1;3202;0cMerge remote-tracking branch 'origin/stable-2.0'
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19 /* #define DEBUGINFO */
20
21 #ifdef HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #include "libguile/gen-scmconfig.h"
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include <string.h>
30 #include <stdlib.h>
31 #include <math.h>
32
33 #ifdef __ia64__
34 #include <ucontext.h>
35 extern unsigned long * __libc_ia64_register_backing_store_base;
36 #endif
37
38 #include "libguile/_scm.h"
39 #include "libguile/eval.h"
40 #include "libguile/stime.h"
41 #include "libguile/stackchk.h"
42 #include "libguile/struct.h"
43 #include "libguile/smob.h"
44 #include "libguile/arrays.h"
45 #include "libguile/async.h"
46 #include "libguile/ports.h"
47 #include "libguile/root.h"
48 #include "libguile/strings.h"
49 #include "libguile/vectors.h"
50 #include "libguile/hashtab.h"
51 #include "libguile/tags.h"
52
53 #include "libguile/private-gc.h"
54 #include "libguile/validate.h"
55 #include "libguile/deprecation.h"
56 #include "libguile/gc.h"
57 #include "libguile/dynwind.h"
58
59 #include "libguile/bdw-gc.h"
60
61 /* For GC_set_start_callback. */
62 #include <gc/gc_mark.h>
63
64 #ifdef GUILE_DEBUG_MALLOC
65 #include "libguile/debug-malloc.h"
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #endif
71
72 /* Set this to != 0 if every cell that is accessed shall be checked:
73 */
74 int scm_debug_cell_accesses_p = 0;
75 int scm_expensive_debug_cell_accesses_p = 0;
76
77 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
78 * the number of cell accesses after which a gc shall be called.
79 */
80 int scm_debug_cells_gc_interval = 0;
81
82 /* Hash table that keeps a reference to objects the user wants to protect from
83 garbage collection. */
84 static SCM scm_protects;
85
86
87 #if (SCM_DEBUG_CELL_ACCESSES == 1)
88
89
90 /*
91
92 Assert that the given object is a valid reference to a valid cell. This
93 test involves to determine whether the object is a cell pointer, whether
94 this pointer actually points into a heap segment and whether the cell
95 pointed to is not a free cell. Further, additional garbage collections may
96 get executed after a user defined number of cell accesses. This helps to
97 find places in the C code where references are dropped for extremely short
98 periods.
99
100 */
101 void
102 scm_i_expensive_validation_check (SCM cell)
103 {
104 /* If desired, perform additional garbage collections after a user
105 * defined number of cell accesses.
106 */
107 if (scm_debug_cells_gc_interval)
108 {
109 static unsigned int counter = 0;
110
111 if (counter != 0)
112 {
113 --counter;
114 }
115 else
116 {
117 counter = scm_debug_cells_gc_interval;
118 scm_gc ();
119 }
120 }
121 }
122
123 /* Whether cell validation is already running. */
124 static int scm_i_cell_validation_already_running = 0;
125
126 void
127 scm_assert_cell_valid (SCM cell)
128 {
129 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
130 {
131 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
132
133 /*
134 During GC, no user-code should be run, and the guile core
135 should use non-protected accessors.
136 */
137 if (scm_gc_running_p)
138 return;
139
140 /*
141 Only scm_in_heap_p and rescanning the heap is wildly
142 expensive.
