexp structure. If @var{pat} does not
4258 describe a legal regular expression, @code{make-regexp} throws
4259 a @code{regular-expression-syntax} error.
4260
4261 The @var{flag} arguments change the behavior of the compiled
4262 regular expression. The following values may be supplied:
4263
4264 @defvar regexp/icase
4265 Consider uppercase and lowercase letters to be the same when
4266 matching.
4267 @end defvar
4268
4269 @defvar regexp/newline
4270 If a newline appears in the target string, then permit the
4271 @samp{^} and @samp{$} operators to match immediately after or
4272 immediately before the newline, respectively. Also, the
4273 @samp{.} and @samp{[^...]} operators will never match a newline
4274 character. The intent of this flag is to treat the target
4275 string as a buffer containing many lines of text, and the
4276 regular expression as a pattern that may match a single one of
4277 those lines.
4278 @end defvar
4279
4280 @defvar regexp/basic
4281 Compile a basic (``obsolete'') regexp instead of the extended
4282 (``modern'') regexps that are the default. Basic regexps do
4283 not consider @samp{|}, @samp{+} or @samp{?} to be special
4284 characters, and require the @samp{@{...@}} and @samp{(...)}
4285 metacharacters to be backslash-escaped (@pxref{Backslash
4286 Escapes}). There are several other differences between basic
4287 and extended regular expressions, but these are the most
4288 significant.
4289 @end defvar
4290
4291 @defvar regexp/extended
4292 Compile an extended regular expression rather than a basic
4293 regexp. This is the default behavior; this flag will not
4294 usually be needed. If a call to @code{make-regexp} includes
4295 both @code{regexp/basic} and @code{regexp/extended} flags, the
4296 one which comes last will override the earlier one.
4297 @end defvar
4298 @end deffn
4299
4300 @deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
4301 @deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
4302 Match the compiled regular expression @var{rx} against
4303 @code{str}. If the optional integer @var{start} argument is
4304 provided, begin matching from that position in the string.
4305 Return a match structure describing the results of the match,
4306 or @code{#f} if no match could be found.
4307
4308 The @var{flags} argument changes the matching behavior. The following
4309 flag values may be supplied, use @code{logior} (@pxref{Bitwise
4310 Operations}) to combine them,
4311
4312 @defvar regexp/notbol
4313 Consider that the @var{start} offset into @var{str} is not the
4314 beginning of a line and should not match operator @samp{^}.
4315
4316 If @var{rx} was created with the @code{regexp/newline} option above,
4317 @samp{^} will still match after a newline in @var{str}.
4318 @end defvar
4319
4320 @defvar regexp/noteol
4321 Consider that the end of @var{str} is not the end of a line and should
4322 not match operator @samp{$}.
4323
4324 If @var{rx} was created with the @code{regexp/newline} option above,
4325 @samp{$} will still match before a newline in @var{str}.
4326 @end defvar
4327 @end deffn
4328
4329 @lisp
4330 ;; Regexp to match uppercase letters
4331 (define r (make-regexp "[A-Z]*"))
4332
4333 ;; Regexp to match letters, ignoring case
4334 (define ri (make-regexp "[A-Z]*" regexp/icase))
4335
4336 ;; Search for bob using regexp r
4337 (match:substring (regexp-exec r "bob"))
4338 @result{} "" ; no match
4339
4340 ;; Search for bob using regexp ri
4341 (match:substring (regexp-exec ri "Bob"))
4342 @result{} "Bob" ; matched case insensitive
4343 @end lisp
4344
4345 @deffn {Scheme Procedure} regexp? obj
4346 @deffnx {C Function} scm_regexp_p (obj)
4347 Return @code{#t} if @var{obj} is a compiled regular expression,
4348 or @code{#f} otherwise.
4349 @end deffn
4350
4351 @sp 1
4352 @deffn {Scheme Procedure} list-matches regexp str [flags]
4353 Return a list of match structures which are the non-overlapping
4354 matches of @var{regexp} in @var{str}. @var{regexp} can be either a
4355 pattern string or a compiled regexp. The @var{flags} argument is as
4356 per @code{regexp-exec} above.
4357
4358 @example
4359 (map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
4360 @result{} ("abc" "def")
4361 @end example
4362 @end deffn
4363
4364 @deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
4365 Apply @var{proc} to the non-overlapping matches of @var{regexp} in
4366 @var{str}, to build a result. @var{regexp} can be either a pattern
4367 string or a compiled regexp. The @var{flags} argument is as per
4368 @code{regexp-exec} above.
4369
4370 @var{proc} is called as @code{(@var{proc} match prev)} where
4371 @var{match} is a match structure and @var{prev} is the previous return
4372 from @var{proc}. For the first call @var{prev} is the given
4373 @var{init} parameter. @code{fold-matches} returns the final value
4374 from @var{proc}.
4375
4376 For example to count matches,
4377
4378 @example
4379 (fold-matches "[a-z][0-9]" "abc x1 def y2" 0
4380 (lambda (match count)
4381 (1+ count)))
4382 @result{} 2
4383 @end example
4384 @end deffn
4385
4386 @sp 1
4387 Regular expressions are commonly used to find patterns in one string
4388 and replace them with the contents of another string. The following
4389 functions are convenient ways to do this.
4390
4391 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
4392 @deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
4393 Write to @var{port} selected parts of the match structure @var{match}.
4394 Or if @var{port} is @code{#f} then form a string from those parts and
4395 return that.
4396
4397 Each @var{item} specifies a part to be written, and may be one of the
4398 following,
4399
4400 @itemize @bullet
4401 @item
4402 A string. String arguments are written out verbatim.
4403
4404 @item
4405 An integer. The submatch with that number is written
4406 (@code{match:substring}). Zero is the entire match.
4407
4408 @item
4409 The symbol @samp{pre}. The portion of the matched string preceding
4410 the regexp match is written (@code{match:prefix}).
4411
4412 @item
4413 The symbol @samp{post}. The portion of the matched string following
4414 the regexp match is written (@code{match:suffix}).
