Include <gmp.h> in numbers.h, not in
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 \f
23 /* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
28 * All objects satisfying SCM_FRACTIONP are never an integer.
29 */
30
31 /* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
42
43 /* tell glibc (2.3) to give prototype for C99 trunc() */
44 #define _GNU_SOURCE
45
46 #if HAVE_CONFIG_H
47 # include <config.h>
48 #endif
49
50 #include <math.h>
51 #include <ctype.h>
52 #include <string.h>
53
54 #include "libguile/_scm.h"
55 #include "libguile/feature.h"
56 #include "libguile/ports.h"
57 #include "libguile/root.h"
58 #include "libguile/smob.h"
59 #include "libguile/strings.h"
60
61 #include "libguile/validate.h"
62 #include "libguile/numbers.h"
63 #include "libguile/deprecation.h"
64
65 #include "libguile/eq.h"
66
67 #include "libguile/discouraged.h"
68
69 \f
70
71 /*
72 Wonder if this might be faster for some of our code? A switch on
73 the numtag would jump directly to the right case, and the
74 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
75
76 #define SCM_I_NUMTAG_NOTNUM 0
77 #define SCM_I_NUMTAG_INUM 1
78 #define SCM_I_NUMTAG_BIG scm_tc16_big
79 #define SCM_I_NUMTAG_REAL scm_tc16_real
80 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
81 #define SCM_I_NUMTAG(x) \
82 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
83 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
84 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
85 : SCM_I_NUMTAG_NOTNUM)))
86 */
87 /* the macro above will not work as is with fractions */
88
89
90 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
91
92 /* FLOBUFLEN is the maximum number of characters neccessary for the
93 * printed or scm_string representation of an inexact number.
94 */
95 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
96
97 #if defined (SCO)
98 #if ! defined (HAVE_ISNAN)
99 #define HAVE_ISNAN
100 static int
101 isnan (double x)
102 {
103 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
104 }
105 #endif
106 #if ! defined (HAVE_ISINF)
107 #define HAVE_ISINF
108 static int
109 isinf (double x)
110 {
111 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
112 }
113
114 #endif
115 #endif
116
117
118 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
119 an explicit check. In some future gmp (don't know what version number),
120 mpz_cmp_d is supposed to do this itself. */
121 #if 1
122 #define xmpz_cmp_d(z, d) \
123 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
124 #else
125 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
126 #endif
127
128 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
129 isinf. It does have finite and isnan though, hence the use of those.
130 fpclass would be a possibility on that system too. */
131 static int
132 xisinf (double x)
133 {
134 #if defined (HAVE_ISINF)
135 return isinf (x);
136 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
137 return (! (finite (x) || isnan (x)));
138 #else
139 return 0;
140 #endif
141 }
142
143 static int
144 xisnan (double x)
145 {
146 #if defined (HAVE_ISNAN)
147 return isnan (x);
148 #else
149 return 0;
150 #endif
151 }
152
153 \f
154
155 static mpz_t z_negative_one;
156
157 \f
158
159 SCM_C_INLINE_KEYWORD SCM
160 scm_i_mkbig ()
161 {
162 /* Return a newly created bignum. */
163 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
164 mpz_init (SCM_I_BIG_MPZ (z));
165 return z;
166 }
167
168 SCM_C_INLINE_KEYWORD SCM
169 scm_i_long2big (long x)
170 {
171 /* Return a newly created bignum initialized to X. */
172 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
173 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
174 return z;
175 }
176
177 SCM_C_INLINE_KEYWORD SCM
178 scm_i_ulong2big (unsigned long x)
179 {
180 /* Return a newly created bignum initialized to X. */
181 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
182 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
183 return z;
184 }
185
186 SCM_C_INLINE_KEYWORD static SCM
187 scm_i_clonebig (SCM src_big, int same_sign_p)
188 {
189 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
190 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
191 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
192 if (!same_sign_p)
193 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
194 return z;
195 }
196
197 SCM_C_INLINE_KEYWORD int
198 scm_i_bigcmp (SCM x, SCM y)
199 {
200 /* Return neg if x < y, pos if x > y, and 0 if x == y */
201 /* presume we already know x and y are bignums */
202 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
203 scm_remember_upto_here_2 (x, y);
204 return result;
205 }
206
207 SCM_C_INLINE_KEYWORD SCM
208 scm_i_dbl2big (double d)
209 {
210 /* results are only defined if d is an integer */
211 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
212 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
213 return z;
214 }
215
216 /* Convert a integer in double representation to a SCM number. */
217
218 SCM_C_INLINE_KEYWORD SCM
219 scm_i_dbl2num (double u)
220 {
221 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
222 powers of 2, so there's no rounding when making "double" values
223 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
224 get rounded on a 64-bit machine, hence the "+1".
225
226 The use of floor() to force to an integer value ensures we get a
227 "numerically closest" value without depending on how a
228 double->long cast or how mpz_set_d will round. For reference,
229 double->long probably follows the hardware rounding mode,
230 mpz_set_d truncates towards zero. */
231
232 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
233 representable as a double? */
234
235 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
236 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
237 return SCM_I_MAKINUM ((long) u);
238 else
239 return scm_i_dbl2big (u);
240 }
241
242 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
243 with R5RS exact->inexact.
244
245 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
246 (ie. truncate towards zero), then adjust to get the closest double by
247 examining the next lower bit and adding 1 (to the absolute value) if
248 necessary.
249
250 Bignums exactly half way between representable doubles are rounded to the
251 next higher absolute value (ie. away from zero). This seems like an
252 adequate interpretation of R5RS "numerically closest", and it's easier
253 and faster than a full "nearest-even" style.
254
255 The bit test must be done on the absolute value of the mpz_t, which means
256 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
257 negatives as twos complement.
258
259 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
260 following the hardware rounding mode, but applied to the absolute value
261 of the mpz_t operand. This is not what we want so we put the high
262 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
263 mpz_get_d is supposed to always truncate towards zero.
264
265 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
266 is a slowdown. It'd be faster to pick out the relevant high bits with
267 mpz_getlimbn if we could be bothered coding that, and if the new
268 truncating gmp doesn't come out. */
269
270 double
271 scm_i_big2dbl (SCM b)
272 {
273 double result;
274 size_t bits;
275
276 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
277
278 #if 1
279 {
280 /* Current GMP, eg. 4.1.3, force truncation towards zero */
281 mpz_t tmp;
282 if (bits > DBL_MANT_DIG)
283 {
284 size_t shift = bits - DBL_MANT_DIG;
285 mpz_init2 (tmp, DBL_MANT_DIG);
286 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
287 result = ldexp (mpz_get_d (tmp), shift);
288 mpz_clear (tmp);
289 }
290 else
291 {
292 result = mpz_get_d (SCM_I_BIG_MPZ (b));
293 }
294 }
295 #else
296 /* Future GMP */
297 result = mpz_get_d (SCM_I_BIG_MPZ (b));
298 #endif
299
300 if (bits > DBL_MANT_DIG)
301 {
302 unsigned long pos = bits - DBL_MANT_DIG - 1;
303 /* test bit number "pos" in absolute value */
304 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
305 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
306 {
307 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
308 }
309 }
310
311 scm_remember_upto_here_1 (b);
312 return result;
313 }
314
315 SCM_C_INLINE_KEYWORD SCM
316 scm_i_normbig (SCM b)
317 {
318 /* convert a big back to a fixnum if it'll fit */
319 /* presume b is a bignum */
320 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
321 {
322 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
323 if (SCM_FIXABLE (val))
324 b = SCM_I_MAKINUM (val);
325 }
326 return b;
327 }
328
329 static SCM_C_INLINE_KEYWORD SCM
330 scm_i_mpz2num (mpz_t b)
331 {
332 /* convert a mpz number to a SCM number. */
333 if (mpz_fits_slong_p (b))
334 {
335 long val = mpz_get_si (b);
336 if (SCM_FIXABLE (val))
337 return SCM_I_MAKINUM (val);
338 }
339
340 {
341 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
342 mpz_init_set (SCM_I_BIG_MPZ (z), b);
343 return z;
344 }
345 }
346
347 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
348 static SCM scm_divide2real (SCM x, SCM y);
349
350 static SCM
351 scm_i_make_ratio (SCM numerator, SCM denominator)
352 #define FUNC_NAME "make-ratio"
353 {
354 /* First make sure the arguments are proper.
355 */
356 if (SCM_I_INUMP (denominator))
357 {
358 if (scm_is_eq (denominator, SCM_INUM0))
359 scm_num_overflow ("make-ratio");
360 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
361 return numerator;
362 }
363 else
364 {
365 if (!(SCM_BIGP(denominator)))
366 SCM_WRONG_TYPE_ARG (2, denominator);
367 }
368 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
369 SCM_WRONG_TYPE_ARG (1, numerator);
370
371 /* Then flip signs so that the denominator is positive.
372 */
373 if (scm_is_true (scm_negative_p (denominator)))
374 {
375 numerator = scm_difference (numerator, SCM_UNDEFINED);
376 denominator = scm_difference (denominator, SCM_UNDEFINED);
377 }
378
379 /* Now consider for each of the four fixnum/bignum combinations
380 whether the rational number is really an integer.
381 */
382 if (SCM_I_INUMP (numerator))
383 {
384 long x = SCM_I_INUM (numerator);
385 if (scm_is_eq (numerator, SCM_INUM0))
386 return SCM_INUM0;
387 if (SCM_I_INUMP (denominator))
388 {
389 long y;
390 y = SCM_I_INUM (denominator);
391 if (x == y)
392 return SCM_I_MAKINUM(1);
393 if ((x % y) == 0)
394 return SCM_I_MAKINUM (x / y);
395 }
396 else
397 {
398 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
399 of that value for the denominator, as a bignum. Apart from
400 that case, abs(bignum) > abs(inum) so inum/bignum is not an
401 integer. */
402 if (x == SCM_MOST_NEGATIVE_FIXNUM
403 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
404 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
405 return SCM_I_MAKINUM(-1);
406 }
407 }
408 else if (SCM_BIGP (numerator))
409 {
410 if (SCM_I_INUMP (denominator))
411 {
412 long yy = SCM_I_INUM (denominator);
413 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
414 return scm_divide (numerator, denominator);
415 }
416 else
417 {
418 if (scm_is_eq (numerator, denominator))
419 return SCM_I_MAKINUM(1);
420 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
421 SCM_I_BIG_MPZ (denominator)))
422 return scm_divide(numerator, denominator);
423 }
424 }
425
426 /* No, it's a proper fraction.
427 */
428 return scm_double_cell (scm_tc16_fraction,
429 SCM_UNPACK (numerator),
430 SCM_UNPACK (denominator), 0);
431 }
432 #undef FUNC_NAME
433
434 static void scm_i_fraction_reduce (SCM z)
435 {
436 if (!(SCM_FRACTION_REDUCED (z)))
437 {
438 SCM divisor;
439 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
440 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
441 {
442 /* is this safe? */
443 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
444 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
445 }
446 SCM_FRACTION_REDUCED_SET (z);
447 }
448 }
449
450 double
451 scm_i_fraction2double (SCM z)
452 {
453 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
454 SCM_FRACTION_DENOMINATOR (z)));
455 }
456
457 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
458 (SCM x),
459 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
460 "otherwise.")
461 #define FUNC_NAME s_scm_exact_p
462 {
463 if (SCM_I_INUMP (x))
464 return SCM_BOOL_T;
465 if (SCM_BIGP (x))
466 return SCM_BOOL_T;
467 if (SCM_FRACTIONP (x))
468 return SCM_BOOL_T;
469 if (SCM_NUMBERP (x))
470 return SCM_BOOL_F;
471 SCM_WRONG_TYPE_ARG (1, x);
472 }
473 #undef FUNC_NAME
474
475
476 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
477 (SCM n),
478 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
479 "otherwise.")
480 #define FUNC_NAME s_scm_odd_p
481 {
482 if (SCM_I_INUMP (n))
483 {
484 long val = SCM_I_INUM (n);
485 return scm_from_bool ((val & 1L) != 0);
486 }
487 else if (SCM_BIGP (n))
488 {
489 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
490 scm_remember_upto_here_1 (n);
491 return scm_from_bool (odd_p);
492 }
493 else if (scm_is_true (scm_inf_p (n)))
494 return SCM_BOOL_T;
495 else if (SCM_REALP (n))
496 {
497 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
498 if (rem == 1.0)
499 return SCM_BOOL_T;
500 else if (rem == 0.0)
501 return SCM_BOOL_F;
502 else
503 SCM_WRONG_TYPE_ARG (1, n);
504 }
505 else
506 SCM_WRONG_TYPE_ARG (1, n);
507 }
508 #undef FUNC_NAME
509
510
511 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
512 (SCM n),
513 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
514 "otherwise.")
515 #define FUNC_NAME s_scm_even_p
516 {
517 if (SCM_I_INUMP (n))
518 {
519 long val = SCM_I_INUM (n);
520 return scm_from_bool ((val & 1L) == 0);
521 }
522 else if (SCM_BIGP (n))
523 {
524 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
525 scm_remember_upto_here_1 (n);
526 return scm_from_bool (even_p);
527 }
528 else if (scm_is_true (scm_inf_p (n)))
529 return SCM_BOOL_T;
530 else if (SCM_REALP (n))
531 {
532 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
533 if (rem == 1.0)
534 return SCM_BOOL_F;
535 else if (rem == 0.0)
536 return SCM_BOOL_T;
537 else
538 SCM_WRONG_TYPE_ARG (1, n);
539 }
540 else
541 SCM_WRONG_TYPE_ARG (1, n);
542 }
543 #undef FUNC_NAME
544
545 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
546 (SCM x),
547 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
548 "or @samp{-inf.0}, @code{#f} otherwise.")
549 #define FUNC_NAME s_scm_inf_p
550 {
551 if (SCM_REALP (x))
552 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
553 else if (SCM_COMPLEXP (x))
554 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
555 || xisinf (SCM_COMPLEX_IMAG (x)));
556 else
557 return SCM_BOOL_F;
558 }
559 #undef FUNC_NAME
560
561 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
562 (SCM n),
563 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
564 "otherwise.")
565 #define FUNC_NAME s_scm_nan_p
566 {
567 if (SCM_REALP (n))
568 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
569 else if (SCM_COMPLEXP (n))
570 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
571 || xisnan (SCM_COMPLEX_IMAG (n)));
572 else
573 return SCM_BOOL_F;
574 }
575 #undef FUNC_NAME
576
577 /* Guile's idea of infinity. */
578 static double guile_Inf;
579
580 /* Guile's idea of not a number. */
581 static double guile_NaN;
582
583 static void
584 guile_ieee_init (void)
585 {
586 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
587
588 /* Some version of gcc on some old version of Linux used to crash when
589 trying to make Inf and NaN. */
590
591 #ifdef INFINITY
592 /* C99 INFINITY, when available.
593 FIXME: The standard allows for INFINITY to be something that overflows
594 at compile time. We ought to have a configure test to check for that
595 before trying to use it. (But in practice we believe this is not a
596 problem on any system guile is likely to target.) */
597 guile_Inf = INFINITY;
598 #elif HAVE_DINFINITY
599 /* OSF */
600 extern unsigned int DINFINITY[2];
601 guile_Inf = (*(X_CAST(double *, DINFINITY)));
602 #else
603 double tmp = 1e+10;
604 guile_Inf = tmp;
605 for (;;)
606 {
607 guile_Inf *= 1e+10;
608 if (guile_Inf == tmp)
609 break;
610 tmp = guile_Inf;
611 }
612 #endif
613
614 #endif
615
616 #if defined (HAVE_ISNAN)
617
618 #ifdef NAN
619 /* C99 NAN, when available */
620 guile_NaN = NAN;
621 #elif HAVE_DQNAN
622 /* OSF */
623 extern unsigned int DQNAN[2];
624 guile_NaN = (*(X_CAST(double *, DQNAN)));
625 #else
626 guile_NaN = guile_Inf / guile_Inf;
627 #endif
628
629 #endif
630 }
631
632 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
633 (void),
634 "Return Inf.")
635 #define FUNC_NAME s_scm_inf
636 {
637 static int initialized = 0;
638 if (! initialized)
639 {
640 guile_ieee_init ();
641 initialized = 1;
642 }
643 return scm_from_double (guile_Inf);
644 }
645 #undef FUNC_NAME
646
647 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
648 (void),
649 "Return NaN.")
650 #define FUNC_NAME s_scm_nan
651 {
652 static int initialized = 0;
653 if (!initialized)
654 {
655 guile_ieee_init ();
656 initialized = 1;
657 }
658 return scm_from_double (guile_NaN);
659 }
660 #undef FUNC_NAME
661
662
663 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
664 (SCM x),
665 "Return the absolute value of @var{x}.")
666 #define FUNC_NAME
667 {
668 if (SCM_I_INUMP (x))
669 {
670 long int xx = SCM_I_INUM (x);
671 if (xx >= 0)
672 return x;
673 else if (SCM_POSFIXABLE (-xx))
674 return SCM_I_MAKINUM (-xx);
675 else
676 return scm_i_long2big (-xx);
677 }
678 else if (SCM_BIGP (x))
679 {
680 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
681 if (sgn < 0)
682 return scm_i_clonebig (x, 0);
683 else
684 return x;
685 }
686 else if (SCM_REALP (x))
687 {
688 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
689 double xx = SCM_REAL_VALUE (x);
690 if (xx < 0.0)
691 return scm_from_double (-xx);
692 else
693 return x;
694 }
695 else if (SCM_FRACTIONP (x))
696 {
697 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
698 return x;
699 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
700 SCM_FRACTION_DENOMINATOR (x));
701 }
702 else
703 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
704 }
705 #undef FUNC_NAME
706
707
708 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
709 /* "Return the quotient of the numbers @var{x} and @var{y}."