143 */
144 if (scm_expensive_debug_cell_accesses_p)
145 scm_i_expensive_validation_check (cell);
146
147 scm_i_cell_validation_already_running = 0; /* re-enable */
148 }
149 }
150
151
152
153 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
154 (SCM flag),
155 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
156 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
157 "but no additional calls to garbage collection are issued.\n"
158 "If @var{flag} is a number, strict cell access checking is enabled,\n"
159 "with an additional garbage collection after the given\n"
160 "number of cell accesses.\n"
161 "This procedure only exists when the compile-time flag\n"
162 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
163 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
164 {
165 if (scm_is_false (flag))
166 {
167 scm_debug_cell_accesses_p = 0;
168 }
169 else if (scm_is_eq (flag, SCM_BOOL_T))
170 {
171 scm_debug_cells_gc_interval = 0;
172 scm_debug_cell_accesses_p = 1;
173 scm_expensive_debug_cell_accesses_p = 0;
174 }
175 else
176 {
177 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
178 scm_debug_cell_accesses_p = 1;
179 scm_expensive_debug_cell_accesses_p = 1;
180 }
181 return SCM_UNSPECIFIED;
182 }
183 #undef FUNC_NAME
184
185
186 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
187
188 \f
189
190 /* Compatibility. */
191
192 #ifndef HAVE_GC_GET_HEAP_USAGE_SAFE
193 static void
194 GC_get_heap_usage_safe (GC_word *pheap_size, GC_word *pfree_bytes,
195 GC_word *punmapped_bytes, GC_word *pbytes_since_gc,
196 GC_word *ptotal_bytes)
197 {
198 *pheap_size = GC_get_heap_size ();
199 *pfree_bytes = GC_get_free_bytes ();
200 #ifdef HAVE_GC_GET_UNMAPPED_BYTES
201 *punmapped_bytes = GC_get_unmapped_bytes ();
202 #else
203 *punmapped_bytes = 0;
204 #endif
205 *pbytes_since_gc = GC_get_bytes_since_gc ();
206 *ptotal_bytes = GC_get_total_bytes ();
207 }
208 #endif
209
210 #ifndef HAVE_GC_GET_FREE_SPACE_DIVISOR
211 static GC_word
212 GC_get_free_space_divisor (void)
213 {
214 return GC_free_space_divisor;
215 }
216 #endif
217
218 \f
219 /* Hooks. */
220 scm_t_c_hook scm_before_gc_c_hook;
221 scm_t_c_hook scm_before_mark_c_hook;
222 scm_t_c_hook scm_before_sweep_c_hook;
223 scm_t_c_hook scm_after_sweep_c_hook;
224 scm_t_c_hook scm_after_gc_c_hook;
225
226
227 static void
228 run_before_gc_c_hook (void)
229 {
230 if (!SCM_I_CURRENT_THREAD)
231 /* GC while a thread is spinning up; punt. */
232 return;
233
234 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
235 }
236
237
238 /* GC Statistics Keeping
239 */
240 unsigned long scm_gc_ports_collected = 0;
241 static long gc_time_taken = 0;
242 static long gc_start_time = 0;
243
244 static unsigned long free_space_divisor;
245 static unsigned long minimum_free_space_divisor;
246 static double target_free_space_divisor;
247
248 static unsigned long protected_obj_count = 0;
249
250
251 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
252 SCM_SYMBOL (sym_heap_size, "heap-size");
253 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
254 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
255 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
256 SCM_SYMBOL (sym_protected_objects, "protected-objects");
257 SCM_SYMBOL (sym_times, "gc-times");
258
259
260 /* {Scheme Interface to GC}
261 */
262 static SCM
263 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
264 {
265 if (scm_is_integer (key))
266 {
267 int c_tag = scm_to_int (key);
268
269 char const * name = scm_i_tag_name (c_tag);
270 if (name != NULL)
271 {
272 key = scm_from_locale_string (name);
273 }
274 else
275 {
276 char s[100];
277 sprintf (s, "tag %d", c_tag);
278 key = scm_from_locale_string (s);
279 }
280 }
281
282 return scm_cons (scm_cons (key, val), acc);
283 }
284
285 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
286 (),
287 "Return an alist of statistics of the current live objects. ")
288 #define FUNC_NAME s_scm_gc_live_object_stats
289 {
290 SCM tab = scm_make_hash_table (scm_from_int (57));
291 SCM alist;
292
293 alist
294 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
295
296 return alist;
297 }
298 #undef FUNC_NAME
299
300 extern int scm_gc_malloc_yield_percentage;
301 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
302 (),
303 "Return an association list of statistics about Guile's current\n"
304 "use of storage.\n")
305 #define FUNC_NAME s_scm_gc_stats
306 {
307 SCM answer;
308 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
309 size_t gc_times;
310
311 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
312 &bytes_since_gc, &total_bytes);
313 gc_times = GC_gc_no;
314
315 answer =
316 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
317 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
318 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
319 scm_cons (sym_heap_total_allocated,
320 scm_from_size_t (total_bytes)),
321 scm_cons (sym_heap_allocated_since_gc,
322 scm_from_size_t (bytes_since_gc)),
323 scm_cons (sym_protected_objects,
324 scm_from_ulong (protected_obj_count)),
325 scm_cons (sym_times, scm_from_size_t (gc_times)),
326 SCM_UNDEFINED);
327
328 return answer;
329 }
330 #undef FUNC_NAME
331
332
333 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
334 (void),
335 "Dump information about the garbage collector's internal data "
336 "structures and memory usage to the standard output.")