4415 @end itemize
4416
4417 For example, changing a match and retaining the text before and after,
4418
4419 @example
4420 (regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
4421 'pre "37" 'post)
4422 @result{} "number 37 is good"
4423 @end example
4424
4425 Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
4426 re-ordering and hyphenating the fields.
4427
4428 @lisp
4429 (define date-regex
4430 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4431 (define s "Date 20020429 12am.")
4432 (regexp-substitute #f (string-match date-regex s)
4433 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4434 @result{} "Date 04-29-2002 12am. (20020429)"
4435 @end lisp
4436 @end deffn
4437
4438
4439 @c begin (scm-doc-string "regex.scm" "regexp-substitute")
4440 @deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
4441 @cindex search and replace
4442 Write to @var{port} selected parts of matches of @var{regexp} in
4443 @var{target}. If @var{port} is @code{#f} then form a string from
4444 those parts and return that. @var{regexp} can be a string or a
4445 compiled regex.
4446
4447 This is similar to @code{regexp-substitute}, but allows global
4448 substitutions on @var{target}. Each @var{item} behaves as per
4449 @code{regexp-substitute}, with the following differences,
4450
4451 @itemize @bullet
4452 @item
4453 A function. Called as @code{(@var{item} match)} with the match
4454 structure for the @var{regexp} match, it should return a string to be
4455 written to @var{port}.
4456
4457 @item
4458 The symbol @samp{post}. This doesn't output anything, but instead
4459 causes @code{regexp-substitute/global} to recurse on the unmatched
4460 portion of @var{target}.
4461
4462 This @emph{must} be supplied to perform a global search and replace on
4463 @var{target}; without it @code{regexp-substitute/global} returns after
4464 a single match and output.
4465 @end itemize
4466
4467 For example, to collapse runs of tabs and spaces to a single hyphen
4468 each,
4469
4470 @example
4471 (regexp-substitute/global #f "[ \t]+" "this is the text"
4472 'pre "-" 'post)
4473 @result{} "this-is-the-text"
4474 @end example
4475
4476 Or using a function to reverse the letters in each word,
4477
4478 @example
4479 (regexp-substitute/global #f "[a-z]+" "to do and not-do"
4480 'pre (lambda (m) (string-reverse (match:substring m))) 'post)
4481 @result{} "ot od dna ton-od"
4482 @end example
4483
4484 Without the @code{post} symbol, just one regexp match is made. For
4485 example the following is the date example from
4486 @code{regexp-substitute} above, without the need for the separate
4487 @code{string-match} call.
4488
4489 @lisp
4490 (define date-regex
4491 "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
4492 (define s "Date 20020429 12am.")
4493 (regexp-substitute/global #f date-regex s
4494 'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
4495
4496 @result{} "Date 04-29-2002 12am. (20020429)"
4497 @end lisp
4498 @end deffn
4499
4500
4501 @node Match Structures
4502 @subsubsection Match Structures
4503
4504 @cindex match structures
4505
4506 A @dfn{match structure} is the object returned by @code{string-match} and
4507 @code{regexp-exec}. It describes which portion of a string, if any,
4508 matched the given regular expression. Match structures include: a
4509 reference to the string that was checked for matches; the starting and
4510 ending positions of the regexp match; and, if the regexp included any
4511 parenthesized subexpressions, the starting and ending positions of each
4512 submatch.
4513
4514 In each of the regexp match functions described below, the @code{match}
4515 argument must be a match structure returned by a previous call to
4516 @code{string-match} or @code{regexp-exec}. Most of these functions
4517 return some information about the original target string that was
4518 matched against a regular expression; we will call that string
4519 @var{target} for easy reference.
4520
4521 @c begin (scm-doc-string "regex.scm" "regexp-match?")
4522 @deffn {Scheme Procedure} regexp-match? obj
4523 Return @code{#t} if @var{obj} is a match structure returned by a
4524 previous call to @code{regexp-exec}, or @code{#f} otherwise.
4525 @end deffn
4526
4527 @c begin (scm-doc-string "regex.scm" "match:substring")
4528 @deffn {Scheme Procedure} match:substring match [n]
4529 Return the portion of @var{target} matched by subexpression number
4530 @var{n}. Submatch 0 (the default) represents the entire regexp match.
4531 If the regular expression as a whole matched, but the subexpression
4532 number @var{n} did not match, return @code{#f}.
4533 @end deffn
4534
4535 @lisp
4536 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4537 (match:substring s)
4538 @result{} "2002"
4539
4540 ;; match starting at offset 6 in the string
4541 (match:substring
4542 (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
4543 @result{} "7654"
4544 @end lisp
4545
4546 @c begin (scm-doc-string "regex.scm" "match:start")
4547 @deffn {Scheme Procedure} match:start match [n]
4548 Return the starting position of submatch number @var{n}.
4549 @end deffn
4550
4551 In the following example, the result is 4, since the match starts at
4552 character index 4:
4553
4554 @lisp
4555 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4556 (match:start s)
4557 @result{} 4
4558 @end lisp
4559
4560 @c begin (scm-doc-string "regex.scm" "match:end")
4561 @deffn {Scheme Procedure} match:end match [n]
4562 Return the ending position of submatch number @var{n}.
4563 @end deffn
4564
4565 In the following example, the result is 8, since the match runs between
4566 characters 4 and 8 (i.e. the ``2002'').
4567
4568 @lisp
4569 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4570 (match:end s)
4571 @result{} 8
4572 @end lisp
4573
4574 @c begin (scm-doc-string "regex.scm" "match:prefix")
4575 @deffn {Scheme Procedure} match:prefix match
4576 Return the unmatched portion of @var{target} preceding the regexp match.
4577
4578 @lisp
4579 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4580 (match:prefix s)
4581 @result{} "blah"
4582 @end lisp
4583 @end deffn
4584
4585 @c begin (scm-doc-string "regex.scm" "match:suffix")
4586 @deffn {Scheme Procedure} match:suffix match
4587 Return the unmatched portion of @var{target} following the regexp match.
4588 @end deffn
4589
4590 @lisp
4591 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4592 (match:suffix s)
4593 @result{} "foo"
4594 @end lisp
4595
4596 @c begin (scm-doc-string "regex.scm" "match:count")
4597 @deffn {Scheme Procedure} match:count match
4598 Return the number of parenthesized subexpressions from @var{match}.
4599 Note that the entire regular expression match itself counts as a
4600 subexpression, and failed submatches are included in the count.
