c30861d4b69eaccc1727fa3d2d87527cc2114bef
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 ;;;; 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 ;;;; Free Software Foundation, Inc.
6 ;;;;
7 ;;;; This library is free software; you can redistribute it and/or
8 ;;;; modify it under the terms of the GNU Lesser General Public
9 ;;;; License as published by the Free Software Foundation; either
10 ;;;; version 3 of the License, or (at your option) any later version.
11 ;;;;
12 ;;;; This library is distributed in the hope that it will be useful,
13 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;;;; Lesser General Public License for more details.
16 ;;;;
17 ;;;; You should have received a copy of the GNU Lesser General Public
18 ;;;; License along with this library; if not, write to the Free Software
19 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 ;;;;
21
22 \f
23
24 ;;; Commentary:
25
26 ;;; This file is the first thing loaded into Guile. It adds many mundane
27 ;;; definitions and a few that are interesting.
28 ;;;
29 ;;; The module system (hence the hierarchical namespace) are defined in this
30 ;;; file.
31 ;;;
32
33 ;;; Code:
34
35 \f
36
37 ;; Before compiling, make sure any symbols are resolved in the (guile)
38 ;; module, the primary location of those symbols, rather than in
39 ;; (guile-user), the default module that we compile in.
40
41 (eval-when (compile)
42 (set-current-module (resolve-module '(guile))))
43
44 \f
45
46 ;;; {Error handling}
47 ;;;
48
49 ;; Define delimited continuation operators, and implement catch and throw in
50 ;; terms of them.
51
52 (define make-prompt-tag
53 (lambda* (#:optional (stem "prompt"))
54 ;; The only property that prompt tags need have is uniqueness in the
55 ;; sense of eq?. A one-element list will serve nicely.
56 (list stem)))
57
58 (define default-prompt-tag
59 ;; Redefined later to be a parameter.
60 (let ((%default-prompt-tag (make-prompt-tag)))
61 (lambda ()
62 %default-prompt-tag)))
63
64 (define (call-with-prompt tag thunk handler)
65 (@prompt tag (thunk) handler))
66 (define (abort-to-prompt tag . args)
67 (@abort tag args))
68
69
70 ;; Define catch and with-throw-handler, using some common helper routines and a
71 ;; shared fluid. Hide the helpers in a lexical contour.
72
73 (define with-throw-handler #f)
74 (let ()
75 (define (default-exception-handler k . args)
76 (cond
77 ((eq? k 'quit)
78 (primitive-exit (cond
79 ((not (pair? args)) 0)
80 ((integer? (car args)) (car args))
81 ((not (car args)) 1)
82 (else 0))))
83 (else
84 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
85 (primitive-exit 1))))
86
87 (define %running-exception-handlers (make-fluid '()))
88 (define %exception-handler (make-fluid default-exception-handler))
89
90 (define (default-throw-handler prompt-tag catch-k)
91 (let ((prev (fluid-ref %exception-handler)))
92 (lambda (thrown-k . args)
93 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
94 (apply abort-to-prompt prompt-tag thrown-k args)
95 (apply prev thrown-k args)))))
96
97 (define (custom-throw-handler prompt-tag catch-k pre)
98 (let ((prev (fluid-ref %exception-handler)))
99 (lambda (thrown-k . args)
100 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
101 (let ((running (fluid-ref %running-exception-handlers)))
102 (with-fluids ((%running-exception-handlers (cons pre running)))
103 (if (not (memq pre running))
104 (apply pre thrown-k args))
105 ;; fall through
106 (if prompt-tag
107 (apply abort-to-prompt prompt-tag thrown-k args)
108 (apply prev thrown-k args))))
109 (apply prev thrown-k args)))))
110
111 (set! catch
112 (lambda* (k thunk handler #:optional pre-unwind-handler)
113 "Invoke @var{thunk} in the dynamic context of @var{handler} for
114 exceptions matching @var{key}. If thunk throws to the symbol
115 @var{key}, then @var{handler} is invoked this way:
116 @lisp
117 (handler key args ...)
118 @end lisp
119
120 @var{key} is a symbol or @code{#t}.
121
122 @var{thunk} takes no arguments. If @var{thunk} returns
123 normally, that is the return value of @code{catch}.
124
125 Handler is invoked outside the scope of its own @code{catch}.
126 If @var{handler} again throws to the same key, a new handler
127 from further up the call chain is invoked.
128
129 If the key is @code{#t}, then a throw to @emph{any} symbol will
130 match this call to @code{catch}.
131
132 If a @var{pre-unwind-handler} is given and @var{thunk} throws
133 an exception that matches @var{key}, Guile calls the
134 @var{pre-unwind-handler} before unwinding the dynamic state and
135 invoking the main @var{handler}. @var{pre-unwind-handler} should
136 be a procedure with the same signature as @var{handler}, that
137 is @code{(lambda (key . args))}. It is typically used to save
138 the stack at the point where the exception occurred, but can also
139 query other parts of the dynamic state at that point, such as
140 fluid values.
141
142 A @var{pre-unwind-handler} can exit either normally or non-locally.
143 If it exits normally, Guile unwinds the stack and dynamic context
144 and then calls the normal (third argument) handler. If it exits
145 non-locally, that exit determines the continuation."
146 (if (not (or (symbol? k) (eqv? k #t)))
147 (scm-error 'wrong-type-arg "catch"
148 "Wrong type argument in position ~a: ~a"
149 (list 1 k) (list k)))
150 (let ((tag (make-prompt-tag "catch")))
151 (call-with-prompt
152 tag
153 (lambda ()
154 (with-fluids
155 ((%exception-handler
156 (if pre-unwind-handler
157 (custom-throw-handler tag k pre-unwind-handler)
158 (default-throw-handler tag k))))
159 (thunk)))
160 (lambda (cont k . args)
161 (apply handler k args))))))
162
163 (set! with-throw-handler
164 (lambda (k thunk pre-unwind-handler)
165 "Add @var{handler} to the dynamic context as a throw handler
166 for key @var{k}, then invoke @var{thunk}."
167 (if (not (or (symbol? k) (eqv? k #t)))
168 (scm-error 'wrong-type-arg "with-throw-handler"
169 "Wrong type argument in position ~a: ~a"
170 (list 1 k) (list k)))
171 (with-fluids ((%exception-handler
172 (custom-throw-handler #f k pre-unwind-handler)))
173 (thunk))))
174
175 (set! throw
176 (lambda (key . args)
177 "Invoke the catch form matching @var{key}, passing @var{args} to the
178 @var{handler}.
179
180 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
181
182 If there is no handler at all, Guile prints an error and then exits."
183 (if (not (symbol? key))
184 ((fluid-ref %exception-handler) 'wrong-type-arg "throw"
185 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
186 (apply (fluid-ref %exception-handler) key args)))))
187
188
189 \f
190
191 ;;; {Language primitives}
192 ;;;
193
194 ;; These are are the procedural wrappers around the primitives of
195 ;; Guile's language: @apply, @call-with-current-continuation, etc.
196 ;;
197 ;; Usually, a call to a primitive is compiled specially. The compiler
198 ;; knows about all these kinds of expressions. But the primitives may
199 ;; be referenced not only as operators, but as values as well. These
200 ;; stub procedures are the "values" of apply, dynamic-wind, and other
201 ;; such primitives.
202 ;;
203 (define (apply fun . args)
204 (@apply fun (apply:nconc2last args)))
205 (define (call-with-current-continuation proc)
206 (@call-with-current-continuation proc))
207 (define (call-with-values producer consumer)
208 (@call-with-values producer consumer))
209 (define (dynamic-wind in thunk out)
210 "All three arguments must be 0-argument procedures.
211 Guard @var{in} is called, then @var{thunk}, then
212 guard @var{out}.
213
214 If, any time during the execution of @var{thunk}, the
215 continuation of the @code{dynamic_wind} expression is escaped
216 non-locally, @var{out} is called. If the continuation of
217 the dynamic-wind is re-entered, @var{in} is called. Thus
218 @var{in} and @var{out} may be called any number of
219 times.
220 @lisp
221 (define x 'normal-binding)
222 @result{} x
223 (define a-cont
224 (call-with-current-continuation
225 (lambda (escape)
226 (let ((old-x x))
227 (dynamic-wind
228 ;; in-guard:
229 ;;
230 (lambda () (set! x 'special-binding))
231
232 ;; thunk
233 ;;
234 (lambda () (display x) (newline)
235 (call-with-current-continuation escape)
236 (display x) (newline)
237 x)
238
239 ;; out-guard:
240 ;;
241 (lambda () (set! x old-x)))))))
242
243 ;; Prints:
244 special-binding
245 ;; Evaluates to:
246 @result{} a-cont
247 x
248 @result{} normal-binding
249 (a-cont #f)
250 ;; Prints:
251 special-binding
252 ;; Evaluates to:
253 @result{} a-cont ;; the value of the (define a-cont...)
254 x
255 @result{} normal-binding
256 a-cont
257 @result{} special-binding
258 @end lisp"
259 (@dynamic-wind in (thunk) out))
260
261 \f
262
263 ;;; {Low-Level Port Code}
264 ;;;
265
266 ;; These are used to request the proper mode to open files in.
267 ;;
268 (define OPEN_READ "r")
269 (define OPEN_WRITE "w")
270 (define OPEN_BOTH "r+")
271
272 (define *null-device* "/dev/null")
273
274 (define (open-input-file str)
275 "Takes a string naming an existing file and returns an input port
276 capable of delivering characters from the file. If the file
277 cannot be opened, an error is signalled."
278 (open-file str OPEN_READ))
279
280 (define (open-output-file str)
281 "Takes a string naming an output file to be created and returns an
282 output port capable of writing characters to a new file by that
283 name. If the file cannot be opened, an error is signalled. If a
284 file with the given name already exists, the effect is unspecified."
285 (open-file str OPEN_WRITE))
286
287 (define (open-io-file str)
288 "Open file with name STR for both input and output."
289 (open-file str OPEN_BOTH))
290
291 \f
292
293 ;;; {Simple Debugging Tools}
294 ;;;
295
296 ;; peek takes any number of arguments, writes them to the
297 ;; current ouput port, and returns the last argument.
298 ;; It is handy to wrap around an expression to look at
299 ;; a value each time is evaluated, e.g.:
300 ;;
301 ;; (+ 10 (troublesome-fn))
302 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
303 ;;
304
305 (define (peek . stuff)
306 (newline)
307 (display ";;; ")
308 (write stuff)
309 (newline)
310 (car (last-pair stuff)))
311
312 (define pk peek)
313
314 ;; Temporary definition; replaced later.
315 (define current-warning-port current-error-port)
316
317 (define (warn . stuff)
318 (newline (current-warning-port))
319 (display ";;; WARNING " (current-warning-port))
320 (display stuff (current-warning-port))
321 (newline (current-warning-port))
322 (car (last-pair stuff)))
323
324 \f
325
326 ;;; {Features}
327 ;;;
328
329 (define (provide sym)
330 (if (not (memq sym *features*))
331 (set! *features* (cons sym *features*))))
332
333 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
334 ;; provided? also checks to see if the module is available. We should do that
335 ;; too, but don't.
336
337 (define (provided? feature)
338 (and (memq feature *features*) #t))
339
340 \f
341
342 ;;; {Structs}
343 ;;;
344
345 (define (make-struct/no-tail vtable . args)
346 (apply make-struct vtable 0 args))
347
348 \f
349
350 ;;; Boot versions of `map' and `for-each', enough to get the expander
351 ;;; running.
352 ;;;
353 (define map
354 (case-lambda
355 ((f l)
356 (let map1 ((l l))
357 (if (null? l)
358 '()
359 (cons (f (car l)) (map1 (cdr l))))))
360 ((f l1 l2)
361 (let map2 ((l1 l1) (l2 l2))
362 (if (null? l1)
363 '()
364 (cons (f (car l1) (car l2))
365 (map2 (cdr l1) (cdr l2))))))
366 ((f l1 . rest)
367 (let lp ((l1 l1) (rest rest))
368 (if (null? l1)
369 '()
370 (cons (apply f (car l1) (map car rest))
371 (lp (cdr l1) (map cdr rest))))))))
372
373 (define for-each
374 (case-lambda
375 ((f l)
376 (let for-each1 ((l l))
377 (if (pair? l)
378 (begin
379 (f (car l))
380 (for-each1 (cdr l))))))
381 ((f l1 l2)
382 (let for-each2 ((l1 l1) (l2 l2))
383 (if (pair? l1)
384 (begin
385 (f (car l1) (car l2))
386 (for-each2 (cdr l1) (cdr l2))))))
387 ((f l1 . rest)
388 (let lp ((l1 l1) (rest rest))
389 (if (pair? l1)
390 (begin
391 (apply f (car l1) (map car rest))
392 (lp (cdr l1) (map cdr rest))))))))
393
394 ;;; {and-map and or-map}
395 ;;;
396 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
397 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
398 ;;;
399
400 ;; and-map f l
401 ;;
402 ;; Apply f to successive elements of l until exhaustion or f returns #f.
403 ;; If returning early, return #f. Otherwise, return the last value returned
404 ;; by f. If f has never been called because l is empty, return #t.
405 ;;
406 (define (and-map f lst)
407 (let loop ((result #t)
408 (l lst))
409 (and result
410 (or (and (null? l)
411 result)
412 (loop (f (car l)) (cdr l))))))
413
414 ;; or-map f l
415 ;;
416 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
417 ;; If returning early, return the return value of f.
418 ;;
419 (define (or-map f lst)
420 (let loop ((result #f)
421 (l lst))
422 (or result
423 (and (not (null? l))
424 (loop (f (car l)) (cdr l))))))
425
426 \f
427
428 ;; let format alias simple-format until the more complete version is loaded
429
430 (define format simple-format)
431
432 ;; this is scheme wrapping the C code so the final pred call is a tail call,
433 ;; per SRFI-13 spec
434 (define string-any
435 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
436 (if (and (procedure? char_pred)
437 (> end start)
438 (<= end (string-length s))) ;; let c-code handle range error
439 (or (string-any-c-code char_pred s start (1- end))
440 (char_pred (string-ref s (1- end))))
441 (string-any-c-code char_pred s start end))))
442
443 ;; this is scheme wrapping the C code so the final pred call is a tail call,
444 ;; per SRFI-13 spec
445 (define string-every
446 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
447 (if (and (procedure? char_pred)
448 (> end start)
449 (<= end (string-length s))) ;; let c-code handle range error
450 (and (string-every-c-code char_pred s start (1- end))
451 (char_pred (string-ref s (1- end))))
452 (string-every-c-code char_pred s start end))))
453
454 ;; A variant of string-fill! that we keep for compatability
455 ;;
456 (define (substring-fill! str start end fill)
457 (string-fill! str fill start end))
458
459 \f
460
461 ;; Define a minimal stub of the module API for psyntax, before modules
462 ;; have booted.
463 (define (module-name x)
464 '(guile))
465 (define (module-add! module sym var)
466 (hashq-set! (%get-pre-modules-obarray) sym var))
467 (define (module-define! module sym val)
468 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
469 (if v
470 (variable-set! v val)
471 (module-add! (current-module) sym (make-variable val)))))
472 (define (module-ref module sym)
473 (let ((v (module-variable module sym)))
474 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
475 (define (resolve-module . args)
476 #f)
477
478 ;; API provided by psyntax
479 (define syntax-violation #f)
480 (define datum->syntax #f)
481 (define syntax->datum #f)
482 (define syntax-source #f)
483 (define identifier? #f)
484 (define generate-temporaries #f)
485 (define bound-identifier=? #f)
486 (define free-identifier=? #f)
487
488 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
489 ;; expanded macros, to dispatch an input against a set of patterns.
490 (define $sc-dispatch #f)
491
492 ;; Load it up!
493 (primitive-load-path "ice-9/psyntax-pp")
494 ;; The binding for `macroexpand' has now been overridden, making psyntax the
495 ;; expander now.
496
497 (define-syntax and
498 (syntax-rules ()
499 ((_) #t)
500 ((_ x) x)
501 ((_ x y ...) (if x (and y ...) #f))))
502
503 (define-syntax or
504 (syntax-rules ()
505 ((_) #f)
506 ((_ x) x)
507 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
508
509 (include-from-path "ice-9/quasisyntax")
510
511 (define-syntax-rule (when test stmt stmt* ...)
512 (if test (begin stmt stmt* ...)))
513
514 (define-syntax-rule (unless test stmt stmt* ...)
515 (if (not test) (begin stmt stmt* ...)))
516
517 (define-syntax cond
518 (lambda (whole-expr)
519 (define (fold f seed xs)
520 (let loop ((xs xs) (seed seed))
521 (if (null? xs) seed
522 (loop (cdr xs) (f (car xs) seed)))))
523 (define (reverse-map f xs)
524 (fold (lambda (x seed) (cons (f x) seed))
525 '() xs))
526 (syntax-case whole-expr ()
527 ((_ clause clauses ...)
528 #`(begin
529 #,@(fold (lambda (clause-builder tail)
530 (clause-builder tail))
531 #'()
532 (reverse-map
533 (lambda (clause)
534 (define* (bad-clause #:optional (msg "invalid clause"))
535 (syntax-violation 'cond msg whole-expr clause))
536 (syntax-case clause (=> else)
537 ((else e e* ...)
538 (lambda (tail)
539 (if (null? tail)
540 #'((begin e e* ...))
541 (bad-clause "else must be the last clause"))))
542 ((else . _) (bad-clause))
543 ((test => receiver)
544 (lambda (tail)
545 #`((let ((t test))
546 (if t
547 (receiver t)
548 #,@tail)))))
549 ((test => receiver ...)
550 (bad-clause "wrong number of receiver expressions"))
551 ((generator guard => receiver)
552 (lambda (tail)
553 #`((call-with-values (lambda () generator)
554 (lambda vals
555 (if (apply guard vals)
556 (apply receiver vals)
557 #,@tail))))))
558 ((generator guard => receiver ...)
559 (bad-clause "wrong number of receiver expressions"))
560 ((test)
561 (lambda (tail)
562 #`((let ((t test))
563 (if t t #,@tail)))))
564 ((test e e* ...)
565 (lambda (tail)
566 #`((if test
567 (begin e e* ...)
568 #,@tail))))
569 (_ (bad-clause))))
570 #'(clause clauses ...))))))))
571
572 (define-syntax case
573 (lambda (whole-expr)
574 (define (fold f seed xs)
575 (let loop ((xs xs) (seed seed))
576 (if (null? xs) seed
577 (loop (cdr xs) (f (car xs) seed)))))
578 (define (fold2 f a b xs)
579 (let loop ((xs xs) (a a) (b b))
580 (if (null? xs) (values a b)
581 (call-with-values
582 (lambda () (f (car xs) a b))
583 (lambda (a b)
584 (loop (cdr xs) a b))))))
585 (define (reverse-map-with-seed f seed xs)
586 (fold2 (lambda (x ys seed)
587 (call-with-values
588 (lambda () (f x seed))
589 (lambda (y seed)
590 (values (cons y ys) seed))))
591 '() seed xs))
592 (syntax-case whole-expr ()
593 ((_ expr clause clauses ...)
594 (with-syntax ((key #'key))
595 #`(let ((key expr))
596 #,@(fold
597 (lambda (clause-builder tail)
598 (clause-builder tail))
599 #'()
600 (reverse-map-with-seed
601 (lambda (clause seen)
602 (define* (bad-clause #:optional (msg "invalid clause"))
603 (syntax-violation 'case msg whole-expr clause))
604 (syntax-case clause ()
605 ((test . rest)
606 (with-syntax
607 ((clause-expr
608 (syntax-case #'rest (=>)
609 ((=> receiver) #'(receiver key))
610 ((=> receiver ...)
611 (bad-clause
612 "wrong number of receiver expressions"))
613 ((e e* ...) #'(begin e e* ...))
614 (_ (bad-clause)))))
615 (syntax-case #'test (else)
616 ((datums ...)
617 (let ((seen
618 (fold
619 (lambda (datum seen)
620 (define (warn-datum type)
621 ((@ (system base message)
622 warning)
623 type
624 (append (source-properties datum)
625 (source-properties
626 (syntax->datum #'test)))
627 datum
628 (syntax->datum clause)
629 (syntax->datum whole-expr)))
630 (if (memv datum seen)
631 (warn-datum 'duplicate-case-datum))
632 (if (or (pair? datum)
633 (array? datum)
634 (generalized-vector? datum))
635 (warn-datum 'bad-case-datum))
636 (cons datum seen))
637 seen
638 (map syntax->datum #'(datums ...)))))
639 (values (lambda (tail)
640 #`((if (memv key '(datums ...))
641 clause-expr
642 #,@tail)))
643 seen)))
644 (else (values (lambda (tail)
645 (if (null? tail)
646 #'(clause-expr)
647 (bad-clause
648 "else must be the last clause")))
649 seen))
650 (_ (bad-clause)))))
651 (_ (bad-clause))))
652 '() #'(clause clauses ...)))))))))
653
654 (define-syntax do
655 (syntax-rules ()
656 ((do ((var init step ...) ...)
657 (test expr ...)
658 command ...)
659 (letrec
660 ((loop
661 (lambda (var ...)
662 (if test
663 (begin
664 (if #f #f)
665 expr ...)
666 (begin
667 command
668 ...
669 (loop (do "step" var step ...)
670 ...))))))
671 (loop init ...)))
672 ((do "step" x)
673 x)
674 ((do "step" x y)
675 y)))
676
677 (define-syntax-rule (delay exp)
678 (make-promise (lambda () exp)))
679
680 (define-syntax current-source-location
681 (lambda (x)
682 (syntax-case x ()
683 ((_)
684 (with-syntax ((s (datum->syntax x (syntax-source x))))
685 #''s)))))
686
687 ;; We provide this accessor out of convenience. current-line and
688 ;; current-column aren't so interesting, because they distort what they
689 ;; are measuring; better to use syntax-source from a macro.
690 ;;
691 (define-syntax current-filename
692 (lambda (x)
693 "A macro that expands to the current filename: the filename that
694 the (current-filename) form appears in. Expands to #f if this
695 information is unavailable."
696 (false-if-exception
697 (canonicalize-path (assq-ref (syntax-source x) 'filename)))))
698
699 (define-syntax-rule (define-once sym val)
700 (define sym
701 (if (module-locally-bound? (current-module) 'sym) sym val)))
702
703 ;;; The real versions of `map' and `for-each', with cycle detection, and
704 ;;; that use reverse! instead of recursion in the case of `map'.
705 ;;;
706 (define map
707 (case-lambda
708 ((f l)
709 (let map1 ((hare l) (tortoise l) (move? #f) (out '()))
710 (if (pair? hare)
711 (if move?
712 (if (eq? tortoise hare)
713 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
714 (list l) #f)
715 (map1 (cdr hare) (cdr tortoise) #f
716 (cons (f (car hare)) out)))
717 (map1 (cdr hare) tortoise #t
718 (cons (f (car hare)) out)))
719 (if (null? hare)
720 (reverse! out)
721 (scm-error 'wrong-type-arg "map" "Not a list: ~S"
722 (list l) #f)))))
723
724 ((f l1 l2)
725 (let map2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f) (out '()))
726 (cond
727 ((pair? h1)
728 (cond
729 ((not (pair? h2))
730 (scm-error 'wrong-type-arg "map"
731 (if (list? h2)
732 "List of wrong length: ~S"
733 "Not a list: ~S")
734 (list l2) #f))
735 ((not move?)
736 (map2 (cdr h1) (cdr h2) t1 t2 #t
737 (cons (f (car h1) (car h2)) out)))
738 ((eq? t1 h1)
739 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
740 (list l1) #f))
741 ((eq? t2 h2)
742 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
743 (list l2) #f))
744 (else
745 (map2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f
746 (cons (f (car h1) (car h2)) out)))))
747
748 ((and (null? h1) (null? h2))
749 (reverse! out))
750
751 ((null? h1)
752 (scm-error 'wrong-type-arg "map"
753 (if (list? h2)
754 "List of wrong length: ~S"
755 "Not a list: ~S")
756 (list l2) #f))
757 (else
758 (scm-error 'wrong-type-arg "map"
759 "Not a list: ~S"
760 (list l1) #f)))))
761
762 ((f l1 . rest)
763 (let ((len (length l1)))
764 (let mapn ((rest rest))
765 (or (null? rest)
766 (if (= (length (car rest)) len)
767 (mapn (cdr rest))
768 (scm-error 'wrong-type-arg "map" "List of wrong length: ~S"
769 (list (car rest)) #f)))))
770 (let mapn ((l1 l1) (rest rest) (out '()))
771 (if (null? l1)
772 (reverse! out)
773 (mapn (cdr l1) (map cdr rest)
774 (cons (apply f (car l1) (map car rest)) out)))))))
775
776 (define map-in-order map)
777
778 (define for-each
779 (case-lambda
780 ((f l)
781 (let for-each1 ((hare l) (tortoise l) (move? #f))
782 (if (pair? hare)
783 (if move?
784 (if (eq? tortoise hare)
785 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
786 (list l) #f)
787 (begin
788 (f (car hare))
789 (for-each1 (cdr hare) (cdr tortoise) #f)))
790 (begin
791 (f (car hare))
792 (for-each1 (cdr hare) tortoise #t)))
793
794 (if (not (null? hare))
795 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
796 (list l) #f)))))
797
798 ((f l1 l2)
799 (let for-each2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f))
800 (cond
801 ((and (pair? h1) (pair? h2))
802 (cond
803 ((not move?)
804 (f (car h1) (car h2))
805 (for-each2 (cdr h1) (cdr h2) t1 t2 #t))
806 ((eq? t1 h1)
807 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
808 (list l1) #f))
809 ((eq? t2 h2)
810 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
811 (list l2) #f))
812 (else
813 (f (car h1) (car h2))
814 (for-each2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f))))
815
816 ((if (null? h1)
817 (or (null? h2) (pair? h2))
818 (and (pair? h1) (null? h2)))
819 (if #f #f))
820
821 ((list? h1)
822 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
823 (list h2) #f))
824 (else
825 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
826 (list h1) #f)))))
827
828 ((f l1 . rest)
829 (let ((len (length l1)))
830 (let for-eachn ((rest rest))
831 (or (null? rest)
832 (if (= (length (car rest)) len)
833 (for-eachn (cdr rest))
834 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
835 (list (car rest)) #f)))))
836
837 (let for-eachn ((l1 l1) (rest rest))
838 (if (pair? l1)
839 (begin
840 (apply f (car l1) (map car rest))
841 (for-eachn (cdr l1) (map cdr rest))))))))
842
843
844 \f
845
846 ;;;
847 ;;; Extensible exception printing.
848 ;;;
849
850 (define set-exception-printer! #f)
851 ;; There is already a definition of print-exception from backtrace.c
852 ;; that we will override.
853
854 (let ((exception-printers '()))
855 (define (print-location frame port)
856 (let ((source (and=> frame frame-source)))
857 ;; source := (addr . (filename . (line . column)))
858 (if source
859 (let ((filename (or (cadr source) "<unnamed port>"))
860 (line (caddr source))
861 (col (cdddr source)))
862 (format port "~a:~a:~a: " filename (1+ line) col))
863 (format port "ERROR: "))))
864
865 (set! set-exception-printer!
866 (lambda (key proc)
867 (set! exception-printers (acons key proc exception-printers))))
868
869 (set! print-exception
870 (lambda (port frame key args)
871 (define (default-printer)
872 (format port "Throw to key `~a' with args `~s'." key args))
873
874 (if frame
875 (let ((proc (frame-procedure frame)))
876 (print-location frame port)
877 (format port "In procedure ~a:\n"
878 (or (false-if-exception (procedure-name proc))
879 proc))))
880
881 (print-location frame port)
882 (catch #t
883 (lambda ()
884 (let ((printer (assq-ref exception-printers key)))
885 (if printer
886 (printer port key args default-printer)
887 (default-printer))))
888 (lambda (k . args)
889 (format port "Error while printing exception.")))
890 (newline port)
891 (force-output port))))
892
893 ;;;
894 ;;; Printers for those keys thrown by Guile.
895 ;;;
896 (let ()
897 (define (scm-error-printer port key args default-printer)
898 ;; Abuse case-lambda as a pattern matcher, given that we don't have
899 ;; ice-9 match at this point.
900 (apply (case-lambda
901 ((subr msg args . rest)
902 (if subr
903 (format port "In procedure ~a: " subr))
904 (apply format port msg (or args '())))
905 (_ (default-printer)))
906 args))
907
908 (define (syntax-error-printer port key args default-printer)
909 (apply (case-lambda
910 ((who what where form subform . extra)
911 (format port "Syntax error:\n")
912 (if where
913 (let ((file (or (assq-ref where 'filename) "unknown file"))
914 (line (and=> (assq-ref where 'line) 1+))
915 (col (assq-ref where 'column)))
916 (format port "~a:~a:~a: " file line col))
917 (format port "unknown location: "))
918 (if who
919 (format port "~a: " who))
920 (format port "~a" what)
921 (if subform
922 (format port " in subform ~s of ~s" subform form)
923 (if form
924 (format port " in form ~s" form))))
925 (_ (default-printer)))
926 args))
927
928 (define (getaddrinfo-error-printer port key args default-printer)
929 (format port "In procedure getaddrinfo: ~a" (gai-strerror (car args))))
930
931 (set-exception-printer! 'goops-error scm-error-printer)
932 (set-exception-printer! 'host-not-found scm-error-printer)
933 (set-exception-printer! 'keyword-argument-error scm-error-printer)
934 (set-exception-printer! 'misc-error scm-error-printer)
935 (set-exception-printer! 'no-data scm-error-printer)
936 (set-exception-printer! 'no-recovery scm-error-printer)
937 (set-exception-printer! 'null-pointer-error scm-error-printer)
938 (set-exception-printer! 'out-of-range scm-error-printer)
939 (set-exception-printer! 'program-error scm-error-printer)
940 (set-exception-printer! 'read-error scm-error-printer)
941 (set-exception-printer! 'regular-expression-syntax scm-error-printer)
942 (set-exception-printer! 'signal scm-error-printer)
943 (set-exception-printer! 'stack-overflow scm-error-printer)
944 (set-exception-printer! 'system-error scm-error-printer)
945 (set-exception-printer! 'try-again scm-error-printer)
946 (set-exception-printer! 'unbound-variable scm-error-printer)
947 (set-exception-printer! 'wrong-number-of-args scm-error-printer)
948 (set-exception-printer! 'wrong-type-arg scm-error-printer)
949
950 (set-exception-printer! 'syntax-error syntax-error-printer)
951
952 (set-exception-printer! 'getaddrinfo-error getaddrinfo-error-printer))
953
954
955 \f
956
957 ;;; {Defmacros}
958 ;;;
959
960 (define-syntax define-macro
961 (lambda (x)
962 "Define a defmacro."
963 (syntax-case x ()
964 ((_ (macro . args) doc body1 body ...)
965 (string? (syntax->datum #'doc))
966 #'(define-macro macro doc (lambda args body1 body ...)))
967 ((_ (macro . args) body ...)
968 #'(define-macro macro #f (lambda args body ...)))
969 ((_ macro doc transformer)
970 (or (string? (syntax->datum #'doc))
971 (not (syntax->datum #'doc)))
972 #'(define-syntax macro
973 (lambda (y)
974 doc
975 #((macro-type . defmacro)
976 (defmacro-args args))
977 (syntax-case y ()
978 ((_ . args)
979 (let ((v (syntax->datum #'args)))
980 (datum->syntax y (apply transformer v)))))))))))
981
982 (define-syntax defmacro
983 (lambda (x)
984 "Define a defmacro, with the old lispy defun syntax."
985 (syntax-case x ()
986 ((_ macro args doc body1 body ...)
987 (string? (syntax->datum #'doc))
988 #'(define-macro macro doc (lambda args body1 body ...)))
989 ((_ macro args body ...)
990 #'(define-macro macro #f (lambda args body ...))))))
991
992 (provide 'defmacro)
993
994 \f
995
996 ;;; {Deprecation}
997 ;;;
998
999 (define-syntax begin-deprecated
1000 (lambda (x)
1001 (syntax-case x ()
1002 ((_ form form* ...)
1003 (if (include-deprecated-features)
1004 #'(begin form form* ...)
1005 #'(begin))))))
1006
1007 \f
1008
1009 ;;; {Trivial Functions}
1010 ;;;
1011
1012 (define (identity x) x)
1013
1014 (define (compose proc . rest)
1015 "Compose PROC with the procedures in REST, such that the last one in
1016 REST is applied first and PROC last, and return the resulting procedure.
1017 The given procedures must have compatible arity."
1018 (if (null? rest)
1019 proc
1020 (let ((g (apply compose rest)))
1021 (lambda args
1022 (call-with-values (lambda () (apply g args)) proc)))))
1023
1024 (define (negate proc)
1025 "Return a procedure with the same arity as PROC that returns the `not'
1026 of PROC's result."
1027 (lambda args
1028 (not (apply proc args))))
1029
1030 (define (const value)
1031 "Return a procedure that accepts any number of arguments and returns
1032 VALUE."
1033 (lambda _
1034 value))
1035
1036 (define (and=> value procedure) (and value (procedure value)))
1037 (define call/cc call-with-current-continuation)
1038
1039 (define-syntax-rule (false-if-exception expr)
1040 (catch #t
1041 (lambda () expr)
1042 (lambda (k . args) #f)))
1043
1044 \f
1045
1046 ;;; {General Properties}
1047 ;;;
1048
1049 ;; Properties are a lispy way to associate random info with random objects.
1050 ;; Traditionally properties are implemented as an alist or a plist actually
1051 ;; pertaining to the object in question.
1052 ;;
1053 ;; These "object properties" have the advantage that they can be associated with
1054 ;; any object, even if the object has no plist. Object properties are good when
1055 ;; you are extending pre-existing objects in unexpected ways. They also present
1056 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
1057 ;; type that always has properties, it's often still best to store those
1058 ;; properties within the object itself.
1059
1060 (define (make-object-property)
1061 ;; Weak tables are thread-safe.
1062 (let ((prop (make-weak-key-hash-table)))
1063 (make-procedure-with-setter
1064 (lambda (obj) (hashq-ref prop obj))
1065 (lambda (obj val) (hashq-set! prop obj val)))))
1066
1067
1068 \f
1069
1070 ;;; {Symbol Properties}
1071 ;;;
1072
1073 ;;; Symbol properties are something you see in old Lisp code. In most current
1074 ;;; Guile code, symbols are not used as a data structure -- they are used as
1075 ;;; keys into other data structures.
1076
1077 (define (symbol-property sym prop)
1078 (let ((pair (assoc prop (symbol-pref sym))))
1079 (and pair (cdr pair))))
1080
1081 (define (set-symbol-property! sym prop val)
1082 (let ((pair (assoc prop (symbol-pref sym))))
1083 (if pair
1084 (set-cdr! pair val)
1085 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
1086
1087 (define (symbol-property-remove! sym prop)
1088 (let ((pair (assoc prop (symbol-pref sym))))
1089 (if pair
1090 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
1091
1092 \f
1093
1094 ;;; {Arrays}
1095 ;;;
1096
1097 (define (array-shape a)
1098 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
1099 (array-dimensions a)))
1100
1101 \f
1102
1103 ;;; {Keywords}
1104 ;;;
1105
1106 ;;; It's much better if you can use lambda* / define*, of course.
1107
1108 (define (kw-arg-ref args kw)
1109 (let ((rem (member kw args)))
1110 (and rem (pair? (cdr rem)) (cadr rem))))
1111
1112 \f
1113
1114 ;;; {Structs}
1115 ;;;
1116
1117 (define (struct-layout s)
1118 (struct-ref (struct-vtable s) vtable-index-layout))
1119
1120 \f
1121
1122 ;;; {Records}
1123 ;;;
1124
1125 ;; Printing records: by default, records are printed as
1126 ;;
1127 ;; #<type-name field1: val1 field2: val2 ...>
1128 ;;
1129 ;; You can change that by giving a custom printing function to
1130 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
1131 ;; will be called like
1132 ;;
1133 ;; (<printer> object port)
1134 ;;
1135 ;; It should print OBJECT to PORT.
1136
1137 (define (inherit-print-state old-port new-port)
1138 (if (get-print-state old-port)
1139 (port-with-print-state new-port (get-print-state old-port))
1140 new-port))
1141
1142 ;; 0: type-name, 1: fields, 2: constructor
1143 (define record-type-vtable
1144 (let ((s (make-vtable (string-append standard-vtable-fields "prprpw")
1145 (lambda (s p)
1146 (display "#<record-type " p)
1147 (display (record-type-name s) p)
1148 (display ">" p)))))
1149 (set-struct-vtable-name! s 'record-type)
1150 s))
1151
1152 (define (record-type? obj)
1153 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
1154
1155 (define* (make-record-type type-name fields #:optional printer)
1156 ;; Pre-generate constructors for nfields < 20.
1157 (define-syntax make-constructor
1158 (lambda (x)
1159 (define *max-static-argument-count* 20)
1160 (define (make-formals n)
1161 (let lp ((i 0))
1162 (if (< i n)
1163 (cons (datum->syntax
1164 x
1165 (string->symbol
1166 (string (integer->char (+ (char->integer #\a) i)))))
1167 (lp (1+ i)))
1168 '())))
1169 (syntax-case x ()
1170 ((_ rtd exp) (not (identifier? #'exp))
1171 #'(let ((n exp))
1172 (make-constructor rtd n)))
1173 ((_ rtd nfields)
1174 #`(case nfields
1175 #,@(let lp ((n 0))
1176 (if (< n *max-static-argument-count*)
1177 (cons (with-syntax (((formal ...) (make-formals n))
1178 (n n))
1179 #'((n)
1180 (lambda (formal ...)
1181 (make-struct rtd 0 formal ...))))
1182 (lp (1+ n)))
1183 '()))
1184 (else
1185 (lambda args
1186 (if (= (length args) nfields)
1187 (apply make-struct rtd 0 args)
1188 (scm-error 'wrong-number-of-args
1189 (format #f "make-~a" type-name)
1190 "Wrong number of arguments" '() #f)))))))))
1191
1192 (define (default-record-printer s p)
1193 (display "#<" p)
1194 (display (record-type-name (record-type-descriptor s)) p)
1195 (let loop ((fields (record-type-fields (record-type-descriptor s)))
1196 (off 0))
1197 (cond
1198 ((not (null? fields))
1199 (display " " p)
1200 (display (car fields) p)
1201 (display ": " p)
1202 (display (struct-ref s off) p)
1203 (loop (cdr fields) (+ 1 off)))))
1204 (display ">" p))
1205
1206 (let ((rtd (make-struct record-type-vtable 0
1207 (make-struct-layout
1208 (apply string-append
1209 (map (lambda (f) "pw") fields)))
1210 (or printer default-record-printer)
1211 type-name
1212 (copy-tree fields))))
1213 (struct-set! rtd (+ vtable-offset-user 2)
1214 (make-constructor rtd (length fields)))
1215 ;; Temporary solution: Associate a name to the record type descriptor
1216 ;; so that the object system can create a wrapper class for it.
1217 (set-struct-vtable-name! rtd (if (symbol? type-name)
1218 type-name
1219 (string->symbol type-name)))
1220 rtd))
1221
1222 (define (record-type-name obj)
1223 (if (record-type? obj)
1224 (struct-ref obj vtable-offset-user)
1225 (error 'not-a-record-type obj)))
1226
1227 (define (record-type-fields obj)
1228 (if (record-type? obj)
1229 (struct-ref obj (+ 1 vtable-offset-user))
1230 (error 'not-a-record-type obj)))
1231
1232 (define* (record-constructor rtd #:optional field-names)
1233 (if (not field-names)
1234 (struct-ref rtd (+ 2 vtable-offset-user))
1235 (primitive-eval
1236 `(lambda ,field-names
1237 (make-struct ',rtd 0 ,@(map (lambda (f)
1238 (if (memq f field-names)
1239 f
1240 #f))
1241 (record-type-fields rtd)))))))
1242
1243 (define (record-predicate rtd)
1244 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
1245
1246 (define (%record-type-error rtd obj) ;; private helper
1247 (or (eq? rtd (record-type-descriptor obj))
1248 (scm-error 'wrong-type-arg "%record-type-check"
1249 "Wrong type record (want `~S'): ~S"
1250 (list (record-type-name rtd) obj)
1251 #f)))
1252
1253 (define (record-accessor rtd field-name)
1254 (let ((pos (list-index (record-type-fields rtd) field-name)))
1255 (if (not pos)
1256 (error 'no-such-field field-name))
1257 (lambda (obj)
1258 (if (eq? (struct-vtable obj) rtd)
1259 (struct-ref obj pos)
1260 (%record-type-error rtd obj)))))
1261
1262 (define (record-modifier rtd field-name)
1263 (let ((pos (list-index (record-type-fields rtd) field-name)))
1264 (if (not pos)
1265 (error 'no-such-field field-name))
1266 (lambda (obj val)
1267 (if (eq? (struct-vtable obj) rtd)
1268 (struct-set! obj pos val)
1269 (%record-type-error rtd obj)))))
1270
1271 (define (record? obj)
1272 (and (struct? obj) (record-type? (struct-vtable obj))))
1273
1274 (define (record-type-descriptor obj)
1275 (if (struct? obj)
1276 (struct-vtable obj)
1277 (error 'not-a-record obj)))
1278
1279 (provide 'record)
1280
1281
1282 \f
1283 ;;; {Parameters}
1284 ;;;
1285
1286 (define <parameter>
1287 ;; Three fields: the procedure itself, the fluid, and the converter.
1288 (make-struct <applicable-struct-vtable> 0 'pwprpr))
1289 (set-struct-vtable-name! <parameter> '<parameter>)
1290
1291 (define* (make-parameter init #:optional (conv (lambda (x) x)))
1292 (let ((fluid (make-fluid (conv init))))
1293 (make-struct <parameter> 0
1294 (case-lambda
1295 (() (fluid-ref fluid))
1296 ((x) (let ((prev (fluid-ref fluid)))
1297 (fluid-set! fluid (conv x))
1298 prev)))
1299 fluid conv)))
1300
1301 (define (parameter? x)
1302 (and (struct? x) (eq? (struct-vtable x) <parameter>)))
1303
1304 (define (parameter-fluid p)
1305 (if (parameter? p)
1306 (struct-ref p 1)
1307 (scm-error 'wrong-type-arg "parameter-fluid"
1308 "Not a parameter: ~S" (list p) #f)))
1309
1310 (define (parameter-converter p)
1311 (if (parameter? p)
1312 (struct-ref p 2)
1313 (scm-error 'wrong-type-arg "parameter-fluid"
1314 "Not a parameter: ~S" (list p) #f)))
1315
1316 (define-syntax parameterize
1317 (lambda (x)
1318 (syntax-case x ()
1319 ((_ ((param value) ...) body body* ...)
1320 (with-syntax (((p ...) (generate-temporaries #'(param ...))))
1321 #'(let ((p param) ...)
1322 (if (not (parameter? p))
1323 (scm-error 'wrong-type-arg "parameterize"
1324 "Not a parameter: ~S" (list p) #f))
1325 ...
1326 (with-fluids (((struct-ref p 1) ((struct-ref p 2) value))
1327 ...)
1328 body body* ...)))))))
1329
1330 \f
1331
1332 ;;; Once parameters have booted, define the default prompt tag as being
1333 ;;; a parameter.
1334 ;;;
1335
1336 (set! default-prompt-tag (make-parameter (default-prompt-tag)))
1337
1338 \f
1339
1340 ;;; Current ports as parameters.
1341 ;;;
1342
1343 (let ((fluid->parameter
1344 (lambda (fluid conv)
1345 (make-struct <parameter> 0
1346 (case-lambda
1347 (() (fluid-ref fluid))
1348 ((x) (let ((prev (fluid-ref fluid)))
1349 (fluid-set! fluid (conv x))
1350 prev)))
1351 fluid conv))))
1352 (define-syntax-rule (port-parameterize! binding fluid predicate msg)
1353 (begin
1354 (set! binding (fluid->parameter (module-ref (current-module) 'fluid)
1355 (lambda (x)
1356 (if (predicate x) x
1357 (error msg x)))))
1358 (hashq-remove! (%get-pre-modules-obarray) 'fluid)))
1359
1360 (port-parameterize! current-input-port %current-input-port-fluid
1361 input-port? "expected an input port")
1362 (port-parameterize! current-output-port %current-output-port-fluid
1363 output-port? "expected an output port")
1364 (port-parameterize! current-error-port %current-error-port-fluid
1365 output-port? "expected an output port"))
1366
1367 \f
1368
1369 ;;; {Warnings}
1370 ;;;
1371
1372 (define current-warning-port
1373 (make-parameter (current-error-port)
1374 (lambda (x)
1375 (if (output-port? x)
1376 x
1377 (error "expected an output port" x)))))
1378
1379 \f
1380
1381 ;;; {High-Level Port Routines}
1382 ;;;
1383
1384 (define (call-with-input-file str proc)
1385 "PROC should be a procedure of one argument, and STR should be a
1386 string naming a file. The file must already exist. These procedures
1387 call PROC with one argument: the port obtained by opening the named file
1388 for input or output. If the file cannot be opened, an error is
1389 signalled. If the procedure returns, then the port is closed
1390 automatically and the values yielded by the procedure are returned. If
1391 the procedure does not return, then the port will not be closed
1392 automatically unless it is possible to prove that the port will never
1393 again be used for a read or write operation."
1394 (let ((p (open-input-file str)))
1395 (call-with-values
1396 (lambda () (proc p))
1397 (lambda vals
1398 (close-input-port p)
1399 (apply values vals)))))
1400
1401 (define (call-with-output-file str proc)
1402 "PROC should be a procedure of one argument, and STR should be a
1403 string naming a file. The behaviour is unspecified if the file
1404 already exists. These procedures call PROC
1405 with one argument: the port obtained by opening the named file for
1406 input or output. If the file cannot be opened, an error is
1407 signalled. If the procedure returns, then the port is closed
1408 automatically and the values yielded by the procedure are returned.
1409 If the procedure does not return, then the port will not be closed
1410 automatically unless it is possible to prove that the port will
1411 never again be used for a read or write operation."
1412 (let ((p (open-output-file str)))
1413 (call-with-values
1414 (lambda () (proc p))
1415 (lambda vals
1416 (close-output-port p)
1417 (apply values vals)))))
1418
1419 (define (with-input-from-port port thunk)
1420 (parameterize ((current-input-port port))
1421 (thunk)))
1422
1423 (define (with-output-to-port port thunk)
1424 (parameterize ((current-output-port port))
1425 (thunk)))
1426
1427 (define (with-error-to-port port thunk)
1428 (parameterize ((current-error-port port))
1429 (thunk)))
1430
1431 (define (with-input-from-file file thunk)
1432 "THUNK must be a procedure of no arguments, and FILE must be a
1433 string naming a file. The file must already exist. The file is opened for
1434 input, an input port connected to it is made
1435 the default value returned by `current-input-port',
1436 and the THUNK is called with no arguments.
1437 When the THUNK returns, the port is closed and the previous
1438 default is restored. Returns the values yielded by THUNK. If an
1439 escape procedure is used to escape from the continuation of these
1440 procedures, their behavior is implementation dependent."
1441 (call-with-input-file file
1442 (lambda (p) (with-input-from-port p thunk))))
1443
1444 (define (with-output-to-file file thunk)
1445 "THUNK must be a procedure of no arguments, and FILE must be a
1446 string naming a file. The effect is unspecified if the file already exists.
1447 The file is opened for output, an output port connected to it is made
1448 the default value returned by `current-output-port',
1449 and the THUNK is called with no arguments.
1450 When the THUNK returns, the port is closed and the previous
1451 default is restored. Returns the values yielded by THUNK. If an
1452 escape procedure is used to escape from the continuation of these
1453 procedures, their behavior is implementation dependent."
1454 (call-with-output-file file
1455 (lambda (p) (with-output-to-port p thunk))))
1456
1457 (define (with-error-to-file file thunk)
1458 "THUNK must be a procedure of no arguments, and FILE must be a
1459 string naming a file. The effect is unspecified if the file already exists.
1460 The file is opened for output, an output port connected to it is made
1461 the default value returned by `current-error-port',
1462 and the THUNK is called with no arguments.
1463 When the THUNK returns, the port is closed and the previous
1464 default is restored. Returns the values yielded by THUNK. If an
1465 escape procedure is used to escape from the continuation of these
1466 procedures, their behavior is implementation dependent."
1467 (call-with-output-file file
1468 (lambda (p) (with-error-to-port p thunk))))
1469
1470 (define (call-with-input-string string proc)
1471 "Calls the one-argument procedure @var{proc} with a newly created
1472 input port from which @var{string}'s contents may be read. The value
1473 yielded by the @var{proc} is returned."
1474 (proc (open-input-string string)))
1475
1476 (define (with-input-from-string string thunk)
1477 "THUNK must be a procedure of no arguments.
1478 The test of STRING is opened for
1479 input, an input port connected to it is made,
1480 and the THUNK is called with no arguments.
1481 When the THUNK returns, the port is closed.
1482 Returns the values yielded by THUNK. If an
1483 escape procedure is used to escape from the continuation of these
1484 procedures, their behavior is implementation dependent."
1485 (call-with-input-string string
1486 (lambda (p) (with-input-from-port p thunk))))
1487
1488 (define (call-with-output-string proc)
1489 "Calls the one-argument procedure @var{proc} with a newly created output
1490 port. When the function returns, the string composed of the characters
1491 written into the port is returned."
1492 (let ((port (open-output-string)))
1493 (proc port)
1494 (get-output-string port)))
1495
1496 (define (with-output-to-string thunk)
1497 "Calls THUNK and returns its output as a string."
1498 (call-with-output-string
1499 (lambda (p) (with-output-to-port p thunk))))
1500
1501 (define (with-error-to-string thunk)
1502 "Calls THUNK and returns its error output as a string."
1503 (call-with-output-string
1504 (lambda (p) (with-error-to-port p thunk))))
1505
1506 (define the-eof-object (call-with-input-string "" (lambda (p) (read-char p))))
1507
1508 \f
1509
1510 ;;; {Booleans}
1511 ;;;
1512
1513 (define (->bool x) (not (not x)))
1514
1515 \f
1516
1517 ;;; {Symbols}
1518 ;;;
1519
1520 (define (symbol-append . args)
1521 (string->symbol (apply string-append (map symbol->string args))))
1522
1523 (define (list->symbol . args)
1524 (string->symbol (apply list->string args)))
1525
1526 (define (symbol . args)
1527 (string->symbol (apply string args)))
1528
1529 \f
1530
1531 ;;; {Lists}
1532 ;;;
1533
1534 (define (list-index l k)
1535 (let loop ((n 0)
1536 (l l))
1537 (and (not (null? l))
1538 (if (eq? (car l) k)
1539 n
1540 (loop (+ n 1) (cdr l))))))
1541
1542 \f
1543
1544 ;; Load `posix.scm' even when not (provided? 'posix) so that we get the
1545 ;; `stat' accessors.
1546 (primitive-load-path "ice-9/posix")
1547
1548 (if (provided? 'socket)
1549 (primitive-load-path "ice-9/networking"))
1550
1551 ;; For reference, Emacs file-exists-p uses stat in this same way.
1552 (define file-exists?
1553 (if (provided? 'posix)
1554 (lambda (str)
1555 (->bool (stat str #f)))
1556 (lambda (str)
1557 (let ((port (catch 'system-error (lambda () (open-input-file str))
1558 (lambda args #f))))
1559 (if port (begin (close-port port) #t)
1560 #f)))))
1561
1562 (define file-is-directory?
1563 (if (provided? 'posix)
1564 (lambda (str)
1565 (eq? (stat:type (stat str)) 'directory))
1566 (lambda (str)
1567 (let ((port (catch 'system-error
1568 (lambda ()
1569 (open-input-file (string-append str "/.")))
1570 (lambda args #f))))
1571 (if port (begin (close-port port) #t)
1572 #f)))))
1573
1574 (define (system-error-errno args)
1575 (if (eq? (car args) 'system-error)
1576 (car (list-ref args 4))
1577 #f))
1578
1579 \f
1580
1581 ;;; {Error Handling}
1582 ;;;
1583
1584 (define error
1585 (case-lambda
1586 (()
1587 (scm-error 'misc-error #f "?" #f #f))
1588 ((message . args)
1589 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
1590 (scm-error 'misc-error #f msg (cons message args) #f)))))
1591
1592 \f
1593
1594 ;;; {Time Structures}
1595 ;;;
1596
1597 (define (tm:sec obj) (vector-ref obj 0))
1598 (define (tm:min obj) (vector-ref obj 1))
1599 (define (tm:hour obj) (vector-ref obj 2))
1600 (define (tm:mday obj) (vector-ref obj 3))
1601 (define (tm:mon obj) (vector-ref obj 4))
1602 (define (tm:year obj) (vector-ref obj 5))
1603 (define (tm:wday obj) (vector-ref obj 6))
1604 (define (tm:yday obj) (vector-ref obj 7))
1605 (define (tm:isdst obj) (vector-ref obj 8))
1606 (define (tm:gmtoff obj) (vector-ref obj 9))
1607 (define (tm:zone obj) (vector-ref obj 10))
1608
1609 (define (set-tm:sec obj val) (vector-set! obj 0 val))
1610 (define (set-tm:min obj val) (vector-set! obj 1 val))
1611 (define (set-tm:hour obj val) (vector-set! obj 2 val))
1612 (define (set-tm:mday obj val) (vector-set! obj 3 val))
1613 (define (set-tm:mon obj val) (vector-set! obj 4 val))
1614 (define (set-tm:year obj val) (vector-set! obj 5 val))
1615 (define (set-tm:wday obj val) (vector-set! obj 6 val))
1616 (define (set-tm:yday obj val) (vector-set! obj 7 val))
1617 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
1618 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
1619 (define (set-tm:zone obj val) (vector-set! obj 10 val))
1620
1621 (define (tms:clock obj) (vector-ref obj 0))
1622 (define (tms:utime obj) (vector-ref obj 1))
1623 (define (tms:stime obj) (vector-ref obj 2))
1624 (define (tms:cutime obj) (vector-ref obj 3))
1625 (define (tms:cstime obj) (vector-ref obj 4))
1626
1627 \f
1628
1629 ;;; {File Descriptors and Ports}
1630 ;;;
1631
1632 (define file-position ftell)
1633 (define* (file-set-position port offset #:optional (whence SEEK_SET))
1634 (seek port offset whence))
1635
1636 (define (move->fdes fd/port fd)
1637 (cond ((integer? fd/port)
1638 (dup->fdes fd/port fd)
1639 (close fd/port)
1640 fd)
1641 (else
1642 (primitive-move->fdes fd/port fd)
1643 (set-port-revealed! fd/port 1)
1644 fd/port)))
1645
1646 (define (release-port-handle port)
1647 (let ((revealed (port-revealed port)))
1648 (if (> revealed 0)
1649 (set-port-revealed! port (- revealed 1)))))
1650
1651 (define dup->port
1652 (case-lambda
1653 ((port/fd mode)
1654 (fdopen (dup->fdes port/fd) mode))
1655 ((port/fd mode new-fd)
1656 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
1657 (set-port-revealed! port 1)
1658 port))))
1659
1660 (define dup->inport
1661 (case-lambda
1662 ((port/fd)
1663 (dup->port port/fd "r"))
1664 ((port/fd new-fd)
1665 (dup->port port/fd "r" new-fd))))
1666
1667 (define dup->outport
1668 (case-lambda
1669 ((port/fd)
1670 (dup->port port/fd "w"))
1671 ((port/fd new-fd)
1672 (dup->port port/fd "w" new-fd))))
1673
1674 (define dup
1675 (case-lambda
1676 ((port/fd)
1677 (if (integer? port/fd)
1678 (dup->fdes port/fd)
1679 (dup->port port/fd (port-mode port/fd))))
1680 ((port/fd new-fd)
1681 (if (integer? port/fd)
1682 (dup->fdes port/fd new-fd)
1683 (dup->port port/fd (port-mode port/fd) new-fd)))))
1684
1685 (define (duplicate-port port modes)
1686 (dup->port port modes))
1687
1688 (define (fdes->inport fdes)
1689 (let loop ((rest-ports (fdes->ports fdes)))
1690 (cond ((null? rest-ports)
1691 (let ((result (fdopen fdes "r")))
1692 (set-port-revealed! result 1)
1693 result))
1694 ((input-port? (car rest-ports))
1695 (set-port-revealed! (car rest-ports)
1696 (+ (port-revealed (car rest-ports)) 1))
1697 (car rest-ports))
1698 (else
1699 (loop (cdr rest-ports))))))
1700
1701 (define (fdes->outport fdes)
1702 (let loop ((rest-ports (fdes->ports fdes)))
1703 (cond ((null? rest-ports)
1704 (let ((result (fdopen fdes "w")))
1705 (set-port-revealed! result 1)
1706 result))
1707 ((output-port? (car rest-ports))
1708 (set-port-revealed! (car rest-ports)
1709 (+ (port-revealed (car rest-ports)) 1))
1710 (car rest-ports))
1711 (else
1712 (loop (cdr rest-ports))))))
1713
1714 (define (port->fdes port)
1715 (set-port-revealed! port (+ (port-revealed port) 1))
1716 (fileno port))
1717
1718 (define (setenv name value)
1719 (if value
1720 (putenv (string-append name "=" value))
1721 (putenv name)))
1722
1723 (define (unsetenv name)
1724 "Remove the entry for NAME from the environment."
1725 (putenv name))
1726
1727 \f
1728
1729 ;;; {Load Paths}
1730 ;;;
1731
1732 (define (in-vicinity vicinity file)
1733 (let ((tail (let ((len (string-length vicinity)))
1734 (if (zero? len)
1735 #f
1736 (string-ref vicinity (- len 1))))))
1737 (string-append vicinity
1738 (if (or (not tail)
1739 (eq? tail #\/))
1740 ""
1741 "/")
1742 file)))
1743
1744 \f
1745
1746 ;;; {Help for scm_shell}
1747 ;;;
1748 ;;; The argument-processing code used by Guile-based shells generates
1749 ;;; Scheme code based on the argument list. This page contains help
1750 ;;; functions for the code it generates.
1751 ;;;
1752
1753 (define (command-line) (program-arguments))
1754
1755 ;; This is mostly for the internal use of the code generated by
1756 ;; scm_compile_shell_switches.
1757
1758 (define (load-user-init)
1759 (let* ((home (or (getenv "HOME")
1760 (false-if-exception (passwd:dir (getpwuid (getuid))))
1761 "/")) ;; fallback for cygwin etc.
1762 (init-file (in-vicinity home ".guile")))
1763 (if (file-exists? init-file)
1764 (primitive-load init-file))))
1765
1766 \f
1767
1768 ;;; {The interpreter stack}
1769 ;;;
1770
1771 ;; %stacks defined in stacks.c
1772 (define (%start-stack tag thunk)
1773 (let ((prompt-tag (make-prompt-tag "start-stack")))
1774 (call-with-prompt
1775 prompt-tag
1776 (lambda ()
1777 (with-fluids ((%stacks (acons tag prompt-tag
1778 (or (fluid-ref %stacks) '()))))
1779 (thunk)))
1780 (lambda (k . args)
1781 (%start-stack tag (lambda () (apply k args)))))))
1782
1783 (define-syntax-rule (start-stack tag exp)
1784 (%start-stack tag (lambda () exp)))
1785
1786 \f
1787
1788 ;;; {Loading by paths}
1789 ;;;
1790
1791 ;;; Load a Scheme source file named NAME, searching for it in the
1792 ;;; directories listed in %load-path, and applying each of the file
1793 ;;; name extensions listed in %load-extensions.
1794 (define (load-from-path name)
1795 (start-stack 'load-stack
1796 (primitive-load-path name)))
1797
1798 (define-syntax-rule (add-to-load-path elt)
1799 "Add ELT to Guile's load path, at compile-time and at run-time."
1800 (eval-when (compile load eval)
1801 (set! %load-path (cons elt %load-path))))
1802
1803 (define %load-verbosely #f)
1804 (define (assert-load-verbosity v) (set! %load-verbosely v))
1805
1806 (define (%load-announce file)
1807 (if %load-verbosely
1808 (with-output-to-port (current-warning-port)
1809 (lambda ()
1810 (display ";;; ")
1811 (display "loading ")
1812 (display file)
1813 (newline)
1814 (force-output)))))
1815
1816 (set! %load-hook %load-announce)
1817
1818 \f
1819
1820 ;;; {Reader Extensions}
1821 ;;;
1822 ;;; Reader code for various "#c" forms.
1823 ;;;
1824
1825 (define read-eval? (make-fluid #f))
1826 (read-hash-extend #\.
1827 (lambda (c port)
1828 (if (fluid-ref read-eval?)
1829 (eval (read port) (interaction-environment))
1830 (error
1831 "#. read expansion found and read-eval? is #f."))))
1832
1833 \f
1834
1835 ;;; {Low Level Modules}
1836 ;;;
1837 ;;; These are the low level data structures for modules.
1838 ;;;
1839 ;;; Every module object is of the type 'module-type', which is a record
1840 ;;; consisting of the following members:
1841 ;;;
1842 ;;; - eval-closure: the function that defines for its module the strategy that
1843 ;;; shall be followed when looking up symbols in the module.
1844 ;;;
1845 ;;; An eval-closure is a function taking two arguments: the symbol to be
1846 ;;; looked up and a boolean value telling whether a binding for the symbol
1847 ;;; should be created if it does not exist yet. If the symbol lookup
1848 ;;; succeeded (either because an existing binding was found or because a new
1849 ;;; binding was created), a variable object representing the binding is
1850 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1851 ;;; closure does not take the module to be searched as an argument: During
1852 ;;; construction of the eval-closure, the eval-closure has to store the
1853 ;;; module it belongs to in its environment. This means, that any
1854 ;;; eval-closure can belong to only one module.
1855 ;;;
1856 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1857 ;;; special cases of eval-closures are to be distinguished: During startup
1858 ;;; the module system is not yet activated. In this phase, no modules are
1859 ;;; defined and all bindings are automatically stored by the system in the
1860 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1861 ;;; functions which require an eval-closure as their argument need to be
1862 ;;; passed the value #f.
1863 ;;;
1864 ;;; The other two special cases of eval-closures are the
1865 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1866 ;;; behave equally for the case that no new binding is to be created. The
1867 ;;; difference between the two comes in, when the boolean argument to the
1868 ;;; eval-closure indicates that a new binding shall be created if it is not
1869 ;;; found.
1870 ;;;
1871 ;;; Given that no new binding shall be created, both standard eval-closures
1872 ;;; define the following standard strategy of searching bindings in the
1873 ;;; module: First, the module's obarray is searched for the symbol. Second,
1874 ;;; if no binding for the symbol was found in the module's obarray, the
1875 ;;; module's binder procedure is exececuted. If this procedure did not
1876 ;;; return a binding for the symbol, the modules referenced in the module's
1877 ;;; uses list are recursively searched for a binding of the symbol. If the
1878 ;;; binding can not be found in these modules also, the symbol lookup has
1879 ;;; failed.
1880 ;;;
1881 ;;; If a new binding shall be created, the standard-interface-eval-closure
1882 ;;; immediately returns indicating failure. That is, it does not even try
1883 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1884 ;;; first search the obarray, and if no binding was found there, would
1885 ;;; create a new binding in the obarray, therefore not calling the binder
1886 ;;; procedure or searching the modules in the uses list.
1887 ;;;
1888 ;;; The explanation of the following members obarray, binder and uses
1889 ;;; assumes that the symbol lookup follows the strategy that is defined in
1890 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1891 ;;;
1892 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1893 ;;; hash table, the definitions are found that are local to the module (that
1894 ;;; is, not imported from other modules). When looking up bindings in the
1895 ;;; module, this hash table is searched first.
1896 ;;;
1897 ;;; - binder: either #f or a function taking a module and a symbol argument.
1898 ;;; If it is a function it is called after the obarray has been
1899 ;;; unsuccessfully searched for a binding. It then can provide bindings
1900 ;;; that would otherwise not be found locally in the module.
1901 ;;;
1902 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1903 ;;; These modules are the third place queried for bindings after the obarray
1904 ;;; has been unsuccessfully searched and the binder function did not deliver
1905 ;;; a result either.
1906 ;;;
1907 ;;; - transformer: either #f or a function taking a scheme expression as
1908 ;;; delivered by read. If it is a function, it will be called to perform
1909 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1910 ;;; expression. The output of the transformer function will then be passed
1911 ;;; to Guile's internal memoizer. This means that the output must be valid
1912 ;;; scheme code. The only exception is, that the output may make use of the
1913 ;;; syntax extensions provided to identify the modules that a binding
1914 ;;; belongs to.
1915 ;;;
1916 ;;; - name: the name of the module. This is used for all kinds of printing
1917 ;;; outputs. In certain places the module name also serves as a way of
1918 ;;; identification. When adding a module to the uses list of another
1919 ;;; module, it is made sure that the new uses list will not contain two
1920 ;;; modules of the same name.
1921 ;;;
1922 ;;; - kind: classification of the kind of module. The value is (currently?)
1923 ;;; only used for printing. It has no influence on how a module is treated.
1924 ;;; Currently the following values are used when setting the module kind:
1925 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1926 ;;; is set, it defaults to 'module.
1927 ;;;
1928 ;;; - duplicates-handlers: a list of procedures that get called to make a
1929 ;;; choice between two duplicate bindings when name clashes occur. See the
1930 ;;; `duplicate-handlers' global variable below.
1931 ;;;
1932 ;;; - observers: a list of procedures that get called when the module is
1933 ;;; modified.
1934 ;;;
1935 ;;; - weak-observers: a weak-key hash table of procedures that get called
1936 ;;; when the module is modified. See `module-observe-weak' for details.
1937 ;;;
1938 ;;; In addition, the module may (must?) contain a binding for
1939 ;;; `%module-public-interface'. This variable should be bound to a module
1940 ;;; representing the exported interface of a module. See the
1941 ;;; `module-public-interface' and `module-export!' procedures.
1942 ;;;
1943 ;;; !!! warning: The interface to lazy binder procedures is going
1944 ;;; to be changed in an incompatible way to permit all the basic
1945 ;;; module ops to be virtualized.
1946 ;;;
1947 ;;; (make-module size use-list lazy-binding-proc) => module
1948 ;;; module-{obarray,uses,binder}[|-set!]
1949 ;;; (module? obj) => [#t|#f]
1950 ;;; (module-locally-bound? module symbol) => [#t|#f]
1951 ;;; (module-bound? module symbol) => [#t|#f]
1952 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1953 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1954 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1955 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1956 ;;; (module-symbol-binding module symbol opt-value)
1957 ;;; => [ <obj> | opt-value | an error occurs ]
1958 ;;; (module-make-local-var! module symbol) => #<variable...>
1959 ;;; (module-add! module symbol var) => unspecified
1960 ;;; (module-remove! module symbol) => unspecified
1961 ;;; (module-for-each proc module) => unspecified
1962 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1963 ;;; (set-current-module module) => unspecified
1964 ;;; (current-module) => #<module...>
1965 ;;;
1966 ;;;
1967
1968 \f
1969
1970 ;;; {Printing Modules}
1971 ;;;
1972
1973 ;; This is how modules are printed. You can re-define it.
1974 (define (%print-module mod port)
1975 (display "#<" port)
1976 (display (or (module-kind mod) "module") port)
1977 (display " " port)
1978 (display (module-name mod) port)
1979 (display " " port)
1980 (display (number->string (object-address mod) 16) port)
1981 (display ">" port))
1982
1983 (letrec-syntax
1984 ;; Locally extend the syntax to allow record accessors to be defined at
1985 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1986 ;; the setters, in order to allow for redefinition of the record type; not
1987 ;; relevant in the case of modules, but perhaps if we make this public, it
1988 ;; could matter.
1989
1990 ((define-record-type
1991 (lambda (x)
1992 (define (make-id scope . fragments)
1993 (datum->syntax scope
1994 (apply symbol-append
1995 (map (lambda (x)
1996 (if (symbol? x) x (syntax->datum x)))
1997 fragments))))
1998
1999 (define (getter rtd type-name field slot)
2000 #`(define #,(make-id rtd type-name '- field)
2001 (let ((rtd #,rtd))
2002 (lambda (#,type-name)
2003 (if (eq? (struct-vtable #,type-name) rtd)
2004 (struct-ref #,type-name #,slot)
2005 (%record-type-error rtd #,type-name))))))
2006
2007 (define (setter rtd type-name field slot)
2008 #`(define #,(make-id rtd 'set- type-name '- field '!)
2009 (let ((rtd #,rtd))
2010 (lambda (#,type-name val)
2011 (if (eq? (struct-vtable #,type-name) rtd)
2012 (struct-set! #,type-name #,slot val)
2013 (%record-type-error rtd #,type-name))))))
2014
2015 (define (accessors rtd type-name fields n exp)
2016 (syntax-case fields ()
2017 (() exp)
2018 (((field #:no-accessors) field* ...) (identifier? #'field)
2019 (accessors rtd type-name #'(field* ...) (1+ n)
2020 exp))
2021 (((field #:no-setter) field* ...) (identifier? #'field)
2022 (accessors rtd type-name #'(field* ...) (1+ n)
2023 #`(begin #,exp
2024 #,(getter rtd type-name #'field n))))
2025 (((field #:no-getter) field* ...) (identifier? #'field)
2026 (accessors rtd type-name #'(field* ...) (1+ n)
2027 #`(begin #,exp
2028 #,(setter rtd type-name #'field n))))
2029 ((field field* ...) (identifier? #'field)
2030 (accessors rtd type-name #'(field* ...) (1+ n)
2031 #`(begin #,exp
2032 #,(getter rtd type-name #'field n)
2033 #,(setter rtd type-name #'field n))))))
2034
2035 (define (predicate rtd type-name fields exp)
2036 (accessors
2037 rtd type-name fields 0
2038 #`(begin
2039 #,exp
2040 (define (#,(make-id rtd type-name '?) obj)
2041 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
2042
2043 (define (field-list fields)
2044 (syntax-case fields ()
2045 (() '())
2046 (((f . opts) . rest) (identifier? #'f)
2047 (cons #'f (field-list #'rest)))
2048 ((f . rest) (identifier? #'f)
2049 (cons #'f (field-list #'rest)))))
2050
2051 (define (constructor rtd type-name fields exp)
2052 (let ((ctor (make-id rtd type-name '-constructor))
2053 (args (field-list fields)))
2054 (predicate rtd type-name fields
2055 #`(begin #,exp
2056 (define #,ctor
2057 (let ((rtd #,rtd))
2058 (lambda #,args
2059 (make-struct rtd 0 #,@args))))
2060 (struct-set! #,rtd (+ vtable-offset-user 2)
2061 #,ctor)))))
2062
2063 (define (type type-name printer fields)
2064 (define (make-layout)
2065 (let lp ((fields fields) (slots '()))
2066 (syntax-case fields ()
2067 (() (datum->syntax #'here
2068 (make-struct-layout
2069 (apply string-append slots))))
2070 ((_ . rest) (lp #'rest (cons "pw" slots))))))
2071
2072 (let ((rtd (make-id type-name type-name '-type)))
2073 (constructor rtd type-name fields
2074 #`(begin
2075 (define #,rtd
2076 (make-struct record-type-vtable 0
2077 '#,(make-layout)
2078 #,printer
2079 '#,type-name
2080 '#,(field-list fields)))
2081 (set-struct-vtable-name! #,rtd '#,type-name)))))
2082
2083 (syntax-case x ()
2084 ((_ type-name printer (field ...))
2085 (type #'type-name #'printer #'(field ...)))))))
2086
2087 ;; module-type
2088 ;;
2089 ;; A module is characterized by an obarray in which local symbols
2090 ;; are interned, a list of modules, "uses", from which non-local
2091 ;; bindings can be inherited, and an optional lazy-binder which
2092 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
2093 ;; bindings that would otherwise not be found locally in the module.
2094 ;;
2095 ;; NOTE: If you change the set of fields or their order, you also need to
2096 ;; change the constants in libguile/modules.h.
2097 ;;
2098 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
2099 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
2100 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
2101 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
2102 ;;
2103 (define-record-type module
2104 (lambda (obj port) (%print-module obj port))
2105 (obarray
2106 uses
2107 binder
2108 eval-closure
2109 (transformer #:no-getter)
2110 (name #:no-getter)
2111 kind
2112 duplicates-handlers
2113 (import-obarray #:no-setter)
2114 observers
2115 (weak-observers #:no-setter)
2116 version
2117 submodules
2118 submodule-binder
2119 public-interface
2120 filename)))
2121
2122
2123 ;; make-module &opt size uses binder
2124 ;;
2125 ;; Create a new module, perhaps with a particular size of obarray,
2126 ;; initial uses list, or binding procedure.
2127 ;;
2128 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
2129 (if (not (integer? size))
2130 (error "Illegal size to make-module." size))
2131 (if (not (and (list? uses)
2132 (and-map module? uses)))
2133 (error "Incorrect use list." uses))
2134 (if (and binder (not (procedure? binder)))
2135 (error
2136 "Lazy-binder expected to be a procedure or #f." binder))
2137
2138 (let ((module (module-constructor (make-hash-table size)
2139 uses binder #f macroexpand
2140 #f #f #f
2141 (make-hash-table)
2142 '()
2143 (make-weak-key-hash-table 31) #f
2144 (make-hash-table 7) #f #f #f)))
2145
2146 ;; We can't pass this as an argument to module-constructor,
2147 ;; because we need it to close over a pointer to the module
2148 ;; itself.
2149 (set-module-eval-closure! module (standard-eval-closure module))
2150
2151 module))
2152
2153
2154 \f
2155
2156 ;;; {Observer protocol}
2157 ;;;
2158
2159 (define (module-observe module proc)
2160 (set-module-observers! module (cons proc (module-observers module)))
2161 (cons module proc))
2162
2163 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
2164 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
2165 ;; be any Scheme object). PROC is invoked and passed MODULE any time
2166 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
2167 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
2168 ;; for instance).
2169
2170 ;; The two-argument version is kept for backward compatibility: when called
2171 ;; with two arguments, the observer gets unregistered when closure PROC
2172 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
2173 (hashq-set! (module-weak-observers module) observer-id proc))
2174
2175 (define (module-unobserve token)
2176 (let ((module (car token))
2177 (id (cdr token)))
2178 (if (integer? id)
2179 (hash-remove! (module-weak-observers module) id)
2180 (set-module-observers! module (delq1! id (module-observers module)))))
2181 *unspecified*)
2182
2183 (define module-defer-observers #f)
2184 (define module-defer-observers-mutex (make-mutex 'recursive))
2185 (define module-defer-observers-table (make-hash-table))
2186
2187 (define (module-modified m)
2188 (if module-defer-observers
2189 (hash-set! module-defer-observers-table m #t)
2190 (module-call-observers m)))
2191
2192 ;;; This function can be used to delay calls to observers so that they
2193 ;;; can be called once only in the face of massive updating of modules.
2194 ;;;
2195 (define (call-with-deferred-observers thunk)
2196 (dynamic-wind
2197 (lambda ()
2198 (lock-mutex module-defer-observers-mutex)
2199 (set! module-defer-observers #t))
2200 thunk
2201 (lambda ()
2202 (set! module-defer-observers #f)
2203 (hash-for-each (lambda (m dummy)
2204 (module-call-observers m))
2205 module-defer-observers-table)
2206 (hash-clear! module-defer-observers-table)
2207 (unlock-mutex module-defer-observers-mutex))))
2208
2209 (define (module-call-observers m)
2210 (for-each (lambda (proc) (proc m)) (module-observers m))
2211
2212 ;; We assume that weak observers don't (un)register themselves as they are
2213 ;; called since this would preclude proper iteration over the hash table
2214 ;; elements.
2215 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
2216
2217 \f
2218
2219 ;;; {Module Searching in General}
2220 ;;;
2221 ;;; We sometimes want to look for properties of a symbol
2222 ;;; just within the obarray of one module. If the property
2223 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
2224 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
2225 ;;;
2226 ;;;
2227 ;;; Other times, we want to test for a symbol property in the obarray
2228 ;;; of M and, if it is not found there, try each of the modules in the
2229 ;;; uses list of M. This is the normal way of testing for some
2230 ;;; property, so we state these properties without qualification as
2231 ;;; in: ``The symbol 'fnord is interned in module M because it is
2232 ;;; interned locally in module M2 which is a member of the uses list
2233 ;;; of M.''
2234 ;;;
2235
2236 ;; module-search fn m
2237 ;;
2238 ;; return the first non-#f result of FN applied to M and then to
2239 ;; the modules in the uses of m, and so on recursively. If all applications
2240 ;; return #f, then so does this function.
2241 ;;
2242 (define (module-search fn m v)
2243 (define (loop pos)
2244 (and (pair? pos)
2245 (or (module-search fn (car pos) v)
2246 (loop (cdr pos)))))
2247 (or (fn m v)
2248 (loop (module-uses m))))
2249
2250
2251 ;;; {Is a symbol bound in a module?}
2252 ;;;
2253 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
2254 ;;; of S in M has been set to some well-defined value.
2255 ;;;
2256
2257 ;; module-locally-bound? module symbol
2258 ;;
2259 ;; Is a symbol bound (interned and defined) locally in a given module?
2260 ;;
2261 (define (module-locally-bound? m v)
2262 (let ((var (module-local-variable m v)))
2263 (and var
2264 (variable-bound? var))))
2265
2266 ;; module-bound? module symbol
2267 ;;
2268 ;; Is a symbol bound (interned and defined) anywhere in a given module
2269 ;; or its uses?
2270 ;;
2271 (define (module-bound? m v)
2272 (let ((var (module-variable m v)))
2273 (and var
2274 (variable-bound? var))))
2275
2276 ;;; {Is a symbol interned in a module?}
2277 ;;;
2278 ;;; Symbol S in Module M is interned if S occurs in
2279 ;;; of S in M has been set to some well-defined value.
2280 ;;;
2281 ;;; It is possible to intern a symbol in a module without providing
2282 ;;; an initial binding for the corresponding variable. This is done
2283 ;;; with:
2284 ;;; (module-add! module symbol (make-undefined-variable))
2285 ;;;
2286 ;;; In that case, the symbol is interned in the module, but not
2287 ;;; bound there. The unbound symbol shadows any binding for that
2288 ;;; symbol that might otherwise be inherited from a member of the uses list.
2289 ;;;
2290
2291 (define (module-obarray-get-handle ob key)
2292 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
2293
2294 (define (module-obarray-ref ob key)
2295 ((if (symbol? key) hashq-ref hash-ref) ob key))
2296
2297 (define (module-obarray-set! ob key val)
2298 ((if (symbol? key) hashq-set! hash-set!) ob key val))
2299
2300 (define (module-obarray-remove! ob key)
2301 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
2302
2303 ;; module-symbol-locally-interned? module symbol
2304 ;;
2305 ;; is a symbol interned (not neccessarily defined) locally in a given module
2306 ;; or its uses? Interned symbols shadow inherited bindings even if
2307 ;; they are not themselves bound to a defined value.
2308 ;;
2309 (define (module-symbol-locally-interned? m v)
2310 (not (not (module-obarray-get-handle (module-obarray m) v))))
2311
2312 ;; module-symbol-interned? module symbol
2313 ;;
2314 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
2315 ;; or its uses? Interned symbols shadow inherited bindings even if
2316 ;; they are not themselves bound to a defined value.
2317 ;;
2318 (define (module-symbol-interned? m v)
2319 (module-search module-symbol-locally-interned? m v))
2320
2321
2322 ;;; {Mapping modules x symbols --> variables}
2323 ;;;
2324
2325 ;; module-local-variable module symbol
2326 ;; return the local variable associated with a MODULE and SYMBOL.
2327 ;;
2328 ;;; This function is very important. It is the only function that can
2329 ;;; return a variable from a module other than the mutators that store
2330 ;;; new variables in modules. Therefore, this function is the location
2331 ;;; of the "lazy binder" hack.
2332 ;;;
2333 ;;; If symbol is defined in MODULE, and if the definition binds symbol
2334 ;;; to a variable, return that variable object.
2335 ;;;
2336 ;;; If the symbols is not found at first, but the module has a lazy binder,
2337 ;;; then try the binder.
2338 ;;;
2339 ;;; If the symbol is not found at all, return #f.
2340 ;;;
2341 ;;; (This is now written in C, see `modules.c'.)
2342 ;;;
2343
2344 ;;; {Mapping modules x symbols --> bindings}
2345 ;;;
2346 ;;; These are similar to the mapping to variables, except that the
2347 ;;; variable is dereferenced.
2348 ;;;
2349
2350 ;; module-symbol-binding module symbol opt-value
2351 ;;
2352 ;; return the binding of a variable specified by name within
2353 ;; a given module, signalling an error if the variable is unbound.
2354 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2355 ;; return OPT-VALUE.
2356 ;;
2357 (define (module-symbol-local-binding m v . opt-val)
2358 (let ((var (module-local-variable m v)))
2359 (if (and var (variable-bound? var))
2360 (variable-ref var)
2361 (if (not (null? opt-val))
2362 (car opt-val)
2363 (error "Locally unbound variable." v)))))
2364
2365 ;; module-symbol-binding module symbol opt-value
2366 ;;
2367 ;; return the binding of a variable specified by name within
2368 ;; a given module, signalling an error if the variable is unbound.
2369 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2370 ;; return OPT-VALUE.
2371 ;;
2372 (define (module-symbol-binding m v . opt-val)
2373 (let ((var (module-variable m v)))
2374 (if (and var (variable-bound? var))
2375 (variable-ref var)
2376 (if (not (null? opt-val))
2377 (car opt-val)
2378 (error "Unbound variable." v)))))
2379
2380
2381 \f
2382
2383 ;;; {Adding Variables to Modules}
2384 ;;;
2385
2386 ;; module-make-local-var! module symbol
2387 ;;
2388 ;; ensure a variable for V in the local namespace of M.
2389 ;; If no variable was already there, then create a new and uninitialzied
2390 ;; variable.
2391 ;;
2392 ;; This function is used in modules.c.
2393 ;;
2394 (define (module-make-local-var! m v)
2395 (or (let ((b (module-obarray-ref (module-obarray m) v)))
2396 (and (variable? b)
2397 (begin
2398 ;; Mark as modified since this function is called when
2399 ;; the standard eval closure defines a binding
2400 (module-modified m)
2401 b)))
2402
2403 ;; Create a new local variable.
2404 (let ((local-var (make-undefined-variable)))
2405 (module-add! m v local-var)
2406 local-var)))
2407
2408 ;; module-ensure-local-variable! module symbol
2409 ;;
2410 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
2411 ;; there is no binding for SYMBOL, create a new uninitialized
2412 ;; variable. Return the local variable.
2413 ;;
2414 (define (module-ensure-local-variable! module symbol)
2415 (or (module-local-variable module symbol)
2416 (let ((var (make-undefined-variable)))
2417 (module-add! module symbol var)
2418 var)))
2419
2420 ;; module-add! module symbol var
2421 ;;
2422 ;; ensure a particular variable for V in the local namespace of M.
2423 ;;
2424 (define (module-add! m v var)
2425 (if (not (variable? var))
2426 (error "Bad variable to module-add!" var))
2427 (module-obarray-set! (module-obarray m) v var)
2428 (module-modified m))
2429
2430 ;; module-remove!
2431 ;;
2432 ;; make sure that a symbol is undefined in the local namespace of M.
2433 ;;
2434 (define (module-remove! m v)
2435 (module-obarray-remove! (module-obarray m) v)
2436 (module-modified m))
2437
2438 (define (module-clear! m)
2439 (hash-clear! (module-obarray m))
2440 (module-modified m))
2441
2442 ;; MODULE-FOR-EACH -- exported
2443 ;;
2444 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
2445 ;;
2446 (define (module-for-each proc module)
2447 (hash-for-each proc (module-obarray module)))
2448
2449 (define (module-map proc module)
2450 (hash-map->list proc (module-obarray module)))
2451
2452 ;; Submodules
2453 ;;
2454 ;; Modules exist in a separate namespace from values, because you generally do
2455 ;; not want the name of a submodule, which you might not even use, to collide
2456 ;; with local variables that happen to be named the same as the submodule.
2457 ;;
2458 (define (module-ref-submodule module name)
2459 (or (hashq-ref (module-submodules module) name)
2460 (and (module-submodule-binder module)
2461 ((module-submodule-binder module) module name))))
2462
2463 (define (module-define-submodule! module name submodule)
2464 (hashq-set! (module-submodules module) name submodule))
2465
2466 \f
2467
2468 ;;; {Module-based Loading}
2469 ;;;
2470
2471 (define (save-module-excursion thunk)
2472 (let ((inner-module (current-module))
2473 (outer-module #f))
2474 (dynamic-wind (lambda ()
2475 (set! outer-module (current-module))
2476 (set-current-module inner-module)
2477 (set! inner-module #f))
2478 thunk
2479 (lambda ()
2480 (set! inner-module (current-module))
2481 (set-current-module outer-module)
2482 (set! outer-module #f)))))
2483
2484 \f
2485
2486 ;;; {MODULE-REF -- exported}
2487 ;;;
2488
2489 ;; Returns the value of a variable called NAME in MODULE or any of its
2490 ;; used modules. If there is no such variable, then if the optional third
2491 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2492 ;;
2493 (define (module-ref module name . rest)
2494 (let ((variable (module-variable module name)))
2495 (if (and variable (variable-bound? variable))
2496 (variable-ref variable)
2497 (if (null? rest)
2498 (error "No variable named" name 'in module)
2499 (car rest) ; default value
2500 ))))
2501
2502 ;; MODULE-SET! -- exported
2503 ;;
2504 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2505 ;; to VALUE; if there is no such variable, an error is signaled.
2506 ;;
2507 (define (module-set! module name value)
2508 (let ((variable (module-variable module name)))
2509 (if variable
2510 (variable-set! variable value)
2511 (error "No variable named" name 'in module))))
2512
2513 ;; MODULE-DEFINE! -- exported
2514 ;;
2515 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2516 ;; variable, it is added first.
2517 ;;
2518 (define (module-define! module name value)
2519 (let ((variable (module-local-variable module name)))
2520 (if variable
2521 (begin
2522 (variable-set! variable value)
2523 (module-modified module))
2524 (let ((variable (make-variable value)))
2525 (module-add! module name variable)))))
2526
2527 ;; MODULE-DEFINED? -- exported
2528 ;;
2529 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2530 ;; uses)
2531 ;;
2532 (define (module-defined? module name)
2533 (let ((variable (module-variable module name)))
2534 (and variable (variable-bound? variable))))
2535
2536 ;; MODULE-USE! module interface
2537 ;;
2538 ;; Add INTERFACE to the list of interfaces used by MODULE.
2539 ;;
2540 (define (module-use! module interface)
2541 (if (not (or (eq? module interface)
2542 (memq interface (module-uses module))))
2543 (begin
2544 ;; Newly used modules must be appended rather than consed, so that
2545 ;; `module-variable' traverses the use list starting from the first
2546 ;; used module.
2547 (set-module-uses! module (append (module-uses module)
2548 (list interface)))
2549 (hash-clear! (module-import-obarray module))
2550 (module-modified module))))
2551
2552 ;; MODULE-USE-INTERFACES! module interfaces
2553 ;;
2554 ;; Same as MODULE-USE!, but only notifies module observers after all
2555 ;; interfaces are added to the inports list.
2556 ;;
2557 (define (module-use-interfaces! module interfaces)
2558 (let* ((cur (module-uses module))
2559 (new (let lp ((in interfaces) (out '()))
2560 (if (null? in)
2561 (reverse out)
2562 (lp (cdr in)
2563 (let ((iface (car in)))
2564 (if (or (memq iface cur) (memq iface out))
2565 out
2566 (cons iface out))))))))
2567 (set-module-uses! module (append cur new))
2568 (hash-clear! (module-import-obarray module))
2569 (module-modified module)))
2570
2571 \f
2572
2573 ;;; {Recursive Namespaces}
2574 ;;;
2575 ;;; A hierarchical namespace emerges if we consider some module to be
2576 ;;; root, and submodules of that module to be nested namespaces.
2577 ;;;
2578 ;;; The routines here manage variable names in hierarchical namespace.
2579 ;;; Each variable name is a list of elements, looked up in successively nested
2580 ;;; modules.
2581 ;;;
2582 ;;; (nested-ref some-root-module '(foo bar baz))
2583 ;;; => <value of a variable named baz in the submodule bar of
2584 ;;; the submodule foo of some-root-module>
2585 ;;;
2586 ;;;
2587 ;;; There are:
2588 ;;;
2589 ;;; ;; a-root is a module
2590 ;;; ;; name is a list of symbols
2591 ;;;
2592 ;;; nested-ref a-root name
2593 ;;; nested-set! a-root name val
2594 ;;; nested-define! a-root name val
2595 ;;; nested-remove! a-root name
2596 ;;;
2597 ;;; These functions manipulate values in namespaces. For referencing the
2598 ;;; namespaces themselves, use the following:
2599 ;;;
2600 ;;; nested-ref-module a-root name
2601 ;;; nested-define-module! a-root name mod
2602 ;;;
2603 ;;; (current-module) is a natural choice for a root so for convenience there are
2604 ;;; also:
2605 ;;;
2606 ;;; local-ref name == nested-ref (current-module) name
2607 ;;; local-set! name val == nested-set! (current-module) name val
2608 ;;; local-define name val == nested-define! (current-module) name val
2609 ;;; local-remove name == nested-remove! (current-module) name
2610 ;;; local-ref-module name == nested-ref-module (current-module) name
2611 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2612 ;;;
2613
2614
2615 (define (nested-ref root names)
2616 (if (null? names)
2617 root
2618 (let loop ((cur root)
2619 (head (car names))
2620 (tail (cdr names)))
2621 (if (null? tail)
2622 (module-ref cur head #f)
2623 (let ((cur (module-ref-submodule cur head)))
2624 (and cur
2625 (loop cur (car tail) (cdr tail))))))))
2626
2627 (define (nested-set! root names val)
2628 (let loop ((cur root)
2629 (head (car names))
2630 (tail (cdr names)))
2631 (if (null? tail)
2632 (module-set! cur head val)
2633 (let ((cur (module-ref-submodule cur head)))
2634 (if (not cur)
2635 (error "failed to resolve module" names)
2636 (loop cur (car tail) (cdr tail)))))))
2637
2638 (define (nested-define! root names val)
2639 (let loop ((cur root)
2640 (head (car names))
2641 (tail (cdr names)))
2642 (if (null? tail)
2643 (module-define! cur head val)
2644 (let ((cur (module-ref-submodule cur head)))
2645 (if (not cur)
2646 (error "failed to resolve module" names)
2647 (loop cur (car tail) (cdr tail)))))))
2648
2649 (define (nested-remove! root names)
2650 (let loop ((cur root)
2651 (head (car names))
2652 (tail (cdr names)))
2653 (if (null? tail)
2654 (module-remove! cur head)
2655 (let ((cur (module-ref-submodule cur head)))
2656 (if (not cur)
2657 (error "failed to resolve module" names)
2658 (loop cur (car tail) (cdr tail)))))))
2659
2660
2661 (define (nested-ref-module root names)
2662 (let loop ((cur root)
2663 (names names))
2664 (if (null? names)
2665 cur
2666 (let ((cur (module-ref-submodule cur (car names))))
2667 (and cur
2668 (loop cur (cdr names)))))))
2669
2670 (define (nested-define-module! root names module)
2671 (if (null? names)
2672 (error "can't redefine root module" root module)
2673 (let loop ((cur root)
2674 (head (car names))
2675 (tail (cdr names)))
2676 (if (null? tail)
2677 (module-define-submodule! cur head module)
2678 (let ((cur (or (module-ref-submodule cur head)
2679 (let ((m (make-module 31)))
2680 (set-module-kind! m 'directory)
2681 (set-module-name! m (append (module-name cur)
2682 (list head)))
2683 (module-define-submodule! cur head m)
2684 m))))
2685 (loop cur (car tail) (cdr tail)))))))
2686
2687
2688 (define (local-ref names)
2689 (nested-ref (current-module) names))
2690
2691 (define (local-set! names val)
2692 (nested-set! (current-module) names val))
2693
2694 (define (local-define names val)
2695 (nested-define! (current-module) names val))
2696
2697 (define (local-remove names)
2698 (nested-remove! (current-module) names))
2699
2700 (define (local-ref-module names)
2701 (nested-ref-module (current-module) names))
2702
2703 (define (local-define-module names mod)
2704 (nested-define-module! (current-module) names mod))
2705
2706
2707
2708 \f
2709
2710 ;;; {The (guile) module}
2711 ;;;
2712 ;;; The standard module, which has the core Guile bindings. Also called the
2713 ;;; "root module", as it is imported by many other modules, but it is not
2714 ;;; necessarily the root of anything; and indeed, the module named '() might be
2715 ;;; better thought of as a root.
2716 ;;;
2717
2718 (define (set-system-module! m s)
2719 (set-procedure-property! (module-eval-closure m) 'system-module s))
2720
2721 ;; The root module uses the pre-modules-obarray as its obarray. This
2722 ;; special obarray accumulates all bindings that have been established
2723 ;; before the module system is fully booted.
2724 ;;
2725 ;; (The obarray continues to be used by code that has been closed over
2726 ;; before the module system has been booted.)
2727 ;;
2728 (define the-root-module
2729 (let ((m (make-module 0)))
2730 (set-module-obarray! m (%get-pre-modules-obarray))
2731 (set-module-name! m '(guile))
2732 (set-system-module! m #t)
2733 m))
2734
2735 ;; The root interface is a module that uses the same obarray as the
2736 ;; root module. It does not allow new definitions, tho.
2737 ;;
2738 (define the-scm-module
2739 (let ((m (make-module 0)))
2740 (set-module-obarray! m (%get-pre-modules-obarray))
2741 (set-module-eval-closure! m (standard-interface-eval-closure m))
2742 (set-module-name! m '(guile))
2743 (set-module-kind! m 'interface)
2744 (set-system-module! m #t)
2745
2746 ;; In Guile 1.8 and earlier M was its own public interface.
2747 (set-module-public-interface! m m)
2748
2749 m))
2750
2751 (set-module-public-interface! the-root-module the-scm-module)
2752
2753 \f
2754
2755 ;; Now that we have a root module, even though modules aren't fully booted,
2756 ;; expand the definition of resolve-module.
2757 ;;
2758 (define (resolve-module name . args)
2759 (if (equal? name '(guile))
2760 the-root-module
2761 (error "unexpected module to resolve during module boot" name)))
2762
2763 ;; Cheat. These bindings are needed by modules.c, but we don't want
2764 ;; to move their real definition here because that would be unnatural.
2765 ;;
2766 (define define-module* #f)
2767 (define process-use-modules #f)
2768 (define module-export! #f)
2769 (define default-duplicate-binding-procedures #f)
2770
2771 ;; This boots the module system. All bindings needed by modules.c
2772 ;; must have been defined by now.
2773 ;;
2774 (set-current-module the-root-module)
2775
2776
2777 \f
2778
2779 ;; Now that modules are booted, give module-name its final definition.
2780 ;;
2781 (define module-name
2782 (let ((accessor (record-accessor module-type 'name)))
2783 (lambda (mod)
2784 (or (accessor mod)
2785 (let ((name (list (gensym))))
2786 ;; Name MOD and bind it in the module root so that it's visible to
2787 ;; `resolve-module'. This is important as `psyntax' stores module
2788 ;; names and relies on being able to `resolve-module' them.
2789 (set-module-name! mod name)
2790 (nested-define-module! (resolve-module '() #f) name mod)
2791 (accessor mod))))))
2792
2793 (define (make-modules-in module name)
2794 (or (nested-ref-module module name)
2795 (let ((m (make-module 31)))
2796 (set-module-kind! m 'directory)
2797 (set-module-name! m (append (module-name module) name))
2798 (nested-define-module! module name m)
2799 m)))
2800
2801 (define (beautify-user-module! module)
2802 (let ((interface (module-public-interface module)))
2803 (if (or (not interface)
2804 (eq? interface module))
2805 (let ((interface (make-module 31)))
2806 (set-module-name! interface (module-name module))
2807 (set-module-version! interface (module-version module))
2808 (set-module-kind! interface 'interface)
2809 (set-module-public-interface! module interface))))
2810 (if (and (not (memq the-scm-module (module-uses module)))
2811 (not (eq? module the-root-module)))
2812 ;; Import the default set of bindings (from the SCM module) in MODULE.
2813 (module-use! module the-scm-module)))
2814
2815 (define (version-matches? version-ref target)
2816 (define (sub-versions-match? v-refs t)
2817 (define (sub-version-matches? v-ref t)
2818 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2819 (cond
2820 ((number? v-ref) (eqv? v-ref t))
2821 ((list? v-ref)
2822 (case (car v-ref)
2823 ((>=) (>= t (cadr v-ref)))
2824 ((<=) (<= t (cadr v-ref)))
2825 ((and) (and-map matches? (cdr v-ref)))
2826 ((or) (or-map matches? (cdr v-ref)))
2827 ((not) (not (matches? (cadr v-ref))))
2828 (else (error "Invalid sub-version reference" v-ref))))
2829 (else (error "Invalid sub-version reference" v-ref)))))
2830 (or (null? v-refs)
2831 (and (not (null? t))
2832 (sub-version-matches? (car v-refs) (car t))
2833 (sub-versions-match? (cdr v-refs) (cdr t)))))
2834
2835 (let ((matches? (lambda (v) (version-matches? v target))))
2836 (or (null? version-ref)
2837 (case (car version-ref)
2838 ((and) (and-map matches? (cdr version-ref)))
2839 ((or) (or-map matches? (cdr version-ref)))
2840 ((not) (not (matches? (cadr version-ref))))
2841 (else (sub-versions-match? version-ref target))))))
2842
2843 (define (make-fresh-user-module)
2844 (let ((m (make-module)))
2845 (beautify-user-module! m)
2846 m))
2847
2848 ;; NOTE: This binding is used in libguile/modules.c.
2849 ;;
2850 (define resolve-module
2851 (let ((root (make-module)))
2852 (set-module-name! root '())
2853 ;; Define the-root-module as '(guile).
2854 (module-define-submodule! root 'guile the-root-module)
2855
2856 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2857 (let ((already (nested-ref-module root name)))
2858 (cond
2859 ((and already
2860 (or (not autoload) (module-public-interface already)))
2861 ;; A hit, a palpable hit.
2862 (if (and version
2863 (not (version-matches? version (module-version already))))
2864 (error "incompatible module version already loaded" name))
2865 already)
2866 (autoload
2867 ;; Try to autoload the module, and recurse.
2868 (try-load-module name version)
2869 (resolve-module name #f #:ensure ensure))
2870 (else
2871 ;; No module found (or if one was, it had no public interface), and
2872 ;; we're not autoloading. Make an empty module if #:ensure is true.
2873 (or already
2874 (and ensure
2875 (make-modules-in root name)))))))))
2876
2877
2878 (define (try-load-module name version)
2879 (try-module-autoload name version))
2880
2881 (define (reload-module m)
2882 "Revisit the source file corresponding to the module @var{m}."
2883 (let ((f (module-filename m)))
2884 (if f
2885 (save-module-excursion
2886 (lambda ()
2887 ;; Re-set the initial environment, as in try-module-autoload.
2888 (set-current-module (make-fresh-user-module))
2889 (primitive-load-path f)
2890 m))
2891 ;; Though we could guess, we *should* know it.
2892 (error "unknown file name for module" m))))
2893
2894 (define (purify-module! module)
2895 "Removes bindings in MODULE which are inherited from the (guile) module."
2896 (let ((use-list (module-uses module)))
2897 (if (and (pair? use-list)
2898 (eq? (car (last-pair use-list)) the-scm-module))
2899 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2900
2901 ;; Return a module that is an interface to the module designated by
2902 ;; NAME.
2903 ;;
2904 ;; `resolve-interface' takes four keyword arguments:
2905 ;;
2906 ;; #:select SELECTION
2907 ;;
2908 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2909 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2910 ;; is the name in the used module and SEEN is the name in the using
2911 ;; module. Note that SEEN is also passed through RENAMER, below. The
2912 ;; default is to select all bindings. If you specify no selection but
2913 ;; a renamer, only the bindings that already exist in the used module
2914 ;; are made available in the interface. Bindings that are added later
2915 ;; are not picked up.
2916 ;;
2917 ;; #:hide BINDINGS
2918 ;;
2919 ;; BINDINGS is a list of bindings which should not be imported.
2920 ;;
2921 ;; #:prefix PREFIX
2922 ;;
2923 ;; PREFIX is a symbol that will be appended to each exported name.
2924 ;; The default is to not perform any renaming.
2925 ;;
2926 ;; #:renamer RENAMER
2927 ;;
2928 ;; RENAMER is a procedure that takes a symbol and returns its new
2929 ;; name. The default is not perform any renaming.
2930 ;;
2931 ;; Signal "no code for module" error if module name is not resolvable
2932 ;; or its public interface is not available. Signal "no binding"
2933 ;; error if selected binding does not exist in the used module.
2934 ;;
2935 (define* (resolve-interface name #:key
2936 (select #f)
2937 (hide '())
2938 (prefix #f)
2939 (renamer (if prefix
2940 (symbol-prefix-proc prefix)
2941 identity))
2942 version)
2943 (let* ((module (resolve-module name #t version #:ensure #f))
2944 (public-i (and module (module-public-interface module))))
2945 (and (or (not module) (not public-i))
2946 (error "no code for module" name))
2947 (if (and (not select) (null? hide) (eq? renamer identity))
2948 public-i
2949 (let ((selection (or select (module-map (lambda (sym var) sym)
2950 public-i)))
2951 (custom-i (make-module 31)))
2952 (set-module-kind! custom-i 'custom-interface)
2953 (set-module-name! custom-i name)
2954 ;; XXX - should use a lazy binder so that changes to the
2955 ;; used module are picked up automatically.
2956 (for-each (lambda (bspec)
2957 (let* ((direct? (symbol? bspec))
2958 (orig (if direct? bspec (car bspec)))
2959 (seen (if direct? bspec (cdr bspec)))
2960 (var (or (module-local-variable public-i orig)
2961 (module-local-variable module orig)
2962 (error
2963 ;; fixme: format manually for now
2964 (simple-format
2965 #f "no binding `~A' in module ~A"
2966 orig name)))))
2967 (if (memq orig hide)
2968 (set! hide (delq! orig hide))
2969 (module-add! custom-i
2970 (renamer seen)
2971 var))))
2972 selection)
2973 ;; Check that we are not hiding bindings which don't exist
2974 (for-each (lambda (binding)
2975 (if (not (module-local-variable public-i binding))
2976 (error
2977 (simple-format
2978 #f "no binding `~A' to hide in module ~A"
2979 binding name))))
2980 hide)
2981 custom-i))))
2982
2983 (define (symbol-prefix-proc prefix)
2984 (lambda (symbol)
2985 (symbol-append prefix symbol)))
2986
2987 ;; This function is called from "modules.c". If you change it, be
2988 ;; sure to update "modules.c" as well.
2989
2990 (define* (define-module* name
2991 #:key filename pure version (duplicates '())
2992 (imports '()) (exports '()) (replacements '())
2993 (re-exports '()) (autoloads '()) transformer)
2994 (define (list-of pred l)
2995 (or (null? l)
2996 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2997 (define (valid-export? x)
2998 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2999 (define (valid-autoload? x)
3000 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
3001
3002 (define (resolve-imports imports)
3003 (define (resolve-import import-spec)
3004 (if (list? import-spec)
3005 (apply resolve-interface import-spec)
3006 (error "unexpected use-module specification" import-spec)))
3007 (let lp ((imports imports) (out '()))
3008 (cond
3009 ((null? imports) (reverse! out))
3010 ((pair? imports)
3011 (lp (cdr imports)
3012 (cons (resolve-import (car imports)) out)))
3013 (else (error "unexpected tail of imports list" imports)))))
3014
3015 ;; We could add a #:no-check arg, set by the define-module macro, if
3016 ;; these checks are taking too much time.
3017 ;;
3018 (let ((module (resolve-module name #f)))
3019 (beautify-user-module! module)
3020 (if filename
3021 (set-module-filename! module filename))
3022 (if pure
3023 (purify-module! module))
3024 (if version
3025 (begin
3026 (if (not (list-of integer? version))
3027 (error "expected list of integers for version"))
3028 (set-module-version! module version)
3029 (set-module-version! (module-public-interface module) version)))
3030 (let ((imports (resolve-imports imports)))
3031 (call-with-deferred-observers
3032 (lambda ()
3033 (if (pair? imports)
3034 (module-use-interfaces! module imports))
3035 (if (list-of valid-export? exports)
3036 (if (pair? exports)
3037 (module-export! module exports))
3038 (error "expected exports to be a list of symbols or symbol pairs"))
3039 (if (list-of valid-export? replacements)
3040 (if (pair? replacements)
3041 (module-replace! module replacements))
3042 (error "expected replacements to be a list of symbols or symbol pairs"))
3043 (if (list-of valid-export? re-exports)
3044 (if (pair? re-exports)
3045 (module-re-export! module re-exports))
3046 (error "expected re-exports to be a list of symbols or symbol pairs"))
3047 ;; FIXME
3048 (if (not (null? autoloads))
3049 (apply module-autoload! module autoloads))
3050 ;; Wait until modules have been loaded to resolve duplicates
3051 ;; handlers.
3052 (if (pair? duplicates)
3053 (let ((handlers (lookup-duplicates-handlers duplicates)))
3054 (set-module-duplicates-handlers! module handlers))))))
3055
3056 (if transformer
3057 (if (and (pair? transformer) (list-of symbol? transformer))
3058 (let ((iface (resolve-interface transformer))
3059 (sym (car (last-pair transformer))))
3060 (set-module-transformer! module (module-ref iface sym)))
3061 (error "expected transformer to be a module name" transformer)))
3062
3063 (run-hook module-defined-hook module)
3064 module))
3065
3066 ;; `module-defined-hook' is a hook that is run whenever a new module
3067 ;; is defined. Its members are called with one argument, the new
3068 ;; module.
3069 (define module-defined-hook (make-hook 1))
3070
3071 \f
3072
3073 ;;; {Autoload}
3074 ;;;
3075
3076 (define (make-autoload-interface module name bindings)
3077 (let ((b (lambda (a sym definep)
3078 (and (memq sym bindings)
3079 (let ((i (module-public-interface (resolve-module name))))
3080 (if (not i)
3081 (error "missing interface for module" name))
3082 (let ((autoload (memq a (module-uses module))))
3083 ;; Replace autoload-interface with actual interface if
3084 ;; that has not happened yet.
3085 (if (pair? autoload)
3086 (set-car! autoload i)))
3087 (module-local-variable i sym))))))
3088 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
3089 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
3090 (make-hash-table 0) #f #f #f)))
3091
3092 (define (module-autoload! module . args)
3093 "Have @var{module} automatically load the module named @var{name} when one
3094 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
3095 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
3096 module '(ice-9 q) '(make-q q-length))}."
3097 (let loop ((args args))
3098 (cond ((null? args)
3099 #t)
3100 ((null? (cdr args))
3101 (error "invalid name+binding autoload list" args))
3102 (else
3103 (let ((name (car args))
3104 (bindings (cadr args)))
3105 (module-use! module (make-autoload-interface module
3106 name bindings))
3107 (loop (cddr args)))))))
3108
3109
3110 \f
3111
3112 ;;; {Autoloading modules}
3113 ;;;
3114
3115 (define autoloads-in-progress '())
3116
3117 ;; This function is called from "modules.c". If you change it, be
3118 ;; sure to update "modules.c" as well.
3119
3120 (define* (try-module-autoload module-name #:optional version)
3121 (let* ((reverse-name (reverse module-name))
3122 (name (symbol->string (car reverse-name)))
3123 (dir-hint-module-name (reverse (cdr reverse-name)))
3124 (dir-hint (apply string-append
3125 (map (lambda (elt)
3126 (string-append (symbol->string elt) "/"))
3127 dir-hint-module-name))))
3128 (resolve-module dir-hint-module-name #f)
3129 (and (not (autoload-done-or-in-progress? dir-hint name))
3130 (let ((didit #f))
3131 (dynamic-wind
3132 (lambda () (autoload-in-progress! dir-hint name))
3133 (lambda ()
3134 (with-fluids ((current-reader #f))
3135 (save-module-excursion
3136 (lambda ()
3137 ;; The initial environment when loading a module is a fresh
3138 ;; user module.
3139 (set-current-module (make-fresh-user-module))
3140 ;; Here we could allow some other search strategy (other than
3141 ;; primitive-load-path), for example using versions encoded
3142 ;; into the file system -- but then we would have to figure
3143 ;; out how to locate the compiled file, do auto-compilation,
3144 ;; etc. Punt for now, and don't use versions when locating
3145 ;; the file.
3146 (primitive-load-path (in-vicinity dir-hint name) #f)
3147 (set! didit #t)))))
3148 (lambda () (set-autoloaded! dir-hint name didit)))
3149 didit))))
3150
3151 \f
3152
3153 ;;; {Dynamic linking of modules}
3154 ;;;
3155
3156 (define autoloads-done '((guile . guile)))
3157
3158 (define (autoload-done-or-in-progress? p m)
3159 (let ((n (cons p m)))
3160 (->bool (or (member n autoloads-done)
3161 (member n autoloads-in-progress)))))
3162
3163 (define (autoload-done! p m)
3164 (let ((n (cons p m)))
3165 (set! autoloads-in-progress
3166 (delete! n autoloads-in-progress))
3167 (or (member n autoloads-done)
3168 (set! autoloads-done (cons n autoloads-done)))))
3169
3170 (define (autoload-in-progress! p m)
3171 (let ((n (cons p m)))
3172 (set! autoloads-done
3173 (delete! n autoloads-done))
3174 (set! autoloads-in-progress (cons n autoloads-in-progress))))
3175
3176 (define (set-autoloaded! p m done?)
3177 (if done?
3178 (autoload-done! p m)
3179 (let ((n (cons p m)))
3180 (set! autoloads-done (delete! n autoloads-done))
3181 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
3182
3183 \f
3184
3185 ;;; {Run-time options}
3186 ;;;
3187
3188 (define-syntax define-option-interface
3189 (syntax-rules ()
3190 ((_ (interface (options enable disable) (option-set!)))
3191 (begin
3192 (define options
3193 (case-lambda
3194 (() (interface))
3195 ((arg)
3196 (if (list? arg)
3197 (begin (interface arg) (interface))
3198 (for-each
3199 (lambda (option)
3200 (apply (lambda (name value documentation)
3201 (display name)
3202 (if (< (string-length (symbol->string name)) 8)
3203 (display #\tab))
3204 (display #\tab)
3205 (display value)
3206 (display #\tab)
3207 (display documentation)
3208 (newline))
3209 option))
3210 (interface #t))))))
3211 (define (enable . flags)
3212 (interface (append flags (interface)))
3213 (interface))
3214 (define (disable . flags)
3215 (let ((options (interface)))
3216 (for-each (lambda (flag) (set! options (delq! flag options)))
3217 flags)
3218 (interface options)
3219 (interface)))
3220 (define-syntax-rule (option-set! opt val)
3221 (eval-when (eval load compile expand)
3222 (options (append (options) (list 'opt val)))))))))
3223
3224 (define-option-interface
3225 (debug-options-interface
3226 (debug-options debug-enable debug-disable)
3227 (debug-set!)))
3228
3229 (define-option-interface
3230 (read-options-interface
3231 (read-options read-enable read-disable)
3232 (read-set!)))
3233
3234 (define-option-interface
3235 (print-options-interface
3236 (print-options print-enable print-disable)
3237 (print-set!)))
3238
3239 \f
3240
3241 ;;; {The Unspecified Value}
3242 ;;;
3243 ;;; Currently Guile represents unspecified values via one particular value,
3244 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
3245 ;;; future if we could replace this with a return of 0 values, though.
3246 ;;;
3247
3248 (define-syntax *unspecified*
3249 (identifier-syntax (if #f #f)))
3250
3251 (define (unspecified? v) (eq? v *unspecified*))
3252
3253
3254 \f
3255
3256 ;;; {Running Repls}
3257 ;;;
3258
3259 (define *repl-stack* (make-fluid '()))
3260
3261 ;; Programs can call `batch-mode?' to see if they are running as part of a
3262 ;; script or if they are running interactively. REPL implementations ensure that
3263 ;; `batch-mode?' returns #f during their extent.
3264 ;;
3265 (define (batch-mode?)
3266 (null? (fluid-ref *repl-stack*)))
3267
3268 ;; Programs can re-enter batch mode, for example after a fork, by calling
3269 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
3270 ;; to abort to the outermost prompt, and call a thunk there.
3271 ;;
3272 (define (ensure-batch-mode!)
3273 (set! batch-mode? (lambda () #t)))
3274
3275 (define (quit . args)
3276 (apply throw 'quit args))
3277
3278 (define exit quit)
3279
3280 (define (gc-run-time)
3281 (cdr (assq 'gc-time-taken (gc-stats))))
3282
3283 (define abort-hook (make-hook))
3284 (define before-error-hook (make-hook))
3285 (define after-error-hook (make-hook))
3286 (define before-backtrace-hook (make-hook))
3287 (define after-backtrace-hook (make-hook))
3288
3289 (define before-read-hook (make-hook))
3290 (define after-read-hook (make-hook))
3291 (define before-eval-hook (make-hook 1))
3292 (define after-eval-hook (make-hook 1))
3293 (define before-print-hook (make-hook 1))
3294 (define after-print-hook (make-hook 1))
3295
3296 ;;; This hook is run at the very end of an interactive session.
3297 ;;;
3298 (define exit-hook (make-hook))
3299
3300 ;;; The default repl-reader function. We may override this if we've
3301 ;;; the readline library.
3302 (define repl-reader
3303 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
3304 (if (not (char-ready?))
3305 (begin
3306 (display (if (string? prompt) prompt (prompt)))
3307 ;; An interesting situation. The printer resets the column to
3308 ;; 0 by printing a newline, but we then advance it by printing
3309 ;; the prompt. However the port-column of the output port
3310 ;; does not typically correspond with the actual column on the
3311 ;; screen, because the input is echoed back! Since the
3312 ;; input is line-buffered and thus ends with a newline, the
3313 ;; output will really start on column zero. So, here we zero
3314 ;; it out. See bug 9664.
3315 ;;
3316 ;; Note that for similar reasons, the output-line will not
3317 ;; reflect the actual line on the screen. But given the
3318 ;; possibility of multiline input, the fix is not as
3319 ;; straightforward, so we don't bother.
3320 ;;
3321 ;; Also note that the readline implementation papers over
3322 ;; these concerns, because it's readline itself printing the
3323 ;; prompt, and not Guile.
3324 (set-port-column! (current-output-port) 0)))
3325 (force-output)
3326 (run-hook before-read-hook)
3327 ((or reader read) (current-input-port))))
3328
3329
3330 \f
3331
3332 ;;; {IOTA functions: generating lists of numbers}
3333 ;;;
3334
3335 (define (iota n)
3336 (let loop ((count (1- n)) (result '()))
3337 (if (< count 0) result
3338 (loop (1- count) (cons count result)))))
3339
3340 \f
3341
3342 ;;; {While}
3343 ;;;
3344 ;;; with `continue' and `break'.
3345 ;;;
3346
3347 ;; The inliner will remove the prompts at compile-time if it finds that
3348 ;; `continue' or `break' are not used.
3349 ;;
3350 (define-syntax while
3351 (lambda (x)
3352 (syntax-case x ()
3353 ((while cond body ...)
3354 #`(let ((break-tag (make-prompt-tag "break"))
3355 (continue-tag (make-prompt-tag "continue")))
3356 (call-with-prompt
3357 break-tag
3358 (lambda ()
3359 (define-syntax #,(datum->syntax #'while 'break)
3360 (lambda (x)
3361 (syntax-case x ()
3362 ((_ arg (... ...))
3363 #'(abort-to-prompt break-tag arg (... ...)))
3364 (_
3365 #'(lambda args
3366 (apply abort-to-prompt break-tag args))))))
3367 (let lp ()
3368 (call-with-prompt
3369 continue-tag
3370 (lambda ()
3371 (define-syntax #,(datum->syntax #'while 'continue)
3372 (lambda (x)
3373 (syntax-case x ()
3374 ((_)
3375 #'(abort-to-prompt continue-tag))
3376 ((_ . args)
3377 (syntax-violation 'continue "too many arguments" x))
3378 (_
3379 #'(lambda ()
3380 (abort-to-prompt continue-tag))))))
3381 (do () ((not cond) #f) body ...))
3382 (lambda (k) (lp)))))
3383 (lambda (k . args)
3384 (if (null? args)
3385 #t
3386 (apply values args)))))))))
3387
3388
3389 \f
3390
3391 ;;; {Module System Macros}
3392 ;;;
3393
3394 ;; Return a list of expressions that evaluate to the appropriate
3395 ;; arguments for resolve-interface according to SPEC.
3396
3397 (eval-when (compile)
3398 (if (memq 'prefix (read-options))
3399 (error "boot-9 must be compiled with #:kw, not :kw")))
3400
3401 (define (keyword-like-symbol->keyword sym)
3402 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3403
3404 (define-syntax define-module
3405 (lambda (x)
3406 (define (keyword-like? stx)
3407 (let ((dat (syntax->datum stx)))
3408 (and (symbol? dat)
3409 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3410 (define (->keyword sym)
3411 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3412
3413 (define (parse-iface args)
3414 (let loop ((in args) (out '()))
3415 (syntax-case in ()
3416 (() (reverse! out))
3417 ;; The user wanted #:foo, but wrote :foo. Fix it.
3418 ((sym . in) (keyword-like? #'sym)
3419 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3420 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3421 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3422 ((#:renamer renamer . in)
3423 (loop #'in (cons* #',renamer #:renamer out)))
3424 ((kw val . in)
3425 (loop #'in (cons* #'val #'kw out))))))
3426
3427 (define (parse args imp exp rex rep aut)
3428 ;; Just quote everything except #:use-module and #:use-syntax. We
3429 ;; need to know about all arguments regardless since we want to turn
3430 ;; symbols that look like keywords into real keywords, and the
3431 ;; keyword args in a define-module form are not regular
3432 ;; (i.e. no-backtrace doesn't take a value).
3433 (syntax-case args ()
3434 (()
3435 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
3436 (exp (if (null? exp) '() #`(#:exports '#,exp)))
3437 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
3438 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
3439 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
3440 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
3441 ;; The user wanted #:foo, but wrote :foo. Fix it.
3442 ((sym . args) (keyword-like? #'sym)
3443 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
3444 imp exp rex rep aut))
3445 ((kw . args) (not (keyword? (syntax->datum #'kw)))
3446 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3447 ((#:no-backtrace . args)
3448 ;; Ignore this one.
3449 (parse #'args imp exp rex rep aut))
3450 ((#:pure . args)
3451 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
3452 ((kw)
3453 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3454 ((#:version (v ...) . args)
3455 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
3456 ((#:duplicates (d ...) . args)
3457 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
3458 ((#:filename f . args)
3459 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
3460 ((#:use-module (name name* ...) . args)
3461 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3462 (parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut))
3463 ((#:use-syntax (name name* ...) . args)
3464 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3465 #`(#:transformer '(name name* ...)
3466 . #,(parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut)))
3467 ((#:use-module ((name name* ...) arg ...) . args)
3468 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3469 (parse #'args
3470 #`(#,@imp ((name name* ...) #,@(parse-iface #'(arg ...))))
3471 exp rex rep aut))
3472 ((#:export (ex ...) . args)
3473 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3474 ((#:export-syntax (ex ...) . args)
3475 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3476 ((#:re-export (re ...) . args)
3477 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3478 ((#:re-export-syntax (re ...) . args)
3479 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3480 ((#:replace (r ...) . args)
3481 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3482 ((#:replace-syntax (r ...) . args)
3483 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3484 ((#:autoload name bindings . args)
3485 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
3486 ((kw val . args)
3487 (syntax-violation 'define-module "unknown keyword or bad argument"
3488 #'kw #'val))))
3489
3490 (syntax-case x ()
3491 ((_ (name name* ...) arg ...)
3492 (and-map symbol? (syntax->datum #'(name name* ...)))
3493 (with-syntax (((quoted-arg ...)
3494 (parse #'(arg ...) '() '() '() '() '()))
3495 ;; Ideally the filename is either a string or #f;
3496 ;; this hack is to work around a case in which
3497 ;; port-filename returns a symbol (`socket') for
3498 ;; sockets.
3499 (filename (let ((f (assq-ref (or (syntax-source x) '())
3500 'filename)))
3501 (and (string? f) f))))
3502 #'(eval-when (eval load compile expand)
3503 (let ((m (define-module* '(name name* ...)
3504 #:filename filename quoted-arg ...)))
3505 (set-current-module m)
3506 m)))))))
3507
3508 ;; The guts of the use-modules macro. Add the interfaces of the named
3509 ;; modules to the use-list of the current module, in order.
3510
3511 ;; This function is called by "modules.c". If you change it, be sure
3512 ;; to change scm_c_use_module as well.
3513
3514 (define (process-use-modules module-interface-args)
3515 (let ((interfaces (map (lambda (mif-args)
3516 (or (apply resolve-interface mif-args)
3517 (error "no such module" mif-args)))
3518 module-interface-args)))
3519 (call-with-deferred-observers
3520 (lambda ()
3521 (module-use-interfaces! (current-module) interfaces)))))
3522
3523 (define-syntax use-modules
3524 (lambda (x)
3525 (define (keyword-like? stx)
3526 (let ((dat (syntax->datum stx)))
3527 (and (symbol? dat)
3528 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3529 (define (->keyword sym)
3530 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3531
3532 (define (quotify-iface args)
3533 (let loop ((in args) (out '()))
3534 (syntax-case in ()
3535 (() (reverse! out))
3536 ;; The user wanted #:foo, but wrote :foo. Fix it.
3537 ((sym . in) (keyword-like? #'sym)
3538 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3539 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3540 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3541 ((#:renamer renamer . in)
3542 (loop #'in (cons* #'renamer #:renamer out)))
3543 ((kw val . in)
3544 (loop #'in (cons* #''val #'kw out))))))
3545
3546 (define (quotify specs)
3547 (let lp ((in specs) (out '()))
3548 (syntax-case in ()
3549 (() (reverse out))
3550 (((name name* ...) . in)
3551 (and-map symbol? (syntax->datum #'(name name* ...)))
3552 (lp #'in (cons #''((name name* ...)) out)))
3553 ((((name name* ...) arg ...) . in)
3554 (and-map symbol? (syntax->datum #'(name name* ...)))
3555 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3556 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3557 out)))))))
3558
3559 (syntax-case x ()
3560 ((_ spec ...)
3561 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3562 #'(eval-when (eval load compile expand)
3563 (process-use-modules (list quoted-args ...))
3564 *unspecified*))))))
3565
3566 (include-from-path "ice-9/r6rs-libraries")
3567
3568 (define-syntax-rule (define-private foo bar)
3569 (define foo bar))
3570
3571 (define-syntax define-public
3572 (syntax-rules ()
3573 ((_ (name . args) . body)
3574 (define-public name (lambda args . body)))
3575 ((_ name val)
3576 (begin
3577 (define name val)
3578 (export name)))))
3579
3580 (define-syntax-rule (defmacro-public name args body ...)
3581 (begin
3582 (defmacro name args body ...)
3583 (export-syntax name)))
3584
3585 ;; And now for the most important macro.
3586 (define-syntax-rule (λ formals body ...)
3587 (lambda formals body ...))
3588
3589 \f
3590 ;; Export a local variable
3591
3592 ;; This function is called from "modules.c". If you change it, be
3593 ;; sure to update "modules.c" as well.
3594
3595 (define (module-export! m names)
3596 (let ((public-i (module-public-interface m)))
3597 (for-each (lambda (name)
3598 (let* ((internal-name (if (pair? name) (car name) name))
3599 (external-name (if (pair? name) (cdr name) name))
3600 (var (module-ensure-local-variable! m internal-name)))
3601 (module-add! public-i external-name var)))
3602 names)))
3603
3604 (define (module-replace! m names)
3605 (let ((public-i (module-public-interface m)))
3606 (for-each (lambda (name)
3607 (let* ((internal-name (if (pair? name) (car name) name))
3608 (external-name (if (pair? name) (cdr name) name))
3609 (var (module-ensure-local-variable! m internal-name)))
3610 ;; FIXME: use a bit on variables instead of object
3611 ;; properties.
3612 (set-object-property! var 'replace #t)
3613 (module-add! public-i external-name var)))
3614 names)))
3615
3616 ;; Export all local variables from a module
3617 ;;
3618 (define (module-export-all! mod)
3619 (define (fresh-interface!)
3620 (let ((iface (make-module)))
3621 (set-module-name! iface (module-name mod))
3622 (set-module-version! iface (module-version mod))
3623 (set-module-kind! iface 'interface)
3624 (set-module-public-interface! mod iface)
3625 iface))
3626 (let ((iface (or (module-public-interface mod)
3627 (fresh-interface!))))
3628 (set-module-obarray! iface (module-obarray mod))))
3629
3630 ;; Re-export a imported variable
3631 ;;
3632 (define (module-re-export! m names)
3633 (let ((public-i (module-public-interface m)))
3634 (for-each (lambda (name)
3635 (let* ((internal-name (if (pair? name) (car name) name))
3636 (external-name (if (pair? name) (cdr name) name))
3637 (var (module-variable m internal-name)))
3638 (cond ((not var)
3639 (error "Undefined variable:" internal-name))
3640 ((eq? var (module-local-variable m internal-name))
3641 (error "re-exporting local variable:" internal-name))
3642 (else
3643 (module-add! public-i external-name var)))))
3644 names)))
3645
3646 (define-syntax-rule (export name ...)
3647 (eval-when (eval load compile expand)
3648 (call-with-deferred-observers
3649 (lambda ()
3650 (module-export! (current-module) '(name ...))))))
3651
3652 (define-syntax-rule (re-export name ...)
3653 (eval-when (eval load compile expand)
3654 (call-with-deferred-observers
3655 (lambda ()
3656 (module-re-export! (current-module) '(name ...))))))
3657
3658 (define-syntax-rule (export! name ...)
3659 (eval-when (eval load compile expand)
3660 (call-with-deferred-observers
3661 (lambda ()
3662 (module-replace! (current-module) '(name ...))))))
3663
3664 (define-syntax-rule (export-syntax name ...)
3665 (export name ...))
3666
3667 (define-syntax-rule (re-export-syntax name ...)
3668 (re-export name ...))
3669
3670 \f
3671
3672 ;;; {Parameters}
3673 ;;;
3674
3675 (define* (make-mutable-parameter init #:optional (converter identity))
3676 (let ((fluid (make-fluid (converter init))))
3677 (case-lambda
3678 (() (fluid-ref fluid))
3679 ((val) (fluid-set! fluid (converter val))))))
3680
3681
3682 \f
3683
3684 ;;; {Handling of duplicate imported bindings}
3685 ;;;
3686
3687 ;; Duplicate handlers take the following arguments:
3688 ;;
3689 ;; module importing module
3690 ;; name conflicting name
3691 ;; int1 old interface where name occurs
3692 ;; val1 value of binding in old interface
3693 ;; int2 new interface where name occurs
3694 ;; val2 value of binding in new interface
3695 ;; var previous resolution or #f
3696 ;; val value of previous resolution
3697 ;;
3698 ;; A duplicate handler can take three alternative actions:
3699 ;;
3700 ;; 1. return #f => leave responsibility to next handler
3701 ;; 2. exit with an error
3702 ;; 3. return a variable resolving the conflict
3703 ;;
3704
3705 (define duplicate-handlers
3706 (let ((m (make-module 7)))
3707
3708 (define (check module name int1 val1 int2 val2 var val)
3709 (scm-error 'misc-error
3710 #f
3711 "~A: `~A' imported from both ~A and ~A"
3712 (list (module-name module)
3713 name
3714 (module-name int1)
3715 (module-name int2))
3716 #f))
3717
3718 (define (warn module name int1 val1 int2 val2 var val)
3719 (format (current-warning-port)
3720 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3721 (module-name module)
3722 name
3723 (module-name int1)
3724 (module-name int2))
3725 #f)
3726
3727 (define (replace module name int1 val1 int2 val2 var val)
3728 (let ((old (or (and var (object-property var 'replace) var)
3729 (module-variable int1 name)))
3730 (new (module-variable int2 name)))
3731 (if (object-property old 'replace)
3732 (and (or (eq? old new)
3733 (not (object-property new 'replace)))
3734 old)
3735 (and (object-property new 'replace)
3736 new))))
3737
3738 (define (warn-override-core module name int1 val1 int2 val2 var val)
3739 (and (eq? int1 the-scm-module)
3740 (begin
3741 (format (current-warning-port)
3742 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3743 (module-name module)
3744 (module-name int2)
3745 name)
3746 (module-local-variable int2 name))))
3747
3748 (define (first module name int1 val1 int2 val2 var val)
3749 (or var (module-local-variable int1 name)))
3750
3751 (define (last module name int1 val1 int2 val2 var val)
3752 (module-local-variable int2 name))
3753
3754 (define (noop module name int1 val1 int2 val2 var val)
3755 #f)
3756
3757 (set-module-name! m 'duplicate-handlers)
3758 (set-module-kind! m 'interface)
3759 (module-define! m 'check check)
3760 (module-define! m 'warn warn)
3761 (module-define! m 'replace replace)
3762 (module-define! m 'warn-override-core warn-override-core)
3763 (module-define! m 'first first)
3764 (module-define! m 'last last)
3765 (module-define! m 'merge-generics noop)
3766 (module-define! m 'merge-accessors noop)
3767 m))
3768
3769 (define (lookup-duplicates-handlers handler-names)
3770 (and handler-names
3771 (map (lambda (handler-name)
3772 (or (module-symbol-local-binding
3773 duplicate-handlers handler-name #f)
3774 (error "invalid duplicate handler name:"
3775 handler-name)))
3776 (if (list? handler-names)
3777 handler-names
3778 (list handler-names)))))
3779
3780 (define default-duplicate-binding-procedures
3781 (make-mutable-parameter #f))
3782
3783 (define default-duplicate-binding-handler
3784 (make-mutable-parameter '(replace warn-override-core warn last)
3785 (lambda (handler-names)
3786 (default-duplicate-binding-procedures
3787 (lookup-duplicates-handlers handler-names))
3788 handler-names)))
3789
3790 \f
3791
3792 ;;; {`load'.}
3793 ;;;
3794 ;;; Load is tricky when combined with relative paths, compilation, and
3795 ;;; the file system. If a path is relative, what is it relative to? The
3796 ;;; path of the source file at the time it was compiled? The path of
3797 ;;; the compiled file? What if both or either were installed? And how
3798 ;;; do you get that information? Tricky, I say.
3799 ;;;
3800 ;;; To get around all of this, we're going to do something nasty, and
3801 ;;; turn `load' into a macro. That way it can know the path of the
3802 ;;; source file with respect to which it was invoked, so it can resolve
3803 ;;; relative paths with respect to the original source path.
3804 ;;;
3805 ;;; There is an exception, and that is that if the source file was in
3806 ;;; the load path when it was compiled, instead of looking up against
3807 ;;; the absolute source location, we load-from-path against the relative
3808 ;;; source location.
3809 ;;;
3810
3811 (define %auto-compilation-options
3812 ;; Default `compile-file' option when auto-compiling.
3813 '(#:warnings (unbound-variable arity-mismatch format)))
3814
3815 (define* (load-in-vicinity dir path #:optional reader)
3816 (define (canonical->suffix canon)
3817 (cond
3818 ((string-prefix? "/" canon) canon)
3819 ((and (> (string-length canon) 2)
3820 (eqv? (string-ref canon 1) #\:))
3821 ;; Paths like C:... transform to /C...
3822 (string-append "/" (substring canon 0 1) (substring canon 2)))
3823 (else canon)))
3824
3825 ;; Returns the .go file corresponding to `name'. Does not search load
3826 ;; paths, only the fallback path. If the .go file is missing or out of
3827 ;; date, and auto-compilation is enabled, will try auto-compilation, just
3828 ;; as primitive-load-path does internally. primitive-load is
3829 ;; unaffected. Returns #f if auto-compilation failed or was disabled.
3830 ;;
3831 ;; NB: Unless we need to compile the file, this function should not cause
3832 ;; (system base compile) to be loaded up. For that reason compiled-file-name
3833 ;; partially duplicates functionality from (system base compile).
3834 ;;
3835 (define (compiled-file-name canon-path)
3836 ;; FIXME: would probably be better just to append SHA1(canon-path)
3837 ;; to the %compile-fallback-path, to avoid deep directory stats.
3838 (and %compile-fallback-path
3839 (string-append
3840 %compile-fallback-path
3841 (canonical->suffix canon-path)
3842 (cond ((or (null? %load-compiled-extensions)
3843 (string-null? (car %load-compiled-extensions)))
3844 (warn "invalid %load-compiled-extensions"
3845 %load-compiled-extensions)
3846 ".go")
3847 (else (car %load-compiled-extensions))))))
3848
3849 (define (fresh-compiled-file-name name go-path)
3850 (catch #t
3851 (lambda ()
3852 (let* ((scmstat (stat name))
3853 (gostat (and (not %fresh-auto-compile)
3854 (stat go-path #f))))
3855 (if (and gostat
3856 (or (> (stat:mtime gostat) (stat:mtime scmstat))
3857 (and (= (stat:mtime gostat) (stat:mtime scmstat))
3858 (>= (stat:mtimensec gostat)
3859 (stat:mtimensec scmstat)))))
3860 go-path
3861 (begin
3862 (if gostat
3863 (format (current-warning-port)
3864 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
3865 name go-path))
3866 (cond
3867 (%load-should-auto-compile
3868 (%warn-auto-compilation-enabled)
3869 (format (current-warning-port) ";;; compiling ~a\n" name)
3870 (let ((cfn
3871 ((module-ref
3872 (resolve-interface '(system base compile))
3873 'compile-file)
3874 name
3875 #:opts %auto-compilation-options
3876 #:env (current-module))))
3877 (format (current-warning-port) ";;; compiled ~a\n" cfn)
3878 cfn))
3879 (else #f))))))
3880 (lambda (k . args)
3881 (format (current-warning-port)
3882 ";;; WARNING: compilation of ~a failed:\n" name)
3883 (for-each (lambda (s)
3884 (if (not (string-null? s))
3885 (format (current-warning-port) ";;; ~a\n" s)))
3886 (string-split
3887 (call-with-output-string
3888 (lambda (port) (print-exception port #f k args)))
3889 #\newline))
3890 #f)))
3891
3892 (define (absolute-path? path)
3893 (string-prefix? "/" path))
3894
3895 (define (load-absolute abs-path)
3896 (let ((cfn (let ((canon (false-if-exception (canonicalize-path abs-path))))
3897 (and canon
3898 (let ((go-path (compiled-file-name canon)))
3899 (and go-path
3900 (fresh-compiled-file-name abs-path go-path)))))))
3901 (if cfn
3902 (begin
3903 (if %load-hook
3904 (%load-hook abs-path))
3905 (load-compiled cfn))
3906 (start-stack 'load-stack
3907 (primitive-load abs-path)))))
3908
3909 (save-module-excursion
3910 (lambda ()
3911 (with-fluids ((current-reader reader)
3912 (%file-port-name-canonicalization 'relative))
3913 (cond
3914 ((or (absolute-path? path))
3915 (load-absolute path))
3916 ((absolute-path? dir)
3917 (load-absolute (in-vicinity dir path)))
3918 (else
3919 (load-from-path (in-vicinity dir path))))))))
3920
3921 (define-syntax load
3922 (make-variable-transformer
3923 (lambda (x)
3924 (let* ((src (syntax-source x))
3925 (file (and src (assq-ref src 'filename)))
3926 (dir (and (string? file) (dirname file))))
3927 (syntax-case x ()
3928 ((_ arg ...)
3929 #`(load-in-vicinity #,(or dir #'(getcwd)) arg ...))
3930 (id
3931 (identifier? #'id)
3932 #`(lambda args
3933 (apply load-in-vicinity #,(or dir #'(getcwd)) args))))))))
3934
3935 \f
3936
3937 ;;; {`cond-expand' for SRFI-0 support.}
3938 ;;;
3939 ;;; This syntactic form expands into different commands or
3940 ;;; definitions, depending on the features provided by the Scheme
3941 ;;; implementation.
3942 ;;;
3943 ;;; Syntax:
3944 ;;;
3945 ;;; <cond-expand>
3946 ;;; --> (cond-expand <cond-expand-clause>+)
3947 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3948 ;;; <cond-expand-clause>
3949 ;;; --> (<feature-requirement> <command-or-definition>*)
3950 ;;; <feature-requirement>
3951 ;;; --> <feature-identifier>
3952 ;;; | (and <feature-requirement>*)
3953 ;;; | (or <feature-requirement>*)
3954 ;;; | (not <feature-requirement>)
3955 ;;; <feature-identifier>
3956 ;;; --> <a symbol which is the name or alias of a SRFI>
3957 ;;;
3958 ;;; Additionally, this implementation provides the
3959 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3960 ;;; determine the implementation type and the supported standard.
3961 ;;;
3962 ;;; Currently, the following feature identifiers are supported:
3963 ;;;
3964 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3965 ;;;
3966 ;;; Remember to update the features list when adding more SRFIs.
3967 ;;;
3968
3969 (define %cond-expand-features
3970 ;; Adjust the above comment when changing this.
3971 '(guile
3972 guile-2
3973 r5rs
3974 srfi-0 ;; cond-expand itself
3975 srfi-4 ;; homogenous numeric vectors
3976 srfi-6 ;; open-input-string etc, in the guile core
3977 srfi-13 ;; string library
3978 srfi-14 ;; character sets
3979 srfi-23 ;; `error` procedure
3980 srfi-39 ;; parameterize
3981 srfi-55 ;; require-extension
3982 srfi-61 ;; general cond clause
3983 ))
3984
3985 ;; This table maps module public interfaces to the list of features.
3986 ;;
3987 (define %cond-expand-table (make-hash-table 31))
3988
3989 ;; Add one or more features to the `cond-expand' feature list of the
3990 ;; module `module'.
3991 ;;
3992 (define (cond-expand-provide module features)
3993 (let ((mod (module-public-interface module)))
3994 (and mod
3995 (hashq-set! %cond-expand-table mod
3996 (append (hashq-ref %cond-expand-table mod '())
3997 features)))))
3998
3999 (define-syntax cond-expand
4000 (lambda (x)
4001 (define (module-has-feature? mod sym)
4002 (or-map (lambda (mod)
4003 (memq sym (hashq-ref %cond-expand-table mod '())))
4004 (module-uses mod)))
4005
4006 (define (condition-matches? condition)
4007 (syntax-case condition (and or not)
4008 ((and c ...)
4009 (and-map condition-matches? #'(c ...)))
4010 ((or c ...)
4011 (or-map condition-matches? #'(c ...)))
4012 ((not c)
4013 (if (condition-matches? #'c) #f #t))
4014 (c
4015 (identifier? #'c)
4016 (let ((sym (syntax->datum #'c)))
4017 (if (memq sym %cond-expand-features)
4018 #t
4019 (module-has-feature? (current-module) sym))))))
4020
4021 (define (match clauses alternate)
4022 (syntax-case clauses ()
4023 (((condition form ...) . rest)
4024 (if (condition-matches? #'condition)
4025 #'(begin form ...)
4026 (match #'rest alternate)))
4027 (() (alternate))))
4028
4029 (syntax-case x (else)
4030 ((_ clause ... (else form ...))
4031 (match #'(clause ...)
4032 (lambda ()
4033 #'(begin form ...))))
4034 ((_ clause ...)
4035 (match #'(clause ...)
4036 (lambda ()
4037 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
4038
4039 ;; This procedure gets called from the startup code with a list of
4040 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
4041 ;;
4042 (define (use-srfis srfis)
4043 (process-use-modules
4044 (map (lambda (num)
4045 (list (list 'srfi (string->symbol
4046 (string-append "srfi-" (number->string num))))))
4047 srfis)))
4048
4049 \f
4050
4051 ;;; srfi-55: require-extension
4052 ;;;
4053
4054 (define-syntax require-extension
4055 (lambda (x)
4056 (syntax-case x (srfi)
4057 ((_ (srfi n ...))
4058 (and-map integer? (syntax->datum #'(n ...)))
4059 (with-syntax
4060 (((srfi-n ...)
4061 (map (lambda (n)
4062 (datum->syntax x (symbol-append 'srfi- n)))
4063 (map string->symbol
4064 (map number->string (syntax->datum #'(n ...)))))))
4065 #'(use-modules (srfi srfi-n) ...)))
4066 ((_ (type arg ...))
4067 (identifier? #'type)
4068 (syntax-violation 'require-extension "Not a recognized extension type"
4069 x)))))
4070
4071 \f
4072 ;;; Defining transparently inlinable procedures
4073 ;;;
4074
4075 (define-syntax define-inlinable
4076 ;; Define a macro and a procedure such that direct calls are inlined, via
4077 ;; the macro expansion, whereas references in non-call contexts refer to
4078 ;; the procedure. Inspired by the `define-integrable' macro by Dybvig et al.
4079 (lambda (x)
4080 ;; Use a space in the prefix to avoid potential -Wunused-toplevel
4081 ;; warning
4082 (define prefix (string->symbol "% "))
4083 (define (make-procedure-name name)
4084 (datum->syntax name
4085 (symbol-append prefix (syntax->datum name)
4086 '-procedure)))
4087
4088 (syntax-case x ()
4089 ((_ (name formals ...) body ...)
4090 (identifier? #'name)
4091 (with-syntax ((proc-name (make-procedure-name #'name))
4092 ((args ...) (generate-temporaries #'(formals ...))))
4093 #`(begin
4094 (define (proc-name formals ...)
4095 (syntax-parameterize ((name (identifier-syntax proc-name)))
4096 body ...))
4097 (define-syntax-parameter name
4098 (lambda (x)
4099 (syntax-case x ()
4100 ((_ args ...)
4101 #'((syntax-parameterize ((name (identifier-syntax proc-name)))
4102 (lambda (formals ...)
4103 body ...))
4104 args ...))
4105 (_
4106 (identifier? x)
4107 #'proc-name))))))))))
4108
4109 \f
4110
4111 (define using-readline?
4112 (let ((using-readline? (make-fluid)))
4113 (make-procedure-with-setter
4114 (lambda () (fluid-ref using-readline?))
4115 (lambda (v) (fluid-set! using-readline? v)))))
4116
4117 \f
4118
4119 ;;; {Deprecated stuff}
4120 ;;;
4121
4122 (begin-deprecated
4123 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
4124
4125 \f
4126
4127 ;;; SRFI-4 in the default environment. FIXME: we should figure out how
4128 ;;; to deprecate this.
4129 ;;;
4130
4131 ;; FIXME:
4132 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
4133
4134 \f
4135
4136 ;;; A few identifiers that need to be defined in this file are really
4137 ;;; internal implementation details. We shove them off into internal
4138 ;;; modules, removing them from the (guile) module.
4139 ;;;
4140
4141 (define-module (system syntax))
4142
4143 (let ()
4144 (define (steal-bindings! from to ids)
4145 (for-each
4146 (lambda (sym)
4147 (let ((v (module-local-variable from sym)))
4148 (module-remove! from sym)
4149 (module-add! to sym v)))
4150 ids)
4151 (module-export! to ids))
4152
4153 (steal-bindings! the-root-module (resolve-module '(system syntax))
4154 '(syntax-local-binding
4155 syntax-module
4156 syntax-locally-bound-identifiers
4157 syntax-session-id)))
4158
4159
4160 \f
4161
4162 ;;; Place the user in the guile-user module.
4163 ;;;
4164
4165 ;; Set filename to #f to prevent reload.
4166 (define-module (guile-user)
4167 #:autoload (system base compile) (compile compile-file)
4168 #:filename #f)
4169
4170 ;; Remain in the `(guile)' module at compilation-time so that the
4171 ;; `-Wunused-toplevel' warning works as expected.
4172 (eval-when (compile) (set-current-module the-root-module))
4173
4174 ;;; boot-9.scm ends here