337 #define FUNC_NAME s_scm_gc_dump
338 {
339 GC_dump ();
340
341 return SCM_UNSPECIFIED;
342 }
343 #undef FUNC_NAME
344
345
346 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
347 (SCM obj),
348 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
349 "returned by this function for @var{obj}")
350 #define FUNC_NAME s_scm_object_address
351 {
352 return scm_from_ulong (SCM_UNPACK (obj));
353 }
354 #undef FUNC_NAME
355
356
357 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
358 (),
359 "Disables the garbage collector. Nested calls are permitted. "
360 "GC is re-enabled once @code{gc-enable} has been called the "
361 "same number of times @code{gc-disable} was called.")
362 #define FUNC_NAME s_scm_gc_disable
363 {
364 GC_disable ();
365 return SCM_UNSPECIFIED;
366 }
367 #undef FUNC_NAME
368
369 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
370 (),
371 "Enables the garbage collector.")
372 #define FUNC_NAME s_scm_gc_enable
373 {
374 GC_enable ();
375 return SCM_UNSPECIFIED;
376 }
377 #undef FUNC_NAME
378
379
380 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
381 (),
382 "Scans all of SCM objects and reclaims for further use those that are\n"
383 "no longer accessible.")
384 #define FUNC_NAME s_scm_gc
385 {
386 scm_i_gc ("call");
387 /* If you're calling scm_gc(), you probably want synchronous
388 finalization. */
389 GC_invoke_finalizers ();
390 return SCM_UNSPECIFIED;
391 }
392 #undef FUNC_NAME
393
394 void
395 scm_i_gc (const char *what)
396 {
397 #ifndef HAVE_GC_SET_START_CALLBACK
398 run_before_gc_c_hook ();
399 #endif
400 GC_gcollect ();
401 }
402
403
404 \f
405 /* {GC Protection Helper Functions}
406 */
407
408
409 /*
410 * If within a function you need to protect one or more scheme objects from
411 * garbage collection, pass them as parameters to one of the
412 * scm_remember_upto_here* functions below. These functions don't do
413 * anything, but since the compiler does not know that they are actually
414 * no-ops, it will generate code that calls these functions with the given
415 * parameters. Therefore, you can be sure that the compiler will keep those
416 * scheme values alive (on the stack or in a register) up to the point where
417 * scm_remember_upto_here* is called. In other words, place the call to
418 * scm_remember_upto_here* _behind_ the last code in your function, that
419 * depends on the scheme object to exist.
420 *
421 * Example: We want to make sure that the string object str does not get
422 * garbage collected during the execution of 'some_function' in the code
423 * below, because otherwise the characters belonging to str would be freed and
424 * 'some_function' might access freed memory. To make sure that the compiler
425 * keeps str alive on the stack or in a register such that it is visible to
426 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
427 * call to 'some_function'. Note that this would not be necessary if str was
428 * used anyway after the call to 'some_function'.
429 * char *chars = scm_i_string_chars (str);
430 * some_function (chars);
431 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
432 */
433
434 /* Remove any macro versions of these while defining the functions.
435 Functions are always included in the library, for upward binary
436 compatibility and in case combinations of GCC and non-GCC are used. */
437 #undef scm_remember_upto_here_1
438 #undef scm_remember_upto_here_2
439
440 void
441 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
442 {
443 /* Empty. Protects a single object from garbage collection. */
444 }
445
446 void
447 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
448 {
449 /* Empty. Protects two objects from garbage collection. */
450 }
451
452 void
453 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
454 {
455 /* Empty. Protects any number of objects from garbage collection. */
456 }
457
458 /*
459 These crazy functions prevent garbage collection
460 of arguments after the first argument by
461 ensuring they remain live throughout the
462 function because they are used in the last
463 line of the code block.