4601 @end deffn
4602
4603 @c begin (scm-doc-string "regex.scm" "match:string")
4604 @deffn {Scheme Procedure} match:string match
4605 Return the original @var{target} string.
4606 @end deffn
4607
4608 @lisp
4609 (define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
4610 (match:string s)
4611 @result{} "blah2002foo"
4612 @end lisp
4613
4614
4615 @node Backslash Escapes
4616 @subsubsection Backslash Escapes
4617
4618 Sometimes you will want a regexp to match characters like @samp{*} or
4619 @samp{$} exactly. For example, to check whether a particular string
4620 represents a menu entry from an Info node, it would be useful to match
4621 it against a regexp like @samp{^* [^:]*::}. However, this won't work;
4622 because the asterisk is a metacharacter, it won't match the @samp{*} at
4623 the beginning of the string. In this case, we want to make the first
4624 asterisk un-magic.
4625
4626 You can do this by preceding the metacharacter with a backslash
4627 character @samp{\}. (This is also called @dfn{quoting} the
4628 metacharacter, and is known as a @dfn{backslash escape}.) When Guile
4629 sees a backslash in a regular expression, it considers the following
4630 glyph to be an ordinary character, no matter what special meaning it
4631 would ordinarily have. Therefore, we can make the above example work by
4632 changing the regexp to @samp{^\* [^:]*::}. The @samp{\*} sequence tells
4633 the regular expression engine to match only a single asterisk in the
4634 target string.
4635
4636 Since the backslash is itself a metacharacter, you may force a regexp to
4637 match a backslash in the target string by preceding the backslash with
4638 itself. For example, to find variable references in a @TeX{} program,
4639 you might want to find occurrences of the string @samp{\let\} followed
4640 by any number of alphabetic characters. The regular expression
4641 @samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
4642 regexp each match a single backslash in the target string.
4643
4644 @c begin (scm-doc-string "regex.scm" "regexp-quote")
4645 @deffn {Scheme Procedure} regexp-quote str
4646 Quote each special character found in @var{str} with a backslash, and
4647 return the resulting string.
4648 @end deffn
4649
4650 @strong{Very important:} Using backslash escapes in Guile source code
4651 (as in Emacs Lisp or C) can be tricky, because the backslash character
4652 has special meaning for the Guile reader. For example, if Guile
4653 encounters the character sequence @samp{\n} in the middle of a string
4654 while processing Scheme code, it replaces those characters with a
4655 newline character. Similarly, the character sequence @samp{\t} is
4656 replaced by a horizontal tab. Several of these @dfn{escape sequences}
4657 are processed by the Guile reader before your code is executed.
4658 Unrecognized escape sequences are ignored: if the characters @samp{\*}
4659 appear in a string, they will be translated to the single character
4660 @samp{*}.
4661
4662 This translation is obviously undesirable for regular expressions, since
4663 we want to be able to include backslashes in a string in order to
4664 escape regexp metacharacters. Therefore, to make sure that a backslash
4665 is preserved in a string in your Guile program, you must use @emph{two}
4666 consecutive backslashes:
4667
4668 @lisp
4669 (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
4670 @end lisp
4671
4672 The string in this example is preprocessed by the Guile reader before
4673 any code is executed. The resulting argument to @code{make-regexp} is
4674 the string @samp{^\* [^:]*}, which is what we really want.
4675
4676 This also means that in order to write a regular expression that matches
4677 a single backslash character, the regular expression string in the
4678 source code must include @emph{four} backslashes. Each consecutive pair
4679 of backslashes gets translated by the Guile reader to a single
4680 backslash, and the resulting double-backslash is interpreted by the
4681 regexp engine as matching a single backslash character. Hence:
4682
4683 @lisp
4684 (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
4685 @end lisp
4686
4687 The reason for the unwieldiness of this syntax is historical. Both
4688 regular expression pattern matchers and Unix string processing systems
4689 have traditionally used backslashes with the special meanings
4690 described above. The POSIX regular expression specification and ANSI C
4691 standard both require these semantics. Attempting to abandon either
4692 convention would cause other kinds of compatibility problems, possibly
4693 more severe ones. Therefore, without extending the Scheme reader to
4694 support strings with different quoting conventions (an ungainly and
4695 confusing extension when implemented in other languages), we must adhere
4696 to this cumbersome escape syntax.
4697
4698
4699 @node Symbols
4700 @subsection Symbols
4701 @tpindex Symbols
4702
4703 Symbols in Scheme are widely used in three ways: as items of discrete
4704 data, as lookup keys for alists and hash tables, and to denote variable
4705 references.
4706
4707 A @dfn{symbol} is similar to a string in that it is defined by a
4708 sequence of characters. The sequence of characters is known as the
4709 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4710 name doesn't include any characters that could be confused with other
4711 elements of Scheme syntax --- a symbol is written in a Scheme program by
4712 writing the sequence of characters that make up the name, @emph{without}
4713 any quotation marks or other special syntax. For example, the symbol
4714 whose name is ``multiply-by-2'' is written, simply:
4715
4716 @lisp
4717 multiply-by-2
4718 @end lisp
4719
4720 Notice how this differs from a @emph{string} with contents
4721 ``multiply-by-2'', which is written with double quotation marks, like
4722 this:
4723
4724 @lisp
4725 "multiply-by-2"
4726 @end lisp
4727
4728 Looking beyond how they are written, symbols are different from strings
4729 in two important respects.