710 */
711 SCM
712 scm_quotient (SCM x, SCM y)
713 {
714 if (SCM_I_INUMP (x))
715 {
716 long xx = SCM_I_INUM (x);
717 if (SCM_I_INUMP (y))
718 {
719 long yy = SCM_I_INUM (y);
720 if (yy == 0)
721 scm_num_overflow (s_quotient);
722 else
723 {
724 long z = xx / yy;
725 if (SCM_FIXABLE (z))
726 return SCM_I_MAKINUM (z);
727 else
728 return scm_i_long2big (z);
729 }
730 }
731 else if (SCM_BIGP (y))
732 {
733 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
734 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
735 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
736 {
737 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
738 scm_remember_upto_here_1 (y);
739 return SCM_I_MAKINUM (-1);
740 }
741 else
742 return SCM_I_MAKINUM (0);
743 }
744 else
745 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
746 }
747 else if (SCM_BIGP (x))
748 {
749 if (SCM_I_INUMP (y))
750 {
751 long yy = SCM_I_INUM (y);
752 if (yy == 0)
753 scm_num_overflow (s_quotient);
754 else if (yy == 1)
755 return x;
756 else
757 {
758 SCM result = scm_i_mkbig ();
759 if (yy < 0)
760 {
761 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
762 SCM_I_BIG_MPZ (x),
763 - yy);
764 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
765 }
766 else
767 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
768 scm_remember_upto_here_1 (x);
769 return scm_i_normbig (result);
770 }
771 }
772 else if (SCM_BIGP (y))
773 {
774 SCM result = scm_i_mkbig ();
775 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
776 SCM_I_BIG_MPZ (x),
777 SCM_I_BIG_MPZ (y));
778 scm_remember_upto_here_2 (x, y);
779 return scm_i_normbig (result);
780 }
781 else
782 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
783 }
784 else
785 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
786 }
787
788 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
789 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
790 * "@lisp\n"
791 * "(remainder 13 4) @result{} 1\n"
792 * "(remainder -13 4) @result{} -1\n"
793 * "@end lisp"
794 */
795 SCM
796 scm_remainder (SCM x, SCM y)
797 {
798 if (SCM_I_INUMP (x))
799 {
800 if (SCM_I_INUMP (y))
801 {
802 long yy = SCM_I_INUM (y);
803 if (yy == 0)
804 scm_num_overflow (s_remainder);
805 else
806 {
807 long z = SCM_I_INUM (x) % yy;
808 return SCM_I_MAKINUM (z);
809 }
810 }
811 else if (SCM_BIGP (y))
812 {
813 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
814 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
815 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
816 {
817 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
818 scm_remember_upto_here_1 (y);
819 return SCM_I_MAKINUM (0);
820 }
821 else
822 return x;
823 }
824 else
825 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
826 }
827 else if (SCM_BIGP (x))
828 {
829 if (SCM_I_INUMP (y))
830 {
831 long yy = SCM_I_INUM (y);
832 if (yy == 0)
833 scm_num_overflow (s_remainder);
834 else
835 {
836 SCM result = scm_i_mkbig ();
837 if (yy < 0)
838 yy = - yy;
839 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
840 scm_remember_upto_here_1 (x);
841 return scm_i_normbig (result);
842 }
843 }
844 else if (SCM_BIGP (y))
845 {
846 SCM result = scm_i_mkbig ();
847 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
848 SCM_I_BIG_MPZ (x),
849 SCM_I_BIG_MPZ (y));
850 scm_remember_upto_here_2 (x, y);
851 return scm_i_normbig (result);
852 }
853 else
854 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
855 }
856 else
857 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
858 }
859
860
861 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
862 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
863 * "@lisp\n"
864 * "(modulo 13 4) @result{} 1\n"
865 * "(modulo -13 4) @result{} 3\n"
866 * "@end lisp"
867 */
868 SCM
869 scm_modulo (SCM x, SCM y)
870 {
871 if (SCM_I_INUMP (x))
872 {
873 long xx = SCM_I_INUM (x);
874 if (SCM_I_INUMP (y))
875 {
876 long yy = SCM_I_INUM (y);
877 if (yy == 0)
878 scm_num_overflow (s_modulo);
879 else
880 {
881 /* FIXME: I think this may be a bug on some arches -- results
882 of % with negative second arg are undefined... */
883 long z = xx % yy;
884 long result;
885
886 if (yy < 0)
887 {
888 if (z > 0)
889 result = z + yy;
890 else
891 result = z;
892 }
893 else
894 {
895 if (z < 0)
896 result = z + yy;
897 else
898 result = z;
899 }
900 return SCM_I_MAKINUM (result);
901 }
902 }
903 else if (SCM_BIGP (y))
904 {
905 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
906 {
907 mpz_t z_x;
908 SCM result;
909
910 if (sgn_y < 0)
911 {
912 SCM pos_y = scm_i_clonebig (y, 0);
913 /* do this after the last scm_op */
914 mpz_init_set_si (z_x, xx);
915 result = pos_y; /* re-use this bignum */
916 mpz_mod (SCM_I_BIG_MPZ (result),
917 z_x,
918 SCM_I_BIG_MPZ (pos_y));
919 scm_remember_upto_here_1 (pos_y);
920 }
921 else
922 {
923 result = scm_i_mkbig ();
924 /* do this after the last scm_op */
925 mpz_init_set_si (z_x, xx);
926 mpz_mod (SCM_I_BIG_MPZ (result),
927 z_x,
928 SCM_I_BIG_MPZ (y));
929 scm_remember_upto_here_1 (y);
930 }
931
932 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
933 mpz_add (SCM_I_BIG_MPZ (result),
934 SCM_I_BIG_MPZ (y),
935 SCM_I_BIG_MPZ (result));
936 scm_remember_upto_here_1 (y);
937 /* and do this before the next one */
938 mpz_clear (z_x);
939 return scm_i_normbig (result);
940 }
941 }
942 else
943 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
944 }
945 else if (SCM_BIGP (x))
946 {
947 if (SCM_I_INUMP (y))
948 {
949 long yy = SCM_I_INUM (y);
950 if (yy == 0)
951 scm_num_overflow (s_modulo);
952 else
953 {
954 SCM result = scm_i_mkbig ();
955 mpz_mod_ui (SCM_I_BIG_MPZ (result),
956 SCM_I_BIG_MPZ (x),
957 (yy < 0) ? - yy : yy);
958 scm_remember_upto_here_1 (x);
959 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
960 mpz_sub_ui (SCM_I_BIG_MPZ (result),
961 SCM_I_BIG_MPZ (result),
962 - yy);
963 return scm_i_normbig (result);
964 }
965 }
966 else if (SCM_BIGP (y))
967 {
968 {
969 SCM result = scm_i_mkbig ();
970 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
971 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
972 mpz_mod (SCM_I_BIG_MPZ (result),
973 SCM_I_BIG_MPZ (x),
974 SCM_I_BIG_MPZ (pos_y));
975
976 scm_remember_upto_here_1 (x);
977 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
978 mpz_add (SCM_I_BIG_MPZ (result),
979 SCM_I_BIG_MPZ (y),
980 SCM_I_BIG_MPZ (result));
981 scm_remember_upto_here_2 (y, pos_y);
982 return scm_i_normbig (result);
983 }
984 }
985 else
986 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
987 }
988 else
989 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
990 }
991
992 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
993 /* "Return the greatest common divisor of all arguments.\n"
994 * "If called without arguments, 0 is returned."
995 */
996 SCM
997 scm_gcd (SCM x, SCM y)
998 {
999 if (SCM_UNBNDP (y))
1000 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
1001
1002 if (SCM_I_INUMP (x))
1003 {
1004 if (SCM_I_INUMP (y))
1005 {
1006 long xx = SCM_I_INUM (x);
1007 long yy = SCM_I_INUM (y);
1008 long u = xx < 0 ? -xx : xx;
1009 long v = yy < 0 ? -yy : yy;
1010 long result;
1011 if (xx == 0)
1012 result = v;
1013 else if (yy == 0)
1014 result = u;
1015 else
1016 {
1017 long k = 1;
1018 long t;
1019 /* Determine a common factor 2^k */
1020 while (!(1 & (u | v)))
1021 {
1022 k <<= 1;
1023 u >>= 1;
1024 v >>= 1;
1025 }
1026 /* Now, any factor 2^n can be eliminated */
1027 if (u & 1)
1028 t = -v;
1029 else
1030 {
1031 t = u;
1032 b3:
1033 t = SCM_SRS (t, 1);
1034 }
1035 if (!(1 & t))
1036 goto b3;
1037 if (t > 0)
1038 u = t;
1039 else
1040 v = -t;
1041 t = u - v;
1042 if (t != 0)
1043 goto b3;
1044 result = u * k;
1045 }
1046 return (SCM_POSFIXABLE (result)
1047 ? SCM_I_MAKINUM (result)
1048 : scm_i_long2big (result));
1049 }
1050 else if (SCM_BIGP (y))
1051 {
1052 SCM_SWAP (x, y);
1053 goto big_inum;
1054 }
1055 else
1056 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1057 }
1058 else if (SCM_BIGP (x))
1059 {
1060 if (SCM_I_INUMP (y))
1061 {
1062 unsigned long result;
1063 long yy;
1064 big_inum:
1065 yy = SCM_I_INUM (y);
1066 if (yy == 0)
1067 return scm_abs (x);
1068 if (yy < 0)
1069 yy = -yy;
1070 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1071 scm_remember_upto_here_1 (x);
1072 return (SCM_POSFIXABLE (result)
1073 ? SCM_I_MAKINUM (result)
1074 : scm_from_ulong (result));
1075 }
1076 else if (SCM_BIGP (y))
1077 {
1078 SCM result = scm_i_mkbig ();
1079 mpz_gcd (SCM_I_BIG_MPZ (result),
1080 SCM_I_BIG_MPZ (x),
1081 SCM_I_BIG_MPZ (y));
1082 scm_remember_upto_here_2 (x, y);
1083 return scm_i_normbig (result);
1084 }
1085 else
1086 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1087 }
1088 else
1089 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1090 }
1091
1092 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1093 /* "Return the least common multiple of the arguments.\n"
1094 * "If called without arguments, 1 is returned."
1095 */
1096 SCM
1097 scm_lcm (SCM n1, SCM n2)
1098 {
1099 if (SCM_UNBNDP (n2))
1100 {
1101 if (SCM_UNBNDP (n1))
1102 return SCM_I_MAKINUM (1L);
1103 n2 = SCM_I_MAKINUM (1L);
1104 }
1105
1106 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1107 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1108 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1109 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1110
1111 if (SCM_I_INUMP (n1))
1112 {
1113 if (SCM_I_INUMP (n2))
1114 {
1115 SCM d = scm_gcd (n1, n2);
1116 if (scm_is_eq (d, SCM_INUM0))
1117 return d;
1118 else
1119 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1120 }
1121 else
1122 {
1123 /* inum n1, big n2 */
1124 inumbig:
1125 {
1126 SCM result = scm_i_mkbig ();
1127 long nn1 = SCM_I_INUM (n1);
1128 if (nn1 == 0) return SCM_INUM0;
1129 if (nn1 < 0) nn1 = - nn1;
1130 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1131 scm_remember_upto_here_1 (n2);
1132 return result;
1133 }
1134 }
1135 }
1136 else
1137 {
1138 /* big n1 */
1139 if (SCM_I_INUMP (n2))
1140 {
1141 SCM_SWAP (n1, n2);
1142 goto inumbig;
1143 }
1144 else
1145 {
1146 SCM result = scm_i_mkbig ();
1147 mpz_lcm(SCM_I_BIG_MPZ (result),
1148 SCM_I_BIG_MPZ (n1),
1149 SCM_I_BIG_MPZ (n2));
1150 scm_remember_upto_here_2(n1, n2);
1151 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1152 return result;
1153 }
1154 }
1155 }
1156
1157 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1158
1159 Logand:
1160 X Y Result Method:
1161 (len)
1162 + + + x (map digit:logand X Y)
1163 + - + x (map digit:logand X (lognot (+ -1 Y)))
1164 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1165 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1166
1167 Logior:
1168 X Y Result Method:
1169
1170 + + + (map digit:logior X Y)
1171 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1172 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1173 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1174
1175 Logxor:
1176 X Y Result Method:
1177
1178 + + + (map digit:logxor X Y)
1179 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1180 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1181 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1182
1183 Logtest:
1184 X Y Result
1185
1186 + + (any digit:logand X Y)
1187 + - (any digit:logand X (lognot (+ -1 Y)))
1188 - + (any digit:logand (lognot (+ -1 X)) Y)
1189 - - #t
1190
1191 */
1192
1193 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1194 (SCM n1, SCM n2),
1195 "Return the bitwise AND of the integer arguments.\n\n"
1196 "@lisp\n"
1197 "(logand) @result{} -1\n"
1198 "(logand 7) @result{} 7\n"
1199 "(logand #b111 #b011 #b001) @result{} 1\n"
1200 "@end lisp")
1201 #define FUNC_NAME s_scm_logand
1202 {
1203 long int nn1;
1204
1205 if (SCM_UNBNDP (n2))
1206 {
1207 if (SCM_UNBNDP (n1))
1208 return SCM_I_MAKINUM (-1);
1209 else if (!SCM_NUMBERP (n1))
1210 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1211 else if (SCM_NUMBERP (n1))
1212 return n1;
1213 else
1214 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1215 }
1216
1217 if (SCM_I_INUMP (n1))
1218 {
1219 nn1 = SCM_I_INUM (n1);
1220 if (SCM_I_INUMP (n2))
1221 {
1222 long nn2 = SCM_I_INUM (n2);
1223 return SCM_I_MAKINUM (nn1 & nn2);
1224 }
1225 else if SCM_BIGP (n2)
1226 {
1227 intbig:
1228 if (n1 == 0)
1229 return SCM_INUM0;
1230 {
1231 SCM result_z = scm_i_mkbig ();
1232 mpz_t nn1_z;
1233 mpz_init_set_si (nn1_z, nn1);
1234 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1235 scm_remember_upto_here_1 (n2);
1236 mpz_clear (nn1_z);
1237 return scm_i_normbig (result_z);
1238 }
1239 }
1240 else
1241 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1242 }
1243 else if (SCM_BIGP (n1))
1244 {
1245 if (SCM_I_INUMP (n2))
1246 {
1247 SCM_SWAP (n1, n2);
1248 nn1 = SCM_I_INUM (n1);
1249 goto intbig;
1250 }
1251 else if (SCM_BIGP (n2))
1252 {
1253 SCM result_z = scm_i_mkbig ();
1254 mpz_and (SCM_I_BIG_MPZ (result_z),
1255 SCM_I_BIG_MPZ (n1),
1256 SCM_I_BIG_MPZ (n2));
1257 scm_remember_upto_here_2 (n1, n2);
1258 return scm_i_normbig (result_z);
1259 }
1260 else
1261 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1262 }
1263 else
1264 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1265 }
1266 #undef FUNC_NAME
1267
1268
1269 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1270 (SCM n1, SCM n2),
1271 "Return the bitwise OR of the integer arguments.\n\n"
1272 "@lisp\n"
1273 "(logior) @result{} 0\n"
1274 "(logior 7) @result{} 7\n"
1275 "(logior #b000 #b001 #b011) @result{} 3\n"
1276 "@end lisp")
1277 #define FUNC_NAME s_scm_logior
1278 {
1279 long int nn1;
1280
1281 if (SCM_UNBNDP (n2))
1282 {
1283 if (SCM_UNBNDP (n1))
1284 return SCM_INUM0;
1285 else if (SCM_NUMBERP (n1))
1286 return n1;
1287 else
1288 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1289 }
1290
1291 if (SCM_I_INUMP (n1))
1292 {
1293 nn1 = SCM_I_INUM (n1);
1294 if (SCM_I_INUMP (n2))
1295 {
1296 long nn2 = SCM_I_INUM (n2);
1297 return SCM_I_MAKINUM (nn1 | nn2);
1298 }
1299 else if (SCM_BIGP (n2))
1300 {
1301 intbig:
1302 if (nn1 == 0)
1303 return n2;
1304 {
1305 SCM result_z = scm_i_mkbig ();
1306 mpz_t nn1_z;
1307 mpz_init_set_si (nn1_z, nn1);
1308 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1309 scm_remember_upto_here_1 (n2);
1310 mpz_clear (nn1_z);
1311 return result_z;
1312 }
1313 }
1314 else
1315 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1316 }
1317 else if (SCM_BIGP (n1))
1318 {
1319 if (SCM_I_INUMP (n2))
1320 {
1321 SCM_SWAP (n1, n2);
1322 nn1 = SCM_I_INUM (n1);
1323 goto intbig;
1324 }
1325 else if (SCM_BIGP (n2))
1326 {
1327 SCM result_z = scm_i_mkbig ();
1328 mpz_ior (SCM_I_BIG_MPZ (result_z),
1329 SCM_I_BIG_MPZ (n1),
1330 SCM_I_BIG_MPZ (n2));
1331 scm_remember_upto_here_2 (n1, n2);
1332 return result_z;
1333 }
1334 else
1335 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1336 }
1337 else
1338 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1339 }
1340 #undef FUNC_NAME
1341
1342
1343 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1344 (SCM n1, SCM n2),
1345 "Return the bitwise XOR of the integer arguments. A bit is\n"
1346 "set in the result if it is set in an odd number of arguments.\n"
1347 "@lisp\n"
1348 "(logxor) @result{} 0\n"
1349 "(logxor 7) @result{} 7\n"
1350 "(logxor #b000 #b001 #b011) @result{} 2\n"
1351 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1352 "@end lisp")
1353 #define FUNC_NAME s_scm_logxor
1354 {
1355 long int nn1;
1356
1357 if (SCM_UNBNDP (n2))
1358 {
1359 if (SCM_UNBNDP (n1))
1360 return SCM_INUM0;
1361 else if (SCM_NUMBERP (n1))
1362 return n1;
1363 else
1364 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1365 }
1366
1367 if (SCM_I_INUMP (n1))
1368 {
1369 nn1 = SCM_I_INUM (n1);
1370 if (SCM_I_INUMP (n2))
1371 {
1372 long nn2 = SCM_I_INUM (n2);
1373 return SCM_I_MAKINUM (nn1 ^ nn2);
1374 }
1375 else if (SCM_BIGP (n2))
1376 {
1377 intbig:
1378 {
1379 SCM result_z = scm_i_mkbig ();
1380 mpz_t nn1_z;
1381 mpz_init_set_si (nn1_z, nn1);
1382 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1383 scm_remember_upto_here_1 (n2);
1384 mpz_clear (nn1_z);
1385 return scm_i_normbig (result_z);
1386 }
1387 }
1388 else
1389 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1390 }
1391 else if (SCM_BIGP (n1))
1392 {
1393 if (SCM_I_INUMP (n2))
1394 {
1395 SCM_SWAP (n1, n2);
1396 nn1 = SCM_I_INUM (n1);
1397 goto intbig;
1398 }
1399 else if (SCM_BIGP (n2))
1400 {
1401 SCM result_z = scm_i_mkbig ();
1402 mpz_xor (SCM_I_BIG_MPZ (result_z),
1403 SCM_I_BIG_MPZ (n1),
1404 SCM_I_BIG_MPZ (n2));
1405 scm_remember_upto_here_2 (n1, n2);
1406 return scm_i_normbig (result_z);
1407 }
1408 else
1409 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1410 }
1411 else
1412 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1413 }
1414 #undef FUNC_NAME
1415
1416
1417 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1418 (SCM j, SCM k),
1419 "@lisp\n"
1420 "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
1421 "(logtest #b0100 #b1011) @result{} #f\n"
1422 "(logtest #b0100 #b0111) @result{} #t\n"
1423 "@end lisp")
1424 #define FUNC_NAME s_scm_logtest
1425 {
1426 long int nj;
1427
1428 if (SCM_I_INUMP (j))
1429 {
1430 nj = SCM_I_INUM (j);
1431 if (SCM_I_INUMP (k))
1432 {
1433 long nk = SCM_I_INUM (k);
1434 return scm_from_bool (nj & nk);
1435 }
1436 else if (SCM_BIGP (k))
1437 {
1438 intbig:
1439 if (nj == 0)
1440 return SCM_BOOL_F;
1441 {
1442 SCM result;
1443 mpz_t nj_z;
1444 mpz_init_set_si (nj_z, nj);
1445 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1446 scm_remember_upto_here_1 (k);
1447 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1448 mpz_clear (nj_z);
1449 return result;
1450 }
1451 }
1452 else
1453 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1454 }
1455 else if (SCM_BIGP (j))
1456 {
1457 if (SCM_I_INUMP (k))
1458 {
1459 SCM_SWAP (j, k);
1460 nj = SCM_I_INUM (j);
1461 goto intbig;
1462 }
1463 else if (SCM_BIGP (k))
1464 {
1465 SCM result;
1466 mpz_t result_z;
1467 mpz_init (result_z);
1468 mpz_and (result_z,
1469 SCM_I_BIG_MPZ (j),
1470 SCM_I_BIG_MPZ (k));
1471 scm_remember_upto_here_2 (j, k);
1472 result = scm_from_bool (mpz_sgn (result_z) != 0);
1473 mpz_clear (result_z);
1474 return result;
1475 }
1476 else
1477 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1478 }
1479 else
1480 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1481 }
1482 #undef FUNC_NAME
1483
1484
1485 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1486 (SCM index, SCM j),
1487 "@lisp\n"
1488 "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
1489 "(logbit? 0 #b1101) @result{} #t\n"
1490 "(logbit? 1 #b1101) @result{} #f\n"
1491 "(logbit? 2 #b1101) @result{} #t\n"
1492 "(logbit? 3 #b1101) @result{} #t\n"
1493 "(logbit? 4 #b1101) @result{} #f\n"
1494 "@end lisp")
1495 #define FUNC_NAME s_scm_logbit_p
1496 {
1497 unsigned long int iindex;
1498 iindex = scm_to_ulong (index);
1499
1500 if (SCM_I_INUMP (j))
1501 {
1502 /* bits above what's in an inum follow the sign bit */
1503 iindex = min (iindex, SCM_LONG_BIT - 1);
1504 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1505 }
1506 else if (SCM_BIGP (j))
1507 {
1508 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1509 scm_remember_upto_here_1 (j);
1510 return scm_from_bool (val);
1511 }
1512 else
1513 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1514 }
1515 #undef FUNC_NAME
1516
1517
1518 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1519 (SCM n),
1520 "Return the integer which is the ones-complement of the integer\n"
1521 "argument.\n"
1522 "\n"
1523 "@lisp\n"
1524 "(number->string (lognot #b10000000) 2)\n"
1525 " @result{} \"-10000001\"\n"
1526 "(number->string (lognot #b0) 2)\n"
1527 " @result{} \"-1\"\n"
1528 "@end lisp")
1529 #define FUNC_NAME s_scm_lognot
1530 {
1531 if (SCM_I_INUMP (n)) {
1532 /* No overflow here, just need to toggle all the bits making up the inum.
1533 Enhancement: No need to strip the tag and add it back, could just xor
1534 a block of 1 bits, if that worked with the various debug versions of
1535 the SCM typedef. */
1536 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1537
1538 } else if (SCM_BIGP (n)) {
1539 SCM result = scm_i_mkbig ();
1540 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1541 scm_remember_upto_here_1 (n);
1542 return result;
1543
1544 } else {
1545 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1546 }
1547 }
1548 #undef FUNC_NAME
1549
1550 /* returns 0 if IN is not an integer. OUT must already be
1551 initialized. */
1552 static int
1553 coerce_to_big (SCM in, mpz_t out)
1554 {
1555 if (SCM_BIGP (in))
1556 mpz_set (out, SCM_I_BIG_MPZ (in));
1557 else if (SCM_I_INUMP (in))
1558 mpz_set_si (out, SCM_I_INUM (in));
1559 else
1560 return 0;
1561
1562 return 1;
1563 }
1564
1565 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1566 (SCM n, SCM k, SCM m),
1567 "Return @var{n} raised to the integer exponent\n"
1568 "@var{k}, modulo @var{m}.\n"
1569 "\n"
1570 "@lisp\n"
1571 "(modulo-expt 2 3 5)\n"
1572 " @result{} 3\n"
1573 "@end lisp")
1574 #define FUNC_NAME s_scm_modulo_expt
1575 {
1576 mpz_t n_tmp;
1577 mpz_t k_tmp;
1578 mpz_t m_tmp;
1579
1580 /* There are two classes of error we might encounter --
1581 1) Math errors, which we'll report by calling scm_num_overflow,
1582 and
1583 2) wrong-type errors, which of course we'll report by calling
1584 SCM_WRONG_TYPE_ARG.
1585 We don't report those errors immediately, however; instead we do
1586 some cleanup first. These variables tell us which error (if
1587 any) we should report after cleaning up.
1588 */
1589 int report_overflow = 0;
1590
1591 int position_of_wrong_type = 0;
1592 SCM value_of_wrong_type = SCM_INUM0;
1593
1594 SCM result = SCM_UNDEFINED;
1595
1596 mpz_init (n_tmp);
1597 mpz_init (k_tmp);
1598 mpz_init (m_tmp);
1599
1600 if (scm_is_eq (m, SCM_INUM0))
1601 {
1602 report_overflow = 1;
1603 goto cleanup;
1604 }
1605
1606 if (!coerce_to_big (n, n_tmp))
1607 {
1608 value_of_wrong_type = n;
1609 position_of_wrong_type = 1;
1610 goto cleanup;
1611 }
1612
1613 if (!coerce_to_big (k, k_tmp))
1614 {
1615 value_of_wrong_type = k;
1616 position_of_wrong_type = 2;
1617 goto cleanup;
1618 }
1619
1620 if (!coerce_to_big (m, m_tmp))
1621 {
1622 value_of_wrong_type = m;
1623 position_of_wrong_type = 3;
1624 goto cleanup;
1625 }
1626
1627 /* if the exponent K is negative, and we simply call mpz_powm, we
1628 will get a divide-by-zero exception when an inverse 1/n mod m
1629 doesn't exist (or is not unique). Since exceptions are hard to
1630 handle, we'll attempt the inversion "by hand" -- that way, we get
1631 a simple failure code, which is easy to handle. */
1632
1633 if (-1 == mpz_sgn (k_tmp))
1634 {
1635 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1636 {
1637 report_overflow = 1;
1638 goto cleanup;
1639 }
1640 mpz_neg (k_tmp, k_tmp);
1641 }
1642
1643 result = scm_i_mkbig ();
1644 mpz_powm (SCM_I_BIG_MPZ (result),
1645 n_tmp,
1646 k_tmp,
1647 m_tmp);
1648
1649 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1650 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1651
1652 cleanup:
1653 mpz_clear (m_tmp);
1654 mpz_clear (k_tmp);
1655 mpz_clear (n_tmp);
1656
1657 if (report_overflow)
1658 scm_num_overflow (FUNC_NAME);
1659
1660 if (position_of_wrong_type)
1661 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1662 value_of_wrong_type);
1663
1664 return scm_i_normbig (result);
1665 }
1666 #undef FUNC_NAME
1667
1668 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1669 (SCM n, SCM k),
1670 "Return @var{n} raised to the exact integer exponent\n"
1671 "@var{k}.\n"
1672 "\n"
1673 "@lisp\n"
1674 "(integer-expt 2 5)\n"
1675 " @result{} 32\n"
1676 "(integer-expt -3 3)\n"
1677 " @result{} -27\n"
1678 "@end lisp")
1679 #define FUNC_NAME s_scm_integer_expt
1680 {
1681 long i2 = 0;
1682 SCM z_i2 = SCM_BOOL_F;
1683 int i2_is_big = 0;
1684 SCM acc = SCM_I_MAKINUM (1L);
1685
1686 /* 0^0 == 1 according to R5RS */
1687 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1688 return scm_is_false (scm_zero_p(k)) ? n : acc;
1689 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1690 return scm_is_false (scm_even_p (k)) ? n : acc;
1691
1692 if (SCM_I_INUMP (k))
1693 i2 = SCM_I_INUM (k);
1694 else if (SCM_BIGP (k))
1695 {
1696 z_i2 = scm_i_clonebig (k, 1);
1697 scm_remember_upto_here_1 (k);
1698 i2_is_big = 1;
1699 }
1700 else
1701 SCM_WRONG_TYPE_ARG (2, k);
1702
1703 if (i2_is_big)
1704 {
1705 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1706 {
1707 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1708 n = scm_divide (n, SCM_UNDEFINED);
1709 }
1710 while (1)
1711 {
1712 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1713 {
1714 return acc;
1715 }
1716 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1717 {
1718 return scm_product (acc, n);
1719 }
1720 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1721 acc = scm_product (acc, n);
1722 n = scm_product (n, n);
1723 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1724 }
1725 }
1726 else
1727 {
1728 if (i2 < 0)
1729 {
1730 i2 = -i2;
1731 n = scm_divide (n, SCM_UNDEFINED);
1732 }
1733 while (1)
1734 {
1735 if (0 == i2)
1736 return acc;
1737 if (1 == i2)
1738 return scm_product (acc, n);
1739 if (i2 & 1)
1740 acc = scm_product (acc, n);
1741 n = scm_product (n, n);
1742 i2 >>= 1;
1743 }
1744 }
1745 }
1746 #undef FUNC_NAME
1747
1748 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1749 (SCM n, SCM cnt),
1750 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1751 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1752 "\n"
1753 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1754 "@var{cnt} is negative it's a division, rounded towards negative\n"
1755 "infinity. (Note that this is not the same rounding as\n"
1756 "@code{quotient} does.)\n"
1757 "\n"
1758 "With @var{n} viewed as an infinite precision twos complement,\n"
1759 "@code{ash} means a left shift introducing zero bits, or a right\n"
1760 "shift dropping bits.\n"
1761 "\n"
1762 "@lisp\n"
1763 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1764 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1765 "\n"
1766 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1767 "(ash -23 -2) @result{} -6\n"
1768 "@end lisp")
1769 #define FUNC_NAME s_scm_ash
1770 {
1771 long bits_to_shift;
1772 bits_to_shift = scm_to_long (cnt);
1773
1774 if (bits_to_shift < 0)
1775 {
1776 /* Shift right by abs(cnt) bits. This is realized as a division
1777 by div:=2^abs(cnt). However, to guarantee the floor
1778 rounding, negative values require some special treatment.
1779 */
1780 SCM div = scm_integer_expt (SCM_I_MAKINUM (2),
1781 scm_from_long (-bits_to_shift));
1782
1783 /* scm_quotient assumes its arguments are integers, but it's legal to (ash 1/2 -1) */
1784 if (scm_is_false (scm_negative_p (n)))
1785 return scm_quotient (n, div);
1786 else
1787 return scm_sum (SCM_I_MAKINUM (-1L),
1788 scm_quotient (scm_sum (SCM_I_MAKINUM (1L), n), div));
1789 }
1790 else
1791 /* Shift left is done by multiplication with 2^CNT */
1792 return scm_product (n, scm_integer_expt (SCM_I_MAKINUM (2), cnt));
1793 }
1794 #undef FUNC_NAME
1795
1796
1797 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1798 (SCM n, SCM start, SCM end),
1799 "Return the integer composed of the @var{start} (inclusive)\n"
1800 "through @var{end} (exclusive) bits of @var{n}. The\n"
1801 "@var{start}th bit becomes the 0-th bit in the result.\n"
1802 "\n"
1803 "@lisp\n"
1804 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1805 " @result{} \"1010\"\n"
1806 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1807 " @result{} \"10110\"\n"
1808 "@end lisp")
1809 #define FUNC_NAME s_scm_bit_extract
1810 {
1811 unsigned long int istart, iend, bits;
1812 istart = scm_to_ulong (start);
1813 iend = scm_to_ulong (end);
1814 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1815
1816 /* how many bits to keep */
1817 bits = iend - istart;
1818
1819 if (SCM_I_INUMP (n))
1820 {
1821 long int in = SCM_I_INUM (n);
1822
1823 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1824 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1825 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1826
1827 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1828 {
1829 /* Since we emulate two's complement encoded numbers, this
1830 * special case requires us to produce a result that has
1831 * more bits than can be stored in a fixnum.
1832 */
1833 SCM result = scm_i_long2big (in);
1834 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1835 bits);
1836 return result;
1837 }
1838
1839 /* mask down to requisite bits */
1840 bits = min (bits, SCM_I_FIXNUM_BIT);
1841 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
1842 }
1843 else if (SCM_BIGP (n))
1844 {
1845 SCM result;
1846 if (bits == 1)
1847 {
1848 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1849 }
1850 else
1851 {
1852 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1853 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1854 such bits into a ulong. */
1855 result = scm_i_mkbig ();
1856 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1857 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1858 result = scm_i_normbig (result);
1859 }
1860 scm_remember_upto_here_1 (n);
1861 return result;
1862 }
1863 else
1864 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1865 }
1866 #undef FUNC_NAME
1867
1868
1869 static const char scm_logtab[] = {
1870 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1871 };
1872
1873 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1874 (SCM n),
1875 "Return the number of bits in integer @var{n}. If integer is\n"
1876 "positive, the 1-bits in its binary representation are counted.\n"
1877 "If negative, the 0-bits in its two's-complement binary\n"
1878 "representation are counted. If 0, 0 is returned.\n"
1879 "\n"
1880 "@lisp\n"
1881 "(logcount #b10101010)\n"
1882 " @result{} 4\n"
1883 "(logcount 0)\n"
1884 " @result{} 0\n"
1885 "(logcount -2)\n"
1886 " @result{} 1\n"
1887 "@end lisp")
1888 #define FUNC_NAME s_scm_logcount
1889 {
1890 if (SCM_I_INUMP (n))
1891 {
1892 unsigned long int c = 0;
1893 long int nn = SCM_I_INUM (n);
1894 if (nn < 0)
1895 nn = -1 - nn;
1896 while (nn)
1897 {
1898 c += scm_logtab[15 & nn];
1899 nn >>= 4;
1900 }
1901 return SCM_I_MAKINUM (c);
1902 }
1903 else if (SCM_BIGP (n))
1904 {
1905 unsigned long count;
1906 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1907 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1908 else
1909 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1910 scm_remember_upto_here_1 (n);
1911 return SCM_I_MAKINUM (count);
1912 }
1913 else
1914 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1915 }
1916 #undef FUNC_NAME
1917
1918
1919 static const char scm_ilentab[] = {
1920 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1921 };
1922
1923
1924 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1925 (SCM n),
1926 "Return the number of bits necessary to represent @var{n}.\n"
1927 "\n"
1928 "@lisp\n"
1929 "(integer-length #b10101010)\n"
1930 " @result{} 8\n"
1931 "(integer-length 0)\n"
1932 " @result{} 0\n"
1933 "(integer-length #b1111)\n"
1934 " @result{} 4\n"
1935 "@end lisp")
1936 #define FUNC_NAME s_scm_integer_length
1937 {
1938 if (SCM_I_INUMP (n))
1939 {
1940 unsigned long int c = 0;
1941 unsigned int l = 4;
1942 long int nn = SCM_I_INUM (n);
1943 if (nn < 0)
1944 nn = -1 - nn;
1945 while (nn)
1946 {
1947 c += 4;
1948 l = scm_ilentab [15 & nn];
1949 nn >>= 4;
1950 }
1951 return SCM_I_MAKINUM (c - 4 + l);
1952 }
1953 else if (SCM_BIGP (n))
1954 {
1955 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
1956 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
1957 1 too big, so check for that and adjust. */
1958 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
1959 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
1960 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
1961 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
1962 size--;
1963 scm_remember_upto_here_1 (n);
1964 return SCM_I_MAKINUM (size);
1965 }
1966 else
1967 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1968 }
1969 #undef FUNC_NAME
1970
1971 /*** NUMBERS -> STRINGS ***/
1972 #define SCM_MAX_DBL_PREC 60
1973 #define SCM_MAX_DBL_RADIX 36
1974
1975 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
1976 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
1977 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
1978
1979 static
1980 void init_dblprec(int *prec, int radix) {
1981 /* determine floating point precision by adding successively
1982 smaller increments to 1.0 until it is considered == 1.0 */
1983 double f = ((double)1.0)/radix;
1984 double fsum = 1.0 + f;
1985
1986 *prec = 0;
1987 while (fsum != 1.0)
1988 {
1989 if (++(*prec) > SCM_MAX_DBL_PREC)
1990 fsum = 1.0;
1991 else
1992 {
1993 f /= radix;
1994 fsum = f + 1.0;
1995 }
1996 }
1997 (*prec) -= 1;
1998 }
1999
2000 static
2001 void init_fx_radix(double *fx_list, int radix)
2002 {
2003 /* initialize a per-radix list of tolerances. When added
2004 to a number < 1.0, we can determine if we should raund
2005 up and quit converting a number to a string. */
2006 int i;
2007 fx_list[0] = 0.0;
2008 fx_list[1] = 0.5;
2009 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2010 fx_list[i] = (fx_list[i-1] / radix);
2011 }
2012
2013 /* use this array as a way to generate a single digit */
2014 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2015
2016 static size_t
2017 idbl2str (double f, char *a, int radix)
2018 {
2019 int efmt, dpt, d, i, wp;
2020 double *fx;
2021 #ifdef DBL_MIN_10_EXP
2022 double f_cpy;
2023 int exp_cpy;
2024 #endif /* DBL_MIN_10_EXP */
2025 size_t ch = 0;
2026 int exp = 0;
2027
2028 if(radix < 2 ||
2029 radix > SCM_MAX_DBL_RADIX)
2030 {
2031 /* revert to existing behavior */
2032 radix = 10;
2033 }
2034
2035 wp = scm_dblprec[radix-2];
2036 fx = fx_per_radix[radix-2];
2037
2038 if (f == 0.0)
2039 {
2040 #ifdef HAVE_COPYSIGN
2041 double sgn = copysign (1.0, f);
2042
2043 if (sgn < 0.0)
2044 a[ch++] = '-';
2045 #endif
2046 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2047 }
2048
2049 if (xisinf (f))
2050 {
2051 if (f < 0)
2052 strcpy (a, "-inf.0");
2053 else
2054 strcpy (a, "+inf.0");
2055 return ch+6;
2056 }
2057 else if (xisnan (f))
2058 {
2059 strcpy (a, "+nan.0");
2060 return ch+6;
2061 }
2062
2063 if (f < 0.0)
2064 {
2065 f = -f;
2066 a[ch++] = '-';
2067 }
2068
2069 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2070 make-uniform-vector, from causing infinite loops. */
2071 /* just do the checking...if it passes, we do the conversion for our
2072 radix again below */
2073 f_cpy = f;
2074 exp_cpy = exp;
2075
2076 while (f_cpy < 1.0)
2077 {
2078 f_cpy *= 10.0;
2079 if (exp_cpy-- < DBL_MIN_10_EXP)
2080 {
2081 a[ch++] = '#';
2082 a[ch++] = '.';
2083 a[ch++] = '#';
2084 return ch;
2085 }
2086 }
2087 while (f_cpy > 10.0)
2088 {
2089 f_cpy *= 0.10;
2090 if (exp_cpy++ > DBL_MAX_10_EXP)
2091 {
2092 a[ch++] = '#';
2093 a[ch++] = '.';
2094 a[ch++] = '#';
2095 return ch;
2096 }
2097 }
2098 #endif
2099
2100 while (f < 1.0)
2101 {
2102 f *= radix;
2103 exp--;
2104 }
2105 while (f > radix)
2106 {
2107 f /= radix;
2108 exp++;
2109 }
2110
2111 if (f + fx[wp] >= radix)
2112 {
2113 f = 1.0;
2114 exp++;
2115 }
2116 zero:
2117 #ifdef ENGNOT
2118 /* adding 9999 makes this equivalent to abs(x) % 3 */
2119 dpt = (exp + 9999) % 3;
2120 exp -= dpt++;
2121 efmt = 1;
2122 #else
2123 efmt = (exp < -3) || (exp > wp + 2);
2124 if (!efmt)
2125 {
2126 if (exp < 0)
2127 {
2128 a[ch++] = '0';
2129 a[ch++] = '.';
2130 dpt = exp;
2131 while (++dpt)
2132 a[ch++] = '0';
2133 }
2134 else
2135 dpt = exp + 1;
2136 }
2137 else
2138 dpt = 1;
2139 #endif
2140
2141 do
2142 {
2143 d = f;
2144 f -= d;
2145 a[ch++] = number_chars[d];
2146 if (f < fx[wp])
2147 break;
2148 if (f + fx[wp] >= 1.0)
2149 {
2150 a[ch - 1] = number_chars[d+1];
2151 break;
2152 }
2153 f *= radix;
2154 if (!(--dpt))
2155 a[ch++] = '.';
2156 }
2157 while (wp--);
2158
2159 if (dpt > 0)
2160 {
2161 #ifndef ENGNOT
2162 if ((dpt > 4) && (exp > 6))
2163 {
2164 d = (a[0] == '-' ? 2 : 1);
2165 for (i = ch++; i > d; i--)
2166 a[i] = a[i - 1];
2167 a[d] = '.';
2168 efmt = 1;
2169 }
2170 else
2171 #endif
2172 {
2173 while (--dpt)
2174 a[ch++] = '0';
2175 a[ch++] = '.';
2176 }
2177 }
2178 if (a[ch - 1] == '.')
2179 a[ch++] = '0'; /* trailing zero */
2180 if (efmt && exp)
2181 {
2182 a[ch++] = 'e';
2183 if (exp < 0)
2184 {
2185 exp = -exp;
2186 a[ch++] = '-';
2187 }
2188 for (i = radix; i <= exp; i *= radix);
2189 for (i /= radix; i; i /= radix)
2190 {
2191 a[ch++] = number_chars[exp / i];
2192 exp %= i;
2193 }
2194 }
2195 return ch;
2196 }
2197
2198 static size_t
2199 iflo2str (SCM flt, char *str, int radix)
2200 {
2201 size_t i;
2202 if (SCM_REALP (flt))
2203 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2204 else
2205 {
2206 i = idbl2str (SCM_COMPLEX_REAL (flt), str, radix);
2207 if (SCM_COMPLEX_IMAG (flt) != 0.0)
2208 {
2209 double imag = SCM_COMPLEX_IMAG (flt);
2210 /* Don't output a '+' for negative numbers or for Inf and
2211 NaN. They will provide their own sign. */
2212 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2213 str[i++] = '+';
2214 i += idbl2str (imag, &str[i], radix);
2215 str[i++] = 'i';
2216 }
2217 }
2218 return i;
2219 }
2220
2221 /* convert a long to a string (unterminated). returns the number of
2222 characters in the result.
2223 rad is output base
2224 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2225 size_t
2226 scm_iint2str (long num, int rad, char *p)
2227 {
2228 size_t j = 1;
2229 size_t i;
2230 unsigned long n = (num < 0) ? -num : num;
2231
2232 for (n /= rad; n > 0; n /= rad)
2233 j++;
2234
2235 i = j;
2236 if (num < 0)
2237 {
2238 *p++ = '-';
2239 j++;
2240 n = -num;
2241 }
2242 else
2243 n = num;
2244 while (i--)
2245 {
2246 int d = n % rad;
2247
2248 n /= rad;
2249 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2250 }
2251 return j;
2252 }
2253
2254 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2255 (SCM n, SCM radix),
2256 "Return a string holding the external representation of the\n"
2257 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2258 "inexact, a radix of 10 will be used.")
2259 #define FUNC_NAME s_scm_number_to_string
2260 {
2261 int base;
2262
2263 if (SCM_UNBNDP (radix))
2264 base = 10;
2265 else
2266 base = scm_to_signed_integer (radix, 2, 36);
2267
2268 if (SCM_I_INUMP (n))
2269 {
2270 char num_buf [SCM_INTBUFLEN];
2271 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2272 return scm_from_locale_stringn (num_buf, length);
2273 }
2274 else if (SCM_BIGP (n))
2275 {
2276 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2277 scm_remember_upto_here_1 (n);
2278 return scm_take_locale_string (str);
2279 }
2280 else if (SCM_FRACTIONP (n))
2281 {
2282 scm_i_fraction_reduce (n);
2283 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2284 scm_from_locale_string ("/"),
2285 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2286 }
2287 else if (SCM_INEXACTP (n))
2288 {
2289 char num_buf [FLOBUFLEN];
2290 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2291 }
2292 else
2293 SCM_WRONG_TYPE_ARG (1, n);
2294 }
2295 #undef FUNC_NAME
2296
2297
2298 /* These print routines used to be stubbed here so that scm_repl.c
2299 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2300
2301 int
2302 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2303 {
2304 char num_buf[FLOBUFLEN];
2305 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2306 return !0;
2307 }
2308
2309 int
2310 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2311
2312 {
2313 char num_buf[FLOBUFLEN];
2314 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2315 return !0;
2316 }
2317
2318 int
2319 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2320 {
2321 SCM str;
2322 scm_i_fraction_reduce (sexp);
2323 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2324 scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
2325 scm_remember_upto_here_1 (str);
2326 return !0;
2327 }
2328
2329 int
2330 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2331 {
2332 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2333 scm_remember_upto_here_1 (exp);
2334 scm_lfwrite (str, (size_t) strlen (str), port);
2335 free (str);
2336 return !0;
2337 }
2338 /*** END nums->strs ***/
2339
2340
2341 /*** STRINGS -> NUMBERS ***/
2342
2343 /* The following functions implement the conversion from strings to numbers.
2344 * The implementation somehow follows the grammar for numbers as it is given
2345 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2346 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2347 * points should be noted about the implementation:
2348 * * Each function keeps a local index variable 'idx' that points at the
2349 * current position within the parsed string. The global index is only
2350 * updated if the function could parse the corresponding syntactic unit
2351 * successfully.
2352 * * Similarly, the functions keep track of indicators of inexactness ('#',
2353 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2354 * global exactness information is only updated after each part has been
2355 * successfully parsed.
2356 * * Sequences of digits are parsed into temporary variables holding fixnums.
2357 * Only if these fixnums would overflow, the result variables are updated
2358 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2359 * the temporary variables holding the fixnums are cleared, and the process
2360 * starts over again. If for example fixnums were able to store five decimal
2361 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2362 * and the result was computed as 12345 * 100000 + 67890. In other words,
2363 * only every five digits two bignum operations were performed.
2364 */
2365
2366 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2367
2368 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2369
2370 /* In non ASCII-style encodings the following macro might not work. */
2371 #define XDIGIT2UINT(d) \
2372 (isdigit ((int) (unsigned char) d) \
2373 ? (d) - '0' \
2374 : tolower ((int) (unsigned char) d) - 'a' + 10)
2375
2376 static SCM
2377 mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2378 unsigned int radix, enum t_exactness *p_exactness)
2379 {
2380 unsigned int idx = *p_idx;
2381 unsigned int hash_seen = 0;
2382 scm_t_bits shift = 1;
2383 scm_t_bits add = 0;
2384 unsigned int digit_value;
2385 SCM result;
2386 char c;
2387
2388 if (idx == len)
2389 return SCM_BOOL_F;
2390
2391 c = mem[idx];
2392 if (!isxdigit ((int) (unsigned char) c))
2393 return SCM_BOOL_F;
2394 digit_value = XDIGIT2UINT (c);
2395 if (digit_value >= radix)
2396 return SCM_BOOL_F;
2397
2398 idx++;
2399 result = SCM_I_MAKINUM (digit_value);
2400 while (idx != len)
2401 {
2402 char c = mem[idx];
2403 if (isxdigit ((int) (unsigned char) c))
2404 {
2405 if (hash_seen)
2406 break;
2407 digit_value = XDIGIT2UINT (c);
2408 if (digit_value >= radix)
2409 break;
2410 }
2411 else if (c == '#')
2412 {
2413 hash_seen = 1;
2414 digit_value = 0;
2415 }
2416 else
2417 break;
2418
2419 idx++;
2420 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2421 {
2422 result = scm_product (result, SCM_I_MAKINUM (shift));
2423 if (add > 0)
2424 result = scm_sum (result, SCM_I_MAKINUM (add));
2425
2426 shift = radix;
2427 add = digit_value;
2428 }
2429 else
2430 {
2431 shift = shift * radix;
2432 add = add * radix + digit_value;
2433 }
2434 };
2435
2436 if (shift > 1)
2437 result = scm_product (result, SCM_I_MAKINUM (shift));
2438 if (add > 0)
2439 result = scm_sum (result, SCM_I_MAKINUM (add));
2440
2441 *p_idx = idx;
2442 if (hash_seen)
2443 *p_exactness = INEXACT;
2444
2445 return result;
2446 }
2447
2448
2449 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2450 * covers the parts of the rules that start at a potential point. The value
2451 * of the digits up to the point have been parsed by the caller and are given
2452 * in variable result. The content of *p_exactness indicates, whether a hash
2453 * has already been seen in the digits before the point.
2454 */
2455
2456 /* In non ASCII-style encodings the following macro might not work. */
2457 #define DIGIT2UINT(d) ((d) - '0')
2458
2459 static SCM
2460 mem2decimal_from_point (SCM result, const char* mem, size_t len,
2461 unsigned int *p_idx, enum t_exactness *p_exactness)
2462 {
2463 unsigned int idx = *p_idx;
2464 enum t_exactness x = *p_exactness;
2465
2466 if (idx == len)
2467 return result;
2468
2469 if (mem[idx] == '.')
2470 {
2471 scm_t_bits shift = 1;
2472 scm_t_bits add = 0;
2473 unsigned int digit_value;
2474 SCM big_shift = SCM_I_MAKINUM (1);
2475
2476 idx++;
2477 while (idx != len)
2478 {
2479 char c = mem[idx];
2480 if (isdigit ((int) (unsigned char) c))
2481 {
2482 if (x == INEXACT)
2483 return SCM_BOOL_F;
2484 else
2485 digit_value = DIGIT2UINT (c);
2486 }
2487 else if (c == '#')
2488 {
2489 x = INEXACT;
2490 digit_value = 0;
2491 }
2492 else
2493 break;
2494
2495 idx++;
2496 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2497 {
2498 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2499 result = scm_product (result, SCM_I_MAKINUM (shift));
2500 if (add > 0)
2501 result = scm_sum (result, SCM_I_MAKINUM (add));
2502
2503 shift = 10;
2504 add = digit_value;
2505 }
2506 else
2507 {
2508 shift = shift * 10;
2509 add = add * 10 + digit_value;
2510 }
2511 };
2512
2513 if (add > 0)
2514 {
2515 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2516 result = scm_product (result, SCM_I_MAKINUM (shift));
2517 result = scm_sum (result, SCM_I_MAKINUM (add));
2518 }
2519
2520 result = scm_divide (result, big_shift);
2521
2522 /* We've seen a decimal point, thus the value is implicitly inexact. */
2523 x = INEXACT;
2524 }
2525
2526 if (idx != len)
2527 {
2528 int sign = 1;
2529 unsigned int start;
2530 char c;
2531 int exponent;
2532 SCM e;
2533
2534 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2535
2536 switch (mem[idx])
2537 {
2538 case 'd': case 'D':
2539 case 'e': case 'E':
2540 case 'f': case 'F':
2541 case 'l': case 'L':
2542 case 's': case 'S':
2543 idx++;
2544 start = idx;
2545 c = mem[idx];
2546 if (c == '-')
2547 {
2548 idx++;
2549 sign = -1;
2550 c = mem[idx];
2551 }
2552 else if (c == '+')
2553 {
2554 idx++;
2555 sign = 1;
2556 c = mem[idx];
2557 }
2558 else
2559 sign = 1;
2560
2561 if (!isdigit ((int) (unsigned char) c))
2562 return SCM_BOOL_F;
2563
2564 idx++;
2565 exponent = DIGIT2UINT (c);
2566 while (idx != len)
2567 {
2568 char c = mem[idx];
2569 if (isdigit ((int) (unsigned char) c))
2570 {
2571 idx++;
2572 if (exponent <= SCM_MAXEXP)
2573 exponent = exponent * 10 + DIGIT2UINT (c);
2574 }
2575 else
2576 break;
2577 }
2578
2579 if (exponent > SCM_MAXEXP)
2580 {
2581 size_t exp_len = idx - start;
2582 SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
2583 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2584 scm_out_of_range ("string->number", exp_num);
2585 }
2586
2587 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2588 if (sign == 1)
2589 result = scm_product (result, e);
2590 else
2591 result = scm_divide2real (result, e);
2592
2593 /* We've seen an exponent, thus the value is implicitly inexact. */
2594 x = INEXACT;
2595
2596 break;
2597
2598 default:
2599 break;
2600 }
2601 }
2602
2603 *p_idx = idx;
2604 if (x == INEXACT)
2605 *p_exactness = x;
2606
2607 return result;
2608 }
2609
2610
2611 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2612
2613 static SCM
2614 mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2615 unsigned int radix, enum t_exactness *p_exactness)
2616 {
2617 unsigned int idx = *p_idx;
2618 SCM result;
2619
2620 if (idx == len)
2621 return SCM_BOOL_F;
2622
2623 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2624 {
2625 *p_idx = idx+5;
2626 return scm_inf ();
2627 }
2628
2629 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2630 {
2631 enum t_exactness x = EXACT;
2632
2633 /* Cobble up the fractional part. We might want to set the
2634 NaN's mantissa from it. */
2635 idx += 4;
2636 mem2uinteger (mem, len, &idx, 10, &x);
2637 *p_idx = idx;
2638 return scm_nan ();
2639 }
2640
2641 if (mem[idx] == '.')
2642 {
2643 if (radix != 10)
2644 return SCM_BOOL_F;
2645 else if (idx + 1 == len)
2646 return SCM_BOOL_F;
2647 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2648 return SCM_BOOL_F;
2649 else
2650 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
2651 p_idx, p_exactness);
2652 }
2653 else
2654 {
2655 enum t_exactness x = EXACT;
2656 SCM uinteger;
2657
2658 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2659 if (scm_is_false (uinteger))
2660 return SCM_BOOL_F;
2661
2662 if (idx == len)
2663 result = uinteger;
2664 else if (mem[idx] == '/')
2665 {
2666 SCM divisor;
2667
2668 idx++;
2669
2670 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2671 if (scm_is_false (divisor))
2672 return SCM_BOOL_F;
2673
2674 /* both are int/big here, I assume */
2675 result = scm_i_make_ratio (uinteger, divisor);
2676 }
2677 else if (radix == 10)
2678 {
2679 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2680 if (scm_is_false (result))
2681 return SCM_BOOL_F;
2682 }
2683 else
2684 result = uinteger;
2685
2686 *p_idx = idx;
2687 if (x == INEXACT)
2688 *p_exactness = x;
2689 }
2690
2691 /* When returning an inexact zero, make sure it is represented as a
2692 floating point value so that we can change its sign.
2693 */
2694 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2695 result = scm_from_double (0.0);
2696
2697 return result;
2698 }
2699
2700
2701 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2702
2703 static SCM
2704 mem2complex (const char* mem, size_t len, unsigned int idx,
2705 unsigned int radix, enum t_exactness *p_exactness)
2706 {
2707 char c;
2708 int sign = 0;
2709 SCM ureal;
2710
2711 if (idx == len)
2712 return SCM_BOOL_F;
2713
2714 c = mem[idx];
2715 if (c == '+')
2716 {
2717 idx++;
2718 sign = 1;
2719 }
2720 else if (c == '-')
2721 {
2722 idx++;
2723 sign = -1;
2724 }
2725
2726 if (idx == len)
2727 return SCM_BOOL_F;
2728
2729 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2730 if (scm_is_false (ureal))
2731 {
2732 /* input must be either +i or -i */
2733
2734 if (sign == 0)
2735 return SCM_BOOL_F;
2736
2737 if (mem[idx] == 'i' || mem[idx] == 'I')
2738 {
2739 idx++;
2740 if (idx != len)
2741 return SCM_BOOL_F;
2742
2743 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2744 }
2745 else
2746 return SCM_BOOL_F;
2747 }
2748 else
2749 {
2750 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2751 ureal = scm_difference (ureal, SCM_UNDEFINED);
2752
2753 if (idx == len)
2754 return ureal;
2755
2756 c = mem[idx];
2757 switch (c)
2758 {
2759 case 'i': case 'I':
2760 /* either +<ureal>i or -<ureal>i */
2761
2762 idx++;
2763 if (sign == 0)
2764 return SCM_BOOL_F;
2765 if (idx != len)
2766 return SCM_BOOL_F;
2767 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2768
2769 case '@':
2770 /* polar input: <real>@<real>. */
2771
2772 idx++;
2773 if (idx == len)
2774 return SCM_BOOL_F;
2775 else
2776 {
2777 int sign;
2778 SCM angle;
2779 SCM result;
2780
2781 c = mem[idx];
2782 if (c == '+')
2783 {
2784 idx++;
2785 sign = 1;
2786 }
2787 else if (c == '-')
2788 {
2789 idx++;
2790 sign = -1;
2791 }
2792 else
2793 sign = 1;
2794
2795 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2796 if (scm_is_false (angle))
2797 return SCM_BOOL_F;
2798 if (idx != len)
2799 return SCM_BOOL_F;
2800
2801 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2802 angle = scm_difference (angle, SCM_UNDEFINED);
2803
2804 result = scm_make_polar (ureal, angle);
2805 return result;
2806 }
2807 case '+':
2808 case '-':
2809 /* expecting input matching <real>[+-]<ureal>?i */
2810
2811 idx++;
2812 if (idx == len)
2813 return SCM_BOOL_F;
2814 else
2815 {
2816 int sign = (c == '+') ? 1 : -1;
2817 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2818
2819 if (scm_is_false (imag))
2820 imag = SCM_I_MAKINUM (sign);
2821 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2822 imag = scm_difference (imag, SCM_UNDEFINED);
2823
2824 if (idx == len)
2825 return SCM_BOOL_F;
2826 if (mem[idx] != 'i' && mem[idx] != 'I')
2827 return SCM_BOOL_F;
2828
2829 idx++;
2830 if (idx != len)
2831 return SCM_BOOL_F;
2832
2833 return scm_make_rectangular (ureal, imag);
2834 }
2835 default:
2836 return SCM_BOOL_F;
2837 }
2838 }
2839 }
2840
2841
2842 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2843
2844 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2845
2846 SCM
2847 scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
2848 {
2849 unsigned int idx = 0;
2850 unsigned int radix = NO_RADIX;
2851 enum t_exactness forced_x = NO_EXACTNESS;
2852 enum t_exactness implicit_x = EXACT;
2853 SCM result;
2854
2855 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2856 while (idx + 2 < len && mem[idx] == '#')
2857 {
2858 switch (mem[idx + 1])
2859 {
2860 case 'b': case 'B':
2861 if (radix != NO_RADIX)
2862 return SCM_BOOL_F;
2863 radix = DUAL;
2864 break;
2865 case 'd': case 'D':
2866 if (radix != NO_RADIX)
2867 return SCM_BOOL_F;
2868 radix = DEC;
2869 break;
2870 case 'i': case 'I':
2871 if (forced_x != NO_EXACTNESS)
2872 return SCM_BOOL_F;
2873 forced_x = INEXACT;
2874 break;
2875 case 'e': case 'E':
2876 if (forced_x != NO_EXACTNESS)
2877 return SCM_BOOL_F;
2878 forced_x = EXACT;
2879 break;
2880 case 'o': case 'O':
2881 if (radix != NO_RADIX)
2882 return SCM_BOOL_F;
2883 radix = OCT;
2884 break;
2885 case 'x': case 'X':
2886 if (radix != NO_RADIX)
2887 return SCM_BOOL_F;
2888 radix = HEX;
2889 break;
2890 default:
2891 return SCM_BOOL_F;
2892 }
2893 idx += 2;
2894 }
2895
2896 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2897 if (radix == NO_RADIX)
2898 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2899 else
2900 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2901
2902 if (scm_is_false (result))
2903 return SCM_BOOL_F;
2904
2905 switch (forced_x)
2906 {
2907 case EXACT:
2908 if (SCM_INEXACTP (result))
2909 return scm_inexact_to_exact (result);
2910 else
2911 return result;
2912 case INEXACT:
2913 if (SCM_INEXACTP (result))
2914 return result;
2915 else
2916 return scm_exact_to_inexact (result);
2917 case NO_EXACTNESS:
2918 default:
2919 if (implicit_x == INEXACT)
2920 {
2921 if (SCM_INEXACTP (result))
2922 return result;
2923 else
2924 return scm_exact_to_inexact (result);
2925 }
2926 else
2927 return result;
2928 }
2929 }
2930
2931
2932 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
2933 (SCM string, SCM radix),
2934 "Return a number of the maximally precise representation\n"
2935 "expressed by the given @var{string}. @var{radix} must be an\n"
2936 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
2937 "is a default radix that may be overridden by an explicit radix\n"
2938 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
2939 "supplied, then the default radix is 10. If string is not a\n"
2940 "syntactically valid notation for a number, then\n"
2941 "@code{string->number} returns @code{#f}.")
2942 #define FUNC_NAME s_scm_string_to_number
2943 {
2944 SCM answer;
2945 unsigned int base;
2946 SCM_VALIDATE_STRING (1, string);
2947
2948 if (SCM_UNBNDP (radix))
2949 base = 10;
2950 else
2951 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
2952
2953 answer = scm_i_mem2number (scm_i_string_chars (string),
2954 scm_i_string_length (string),
2955 base);
2956 scm_remember_upto_here_1 (string);
2957 return answer;
2958 }
2959 #undef FUNC_NAME
2960
2961
2962 /*** END strs->nums ***/
2963
2964
2965 SCM
2966 scm_bigequal (SCM x, SCM y)
2967 {
2968 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
2969 scm_remember_upto_here_2 (x, y);
2970 return scm_from_bool (0 == result);
2971 }
2972
2973 SCM
2974 scm_real_equalp (SCM x, SCM y)
2975 {
2976 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
2977 }
2978
2979 SCM
2980 scm_complex_equalp (SCM x, SCM y)
2981 {
2982 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
2983 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
2984 }
2985
2986 SCM
2987 scm_i_fraction_equalp (SCM x, SCM y)
2988 {
2989 scm_i_fraction_reduce (x);
2990 scm_i_fraction_reduce (y);
2991 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
2992 SCM_FRACTION_NUMERATOR (y)))
2993 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
2994 SCM_FRACTION_DENOMINATOR (y))))
2995 return SCM_BOOL_F;
2996 else
2997 return SCM_BOOL_T;
2998 }
2999
3000
3001 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3002 (SCM x),
3003 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3004 "otherwise.")
3005 #define FUNC_NAME s_scm_number_p
3006 {
3007 return scm_from_bool (SCM_NUMBERP (x));
3008 }
3009 #undef FUNC_NAME
3010
3011 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3012 (SCM x),
3013 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3014 "otherwise. Note that the sets of real, rational and integer\n"
3015 "values form subsets of the set of complex numbers, i. e. the\n"
3016 "predicate will also be fulfilled if @var{x} is a real,\n"
3017 "rational or integer number.")
3018 #define FUNC_NAME s_scm_complex_p
3019 {
3020 /* all numbers are complex. */
3021 return scm_number_p (x);
3022 }
3023 #undef FUNC_NAME
3024
3025 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3026 (SCM x),
3027 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3028 "otherwise. Note that the set of integer values forms a subset of\n"
3029 "the set of real numbers, i. e. the predicate will also be\n"
3030 "fulfilled if @var{x} is an integer number.")
3031 #define FUNC_NAME s_scm_real_p
3032 {
3033 /* we can't represent irrational numbers. */
3034 return scm_rational_p (x);
3035 }
3036 #undef FUNC_NAME
3037
3038 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3039 (SCM x),
3040 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3041 "otherwise. Note that the set of integer values forms a subset of\n"
3042 "the set of rational numbers, i. e. the predicate will also be\n"
3043 "fulfilled if @var{x} is an integer number.")
3044 #define FUNC_NAME s_scm_rational_p
3045 {
3046 if (SCM_I_INUMP (x))
3047 return SCM_BOOL_T;
3048 else if (SCM_IMP (x))
3049 return SCM_BOOL_F;
3050 else if (SCM_BIGP (x))
3051 return SCM_BOOL_T;
3052 else if (SCM_FRACTIONP (x))
3053 return SCM_BOOL_T;
3054 else if (SCM_REALP (x))
3055 /* due to their limited precision, all floating point numbers are
3056 rational as well. */
3057 return SCM_BOOL_T;
3058 else
3059 return SCM_BOOL_F;
3060 }
3061 #undef FUNC_NAME
3062
3063 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3064 (SCM x),
3065 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3066 "else.")
3067 #define FUNC_NAME s_scm_integer_p
3068 {
3069 double r;
3070 if (SCM_I_INUMP (x))
3071 return SCM_BOOL_T;
3072 if (SCM_IMP (x))
3073 return SCM_BOOL_F;
3074 if (SCM_BIGP (x))
3075 return SCM_BOOL_T;
3076 if (!SCM_INEXACTP (x))
3077 return SCM_BOOL_F;
3078 if (SCM_COMPLEXP (x))
3079 return SCM_BOOL_F;
3080 r = SCM_REAL_VALUE (x);
3081 /* +/-inf passes r==floor(r), making those #t */
3082 if (r == floor (r))
3083 return SCM_BOOL_T;
3084 return SCM_BOOL_F;
3085 }
3086 #undef FUNC_NAME
3087
3088
3089 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3090 (SCM x),
3091 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3092 "else.")
3093 #define FUNC_NAME s_scm_inexact_p
3094 {
3095 if (SCM_INEXACTP (x))
3096 return SCM_BOOL_T;
3097 if (SCM_NUMBERP (x))
3098 return SCM_BOOL_F;
3099 SCM_WRONG_TYPE_ARG (1, x);
3100 }
3101 #undef FUNC_NAME
3102
3103
3104 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3105 /* "Return @code{#t} if all parameters are numerically equal." */
3106 SCM
3107 scm_num_eq_p (SCM x, SCM y)
3108 {
3109 again:
3110 if (SCM_I_INUMP (x))
3111 {
3112 long xx = SCM_I_INUM (x);
3113 if (SCM_I_INUMP (y))
3114 {
3115 long yy = SCM_I_INUM (y);
3116 return scm_from_bool (xx == yy);
3117 }
3118 else if (SCM_BIGP (y))
3119 return SCM_BOOL_F;
3120 else if (SCM_REALP (y))
3121 return scm_from_bool ((double) xx == SCM_REAL_VALUE (y));
3122 else if (SCM_COMPLEXP (y))
3123 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3124 && (0.0 == SCM_COMPLEX_IMAG (y)));
3125 else if (SCM_FRACTIONP (y))
3126 return SCM_BOOL_F;
3127 else
3128 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3129 }
3130 else if (SCM_BIGP (x))
3131 {
3132 if (SCM_I_INUMP (y))
3133 return SCM_BOOL_F;
3134 else if (SCM_BIGP (y))
3135 {
3136 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3137 scm_remember_upto_here_2 (x, y);
3138 return scm_from_bool (0 == cmp);
3139 }
3140 else if (SCM_REALP (y))
3141 {
3142 int cmp;
3143 if (xisnan (SCM_REAL_VALUE (y)))
3144 return SCM_BOOL_F;
3145 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3146 scm_remember_upto_here_1 (x);
3147 return scm_from_bool (0 == cmp);
3148 }
3149 else if (SCM_COMPLEXP (y))
3150 {
3151 int cmp;
3152 if (0.0 != SCM_COMPLEX_IMAG (y))
3153 return SCM_BOOL_F;
3154 if (xisnan (SCM_COMPLEX_REAL (y)))
3155 return SCM_BOOL_F;
3156 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3157 scm_remember_upto_here_1 (x);
3158 return scm_from_bool (0 == cmp);
3159 }
3160 else if (SCM_FRACTIONP (y))
3161 return SCM_BOOL_F;
3162 else
3163 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3164 }
3165 else if (SCM_REALP (x))
3166 {
3167 if (SCM_I_INUMP (y))
3168 return scm_from_bool (SCM_REAL_VALUE (x) == (double) SCM_I_INUM (y));
3169 else if (SCM_BIGP (y))
3170 {
3171 int cmp;
3172 if (xisnan (SCM_REAL_VALUE (x)))
3173 return SCM_BOOL_F;
3174 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3175 scm_remember_upto_here_1 (y);
3176 return scm_from_bool (0 == cmp);
3177 }
3178 else if (SCM_REALP (y))
3179 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3180 else if (SCM_COMPLEXP (y))
3181 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3182 && (0.0 == SCM_COMPLEX_IMAG (y)));
3183 else if (SCM_FRACTIONP (y))
3184 {
3185 double xx = SCM_REAL_VALUE (x);
3186 if (xisnan (xx))
3187 return SCM_BOOL_F;
3188 if (xisinf (xx))
3189 return scm_from_bool (xx < 0.0);
3190 x = scm_inexact_to_exact (x); /* with x as frac or int */
3191 goto again;
3192 }
3193 else
3194 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3195 }
3196 else if (SCM_COMPLEXP (x))
3197 {
3198 if (SCM_I_INUMP (y))
3199 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3200 && (SCM_COMPLEX_IMAG (x) == 0.0));
3201 else if (SCM_BIGP (y))
3202 {
3203 int cmp;
3204 if (0.0 != SCM_COMPLEX_IMAG (x))
3205 return SCM_BOOL_F;
3206 if (xisnan (SCM_COMPLEX_REAL (x)))
3207 return SCM_BOOL_F;
3208 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3209 scm_remember_upto_here_1 (y);
3210 return scm_from_bool (0 == cmp);
3211 }
3212 else if (SCM_REALP (y))
3213 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3214 && (SCM_COMPLEX_IMAG (x) == 0.0));
3215 else if (SCM_COMPLEXP (y))
3216 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3217 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3218 else if (SCM_FRACTIONP (y))
3219 {
3220 double xx;
3221 if (SCM_COMPLEX_IMAG (x) != 0.0)
3222 return SCM_BOOL_F;
3223 xx = SCM_COMPLEX_REAL (x);
3224 if (xisnan (xx))
3225 return SCM_BOOL_F;
3226 if (xisinf (xx))
3227 return scm_from_bool (xx < 0.0);
3228 x = scm_inexact_to_exact (x); /* with x as frac or int */
3229 goto again;
3230 }
3231 else
3232 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3233 }
3234 else if (SCM_FRACTIONP (x))
3235 {
3236 if (SCM_I_INUMP (y))
3237 return SCM_BOOL_F;
3238 else if (SCM_BIGP (y))
3239 return SCM_BOOL_F;
3240 else if (SCM_REALP (y))
3241 {
3242 double yy = SCM_REAL_VALUE (y);
3243 if (xisnan (yy))
3244 return SCM_BOOL_F;
3245 if (xisinf (yy))
3246 return scm_from_bool (0.0 < yy);
3247 y = scm_inexact_to_exact (y); /* with y as frac or int */
3248 goto again;
3249 }
3250 else if (SCM_COMPLEXP (y))
3251 {
3252 double yy;
3253 if (SCM_COMPLEX_IMAG (y) != 0.0)
3254 return SCM_BOOL_F;
3255 yy = SCM_COMPLEX_REAL (y);
3256 if (xisnan (yy))
3257 return SCM_BOOL_F;
3258 if (xisinf (yy))
3259 return scm_from_bool (0.0 < yy);
3260 y = scm_inexact_to_exact (y); /* with y as frac or int */
3261 goto again;
3262 }
3263 else if (SCM_FRACTIONP (y))
3264 return scm_i_fraction_equalp (x, y);
3265 else
3266 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3267 }
3268 else
3269 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3270 }
3271
3272
3273 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3274 done are good for inums, but for bignums an answer can almost always be
3275 had by just examining a few high bits of the operands, as done by GMP in
3276 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3277 of the float exponent to take into account. */
3278
3279 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3280 /* "Return @code{#t} if the list of parameters is monotonically\n"
3281 * "increasing."
3282 */
3283 SCM
3284 scm_less_p (SCM x, SCM y)
3285 {
3286 again:
3287 if (SCM_I_INUMP (x))
3288 {
3289 long xx = SCM_I_INUM (x);
3290 if (SCM_I_INUMP (y))
3291 {
3292 long yy = SCM_I_INUM (y);
3293 return scm_from_bool (xx < yy);
3294 }
3295 else if (SCM_BIGP (y))
3296 {
3297 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3298 scm_remember_upto_here_1 (y);
3299 return scm_from_bool (sgn > 0);
3300 }
3301 else if (SCM_REALP (y))
3302 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3303 else if (SCM_FRACTIONP (y))
3304 {
3305 /* "x < a/b" becomes "x*b < a" */
3306 int_frac:
3307 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3308 y = SCM_FRACTION_NUMERATOR (y);
3309 goto again;
3310 }
3311 else
3312 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3313 }
3314 else if (SCM_BIGP (x))
3315 {
3316 if (SCM_I_INUMP (y))
3317 {
3318 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3319 scm_remember_upto_here_1 (x);
3320 return scm_from_bool (sgn < 0);
3321 }
3322 else if (SCM_BIGP (y))
3323 {
3324 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3325 scm_remember_upto_here_2 (x, y);
3326 return scm_from_bool (cmp < 0);
3327 }
3328 else if (SCM_REALP (y))
3329 {
3330 int cmp;
3331 if (xisnan (SCM_REAL_VALUE (y)))
3332 return SCM_BOOL_F;
3333 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3334 scm_remember_upto_here_1 (x);
3335 return scm_from_bool (cmp < 0);
3336 }
3337 else if (SCM_FRACTIONP (y))
3338 goto int_frac;
3339 else
3340 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3341 }
3342 else if (SCM_REALP (x))
3343 {
3344 if (SCM_I_INUMP (y))
3345 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3346 else if (SCM_BIGP (y))
3347 {
3348 int cmp;
3349 if (xisnan (SCM_REAL_VALUE (x)))
3350 return SCM_BOOL_F;
3351 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3352 scm_remember_upto_here_1 (y);
3353 return scm_from_bool (cmp > 0);
3354 }
3355 else if (SCM_REALP (y))
3356 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3357 else if (SCM_FRACTIONP (y))
3358 {
3359 double xx = SCM_REAL_VALUE (x);
3360 if (xisnan (xx))
3361 return SCM_BOOL_F;
3362 if (xisinf (xx))
3363 return scm_from_bool (xx < 0.0);
3364 x = scm_inexact_to_exact (x); /* with x as frac or int */
3365 goto again;
3366 }
3367 else
3368 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3369 }
3370 else if (SCM_FRACTIONP (x))
3371 {
3372 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3373 {
3374 /* "a/b < y" becomes "a < y*b" */
3375 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3376 x = SCM_FRACTION_NUMERATOR (x);
3377 goto again;
3378 }
3379 else if (SCM_REALP (y))
3380 {
3381 double yy = SCM_REAL_VALUE (y);
3382 if (xisnan (yy))
3383 return SCM_BOOL_F;
3384 if (xisinf (yy))
3385 return scm_from_bool (0.0 < yy);
3386 y = scm_inexact_to_exact (y); /* with y as frac or int */
3387 goto again;
3388 }
3389 else if (SCM_FRACTIONP (y))
3390 {
3391 /* "a/b < c/d" becomes "a*d < c*b" */
3392 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3393 SCM_FRACTION_DENOMINATOR (y));
3394 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3395 SCM_FRACTION_DENOMINATOR (x));
3396 x = new_x;
3397 y = new_y;
3398 goto again;
3399 }
3400 else
3401 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3402 }
3403 else
3404 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3405 }
3406
3407
3408 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3409 /* "Return @code{#t} if the list of parameters is monotonically\n"
3410 * "decreasing."
3411 */
3412 #define FUNC_NAME s_scm_gr_p
3413 SCM
3414 scm_gr_p (SCM x, SCM y)
3415 {
3416 if (!SCM_NUMBERP (x))
3417 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3418 else if (!SCM_NUMBERP (y))
3419 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3420 else
3421 return scm_less_p (y, x);
3422 }
3423 #undef FUNC_NAME
3424
3425
3426 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3427 /* "Return @code{#t} if the list of parameters is monotonically\n"
3428 * "non-decreasing."
3429 */
3430 #define FUNC_NAME s_scm_leq_p
3431 SCM
3432 scm_leq_p (SCM x, SCM y)
3433 {
3434 if (!SCM_NUMBERP (x))
3435 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3436 else if (!SCM_NUMBERP (y))
3437 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3438 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3439 return SCM_BOOL_F;
3440 else
3441 return scm_not (scm_less_p (y, x));
3442 }
3443 #undef FUNC_NAME
3444
3445
3446 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3447 /* "Return @code{#t} if the list of parameters is monotonically\n"
3448 * "non-increasing."
3449 */
3450 #define FUNC_NAME s_scm_geq_p
3451 SCM
3452 scm_geq_p (SCM x, SCM y)
3453 {
3454 if (!SCM_NUMBERP (x))
3455 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3456 else if (!SCM_NUMBERP (y))
3457 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3458 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3459 return SCM_BOOL_F;
3460 else
3461 return scm_not (scm_less_p (x, y));
3462 }
3463 #undef FUNC_NAME
3464
3465
3466 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3467 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3468 * "zero."
3469 */
3470 SCM
3471 scm_zero_p (SCM z)
3472 {
3473 if (SCM_I_INUMP (z))
3474 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3475 else if (SCM_BIGP (z))
3476 return SCM_BOOL_F;
3477 else if (SCM_REALP (z))
3478 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3479 else if (SCM_COMPLEXP (z))
3480 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3481 && SCM_COMPLEX_IMAG (z) == 0.0);
3482 else if (SCM_FRACTIONP (z))
3483 return SCM_BOOL_F;
3484 else
3485 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3486 }
3487
3488
3489 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3490 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3491 * "zero."
3492 */
3493 SCM
3494 scm_positive_p (SCM x)
3495 {
3496 if (SCM_I_INUMP (x))
3497 return scm_from_bool (SCM_I_INUM (x) > 0);
3498 else if (SCM_BIGP (x))
3499 {
3500 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3501 scm_remember_upto_here_1 (x);
3502 return scm_from_bool (sgn > 0);
3503 }
3504 else if (SCM_REALP (x))
3505 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3506 else if (SCM_FRACTIONP (x))
3507 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3508 else
3509 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3510 }
3511
3512
3513 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3514 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3515 * "zero."
3516 */
3517 SCM
3518 scm_negative_p (SCM x)
3519 {
3520 if (SCM_I_INUMP (x))
3521 return scm_from_bool (SCM_I_INUM (x) < 0);
3522 else if (SCM_BIGP (x))
3523 {
3524 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3525 scm_remember_upto_here_1 (x);
3526 return scm_from_bool (sgn < 0);
3527 }
3528 else if (SCM_REALP (x))
3529 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3530 else if (SCM_FRACTIONP (x))
3531 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3532 else
3533 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3534 }
3535
3536
3537 /* scm_min and scm_max return an inexact when either argument is inexact, as
3538 required by r5rs. On that basis, for exact/inexact combinations the
3539 exact is converted to inexact to compare and possibly return. This is
3540 unlike scm_less_p above which takes some trouble to preserve all bits in
3541 its test, such trouble is not required for min and max. */
3542
3543 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3544 /* "Return the maximum of all parameter values."
3545 */
3546 SCM
3547 scm_max (SCM x, SCM y)
3548 {
3549 if (SCM_UNBNDP (y))
3550 {
3551 if (SCM_UNBNDP (x))
3552 SCM_WTA_DISPATCH_0 (g_max, s_max);
3553 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3554 return x;
3555 else
3556 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3557 }
3558
3559 if (SCM_I_INUMP (x))
3560 {
3561 long xx = SCM_I_INUM (x);
3562 if (SCM_I_INUMP (y))
3563 {
3564 long yy = SCM_I_INUM (y);
3565 return (xx < yy) ? y : x;
3566 }
3567 else if (SCM_BIGP (y))
3568 {
3569 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3570 scm_remember_upto_here_1 (y);
3571 return (sgn < 0) ? x : y;
3572 }
3573 else if (SCM_REALP (y))
3574 {
3575 double z = xx;
3576 /* if y==NaN then ">" is false and we return NaN */
3577 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3578 }
3579 else if (SCM_FRACTIONP (y))
3580 {
3581 use_less:
3582 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3583 }
3584 else
3585 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3586 }
3587 else if (SCM_BIGP (x))
3588 {
3589 if (SCM_I_INUMP (y))
3590 {
3591 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3592 scm_remember_upto_here_1 (x);
3593 return (sgn < 0) ? y : x;
3594 }
3595 else if (SCM_BIGP (y))
3596 {
3597 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3598 scm_remember_upto_here_2 (x, y);
3599 return (cmp > 0) ? x : y;
3600 }
3601 else if (SCM_REALP (y))
3602 {
3603 /* if y==NaN then xx>yy is false, so we return the NaN y */
3604 double xx, yy;
3605 big_real:
3606 xx = scm_i_big2dbl (x);
3607 yy = SCM_REAL_VALUE (y);
3608 return (xx > yy ? scm_from_double (xx) : y);
3609 }
3610 else if (SCM_FRACTIONP (y))
3611 {
3612 goto use_less;
3613 }
3614 else
3615 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3616 }
3617 else if (SCM_REALP (x))
3618 {
3619 if (SCM_I_INUMP (y))
3620 {
3621 double z = SCM_I_INUM (y);
3622 /* if x==NaN then "<" is false and we return NaN */
3623 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3624 }
3625 else if (SCM_BIGP (y))
3626 {
3627 SCM_SWAP (x, y);
3628 goto big_real;
3629 }
3630 else if (SCM_REALP (y))
3631 {
3632 /* if x==NaN then our explicit check means we return NaN
3633 if y==NaN then ">" is false and we return NaN
3634 calling isnan is unavoidable, since it's the only way to know
3635 which of x or y causes any compares to be false */
3636 double xx = SCM_REAL_VALUE (x);
3637 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3638 }
3639 else if (SCM_FRACTIONP (y))
3640 {
3641 double yy = scm_i_fraction2double (y);
3642 double xx = SCM_REAL_VALUE (x);
3643 return (xx < yy) ? scm_from_double (yy) : x;
3644 }
3645 else
3646 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3647 }
3648 else if (SCM_FRACTIONP (x))
3649 {
3650 if (SCM_I_INUMP (y))
3651 {
3652 goto use_less;
3653 }
3654 else if (SCM_BIGP (y))
3655 {
3656 goto use_less;
3657 }
3658 else if (SCM_REALP (y))
3659 {
3660 double xx = scm_i_fraction2double (x);
3661 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3662 }
3663 else if (SCM_FRACTIONP (y))
3664 {
3665 goto use_less;
3666 }
3667 else
3668 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3669 }
3670 else
3671 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3672 }
3673
3674
3675 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3676 /* "Return the minium of all parameter values."
3677 */
3678 SCM
3679 scm_min (SCM x, SCM y)
3680 {
3681 if (SCM_UNBNDP (y))
3682 {
3683 if (SCM_UNBNDP (x))
3684 SCM_WTA_DISPATCH_0 (g_min, s_min);
3685 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3686 return x;
3687 else
3688 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3689 }
3690
3691 if (SCM_I_INUMP (x))
3692 {
3693 long xx = SCM_I_INUM (x);
3694 if (SCM_I_INUMP (y))
3695 {
3696 long yy = SCM_I_INUM (y);
3697 return (xx < yy) ? x : y;
3698 }
3699 else if (SCM_BIGP (y))
3700 {
3701 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3702 scm_remember_upto_here_1 (y);
3703 return (sgn < 0) ? y : x;
3704 }
3705 else if (SCM_REALP (y))
3706 {
3707 double z = xx;
3708 /* if y==NaN then "<" is false and we return NaN */
3709 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3710 }
3711 else if (SCM_FRACTIONP (y))
3712 {
3713 use_less:
3714 return (scm_is_false (scm_less_p (x, y)) ? y : x);
3715 }
3716 else
3717 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3718 }
3719 else if (SCM_BIGP (x))
3720 {
3721 if (SCM_I_INUMP (y))
3722 {
3723 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3724 scm_remember_upto_here_1 (x);
3725 return (sgn < 0) ? x : y;
3726 }
3727 else if (SCM_BIGP (y))
3728 {
3729 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3730 scm_remember_upto_here_2 (x, y);
3731 return (cmp > 0) ? y : x;
3732 }
3733 else if (SCM_REALP (y))
3734 {
3735 /* if y==NaN then xx<yy is false, so we return the NaN y */
3736 double xx, yy;
3737 big_real:
3738 xx = scm_i_big2dbl (x);
3739 yy = SCM_REAL_VALUE (y);
3740 return (xx < yy ? scm_from_double (xx) : y);
3741 }
3742 else if (SCM_FRACTIONP (y))
3743 {
3744 goto use_less;
3745 }
3746 else
3747 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3748 }
3749 else if (SCM_REALP (x))
3750 {
3751 if (SCM_I_INUMP (y))
3752 {
3753 double z = SCM_I_INUM (y);
3754 /* if x==NaN then "<" is false and we return NaN */
3755 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
3756 }
3757 else if (SCM_BIGP (y))
3758 {
3759 SCM_SWAP (x, y);
3760 goto big_real;
3761 }
3762 else if (SCM_REALP (y))
3763 {
3764 /* if x==NaN then our explicit check means we return NaN
3765 if y==NaN then "<" is false and we return NaN
3766 calling isnan is unavoidable, since it's the only way to know
3767 which of x or y causes any compares to be false */
3768 double xx = SCM_REAL_VALUE (x);
3769 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3770 }
3771 else if (SCM_FRACTIONP (y))
3772 {
3773 double yy = scm_i_fraction2double (y);
3774 double xx = SCM_REAL_VALUE (x);
3775 return (yy < xx) ? scm_from_double (yy) : x;
3776 }
3777 else
3778 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3779 }
3780 else if (SCM_FRACTIONP (x))
3781 {
3782 if (SCM_I_INUMP (y))
3783 {
3784 goto use_less;
3785 }
3786 else if (SCM_BIGP (y))
3787 {
3788 goto use_less;
3789 }
3790 else if (SCM_REALP (y))
3791 {
3792 double xx = scm_i_fraction2double (x);
3793 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
3794 }
3795 else if (SCM_FRACTIONP (y))
3796 {
3797 goto use_less;
3798 }
3799 else
3800 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3801 }
3802 else
3803 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3804 }
3805
3806
3807 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3808 /* "Return the sum of all parameter values. Return 0 if called without\n"
3809 * "any parameters."
3810 */
3811 SCM
3812 scm_sum (SCM x, SCM y)
3813 {
3814 if (SCM_UNBNDP (y))
3815 {
3816 if (SCM_NUMBERP (x)) return x;
3817 if (SCM_UNBNDP (x)) return SCM_INUM0;
3818 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3819 }
3820
3821 if (SCM_I_INUMP (x))
3822 {
3823 if (SCM_I_INUMP (y))
3824 {
3825 long xx = SCM_I_INUM (x);
3826 long yy = SCM_I_INUM (y);
3827 long int z = xx + yy;
3828 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
3829 }
3830 else if (SCM_BIGP (y))
3831 {
3832 SCM_SWAP (x, y);
3833 goto add_big_inum;
3834 }
3835 else if (SCM_REALP (y))
3836 {
3837 long int xx = SCM_I_INUM (x);
3838 return scm_from_double (xx + SCM_REAL_VALUE (y));
3839 }
3840 else if (SCM_COMPLEXP (y))
3841 {
3842 long int xx = SCM_I_INUM (x);
3843 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
3844 SCM_COMPLEX_IMAG (y));
3845 }
3846 else if (SCM_FRACTIONP (y))
3847 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3848 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3849 SCM_FRACTION_DENOMINATOR (y));
3850 else
3851 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3852 } else if (SCM_BIGP (x))
3853 {
3854 if (SCM_I_INUMP (y))
3855 {
3856 long int inum;
3857 int bigsgn;
3858 add_big_inum:
3859 inum = SCM_I_INUM (y);
3860 if (inum == 0)
3861 return x;
3862 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3863 if (inum < 0)
3864 {
3865 SCM result = scm_i_mkbig ();
3866 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3867 scm_remember_upto_here_1 (x);
3868 /* we know the result will have to be a bignum */
3869 if (bigsgn == -1)
3870 return result;
3871 return scm_i_normbig (result);
3872 }
3873 else
3874 {
3875 SCM result = scm_i_mkbig ();
3876 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3877 scm_remember_upto_here_1 (x);
3878 /* we know the result will have to be a bignum */
3879 if (bigsgn == 1)
3880 return result;
3881 return scm_i_normbig (result);
3882 }
3883 }
3884 else if (SCM_BIGP (y))
3885 {
3886 SCM result = scm_i_mkbig ();
3887 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3888 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3889 mpz_add (SCM_I_BIG_MPZ (result),
3890 SCM_I_BIG_MPZ (x),
3891 SCM_I_BIG_MPZ (y));
3892 scm_remember_upto_here_2 (x, y);
3893 /* we know the result will have to be a bignum */
3894 if (sgn_x == sgn_y)
3895 return result;
3896 return scm_i_normbig (result);
3897 }
3898 else if (SCM_REALP (y))
3899 {
3900 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3901 scm_remember_upto_here_1 (x);
3902 return scm_from_double (result);
3903 }
3904 else if (SCM_COMPLEXP (y))
3905 {
3906 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
3907 + SCM_COMPLEX_REAL (y));
3908 scm_remember_upto_here_1 (x);
3909 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
3910 }
3911 else if (SCM_FRACTIONP (y))
3912 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3913 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3914 SCM_FRACTION_DENOMINATOR (y));
3915 else
3916 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3917 }
3918 else if (SCM_REALP (x))
3919 {
3920 if (SCM_I_INUMP (y))
3921 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
3922 else if (SCM_BIGP (y))
3923 {
3924 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
3925 scm_remember_upto_here_1 (y);
3926 return scm_from_double (result);
3927 }
3928 else if (SCM_REALP (y))
3929 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
3930 else if (SCM_COMPLEXP (y))
3931 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
3932 SCM_COMPLEX_IMAG (y));
3933 else if (SCM_FRACTIONP (y))
3934 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
3935 else
3936 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3937 }
3938 else if (SCM_COMPLEXP (x))
3939 {
3940 if (SCM_I_INUMP (y))
3941 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
3942 SCM_COMPLEX_IMAG (x));
3943 else if (SCM_BIGP (y))
3944 {
3945 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
3946 + SCM_COMPLEX_REAL (x));
3947 scm_remember_upto_here_1 (y);
3948 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
3949 }
3950 else if (SCM_REALP (y))
3951 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
3952 SCM_COMPLEX_IMAG (x));
3953 else if (SCM_COMPLEXP (y))
3954 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
3955 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
3956 else if (SCM_FRACTIONP (y))
3957 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
3958 SCM_COMPLEX_IMAG (x));
3959 else
3960 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3961 }
3962 else if (SCM_FRACTIONP (x))
3963 {
3964 if (SCM_I_INUMP (y))
3965 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3966 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3967 SCM_FRACTION_DENOMINATOR (x));
3968 else if (SCM_BIGP (y))
3969 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
3970 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
3971 SCM_FRACTION_DENOMINATOR (x));
3972 else if (SCM_REALP (y))
3973 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
3974 else if (SCM_COMPLEXP (y))
3975 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
3976 SCM_COMPLEX_IMAG (y));
3977 else if (SCM_FRACTIONP (y))
3978 /* a/b + c/d = (ad + bc) / bd */
3979 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
3980 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
3981 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
3982 else
3983 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3984 }
3985 else
3986 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
3987 }
3988
3989
3990 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
3991 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
3992 * the sum of all but the first argument are subtracted from the first
3993 * argument. */
3994 #define FUNC_NAME s_difference
3995 SCM
3996 scm_difference (SCM x, SCM y)
3997 {
3998 if (SCM_UNBNDP (y))
3999 {
4000 if (SCM_UNBNDP (x))
4001 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4002 else
4003 if (SCM_I_INUMP (x))
4004 {
4005 long xx = -SCM_I_INUM (x);
4006 if (SCM_FIXABLE (xx))
4007 return SCM_I_MAKINUM (xx);
4008 else
4009 return scm_i_long2big (xx);
4010 }
4011 else if (SCM_BIGP (x))
4012 /* FIXME: do we really need to normalize here? */
4013 return scm_i_normbig (scm_i_clonebig (x, 0));
4014 else if (SCM_REALP (x))
4015 return scm_from_double (-SCM_REAL_VALUE (x));
4016 else if (SCM_COMPLEXP (x))
4017 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4018 -SCM_COMPLEX_IMAG (x));
4019 else if (SCM_FRACTIONP (x))
4020 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4021 SCM_FRACTION_DENOMINATOR (x));
4022 else
4023 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4024 }
4025
4026 if (SCM_I_INUMP (x))
4027 {
4028 if (SCM_I_INUMP (y))
4029 {
4030 long int xx = SCM_I_INUM (x);
4031 long int yy = SCM_I_INUM (y);
4032 long int z = xx - yy;
4033 if (SCM_FIXABLE (z))
4034 return SCM_I_MAKINUM (z);
4035 else
4036 return scm_i_long2big (z);
4037 }
4038 else if (SCM_BIGP (y))
4039 {
4040 /* inum-x - big-y */
4041 long xx = SCM_I_INUM (x);
4042
4043 if (xx == 0)
4044 return scm_i_clonebig (y, 0);
4045 else
4046 {
4047 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4048 SCM result = scm_i_mkbig ();
4049
4050 if (xx >= 0)
4051 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4052 else
4053 {
4054 /* x - y == -(y + -x) */
4055 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4056 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4057 }
4058 scm_remember_upto_here_1 (y);
4059
4060 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4061 /* we know the result will have to be a bignum */
4062 return result;
4063 else
4064 return scm_i_normbig (result);
4065 }
4066 }
4067 else if (SCM_REALP (y))
4068 {
4069 long int xx = SCM_I_INUM (x);
4070 return scm_from_double (xx - SCM_REAL_VALUE (y));
4071 }
4072 else if (SCM_COMPLEXP (y))
4073 {
4074 long int xx = SCM_I_INUM (x);
4075 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4076 - SCM_COMPLEX_IMAG (y));
4077 }
4078 else if (SCM_FRACTIONP (y))
4079 /* a - b/c = (ac - b) / c */
4080 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4081 SCM_FRACTION_NUMERATOR (y)),
4082 SCM_FRACTION_DENOMINATOR (y));
4083 else
4084 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4085 }
4086 else if (SCM_BIGP (x))
4087 {
4088 if (SCM_I_INUMP (y))
4089 {
4090 /* big-x - inum-y */
4091 long yy = SCM_I_INUM (y);
4092 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4093
4094 scm_remember_upto_here_1 (x);
4095 if (sgn_x == 0)
4096 return (SCM_FIXABLE (-yy) ?
4097 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4098 else
4099 {
4100 SCM result = scm_i_mkbig ();
4101
4102 if (yy >= 0)
4103 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4104 else
4105 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4106 scm_remember_upto_here_1 (x);
4107
4108 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4109 /* we know the result will have to be a bignum */
4110 return result;
4111 else
4112 return scm_i_normbig (result);
4113 }
4114 }
4115 else if (SCM_BIGP (y))
4116 {
4117 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4118 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4119 SCM result = scm_i_mkbig ();
4120 mpz_sub (SCM_I_BIG_MPZ (result),
4121 SCM_I_BIG_MPZ (x),
4122 SCM_I_BIG_MPZ (y));
4123 scm_remember_upto_here_2 (x, y);
4124 /* we know the result will have to be a bignum */
4125 if ((sgn_x == 1) && (sgn_y == -1))
4126 return result;
4127 if ((sgn_x == -1) && (sgn_y == 1))
4128 return result;
4129 return scm_i_normbig (result);
4130 }
4131 else if (SCM_REALP (y))
4132 {
4133 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4134 scm_remember_upto_here_1 (x);
4135 return scm_from_double (result);
4136 }
4137 else if (SCM_COMPLEXP (y))
4138 {
4139 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4140 - SCM_COMPLEX_REAL (y));
4141 scm_remember_upto_here_1 (x);
4142 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4143 }
4144 else if (SCM_FRACTIONP (y))
4145 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4146 SCM_FRACTION_NUMERATOR (y)),
4147 SCM_FRACTION_DENOMINATOR (y));
4148 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4149 }
4150 else if (SCM_REALP (x))
4151 {
4152 if (SCM_I_INUMP (y))
4153 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4154 else if (SCM_BIGP (y))
4155 {
4156 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4157 scm_remember_upto_here_1 (x);
4158 return scm_from_double (result);
4159 }
4160 else if (SCM_REALP (y))
4161 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4162 else if (SCM_COMPLEXP (y))
4163 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4164 -SCM_COMPLEX_IMAG (y));
4165 else if (SCM_FRACTIONP (y))
4166 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4167 else
4168 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4169 }
4170 else if (SCM_COMPLEXP (x))
4171 {
4172 if (SCM_I_INUMP (y))
4173 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4174 SCM_COMPLEX_IMAG (x));
4175 else if (SCM_BIGP (y))
4176 {
4177 double real_part = (SCM_COMPLEX_REAL (x)
4178 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4179 scm_remember_upto_here_1 (x);
4180 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4181 }
4182 else if (SCM_REALP (y))
4183 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4184 SCM_COMPLEX_IMAG (x));
4185 else if (SCM_COMPLEXP (y))
4186 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4187 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4188 else if (SCM_FRACTIONP (y))
4189 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4190 SCM_COMPLEX_IMAG (x));
4191 else
4192 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4193 }
4194 else if (SCM_FRACTIONP (x))
4195 {
4196 if (SCM_I_INUMP (y))
4197 /* a/b - c = (a - cb) / b */
4198 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4199 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4200 SCM_FRACTION_DENOMINATOR (x));
4201 else if (SCM_BIGP (y))
4202 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4203 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4204 SCM_FRACTION_DENOMINATOR (x));
4205 else if (SCM_REALP (y))
4206 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4207 else if (SCM_COMPLEXP (y))
4208 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4209 -SCM_COMPLEX_IMAG (y));
4210 else if (SCM_FRACTIONP (y))
4211 /* a/b - c/d = (ad - bc) / bd */
4212 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4213 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4214 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4215 else
4216 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4217 }
4218 else
4219 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4220 }
4221 #undef FUNC_NAME
4222
4223
4224 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4225 /* "Return the product of all arguments. If called without arguments,\n"
4226 * "1 is returned."
4227 */
4228 SCM
4229 scm_product (SCM x, SCM y)
4230 {
4231 if (SCM_UNBNDP (y))
4232 {
4233 if (SCM_UNBNDP (x))
4234 return SCM_I_MAKINUM (1L);
4235 else if (SCM_NUMBERP (x))
4236 return x;
4237 else
4238 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4239 }
4240
4241 if (SCM_I_INUMP (x))
4242 {
4243 long xx;
4244
4245 intbig:
4246 xx = SCM_I_INUM (x);
4247
4248 switch (xx)
4249 {
4250 case 0: return x; break;
4251 case 1: return y; break;
4252 }
4253
4254 if (SCM_I_INUMP (y))
4255 {
4256 long yy = SCM_I_INUM (y);
4257 long kk = xx * yy;
4258 SCM k = SCM_I_MAKINUM (kk);
4259 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4260 return k;
4261 else
4262 {
4263 SCM result = scm_i_long2big (xx);
4264 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4265 return scm_i_normbig (result);
4266 }
4267 }
4268 else if (SCM_BIGP (y))
4269 {
4270 SCM result = scm_i_mkbig ();
4271 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4272 scm_remember_upto_here_1 (y);
4273 return result;
4274 }
4275 else if (SCM_REALP (y))
4276 return scm_from_double (xx * SCM_REAL_VALUE (y));
4277 else if (SCM_COMPLEXP (y))
4278 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4279 xx * SCM_COMPLEX_IMAG (y));
4280 else if (SCM_FRACTIONP (y))
4281 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4282 SCM_FRACTION_DENOMINATOR (y));
4283 else
4284 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4285 }
4286 else if (SCM_BIGP (x))
4287 {
4288 if (SCM_I_INUMP (y))
4289 {
4290 SCM_SWAP (x, y);
4291 goto intbig;
4292 }
4293 else if (SCM_BIGP (y))
4294 {
4295 SCM result = scm_i_mkbig ();
4296 mpz_mul (SCM_I_BIG_MPZ (result),
4297 SCM_I_BIG_MPZ (x),
4298 SCM_I_BIG_MPZ (y));
4299 scm_remember_upto_here_2 (x, y);
4300 return result;
4301 }
4302 else if (SCM_REALP (y))
4303 {
4304 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4305 scm_remember_upto_here_1 (x);
4306 return scm_from_double (result);
4307 }
4308 else if (SCM_COMPLEXP (y))
4309 {
4310 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4311 scm_remember_upto_here_1 (x);
4312 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4313 z * SCM_COMPLEX_IMAG (y));
4314 }
4315 else if (SCM_FRACTIONP (y))
4316 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4317 SCM_FRACTION_DENOMINATOR (y));
4318 else
4319 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4320 }
4321 else if (SCM_REALP (x))
4322 {
4323 if (SCM_I_INUMP (y))
4324 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4325 else if (SCM_BIGP (y))
4326 {
4327 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4328 scm_remember_upto_here_1 (y);
4329 return scm_from_double (result);
4330 }
4331 else if (SCM_REALP (y))
4332 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4333 else if (SCM_COMPLEXP (y))
4334 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4335 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4336 else if (SCM_FRACTIONP (y))
4337 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4338 else
4339 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4340 }
4341 else if (SCM_COMPLEXP (x))
4342 {
4343 if (SCM_I_INUMP (y))
4344 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4345 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4346 else if (SCM_BIGP (y))
4347 {
4348 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4349 scm_remember_upto_here_1 (y);
4350 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4351 z * SCM_COMPLEX_IMAG (x));
4352 }
4353 else if (SCM_REALP (y))
4354 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4355 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4356 else if (SCM_COMPLEXP (y))
4357 {
4358 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4359 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4360 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4361 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4362 }
4363 else if (SCM_FRACTIONP (y))
4364 {
4365 double yy = scm_i_fraction2double (y);
4366 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4367 yy * SCM_COMPLEX_IMAG (x));
4368 }
4369 else
4370 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4371 }
4372 else if (SCM_FRACTIONP (x))
4373 {
4374 if (SCM_I_INUMP (y))
4375 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4376 SCM_FRACTION_DENOMINATOR (x));
4377 else if (SCM_BIGP (y))
4378 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4379 SCM_FRACTION_DENOMINATOR (x));
4380 else if (SCM_REALP (y))
4381 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4382 else if (SCM_COMPLEXP (y))
4383 {
4384 double xx = scm_i_fraction2double (x);
4385 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4386 xx * SCM_COMPLEX_IMAG (y));
4387 }
4388 else if (SCM_FRACTIONP (y))
4389 /* a/b * c/d = ac / bd */
4390 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4391 SCM_FRACTION_NUMERATOR (y)),
4392 scm_product (SCM_FRACTION_DENOMINATOR (x),
4393 SCM_FRACTION_DENOMINATOR (y)));
4394 else
4395 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4396 }
4397 else
4398 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4399 }
4400
4401 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4402 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4403 #define ALLOW_DIVIDE_BY_ZERO
4404 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4405 #endif
4406
4407 /* The code below for complex division is adapted from the GNU
4408 libstdc++, which adapted it from f2c's libF77, and is subject to
4409 this copyright: */
4410
4411 /****************************************************************
4412 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4413
4414 Permission to use, copy, modify, and distribute this software
4415 and its documentation for any purpose and without fee is hereby
4416 granted, provided that the above copyright notice appear in all
4417 copies and that both that the copyright notice and this
4418 permission notice and warranty disclaimer appear in supporting
4419 documentation, and that the names of AT&T Bell Laboratories or
4420 Bellcore or any of their entities not be used in advertising or
4421 publicity pertaining to distribution of the software without
4422 specific, written prior permission.
4423
4424 AT&T and Bellcore disclaim all warranties with regard to this
4425 software, including all implied warranties of merchantability
4426 and fitness. In no event shall AT&T or Bellcore be liable for
4427 any special, indirect or consequential damages or any damages
4428 whatsoever resulting from loss of use, data or profits, whether
4429 in an action of contract, negligence or other tortious action,
4430 arising out of or in connection with the use or performance of
4431 this software.
4432 ****************************************************************/
4433
4434 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4435 /* Divide the first argument by the product of the remaining
4436 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4437 returned. */
4438 #define FUNC_NAME s_divide
4439 static SCM
4440 scm_i_divide (SCM x, SCM y, int inexact)
4441 {
4442 double a;
4443
4444 if (SCM_UNBNDP (y))
4445 {
4446 if (SCM_UNBNDP (x))
4447 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4448 else if (SCM_I_INUMP (x))
4449 {
4450 long xx = SCM_I_INUM (x);
4451 if (xx == 1 || xx == -1)
4452 return x;
4453 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4454 else if (xx == 0)
4455 scm_num_overflow (s_divide);
4456 #endif
4457 else
4458 {
4459 if (inexact)
4460 return scm_from_double (1.0 / (double) xx);
4461 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4462 }
4463 }
4464 else if (SCM_BIGP (x))
4465 {
4466 if (inexact)
4467 return scm_from_double (1.0 / scm_i_big2dbl (x));
4468 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4469 }
4470 else if (SCM_REALP (x))
4471 {
4472 double xx = SCM_REAL_VALUE (x);
4473 #ifndef ALLOW_DIVIDE_BY_ZERO
4474 if (xx == 0.0)
4475 scm_num_overflow (s_divide);
4476 else
4477 #endif
4478 return scm_from_double (1.0 / xx);
4479 }
4480 else if (SCM_COMPLEXP (x))
4481 {
4482 double r = SCM_COMPLEX_REAL (x);
4483 double i = SCM_COMPLEX_IMAG (x);
4484 if (r <= i)
4485 {
4486 double t = r / i;
4487 double d = i * (1.0 + t * t);
4488 return scm_c_make_rectangular (t / d, -1.0 / d);
4489 }
4490 else
4491 {
4492 double t = i / r;
4493 double d = r * (1.0 + t * t);
4494 return scm_c_make_rectangular (1.0 / d, -t / d);
4495 }
4496 }
4497 else if (SCM_FRACTIONP (x))
4498 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4499 SCM_FRACTION_NUMERATOR (x));
4500 else
4501 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4502 }
4503
4504 if (SCM_I_INUMP (x))
4505 {
4506 long xx = SCM_I_INUM (x);
4507 if (SCM_I_INUMP (y))
4508 {
4509 long yy = SCM_I_INUM (y);
4510 if (yy == 0)
4511 {
4512 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4513 scm_num_overflow (s_divide);
4514 #else
4515 return scm_from_double ((double) xx / (double) yy);
4516 #endif
4517 }
4518 else if (xx % yy != 0)
4519 {
4520 if (inexact)
4521 return scm_from_double ((double) xx / (double) yy);
4522 else return scm_i_make_ratio (x, y);
4523 }
4524 else
4525 {
4526 long z = xx / yy;
4527 if (SCM_FIXABLE (z))
4528 return SCM_I_MAKINUM (z);
4529 else
4530 return scm_i_long2big (z);
4531 }
4532 }
4533 else if (SCM_BIGP (y))
4534 {
4535 if (inexact)
4536 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4537 else return scm_i_make_ratio (x, y);
4538 }
4539 else if (SCM_REALP (y))
4540 {
4541 double yy = SCM_REAL_VALUE (y);
4542 #ifndef ALLOW_DIVIDE_BY_ZERO
4543 if (yy == 0.0)
4544 scm_num_overflow (s_divide);
4545 else
4546 #endif
4547 return scm_from_double ((double) xx / yy);
4548 }
4549 else if (SCM_COMPLEXP (y))
4550 {
4551 a = xx;
4552 complex_div: /* y _must_ be a complex number */
4553 {
4554 double r = SCM_COMPLEX_REAL (y);
4555 double i = SCM_COMPLEX_IMAG (y);
4556 if (r <= i)
4557 {
4558 double t = r / i;
4559 double d = i * (1.0 + t * t);
4560 return scm_c_make_rectangular ((a * t) / d, -a / d);
4561 }
4562 else
4563 {
4564 double t = i / r;
4565 double d = r * (1.0 + t * t);
4566 return scm_c_make_rectangular (a / d, -(a * t) / d);
4567 }
4568 }
4569 }
4570 else if (SCM_FRACTIONP (y))
4571 /* a / b/c = ac / b */
4572 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4573 SCM_FRACTION_NUMERATOR (y));
4574 else
4575 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4576 }
4577 else if (SCM_BIGP (x))
4578 {
4579 if (SCM_I_INUMP (y))
4580 {
4581 long int yy = SCM_I_INUM (y);
4582 if (yy == 0)
4583 {
4584 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4585 scm_num_overflow (s_divide);
4586 #else
4587 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4588 scm_remember_upto_here_1 (x);
4589 return (sgn == 0) ? scm_nan () : scm_inf ();
4590 #endif
4591 }
4592 else if (yy == 1)
4593 return x;
4594 else
4595 {
4596 /* FIXME: HMM, what are the relative performance issues here?
4597 We need to test. Is it faster on average to test
4598 divisible_p, then perform whichever operation, or is it
4599 faster to perform the integer div opportunistically and
4600 switch to real if there's a remainder? For now we take the
4601 middle ground: test, then if divisible, use the faster div
4602 func. */
4603
4604 long abs_yy = yy < 0 ? -yy : yy;
4605 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4606
4607 if (divisible_p)
4608 {
4609 SCM result = scm_i_mkbig ();
4610 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4611 scm_remember_upto_here_1 (x);
4612 if (yy < 0)
4613 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4614 return scm_i_normbig (result);
4615 }
4616 else
4617 {
4618 if (inexact)
4619 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4620 else return scm_i_make_ratio (x, y);
4621 }
4622 }
4623 }
4624 else if (SCM_BIGP (y))
4625 {
4626 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4627 if (y_is_zero)
4628 {
4629 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4630 scm_num_overflow (s_divide);
4631 #else
4632 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4633 scm_remember_upto_here_1 (x);
4634 return (sgn == 0) ? scm_nan () : scm_inf ();
4635 #endif
4636 }
4637 else
4638 {
4639 /* big_x / big_y */
4640 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4641 SCM_I_BIG_MPZ (y));
4642 if (divisible_p)
4643 {
4644 SCM result = scm_i_mkbig ();
4645 mpz_divexact (SCM_I_BIG_MPZ (result),
4646 SCM_I_BIG_MPZ (x),
4647 SCM_I_BIG_MPZ (y));
4648 scm_remember_upto_here_2 (x, y);
4649 return scm_i_normbig (result);
4650 }
4651 else
4652 {
4653 if (inexact)
4654 {
4655 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4656 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4657 scm_remember_upto_here_2 (x, y);
4658 return scm_from_double (dbx / dby);
4659 }
4660 else return scm_i_make_ratio (x, y);
4661 }
4662 }
4663 }
4664 else if (SCM_REALP (y))
4665 {
4666 double yy = SCM_REAL_VALUE (y);
4667 #ifndef ALLOW_DIVIDE_BY_ZERO
4668 if (yy == 0.0)
4669 scm_num_overflow (s_divide);
4670 else
4671 #endif
4672 return scm_from_double (scm_i_big2dbl (x) / yy);
4673 }
4674 else if (SCM_COMPLEXP (y))
4675 {
4676 a = scm_i_big2dbl (x);
4677 goto complex_div;
4678 }
4679 else if (SCM_FRACTIONP (y))
4680 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4681 SCM_FRACTION_NUMERATOR (y));
4682 else
4683 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4684 }
4685 else if (SCM_REALP (x))
4686 {
4687 double rx = SCM_REAL_VALUE (x);
4688 if (SCM_I_INUMP (y))
4689 {
4690 long int yy = SCM_I_INUM (y);
4691 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4692 if (yy == 0)
4693 scm_num_overflow (s_divide);
4694 else
4695 #endif
4696 return scm_from_double (rx / (double) yy);
4697 }
4698 else if (SCM_BIGP (y))
4699 {
4700 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4701 scm_remember_upto_here_1 (y);
4702 return scm_from_double (rx / dby);
4703 }
4704 else if (SCM_REALP (y))
4705 {
4706 double yy = SCM_REAL_VALUE (y);
4707 #ifndef ALLOW_DIVIDE_BY_ZERO
4708 if (yy == 0.0)
4709 scm_num_overflow (s_divide);
4710 else
4711 #endif
4712 return scm_from_double (rx / yy);
4713 }
4714 else if (SCM_COMPLEXP (y))
4715 {
4716 a = rx;
4717 goto complex_div;
4718 }
4719 else if (SCM_FRACTIONP (y))
4720 return scm_from_double (rx / scm_i_fraction2double (y));
4721 else
4722 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4723 }
4724 else if (SCM_COMPLEXP (x))
4725 {
4726 double rx = SCM_COMPLEX_REAL (x);
4727 double ix = SCM_COMPLEX_IMAG (x);
4728 if (SCM_I_INUMP (y))
4729 {
4730 long int yy = SCM_I_INUM (y);
4731 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4732 if (yy == 0)
4733 scm_num_overflow (s_divide);
4734 else
4735 #endif
4736 {
4737 double d = yy;
4738 return scm_c_make_rectangular (rx / d, ix / d);
4739 }
4740 }
4741 else if (SCM_BIGP (y))
4742 {
4743 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4744 scm_remember_upto_here_1 (y);
4745 return scm_c_make_rectangular (rx / dby, ix / dby);
4746 }
4747 else if (SCM_REALP (y))
4748 {
4749 double yy = SCM_REAL_VALUE (y);
4750 #ifndef ALLOW_DIVIDE_BY_ZERO
4751 if (yy == 0.0)
4752 scm_num_overflow (s_divide);
4753 else
4754 #endif
4755 return scm_c_make_rectangular (rx / yy, ix / yy);
4756 }
4757 else if (SCM_COMPLEXP (y))
4758 {
4759 double ry = SCM_COMPLEX_REAL (y);
4760 double iy = SCM_COMPLEX_IMAG (y);
4761 if (ry <= iy)
4762 {
4763 double t = ry / iy;
4764 double d = iy * (1.0 + t * t);
4765 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
4766 }
4767 else
4768 {
4769 double t = iy / ry;
4770 double d = ry * (1.0 + t * t);
4771 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
4772 }
4773 }
4774 else if (SCM_FRACTIONP (y))
4775 {
4776 double yy = scm_i_fraction2double (y);
4777 return scm_c_make_rectangular (rx / yy, ix / yy);
4778 }
4779 else
4780 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4781 }
4782 else if (SCM_FRACTIONP (x))
4783 {
4784 if (SCM_I_INUMP (y))
4785 {
4786 long int yy = SCM_I_INUM (y);
4787 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4788 if (yy == 0)
4789 scm_num_overflow (s_divide);
4790 else
4791 #endif
4792 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4793 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4794 }
4795 else if (SCM_BIGP (y))
4796 {
4797 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4798 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4799 }
4800 else if (SCM_REALP (y))
4801 {
4802 double yy = SCM_REAL_VALUE (y);
4803 #ifndef ALLOW_DIVIDE_BY_ZERO
4804 if (yy == 0.0)
4805 scm_num_overflow (s_divide);
4806 else
4807 #endif
4808 return scm_from_double (scm_i_fraction2double (x) / yy);
4809 }
4810 else if (SCM_COMPLEXP (y))
4811 {
4812 a = scm_i_fraction2double (x);
4813 goto complex_div;
4814 }
4815 else if (SCM_FRACTIONP (y))
4816 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4817 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4818 else
4819 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4820 }
4821 else
4822 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
4823 }
4824
4825 SCM
4826 scm_divide (SCM x, SCM y)
4827 {
4828 return scm_i_divide (x, y, 0);
4829 }
4830
4831 static SCM scm_divide2real (SCM x, SCM y)
4832 {
4833 return scm_i_divide (x, y, 1);
4834 }
4835 #undef FUNC_NAME
4836
4837
4838 double
4839 scm_asinh (double x)
4840 {
4841 #if HAVE_ASINH
4842 return asinh (x);
4843 #else
4844 #define asinh scm_asinh
4845 return log (x + sqrt (x * x + 1));
4846 #endif
4847 }
4848 SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4849 /* "Return the inverse hyperbolic sine of @var{x}."
4850 */
4851
4852
4853 double
4854 scm_acosh (double x)
4855 {
4856 #if HAVE_ACOSH
4857 return acosh (x);
4858 #else
4859 #define acosh scm_acosh
4860 return log (x + sqrt (x * x - 1));
4861 #endif
4862 }
4863 SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4864 /* "Return the inverse hyperbolic cosine of @var{x}."
4865 */
4866
4867
4868 double
4869 scm_atanh (double x)
4870 {
4871 #if HAVE_ATANH
4872 return atanh (x);
4873 #else
4874 #define atanh scm_atanh
4875 return 0.5 * log ((1 + x) / (1 - x));
4876 #endif
4877 }
4878 SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4879 /* "Return the inverse hyperbolic tangent of @var{x}."
4880 */
4881
4882
4883 double
4884 scm_c_truncate (double x)
4885 {
4886 #if HAVE_TRUNC
4887 return trunc (x);
4888 #else
4889 if (x < 0.0)
4890 return -floor (-x);
4891 return floor (x);
4892 #endif
4893 }
4894
4895 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
4896 half-way case (ie. when x is an integer plus 0.5) going upwards.
4897 Then half-way cases are identified and adjusted down if the
4898 round-upwards didn't give the desired even integer.
4899
4900 "plus_half == result" identifies a half-way case. If plus_half, which is
4901 x + 0.5, is an integer then x must be an integer plus 0.5.
4902
4903 An odd "result" value is identified with result/2 != floor(result/2).
4904 This is done with plus_half, since that value is ready for use sooner in
4905 a pipelined cpu, and we're already requiring plus_half == result.
4906
4907 Note however that we need to be careful when x is big and already an
4908 integer. In that case "x+0.5" may round to an adjacent integer, causing
4909 us to return such a value, incorrectly. For instance if the hardware is
4910 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
4911 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
4912 returned. Or if the hardware is in round-upwards mode, then other bigger
4913 values like say x == 2^128 will see x+0.5 rounding up to the next higher
4914 representable value, 2^128+2^76 (or whatever), again incorrect.
4915
4916 These bad roundings of x+0.5 are avoided by testing at the start whether
4917 x is already an integer. If it is then clearly that's the desired result
4918 already. And if it's not then the exponent must be small enough to allow
4919 an 0.5 to be represented, and hence added without a bad rounding. */
4920
4921 double
4922 scm_c_round (double x)
4923 {
4924 double plus_half, result;
4925
4926 if (x == floor (x))
4927 return x;
4928
4929 plus_half = x + 0.5;
4930 result = floor (plus_half);
4931 /* Adjust so that the rounding is towards even. */
4932 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
4933 ? result - 1
4934 : result);
4935 }
4936
4937 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
4938 (SCM x),
4939 "Round the number @var{x} towards zero.")
4940 #define FUNC_NAME s_scm_truncate_number
4941 {
4942 if (scm_is_false (scm_negative_p (x)))
4943 return scm_floor (x);
4944 else
4945 return scm_ceiling (x);
4946 }
4947 #undef FUNC_NAME
4948
4949 static SCM exactly_one_half;
4950
4951 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
4952 (SCM x),
4953 "Round the number @var{x} towards the nearest integer. "
4954 "When it is exactly halfway between two integers, "
4955 "round towards the even one.")
4956 #define FUNC_NAME s_scm_round_number
4957 {
4958 if (SCM_I_INUMP (x) || SCM_BIGP (x))
4959 return x;
4960 else if (SCM_REALP (x))
4961 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
4962 else
4963 {
4964 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
4965 single quotient+remainder division then examining to see which way
4966 the rounding should go. */
4967 SCM plus_half = scm_sum (x, exactly_one_half);
4968 SCM result = scm_floor (plus_half);
4969 /* Adjust so that the rounding is towards even. */
4970 if (scm_is_true (scm_num_eq_p (plus_half, result))
4971 && scm_is_true (scm_odd_p (result)))
4972 return scm_difference (result, SCM_I_MAKINUM (1));
4973 else
4974 return result;
4975 }
4976 }
4977 #undef FUNC_NAME
4978
4979 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
4980 (SCM x),
4981 "Round the number @var{x} towards minus infinity.")
4982 #define FUNC_NAME s_scm_floor
4983 {
4984 if (SCM_I_INUMP (x) || SCM_BIGP (x))
4985 return x;
4986 else if (SCM_REALP (x))
4987 return scm_from_double (floor (SCM_REAL_VALUE (x)));
4988 else if (SCM_FRACTIONP (x))
4989 {
4990 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
4991 SCM_FRACTION_DENOMINATOR (x));
4992 if (scm_is_false (scm_negative_p (x)))
4993 {
4994 /* For positive x, rounding towards zero is correct. */
4995 return q;
4996 }
4997 else
4998 {
4999 /* For negative x, we need to return q-1 unless x is an
5000 integer. But fractions are never integer, per our
5001 assumptions. */
5002 return scm_difference (q, SCM_I_MAKINUM (1));
5003 }
5004 }
5005 else
5006 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5007 }
5008 #undef FUNC_NAME
5009
5010 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5011 (SCM x),
5012 "Round the number @var{x} towards infinity.")
5013 #define FUNC_NAME s_scm_ceiling
5014 {
5015 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5016 return x;
5017 else if (SCM_REALP (x))
5018 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5019 else if (SCM_FRACTIONP (x))
5020 {
5021 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5022 SCM_FRACTION_DENOMINATOR (x));
5023 if (scm_is_false (scm_positive_p (x)))
5024 {
5025 /* For negative x, rounding towards zero is correct. */
5026 return q;
5027 }
5028 else
5029 {
5030 /* For positive x, we need to return q+1 unless x is an
5031 integer. But fractions are never integer, per our
5032 assumptions. */
5033 return scm_sum (q, SCM_I_MAKINUM (1));
5034 }
5035 }
5036 else
5037 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5038 }
5039 #undef FUNC_NAME
5040
5041 SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5042 /* "Return the square root of the real number @var{x}."
5043 */
5044 SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5045 /* "Return the absolute value of the real number @var{x}."
5046 */
5047 SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5048 /* "Return the @var{x}th power of e."
5049 */
5050 SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5051 /* "Return the natural logarithm of the real number @var{x}."
5052 */
5053 SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5054 /* "Return the sine of the real number @var{x}."
5055 */
5056 SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5057 /* "Return the cosine of the real number @var{x}."
5058 */
5059 SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5060 /* "Return the tangent of the real number @var{x}."
5061 */
5062 SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5063 /* "Return the arc sine of the real number @var{x}."
5064 */
5065 SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5066 /* "Return the arc cosine of the real number @var{x}."
5067 */
5068 SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5069 /* "Return the arc tangent of the real number @var{x}."
5070 */
5071 SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5072 /* "Return the hyperbolic sine of the real number @var{x}."
5073 */
5074 SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5075 /* "Return the hyperbolic cosine of the real number @var{x}."
5076 */
5077 SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5078 /* "Return the hyperbolic tangent of the real number @var{x}."
5079 */
5080
5081 struct dpair
5082 {
5083 double x, y;
5084 };
5085
5086 static void scm_two_doubles (SCM x,
5087 SCM y,
5088 const char *sstring,
5089 struct dpair * xy);
5090
5091 static void
5092 scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5093 {
5094 if (SCM_I_INUMP (x))
5095 xy->x = SCM_I_INUM (x);
5096 else if (SCM_BIGP (x))
5097 xy->x = scm_i_big2dbl (x);
5098 else if (SCM_REALP (x))
5099 xy->x = SCM_REAL_VALUE (x);
5100 else if (SCM_FRACTIONP (x))
5101 xy->x = scm_i_fraction2double (x);
5102 else
5103 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5104
5105 if (SCM_I_INUMP (y))
5106 xy->y = SCM_I_INUM (y);
5107 else if (SCM_BIGP (y))
5108 xy->y = scm_i_big2dbl (y);
5109 else if (SCM_REALP (y))
5110 xy->y = SCM_REAL_VALUE (y);
5111 else if (SCM_FRACTIONP (y))
5112 xy->y = scm_i_fraction2double (y);
5113 else
5114 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5115 }
5116
5117
5118 SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5119 (SCM x, SCM y),
5120 "Return @var{x} raised to the power of @var{y}. This\n"
5121 "procedure does not accept complex arguments.")
