More inlinable effects-analysis procedures
[bpt/guile.git] / module / language / cps / cse.scm
1 ;;; Continuation-passing style (CPS) intermediate language (IL)
2
3 ;; Copyright (C) 2013, 2014 Free Software Foundation, Inc.
4
5 ;;;; This library is free software; you can redistribute it and/or
6 ;;;; modify it under the terms of the GNU Lesser General Public
7 ;;;; License as published by the Free Software Foundation; either
8 ;;;; version 3 of the License, or (at your option) any later version.
9 ;;;;
10 ;;;; This library is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ;;;; Lesser General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU Lesser General Public
16 ;;;; License along with this library; if not, write to the Free Software
17 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18
19 ;;; Commentary:
20 ;;;
21 ;;; Common subexpression elimination for CPS.
22 ;;;
23 ;;; Code:
24
25 (define-module (language cps cse)
26 #:use-module (ice-9 match)
27 #:use-module (srfi srfi-1)
28 #:use-module (language cps)
29 #:use-module (language cps dfg)
30 #:use-module (language cps effects-analysis)
31 #:use-module (language cps renumber)
32 #:export (eliminate-common-subexpressions))
33
34 (define (compute-always-available-expressions effects)
35 "Return the set of continuations whose values are always available
36 within their dominance frontier. This is the case for effects that have
37 no dependencies and which cause no effects besides &type-check."
38 (let ((out (make-bitvector (vector-length effects) #f)))
39 (let lp ((n 0))
40 (cond
41 ((< n (vector-length effects))
42 (when (zero? (exclude-effects (vector-ref effects n) &type-check))
43 (bitvector-set! out n #t))
44 (lp (1+ n)))
45 (else out)))))
46
47 (define (compute-available-expressions dfg min-label label-count)
48 "Compute and return the continuations that may be reached if flow
49 reaches a continuation N. Returns a vector of bitvectors, whose first
50 index corresponds to MIN-LABEL, and so on."
51 (let* ((effects (compute-effects dfg min-label label-count))
52 (always-avail (compute-always-available-expressions effects))
53 ;; Vector of bitvectors, indicating that at a continuation N,
54 ;; the values from continuations M... are available.
55 (avail-in (make-vector label-count #f))
56 (avail-out (make-vector label-count #f)))
57
58 (define (label->idx label) (- label min-label))
59 (define (idx->label idx) (+ idx min-label))
60
61 (let lp ((n 0))
62 (when (< n label-count)
63 (let ((in (make-bitvector label-count #f))
64 (out (make-bitvector label-count #f)))
65 (vector-set! avail-in n in)
66 (vector-set! avail-out n out)
67 (lp (1+ n)))))
68
69 (let ((tmp (make-bitvector label-count #f)))
70 (define (bitvector-copy! dst src)
71 (bitvector-fill! dst #f)
72 (bit-set*! dst src #t))
73 (define (intersect! dst src)
74 (bitvector-copy! tmp src)
75 (bit-invert! tmp)
76 (bit-set*! dst tmp #f))
77 (let lp ((n 0) (first? #t) (changed? #f))
78 (cond
79 ((< n label-count)
80 (let* ((in (vector-ref avail-in n))
81 (prev-count (bit-count #t in))
82 (out (vector-ref avail-out n))
83 (fx (vector-ref effects n)))
84 ;; Intersect avail-out from predecessors into "in".
85 (let lp ((preds (lookup-predecessors (idx->label n) dfg))
86 (initialized? #f))
87 (match preds
88 (() #t)
89 ((pred . preds)
90 (let ((pred (label->idx pred)))
91 (cond
92 ((and first? (<= n pred))
93 ;; Avoid intersecting back-edges and cross-edges on
94 ;; the first iteration.
95 (lp preds initialized?))
96 (else
97 (if initialized?
98 (intersect! in (vector-ref avail-out pred))
99 (bitvector-copy! in (vector-ref avail-out pred)))
100 (lp preds #t)))))))
101 (let ((new-count (bit-count #t in)))
102 (unless (= prev-count new-count)
103 ;; Copy "in" to "out".
104 (bitvector-copy! out in)
105 ;; Kill expressions that don't commute.
106 (cond
107 ((causes-all-effects? fx &all-effects)
108 ;; Fast-path if this expression clobbers the world.
109 (intersect! out always-avail))
110 ((effect-free? (exclude-effects fx &type-check))
111 ;; Fast-path if this expression clobbers nothing.
112 #t)
113 (else
114 ;; Loop of sadness.
115 (bitvector-copy! tmp out)
116 (bit-set*! tmp always-avail #f)
117 (let lp ((i 0))
118 (let ((i (bit-position #t tmp i)))
119 (when i
120 (unless (effects-commute? (vector-ref effects i) fx)
121 (bitvector-set! out i #f))
122 (lp (1+ i))))))))
123 ;; Unless this expression allocates a fresh object or
124 ;; changes the current fluid environment, mark expressions
125 ;; that match it as available for elimination.
126 (unless (causes-effects? fx (logior &fluid-environment
127 &allocation))
128 (bitvector-set! out n #t))
129 (lp (1+ n) first? (or changed? (not (= prev-count new-count)))))))
130 (else
131 (if (or first? changed?)
132 (lp 0 #f #f)
133 avail-in)))))))
134
135 (define (compute-truthy-expressions dfg min-label label-count)
136 "Compute a \"truth map\", indicating which expressions can be shown to
137 be true and/or false at each of LABEL-COUNT expressions in DFG, starting
138 from MIN-LABEL. Returns a vector of bitvectors, each bitvector twice as
139 long as LABEL-COUNT. The first half of the bitvector indicates labels
140 that may be true, and the second half those that may be false. It could
141 be that both true and false proofs are available."
142 (let ((boolv (make-vector label-count #f)))
143 (define (label->idx label) (- label min-label))
144 (define (idx->label idx) (+ idx min-label))
145 (define (true-idx idx) idx)
146 (define (false-idx idx) (+ idx label-count))
147
148 (let lp ((n 0))
149 (when (< n label-count)
150 (let ((bool (make-bitvector (* label-count 2) #f)))
151 (vector-set! boolv n bool)
152 (lp (1+ n)))))
153
154 (let ((tmp (make-bitvector (* label-count 2) #f)))
155 (define (bitvector-copy! dst src)
156 (bitvector-fill! dst #f)
157 (bit-set*! dst src #t))
158 (define (intersect! dst src)
159 (bitvector-copy! tmp src)
160 (bit-invert! tmp)
161 (bit-set*! dst tmp #f))
162 (let lp ((n 0) (first? #t) (changed? #f))
163 (cond
164 ((< n label-count)
165 (let* ((label (idx->label n))
166 (bool (vector-ref boolv n))
167 (prev-count (bit-count #t bool)))
168 ;; Intersect truthiness from all predecessors.
169 (let lp ((preds (lookup-predecessors label dfg))
170 (initialized? #f))
171 (match preds
172 (() #t)
173 ((pred . preds)
174 (let ((pidx (label->idx pred)))
175 (cond
176 ((and first? (<= n pidx))
177 ;; Avoid intersecting back-edges and cross-edges on
178 ;; the first iteration.
179 (lp preds initialized?))
180 (else
181 (if initialized?
182 (intersect! bool (vector-ref boolv pidx))
183 (bitvector-copy! bool (vector-ref boolv pidx)))
184 (match (lookup-predecessors pred dfg)
185 ((test)
186 (let ((tidx (label->idx test)))
187 (match (lookup-cont pred dfg)
188 (($ $kif kt kf)
189 (when (eqv? kt label)
190 (bitvector-set! bool (true-idx tidx) #t))
191 (when (eqv? kf label)
192 (bitvector-set! bool (false-idx tidx) #t)))
193 (_ #t))))
194 (_ #t))
195 (lp preds #t)))))))
196 (lp (1+ n) first?
197 (or changed?
198 (not (= prev-count (bit-count #t bool)))))))
199 (else
200 (if (or first? changed?)
201 (lp 0 #f #f)
202 boolv)))))))
203
204 (define (compute-defs dfg min-label label-count)
205 (define (cont-defs k)
206 (match (lookup-cont k dfg)
207 (($ $kargs names vars) vars)
208 (_ '())))
209 (define (idx->label idx) (+ idx min-label))
210 (let ((defs (make-vector label-count '())))
211 (let lp ((n 0))
212 (when (< n label-count)
213 (vector-set!
214 defs
215 n
216 (match (lookup-cont (idx->label n) dfg)
217 (($ $kargs _ _ body)
218 (match (find-call body)
219 (($ $continue k) (cont-defs k))))
220 (($ $kreceive arity kargs)
221 (cont-defs kargs))
222 (($ $kclause arity ($ $cont kargs ($ $kargs names syms)))
223 syms)
224 (($ $kif) '())
225 (($ $kfun src meta self) (list self))
226 (($ $ktail) '())))
227 (lp (1+ n))))
228 defs))
229
230 (define (compute-label-and-var-ranges fun)
231 (match fun
232 (($ $cont kfun ($ $kfun src meta self))
233 ((make-local-cont-folder min-label label-count min-var var-count)
234 (lambda (k cont min-label label-count min-var var-count)
235 (let ((min-label (min k min-label))
236 (label-count (1+ label-count)))
237 (match cont
238 (($ $kargs names vars body)
239 (let lp ((body body)
240 (min-var (fold min min-var vars))
241 (var-count (+ var-count (length vars))))
242 (match body
243 (($ $letrec names vars funs body)
244 (lp body
245 (fold min min-var vars)
246 (+ var-count (length vars))))
247 (($ $letk conts body) (lp body min-var var-count))
248 (_ (values min-label label-count min-var var-count)))))
249 (($ $kfun src meta self)
250 (values min-label label-count (min self min-var) (1+ var-count)))
251 (_
252 (values min-label label-count min-var var-count)))))
253 fun kfun 0 self 0))))
254
255 (define (compute-idoms dfg min-label label-count)
256 (define (label->idx label) (- label min-label))
257 (define (idx->label idx) (+ idx min-label))
258 (let ((idoms (make-vector label-count #f)))
259 (define (common-idom d0 d1)
260 ;; We exploit the fact that a reverse post-order is a topological
261 ;; sort, and so the idom of a node is always numerically less than
262 ;; the node itself.
263 (cond
264 ((= d0 d1) d0)
265 ((< d0 d1) (common-idom d0 (vector-ref idoms (label->idx d1))))
266 (else (common-idom (vector-ref idoms (label->idx d0)) d1))))
267 (define (compute-idom preds)
268 (define (has-idom? pred)
269 (vector-ref idoms (label->idx pred)))
270 (match preds
271 (() min-label)
272 ((pred . preds)
273 (if (has-idom? pred)
274 (let lp ((idom pred) (preds preds))
275 (match preds
276 (() idom)
277 ((pred . preds)
278 (lp (if (has-idom? pred)
279 (common-idom idom pred)
280 idom)
281 preds))))
282 (compute-idom preds)))))
283 ;; This is the iterative O(n^2) fixpoint algorithm, originally from
284 ;; Allen and Cocke ("Graph-theoretic constructs for program flow
285 ;; analysis", 1972). See the discussion in Cooper, Harvey, and
286 ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
287 (let iterate ((n 0) (changed? #f))
288 (cond
289 ((< n label-count)
290 (let ((idom (vector-ref idoms n))
291 (idom* (compute-idom (lookup-predecessors (idx->label n) dfg))))
292 (cond
293 ((eqv? idom idom*)
294 (iterate (1+ n) changed?))
295 (else
296 (vector-set! idoms n idom*)
297 (iterate (1+ n) #t)))))
298 (changed?
299 (iterate 0 #f))
300 (else idoms)))))
301
302 ;; Compute a vector containing, for each node, a list of the nodes that
303 ;; it immediately dominates. These are the "D" edges in the DJ tree.
304 (define (compute-dom-edges idoms min-label)
305 (define (label->idx label) (- label min-label))
306 (define (idx->label idx) (+ idx min-label))
307 (define (vector-push! vec idx val)
308 (let ((v vec) (i idx))
309 (vector-set! v i (cons val (vector-ref v i)))))
310 (let ((doms (make-vector (vector-length idoms) '())))
311 (let lp ((n 0))
312 (when (< n (vector-length idoms))
313 (let ((idom (vector-ref idoms n)))
314 (vector-push! doms (label->idx idom) (idx->label n)))
315 (lp (1+ n))))
316 doms))
317
318 (define (compute-equivalent-subexpressions fun dfg)
319 (define (compute min-label label-count min-var var-count)
320 (let ((avail (compute-available-expressions dfg min-label label-count))
321 (idoms (compute-idoms dfg min-label label-count))
322 (defs (compute-defs dfg min-label label-count))
323 (var-substs (make-vector var-count #f))
324 (equiv-labels (make-vector label-count #f))
325 (equiv-set (make-hash-table)))
326 (define (idx->label idx) (+ idx min-label))
327 (define (label->idx label) (- label min-label))
328 (define (idx->var idx) (+ idx min-var))
329 (define (var->idx var) (- var min-var))
330
331 (define (for-each/2 f l1 l2)
332 (unless (= (length l1) (length l2))
333 (error "bad lengths" l1 l2))
334 (let lp ((l1 l1) (l2 l2))
335 (when (pair? l1)
336 (f (car l1) (car l2))
337 (lp (cdr l1) (cdr l2)))))
338
339 (define (subst-var var)
340 ;; It could be that the var is free in this function; if so, its
341 ;; name will be less than min-var.
342 (let ((idx (var->idx var)))
343 (if (<= 0 idx)
344 (vector-ref var-substs idx)
345 var)))
346
347 (define (compute-exp-key exp)
348 (match exp
349 (($ $void) 'void)
350 (($ $const val) (cons 'const val))
351 (($ $prim name) (cons 'prim name))
352 (($ $fun free body) #f)
353 (($ $call proc args) #f)
354 (($ $callk k proc args) #f)
355 (($ $primcall name args)
356 (cons* 'primcall name (map subst-var args)))
357 (($ $values args) #f)
358 (($ $prompt escape? tag handler) #f)))
359
360 ;; The initial substs vector is the identity map.
361 (let lp ((var min-var))
362 (when (< (var->idx var) var-count)
363 (vector-set! var-substs (var->idx var) var)
364 (lp (1+ var))))
365
366 ;; Traverse the labels in fun in forward order, which will visit
367 ;; dominators first.
368 (let lp ((label min-label))
369 (when (< (label->idx label) label-count)
370 (match (lookup-cont label dfg)
371 (($ $kargs names vars body)
372 (match (find-call body)
373 (($ $continue k src exp)
374 (let* ((exp-key (compute-exp-key exp))
375 (equiv (hash-ref equiv-set exp-key '()))
376 (avail (vector-ref avail (label->idx label))))
377 (let lp ((candidates equiv))
378 (match candidates
379 (()
380 ;; No matching expressions. Add our expression
381 ;; to the equivalence set, if appropriate.
382 (when exp-key
383 (hash-set! equiv-set exp-key (cons label equiv))))
384 ((candidate . candidates)
385 (cond
386 ((not (bitvector-ref avail (label->idx candidate)))
387 ;; This expression isn't available here; try
388 ;; the next one.
389 (lp candidates))
390 (else
391 ;; Yay, a match. Mark expression as equivalent.
392 (vector-set! equiv-labels (label->idx label)
393 candidate)
394 ;; If we dominate the successor, mark vars
395 ;; for substitution.
396 (when (= label (vector-ref idoms (label->idx k)))
397 (for-each/2
398 (lambda (var subst-var)
399 (vector-set! var-substs (var->idx var) subst-var))
400 (vector-ref defs (label->idx label))
401 (vector-ref defs (label->idx candidate)))))))))))))
402 (_ #f))
403 (lp (1+ label))))
404 (values (compute-dom-edges idoms min-label)
405 equiv-labels defs min-label var-substs min-var)))
406
407 (call-with-values (lambda () (compute-label-and-var-ranges fun)) compute))
408
409 (define (apply-cse fun dfg
410 doms equiv-labels defs min-label var-substs min-var boolv)
411 (define (idx->label idx) (+ idx min-label))
412 (define (label->idx label) (- label min-label))
413 (define (idx->var idx) (+ idx min-var))
414 (define (var->idx var) (- var min-var))
415 (define (true-idx idx) idx)
416 (define (false-idx idx) (+ idx (vector-length equiv-labels)))
417
418 (define (subst-var var)
419 ;; It could be that the var is free in this function; if so,
420 ;; its name will be less than min-var.
421 (let ((idx (var->idx var)))
422 (if (<= 0 idx)
423 (vector-ref var-substs idx)
424 var)))
425
426 (define (visit-fun-cont cont)
427 (rewrite-cps-cont cont
428 (($ $cont label ($ $kargs names vars body))
429 (label ($kargs names vars ,(visit-term body label))))
430 (($ $cont label ($ $kfun src meta self tail clause))
431 (label ($kfun src meta self ,tail
432 ,(and clause (visit-fun-cont clause)))))
433 (($ $cont label ($ $kclause arity ($ $cont kbody body) alternate))
434 (label ($kclause ,arity ,(visit-cont kbody body)
435 ,(and alternate (visit-fun-cont alternate)))))))
436
437 (define (visit-cont label cont)
438 (rewrite-cps-cont cont
439 (($ $kargs names vars body)
440 (label ($kargs names vars ,(visit-term body label))))
441 (_ (label ,cont))))
442
443 (define (visit-term term label)
444 (define (visit-exp exp)
445 ;; We shouldn't see $fun here.
446 (rewrite-cps-exp exp
447 ((or ($ $void) ($ $const) ($ $prim)) ,exp)
448 (($ $call proc args)
449 ($call (subst-var proc) ,(map subst-var args)))
450 (($ $callk k proc args)
451 ($callk k (subst-var proc) ,(map subst-var args)))
452 (($ $primcall name args)
453 ($primcall name ,(map subst-var args)))
454 (($ $values args)
455 ($values ,(map subst-var args)))
456 (($ $prompt escape? tag handler)
457 ($prompt escape? (subst-var tag) handler))))
458
459 (define (visit-exp* k src exp)
460 (match exp
461 (($ $fun free body)
462 (build-cps-term
463 ($continue k src
464 ($fun (map subst-var free) ,(cse body dfg)))))
465 (_
466 (cond
467 ((vector-ref equiv-labels (label->idx label))
468 => (lambda (equiv)
469 (let* ((eidx (label->idx equiv))
470 (vars (vector-ref defs eidx)))
471 (rewrite-cps-term (lookup-cont k dfg)
472 (($ $kif kt kf)
473 ,(let* ((bool (vector-ref boolv (label->idx label)))
474 (t (bitvector-ref bool (true-idx eidx)))
475 (f (bitvector-ref bool (false-idx eidx))))
476 (if (eqv? t f)
477 (build-cps-term
478 ($continue k src ,(visit-exp exp)))
479 (build-cps-term
480 ($continue (if t kt kf) src ($values ()))))))
481 (($ $kargs)
482 ($continue k src ($values vars)))
483 ;; There is no point in adding a case for $ktail, as
484 ;; only $values, $call, or $callk can continue to
485 ;; $ktail.
486 (_
487 ($continue k src ,(visit-exp exp)))))))
488 (else
489 (build-cps-term
490 ($continue k src ,(visit-exp exp))))))))
491
492 (define (visit-dom-conts label)
493 (let ((cont (lookup-cont label dfg)))
494 (match cont
495 (($ $ktail) '())
496 (($ $kargs) (list (visit-cont label cont)))
497 (else
498 (cons (visit-cont label cont)
499 (append-map visit-dom-conts
500 (vector-ref doms (label->idx label))))))))
501
502 (rewrite-cps-term term
503 (($ $letk conts body)
504 ,(visit-term body label))
505 (($ $letrec names syms funs body)
506 ($letrec names syms
507 (map (lambda (fun)
508 (rewrite-cps-exp fun
509 (($ $fun free body)
510 ($fun (map subst-var free) ,(cse body dfg)))))
511 funs)
512 ,(visit-term body label)))
513 (($ $continue k src exp)
514 ,(let ((conts (append-map visit-dom-conts
515 (vector-ref doms (label->idx label)))))
516 (if (null? conts)
517 (visit-exp* k src exp)
518 (build-cps-term
519 ($letk ,conts ,(visit-exp* k src exp))))))))
520
521 (visit-fun-cont fun))
522
523 (define (cse fun dfg)
524 (call-with-values (lambda () (compute-equivalent-subexpressions fun dfg))
525 (lambda (doms equiv-labels defs min-label var-substs min-var)
526 (apply-cse fun dfg doms equiv-labels defs min-label var-substs min-var
527 (compute-truthy-expressions dfg
528 min-label (vector-length doms))))))
529
530 (define (eliminate-common-subexpressions fun)
531 (call-with-values (lambda () (renumber fun))
532 (lambda (fun nlabels nvars)
533 (cse fun (compute-dfg fun)))))