4730
4731 The first important difference is uniqueness. If the same-looking
4732 string is read twice from two different places in a program, the result
4733 is two @emph{different} string objects whose contents just happen to be
4734 the same. If, on the other hand, the same-looking symbol is read twice
4735 from two different places in a program, the result is the @emph{same}
4736 symbol object both times.
4737
4738 Given two read symbols, you can use @code{eq?} to test whether they are
4739 the same (that is, have the same name). @code{eq?} is the most
4740 efficient comparison operator in Scheme, and comparing two symbols like
4741 this is as fast as comparing, for example, two numbers. Given two
4742 strings, on the other hand, you must use @code{equal?} or
4743 @code{string=?}, which are much slower comparison operators, to
4744 determine whether the strings have the same contents.
4745
4746 @lisp
4747 (define sym1 (quote hello))
4748 (define sym2 (quote hello))
4749 (eq? sym1 sym2) @result{} #t
4750
4751 (define str1 "hello")
4752 (define str2 "hello")
4753 (eq? str1 str2) @result{} #f
4754 (equal? str1 str2) @result{} #t
4755 @end lisp
4756
4757 The second important difference is that symbols, unlike strings, are not
4758 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
4759 example above: @code{(quote hello)} evaluates to the symbol named
4760 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
4761 symbol named "hello" and evaluated as a variable reference @dots{} about
4762 which more below (@pxref{Symbol Variables}).
4763
4764 @menu
4765 * Symbol Data:: Symbols as discrete data.
4766 * Symbol Keys:: Symbols as lookup keys.
4767 * Symbol Variables:: Symbols as denoting variables.
4768 * Symbol Primitives:: Operations related to symbols.
4769 * Symbol Props:: Function slots and property lists.
4770 * Symbol Read Syntax:: Extended read syntax for symbols.
4771 * Symbol Uninterned:: Uninterned symbols.
4772 @end menu
4773
4774
4775 @node Symbol Data
4776 @subsubsection Symbols as Discrete Data
4777
4778 Numbers and symbols are similar to the extent that they both lend
4779 themselves to @code{eq?} comparison. But symbols are more descriptive
4780 than numbers, because a symbol's name can be used directly to describe
4781 the concept for which that symbol stands.
4782
4783 For example, imagine that you need to represent some colours in a
4784 computer program. Using numbers, you would have to choose arbitrarily
4785 some mapping between numbers and colours, and then take care to use that
4786 mapping consistently:
4787
4788 @lisp
4789 ;; 1=red, 2=green, 3=purple
4790
4791 (if (eq? (colour-of car) 1)
4792 ...)
4793 @end lisp
4794
4795 @noindent
4796 You can make the mapping more explicit and the code more readable by
4797 defining constants:
4798
4799 @lisp
4800 (define red 1)
4801 (define green 2)
4802 (define purple 3)
4803
4804 (if (eq? (colour-of car) red)
4805 ...)
4806 @end lisp
4807
4808 @noindent
4809 But the simplest and clearest approach is not to use numbers at all, but
4810 symbols whose names specify the colours that they refer to:
4811
4812 @lisp
4813 (if (eq? (colour-of car) 'red)
4814 ...)
4815 @end lisp
4816
4817 The descriptive advantages of symbols over numbers increase as the set
4818 of concepts that you want to describe grows. Suppose that a car object
4819 can have other properties as well, such as whether it has or uses:
4820
4821 @itemize @bullet
4822 @item
4823 automatic or manual transmission
4824 @item
4825 leaded or unleaded fuel
4826 @item
4827 power steering (or not).
4828 @end itemize
4829
4830 @noindent
4831 Then a car's combined property set could be naturally represented and
4832 manipulated as a list of symbols:
4833
4834 @lisp
4835 (properties-of car1)
4836 @result{}
4837 (red manual unleaded power-steering)
4838
4839 (if (memq 'power-steering (properties-of car1))
4840 (display "Unfit people can drive this car.\n")
4841 (display "You'll need strong arms to drive this car!\n"))
4842 @print{}
4843 Unfit people can drive this car.
4844 @end lisp
4845
4846 Remember, the fundamental property of symbols that we are relying on
4847 here is that an occurrence of @code{'red} in one part of a program is an
4848 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
4849 another part of a program; this means that symbols can usefully be
4850 compared using @code{eq?}. At the same time, symbols have naturally
4851 descriptive names. This combination of efficiency and descriptive power
4852 makes them ideal for use as discrete data.
4853
4854
4855 @node Symbol Keys
4856 @subsubsection Symbols as Lookup Keys
4857
4858 Given their efficiency and descriptive power, it is natural to use
4859 symbols as the keys in an association list or hash table.
4860
4861 To illustrate this, consider a more structured representation of the car
4862 properties example from the preceding subsection. Rather than
4863 mixing all the properties up together in a flat list, we could use an
4864 association list like this:
4865
4866 @lisp
4867 (define car1-properties '((colour . red)
4868 (transmission . manual)
4869 (fuel . unleaded)
4870 (steering . power-assisted)))
4871 @end lisp
4872
4873 Notice how this structure is more explicit and extensible than the flat
4874 list. For example it makes clear that @code{manual} refers to the
4875 transmission rather than, say, the windows or the locking of the car.