5122 #define FUNC_NAME s_scm_sys_expt
5123 {
5124 struct dpair xy;
5125 scm_two_doubles (x, y, FUNC_NAME, &xy);
5126 return scm_from_double (pow (xy.x, xy.y));
5127 }
5128 #undef FUNC_NAME
5129
5130
5131 SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5132 (SCM x, SCM y),
5133 "Return the arc tangent of the two arguments @var{x} and\n"
5134 "@var{y}. This is similar to calculating the arc tangent of\n"
5135 "@var{x} / @var{y}, except that the signs of both arguments\n"
5136 "are used to determine the quadrant of the result. This\n"
5137 "procedure does not accept complex arguments.")
5138 #define FUNC_NAME s_scm_sys_atan2
5139 {
5140 struct dpair xy;
5141 scm_two_doubles (x, y, FUNC_NAME, &xy);
5142 return scm_from_double (atan2 (xy.x, xy.y));
5143 }
5144 #undef FUNC_NAME
5145
5146 SCM
5147 scm_c_make_rectangular (double re, double im)
5148 {
5149 if (im == 0.0)
5150 return scm_from_double (re);
5151 else
5152 {
5153 SCM z;
5154 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5155 "complex"));
5156 SCM_COMPLEX_REAL (z) = re;
5157 SCM_COMPLEX_IMAG (z) = im;
5158 return z;
5159 }
5160 }
5161
5162 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5163 (SCM real, SCM imaginary),
5164 "Return a complex number constructed of the given @var{real} and\n"
5165 "@var{imaginary} parts.")
5166 #define FUNC_NAME s_scm_make_rectangular
5167 {
5168 struct dpair xy;
5169 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
5170 return scm_c_make_rectangular (xy.x, xy.y);
5171 }
5172 #undef FUNC_NAME
5173
5174 SCM
5175 scm_c_make_polar (double mag, double ang)
5176 {
5177 double s, c;
5178 #if HAVE_SINCOS
5179 sincos (ang, &s, &c);
5180 #else
5181 s = sin (ang);
5182 c = cos (ang);
5183 #endif
5184 return scm_c_make_rectangular (mag * c, mag * s);
5185 }
5186
5187 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5188 (SCM x, SCM y),
5189 "Return the complex number @var{x} * e^(i * @var{y}).")
5190 #define FUNC_NAME s_scm_make_polar
5191 {
5192 struct dpair xy;
5193 scm_two_doubles (x, y, FUNC_NAME, &xy);
5194 return scm_c_make_polar (xy.x, xy.y);
5195 }
5196 #undef FUNC_NAME
5197
5198
5199 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5200 /* "Return the real part of the number @var{z}."
5201 */
5202 SCM
5203 scm_real_part (SCM z)
5204 {
5205 if (SCM_I_INUMP (z))
5206 return z;
5207 else if (SCM_BIGP (z))
5208 return z;
5209 else if (SCM_REALP (z))
5210 return z;
5211 else if (SCM_COMPLEXP (z))
5212 return scm_from_double (SCM_COMPLEX_REAL (z));
5213 else if (SCM_FRACTIONP (z))
5214 return z;
5215 else
5216 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5217 }
5218
5219
5220 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5221 /* "Return the imaginary part of the number @var{z}."
5222 */
5223 SCM
5224 scm_imag_part (SCM z)
5225 {
5226 if (SCM_I_INUMP (z))
5227 return SCM_INUM0;
5228 else if (SCM_BIGP (z))
5229 return SCM_INUM0;
5230 else if (SCM_REALP (z))
5231 return scm_flo0;
5232 else if (SCM_COMPLEXP (z))
5233 return scm_from_double (SCM_COMPLEX_IMAG (z));
5234 else if (SCM_FRACTIONP (z))
5235 return SCM_INUM0;
5236 else
5237 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5238 }
5239
5240 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5241 /* "Return the numerator of the number @var{z}."
5242 */
5243 SCM
5244 scm_numerator (SCM z)
5245 {
5246 if (SCM_I_INUMP (z))
5247 return z;
5248 else if (SCM_BIGP (z))
5249 return z;
5250 else if (SCM_FRACTIONP (z))
5251 {
5252 scm_i_fraction_reduce (z);
5253 return SCM_FRACTION_NUMERATOR (z);
5254 }
5255 else if (SCM_REALP (z))
5256 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5257 else
5258 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5259 }
5260
5261
5262 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5263 /* "Return the denominator of the number @var{z}."
5264 */
5265 SCM
5266 scm_denominator (SCM z)
5267 {
5268 if (SCM_I_INUMP (z))
5269 return SCM_I_MAKINUM (1);
5270 else if (SCM_BIGP (z))
5271 return SCM_I_MAKINUM (1);
5272 else if (SCM_FRACTIONP (z))
5273 {
5274 scm_i_fraction_reduce (z);
5275 return SCM_FRACTION_DENOMINATOR (z);
5276 }
5277 else if (SCM_REALP (z))
5278 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5279 else
5280 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5281 }
5282
5283 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5284 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5285 * "@code{abs} for real arguments, but also allows complex numbers."
5286 */
5287 SCM
5288 scm_magnitude (SCM z)
5289 {
5290 if (SCM_I_INUMP (z))
5291 {
5292 long int zz = SCM_I_INUM (z);
5293 if (zz >= 0)
5294 return z;
5295 else if (SCM_POSFIXABLE (-zz))
5296 return SCM_I_MAKINUM (-zz);
5297 else
5298 return scm_i_long2big (-zz);
5299 }
5300 else if (SCM_BIGP (z))
5301 {
5302 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5303 scm_remember_upto_here_1 (z);
5304 if (sgn < 0)
5305 return scm_i_clonebig (z, 0);
5306 else
5307 return z;
5308 }
5309 else if (SCM_REALP (z))
5310 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5311 else if (SCM_COMPLEXP (z))
5312 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5313 else if (SCM_FRACTIONP (z))
5314 {
5315 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5316 return z;
5317 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5318 SCM_FRACTION_DENOMINATOR (z));
5319 }
5320 else
5321 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5322 }
5323
5324
5325 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5326 /* "Return the angle of the complex number @var{z}."
5327 */
5328 SCM
5329 scm_angle (SCM z)
5330 {
5331 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5332 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5333 But if atan2 follows the floating point rounding mode, then the value
5334 is not a constant. Maybe it'd be close enough though. */
5335 if (SCM_I_INUMP (z))
5336 {
5337 if (SCM_I_INUM (z) >= 0)
5338 return scm_flo0;
5339 else
5340 return scm_from_double (atan2 (0.0, -1.0));
5341 }
5342 else if (SCM_BIGP (z))
5343 {
5344 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5345 scm_remember_upto_here_1 (z);
5346 if (sgn < 0)
5347 return scm_from_double (atan2 (0.0, -1.0));
5348 else
5349 return scm_flo0;
5350 }
5351 else if (SCM_REALP (z))
5352 {
5353 if (SCM_REAL_VALUE (z) >= 0)
5354 return scm_flo0;
5355 else
5356 return scm_from_double (atan2 (0.0, -1.0));
5357 }
5358 else if (SCM_COMPLEXP (z))
5359 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5360 else if (SCM_FRACTIONP (z))
5361 {
5362 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5363 return scm_flo0;
5364 else return scm_from_double (atan2 (0.0, -1.0));
5365 }
5366 else
5367 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5368 }
5369
5370
5371 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5372 /* Convert the number @var{x} to its inexact representation.\n"
5373 */
5374 SCM
5375 scm_exact_to_inexact (SCM z)
5376 {
5377 if (SCM_I_INUMP (z))
5378 return scm_from_double ((double) SCM_I_INUM (z));
5379 else if (SCM_BIGP (z))
5380 return scm_from_double (scm_i_big2dbl (z));
5381 else if (SCM_FRACTIONP (z))
5382 return scm_from_double (scm_i_fraction2double (z));
5383 else if (SCM_INEXACTP (z))
5384 return z;
5385 else
5386 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5387 }
5388
5389
5390 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5391 (SCM z),
5392 "Return an exact number that is numerically closest to @var{z}.")
5393 #define FUNC_NAME s_scm_inexact_to_exact
5394 {
5395 if (SCM_I_INUMP (z))
5396 return z;
5397 else if (SCM_BIGP (z))
5398 return z;
5399 else if (SCM_REALP (z))
5400 {
5401 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5402 SCM_OUT_OF_RANGE (1, z);
5403 else
5404 {
5405 mpq_t frac;
5406 SCM q;
5407
5408 mpq_init (frac);
5409 mpq_set_d (frac, SCM_REAL_VALUE (z));
5410 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5411 scm_i_mpz2num (mpq_denref (frac)));
5412
5413 /* When scm_i_make_ratio throws, we leak the memory allocated
5414 for frac...
5415 */
5416 mpq_clear (frac);
5417 return q;
5418 }
5419 }
5420 else if (SCM_FRACTIONP (z))
5421 return z;
5422 else
5423 SCM_WRONG_TYPE_ARG (1, z);
5424 }
5425 #undef FUNC_NAME
5426
5427 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5428 (SCM x, SCM err),
5429 "Return an exact number that is within @var{err} of @var{x}.")
5430 #define FUNC_NAME s_scm_rationalize
5431 {
5432 if (SCM_I_INUMP (x))
5433 return x;
5434 else if (SCM_BIGP (x))
5435 return x;
5436 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5437 {
5438 /* Use continued fractions to find closest ratio. All
5439 arithmetic is done with exact numbers.
5440 */
5441
5442 SCM ex = scm_inexact_to_exact (x);
5443 SCM int_part = scm_floor (ex);
5444 SCM tt = SCM_I_MAKINUM (1);
5445 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5446 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5447 SCM rx;
5448 int i = 0;
5449
5450 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5451 return ex;
5452
5453 ex = scm_difference (ex, int_part); /* x = x-int_part */
5454 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5455
5456 /* We stop after a million iterations just to be absolutely sure
5457 that we don't go into an infinite loop. The process normally
5458 converges after less than a dozen iterations.
5459 */
5460
5461 err = scm_abs (err);
5462 while (++i < 1000000)
5463 {
5464 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5465 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5466 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5467 scm_is_false
5468 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5469 err))) /* abs(x-a/b) <= err */
5470 {
5471 SCM res = scm_sum (int_part, scm_divide (a, b));
5472 if (scm_is_false (scm_exact_p (x))
5473 || scm_is_false (scm_exact_p (err)))
5474 return scm_exact_to_inexact (res);
5475 else
5476 return res;
5477 }
5478 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5479 SCM_UNDEFINED);
5480 tt = scm_floor (rx); /* tt = floor (rx) */
5481 a2 = a1;
5482 b2 = b1;
5483 a1 = a;
5484 b1 = b;
5485 }
5486 scm_num_overflow (s_scm_rationalize);
5487 }
5488 else
5489 SCM_WRONG_TYPE_ARG (1, x);
5490 }
5491 #undef FUNC_NAME
5492
5493 /* conversion functions */
5494
5495 int
5496 scm_is_integer (SCM val)
5497 {
5498 return scm_is_true (scm_integer_p (val));
5499 }
5500
5501 int
5502 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5503 {
5504 if (SCM_I_INUMP (val))
5505 {
5506 scm_t_signed_bits n = SCM_I_INUM (val);
5507 return n >= min && n <= max;
5508 }
5509 else if (SCM_BIGP (val))
5510 {
5511 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5512 return 0;
5513 else if (min >= LONG_MIN && max <= LONG_MAX)
5514 {
5515 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5516 {
5517 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5518 return n >= min && n <= max;
5519 }
5520 else
5521 return 0;
5522 }
5523 else
5524 {
5525 scm_t_intmax n;
5526 size_t count;
5527
5528 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5529 > CHAR_BIT*sizeof (scm_t_uintmax))
5530 return 0;
5531
5532 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5533 SCM_I_BIG_MPZ (val));
5534
5535 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
5536 {
5537 if (n < 0)
5538 return 0;
5539 }
5540 else
5541 {
5542 n = -n;
5543 if (n >= 0)
5544 return 0;
5545 }
5546
5547 return n >= min && n <= max;
5548 }
5549 }
5550 else
5551 return 0;
5552 }
5553
5554 int
5555 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5556 {
5557 if (SCM_I_INUMP (val))
5558 {
5559 scm_t_signed_bits n = SCM_I_INUM (val);
5560 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5561 }
5562 else if (SCM_BIGP (val))
5563 {
5564 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5565 return 0;
5566 else if (max <= ULONG_MAX)
5567 {
5568 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5569 {
5570 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5571 return n >= min && n <= max;
5572 }
5573 else
5574 return 0;
5575 }
5576 else
5577 {
5578 scm_t_uintmax n;
5579 size_t count;
5580
5581 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5582 return 0;
5583
5584 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5585 > CHAR_BIT*sizeof (scm_t_uintmax))
5586 return 0;
5587
5588 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5589 SCM_I_BIG_MPZ (val));
5590
5591 return n >= min && n <= max;
5592 }
5593 }
5594 else
5595 return 0;
5596 }
5597
5598 #define TYPE scm_t_intmax
5599 #define TYPE_MIN min
5600 #define TYPE_MAX max
5601 #define SIZEOF_TYPE 0
5602 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5603 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5604 #include "libguile/conv-integer.i.c"
5605
5606 #define TYPE scm_t_uintmax
5607 #define TYPE_MIN min
5608 #define TYPE_MAX max
5609 #define SIZEOF_TYPE 0
5610 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5611 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5612 #include "libguile/conv-uinteger.i.c"
5613
5614 #define TYPE scm_t_int8
5615 #define TYPE_MIN SCM_T_INT8_MIN
5616 #define TYPE_MAX SCM_T_INT8_MAX
5617 #define SIZEOF_TYPE 1
5618 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5619 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5620 #include "libguile/conv-integer.i.c"
5621
5622 #define TYPE scm_t_uint8
5623 #define TYPE_MIN 0
5624 #define TYPE_MAX SCM_T_UINT8_MAX
5625 #define SIZEOF_TYPE 1
5626 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5627 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5628 #include "libguile/conv-uinteger.i.c"
5629
5630 #define TYPE scm_t_int16
5631 #define TYPE_MIN SCM_T_INT16_MIN
5632 #define TYPE_MAX SCM_T_INT16_MAX
5633 #define SIZEOF_TYPE 2
5634 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5635 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5636 #include "libguile/conv-integer.i.c"
5637
5638 #define TYPE scm_t_uint16
5639 #define TYPE_MIN 0
5640 #define TYPE_MAX SCM_T_UINT16_MAX
5641 #define SIZEOF_TYPE 2
5642 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5643 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5644 #include "libguile/conv-uinteger.i.c"
5645
5646 #define TYPE scm_t_int32
5647 #define TYPE_MIN SCM_T_INT32_MIN
5648 #define TYPE_MAX SCM_T_INT32_MAX
5649 #define SIZEOF_TYPE 4
5650 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5651 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5652 #include "libguile/conv-integer.i.c"
5653
5654 #define TYPE scm_t_uint32
5655 #define TYPE_MIN 0
5656 #define TYPE_MAX SCM_T_UINT32_MAX
5657 #define SIZEOF_TYPE 4
5658 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5659 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5660 #include "libguile/conv-uinteger.i.c"
5661
5662 #if SCM_HAVE_T_INT64
5663
5664 #define TYPE scm_t_int64
5665 #define TYPE_MIN SCM_T_INT64_MIN
5666 #define TYPE_MAX SCM_T_INT64_MAX
5667 #define SIZEOF_TYPE 8
5668 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5669 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5670 #include "libguile/conv-integer.i.c"
5671
5672 #define TYPE scm_t_uint64
5673 #define TYPE_MIN 0
5674 #define TYPE_MAX SCM_T_UINT64_MAX
5675 #define SIZEOF_TYPE 8
5676 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5677 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5678 #include "libguile/conv-uinteger.i.c"
5679
5680 #endif
5681
5682 void
5683 scm_to_mpz (SCM val, mpz_t rop)
5684 {
5685 if (SCM_I_INUMP (val))
5686 mpz_set_si (rop, SCM_I_INUM (val));
5687 else if (SCM_BIGP (val))
5688 mpz_set (rop, SCM_I_BIG_MPZ (val));
5689 else
5690 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
5691 }
5692
5693 SCM
5694 scm_from_mpz (mpz_t val)
5695 {
5696 return scm_i_mpz2num (val);
5697 }
5698
5699 int
5700 scm_is_real (SCM val)
5701 {
5702 return scm_is_true (scm_real_p (val));
5703 }
5704
5705 int
5706 scm_is_rational (SCM val)
5707 {
5708 return scm_is_true (scm_rational_p (val));
5709 }
5710
5711 double
5712 scm_to_double (SCM val)
5713 {
5714 if (SCM_I_INUMP (val))
5715 return SCM_I_INUM (val);
5716 else if (SCM_BIGP (val))
5717 return scm_i_big2dbl (val);
5718 else if (SCM_FRACTIONP (val))
5719 return scm_i_fraction2double (val);
5720 else if (SCM_REALP (val))
5721 return SCM_REAL_VALUE (val);
5722 else
5723 scm_wrong_type_arg (NULL, 0, val);
5724 }
5725
5726 SCM
5727 scm_from_double (double val)
5728 {
5729 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5730 SCM_REAL_VALUE (z) = val;
5731 return z;
5732 }
5733
5734 #if SCM_ENABLE_DISCOURAGED == 1
5735
5736 float
5737 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5738 {
5739 if (SCM_BIGP (num))
5740 {
5741 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5742 if (!xisinf (res))
5743 return res;
5744 else
5745 scm_out_of_range (NULL, num);
5746 }
5747 else
5748 return scm_to_double (num);
5749 }
5750
5751 double
5752 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5753 {
5754 if (SCM_BIGP (num))
5755 {
5756 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5757 if (!xisinf (res))
5758 return res;
5759 else
5760 scm_out_of_range (NULL, num);
5761 }
5762 else
5763 return scm_to_double (num);
5764 }
5765
5766 #endif
5767
5768 int
5769 scm_is_complex (SCM val)
5770 {
5771 return scm_is_true (scm_complex_p (val));
5772 }
5773
5774 double
5775 scm_c_real_part (SCM z)
5776 {
5777 if (SCM_COMPLEXP (z))
5778 return SCM_COMPLEX_REAL (z);
5779 else
5780 {
5781 /* Use the scm_real_part to get proper error checking and
5782 dispatching.
5783 */
5784 return scm_to_double (scm_real_part (z));
5785 }
5786 }
5787
5788 double
5789 scm_c_imag_part (SCM z)
5790 {
5791 if (SCM_COMPLEXP (z))
5792 return SCM_COMPLEX_IMAG (z);
5793 else
5794 {
5795 /* Use the scm_imag_part to get proper error checking and
5796 dispatching. The result will almost always be 0.0, but not
5797 always.
5798 */
5799 return scm_to_double (scm_imag_part (z));
5800 }
5801 }
5802
5803 double
5804 scm_c_magnitude (SCM z)
5805 {
5806 return scm_to_double (scm_magnitude (z));
5807 }
5808
5809 double
5810 scm_c_angle (SCM z)
5811 {
5812 return scm_to_double (scm_angle (z));
5813 }
5814
5815 int
5816 scm_is_number (SCM z)
5817 {
5818 return scm_is_true (scm_number_p (z));
5819 }
5820
5821 void
5822 scm_init_numbers ()
5823 {
5824 int i;
5825
5826 mpz_init_set_si (z_negative_one, -1);
5827
5828 /* It may be possible to tune the performance of some algorithms by using
5829 * the following constants to avoid the creation of bignums. Please, before
5830 * using these values, remember the two rules of program optimization:
5831 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
5832 scm_c_define ("most-positive-fixnum",
5833 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
5834 scm_c_define ("most-negative-fixnum",
5835 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
5836
5837 scm_add_feature ("complex");
5838 scm_add_feature ("inexact");
5839 scm_flo0 = scm_from_double (0.0);
5840
5841 /* determine floating point precision */
5842 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
5843 {
5844 init_dblprec(&scm_dblprec[i-2],i);
5845 init_fx_radix(fx_per_radix[i-2],i);
5846 }
5847 #ifdef DBL_DIG
5848 /* hard code precision for base 10 if the preprocessor tells us to... */
5849 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5850 #endif
5851
5852 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
5853 SCM_I_MAKINUM (2)));
5854 #include "libguile/numbers.x"
5855 }
5856
5857 /*
5858 Local Variables:
5859 c-file-style: "gnu"
5860 End:
5861 */