464 It'd be better to have a nice compiler hint to
465 aid the conservative stack-scanning GC. --03/09/00 gjb */
466 SCM
467 scm_return_first (SCM elt, ...)
468 {
469 return elt;
470 }
471
472 int
473 scm_return_first_int (int i, ...)
474 {
475 return i;
476 }
477
478
479 SCM
480 scm_permanent_object (SCM obj)
481 {
482 return (scm_gc_protect_object (obj));
483 }
484
485
486 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
487 other references are dropped, until the object is unprotected by calling
488 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
489 i. e. it is possible to protect the same object several times, but it is
490 necessary to unprotect the object the same number of times to actually get
491 the object unprotected. It is an error to unprotect an object more often
492 than it has been protected before. The function scm_protect_object returns
493 OBJ.
494 */
495
496 /* Implementation note: For every object X, there is a counter which
497 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
498 */
499
500
501
502 SCM
503 scm_gc_protect_object (SCM obj)
504 {
505 SCM handle;
506
507 /* This critical section barrier will be replaced by a mutex. */
508 /* njrev: Indeed; if my comment above is correct, there is the same
509 critsec/mutex inconsistency here. */
510 SCM_CRITICAL_SECTION_START;
511
512 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
513 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
514
515 protected_obj_count ++;
516
517 SCM_CRITICAL_SECTION_END;
518
519 return obj;
520 }
521
522
523 /* Remove any protection for OBJ established by a prior call to
524 scm_protect_object. This function returns OBJ.
525
526 See scm_protect_object for more information. */
527 SCM
528 scm_gc_unprotect_object (SCM obj)
529 {
530 SCM handle;
531
532 /* This critical section barrier will be replaced by a mutex. */
533 /* njrev: and again. */
534 SCM_CRITICAL_SECTION_START;
535
536 if (scm_gc_running_p)
537 {
538 fprintf (stderr, "scm_unprotect_object called during GC.\n");
539 abort ();
540 }
541
542 handle = scm_hashq_get_handle (scm_protects, obj);
543
544 if (scm_is_false (handle))
545 {
546 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
547 abort ();
548 }
549 else
550 {
551 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
552 if (scm_is_eq (count, scm_from_int (0)))
553 scm_hashq_remove_x (scm_protects, obj);
554 else
555 SCM_SETCDR (handle, count);
556 }
557 protected_obj_count --;
558
559 SCM_CRITICAL_SECTION_END;
560
561 return obj;
562 }
563
564 void
565 scm_gc_register_root (SCM *p)
566 {
567 /* Nothing. */
568 }
569
570 void
571 scm_gc_unregister_root (SCM *p)
572 {
573 /* Nothing. */
574 }
575
576 void
577 scm_gc_register_roots (SCM *b, unsigned long n)
578 {
579 SCM *p = b;
580 for (; p < b + n; ++p)
581 scm_gc_register_root (p);
582 }
583
584 void
585 scm_gc_unregister_roots (SCM *b, unsigned long n)
586 {
587 SCM *p = b;
588 for (; p < b + n; ++p)
589 scm_gc_unregister_root (p);
590 }
591
592 \f
593
594
595 /*
596 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
597 */
598
599 /* Get an integer from an environment variable. */
600 int
601 scm_getenv_int (const char *var, int def)
602 {
603 char *end = 0;
604 char *val = getenv (var);
605 long res = def;
606 if (!val)
607 return def;
608 res = strtol (val, &end, 10);
609 if (end == val)
610 return def;
611 return res;
612 }
613
614 #ifndef HAVE_GC_SET_FINALIZE_ON_DEMAND
615 static void
616 GC_set_finalize_on_demand (int foo)
617 {
618 GC_finalize_on_demand = foo;
619 }
620 #endif
621
622 void
623 scm_storage_prehistory ()
624 {
625 GC_all_interior_pointers = 0;
626 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
627 minimum_free_space_divisor = free_space_divisor;
628 target_free_space_divisor = free_space_divisor;
629 GC_set_free_space_divisor (free_space_divisor);
630 GC_set_finalize_on_demand (1);
631
632 GC_INIT ();
633
634 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
635 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
636 /* When using GC 6.8, this call is required to initialize thread-local
637 freelists (shouldn't be necessary with GC 7.0). */
638 GC_init ();
639 #endif
640
641 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
642
643 /* We only need to register a displacement for those types for which the
644 higher bits of the type tag are used to store a pointer (that is, a
645 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
646 handled in `scm_alloc_struct ()'. */
647 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
648 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
649
650 /* Sanity check. */
651 if (!GC_is_visible (&scm_protects))
652 abort ();
653
654 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
655 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
656 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
657 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
658 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
659 }
660
661 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
662
663 void
664 scm_init_gc_protect_object ()
665 {
666 scm_protects = scm_c_make_hash_table (31);
667
668 #if 0
669 /* We can't have a cleanup handler since we have no thread to run it
670 in. */
671
672 #ifdef HAVE_ATEXIT
673 atexit (cleanup);
674 #else
675 #ifdef HAVE_ON_EXIT
676 on_exit (cleanup, 0);
677 #endif
678 #endif
679
680 #endif
681 }
682
683 \f
684
685 SCM scm_after_gc_hook;
686
687 static SCM after_gc_async_cell;
688
689 /* The function after_gc_async_thunk causes the execution of the
690 * after-gc-hook. It is run after the gc, as soon as the asynchronous
691 * events are handled by the evaluator.
692 */
693 static SCM
694 after_gc_async_thunk (void)
695 {
696 /* Fun, no? Hook-run *and* run-hook? */
697 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
698 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
699 return SCM_UNSPECIFIED;
700 }
701
702
703 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
704 * at the end of the garbage collection. The only purpose of this
705 * function is to mark the after_gc_async (which will eventually lead to
706 * the execution of the after_gc_async_thunk).
707 */
708 static void *
709 queue_after_gc_hook (void * hook_data SCM_UNUSED,
710 void *fn_data SCM_UNUSED,
711 void *data SCM_UNUSED)
712 {
713 /* If cell access debugging is enabled, the user may choose to perform
714 * additional garbage collections after an arbitrary number of cell
715 * accesses. We don't want the scheme level after-gc-hook to be performed
716 * for each of these garbage collections for the following reason: The
717 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
718 * after-gc-hook was performed with every gc, and if the gc was performed
719 * after a very small number of cell accesses, then the number of cell
720 * accesses during the execution of the after-gc-hook will suffice to cause
721 * the execution of the next gc. Then, guile would keep executing the
722 * after-gc-hook over and over again, and would never come to do other
723 * things.
724 *
725 * To overcome this problem, if cell access debugging with additional
726 * garbage collections is enabled, the after-gc-hook is never run by the
727 * garbage collecter. When running guile with cell access debugging and the
728 * execution of the after-gc-hook is desired, then it is necessary to run
729 * the hook explicitly from the user code. This has the effect, that from
730 * the scheme level point of view it seems that garbage collection is
731 * performed with a much lower frequency than it actually is. Obviously,
732 * this will not work for code that depends on a fixed one to one
733 * relationship between the execution counts of the C level garbage
734 * collection hooks and the execution count of the scheme level
735 * after-gc-hook.
736 */
737
738 #if (SCM_DEBUG_CELL_ACCESSES == 1)
739 if (scm_debug_cells_gc_interval == 0)
740 #endif
741 {
742 scm_i_thread *t = SCM_I_CURRENT_THREAD;
743
744 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
745 {
746 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
747 t->active_asyncs = after_gc_async_cell;
748 t->pending_asyncs = 1;
749 }
750 }
751
752 return NULL;
753 }
754
755 \f
756
757 static void *
758 start_gc_timer (void * hook_data SCM_UNUSED,
759 void *fn_data SCM_UNUSED,
760 void *data SCM_UNUSED)
761 {
762 if (!gc_start_time)
763 gc_start_time = scm_c_get_internal_run_time ();
764
765 return NULL;
766 }
767
768 static void *
769 accumulate_gc_timer (void * hook_data SCM_UNUSED,
770 void *fn_data SCM_UNUSED,
771 void *data SCM_UNUSED)
772 {
773 if (gc_start_time)
774 {
775 long now = scm_c_get_internal_run_time ();
776 gc_time_taken += now - gc_start_time;
777 gc_start_time = 0;
778 }
779
780 return NULL;
781 }
782
783 /* Return some idea of the memory footprint of a process, in bytes.
784 Currently only works on Linux systems. */
785 static size_t
786 get_image_size (void)
787 {
788 unsigned long size, resident, share;
789 size_t ret = 0;
790
791 FILE *fp = fopen ("/proc/self/statm", "r");
792
793 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
794 ret = resident * 4096;
795
796 if (fp)
797 fclose (fp);
798
799 return ret;
800 }
801
802 /* These are discussed later. */
803 static size_t bytes_until_gc;
804 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
805
806 /* Make GC run more frequently when the process image size is growing,
807 measured against the number of bytes allocated through the GC.
808
809 If Guile is allocating at a GC-managed heap size H, libgc will tend
810 to limit the process image size to H*N. But if at the same time the
811 user program is mallocating at a rate M bytes per GC-allocated byte,
812 then the process stabilizes at H*N*M -- assuming that collecting data
813 will result in malloc'd data being freed. It doesn't take a very
814 large M for this to be a bad situation. To limit the image size,
815 Guile should GC more often -- the bigger the M, the more often.
816
817 Numeric functions that produce bigger and bigger integers are
818 pessimal, because M is an increasing function of time. Here is an
819 example of such a function:
820
821 (define (factorial n)
822 (define (fac n acc)
823 (if (<= n 1)
824 acc
825 (fac (1- n) (* n acc))))
826 (fac n 1))
827
828 It is possible for a process to grow for reasons that will not be
829 solved by faster GC. In that case M will be estimated as
830 artificially high for a while, and so GC will happen more often on
831 the Guile side. But when it stabilizes, Guile can ease back the GC
832 frequency.
833
834 The key is to measure process image growth, not mallocation rate.
835 For maximum effectiveness, Guile reacts quickly to process growth,
836 and exponentially backs down when the process stops growing.
837
838 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
839 for further discussion.
840 */
841 static void *
842 adjust_gc_frequency (void * hook_data SCM_UNUSED,
843 void *fn_data SCM_UNUSED,
844 void *data SCM_UNUSED)
845 {
846 static size_t prev_image_size = 0;
847 static size_t prev_bytes_alloced = 0;
848 size_t image_size;
849 size_t bytes_alloced;
850
851 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
852 bytes_until_gc = GC_get_heap_size ();
853 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
854
855 image_size = get_image_size ();
856 bytes_alloced = GC_get_total_bytes ();
857
858 #define HEURISTICS_DEBUG 0
859
860 #if HEURISTICS_DEBUG
861 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
862 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
863 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
864 #endif
865
866 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
867 {
868 double growth_rate, new_target_free_space_divisor;
869 double decay_factor = 0.5;
870 double hysteresis = 0.1;
871
872 growth_rate = ((double) image_size - prev_image_size)
873 / ((double)bytes_alloced - prev_bytes_alloced);
874
875 #if HEURISTICS_DEBUG
876 fprintf (stderr, "growth rate %f\n", growth_rate);
877 #endif
878
879 new_target_free_space_divisor = minimum_free_space_divisor;
880
881 if (growth_rate > 0)
882 new_target_free_space_divisor *= 1.0 + growth_rate;
883
884 #if HEURISTICS_DEBUG
885 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
886 #endif
887
888 if (new_target_free_space_divisor < target_free_space_divisor)
889 /* Decay down. */
890 target_free_space_divisor =
891 (decay_factor * target_free_space_divisor
892 + (1.0 - decay_factor) * new_target_free_space_divisor);
893 else
894 /* Jump up. */
895 target_free_space_divisor = new_target_free_space_divisor;
896
897 #if HEURISTICS_DEBUG
898 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
899 #endif
900
901 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
902 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
903 {
904 free_space_divisor = lround (target_free_space_divisor);
905 #if HEURISTICS_DEBUG
906 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
907 #endif
908 GC_set_free_space_divisor (free_space_divisor);
909 }
910 }
911
912 prev_image_size = image_size;
913 prev_bytes_alloced = bytes_alloced;
914
915 return NULL;
916 }
917
918 /* The adjust_gc_frequency routine handles transients in the process
919 image size. It can't handle instense non-GC-managed steady-state
920 allocation though, as it decays the FSD at steady-state down to its
921 minimum value.
922
923 The only real way to handle continuous, high non-GC allocation is to
924 let the GC know about it. This routine can handle non-GC allocation
925 rates that are similar in size to the GC-managed heap size.
926 */
927
928 void
929 scm_gc_register_allocation (size_t size)
930 {
931 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
932 if (bytes_until_gc - size > bytes_until_gc)
933 {
934 bytes_until_gc = GC_get_heap_size ();
935 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
936 GC_gcollect ();
937 }
938 else
939 {
940 bytes_until_gc -= size;
941 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
942 }
943 }
944
945
946 \f
947
948 char const *
949 scm_i_tag_name (scm_t_bits tag)
950 {
951 switch (tag & 0x7f) /* 7 bits */
952 {
953 case scm_tcs_struct:
954 return "struct";
955 case scm_tcs_cons_imcar:
956 return "cons (immediate car)";
957 case scm_tcs_cons_nimcar:
958 return "cons (non-immediate car)";
959 case scm_tc7_pointer:
960 return "foreign";
961 case scm_tc7_hashtable:
962 return "hashtable";
963 case scm_tc7_weak_set:
964 return "weak-set";
965 case scm_tc7_weak_table:
966 return "weak-table";
967 case scm_tc7_fluid:
968 return "fluid";
969 case scm_tc7_dynamic_state:
970 return "dynamic state";
971 case scm_tc7_frame:
972 return "frame";
973 case scm_tc7_objcode:
974 return "objcode";
975 case scm_tc7_vm:
976 return "vm";
977 case scm_tc7_vm_cont:
978 return "vm continuation";
979 case scm_tc7_wvect:
980 return "weak vector";
981 case scm_tc7_vector:
982 return "vector";
983 case scm_tc7_number:
984 switch (tag)
985 {
986 case scm_tc16_real:
987 return "real";
988 break;
989 case scm_tc16_big:
990 return "bignum";
991 break;
992 case scm_tc16_complex:
993 return "complex number";
994 break;
995 case scm_tc16_fraction:
996 return "fraction";
997 break;
998 }
999 break;
1000 case scm_tc7_string:
1001 return "string";
1002 break;
1003 case scm_tc7_stringbuf:
1004 return "string buffer";
1005 break;
1006 case scm_tc7_symbol:
1007 return "symbol";
1008 break;
1009 case scm_tc7_variable:
1010 return "variable";
1011 break;
1012 case scm_tc7_port:
1013 return "port";
1014 break;
1015 case scm_tc7_smob:
1016 {
1017 int k = 0xff & (tag >> 8);
1018 return (scm_smobs[k].name);
1019 }
1020 break;
1021 }
1022
1023 return NULL;
1024 }
1025
1026
1027
1028 \f
1029 void
1030 scm_init_gc ()
1031 {
1032 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
1033
1034 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
1035 scm_c_define ("after-gc-hook", scm_after_gc_hook);
1036
1037 /* When the async is to run, the cdr of the gc_async pair gets set to
1038 the asyncs queue of the current thread. */
1039 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
1040 after_gc_async_thunk),
1041 SCM_BOOL_F);
1042
1043 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
1044 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
1045 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
1046
1047 #if HAVE_GC_GET_HEAP_USAGE_SAFE
1048 /* GC_get_heap_usage does not take a lock, and so can run in the GC
1049 start hook. */
1050 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
1051 #else
1052 /* GC_get_heap_usage might take a lock (and did from 7.2alpha1 to
1053 7.2alpha7), so call it in the after_gc_hook. */
1054 scm_c_hook_add (&scm_after_gc_c_hook, adjust_gc_frequency, NULL, 0);
1055 #endif
1056
1057 #ifdef HAVE_GC_SET_START_CALLBACK
1058 GC_set_start_callback (run_before_gc_c_hook);
1059 #endif
1060
1061 #include "libguile/gc.x"
1062 }
1063
1064
1065 void
1066 scm_gc_sweep (void)
1067 #define FUNC_NAME "scm_gc_sweep"
1068 {
1069 /* FIXME */
1070 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1071 }
1072 #undef FUNC_NAME
1073
1074 /*
1075 Local Variables:
1076 c-file-style: "gnu"
1077 End:
1078 */