4876 It also allows further properties to use the same symbols among their
4877 possible values without becoming ambiguous:
4878
4879 @lisp
4880 (define car1-properties '((colour . red)
4881 (transmission . manual)
4882 (fuel . unleaded)
4883 (steering . power-assisted)
4884 (seat-colour . red)
4885 (locking . manual)))
4886 @end lisp
4887
4888 With a representation like this, it is easy to use the efficient
4889 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
4890 extract or change individual pieces of information:
4891
4892 @lisp
4893 (assq-ref car1-properties 'fuel) @result{} unleaded
4894 (assq-ref car1-properties 'transmission) @result{} manual
4895
4896 (assq-set! car1-properties 'seat-colour 'black)
4897 @result{}
4898 ((colour . red)
4899 (transmission . manual)
4900 (fuel . unleaded)
4901 (steering . power-assisted)
4902 (seat-colour . black)
4903 (locking . manual)))
4904 @end lisp
4905
4906 Hash tables also have keys, and exactly the same arguments apply to the
4907 use of symbols in hash tables as in association lists. The hash value
4908 that Guile uses to decide where to add a symbol-keyed entry to a hash
4909 table can be obtained by calling the @code{symbol-hash} procedure:
4910
4911 @deffn {Scheme Procedure} symbol-hash symbol
4912 @deffnx {C Function} scm_symbol_hash (symbol)
4913 Return a hash value for @var{symbol}.
4914 @end deffn
4915
4916 See @ref{Hash Tables} for information about hash tables in general, and
4917 for why you might choose to use a hash table rather than an association
4918 list.
4919
4920
4921 @node Symbol Variables
4922 @subsubsection Symbols as Denoting Variables
4923
4924 When an unquoted symbol in a Scheme program is evaluated, it is
4925 interpreted as a variable reference, and the result of the evaluation is
4926 the appropriate variable's value.
4927
4928 For example, when the expression @code{(string-length "abcd")} is read
4929 and evaluated, the sequence of characters @code{string-length} is read
4930 as the symbol whose name is "string-length". This symbol is associated
4931 with a variable whose value is the procedure that implements string
4932 length calculation. Therefore evaluation of the @code{string-length}
4933 symbol results in that procedure.
4934
4935 The details of the connection between an unquoted symbol and the
4936 variable to which it refers are explained elsewhere. See @ref{Binding
4937 Constructs}, for how associations between symbols and variables are
4938 created, and @ref{Modules}, for how those associations are affected by
4939 Guile's module system.
4940
4941
4942 @node Symbol Primitives
4943 @subsubsection Operations Related to Symbols
4944
4945 Given any Scheme value, you can determine whether it is a symbol using
4946 the @code{symbol?} primitive:
4947
4948 @rnindex symbol?
4949 @deffn {Scheme Procedure} symbol? obj
4950 @deffnx {C Function} scm_symbol_p (obj)
4951 Return @code{#t} if @var{obj} is a symbol, otherwise return
4952 @code{#f}.
4953 @end deffn
4954
4955 @deftypefn {C Function} int scm_is_symbol (SCM val)
4956 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
4957 @end deftypefn
4958
4959 Once you know that you have a symbol, you can obtain its name as a
4960 string by calling @code{symbol->string}. Note that Guile differs by
4961 default from R5RS on the details of @code{symbol->string} as regards
4962 case-sensitivity:
4963
4964 @rnindex symbol->string
4965 @deffn {Scheme Procedure} symbol->string s
4966 @deffnx {C Function} scm_symbol_to_string (s)
4967 Return the name of symbol @var{s} as a string. By default, Guile reads
4968 symbols case-sensitively, so the string returned will have the same case
4969 variation as the sequence of characters that caused @var{s} to be
4970 created.
4971
4972 If Guile is set to read symbols case-insensitively (as specified by
4973 R5RS), and @var{s} comes into being as part of a literal expression
4974 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
4975 by a call to the @code{read} or @code{string-ci->symbol} procedures,
4976 Guile converts any alphabetic characters in the symbol's name to
4977 lower case before creating the symbol object, so the string returned
4978 here will be in lower case.
4979
4980 If @var{s} was created by @code{string->symbol}, the case of characters
4981 in the string returned will be the same as that in the string that was
4982 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
4983 setting at the time @var{s} was created.
4984
4985 It is an error to apply mutation procedures like @code{string-set!} to
4986 strings returned by this procedure.
4987 @end deffn
4988
4989 Most symbols are created by writing them literally in code. However it
4990 is also possible to create symbols programmatically using the following
4991 @code{string->symbol} and @code{string-ci->symbol} procedures:
4992
4993 @rnindex string->symbol
4994 @deffn {Scheme Procedure} string->symbol string
4995 @deffnx {C Function} scm_string_to_symbol (string)
4996 Return the symbol whose name is @var{string}. This procedure can create
4997 symbols with names containing special characters or letters in the
4998 non-standard case, but it is usually a bad idea to create such symbols
4999 because in some implementations of Scheme they cannot be read as
5000 themselves.
5001 @end deffn
5002
5003 @deffn {Scheme Procedure} string-ci->symbol str
5004 @deffnx {C Function} scm_string_ci_to_symbol (str)
5005 Return the symbol whose name is @var{str}. If Guile is currently
5006 reading symbols case-insensitively, @var{str} is converted to lowercase
5007 before the returned symbol is looked up or created.
5008 @end deffn
5009
5010 The following examples illustrate Guile's detailed behaviour as regards
5011 the case-sensitivity of symbols:
5012
5013 @lisp
5014 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5015
5016 (symbol->string 'flying-fish) @result{} "flying-fish"
5017 (symbol->string 'Martin) @result{} "martin"
5018 (symbol->string
5019 (string->symbol "Malvina")) @result{} "Malvina"
5020
5021 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5022 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5023 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5024 (eq? 'LolliPop
5025 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5026 (string=? "K. Harper, M.D."
5027 (symbol->string
5028 (string->symbol "K. Harper, M.D."))) @result{} #t
5029
5030 (read-disable 'case-insensitive) ; Guile default behaviour
5031
5032 (symbol->string 'flying-fish) @result{} "flying-fish"
5033 (symbol->string 'Martin) @result{} "Martin"
5034 (symbol->string
5035 (string->symbol "Malvina")) @result{} "Malvina"
5036
5037 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5038 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5039 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5040 (eq? 'LolliPop
5041 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5042 (string=? "K. Harper, M.D."
5043 (symbol->string
5044 (string->symbol "K. Harper, M.D."))) @result{} #t
5045 @end lisp
5046
5047 From C, there are lower level functions that construct a Scheme symbol
5048 from a C string in the current locale encoding.
5049
5050 When you want to do more from C, you should convert between symbols
5051 and strings using @code{scm_symbol_to_string} and
5052 @code{scm_string_to_symbol} and work with the strings.
5053
5054 @deffn {C Function} scm_from_locale_symbol (const char *name)
5055 @deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
5056 Construct and return a Scheme symbol whose name is specified by
5057 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5058 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5059 specified explicitly by @var{len}.
5060 @end deffn
5061
5062 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5063 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5064 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5065 respectively, but also frees @var{str} with @code{free} eventually.
5066 Thus, you can use this function when you would free @var{str} anyway
5067 immediately after creating the Scheme string. In certain cases, Guile
5068 can then use @var{str} directly as its internal representation.
5069 @end deftypefn
5070
5071 The size of a symbol can also be obtained from C:
5072
5073 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5074 Return the number of characters in @var{sym}.
5075 @end deftypefn
5076
5077 Finally, some applications, especially those that generate new Scheme
5078 code dynamically, need to generate symbols for use in the generated
5079 code. The @code{gensym} primitive meets this need:
5080
5081 @deffn {Scheme Procedure} gensym [prefix]
5082 @deffnx {C Function} scm_gensym (prefix)
5083 Create a new symbol with a name constructed from a prefix and a counter
5084 value. The string @var{prefix} can be specified as an optional
5085 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5086 at each call. There is no provision for resetting the counter.
5087 @end deffn
5088
5089 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5090 since their names begin with a space and it is only otherwise possible
5091 to generate such symbols if a programmer goes out of their way to do
5092 so. Uniqueness can be guaranteed by instead using uninterned symbols
5093 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5094 and read back in.
5095
5096
5097 @node Symbol Props
5098 @subsubsection Function Slots and Property Lists
5099
5100 In traditional Lisp dialects, symbols are often understood as having
5101 three kinds of value at once:
5102
5103 @itemize @bullet
5104 @item
5105 a @dfn{variable} value, which is used when the symbol appears in
5106 code in a variable reference context
5107
5108 @item
5109 a @dfn{function} value, which is used when the symbol appears in
5110 code in a function name position (i.e. as the first element in an
5111 unquoted list)
5112
5113 @item
5114 a @dfn{property list} value, which is used when the symbol is given as
5115 the first argument to Lisp's @code{put} or @code{get} functions.
5116 @end itemize
5117
5118 Although Scheme (as one of its simplifications with respect to Lisp)
5119 does away with the distinction between variable and function namespaces,
5120 Guile currently retains some elements of the traditional structure in
5121 case they turn out to be useful when implementing translators for other
5122 languages, in particular Emacs Lisp.
5123
5124 Specifically, Guile symbols have two extra slots. for a symbol's
5125 property list, and for its ``function value.'' The following procedures
5126 are provided to access these slots.
5127
5128 @deffn {Scheme Procedure} symbol-fref symbol
5129 @deffnx {C Function} scm_symbol_fref (symbol)
5130 Return the contents of @var{symbol}'s @dfn{function slot}.
5131 @end deffn
5132
5133 @deffn {Scheme Procedure} symbol-fset! symbol value
5134 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5135 Set the contents of @var{symbol}'s function slot to @var{value}.
5136 @end deffn
5137
5138 @deffn {Scheme Procedure} symbol-pref symbol
5139 @deffnx {C Function} scm_symbol_pref (symbol)
5140 Return the @dfn{property list} currently associated with @var{symbol}.
5141 @end deffn
5142
5143 @deffn {Scheme Procedure} symbol-pset! symbol value
5144 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5145 Set @var{symbol}'s property list to @var{value}.
5146 @end deffn
5147
5148 @deffn {Scheme Procedure} symbol-property sym prop
5149 From @var{sym}'s property list, return the value for property
5150 @var{prop}. The assumption is that @var{sym}'s property list is an
5151 association list whose keys are distinguished from each other using
5152 @code{equal?}; @var{prop} should be one of the keys in that list. If
5153 the property list has no entry for @var{prop}, @code{symbol-property}
5154 returns @code{#f}.
5155 @end deffn
5156
5157 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5158 In @var{sym}'s property list, set the value for property @var{prop} to
5159 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5160 none already exists. For the structure of the property list, see
5161 @code{symbol-property}.
5162 @end deffn
5163
5164 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5165 From @var{sym}'s property list, remove the entry for property
5166 @var{prop}, if there is one. For the structure of the property list,
5167 see @code{symbol-property}.
5168 @end deffn
5169
5170 Support for these extra slots may be removed in a future release, and it
5171 is probably better to avoid using them. For a more modern and Schemely
5172 approach to properties, see @ref{Object Properties}.
5173
5174
5175 @node Symbol Read Syntax
5176 @subsubsection Extended Read Syntax for Symbols
5177
5178 The read syntax for a symbol is a sequence of letters, digits, and
5179 @dfn{extended alphabetic characters}, beginning with a character that
5180 cannot begin a number. In addition, the special cases of @code{+},
5181 @code{-}, and @code{...} are read as symbols even though numbers can
5182 begin with @code{+}, @code{-} or @code{.}.
5183
5184 Extended alphabetic characters may be used within identifiers as if
5185 they were letters. The set of extended alphabetic characters is:
5186
5187 @example
5188 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5189 @end example
5190
5191 In addition to the standard read syntax defined above (which is taken
5192 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5193 Scheme})), Guile provides an extended symbol read syntax that allows the
5194 inclusion of unusual characters such as space characters, newlines and
5195 parentheses. If (for whatever reason) you need to write a symbol
5196 containing characters not mentioned above, you can do so as follows.
5197
5198 @itemize @bullet
5199 @item
5200 Begin the symbol with the characters @code{#@{},
5201
5202 @item
5203 write the characters of the symbol and
5204
5205 @item
5206 finish the symbol with the characters @code{@}#}.
5207 @end itemize
5208
5209 Here are a few examples of this form of read syntax. The first symbol
5210 needs to use extended syntax because it contains a space character, the
5211 second because it contains a line break, and the last because it looks
5212 like a number.
5213
5214 @lisp
5215 #@{foo bar@}#
5216
5217 #@{what
5218 ever@}#
5219
5220 #@{4242@}#
5221 @end lisp
5222
5223 Although Guile provides this extended read syntax for symbols,
5224 widespread usage of it is discouraged because it is not portable and not
5225 very readable.
5226
5227
5228 @node Symbol Uninterned
5229 @subsubsection Uninterned Symbols
5230
5231 What makes symbols useful is that they are automatically kept unique.
5232 There are no two symbols that are distinct objects but have the same
5233 name. But of course, there is no rule without exception. In addition
5234 to the normal symbols that have been discussed up to now, you can also
5235 create special @dfn{uninterned} symbols that behave slightly
5236 differently.
5237
5238 To understand what is different about them and why they might be useful,
5239 we look at how normal symbols are actually kept unique.
5240
5241 Whenever Guile wants to find the symbol with a specific name, for
5242 example during @code{read} or when executing @code{string->symbol}, it
5243 first looks into a table of all existing symbols to find out whether a
5244 symbol with the given name already exists. When this is the case, Guile
5245 just returns that symbol. When not, a new symbol with the name is
5246 created and entered into the table so that it can be found later.
5247
5248 Sometimes you might want to create a symbol that is guaranteed `fresh',
5249 i.e. a symbol that did not exist previously. You might also want to
5250 somehow guarantee that no one else will ever unintentionally stumble
5251 across your symbol in the future. These properties of a symbol are
5252 often needed when generating code during macro expansion. When
5253 introducing new temporary variables, you want to guarantee that they
5254 don't conflict with variables in other people's code.
5255
5256 The simplest way to arrange for this is to create a new symbol but
5257 not enter it into the global table of all symbols. That way, no one
5258 will ever get access to your symbol by chance. Symbols that are not in
5259 the table are called @dfn{uninterned}. Of course, symbols that
5260 @emph{are} in the table are called @dfn{interned}.
5261
5262 You create new uninterned symbols with the function @code{make-symbol}.
5263 You can test whether a symbol is interned or not with
5264 @code{symbol-interned?}.
5265
5266 Uninterned symbols break the rule that the name of a symbol uniquely
5267 identifies the symbol object. Because of this, they can not be written
5268 out and read back in like interned symbols. Currently, Guile has no
5269 support for reading uninterned symbols. Note that the function
5270 @code{gensym} does not return uninterned symbols for this reason.
5271
5272 @deffn {Scheme Procedure} make-symbol name
5273 @deffnx {C Function} scm_make_symbol (name)
5274 Return a new uninterned symbol with the name @var{name}. The returned
5275 symbol is guaranteed to be unique and future calls to
5276 @code{string->symbol} will not return it.
5277 @end deffn
5278
5279 @deffn {Scheme Procedure} symbol-interned? symbol
5280 @deffnx {C Function} scm_symbol_interned_p (symbol)
5281 Return @code{#t} if @var{symbol} is interned, otherwise return
5282 @code{#f}.
5283 @end deffn
5284
5285 For example:
5286
5287 @lisp
5288 (define foo-1 (string->symbol "foo"))
5289 (define foo-2 (string->symbol "foo"))
5290 (define foo-3 (make-symbol "foo"))
5291 (define foo-4 (make-symbol "foo"))
5292
5293 (eq? foo-1 foo-2)
5294 @result{} #t
5295 ; Two interned symbols with the same name are the same object,
5296
5297 (eq? foo-1 foo-3)
5298 @result{} #f
5299 ; but a call to make-symbol with the same name returns a
5300 ; distinct object.
5301
5302 (eq? foo-3 foo-4)
5303 @result{} #f
5304 ; A call to make-symbol always returns a new object, even for
5305 ; the same name.
5306
5307 foo-3
5308 @result{} #<uninterned-symbol foo 8085290>
5309 ; Uninterned symbols print differently from interned symbols,
5310
5311 (symbol? foo-3)
5312 @result{} #t
5313 ; but they are still symbols,
5314
5315 (symbol-interned? foo-3)
5316 @result{} #f
5317 ; just not interned.
5318 @end lisp
5319
5320
5321 @node Keywords
5322 @subsection Keywords
5323 @tpindex Keywords
5324
5325 Keywords are self-evaluating objects with a convenient read syntax that
5326 makes them easy to type.
5327
5328 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5329 syntax extension to permit keywords to begin with @code{:} as well as
5330 @code{#:}, or to end with @code{:}.
5331
5332 @menu
5333 * Why Use Keywords?:: Motivation for keyword usage.
5334 * Coding With Keywords:: How to use keywords.
5335 * Keyword Read Syntax:: Read syntax for keywords.
5336 * Keyword Procedures:: Procedures for dealing with keywords.
5337 @end menu
5338
5339 @node Why Use Keywords?
5340 @subsubsection Why Use Keywords?
5341
5342 Keywords are useful in contexts where a program or procedure wants to be
5343 able to accept a large number of optional arguments without making its
5344 interface unmanageable.
5345
5346 To illustrate this, consider a hypothetical @code{make-window}
5347 procedure, which creates a new window on the screen for drawing into
5348 using some graphical toolkit. There are many parameters that the caller
5349 might like to specify, but which could also be sensibly defaulted, for
5350 example:
5351
5352 @itemize @bullet
5353 @item
5354 color depth -- Default: the color depth for the screen
5355
5356 @item
5357 background color -- Default: white
5358
5359 @item
5360 width -- Default: 600
5361
5362 @item
5363 height -- Default: 400
5364 @end itemize
5365
5366 If @code{make-window} did not use keywords, the caller would have to
5367 pass in a value for each possible argument, remembering the correct
5368 argument order and using a special value to indicate the default value
5369 for that argument:
5370
5371 @lisp
5372 (make-window 'default ;; Color depth
5373 'default ;; Background color
5374 800 ;; Width
5375 100 ;; Height
5376 @dots{}) ;; More make-window arguments
5377 @end lisp
5378
5379 With keywords, on the other hand, defaulted arguments are omitted, and
5380 non-default arguments are clearly tagged by the appropriate keyword. As
5381 a result, the invocation becomes much clearer:
5382
5383 @lisp
5384 (make-window #:width 800 #:height 100)
5385 @end lisp
5386
5387 On the other hand, for a simpler procedure with few arguments, the use
5388 of keywords would be a hindrance rather than a help. The primitive
5389 procedure @code{cons}, for example, would not be improved if it had to
5390 be invoked as
5391
5392 @lisp
5393 (cons #:car x #:cdr y)
5394 @end lisp
5395
5396 So the decision whether to use keywords or not is purely pragmatic: use
5397 them if they will clarify the procedure invocation at point of call.
5398
5399 @node Coding With Keywords
5400 @subsubsection Coding With Keywords
5401
5402 If a procedure wants to support keywords, it should take a rest argument
5403 and then use whatever means is convenient to extract keywords and their
5404 corresponding arguments from the contents of that rest argument.
5405
5406 The following example illustrates the principle: the code for
5407 @code{make-window} uses a helper procedure called
5408 @code{get-keyword-value} to extract individual keyword arguments from
5409 the rest argument.
5410
5411 @lisp
5412 (define (get-keyword-value args keyword default)
5413 (let ((kv (memq keyword args)))
5414 (if (and kv (>= (length kv) 2))
5415 (cadr kv)
5416 default)))
5417
5418 (define (make-window . args)
5419 (let ((depth (get-keyword-value args #:depth screen-depth))
5420 (bg (get-keyword-value args #:bg "white"))
5421 (width (get-keyword-value args #:width 800))
5422 (height (get-keyword-value args #:height 100))
5423 @dots{})
5424 @dots{}))
5425 @end lisp
5426
5427 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5428 optargs)} module provides a set of powerful macros that you can use to
5429 implement keyword-supporting procedures like this:
5430
5431 @lisp
5432 (use-modules (ice-9 optargs))
5433
5434 (define (make-window . args)
5435 (let-keywords args #f ((depth screen-depth)
5436 (bg "white")
5437 (width 800)
5438 (height 100))
5439 ...))
5440 @end lisp
5441
5442 @noindent
5443 Or, even more economically, like this:
5444
5445 @lisp
5446 (use-modules (ice-9 optargs))
5447
5448 (define* (make-window #:key (depth screen-depth)
5449 (bg "white")
5450 (width 800)
5451 (height 100))
5452 ...)
5453 @end lisp
5454
5455 For further details on @code{let-keywords}, @code{define*} and other
5456 facilities provided by the @code{(ice-9 optargs)} module, see
5457 @ref{Optional Arguments}.
5458
5459
5460 @node Keyword Read Syntax
5461 @subsubsection Keyword Read Syntax
5462
5463 Guile, by default, only recognizes a keyword syntax that is compatible
5464 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5465 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5466 external representation of the keyword named @code{NAME}. Keyword
5467 objects print using this syntax as well, so values containing keyword
5468 objects can be read back into Guile. When used in an expression,
5469 keywords are self-quoting objects.
5470
5471 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5472 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5473 of the form @code{:NAME} are read as symbols, as required by R5RS.
5474
5475 @cindex SRFI-88 keyword syntax
5476
5477 If the @code{keyword} read option is set to @code{'postfix}, Guile
5478 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5479 Otherwise, tokens of this form are read as symbols.
5480
5481 To enable and disable the alternative non-R5RS keyword syntax, you use
5482 the @code{read-set!} procedure documented in @ref{User level options
5483 interfaces} and @ref{Reader options}. Note that the @code{prefix} and
5484 @code{postfix} syntax are mutually exclusive.
5485
5486 @lisp
5487 (read-set! keywords 'prefix)
5488
5489 #:type
5490 @result{}
5491 #:type
5492
5493 :type
5494 @result{}
5495 #:type
5496
5497 (read-set! keywords 'postfix)
5498
5499 type:
5500 @result{}
5501 #:type
5502
5503 :type
5504 @result{}
5505 :type
5506
5507 (read-set! keywords #f)
5508
5509 #:type
5510 @result{}
5511 #:type
5512
5513 :type
5514 @print{}
5515 ERROR: In expression :type:
5516 ERROR: Unbound variable: :type
5517 ABORT: (unbound-variable)
5518 @end lisp
5519
5520 @node Keyword Procedures
5521 @subsubsection Keyword Procedures
5522
5523 @deffn {Scheme Procedure} keyword? obj
5524 @deffnx {C Function} scm_keyword_p (obj)
5525 Return @code{#t} if the argument @var{obj} is a keyword, else
5526 @code{#f}.
5527 @end deffn
5528
5529 @deffn {Scheme Procedure} keyword->symbol keyword
5530 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5531 Return the symbol with the same name as @var{keyword}.
5532 @end deffn
5533
5534 @deffn {Scheme Procedure} symbol->keyword symbol
5535 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5536 Return the keyword with the same name as @var{symbol}.
5537 @end deffn
5538
5539 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5540 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5541 @end deftypefn
5542
5543 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
5544 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
5545 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5546 (@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5547 (@var{str}, @var{len}))}, respectively.
5548 @end deftypefn
5549
5550 @node Other Types
5551 @subsection ``Functionality-Centric'' Data Types
5552
5553 Procedures and macros are documented in their own chapter: see
5554 @ref{Procedures and Macros}.
5555
5556 Variable objects are documented as part of the description of Guile's
5557 module system: see @ref{Variables}.
5558
5559 Asyncs, dynamic roots and fluids are described in the chapter on
5560 scheduling: see @ref{Scheduling}.
5561
5562 Hooks are documented in the chapter on general utility functions: see
5563 @ref{Hooks}.
5564
5565 Ports are described in the chapter on I/O: see @ref{Input and Output}.
5566
5567
5568 @c Local Variables:
5569 @c TeX-master: "guile.texi"
5570 @c End: