Only define scm_from_complex_double if it will
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 \f
23 /* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
28 * All objects satisfying SCM_FRACTIONP are never an integer.
29 */
30
31 /* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
42
43 /* tell glibc (2.3) to give prototype for C99 trunc(), csqrt(), etc */
44 #define _GNU_SOURCE
45
46 #if HAVE_CONFIG_H
47 # include <config.h>
48 #endif
49
50 #include <math.h>
51 #include <ctype.h>
52 #include <string.h>
53
54 #if HAVE_COMPLEX_H
55 #include <complex.h>
56 #endif
57
58 #include "libguile/_scm.h"
59 #include "libguile/feature.h"
60 #include "libguile/ports.h"
61 #include "libguile/root.h"
62 #include "libguile/smob.h"
63 #include "libguile/strings.h"
64
65 #include "libguile/validate.h"
66 #include "libguile/numbers.h"
67 #include "libguile/deprecation.h"
68
69 #include "libguile/eq.h"
70
71 #include "libguile/discouraged.h"
72
73 /* values per glibc, if not already defined */
74 #ifndef M_LOG10E
75 #define M_LOG10E 0.43429448190325182765
76 #endif
77 #ifndef M_PI
78 #define M_PI 3.14159265358979323846
79 #endif
80
81 \f
82
83 /*
84 Wonder if this might be faster for some of our code? A switch on
85 the numtag would jump directly to the right case, and the
86 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
87
88 #define SCM_I_NUMTAG_NOTNUM 0
89 #define SCM_I_NUMTAG_INUM 1
90 #define SCM_I_NUMTAG_BIG scm_tc16_big
91 #define SCM_I_NUMTAG_REAL scm_tc16_real
92 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
93 #define SCM_I_NUMTAG(x) \
94 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
95 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
96 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
97 : SCM_I_NUMTAG_NOTNUM)))
98 */
99 /* the macro above will not work as is with fractions */
100
101
102 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
103
104 /* FLOBUFLEN is the maximum number of characters neccessary for the
105 * printed or scm_string representation of an inexact number.
106 */
107 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
108
109 #if defined (SCO)
110 #if ! defined (HAVE_ISNAN)
111 #define HAVE_ISNAN
112 static int
113 isnan (double x)
114 {
115 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
116 }
117 #endif
118 #if ! defined (HAVE_ISINF)
119 #define HAVE_ISINF
120 static int
121 isinf (double x)
122 {
123 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
124 }
125
126 #endif
127 #endif
128
129
130 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
131 an explicit check. In some future gmp (don't know what version number),
132 mpz_cmp_d is supposed to do this itself. */
133 #if 1
134 #define xmpz_cmp_d(z, d) \
135 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
136 #else
137 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
138 #endif
139
140 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
141 isinf. It does have finite and isnan though, hence the use of those.
142 fpclass would be a possibility on that system too. */
143 static int
144 xisinf (double x)
145 {
146 #if defined (HAVE_ISINF)
147 return isinf (x);
148 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
149 return (! (finite (x) || isnan (x)));
150 #else
151 return 0;
152 #endif
153 }
154
155 static int
156 xisnan (double x)
157 {
158 #if defined (HAVE_ISNAN)
159 return isnan (x);
160 #else
161 return 0;
162 #endif
163 }
164
165 #if defined (GUILE_I)
166 #if HAVE_COMPLEX_DOUBLE
167
168 /* For an SCM object Z which is a complex number (ie. satisfies
169 SCM_COMPLEXP), return its value as a C level "complex double". */
170 #define SCM_COMPLEX_VALUE(z) \
171 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
172
173 /* Convert a C "complex double" to an SCM value. */
174 static SCM
175 scm_from_complex_double (complex double z)
176 {
177 return scm_c_make_rectangular (creal (z), cimag (z));
178 }
179
180 #endif /* HAVE_COMPLEX_DOUBLE */
181 #endif /* GUILE_I */
182
183 \f
184
185 static mpz_t z_negative_one;
186
187 \f
188
189 SCM
190 scm_i_mkbig ()
191 {
192 /* Return a newly created bignum. */
193 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
194 mpz_init (SCM_I_BIG_MPZ (z));
195 return z;
196 }
197
198 SCM
199 scm_i_long2big (long x)
200 {
201 /* Return a newly created bignum initialized to X. */
202 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
203 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
204 return z;
205 }
206
207 SCM
208 scm_i_ulong2big (unsigned long x)
209 {
210 /* Return a newly created bignum initialized to X. */
211 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
212 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
213 return z;
214 }
215
216 SCM
217 scm_i_clonebig (SCM src_big, int same_sign_p)
218 {
219 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
220 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
221 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
222 if (!same_sign_p)
223 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
224 return z;
225 }
226
227 int
228 scm_i_bigcmp (SCM x, SCM y)
229 {
230 /* Return neg if x < y, pos if x > y, and 0 if x == y */
231 /* presume we already know x and y are bignums */
232 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
233 scm_remember_upto_here_2 (x, y);
234 return result;
235 }
236
237 SCM
238 scm_i_dbl2big (double d)
239 {
240 /* results are only defined if d is an integer */
241 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
242 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
243 return z;
244 }
245
246 /* Convert a integer in double representation to a SCM number. */
247
248 SCM
249 scm_i_dbl2num (double u)
250 {
251 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
252 powers of 2, so there's no rounding when making "double" values
253 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
254 get rounded on a 64-bit machine, hence the "+1".
255
256 The use of floor() to force to an integer value ensures we get a
257 "numerically closest" value without depending on how a
258 double->long cast or how mpz_set_d will round. For reference,
259 double->long probably follows the hardware rounding mode,
260 mpz_set_d truncates towards zero. */
261
262 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
263 representable as a double? */
264
265 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
266 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
267 return SCM_I_MAKINUM ((long) u);
268 else
269 return scm_i_dbl2big (u);
270 }
271
272 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
273 with R5RS exact->inexact.
274
275 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
276 (ie. truncate towards zero), then adjust to get the closest double by
277 examining the next lower bit and adding 1 (to the absolute value) if
278 necessary.
279
280 Bignums exactly half way between representable doubles are rounded to the
281 next higher absolute value (ie. away from zero). This seems like an
282 adequate interpretation of R5RS "numerically closest", and it's easier
283 and faster than a full "nearest-even" style.
284
285 The bit test must be done on the absolute value of the mpz_t, which means
286 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
287 negatives as twos complement.
288
289 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
290 following the hardware rounding mode, but applied to the absolute value
291 of the mpz_t operand. This is not what we want so we put the high
292 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
293 mpz_get_d is supposed to always truncate towards zero.
294
295 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
296 is a slowdown. It'd be faster to pick out the relevant high bits with
297 mpz_getlimbn if we could be bothered coding that, and if the new
298 truncating gmp doesn't come out. */
299
300 double
301 scm_i_big2dbl (SCM b)
302 {
303 double result;
304 size_t bits;
305
306 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
307
308 #if 1
309 {
310 /* Current GMP, eg. 4.1.3, force truncation towards zero */
311 mpz_t tmp;
312 if (bits > DBL_MANT_DIG)
313 {
314 size_t shift = bits - DBL_MANT_DIG;
315 mpz_init2 (tmp, DBL_MANT_DIG);
316 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
317 result = ldexp (mpz_get_d (tmp), shift);
318 mpz_clear (tmp);
319 }
320 else
321 {
322 result = mpz_get_d (SCM_I_BIG_MPZ (b));
323 }
324 }
325 #else
326 /* Future GMP */
327 result = mpz_get_d (SCM_I_BIG_MPZ (b));
328 #endif
329
330 if (bits > DBL_MANT_DIG)
331 {
332 unsigned long pos = bits - DBL_MANT_DIG - 1;
333 /* test bit number "pos" in absolute value */
334 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
335 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
336 {
337 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
338 }
339 }
340
341 scm_remember_upto_here_1 (b);
342 return result;
343 }
344
345 SCM
346 scm_i_normbig (SCM b)
347 {
348 /* convert a big back to a fixnum if it'll fit */
349 /* presume b is a bignum */
350 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
351 {
352 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
353 if (SCM_FIXABLE (val))
354 b = SCM_I_MAKINUM (val);
355 }
356 return b;
357 }
358
359 static SCM_C_INLINE_KEYWORD SCM
360 scm_i_mpz2num (mpz_t b)
361 {
362 /* convert a mpz number to a SCM number. */
363 if (mpz_fits_slong_p (b))
364 {
365 long val = mpz_get_si (b);
366 if (SCM_FIXABLE (val))
367 return SCM_I_MAKINUM (val);
368 }
369
370 {
371 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
372 mpz_init_set (SCM_I_BIG_MPZ (z), b);
373 return z;
374 }
375 }
376
377 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
378 static SCM scm_divide2real (SCM x, SCM y);
379
380 static SCM
381 scm_i_make_ratio (SCM numerator, SCM denominator)
382 #define FUNC_NAME "make-ratio"
383 {
384 /* First make sure the arguments are proper.
385 */
386 if (SCM_I_INUMP (denominator))
387 {
388 if (scm_is_eq (denominator, SCM_INUM0))
389 scm_num_overflow ("make-ratio");
390 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
391 return numerator;
392 }
393 else
394 {
395 if (!(SCM_BIGP(denominator)))
396 SCM_WRONG_TYPE_ARG (2, denominator);
397 }
398 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
399 SCM_WRONG_TYPE_ARG (1, numerator);
400
401 /* Then flip signs so that the denominator is positive.
402 */
403 if (scm_is_true (scm_negative_p (denominator)))
404 {
405 numerator = scm_difference (numerator, SCM_UNDEFINED);
406 denominator = scm_difference (denominator, SCM_UNDEFINED);
407 }
408
409 /* Now consider for each of the four fixnum/bignum combinations
410 whether the rational number is really an integer.
411 */
412 if (SCM_I_INUMP (numerator))
413 {
414 long x = SCM_I_INUM (numerator);
415 if (scm_is_eq (numerator, SCM_INUM0))
416 return SCM_INUM0;
417 if (SCM_I_INUMP (denominator))
418 {
419 long y;
420 y = SCM_I_INUM (denominator);
421 if (x == y)
422 return SCM_I_MAKINUM(1);
423 if ((x % y) == 0)
424 return SCM_I_MAKINUM (x / y);
425 }
426 else
427 {
428 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
429 of that value for the denominator, as a bignum. Apart from
430 that case, abs(bignum) > abs(inum) so inum/bignum is not an
431 integer. */
432 if (x == SCM_MOST_NEGATIVE_FIXNUM
433 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
434 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
435 return SCM_I_MAKINUM(-1);
436 }
437 }
438 else if (SCM_BIGP (numerator))
439 {
440 if (SCM_I_INUMP (denominator))
441 {
442 long yy = SCM_I_INUM (denominator);
443 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
444 return scm_divide (numerator, denominator);
445 }
446 else
447 {
448 if (scm_is_eq (numerator, denominator))
449 return SCM_I_MAKINUM(1);
450 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
451 SCM_I_BIG_MPZ (denominator)))
452 return scm_divide(numerator, denominator);
453 }
454 }
455
456 /* No, it's a proper fraction.
457 */
458 {
459 SCM divisor = scm_gcd (numerator, denominator);
460 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
461 {
462 numerator = scm_divide (numerator, divisor);
463 denominator = scm_divide (denominator, divisor);
464 }
465
466 return scm_double_cell (scm_tc16_fraction,
467 SCM_UNPACK (numerator),
468 SCM_UNPACK (denominator), 0);
469 }
470 }
471 #undef FUNC_NAME
472
473 double
474 scm_i_fraction2double (SCM z)
475 {
476 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
477 SCM_FRACTION_DENOMINATOR (z)));
478 }
479
480 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
481 (SCM x),
482 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
483 "otherwise.")
484 #define FUNC_NAME s_scm_exact_p
485 {
486 if (SCM_I_INUMP (x))
487 return SCM_BOOL_T;
488 if (SCM_BIGP (x))
489 return SCM_BOOL_T;
490 if (SCM_FRACTIONP (x))
491 return SCM_BOOL_T;
492 if (SCM_NUMBERP (x))
493 return SCM_BOOL_F;
494 SCM_WRONG_TYPE_ARG (1, x);
495 }
496 #undef FUNC_NAME
497
498
499 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
500 (SCM n),
501 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
502 "otherwise.")
503 #define FUNC_NAME s_scm_odd_p
504 {
505 if (SCM_I_INUMP (n))
506 {
507 long val = SCM_I_INUM (n);
508 return scm_from_bool ((val & 1L) != 0);
509 }
510 else if (SCM_BIGP (n))
511 {
512 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
513 scm_remember_upto_here_1 (n);
514 return scm_from_bool (odd_p);
515 }
516 else if (scm_is_true (scm_inf_p (n)))
517 return SCM_BOOL_T;
518 else if (SCM_REALP (n))
519 {
520 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
521 if (rem == 1.0)
522 return SCM_BOOL_T;
523 else if (rem == 0.0)
524 return SCM_BOOL_F;
525 else
526 SCM_WRONG_TYPE_ARG (1, n);
527 }
528 else
529 SCM_WRONG_TYPE_ARG (1, n);
530 }
531 #undef FUNC_NAME
532
533
534 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
535 (SCM n),
536 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
537 "otherwise.")
538 #define FUNC_NAME s_scm_even_p
539 {
540 if (SCM_I_INUMP (n))
541 {
542 long val = SCM_I_INUM (n);
543 return scm_from_bool ((val & 1L) == 0);
544 }
545 else if (SCM_BIGP (n))
546 {
547 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
548 scm_remember_upto_here_1 (n);
549 return scm_from_bool (even_p);
550 }
551 else if (scm_is_true (scm_inf_p (n)))
552 return SCM_BOOL_T;
553 else if (SCM_REALP (n))
554 {
555 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
556 if (rem == 1.0)
557 return SCM_BOOL_F;
558 else if (rem == 0.0)
559 return SCM_BOOL_T;
560 else
561 SCM_WRONG_TYPE_ARG (1, n);
562 }
563 else
564 SCM_WRONG_TYPE_ARG (1, n);
565 }
566 #undef FUNC_NAME
567
568 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
569 (SCM x),
570 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
571 "or @samp{-inf.0}, @code{#f} otherwise.")
572 #define FUNC_NAME s_scm_inf_p
573 {
574 if (SCM_REALP (x))
575 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
576 else if (SCM_COMPLEXP (x))
577 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
578 || xisinf (SCM_COMPLEX_IMAG (x)));
579 else
580 return SCM_BOOL_F;
581 }
582 #undef FUNC_NAME
583
584 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
585 (SCM n),
586 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
587 "otherwise.")
588 #define FUNC_NAME s_scm_nan_p
589 {
590 if (SCM_REALP (n))
591 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
592 else if (SCM_COMPLEXP (n))
593 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
594 || xisnan (SCM_COMPLEX_IMAG (n)));
595 else
596 return SCM_BOOL_F;
597 }
598 #undef FUNC_NAME
599
600 /* Guile's idea of infinity. */
601 static double guile_Inf;
602
603 /* Guile's idea of not a number. */
604 static double guile_NaN;
605
606 static void
607 guile_ieee_init (void)
608 {
609 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
610
611 /* Some version of gcc on some old version of Linux used to crash when
612 trying to make Inf and NaN. */
613
614 #ifdef INFINITY
615 /* C99 INFINITY, when available.
616 FIXME: The standard allows for INFINITY to be something that overflows
617 at compile time. We ought to have a configure test to check for that
618 before trying to use it. (But in practice we believe this is not a
619 problem on any system guile is likely to target.) */
620 guile_Inf = INFINITY;
621 #elif HAVE_DINFINITY
622 /* OSF */
623 extern unsigned int DINFINITY[2];
624 guile_Inf = (*((double *) (DINFINITY)));
625 #else
626 double tmp = 1e+10;
627 guile_Inf = tmp;
628 for (;;)
629 {
630 guile_Inf *= 1e+10;
631 if (guile_Inf == tmp)
632 break;
633 tmp = guile_Inf;
634 }
635 #endif
636
637 #endif
638
639 #if defined (HAVE_ISNAN)
640
641 #ifdef NAN
642 /* C99 NAN, when available */
643 guile_NaN = NAN;
644 #elif HAVE_DQNAN
645 {
646 /* OSF */
647 extern unsigned int DQNAN[2];
648 guile_NaN = (*((double *)(DQNAN)));
649 }
650 #else
651 guile_NaN = guile_Inf / guile_Inf;
652 #endif
653
654 #endif
655 }
656
657 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
658 (void),
659 "Return Inf.")
660 #define FUNC_NAME s_scm_inf
661 {
662 static int initialized = 0;
663 if (! initialized)
664 {
665 guile_ieee_init ();
666 initialized = 1;
667 }
668 return scm_from_double (guile_Inf);
669 }
670 #undef FUNC_NAME
671
672 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
673 (void),
674 "Return NaN.")
675 #define FUNC_NAME s_scm_nan
676 {
677 static int initialized = 0;
678 if (!initialized)
679 {
680 guile_ieee_init ();
681 initialized = 1;
682 }
683 return scm_from_double (guile_NaN);
684 }
685 #undef FUNC_NAME
686
687
688 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
689 (SCM x),
690 "Return the absolute value of @var{x}.")
691 #define FUNC_NAME
692 {
693 if (SCM_I_INUMP (x))
694 {
695 long int xx = SCM_I_INUM (x);
696 if (xx >= 0)
697 return x;
698 else if (SCM_POSFIXABLE (-xx))
699 return SCM_I_MAKINUM (-xx);
700 else
701 return scm_i_long2big (-xx);
702 }
703 else if (SCM_BIGP (x))
704 {
705 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
706 if (sgn < 0)
707 return scm_i_clonebig (x, 0);
708 else
709 return x;
710 }
711 else if (SCM_REALP (x))
712 {
713 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
714 double xx = SCM_REAL_VALUE (x);
715 if (xx < 0.0)
716 return scm_from_double (-xx);
717 else
718 return x;
719 }
720 else if (SCM_FRACTIONP (x))
721 {
722 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
723 return x;
724 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
725 SCM_FRACTION_DENOMINATOR (x));
726 }
727 else
728 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
729 }
730 #undef FUNC_NAME
731
732
733 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
734 /* "Return the quotient of the numbers @var{x} and @var{y}."
735 */
736 SCM
737 scm_quotient (SCM x, SCM y)
738 {
739 if (SCM_I_INUMP (x))
740 {
741 long xx = SCM_I_INUM (x);
742 if (SCM_I_INUMP (y))
743 {
744 long yy = SCM_I_INUM (y);
745 if (yy == 0)
746 scm_num_overflow (s_quotient);
747 else
748 {
749 long z = xx / yy;
750 if (SCM_FIXABLE (z))
751 return SCM_I_MAKINUM (z);
752 else
753 return scm_i_long2big (z);
754 }
755 }
756 else if (SCM_BIGP (y))
757 {
758 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
759 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
760 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
761 {
762 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
763 scm_remember_upto_here_1 (y);
764 return SCM_I_MAKINUM (-1);
765 }
766 else
767 return SCM_I_MAKINUM (0);
768 }
769 else
770 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
771 }
772 else if (SCM_BIGP (x))
773 {
774 if (SCM_I_INUMP (y))
775 {
776 long yy = SCM_I_INUM (y);
777 if (yy == 0)
778 scm_num_overflow (s_quotient);
779 else if (yy == 1)
780 return x;
781 else
782 {
783 SCM result = scm_i_mkbig ();
784 if (yy < 0)
785 {
786 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
787 SCM_I_BIG_MPZ (x),
788 - yy);
789 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
790 }
791 else
792 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
793 scm_remember_upto_here_1 (x);
794 return scm_i_normbig (result);
795 }
796 }
797 else if (SCM_BIGP (y))
798 {
799 SCM result = scm_i_mkbig ();
800 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
801 SCM_I_BIG_MPZ (x),
802 SCM_I_BIG_MPZ (y));
803 scm_remember_upto_here_2 (x, y);
804 return scm_i_normbig (result);
805 }
806 else
807 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
808 }
809 else
810 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
811 }
812
813 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
814 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
815 * "@lisp\n"
816 * "(remainder 13 4) @result{} 1\n"
817 * "(remainder -13 4) @result{} -1\n"
818 * "@end lisp"
819 */
820 SCM
821 scm_remainder (SCM x, SCM y)
822 {
823 if (SCM_I_INUMP (x))
824 {
825 if (SCM_I_INUMP (y))
826 {
827 long yy = SCM_I_INUM (y);
828 if (yy == 0)
829 scm_num_overflow (s_remainder);
830 else
831 {
832 long z = SCM_I_INUM (x) % yy;
833 return SCM_I_MAKINUM (z);
834 }
835 }
836 else if (SCM_BIGP (y))
837 {
838 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
839 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
840 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
841 {
842 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
843 scm_remember_upto_here_1 (y);
844 return SCM_I_MAKINUM (0);
845 }
846 else
847 return x;
848 }
849 else
850 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
851 }
852 else if (SCM_BIGP (x))
853 {
854 if (SCM_I_INUMP (y))
855 {
856 long yy = SCM_I_INUM (y);
857 if (yy == 0)
858 scm_num_overflow (s_remainder);
859 else
860 {
861 SCM result = scm_i_mkbig ();
862 if (yy < 0)
863 yy = - yy;
864 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
865 scm_remember_upto_here_1 (x);
866 return scm_i_normbig (result);
867 }
868 }
869 else if (SCM_BIGP (y))
870 {
871 SCM result = scm_i_mkbig ();
872 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
873 SCM_I_BIG_MPZ (x),
874 SCM_I_BIG_MPZ (y));
875 scm_remember_upto_here_2 (x, y);
876 return scm_i_normbig (result);
877 }
878 else
879 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
880 }
881 else
882 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
883 }
884
885
886 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
887 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
888 * "@lisp\n"
889 * "(modulo 13 4) @result{} 1\n"
890 * "(modulo -13 4) @result{} 3\n"
891 * "@end lisp"
892 */
893 SCM
894 scm_modulo (SCM x, SCM y)
895 {
896 if (SCM_I_INUMP (x))
897 {
898 long xx = SCM_I_INUM (x);
899 if (SCM_I_INUMP (y))
900 {
901 long yy = SCM_I_INUM (y);
902 if (yy == 0)
903 scm_num_overflow (s_modulo);
904 else
905 {
906 /* C99 specifies that "%" is the remainder corresponding to a
907 quotient rounded towards zero, and that's also traditional
908 for machine division, so z here should be well defined. */
909 long z = xx % yy;
910 long result;
911
912 if (yy < 0)
913 {
914 if (z > 0)
915 result = z + yy;
916 else
917 result = z;
918 }
919 else
920 {
921 if (z < 0)
922 result = z + yy;
923 else
924 result = z;
925 }
926 return SCM_I_MAKINUM (result);
927 }
928 }
929 else if (SCM_BIGP (y))
930 {
931 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
932 {
933 mpz_t z_x;
934 SCM result;
935
936 if (sgn_y < 0)
937 {
938 SCM pos_y = scm_i_clonebig (y, 0);
939 /* do this after the last scm_op */
940 mpz_init_set_si (z_x, xx);
941 result = pos_y; /* re-use this bignum */
942 mpz_mod (SCM_I_BIG_MPZ (result),
943 z_x,
944 SCM_I_BIG_MPZ (pos_y));
945 scm_remember_upto_here_1 (pos_y);
946 }
947 else
948 {
949 result = scm_i_mkbig ();
950 /* do this after the last scm_op */
951 mpz_init_set_si (z_x, xx);
952 mpz_mod (SCM_I_BIG_MPZ (result),
953 z_x,
954 SCM_I_BIG_MPZ (y));
955 scm_remember_upto_here_1 (y);
956 }
957
958 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
959 mpz_add (SCM_I_BIG_MPZ (result),
960 SCM_I_BIG_MPZ (y),
961 SCM_I_BIG_MPZ (result));
962 scm_remember_upto_here_1 (y);
963 /* and do this before the next one */
964 mpz_clear (z_x);
965 return scm_i_normbig (result);
966 }
967 }
968 else
969 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
970 }
971 else if (SCM_BIGP (x))
972 {
973 if (SCM_I_INUMP (y))
974 {
975 long yy = SCM_I_INUM (y);
976 if (yy == 0)
977 scm_num_overflow (s_modulo);
978 else
979 {
980 SCM result = scm_i_mkbig ();
981 mpz_mod_ui (SCM_I_BIG_MPZ (result),
982 SCM_I_BIG_MPZ (x),
983 (yy < 0) ? - yy : yy);
984 scm_remember_upto_here_1 (x);
985 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
986 mpz_sub_ui (SCM_I_BIG_MPZ (result),
987 SCM_I_BIG_MPZ (result),
988 - yy);
989 return scm_i_normbig (result);
990 }
991 }
992 else if (SCM_BIGP (y))
993 {
994 {
995 SCM result = scm_i_mkbig ();
996 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
997 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
998 mpz_mod (SCM_I_BIG_MPZ (result),
999 SCM_I_BIG_MPZ (x),
1000 SCM_I_BIG_MPZ (pos_y));
1001
1002 scm_remember_upto_here_1 (x);
1003 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1004 mpz_add (SCM_I_BIG_MPZ (result),
1005 SCM_I_BIG_MPZ (y),
1006 SCM_I_BIG_MPZ (result));
1007 scm_remember_upto_here_2 (y, pos_y);
1008 return scm_i_normbig (result);
1009 }
1010 }
1011 else
1012 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1013 }
1014 else
1015 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
1016 }
1017
1018 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
1019 /* "Return the greatest common divisor of all arguments.\n"
1020 * "If called without arguments, 0 is returned."
1021 */
1022 SCM
1023 scm_gcd (SCM x, SCM y)
1024 {
1025 if (SCM_UNBNDP (y))
1026 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
1027
1028 if (SCM_I_INUMP (x))
1029 {
1030 if (SCM_I_INUMP (y))
1031 {
1032 long xx = SCM_I_INUM (x);
1033 long yy = SCM_I_INUM (y);
1034 long u = xx < 0 ? -xx : xx;
1035 long v = yy < 0 ? -yy : yy;
1036 long result;
1037 if (xx == 0)
1038 result = v;
1039 else if (yy == 0)
1040 result = u;
1041 else
1042 {
1043 long k = 1;
1044 long t;
1045 /* Determine a common factor 2^k */
1046 while (!(1 & (u | v)))
1047 {
1048 k <<= 1;
1049 u >>= 1;
1050 v >>= 1;
1051 }
1052 /* Now, any factor 2^n can be eliminated */
1053 if (u & 1)
1054 t = -v;
1055 else
1056 {
1057 t = u;
1058 b3:
1059 t = SCM_SRS (t, 1);
1060 }
1061 if (!(1 & t))
1062 goto b3;
1063 if (t > 0)
1064 u = t;
1065 else
1066 v = -t;
1067 t = u - v;
1068 if (t != 0)
1069 goto b3;
1070 result = u * k;
1071 }
1072 return (SCM_POSFIXABLE (result)
1073 ? SCM_I_MAKINUM (result)
1074 : scm_i_long2big (result));
1075 }
1076 else if (SCM_BIGP (y))
1077 {
1078 SCM_SWAP (x, y);
1079 goto big_inum;
1080 }
1081 else
1082 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1083 }
1084 else if (SCM_BIGP (x))
1085 {
1086 if (SCM_I_INUMP (y))
1087 {
1088 unsigned long result;
1089 long yy;
1090 big_inum:
1091 yy = SCM_I_INUM (y);
1092 if (yy == 0)
1093 return scm_abs (x);
1094 if (yy < 0)
1095 yy = -yy;
1096 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1097 scm_remember_upto_here_1 (x);
1098 return (SCM_POSFIXABLE (result)
1099 ? SCM_I_MAKINUM (result)
1100 : scm_from_ulong (result));
1101 }
1102 else if (SCM_BIGP (y))
1103 {
1104 SCM result = scm_i_mkbig ();
1105 mpz_gcd (SCM_I_BIG_MPZ (result),
1106 SCM_I_BIG_MPZ (x),
1107 SCM_I_BIG_MPZ (y));
1108 scm_remember_upto_here_2 (x, y);
1109 return scm_i_normbig (result);
1110 }
1111 else
1112 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1113 }
1114 else
1115 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1116 }
1117
1118 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1119 /* "Return the least common multiple of the arguments.\n"
1120 * "If called without arguments, 1 is returned."
1121 */
1122 SCM
1123 scm_lcm (SCM n1, SCM n2)
1124 {
1125 if (SCM_UNBNDP (n2))
1126 {
1127 if (SCM_UNBNDP (n1))
1128 return SCM_I_MAKINUM (1L);
1129 n2 = SCM_I_MAKINUM (1L);
1130 }
1131
1132 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1133 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1134 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1135 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1136
1137 if (SCM_I_INUMP (n1))
1138 {
1139 if (SCM_I_INUMP (n2))
1140 {
1141 SCM d = scm_gcd (n1, n2);
1142 if (scm_is_eq (d, SCM_INUM0))
1143 return d;
1144 else
1145 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1146 }
1147 else
1148 {
1149 /* inum n1, big n2 */
1150 inumbig:
1151 {
1152 SCM result = scm_i_mkbig ();
1153 long nn1 = SCM_I_INUM (n1);
1154 if (nn1 == 0) return SCM_INUM0;
1155 if (nn1 < 0) nn1 = - nn1;
1156 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1157 scm_remember_upto_here_1 (n2);
1158 return result;
1159 }
1160 }
1161 }
1162 else
1163 {
1164 /* big n1 */
1165 if (SCM_I_INUMP (n2))
1166 {
1167 SCM_SWAP (n1, n2);
1168 goto inumbig;
1169 }
1170 else
1171 {
1172 SCM result = scm_i_mkbig ();
1173 mpz_lcm(SCM_I_BIG_MPZ (result),
1174 SCM_I_BIG_MPZ (n1),
1175 SCM_I_BIG_MPZ (n2));
1176 scm_remember_upto_here_2(n1, n2);
1177 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1178 return result;
1179 }
1180 }
1181 }
1182
1183 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1184
1185 Logand:
1186 X Y Result Method:
1187 (len)
1188 + + + x (map digit:logand X Y)
1189 + - + x (map digit:logand X (lognot (+ -1 Y)))
1190 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1191 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1192
1193 Logior:
1194 X Y Result Method:
1195
1196 + + + (map digit:logior X Y)
1197 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1198 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1199 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1200
1201 Logxor:
1202 X Y Result Method:
1203
1204 + + + (map digit:logxor X Y)
1205 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1206 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1207 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1208
1209 Logtest:
1210 X Y Result
1211
1212 + + (any digit:logand X Y)
1213 + - (any digit:logand X (lognot (+ -1 Y)))
1214 - + (any digit:logand (lognot (+ -1 X)) Y)
1215 - - #t
1216
1217 */
1218
1219 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1220 (SCM n1, SCM n2),
1221 "Return the bitwise AND of the integer arguments.\n\n"
1222 "@lisp\n"
1223 "(logand) @result{} -1\n"
1224 "(logand 7) @result{} 7\n"
1225 "(logand #b111 #b011 #b001) @result{} 1\n"
1226 "@end lisp")
1227 #define FUNC_NAME s_scm_logand
1228 {
1229 long int nn1;
1230
1231 if (SCM_UNBNDP (n2))
1232 {
1233 if (SCM_UNBNDP (n1))
1234 return SCM_I_MAKINUM (-1);
1235 else if (!SCM_NUMBERP (n1))
1236 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1237 else if (SCM_NUMBERP (n1))
1238 return n1;
1239 else
1240 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1241 }
1242
1243 if (SCM_I_INUMP (n1))
1244 {
1245 nn1 = SCM_I_INUM (n1);
1246 if (SCM_I_INUMP (n2))
1247 {
1248 long nn2 = SCM_I_INUM (n2);
1249 return SCM_I_MAKINUM (nn1 & nn2);
1250 }
1251 else if SCM_BIGP (n2)
1252 {
1253 intbig:
1254 if (n1 == 0)
1255 return SCM_INUM0;
1256 {
1257 SCM result_z = scm_i_mkbig ();
1258 mpz_t nn1_z;
1259 mpz_init_set_si (nn1_z, nn1);
1260 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1261 scm_remember_upto_here_1 (n2);
1262 mpz_clear (nn1_z);
1263 return scm_i_normbig (result_z);
1264 }
1265 }
1266 else
1267 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1268 }
1269 else if (SCM_BIGP (n1))
1270 {
1271 if (SCM_I_INUMP (n2))
1272 {
1273 SCM_SWAP (n1, n2);
1274 nn1 = SCM_I_INUM (n1);
1275 goto intbig;
1276 }
1277 else if (SCM_BIGP (n2))
1278 {
1279 SCM result_z = scm_i_mkbig ();
1280 mpz_and (SCM_I_BIG_MPZ (result_z),
1281 SCM_I_BIG_MPZ (n1),
1282 SCM_I_BIG_MPZ (n2));
1283 scm_remember_upto_here_2 (n1, n2);
1284 return scm_i_normbig (result_z);
1285 }
1286 else
1287 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1288 }
1289 else
1290 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1291 }
1292 #undef FUNC_NAME
1293
1294
1295 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1296 (SCM n1, SCM n2),
1297 "Return the bitwise OR of the integer arguments.\n\n"
1298 "@lisp\n"
1299 "(logior) @result{} 0\n"
1300 "(logior 7) @result{} 7\n"
1301 "(logior #b000 #b001 #b011) @result{} 3\n"
1302 "@end lisp")
1303 #define FUNC_NAME s_scm_logior
1304 {
1305 long int nn1;
1306
1307 if (SCM_UNBNDP (n2))
1308 {
1309 if (SCM_UNBNDP (n1))
1310 return SCM_INUM0;
1311 else if (SCM_NUMBERP (n1))
1312 return n1;
1313 else
1314 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1315 }
1316
1317 if (SCM_I_INUMP (n1))
1318 {
1319 nn1 = SCM_I_INUM (n1);
1320 if (SCM_I_INUMP (n2))
1321 {
1322 long nn2 = SCM_I_INUM (n2);
1323 return SCM_I_MAKINUM (nn1 | nn2);
1324 }
1325 else if (SCM_BIGP (n2))
1326 {
1327 intbig:
1328 if (nn1 == 0)
1329 return n2;
1330 {
1331 SCM result_z = scm_i_mkbig ();
1332 mpz_t nn1_z;
1333 mpz_init_set_si (nn1_z, nn1);
1334 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1335 scm_remember_upto_here_1 (n2);
1336 mpz_clear (nn1_z);
1337 return scm_i_normbig (result_z);
1338 }
1339 }
1340 else
1341 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1342 }
1343 else if (SCM_BIGP (n1))
1344 {
1345 if (SCM_I_INUMP (n2))
1346 {
1347 SCM_SWAP (n1, n2);
1348 nn1 = SCM_I_INUM (n1);
1349 goto intbig;
1350 }
1351 else if (SCM_BIGP (n2))
1352 {
1353 SCM result_z = scm_i_mkbig ();
1354 mpz_ior (SCM_I_BIG_MPZ (result_z),
1355 SCM_I_BIG_MPZ (n1),
1356 SCM_I_BIG_MPZ (n2));
1357 scm_remember_upto_here_2 (n1, n2);
1358 return scm_i_normbig (result_z);
1359 }
1360 else
1361 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1362 }
1363 else
1364 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1365 }
1366 #undef FUNC_NAME
1367
1368
1369 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1370 (SCM n1, SCM n2),
1371 "Return the bitwise XOR of the integer arguments. A bit is\n"
1372 "set in the result if it is set in an odd number of arguments.\n"
1373 "@lisp\n"
1374 "(logxor) @result{} 0\n"
1375 "(logxor 7) @result{} 7\n"
1376 "(logxor #b000 #b001 #b011) @result{} 2\n"
1377 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1378 "@end lisp")
1379 #define FUNC_NAME s_scm_logxor
1380 {
1381 long int nn1;
1382
1383 if (SCM_UNBNDP (n2))
1384 {
1385 if (SCM_UNBNDP (n1))
1386 return SCM_INUM0;
1387 else if (SCM_NUMBERP (n1))
1388 return n1;
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1391 }
1392
1393 if (SCM_I_INUMP (n1))
1394 {
1395 nn1 = SCM_I_INUM (n1);
1396 if (SCM_I_INUMP (n2))
1397 {
1398 long nn2 = SCM_I_INUM (n2);
1399 return SCM_I_MAKINUM (nn1 ^ nn2);
1400 }
1401 else if (SCM_BIGP (n2))
1402 {
1403 intbig:
1404 {
1405 SCM result_z = scm_i_mkbig ();
1406 mpz_t nn1_z;
1407 mpz_init_set_si (nn1_z, nn1);
1408 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1409 scm_remember_upto_here_1 (n2);
1410 mpz_clear (nn1_z);
1411 return scm_i_normbig (result_z);
1412 }
1413 }
1414 else
1415 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1416 }
1417 else if (SCM_BIGP (n1))
1418 {
1419 if (SCM_I_INUMP (n2))
1420 {
1421 SCM_SWAP (n1, n2);
1422 nn1 = SCM_I_INUM (n1);
1423 goto intbig;
1424 }
1425 else if (SCM_BIGP (n2))
1426 {
1427 SCM result_z = scm_i_mkbig ();
1428 mpz_xor (SCM_I_BIG_MPZ (result_z),
1429 SCM_I_BIG_MPZ (n1),
1430 SCM_I_BIG_MPZ (n2));
1431 scm_remember_upto_here_2 (n1, n2);
1432 return scm_i_normbig (result_z);
1433 }
1434 else
1435 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1436 }
1437 else
1438 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1439 }
1440 #undef FUNC_NAME
1441
1442
1443 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1444 (SCM j, SCM k),
1445 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1446 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1447 "without actually calculating the @code{logand}, just testing\n"
1448 "for non-zero.\n"
1449 "\n"
1450 "@lisp\n"
1451 "(logtest #b0100 #b1011) @result{} #f\n"
1452 "(logtest #b0100 #b0111) @result{} #t\n"
1453 "@end lisp")
1454 #define FUNC_NAME s_scm_logtest
1455 {
1456 long int nj;
1457
1458 if (SCM_I_INUMP (j))
1459 {
1460 nj = SCM_I_INUM (j);
1461 if (SCM_I_INUMP (k))
1462 {
1463 long nk = SCM_I_INUM (k);
1464 return scm_from_bool (nj & nk);
1465 }
1466 else if (SCM_BIGP (k))
1467 {
1468 intbig:
1469 if (nj == 0)
1470 return SCM_BOOL_F;
1471 {
1472 SCM result;
1473 mpz_t nj_z;
1474 mpz_init_set_si (nj_z, nj);
1475 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1476 scm_remember_upto_here_1 (k);
1477 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1478 mpz_clear (nj_z);
1479 return result;
1480 }
1481 }
1482 else
1483 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1484 }
1485 else if (SCM_BIGP (j))
1486 {
1487 if (SCM_I_INUMP (k))
1488 {
1489 SCM_SWAP (j, k);
1490 nj = SCM_I_INUM (j);
1491 goto intbig;
1492 }
1493 else if (SCM_BIGP (k))
1494 {
1495 SCM result;
1496 mpz_t result_z;
1497 mpz_init (result_z);
1498 mpz_and (result_z,
1499 SCM_I_BIG_MPZ (j),
1500 SCM_I_BIG_MPZ (k));
1501 scm_remember_upto_here_2 (j, k);
1502 result = scm_from_bool (mpz_sgn (result_z) != 0);
1503 mpz_clear (result_z);
1504 return result;
1505 }
1506 else
1507 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1508 }
1509 else
1510 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1511 }
1512 #undef FUNC_NAME
1513
1514
1515 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1516 (SCM index, SCM j),
1517 "Test whether bit number @var{index} in @var{j} is set.\n"
1518 "@var{index} starts from 0 for the least significant bit.\n"
1519 "\n"
1520 "@lisp\n"
1521 "(logbit? 0 #b1101) @result{} #t\n"
1522 "(logbit? 1 #b1101) @result{} #f\n"
1523 "(logbit? 2 #b1101) @result{} #t\n"
1524 "(logbit? 3 #b1101) @result{} #t\n"
1525 "(logbit? 4 #b1101) @result{} #f\n"
1526 "@end lisp")
1527 #define FUNC_NAME s_scm_logbit_p
1528 {
1529 unsigned long int iindex;
1530 iindex = scm_to_ulong (index);
1531
1532 if (SCM_I_INUMP (j))
1533 {
1534 /* bits above what's in an inum follow the sign bit */
1535 iindex = min (iindex, SCM_LONG_BIT - 1);
1536 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1537 }
1538 else if (SCM_BIGP (j))
1539 {
1540 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1541 scm_remember_upto_here_1 (j);
1542 return scm_from_bool (val);
1543 }
1544 else
1545 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1546 }
1547 #undef FUNC_NAME
1548
1549
1550 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1551 (SCM n),
1552 "Return the integer which is the ones-complement of the integer\n"
1553 "argument.\n"
1554 "\n"
1555 "@lisp\n"
1556 "(number->string (lognot #b10000000) 2)\n"
1557 " @result{} \"-10000001\"\n"
1558 "(number->string (lognot #b0) 2)\n"
1559 " @result{} \"-1\"\n"
1560 "@end lisp")
1561 #define FUNC_NAME s_scm_lognot
1562 {
1563 if (SCM_I_INUMP (n)) {
1564 /* No overflow here, just need to toggle all the bits making up the inum.
1565 Enhancement: No need to strip the tag and add it back, could just xor
1566 a block of 1 bits, if that worked with the various debug versions of
1567 the SCM typedef. */
1568 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1569
1570 } else if (SCM_BIGP (n)) {
1571 SCM result = scm_i_mkbig ();
1572 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1573 scm_remember_upto_here_1 (n);
1574 return result;
1575
1576 } else {
1577 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1578 }
1579 }
1580 #undef FUNC_NAME
1581
1582 /* returns 0 if IN is not an integer. OUT must already be
1583 initialized. */
1584 static int
1585 coerce_to_big (SCM in, mpz_t out)
1586 {
1587 if (SCM_BIGP (in))
1588 mpz_set (out, SCM_I_BIG_MPZ (in));
1589 else if (SCM_I_INUMP (in))
1590 mpz_set_si (out, SCM_I_INUM (in));
1591 else
1592 return 0;
1593
1594 return 1;
1595 }
1596
1597 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1598 (SCM n, SCM k, SCM m),
1599 "Return @var{n} raised to the integer exponent\n"
1600 "@var{k}, modulo @var{m}.\n"
1601 "\n"
1602 "@lisp\n"
1603 "(modulo-expt 2 3 5)\n"
1604 " @result{} 3\n"
1605 "@end lisp")
1606 #define FUNC_NAME s_scm_modulo_expt
1607 {
1608 mpz_t n_tmp;
1609 mpz_t k_tmp;
1610 mpz_t m_tmp;
1611
1612 /* There are two classes of error we might encounter --
1613 1) Math errors, which we'll report by calling scm_num_overflow,
1614 and
1615 2) wrong-type errors, which of course we'll report by calling
1616 SCM_WRONG_TYPE_ARG.
1617 We don't report those errors immediately, however; instead we do
1618 some cleanup first. These variables tell us which error (if
1619 any) we should report after cleaning up.
1620 */
1621 int report_overflow = 0;
1622
1623 int position_of_wrong_type = 0;
1624 SCM value_of_wrong_type = SCM_INUM0;
1625
1626 SCM result = SCM_UNDEFINED;
1627
1628 mpz_init (n_tmp);
1629 mpz_init (k_tmp);
1630 mpz_init (m_tmp);
1631
1632 if (scm_is_eq (m, SCM_INUM0))
1633 {
1634 report_overflow = 1;
1635 goto cleanup;
1636 }
1637
1638 if (!coerce_to_big (n, n_tmp))
1639 {
1640 value_of_wrong_type = n;
1641 position_of_wrong_type = 1;
1642 goto cleanup;
1643 }
1644
1645 if (!coerce_to_big (k, k_tmp))
1646 {
1647 value_of_wrong_type = k;
1648 position_of_wrong_type = 2;
1649 goto cleanup;
1650 }
1651
1652 if (!coerce_to_big (m, m_tmp))
1653 {
1654 value_of_wrong_type = m;
1655 position_of_wrong_type = 3;
1656 goto cleanup;
1657 }
1658
1659 /* if the exponent K is negative, and we simply call mpz_powm, we
1660 will get a divide-by-zero exception when an inverse 1/n mod m
1661 doesn't exist (or is not unique). Since exceptions are hard to
1662 handle, we'll attempt the inversion "by hand" -- that way, we get
1663 a simple failure code, which is easy to handle. */
1664
1665 if (-1 == mpz_sgn (k_tmp))
1666 {
1667 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1668 {
1669 report_overflow = 1;
1670 goto cleanup;
1671 }
1672 mpz_neg (k_tmp, k_tmp);
1673 }
1674
1675 result = scm_i_mkbig ();
1676 mpz_powm (SCM_I_BIG_MPZ (result),
1677 n_tmp,
1678 k_tmp,
1679 m_tmp);
1680
1681 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1682 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1683
1684 cleanup:
1685 mpz_clear (m_tmp);
1686 mpz_clear (k_tmp);
1687 mpz_clear (n_tmp);
1688
1689 if (report_overflow)
1690 scm_num_overflow (FUNC_NAME);
1691
1692 if (position_of_wrong_type)
1693 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1694 value_of_wrong_type);
1695
1696 return scm_i_normbig (result);
1697 }
1698 #undef FUNC_NAME
1699
1700 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1701 (SCM n, SCM k),
1702 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1703 "exact integer, @var{n} can be any number.\n"
1704 "\n"
1705 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1706 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1707 "includes @math{0^0} is 1.\n"
1708 "\n"
1709 "@lisp\n"
1710 "(integer-expt 2 5) @result{} 32\n"
1711 "(integer-expt -3 3) @result{} -27\n"
1712 "(integer-expt 5 -3) @result{} 1/125\n"
1713 "(integer-expt 0 0) @result{} 1\n"
1714 "@end lisp")
1715 #define FUNC_NAME s_scm_integer_expt
1716 {
1717 long i2 = 0;
1718 SCM z_i2 = SCM_BOOL_F;
1719 int i2_is_big = 0;
1720 SCM acc = SCM_I_MAKINUM (1L);
1721
1722 /* 0^0 == 1 according to R5RS */
1723 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1724 return scm_is_false (scm_zero_p(k)) ? n : acc;
1725 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1726 return scm_is_false (scm_even_p (k)) ? n : acc;
1727
1728 if (SCM_I_INUMP (k))
1729 i2 = SCM_I_INUM (k);
1730 else if (SCM_BIGP (k))
1731 {
1732 z_i2 = scm_i_clonebig (k, 1);
1733 scm_remember_upto_here_1 (k);
1734 i2_is_big = 1;
1735 }
1736 else
1737 SCM_WRONG_TYPE_ARG (2, k);
1738
1739 if (i2_is_big)
1740 {
1741 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1742 {
1743 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1744 n = scm_divide (n, SCM_UNDEFINED);
1745 }
1746 while (1)
1747 {
1748 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1749 {
1750 return acc;
1751 }
1752 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1753 {
1754 return scm_product (acc, n);
1755 }
1756 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1757 acc = scm_product (acc, n);
1758 n = scm_product (n, n);
1759 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1760 }
1761 }
1762 else
1763 {
1764 if (i2 < 0)
1765 {
1766 i2 = -i2;
1767 n = scm_divide (n, SCM_UNDEFINED);
1768 }
1769 while (1)
1770 {
1771 if (0 == i2)
1772 return acc;
1773 if (1 == i2)
1774 return scm_product (acc, n);
1775 if (i2 & 1)
1776 acc = scm_product (acc, n);
1777 n = scm_product (n, n);
1778 i2 >>= 1;
1779 }
1780 }
1781 }
1782 #undef FUNC_NAME
1783
1784 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1785 (SCM n, SCM cnt),
1786 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1787 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1788 "\n"
1789 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1790 "@var{cnt} is negative it's a division, rounded towards negative\n"
1791 "infinity. (Note that this is not the same rounding as\n"
1792 "@code{quotient} does.)\n"
1793 "\n"
1794 "With @var{n} viewed as an infinite precision twos complement,\n"
1795 "@code{ash} means a left shift introducing zero bits, or a right\n"
1796 "shift dropping bits.\n"
1797 "\n"
1798 "@lisp\n"
1799 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1800 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1801 "\n"
1802 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1803 "(ash -23 -2) @result{} -6\n"
1804 "@end lisp")
1805 #define FUNC_NAME s_scm_ash
1806 {
1807 long bits_to_shift;
1808 bits_to_shift = scm_to_long (cnt);
1809
1810 if (SCM_I_INUMP (n))
1811 {
1812 long nn = SCM_I_INUM (n);
1813
1814 if (bits_to_shift > 0)
1815 {
1816 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1817 overflow a non-zero fixnum. For smaller shifts we check the
1818 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1819 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1820 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1821 bits_to_shift)". */
1822
1823 if (nn == 0)
1824 return n;
1825
1826 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1827 && ((unsigned long)
1828 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1829 <= 1))
1830 {
1831 return SCM_I_MAKINUM (nn << bits_to_shift);
1832 }
1833 else
1834 {
1835 SCM result = scm_i_long2big (nn);
1836 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1837 bits_to_shift);
1838 return result;
1839 }
1840 }
1841 else
1842 {
1843 bits_to_shift = -bits_to_shift;
1844 if (bits_to_shift >= SCM_LONG_BIT)
1845 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1846 else
1847 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1848 }
1849
1850 }
1851 else if (SCM_BIGP (n))
1852 {
1853 SCM result;
1854
1855 if (bits_to_shift == 0)
1856 return n;
1857
1858 result = scm_i_mkbig ();
1859 if (bits_to_shift >= 0)
1860 {
1861 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1862 bits_to_shift);
1863 return result;
1864 }
1865 else
1866 {
1867 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1868 we have to allocate a bignum even if the result is going to be a
1869 fixnum. */
1870 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1871 -bits_to_shift);
1872 return scm_i_normbig (result);
1873 }
1874
1875 }
1876 else
1877 {
1878 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1879 }
1880 }
1881 #undef FUNC_NAME
1882
1883
1884 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1885 (SCM n, SCM start, SCM end),
1886 "Return the integer composed of the @var{start} (inclusive)\n"
1887 "through @var{end} (exclusive) bits of @var{n}. The\n"
1888 "@var{start}th bit becomes the 0-th bit in the result.\n"
1889 "\n"
1890 "@lisp\n"
1891 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1892 " @result{} \"1010\"\n"
1893 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1894 " @result{} \"10110\"\n"
1895 "@end lisp")
1896 #define FUNC_NAME s_scm_bit_extract
1897 {
1898 unsigned long int istart, iend, bits;
1899 istart = scm_to_ulong (start);
1900 iend = scm_to_ulong (end);
1901 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1902
1903 /* how many bits to keep */
1904 bits = iend - istart;
1905
1906 if (SCM_I_INUMP (n))
1907 {
1908 long int in = SCM_I_INUM (n);
1909
1910 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1911 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1912 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1913
1914 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1915 {
1916 /* Since we emulate two's complement encoded numbers, this
1917 * special case requires us to produce a result that has
1918 * more bits than can be stored in a fixnum.
1919 */
1920 SCM result = scm_i_long2big (in);
1921 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1922 bits);
1923 return result;
1924 }
1925
1926 /* mask down to requisite bits */
1927 bits = min (bits, SCM_I_FIXNUM_BIT);
1928 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
1929 }
1930 else if (SCM_BIGP (n))
1931 {
1932 SCM result;
1933 if (bits == 1)
1934 {
1935 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1936 }
1937 else
1938 {
1939 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1940 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1941 such bits into a ulong. */
1942 result = scm_i_mkbig ();
1943 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1944 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1945 result = scm_i_normbig (result);
1946 }
1947 scm_remember_upto_here_1 (n);
1948 return result;
1949 }
1950 else
1951 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1952 }
1953 #undef FUNC_NAME
1954
1955
1956 static const char scm_logtab[] = {
1957 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1958 };
1959
1960 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1961 (SCM n),
1962 "Return the number of bits in integer @var{n}. If integer is\n"
1963 "positive, the 1-bits in its binary representation are counted.\n"
1964 "If negative, the 0-bits in its two's-complement binary\n"
1965 "representation are counted. If 0, 0 is returned.\n"
1966 "\n"
1967 "@lisp\n"
1968 "(logcount #b10101010)\n"
1969 " @result{} 4\n"
1970 "(logcount 0)\n"
1971 " @result{} 0\n"
1972 "(logcount -2)\n"
1973 " @result{} 1\n"
1974 "@end lisp")
1975 #define FUNC_NAME s_scm_logcount
1976 {
1977 if (SCM_I_INUMP (n))
1978 {
1979 unsigned long int c = 0;
1980 long int nn = SCM_I_INUM (n);
1981 if (nn < 0)
1982 nn = -1 - nn;
1983 while (nn)
1984 {
1985 c += scm_logtab[15 & nn];
1986 nn >>= 4;
1987 }
1988 return SCM_I_MAKINUM (c);
1989 }
1990 else if (SCM_BIGP (n))
1991 {
1992 unsigned long count;
1993 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1994 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1995 else
1996 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1997 scm_remember_upto_here_1 (n);
1998 return SCM_I_MAKINUM (count);
1999 }
2000 else
2001 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2002 }
2003 #undef FUNC_NAME
2004
2005
2006 static const char scm_ilentab[] = {
2007 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2008 };
2009
2010
2011 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2012 (SCM n),
2013 "Return the number of bits necessary to represent @var{n}.\n"
2014 "\n"
2015 "@lisp\n"
2016 "(integer-length #b10101010)\n"
2017 " @result{} 8\n"
2018 "(integer-length 0)\n"
2019 " @result{} 0\n"
2020 "(integer-length #b1111)\n"
2021 " @result{} 4\n"
2022 "@end lisp")
2023 #define FUNC_NAME s_scm_integer_length
2024 {
2025 if (SCM_I_INUMP (n))
2026 {
2027 unsigned long int c = 0;
2028 unsigned int l = 4;
2029 long int nn = SCM_I_INUM (n);
2030 if (nn < 0)
2031 nn = -1 - nn;
2032 while (nn)
2033 {
2034 c += 4;
2035 l = scm_ilentab [15 & nn];
2036 nn >>= 4;
2037 }
2038 return SCM_I_MAKINUM (c - 4 + l);
2039 }
2040 else if (SCM_BIGP (n))
2041 {
2042 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2043 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2044 1 too big, so check for that and adjust. */
2045 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2046 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2047 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2048 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2049 size--;
2050 scm_remember_upto_here_1 (n);
2051 return SCM_I_MAKINUM (size);
2052 }
2053 else
2054 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2055 }
2056 #undef FUNC_NAME
2057
2058 /*** NUMBERS -> STRINGS ***/
2059 #define SCM_MAX_DBL_PREC 60
2060 #define SCM_MAX_DBL_RADIX 36
2061
2062 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2063 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2064 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2065
2066 static
2067 void init_dblprec(int *prec, int radix) {
2068 /* determine floating point precision by adding successively
2069 smaller increments to 1.0 until it is considered == 1.0 */
2070 double f = ((double)1.0)/radix;
2071 double fsum = 1.0 + f;
2072
2073 *prec = 0;
2074 while (fsum != 1.0)
2075 {
2076 if (++(*prec) > SCM_MAX_DBL_PREC)
2077 fsum = 1.0;
2078 else
2079 {
2080 f /= radix;
2081 fsum = f + 1.0;
2082 }
2083 }
2084 (*prec) -= 1;
2085 }
2086
2087 static
2088 void init_fx_radix(double *fx_list, int radix)
2089 {
2090 /* initialize a per-radix list of tolerances. When added
2091 to a number < 1.0, we can determine if we should raund
2092 up and quit converting a number to a string. */
2093 int i;
2094 fx_list[0] = 0.0;
2095 fx_list[1] = 0.5;
2096 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2097 fx_list[i] = (fx_list[i-1] / radix);
2098 }
2099
2100 /* use this array as a way to generate a single digit */
2101 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2102
2103 static size_t
2104 idbl2str (double f, char *a, int radix)
2105 {
2106 int efmt, dpt, d, i, wp;
2107 double *fx;
2108 #ifdef DBL_MIN_10_EXP
2109 double f_cpy;
2110 int exp_cpy;
2111 #endif /* DBL_MIN_10_EXP */
2112 size_t ch = 0;
2113 int exp = 0;
2114
2115 if(radix < 2 ||
2116 radix > SCM_MAX_DBL_RADIX)
2117 {
2118 /* revert to existing behavior */
2119 radix = 10;
2120 }
2121
2122 wp = scm_dblprec[radix-2];
2123 fx = fx_per_radix[radix-2];
2124
2125 if (f == 0.0)
2126 {
2127 #ifdef HAVE_COPYSIGN
2128 double sgn = copysign (1.0, f);
2129
2130 if (sgn < 0.0)
2131 a[ch++] = '-';
2132 #endif
2133 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2134 }
2135
2136 if (xisinf (f))
2137 {
2138 if (f < 0)
2139 strcpy (a, "-inf.0");
2140 else
2141 strcpy (a, "+inf.0");
2142 return ch+6;
2143 }
2144 else if (xisnan (f))
2145 {
2146 strcpy (a, "+nan.0");
2147 return ch+6;
2148 }
2149
2150 if (f < 0.0)
2151 {
2152 f = -f;
2153 a[ch++] = '-';
2154 }
2155
2156 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2157 make-uniform-vector, from causing infinite loops. */
2158 /* just do the checking...if it passes, we do the conversion for our
2159 radix again below */
2160 f_cpy = f;
2161 exp_cpy = exp;
2162
2163 while (f_cpy < 1.0)
2164 {
2165 f_cpy *= 10.0;
2166 if (exp_cpy-- < DBL_MIN_10_EXP)
2167 {
2168 a[ch++] = '#';
2169 a[ch++] = '.';
2170 a[ch++] = '#';
2171 return ch;
2172 }
2173 }
2174 while (f_cpy > 10.0)
2175 {
2176 f_cpy *= 0.10;
2177 if (exp_cpy++ > DBL_MAX_10_EXP)
2178 {
2179 a[ch++] = '#';
2180 a[ch++] = '.';
2181 a[ch++] = '#';
2182 return ch;
2183 }
2184 }
2185 #endif
2186
2187 while (f < 1.0)
2188 {
2189 f *= radix;
2190 exp--;
2191 }
2192 while (f > radix)
2193 {
2194 f /= radix;
2195 exp++;
2196 }
2197
2198 if (f + fx[wp] >= radix)
2199 {
2200 f = 1.0;
2201 exp++;
2202 }
2203 zero:
2204 #ifdef ENGNOT
2205 /* adding 9999 makes this equivalent to abs(x) % 3 */
2206 dpt = (exp + 9999) % 3;
2207 exp -= dpt++;
2208 efmt = 1;
2209 #else
2210 efmt = (exp < -3) || (exp > wp + 2);
2211 if (!efmt)
2212 {
2213 if (exp < 0)
2214 {
2215 a[ch++] = '0';
2216 a[ch++] = '.';
2217 dpt = exp;
2218 while (++dpt)
2219 a[ch++] = '0';
2220 }
2221 else
2222 dpt = exp + 1;
2223 }
2224 else
2225 dpt = 1;
2226 #endif
2227
2228 do
2229 {
2230 d = f;
2231 f -= d;
2232 a[ch++] = number_chars[d];
2233 if (f < fx[wp])
2234 break;
2235 if (f + fx[wp] >= 1.0)
2236 {
2237 a[ch - 1] = number_chars[d+1];
2238 break;
2239 }
2240 f *= radix;
2241 if (!(--dpt))
2242 a[ch++] = '.';
2243 }
2244 while (wp--);
2245
2246 if (dpt > 0)
2247 {
2248 #ifndef ENGNOT
2249 if ((dpt > 4) && (exp > 6))
2250 {
2251 d = (a[0] == '-' ? 2 : 1);
2252 for (i = ch++; i > d; i--)
2253 a[i] = a[i - 1];
2254 a[d] = '.';
2255 efmt = 1;
2256 }
2257 else
2258 #endif
2259 {
2260 while (--dpt)
2261 a[ch++] = '0';
2262 a[ch++] = '.';
2263 }
2264 }
2265 if (a[ch - 1] == '.')
2266 a[ch++] = '0'; /* trailing zero */
2267 if (efmt && exp)
2268 {
2269 a[ch++] = 'e';
2270 if (exp < 0)
2271 {
2272 exp = -exp;
2273 a[ch++] = '-';
2274 }
2275 for (i = radix; i <= exp; i *= radix);
2276 for (i /= radix; i; i /= radix)
2277 {
2278 a[ch++] = number_chars[exp / i];
2279 exp %= i;
2280 }
2281 }
2282 return ch;
2283 }
2284
2285
2286 static size_t
2287 icmplx2str (double real, double imag, char *str, int radix)
2288 {
2289 size_t i;
2290
2291 i = idbl2str (real, str, radix);
2292 if (imag != 0.0)
2293 {
2294 /* Don't output a '+' for negative numbers or for Inf and
2295 NaN. They will provide their own sign. */
2296 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2297 str[i++] = '+';
2298 i += idbl2str (imag, &str[i], radix);
2299 str[i++] = 'i';
2300 }
2301 return i;
2302 }
2303
2304 static size_t
2305 iflo2str (SCM flt, char *str, int radix)
2306 {
2307 size_t i;
2308 if (SCM_REALP (flt))
2309 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2310 else
2311 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2312 str, radix);
2313 return i;
2314 }
2315
2316 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2317 characters in the result.
2318 rad is output base
2319 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2320 size_t
2321 scm_iint2str (scm_t_intmax num, int rad, char *p)
2322 {
2323 if (num < 0)
2324 {
2325 *p++ = '-';
2326 return scm_iuint2str (-num, rad, p) + 1;
2327 }
2328 else
2329 return scm_iuint2str (num, rad, p);
2330 }
2331
2332 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2333 characters in the result.
2334 rad is output base
2335 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2336 size_t
2337 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2338 {
2339 size_t j = 1;
2340 size_t i;
2341 scm_t_uintmax n = num;
2342
2343 for (n /= rad; n > 0; n /= rad)
2344 j++;
2345
2346 i = j;
2347 n = num;
2348 while (i--)
2349 {
2350 int d = n % rad;
2351
2352 n /= rad;
2353 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2354 }
2355 return j;
2356 }
2357
2358 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2359 (SCM n, SCM radix),
2360 "Return a string holding the external representation of the\n"
2361 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2362 "inexact, a radix of 10 will be used.")
2363 #define FUNC_NAME s_scm_number_to_string
2364 {
2365 int base;
2366
2367 if (SCM_UNBNDP (radix))
2368 base = 10;
2369 else
2370 base = scm_to_signed_integer (radix, 2, 36);
2371
2372 if (SCM_I_INUMP (n))
2373 {
2374 char num_buf [SCM_INTBUFLEN];
2375 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2376 return scm_from_locale_stringn (num_buf, length);
2377 }
2378 else if (SCM_BIGP (n))
2379 {
2380 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2381 scm_remember_upto_here_1 (n);
2382 return scm_take_locale_string (str);
2383 }
2384 else if (SCM_FRACTIONP (n))
2385 {
2386 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2387 scm_from_locale_string ("/"),
2388 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2389 }
2390 else if (SCM_INEXACTP (n))
2391 {
2392 char num_buf [FLOBUFLEN];
2393 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2394 }
2395 else
2396 SCM_WRONG_TYPE_ARG (1, n);
2397 }
2398 #undef FUNC_NAME
2399
2400
2401 /* These print routines used to be stubbed here so that scm_repl.c
2402 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2403
2404 int
2405 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2406 {
2407 char num_buf[FLOBUFLEN];
2408 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2409 return !0;
2410 }
2411
2412 void
2413 scm_i_print_double (double val, SCM port)
2414 {
2415 char num_buf[FLOBUFLEN];
2416 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2417 }
2418
2419 int
2420 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2421
2422 {
2423 char num_buf[FLOBUFLEN];
2424 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2425 return !0;
2426 }
2427
2428 void
2429 scm_i_print_complex (double real, double imag, SCM port)
2430 {
2431 char num_buf[FLOBUFLEN];
2432 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2433 }
2434
2435 int
2436 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2437 {
2438 SCM str;
2439 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2440 scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
2441 scm_remember_upto_here_1 (str);
2442 return !0;
2443 }
2444
2445 int
2446 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2447 {
2448 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2449 scm_remember_upto_here_1 (exp);
2450 scm_lfwrite (str, (size_t) strlen (str), port);
2451 free (str);
2452 return !0;
2453 }
2454 /*** END nums->strs ***/
2455
2456
2457 /*** STRINGS -> NUMBERS ***/
2458
2459 /* The following functions implement the conversion from strings to numbers.
2460 * The implementation somehow follows the grammar for numbers as it is given
2461 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2462 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2463 * points should be noted about the implementation:
2464 * * Each function keeps a local index variable 'idx' that points at the
2465 * current position within the parsed string. The global index is only
2466 * updated if the function could parse the corresponding syntactic unit
2467 * successfully.
2468 * * Similarly, the functions keep track of indicators of inexactness ('#',
2469 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2470 * global exactness information is only updated after each part has been
2471 * successfully parsed.
2472 * * Sequences of digits are parsed into temporary variables holding fixnums.
2473 * Only if these fixnums would overflow, the result variables are updated
2474 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2475 * the temporary variables holding the fixnums are cleared, and the process
2476 * starts over again. If for example fixnums were able to store five decimal
2477 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2478 * and the result was computed as 12345 * 100000 + 67890. In other words,
2479 * only every five digits two bignum operations were performed.
2480 */
2481
2482 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2483
2484 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2485
2486 /* In non ASCII-style encodings the following macro might not work. */
2487 #define XDIGIT2UINT(d) \
2488 (isdigit ((int) (unsigned char) d) \
2489 ? (d) - '0' \
2490 : tolower ((int) (unsigned char) d) - 'a' + 10)
2491
2492 static SCM
2493 mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2494 unsigned int radix, enum t_exactness *p_exactness)
2495 {
2496 unsigned int idx = *p_idx;
2497 unsigned int hash_seen = 0;
2498 scm_t_bits shift = 1;
2499 scm_t_bits add = 0;
2500 unsigned int digit_value;
2501 SCM result;
2502 char c;
2503
2504 if (idx == len)
2505 return SCM_BOOL_F;
2506
2507 c = mem[idx];
2508 if (!isxdigit ((int) (unsigned char) c))
2509 return SCM_BOOL_F;
2510 digit_value = XDIGIT2UINT (c);
2511 if (digit_value >= radix)
2512 return SCM_BOOL_F;
2513
2514 idx++;
2515 result = SCM_I_MAKINUM (digit_value);
2516 while (idx != len)
2517 {
2518 char c = mem[idx];
2519 if (isxdigit ((int) (unsigned char) c))
2520 {
2521 if (hash_seen)
2522 break;
2523 digit_value = XDIGIT2UINT (c);
2524 if (digit_value >= radix)
2525 break;
2526 }
2527 else if (c == '#')
2528 {
2529 hash_seen = 1;
2530 digit_value = 0;
2531 }
2532 else
2533 break;
2534
2535 idx++;
2536 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2537 {
2538 result = scm_product (result, SCM_I_MAKINUM (shift));
2539 if (add > 0)
2540 result = scm_sum (result, SCM_I_MAKINUM (add));
2541
2542 shift = radix;
2543 add = digit_value;
2544 }
2545 else
2546 {
2547 shift = shift * radix;
2548 add = add * radix + digit_value;
2549 }
2550 };
2551
2552 if (shift > 1)
2553 result = scm_product (result, SCM_I_MAKINUM (shift));
2554 if (add > 0)
2555 result = scm_sum (result, SCM_I_MAKINUM (add));
2556
2557 *p_idx = idx;
2558 if (hash_seen)
2559 *p_exactness = INEXACT;
2560
2561 return result;
2562 }
2563
2564
2565 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2566 * covers the parts of the rules that start at a potential point. The value
2567 * of the digits up to the point have been parsed by the caller and are given
2568 * in variable result. The content of *p_exactness indicates, whether a hash
2569 * has already been seen in the digits before the point.
2570 */
2571
2572 /* In non ASCII-style encodings the following macro might not work. */
2573 #define DIGIT2UINT(d) ((d) - '0')
2574
2575 static SCM
2576 mem2decimal_from_point (SCM result, const char* mem, size_t len,
2577 unsigned int *p_idx, enum t_exactness *p_exactness)
2578 {
2579 unsigned int idx = *p_idx;
2580 enum t_exactness x = *p_exactness;
2581
2582 if (idx == len)
2583 return result;
2584
2585 if (mem[idx] == '.')
2586 {
2587 scm_t_bits shift = 1;
2588 scm_t_bits add = 0;
2589 unsigned int digit_value;
2590 SCM big_shift = SCM_I_MAKINUM (1);
2591
2592 idx++;
2593 while (idx != len)
2594 {
2595 char c = mem[idx];
2596 if (isdigit ((int) (unsigned char) c))
2597 {
2598 if (x == INEXACT)
2599 return SCM_BOOL_F;
2600 else
2601 digit_value = DIGIT2UINT (c);
2602 }
2603 else if (c == '#')
2604 {
2605 x = INEXACT;
2606 digit_value = 0;
2607 }
2608 else
2609 break;
2610
2611 idx++;
2612 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2613 {
2614 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2615 result = scm_product (result, SCM_I_MAKINUM (shift));
2616 if (add > 0)
2617 result = scm_sum (result, SCM_I_MAKINUM (add));
2618
2619 shift = 10;
2620 add = digit_value;
2621 }
2622 else
2623 {
2624 shift = shift * 10;
2625 add = add * 10 + digit_value;
2626 }
2627 };
2628
2629 if (add > 0)
2630 {
2631 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2632 result = scm_product (result, SCM_I_MAKINUM (shift));
2633 result = scm_sum (result, SCM_I_MAKINUM (add));
2634 }
2635
2636 result = scm_divide (result, big_shift);
2637
2638 /* We've seen a decimal point, thus the value is implicitly inexact. */
2639 x = INEXACT;
2640 }
2641
2642 if (idx != len)
2643 {
2644 int sign = 1;
2645 unsigned int start;
2646 char c;
2647 int exponent;
2648 SCM e;
2649
2650 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2651
2652 switch (mem[idx])
2653 {
2654 case 'd': case 'D':
2655 case 'e': case 'E':
2656 case 'f': case 'F':
2657 case 'l': case 'L':
2658 case 's': case 'S':
2659 idx++;
2660 start = idx;
2661 c = mem[idx];
2662 if (c == '-')
2663 {
2664 idx++;
2665 sign = -1;
2666 c = mem[idx];
2667 }
2668 else if (c == '+')
2669 {
2670 idx++;
2671 sign = 1;
2672 c = mem[idx];
2673 }
2674 else
2675 sign = 1;
2676
2677 if (!isdigit ((int) (unsigned char) c))
2678 return SCM_BOOL_F;
2679
2680 idx++;
2681 exponent = DIGIT2UINT (c);
2682 while (idx != len)
2683 {
2684 char c = mem[idx];
2685 if (isdigit ((int) (unsigned char) c))
2686 {
2687 idx++;
2688 if (exponent <= SCM_MAXEXP)
2689 exponent = exponent * 10 + DIGIT2UINT (c);
2690 }
2691 else
2692 break;
2693 }
2694
2695 if (exponent > SCM_MAXEXP)
2696 {
2697 size_t exp_len = idx - start;
2698 SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
2699 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2700 scm_out_of_range ("string->number", exp_num);
2701 }
2702
2703 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2704 if (sign == 1)
2705 result = scm_product (result, e);
2706 else
2707 result = scm_divide2real (result, e);
2708
2709 /* We've seen an exponent, thus the value is implicitly inexact. */
2710 x = INEXACT;
2711
2712 break;
2713
2714 default:
2715 break;
2716 }
2717 }
2718
2719 *p_idx = idx;
2720 if (x == INEXACT)
2721 *p_exactness = x;
2722
2723 return result;
2724 }
2725
2726
2727 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2728
2729 static SCM
2730 mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2731 unsigned int radix, enum t_exactness *p_exactness)
2732 {
2733 unsigned int idx = *p_idx;
2734 SCM result;
2735
2736 if (idx == len)
2737 return SCM_BOOL_F;
2738
2739 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2740 {
2741 *p_idx = idx+5;
2742 return scm_inf ();
2743 }
2744
2745 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2746 {
2747 enum t_exactness x = EXACT;
2748
2749 /* Cobble up the fractional part. We might want to set the
2750 NaN's mantissa from it. */
2751 idx += 4;
2752 mem2uinteger (mem, len, &idx, 10, &x);
2753 *p_idx = idx;
2754 return scm_nan ();
2755 }
2756
2757 if (mem[idx] == '.')
2758 {
2759 if (radix != 10)
2760 return SCM_BOOL_F;
2761 else if (idx + 1 == len)
2762 return SCM_BOOL_F;
2763 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2764 return SCM_BOOL_F;
2765 else
2766 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
2767 p_idx, p_exactness);
2768 }
2769 else
2770 {
2771 enum t_exactness x = EXACT;
2772 SCM uinteger;
2773
2774 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2775 if (scm_is_false (uinteger))
2776 return SCM_BOOL_F;
2777
2778 if (idx == len)
2779 result = uinteger;
2780 else if (mem[idx] == '/')
2781 {
2782 SCM divisor;
2783
2784 idx++;
2785
2786 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2787 if (scm_is_false (divisor))
2788 return SCM_BOOL_F;
2789
2790 /* both are int/big here, I assume */
2791 result = scm_i_make_ratio (uinteger, divisor);
2792 }
2793 else if (radix == 10)
2794 {
2795 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2796 if (scm_is_false (result))
2797 return SCM_BOOL_F;
2798 }
2799 else
2800 result = uinteger;
2801
2802 *p_idx = idx;
2803 if (x == INEXACT)
2804 *p_exactness = x;
2805 }
2806
2807 /* When returning an inexact zero, make sure it is represented as a
2808 floating point value so that we can change its sign.
2809 */
2810 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2811 result = scm_from_double (0.0);
2812
2813 return result;
2814 }
2815
2816
2817 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2818
2819 static SCM
2820 mem2complex (const char* mem, size_t len, unsigned int idx,
2821 unsigned int radix, enum t_exactness *p_exactness)
2822 {
2823 char c;
2824 int sign = 0;
2825 SCM ureal;
2826
2827 if (idx == len)
2828 return SCM_BOOL_F;
2829
2830 c = mem[idx];
2831 if (c == '+')
2832 {
2833 idx++;
2834 sign = 1;
2835 }
2836 else if (c == '-')
2837 {
2838 idx++;
2839 sign = -1;
2840 }
2841
2842 if (idx == len)
2843 return SCM_BOOL_F;
2844
2845 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2846 if (scm_is_false (ureal))
2847 {
2848 /* input must be either +i or -i */
2849
2850 if (sign == 0)
2851 return SCM_BOOL_F;
2852
2853 if (mem[idx] == 'i' || mem[idx] == 'I')
2854 {
2855 idx++;
2856 if (idx != len)
2857 return SCM_BOOL_F;
2858
2859 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2860 }
2861 else
2862 return SCM_BOOL_F;
2863 }
2864 else
2865 {
2866 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2867 ureal = scm_difference (ureal, SCM_UNDEFINED);
2868
2869 if (idx == len)
2870 return ureal;
2871
2872 c = mem[idx];
2873 switch (c)
2874 {
2875 case 'i': case 'I':
2876 /* either +<ureal>i or -<ureal>i */
2877
2878 idx++;
2879 if (sign == 0)
2880 return SCM_BOOL_F;
2881 if (idx != len)
2882 return SCM_BOOL_F;
2883 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2884
2885 case '@':
2886 /* polar input: <real>@<real>. */
2887
2888 idx++;
2889 if (idx == len)
2890 return SCM_BOOL_F;
2891 else
2892 {
2893 int sign;
2894 SCM angle;
2895 SCM result;
2896
2897 c = mem[idx];
2898 if (c == '+')
2899 {
2900 idx++;
2901 sign = 1;
2902 }
2903 else if (c == '-')
2904 {
2905 idx++;
2906 sign = -1;
2907 }
2908 else
2909 sign = 1;
2910
2911 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2912 if (scm_is_false (angle))
2913 return SCM_BOOL_F;
2914 if (idx != len)
2915 return SCM_BOOL_F;
2916
2917 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2918 angle = scm_difference (angle, SCM_UNDEFINED);
2919
2920 result = scm_make_polar (ureal, angle);
2921 return result;
2922 }
2923 case '+':
2924 case '-':
2925 /* expecting input matching <real>[+-]<ureal>?i */
2926
2927 idx++;
2928 if (idx == len)
2929 return SCM_BOOL_F;
2930 else
2931 {
2932 int sign = (c == '+') ? 1 : -1;
2933 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2934
2935 if (scm_is_false (imag))
2936 imag = SCM_I_MAKINUM (sign);
2937 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2938 imag = scm_difference (imag, SCM_UNDEFINED);
2939
2940 if (idx == len)
2941 return SCM_BOOL_F;
2942 if (mem[idx] != 'i' && mem[idx] != 'I')
2943 return SCM_BOOL_F;
2944
2945 idx++;
2946 if (idx != len)
2947 return SCM_BOOL_F;
2948
2949 return scm_make_rectangular (ureal, imag);
2950 }
2951 default:
2952 return SCM_BOOL_F;
2953 }
2954 }
2955 }
2956
2957
2958 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2959
2960 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2961
2962 SCM
2963 scm_c_locale_stringn_to_number (const char* mem, size_t len,
2964 unsigned int default_radix)
2965 {
2966 unsigned int idx = 0;
2967 unsigned int radix = NO_RADIX;
2968 enum t_exactness forced_x = NO_EXACTNESS;
2969 enum t_exactness implicit_x = EXACT;
2970 SCM result;
2971
2972 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2973 while (idx + 2 < len && mem[idx] == '#')
2974 {
2975 switch (mem[idx + 1])
2976 {
2977 case 'b': case 'B':
2978 if (radix != NO_RADIX)
2979 return SCM_BOOL_F;
2980 radix = DUAL;
2981 break;
2982 case 'd': case 'D':
2983 if (radix != NO_RADIX)
2984 return SCM_BOOL_F;
2985 radix = DEC;
2986 break;
2987 case 'i': case 'I':
2988 if (forced_x != NO_EXACTNESS)
2989 return SCM_BOOL_F;
2990 forced_x = INEXACT;
2991 break;
2992 case 'e': case 'E':
2993 if (forced_x != NO_EXACTNESS)
2994 return SCM_BOOL_F;
2995 forced_x = EXACT;
2996 break;
2997 case 'o': case 'O':
2998 if (radix != NO_RADIX)
2999 return SCM_BOOL_F;
3000 radix = OCT;
3001 break;
3002 case 'x': case 'X':
3003 if (radix != NO_RADIX)
3004 return SCM_BOOL_F;
3005 radix = HEX;
3006 break;
3007 default:
3008 return SCM_BOOL_F;
3009 }
3010 idx += 2;
3011 }
3012
3013 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3014 if (radix == NO_RADIX)
3015 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
3016 else
3017 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
3018
3019 if (scm_is_false (result))
3020 return SCM_BOOL_F;
3021
3022 switch (forced_x)
3023 {
3024 case EXACT:
3025 if (SCM_INEXACTP (result))
3026 return scm_inexact_to_exact (result);
3027 else
3028 return result;
3029 case INEXACT:
3030 if (SCM_INEXACTP (result))
3031 return result;
3032 else
3033 return scm_exact_to_inexact (result);
3034 case NO_EXACTNESS:
3035 default:
3036 if (implicit_x == INEXACT)
3037 {
3038 if (SCM_INEXACTP (result))
3039 return result;
3040 else
3041 return scm_exact_to_inexact (result);
3042 }
3043 else
3044 return result;
3045 }
3046 }
3047
3048
3049 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3050 (SCM string, SCM radix),
3051 "Return a number of the maximally precise representation\n"
3052 "expressed by the given @var{string}. @var{radix} must be an\n"
3053 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3054 "is a default radix that may be overridden by an explicit radix\n"
3055 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3056 "supplied, then the default radix is 10. If string is not a\n"
3057 "syntactically valid notation for a number, then\n"
3058 "@code{string->number} returns @code{#f}.")
3059 #define FUNC_NAME s_scm_string_to_number
3060 {
3061 SCM answer;
3062 unsigned int base;
3063 SCM_VALIDATE_STRING (1, string);
3064
3065 if (SCM_UNBNDP (radix))
3066 base = 10;
3067 else
3068 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3069
3070 answer = scm_c_locale_stringn_to_number (scm_i_string_chars (string),
3071 scm_i_string_length (string),
3072 base);
3073 scm_remember_upto_here_1 (string);
3074 return answer;
3075 }
3076 #undef FUNC_NAME
3077
3078
3079 /*** END strs->nums ***/
3080
3081
3082 SCM
3083 scm_bigequal (SCM x, SCM y)
3084 {
3085 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3086 scm_remember_upto_here_2 (x, y);
3087 return scm_from_bool (0 == result);
3088 }
3089
3090 SCM
3091 scm_real_equalp (SCM x, SCM y)
3092 {
3093 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3094 }
3095
3096 SCM
3097 scm_complex_equalp (SCM x, SCM y)
3098 {
3099 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3100 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3101 }
3102
3103 SCM
3104 scm_i_fraction_equalp (SCM x, SCM y)
3105 {
3106 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3107 SCM_FRACTION_NUMERATOR (y)))
3108 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3109 SCM_FRACTION_DENOMINATOR (y))))
3110 return SCM_BOOL_F;
3111 else
3112 return SCM_BOOL_T;
3113 }
3114
3115
3116 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3117 (SCM x),
3118 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3119 "otherwise.")
3120 #define FUNC_NAME s_scm_number_p
3121 {
3122 return scm_from_bool (SCM_NUMBERP (x));
3123 }
3124 #undef FUNC_NAME
3125
3126 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3127 (SCM x),
3128 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3129 "otherwise. Note that the sets of real, rational and integer\n"
3130 "values form subsets of the set of complex numbers, i. e. the\n"
3131 "predicate will also be fulfilled if @var{x} is a real,\n"
3132 "rational or integer number.")
3133 #define FUNC_NAME s_scm_complex_p
3134 {
3135 /* all numbers are complex. */
3136 return scm_number_p (x);
3137 }
3138 #undef FUNC_NAME
3139
3140 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3141 (SCM x),
3142 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3143 "otherwise. Note that the set of integer values forms a subset of\n"
3144 "the set of real numbers, i. e. the predicate will also be\n"
3145 "fulfilled if @var{x} is an integer number.")
3146 #define FUNC_NAME s_scm_real_p
3147 {
3148 /* we can't represent irrational numbers. */
3149 return scm_rational_p (x);
3150 }
3151 #undef FUNC_NAME
3152
3153 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3154 (SCM x),
3155 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3156 "otherwise. Note that the set of integer values forms a subset of\n"
3157 "the set of rational numbers, i. e. the predicate will also be\n"
3158 "fulfilled if @var{x} is an integer number.")
3159 #define FUNC_NAME s_scm_rational_p
3160 {
3161 if (SCM_I_INUMP (x))
3162 return SCM_BOOL_T;
3163 else if (SCM_IMP (x))
3164 return SCM_BOOL_F;
3165 else if (SCM_BIGP (x))
3166 return SCM_BOOL_T;
3167 else if (SCM_FRACTIONP (x))
3168 return SCM_BOOL_T;
3169 else if (SCM_REALP (x))
3170 /* due to their limited precision, all floating point numbers are
3171 rational as well. */
3172 return SCM_BOOL_T;
3173 else
3174 return SCM_BOOL_F;
3175 }
3176 #undef FUNC_NAME
3177
3178 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3179 (SCM x),
3180 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3181 "else.")
3182 #define FUNC_NAME s_scm_integer_p
3183 {
3184 double r;
3185 if (SCM_I_INUMP (x))
3186 return SCM_BOOL_T;
3187 if (SCM_IMP (x))
3188 return SCM_BOOL_F;
3189 if (SCM_BIGP (x))
3190 return SCM_BOOL_T;
3191 if (!SCM_INEXACTP (x))
3192 return SCM_BOOL_F;
3193 if (SCM_COMPLEXP (x))
3194 return SCM_BOOL_F;
3195 r = SCM_REAL_VALUE (x);
3196 /* +/-inf passes r==floor(r), making those #t */
3197 if (r == floor (r))
3198 return SCM_BOOL_T;
3199 return SCM_BOOL_F;
3200 }
3201 #undef FUNC_NAME
3202
3203
3204 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3205 (SCM x),
3206 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3207 "else.")
3208 #define FUNC_NAME s_scm_inexact_p
3209 {
3210 if (SCM_INEXACTP (x))
3211 return SCM_BOOL_T;
3212 if (SCM_NUMBERP (x))
3213 return SCM_BOOL_F;
3214 SCM_WRONG_TYPE_ARG (1, x);
3215 }
3216 #undef FUNC_NAME
3217
3218
3219 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3220 /* "Return @code{#t} if all parameters are numerically equal." */
3221 SCM
3222 scm_num_eq_p (SCM x, SCM y)
3223 {
3224 again:
3225 if (SCM_I_INUMP (x))
3226 {
3227 long xx = SCM_I_INUM (x);
3228 if (SCM_I_INUMP (y))
3229 {
3230 long yy = SCM_I_INUM (y);
3231 return scm_from_bool (xx == yy);
3232 }
3233 else if (SCM_BIGP (y))
3234 return SCM_BOOL_F;
3235 else if (SCM_REALP (y))
3236 {
3237 /* On a 32-bit system an inum fits a double, we can cast the inum
3238 to a double and compare.
3239
3240 But on a 64-bit system an inum is bigger than a double and
3241 casting it to a double (call that dxx) will round. dxx is at
3242 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3243 an integer and fits a long. So we cast yy to a long and
3244 compare with plain xx.
3245
3246 An alternative (for any size system actually) would be to check
3247 yy is an integer (with floor) and is in range of an inum
3248 (compare against appropriate powers of 2) then test
3249 xx==(long)yy. It's just a matter of which casts/comparisons
3250 might be fastest or easiest for the cpu. */
3251
3252 double yy = SCM_REAL_VALUE (y);
3253 return scm_from_bool ((double) xx == yy
3254 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3255 || xx == (long) yy));
3256 }
3257 else if (SCM_COMPLEXP (y))
3258 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3259 && (0.0 == SCM_COMPLEX_IMAG (y)));
3260 else if (SCM_FRACTIONP (y))
3261 return SCM_BOOL_F;
3262 else
3263 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3264 }
3265 else if (SCM_BIGP (x))
3266 {
3267 if (SCM_I_INUMP (y))
3268 return SCM_BOOL_F;
3269 else if (SCM_BIGP (y))
3270 {
3271 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3272 scm_remember_upto_here_2 (x, y);
3273 return scm_from_bool (0 == cmp);
3274 }
3275 else if (SCM_REALP (y))
3276 {
3277 int cmp;
3278 if (xisnan (SCM_REAL_VALUE (y)))
3279 return SCM_BOOL_F;
3280 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3281 scm_remember_upto_here_1 (x);
3282 return scm_from_bool (0 == cmp);
3283 }
3284 else if (SCM_COMPLEXP (y))
3285 {
3286 int cmp;
3287 if (0.0 != SCM_COMPLEX_IMAG (y))
3288 return SCM_BOOL_F;
3289 if (xisnan (SCM_COMPLEX_REAL (y)))
3290 return SCM_BOOL_F;
3291 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3292 scm_remember_upto_here_1 (x);
3293 return scm_from_bool (0 == cmp);
3294 }
3295 else if (SCM_FRACTIONP (y))
3296 return SCM_BOOL_F;
3297 else
3298 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3299 }
3300 else if (SCM_REALP (x))
3301 {
3302 double xx = SCM_REAL_VALUE (x);
3303 if (SCM_I_INUMP (y))
3304 {
3305 /* see comments with inum/real above */
3306 long yy = SCM_I_INUM (y);
3307 return scm_from_bool (xx == (double) yy
3308 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3309 || (long) xx == yy));
3310 }
3311 else if (SCM_BIGP (y))
3312 {
3313 int cmp;
3314 if (xisnan (SCM_REAL_VALUE (x)))
3315 return SCM_BOOL_F;
3316 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3317 scm_remember_upto_here_1 (y);
3318 return scm_from_bool (0 == cmp);
3319 }
3320 else if (SCM_REALP (y))
3321 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3322 else if (SCM_COMPLEXP (y))
3323 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3324 && (0.0 == SCM_COMPLEX_IMAG (y)));
3325 else if (SCM_FRACTIONP (y))
3326 {
3327 double xx = SCM_REAL_VALUE (x);
3328 if (xisnan (xx))
3329 return SCM_BOOL_F;
3330 if (xisinf (xx))
3331 return scm_from_bool (xx < 0.0);
3332 x = scm_inexact_to_exact (x); /* with x as frac or int */
3333 goto again;
3334 }
3335 else
3336 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3337 }
3338 else if (SCM_COMPLEXP (x))
3339 {
3340 if (SCM_I_INUMP (y))
3341 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3342 && (SCM_COMPLEX_IMAG (x) == 0.0));
3343 else if (SCM_BIGP (y))
3344 {
3345 int cmp;
3346 if (0.0 != SCM_COMPLEX_IMAG (x))
3347 return SCM_BOOL_F;
3348 if (xisnan (SCM_COMPLEX_REAL (x)))
3349 return SCM_BOOL_F;
3350 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3351 scm_remember_upto_here_1 (y);
3352 return scm_from_bool (0 == cmp);
3353 }
3354 else if (SCM_REALP (y))
3355 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3356 && (SCM_COMPLEX_IMAG (x) == 0.0));
3357 else if (SCM_COMPLEXP (y))
3358 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3359 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3360 else if (SCM_FRACTIONP (y))
3361 {
3362 double xx;
3363 if (SCM_COMPLEX_IMAG (x) != 0.0)
3364 return SCM_BOOL_F;
3365 xx = SCM_COMPLEX_REAL (x);
3366 if (xisnan (xx))
3367 return SCM_BOOL_F;
3368 if (xisinf (xx))
3369 return scm_from_bool (xx < 0.0);
3370 x = scm_inexact_to_exact (x); /* with x as frac or int */
3371 goto again;
3372 }
3373 else
3374 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3375 }
3376 else if (SCM_FRACTIONP (x))
3377 {
3378 if (SCM_I_INUMP (y))
3379 return SCM_BOOL_F;
3380 else if (SCM_BIGP (y))
3381 return SCM_BOOL_F;
3382 else if (SCM_REALP (y))
3383 {
3384 double yy = SCM_REAL_VALUE (y);
3385 if (xisnan (yy))
3386 return SCM_BOOL_F;
3387 if (xisinf (yy))
3388 return scm_from_bool (0.0 < yy);
3389 y = scm_inexact_to_exact (y); /* with y as frac or int */
3390 goto again;
3391 }
3392 else if (SCM_COMPLEXP (y))
3393 {
3394 double yy;
3395 if (SCM_COMPLEX_IMAG (y) != 0.0)
3396 return SCM_BOOL_F;
3397 yy = SCM_COMPLEX_REAL (y);
3398 if (xisnan (yy))
3399 return SCM_BOOL_F;
3400 if (xisinf (yy))
3401 return scm_from_bool (0.0 < yy);
3402 y = scm_inexact_to_exact (y); /* with y as frac or int */
3403 goto again;
3404 }
3405 else if (SCM_FRACTIONP (y))
3406 return scm_i_fraction_equalp (x, y);
3407 else
3408 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3409 }
3410 else
3411 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3412 }
3413
3414
3415 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3416 done are good for inums, but for bignums an answer can almost always be
3417 had by just examining a few high bits of the operands, as done by GMP in
3418 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3419 of the float exponent to take into account. */
3420
3421 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3422 /* "Return @code{#t} if the list of parameters is monotonically\n"
3423 * "increasing."
3424 */
3425 SCM
3426 scm_less_p (SCM x, SCM y)
3427 {
3428 again:
3429 if (SCM_I_INUMP (x))
3430 {
3431 long xx = SCM_I_INUM (x);
3432 if (SCM_I_INUMP (y))
3433 {
3434 long yy = SCM_I_INUM (y);
3435 return scm_from_bool (xx < yy);
3436 }
3437 else if (SCM_BIGP (y))
3438 {
3439 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3440 scm_remember_upto_here_1 (y);
3441 return scm_from_bool (sgn > 0);
3442 }
3443 else if (SCM_REALP (y))
3444 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3445 else if (SCM_FRACTIONP (y))
3446 {
3447 /* "x < a/b" becomes "x*b < a" */
3448 int_frac:
3449 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3450 y = SCM_FRACTION_NUMERATOR (y);
3451 goto again;
3452 }
3453 else
3454 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3455 }
3456 else if (SCM_BIGP (x))
3457 {
3458 if (SCM_I_INUMP (y))
3459 {
3460 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3461 scm_remember_upto_here_1 (x);
3462 return scm_from_bool (sgn < 0);
3463 }
3464 else if (SCM_BIGP (y))
3465 {
3466 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3467 scm_remember_upto_here_2 (x, y);
3468 return scm_from_bool (cmp < 0);
3469 }
3470 else if (SCM_REALP (y))
3471 {
3472 int cmp;
3473 if (xisnan (SCM_REAL_VALUE (y)))
3474 return SCM_BOOL_F;
3475 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3476 scm_remember_upto_here_1 (x);
3477 return scm_from_bool (cmp < 0);
3478 }
3479 else if (SCM_FRACTIONP (y))
3480 goto int_frac;
3481 else
3482 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3483 }
3484 else if (SCM_REALP (x))
3485 {
3486 if (SCM_I_INUMP (y))
3487 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3488 else if (SCM_BIGP (y))
3489 {
3490 int cmp;
3491 if (xisnan (SCM_REAL_VALUE (x)))
3492 return SCM_BOOL_F;
3493 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3494 scm_remember_upto_here_1 (y);
3495 return scm_from_bool (cmp > 0);
3496 }
3497 else if (SCM_REALP (y))
3498 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3499 else if (SCM_FRACTIONP (y))
3500 {
3501 double xx = SCM_REAL_VALUE (x);
3502 if (xisnan (xx))
3503 return SCM_BOOL_F;
3504 if (xisinf (xx))
3505 return scm_from_bool (xx < 0.0);
3506 x = scm_inexact_to_exact (x); /* with x as frac or int */
3507 goto again;
3508 }
3509 else
3510 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3511 }
3512 else if (SCM_FRACTIONP (x))
3513 {
3514 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3515 {
3516 /* "a/b < y" becomes "a < y*b" */
3517 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3518 x = SCM_FRACTION_NUMERATOR (x);
3519 goto again;
3520 }
3521 else if (SCM_REALP (y))
3522 {
3523 double yy = SCM_REAL_VALUE (y);
3524 if (xisnan (yy))
3525 return SCM_BOOL_F;
3526 if (xisinf (yy))
3527 return scm_from_bool (0.0 < yy);
3528 y = scm_inexact_to_exact (y); /* with y as frac or int */
3529 goto again;
3530 }
3531 else if (SCM_FRACTIONP (y))
3532 {
3533 /* "a/b < c/d" becomes "a*d < c*b" */
3534 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3535 SCM_FRACTION_DENOMINATOR (y));
3536 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3537 SCM_FRACTION_DENOMINATOR (x));
3538 x = new_x;
3539 y = new_y;
3540 goto again;
3541 }
3542 else
3543 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3544 }
3545 else
3546 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3547 }
3548
3549
3550 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3551 /* "Return @code{#t} if the list of parameters is monotonically\n"
3552 * "decreasing."
3553 */
3554 #define FUNC_NAME s_scm_gr_p
3555 SCM
3556 scm_gr_p (SCM x, SCM y)
3557 {
3558 if (!SCM_NUMBERP (x))
3559 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3560 else if (!SCM_NUMBERP (y))
3561 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3562 else
3563 return scm_less_p (y, x);
3564 }
3565 #undef FUNC_NAME
3566
3567
3568 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3569 /* "Return @code{#t} if the list of parameters is monotonically\n"
3570 * "non-decreasing."
3571 */
3572 #define FUNC_NAME s_scm_leq_p
3573 SCM
3574 scm_leq_p (SCM x, SCM y)
3575 {
3576 if (!SCM_NUMBERP (x))
3577 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3578 else if (!SCM_NUMBERP (y))
3579 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3580 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3581 return SCM_BOOL_F;
3582 else
3583 return scm_not (scm_less_p (y, x));
3584 }
3585 #undef FUNC_NAME
3586
3587
3588 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3589 /* "Return @code{#t} if the list of parameters is monotonically\n"
3590 * "non-increasing."
3591 */
3592 #define FUNC_NAME s_scm_geq_p
3593 SCM
3594 scm_geq_p (SCM x, SCM y)
3595 {
3596 if (!SCM_NUMBERP (x))
3597 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3598 else if (!SCM_NUMBERP (y))
3599 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3600 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3601 return SCM_BOOL_F;
3602 else
3603 return scm_not (scm_less_p (x, y));
3604 }
3605 #undef FUNC_NAME
3606
3607
3608 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3609 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3610 * "zero."
3611 */
3612 SCM
3613 scm_zero_p (SCM z)
3614 {
3615 if (SCM_I_INUMP (z))
3616 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3617 else if (SCM_BIGP (z))
3618 return SCM_BOOL_F;
3619 else if (SCM_REALP (z))
3620 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3621 else if (SCM_COMPLEXP (z))
3622 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3623 && SCM_COMPLEX_IMAG (z) == 0.0);
3624 else if (SCM_FRACTIONP (z))
3625 return SCM_BOOL_F;
3626 else
3627 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3628 }
3629
3630
3631 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3632 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3633 * "zero."
3634 */
3635 SCM
3636 scm_positive_p (SCM x)
3637 {
3638 if (SCM_I_INUMP (x))
3639 return scm_from_bool (SCM_I_INUM (x) > 0);
3640 else if (SCM_BIGP (x))
3641 {
3642 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3643 scm_remember_upto_here_1 (x);
3644 return scm_from_bool (sgn > 0);
3645 }
3646 else if (SCM_REALP (x))
3647 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3648 else if (SCM_FRACTIONP (x))
3649 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3650 else
3651 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3652 }
3653
3654
3655 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3656 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3657 * "zero."
3658 */
3659 SCM
3660 scm_negative_p (SCM x)
3661 {
3662 if (SCM_I_INUMP (x))
3663 return scm_from_bool (SCM_I_INUM (x) < 0);
3664 else if (SCM_BIGP (x))
3665 {
3666 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3667 scm_remember_upto_here_1 (x);
3668 return scm_from_bool (sgn < 0);
3669 }
3670 else if (SCM_REALP (x))
3671 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3672 else if (SCM_FRACTIONP (x))
3673 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3674 else
3675 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3676 }
3677
3678
3679 /* scm_min and scm_max return an inexact when either argument is inexact, as
3680 required by r5rs. On that basis, for exact/inexact combinations the
3681 exact is converted to inexact to compare and possibly return. This is
3682 unlike scm_less_p above which takes some trouble to preserve all bits in
3683 its test, such trouble is not required for min and max. */
3684
3685 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3686 /* "Return the maximum of all parameter values."
3687 */
3688 SCM
3689 scm_max (SCM x, SCM y)
3690 {
3691 if (SCM_UNBNDP (y))
3692 {
3693 if (SCM_UNBNDP (x))
3694 SCM_WTA_DISPATCH_0 (g_max, s_max);
3695 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3696 return x;
3697 else
3698 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3699 }
3700
3701 if (SCM_I_INUMP (x))
3702 {
3703 long xx = SCM_I_INUM (x);
3704 if (SCM_I_INUMP (y))
3705 {
3706 long yy = SCM_I_INUM (y);
3707 return (xx < yy) ? y : x;
3708 }
3709 else if (SCM_BIGP (y))
3710 {
3711 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3712 scm_remember_upto_here_1 (y);
3713 return (sgn < 0) ? x : y;
3714 }
3715 else if (SCM_REALP (y))
3716 {
3717 double z = xx;
3718 /* if y==NaN then ">" is false and we return NaN */
3719 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3720 }
3721 else if (SCM_FRACTIONP (y))
3722 {
3723 use_less:
3724 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3725 }
3726 else
3727 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3728 }
3729 else if (SCM_BIGP (x))
3730 {
3731 if (SCM_I_INUMP (y))
3732 {
3733 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3734 scm_remember_upto_here_1 (x);
3735 return (sgn < 0) ? y : x;
3736 }
3737 else if (SCM_BIGP (y))
3738 {
3739 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3740 scm_remember_upto_here_2 (x, y);
3741 return (cmp > 0) ? x : y;
3742 }
3743 else if (SCM_REALP (y))
3744 {
3745 /* if y==NaN then xx>yy is false, so we return the NaN y */
3746 double xx, yy;
3747 big_real:
3748 xx = scm_i_big2dbl (x);
3749 yy = SCM_REAL_VALUE (y);
3750 return (xx > yy ? scm_from_double (xx) : y);
3751 }
3752 else if (SCM_FRACTIONP (y))
3753 {
3754 goto use_less;
3755 }
3756 else
3757 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3758 }
3759 else if (SCM_REALP (x))
3760 {
3761 if (SCM_I_INUMP (y))
3762 {
3763 double z = SCM_I_INUM (y);
3764 /* if x==NaN then "<" is false and we return NaN */
3765 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3766 }
3767 else if (SCM_BIGP (y))
3768 {
3769 SCM_SWAP (x, y);
3770 goto big_real;
3771 }
3772 else if (SCM_REALP (y))
3773 {
3774 /* if x==NaN then our explicit check means we return NaN
3775 if y==NaN then ">" is false and we return NaN
3776 calling isnan is unavoidable, since it's the only way to know
3777 which of x or y causes any compares to be false */
3778 double xx = SCM_REAL_VALUE (x);
3779 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3780 }
3781 else if (SCM_FRACTIONP (y))
3782 {
3783 double yy = scm_i_fraction2double (y);
3784 double xx = SCM_REAL_VALUE (x);
3785 return (xx < yy) ? scm_from_double (yy) : x;
3786 }
3787 else
3788 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3789 }
3790 else if (SCM_FRACTIONP (x))
3791 {
3792 if (SCM_I_INUMP (y))
3793 {
3794 goto use_less;
3795 }
3796 else if (SCM_BIGP (y))
3797 {
3798 goto use_less;
3799 }
3800 else if (SCM_REALP (y))
3801 {
3802 double xx = scm_i_fraction2double (x);
3803 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3804 }
3805 else if (SCM_FRACTIONP (y))
3806 {
3807 goto use_less;
3808 }
3809 else
3810 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3811 }
3812 else
3813 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3814 }
3815
3816
3817 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3818 /* "Return the minium of all parameter values."
3819 */
3820 SCM
3821 scm_min (SCM x, SCM y)
3822 {
3823 if (SCM_UNBNDP (y))
3824 {
3825 if (SCM_UNBNDP (x))
3826 SCM_WTA_DISPATCH_0 (g_min, s_min);
3827 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3828 return x;
3829 else
3830 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3831 }
3832
3833 if (SCM_I_INUMP (x))
3834 {
3835 long xx = SCM_I_INUM (x);
3836 if (SCM_I_INUMP (y))
3837 {
3838 long yy = SCM_I_INUM (y);
3839 return (xx < yy) ? x : y;
3840 }
3841 else if (SCM_BIGP (y))
3842 {
3843 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3844 scm_remember_upto_here_1 (y);
3845 return (sgn < 0) ? y : x;
3846 }
3847 else if (SCM_REALP (y))
3848 {
3849 double z = xx;
3850 /* if y==NaN then "<" is false and we return NaN */
3851 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3852 }
3853 else if (SCM_FRACTIONP (y))
3854 {
3855 use_less:
3856 return (scm_is_false (scm_less_p (x, y)) ? y : x);
3857 }
3858 else
3859 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3860 }
3861 else if (SCM_BIGP (x))
3862 {
3863 if (SCM_I_INUMP (y))
3864 {
3865 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3866 scm_remember_upto_here_1 (x);
3867 return (sgn < 0) ? x : y;
3868 }
3869 else if (SCM_BIGP (y))
3870 {
3871 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3872 scm_remember_upto_here_2 (x, y);
3873 return (cmp > 0) ? y : x;
3874 }
3875 else if (SCM_REALP (y))
3876 {
3877 /* if y==NaN then xx<yy is false, so we return the NaN y */
3878 double xx, yy;
3879 big_real:
3880 xx = scm_i_big2dbl (x);
3881 yy = SCM_REAL_VALUE (y);
3882 return (xx < yy ? scm_from_double (xx) : y);
3883 }
3884 else if (SCM_FRACTIONP (y))
3885 {
3886 goto use_less;
3887 }
3888 else
3889 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3890 }
3891 else if (SCM_REALP (x))
3892 {
3893 if (SCM_I_INUMP (y))
3894 {
3895 double z = SCM_I_INUM (y);
3896 /* if x==NaN then "<" is false and we return NaN */
3897 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
3898 }
3899 else if (SCM_BIGP (y))
3900 {
3901 SCM_SWAP (x, y);
3902 goto big_real;
3903 }
3904 else if (SCM_REALP (y))
3905 {
3906 /* if x==NaN then our explicit check means we return NaN
3907 if y==NaN then "<" is false and we return NaN
3908 calling isnan is unavoidable, since it's the only way to know
3909 which of x or y causes any compares to be false */
3910 double xx = SCM_REAL_VALUE (x);
3911 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3912 }
3913 else if (SCM_FRACTIONP (y))
3914 {
3915 double yy = scm_i_fraction2double (y);
3916 double xx = SCM_REAL_VALUE (x);
3917 return (yy < xx) ? scm_from_double (yy) : x;
3918 }
3919 else
3920 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3921 }
3922 else if (SCM_FRACTIONP (x))
3923 {
3924 if (SCM_I_INUMP (y))
3925 {
3926 goto use_less;
3927 }
3928 else if (SCM_BIGP (y))
3929 {
3930 goto use_less;
3931 }
3932 else if (SCM_REALP (y))
3933 {
3934 double xx = scm_i_fraction2double (x);
3935 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
3936 }
3937 else if (SCM_FRACTIONP (y))
3938 {
3939 goto use_less;
3940 }
3941 else
3942 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3943 }
3944 else
3945 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3946 }
3947
3948
3949 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3950 /* "Return the sum of all parameter values. Return 0 if called without\n"
3951 * "any parameters."
3952 */
3953 SCM
3954 scm_sum (SCM x, SCM y)
3955 {
3956 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
3957 {
3958 if (SCM_NUMBERP (x)) return x;
3959 if (SCM_UNBNDP (x)) return SCM_INUM0;
3960 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3961 }
3962
3963 if (SCM_LIKELY (SCM_I_INUMP (x)))
3964 {
3965 if (SCM_LIKELY (SCM_I_INUMP (y)))
3966 {
3967 long xx = SCM_I_INUM (x);
3968 long yy = SCM_I_INUM (y);
3969 long int z = xx + yy;
3970 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
3971 }
3972 else if (SCM_BIGP (y))
3973 {
3974 SCM_SWAP (x, y);
3975 goto add_big_inum;
3976 }
3977 else if (SCM_REALP (y))
3978 {
3979 long int xx = SCM_I_INUM (x);
3980 return scm_from_double (xx + SCM_REAL_VALUE (y));
3981 }
3982 else if (SCM_COMPLEXP (y))
3983 {
3984 long int xx = SCM_I_INUM (x);
3985 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
3986 SCM_COMPLEX_IMAG (y));
3987 }
3988 else if (SCM_FRACTIONP (y))
3989 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3990 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3991 SCM_FRACTION_DENOMINATOR (y));
3992 else
3993 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3994 } else if (SCM_BIGP (x))
3995 {
3996 if (SCM_I_INUMP (y))
3997 {
3998 long int inum;
3999 int bigsgn;
4000 add_big_inum:
4001 inum = SCM_I_INUM (y);
4002 if (inum == 0)
4003 return x;
4004 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4005 if (inum < 0)
4006 {
4007 SCM result = scm_i_mkbig ();
4008 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4009 scm_remember_upto_here_1 (x);
4010 /* we know the result will have to be a bignum */
4011 if (bigsgn == -1)
4012 return result;
4013 return scm_i_normbig (result);
4014 }
4015 else
4016 {
4017 SCM result = scm_i_mkbig ();
4018 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4019 scm_remember_upto_here_1 (x);
4020 /* we know the result will have to be a bignum */
4021 if (bigsgn == 1)
4022 return result;
4023 return scm_i_normbig (result);
4024 }
4025 }
4026 else if (SCM_BIGP (y))
4027 {
4028 SCM result = scm_i_mkbig ();
4029 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4030 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4031 mpz_add (SCM_I_BIG_MPZ (result),
4032 SCM_I_BIG_MPZ (x),
4033 SCM_I_BIG_MPZ (y));
4034 scm_remember_upto_here_2 (x, y);
4035 /* we know the result will have to be a bignum */
4036 if (sgn_x == sgn_y)
4037 return result;
4038 return scm_i_normbig (result);
4039 }
4040 else if (SCM_REALP (y))
4041 {
4042 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4043 scm_remember_upto_here_1 (x);
4044 return scm_from_double (result);
4045 }
4046 else if (SCM_COMPLEXP (y))
4047 {
4048 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4049 + SCM_COMPLEX_REAL (y));
4050 scm_remember_upto_here_1 (x);
4051 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4052 }
4053 else if (SCM_FRACTIONP (y))
4054 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4055 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4056 SCM_FRACTION_DENOMINATOR (y));
4057 else
4058 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4059 }
4060 else if (SCM_REALP (x))
4061 {
4062 if (SCM_I_INUMP (y))
4063 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4064 else if (SCM_BIGP (y))
4065 {
4066 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4067 scm_remember_upto_here_1 (y);
4068 return scm_from_double (result);
4069 }
4070 else if (SCM_REALP (y))
4071 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4072 else if (SCM_COMPLEXP (y))
4073 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4074 SCM_COMPLEX_IMAG (y));
4075 else if (SCM_FRACTIONP (y))
4076 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4077 else
4078 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4079 }
4080 else if (SCM_COMPLEXP (x))
4081 {
4082 if (SCM_I_INUMP (y))
4083 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4084 SCM_COMPLEX_IMAG (x));
4085 else if (SCM_BIGP (y))
4086 {
4087 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4088 + SCM_COMPLEX_REAL (x));
4089 scm_remember_upto_here_1 (y);
4090 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4091 }
4092 else if (SCM_REALP (y))
4093 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4094 SCM_COMPLEX_IMAG (x));
4095 else if (SCM_COMPLEXP (y))
4096 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4097 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4098 else if (SCM_FRACTIONP (y))
4099 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4100 SCM_COMPLEX_IMAG (x));
4101 else
4102 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4103 }
4104 else if (SCM_FRACTIONP (x))
4105 {
4106 if (SCM_I_INUMP (y))
4107 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4108 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4109 SCM_FRACTION_DENOMINATOR (x));
4110 else if (SCM_BIGP (y))
4111 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4112 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4113 SCM_FRACTION_DENOMINATOR (x));
4114 else if (SCM_REALP (y))
4115 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4116 else if (SCM_COMPLEXP (y))
4117 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4118 SCM_COMPLEX_IMAG (y));
4119 else if (SCM_FRACTIONP (y))
4120 /* a/b + c/d = (ad + bc) / bd */
4121 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4122 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4123 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4124 else
4125 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4126 }
4127 else
4128 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4129 }
4130
4131
4132 SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4133 (SCM x),
4134 "Return @math{@var{x}+1}.")
4135 #define FUNC_NAME s_scm_oneplus
4136 {
4137 return scm_sum (x, SCM_I_MAKINUM (1));
4138 }
4139 #undef FUNC_NAME
4140
4141
4142 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
4143 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4144 * the sum of all but the first argument are subtracted from the first
4145 * argument. */
4146 #define FUNC_NAME s_difference
4147 SCM
4148 scm_difference (SCM x, SCM y)
4149 {
4150 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4151 {
4152 if (SCM_UNBNDP (x))
4153 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4154 else
4155 if (SCM_I_INUMP (x))
4156 {
4157 long xx = -SCM_I_INUM (x);
4158 if (SCM_FIXABLE (xx))
4159 return SCM_I_MAKINUM (xx);
4160 else
4161 return scm_i_long2big (xx);
4162 }
4163 else if (SCM_BIGP (x))
4164 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4165 bignum, but negating that gives a fixnum. */
4166 return scm_i_normbig (scm_i_clonebig (x, 0));
4167 else if (SCM_REALP (x))
4168 return scm_from_double (-SCM_REAL_VALUE (x));
4169 else if (SCM_COMPLEXP (x))
4170 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4171 -SCM_COMPLEX_IMAG (x));
4172 else if (SCM_FRACTIONP (x))
4173 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4174 SCM_FRACTION_DENOMINATOR (x));
4175 else
4176 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4177 }
4178
4179 if (SCM_LIKELY (SCM_I_INUMP (x)))
4180 {
4181 if (SCM_LIKELY (SCM_I_INUMP (y)))
4182 {
4183 long int xx = SCM_I_INUM (x);
4184 long int yy = SCM_I_INUM (y);
4185 long int z = xx - yy;
4186 if (SCM_FIXABLE (z))
4187 return SCM_I_MAKINUM (z);
4188 else
4189 return scm_i_long2big (z);
4190 }
4191 else if (SCM_BIGP (y))
4192 {
4193 /* inum-x - big-y */
4194 long xx = SCM_I_INUM (x);
4195
4196 if (xx == 0)
4197 return scm_i_clonebig (y, 0);
4198 else
4199 {
4200 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4201 SCM result = scm_i_mkbig ();
4202
4203 if (xx >= 0)
4204 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4205 else
4206 {
4207 /* x - y == -(y + -x) */
4208 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4209 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4210 }
4211 scm_remember_upto_here_1 (y);
4212
4213 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4214 /* we know the result will have to be a bignum */
4215 return result;
4216 else
4217 return scm_i_normbig (result);
4218 }
4219 }
4220 else if (SCM_REALP (y))
4221 {
4222 long int xx = SCM_I_INUM (x);
4223 return scm_from_double (xx - SCM_REAL_VALUE (y));
4224 }
4225 else if (SCM_COMPLEXP (y))
4226 {
4227 long int xx = SCM_I_INUM (x);
4228 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4229 - SCM_COMPLEX_IMAG (y));
4230 }
4231 else if (SCM_FRACTIONP (y))
4232 /* a - b/c = (ac - b) / c */
4233 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4234 SCM_FRACTION_NUMERATOR (y)),
4235 SCM_FRACTION_DENOMINATOR (y));
4236 else
4237 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4238 }
4239 else if (SCM_BIGP (x))
4240 {
4241 if (SCM_I_INUMP (y))
4242 {
4243 /* big-x - inum-y */
4244 long yy = SCM_I_INUM (y);
4245 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4246
4247 scm_remember_upto_here_1 (x);
4248 if (sgn_x == 0)
4249 return (SCM_FIXABLE (-yy) ?
4250 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4251 else
4252 {
4253 SCM result = scm_i_mkbig ();
4254
4255 if (yy >= 0)
4256 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4257 else
4258 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4259 scm_remember_upto_here_1 (x);
4260
4261 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4262 /* we know the result will have to be a bignum */
4263 return result;
4264 else
4265 return scm_i_normbig (result);
4266 }
4267 }
4268 else if (SCM_BIGP (y))
4269 {
4270 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4271 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4272 SCM result = scm_i_mkbig ();
4273 mpz_sub (SCM_I_BIG_MPZ (result),
4274 SCM_I_BIG_MPZ (x),
4275 SCM_I_BIG_MPZ (y));
4276 scm_remember_upto_here_2 (x, y);
4277 /* we know the result will have to be a bignum */
4278 if ((sgn_x == 1) && (sgn_y == -1))
4279 return result;
4280 if ((sgn_x == -1) && (sgn_y == 1))
4281 return result;
4282 return scm_i_normbig (result);
4283 }
4284 else if (SCM_REALP (y))
4285 {
4286 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4287 scm_remember_upto_here_1 (x);
4288 return scm_from_double (result);
4289 }
4290 else if (SCM_COMPLEXP (y))
4291 {
4292 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4293 - SCM_COMPLEX_REAL (y));
4294 scm_remember_upto_here_1 (x);
4295 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4296 }
4297 else if (SCM_FRACTIONP (y))
4298 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4299 SCM_FRACTION_NUMERATOR (y)),
4300 SCM_FRACTION_DENOMINATOR (y));
4301 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4302 }
4303 else if (SCM_REALP (x))
4304 {
4305 if (SCM_I_INUMP (y))
4306 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4307 else if (SCM_BIGP (y))
4308 {
4309 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4310 scm_remember_upto_here_1 (x);
4311 return scm_from_double (result);
4312 }
4313 else if (SCM_REALP (y))
4314 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4315 else if (SCM_COMPLEXP (y))
4316 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4317 -SCM_COMPLEX_IMAG (y));
4318 else if (SCM_FRACTIONP (y))
4319 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4320 else
4321 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4322 }
4323 else if (SCM_COMPLEXP (x))
4324 {
4325 if (SCM_I_INUMP (y))
4326 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4327 SCM_COMPLEX_IMAG (x));
4328 else if (SCM_BIGP (y))
4329 {
4330 double real_part = (SCM_COMPLEX_REAL (x)
4331 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4332 scm_remember_upto_here_1 (x);
4333 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4334 }
4335 else if (SCM_REALP (y))
4336 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4337 SCM_COMPLEX_IMAG (x));
4338 else if (SCM_COMPLEXP (y))
4339 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4340 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4341 else if (SCM_FRACTIONP (y))
4342 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4343 SCM_COMPLEX_IMAG (x));
4344 else
4345 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4346 }
4347 else if (SCM_FRACTIONP (x))
4348 {
4349 if (SCM_I_INUMP (y))
4350 /* a/b - c = (a - cb) / b */
4351 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4352 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4353 SCM_FRACTION_DENOMINATOR (x));
4354 else if (SCM_BIGP (y))
4355 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4356 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4357 SCM_FRACTION_DENOMINATOR (x));
4358 else if (SCM_REALP (y))
4359 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4360 else if (SCM_COMPLEXP (y))
4361 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4362 -SCM_COMPLEX_IMAG (y));
4363 else if (SCM_FRACTIONP (y))
4364 /* a/b - c/d = (ad - bc) / bd */
4365 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4366 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4367 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4368 else
4369 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4370 }
4371 else
4372 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4373 }
4374 #undef FUNC_NAME
4375
4376
4377 SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4378 (SCM x),
4379 "Return @math{@var{x}-1}.")
4380 #define FUNC_NAME s_scm_oneminus
4381 {
4382 return scm_difference (x, SCM_I_MAKINUM (1));
4383 }
4384 #undef FUNC_NAME
4385
4386
4387 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4388 /* "Return the product of all arguments. If called without arguments,\n"
4389 * "1 is returned."
4390 */
4391 SCM
4392 scm_product (SCM x, SCM y)
4393 {
4394 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4395 {
4396 if (SCM_UNBNDP (x))
4397 return SCM_I_MAKINUM (1L);
4398 else if (SCM_NUMBERP (x))
4399 return x;
4400 else
4401 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4402 }
4403
4404 if (SCM_LIKELY (SCM_I_INUMP (x)))
4405 {
4406 long xx;
4407
4408 intbig:
4409 xx = SCM_I_INUM (x);
4410
4411 switch (xx)
4412 {
4413 case 0: return x; break;
4414 case 1: return y; break;
4415 }
4416
4417 if (SCM_LIKELY (SCM_I_INUMP (y)))
4418 {
4419 long yy = SCM_I_INUM (y);
4420 long kk = xx * yy;
4421 SCM k = SCM_I_MAKINUM (kk);
4422 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4423 return k;
4424 else
4425 {
4426 SCM result = scm_i_long2big (xx);
4427 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4428 return scm_i_normbig (result);
4429 }
4430 }
4431 else if (SCM_BIGP (y))
4432 {
4433 SCM result = scm_i_mkbig ();
4434 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4435 scm_remember_upto_here_1 (y);
4436 return result;
4437 }
4438 else if (SCM_REALP (y))
4439 return scm_from_double (xx * SCM_REAL_VALUE (y));
4440 else if (SCM_COMPLEXP (y))
4441 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4442 xx * SCM_COMPLEX_IMAG (y));
4443 else if (SCM_FRACTIONP (y))
4444 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4445 SCM_FRACTION_DENOMINATOR (y));
4446 else
4447 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4448 }
4449 else if (SCM_BIGP (x))
4450 {
4451 if (SCM_I_INUMP (y))
4452 {
4453 SCM_SWAP (x, y);
4454 goto intbig;
4455 }
4456 else if (SCM_BIGP (y))
4457 {
4458 SCM result = scm_i_mkbig ();
4459 mpz_mul (SCM_I_BIG_MPZ (result),
4460 SCM_I_BIG_MPZ (x),
4461 SCM_I_BIG_MPZ (y));
4462 scm_remember_upto_here_2 (x, y);
4463 return result;
4464 }
4465 else if (SCM_REALP (y))
4466 {
4467 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4468 scm_remember_upto_here_1 (x);
4469 return scm_from_double (result);
4470 }
4471 else if (SCM_COMPLEXP (y))
4472 {
4473 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4474 scm_remember_upto_here_1 (x);
4475 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4476 z * SCM_COMPLEX_IMAG (y));
4477 }
4478 else if (SCM_FRACTIONP (y))
4479 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4480 SCM_FRACTION_DENOMINATOR (y));
4481 else
4482 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4483 }
4484 else if (SCM_REALP (x))
4485 {
4486 if (SCM_I_INUMP (y))
4487 {
4488 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4489 if (scm_is_eq (y, SCM_INUM0))
4490 return y;
4491 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4492 }
4493 else if (SCM_BIGP (y))
4494 {
4495 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4496 scm_remember_upto_here_1 (y);
4497 return scm_from_double (result);
4498 }
4499 else if (SCM_REALP (y))
4500 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4501 else if (SCM_COMPLEXP (y))
4502 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4503 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4504 else if (SCM_FRACTIONP (y))
4505 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4506 else
4507 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4508 }
4509 else if (SCM_COMPLEXP (x))
4510 {
4511 if (SCM_I_INUMP (y))
4512 {
4513 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4514 if (scm_is_eq (y, SCM_INUM0))
4515 return y;
4516 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4517 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4518 }
4519 else if (SCM_BIGP (y))
4520 {
4521 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4522 scm_remember_upto_here_1 (y);
4523 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4524 z * SCM_COMPLEX_IMAG (x));
4525 }
4526 else if (SCM_REALP (y))
4527 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4528 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4529 else if (SCM_COMPLEXP (y))
4530 {
4531 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4532 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4533 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4534 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4535 }
4536 else if (SCM_FRACTIONP (y))
4537 {
4538 double yy = scm_i_fraction2double (y);
4539 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4540 yy * SCM_COMPLEX_IMAG (x));
4541 }
4542 else
4543 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4544 }
4545 else if (SCM_FRACTIONP (x))
4546 {
4547 if (SCM_I_INUMP (y))
4548 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4549 SCM_FRACTION_DENOMINATOR (x));
4550 else if (SCM_BIGP (y))
4551 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4552 SCM_FRACTION_DENOMINATOR (x));
4553 else if (SCM_REALP (y))
4554 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4555 else if (SCM_COMPLEXP (y))
4556 {
4557 double xx = scm_i_fraction2double (x);
4558 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4559 xx * SCM_COMPLEX_IMAG (y));
4560 }
4561 else if (SCM_FRACTIONP (y))
4562 /* a/b * c/d = ac / bd */
4563 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4564 SCM_FRACTION_NUMERATOR (y)),
4565 scm_product (SCM_FRACTION_DENOMINATOR (x),
4566 SCM_FRACTION_DENOMINATOR (y)));
4567 else
4568 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4569 }
4570 else
4571 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4572 }
4573
4574 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4575 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4576 #define ALLOW_DIVIDE_BY_ZERO
4577 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4578 #endif
4579
4580 /* The code below for complex division is adapted from the GNU
4581 libstdc++, which adapted it from f2c's libF77, and is subject to
4582 this copyright: */
4583
4584 /****************************************************************
4585 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4586
4587 Permission to use, copy, modify, and distribute this software
4588 and its documentation for any purpose and without fee is hereby
4589 granted, provided that the above copyright notice appear in all
4590 copies and that both that the copyright notice and this
4591 permission notice and warranty disclaimer appear in supporting
4592 documentation, and that the names of AT&T Bell Laboratories or
4593 Bellcore or any of their entities not be used in advertising or
4594 publicity pertaining to distribution of the software without
4595 specific, written prior permission.
4596
4597 AT&T and Bellcore disclaim all warranties with regard to this
4598 software, including all implied warranties of merchantability
4599 and fitness. In no event shall AT&T or Bellcore be liable for
4600 any special, indirect or consequential damages or any damages
4601 whatsoever resulting from loss of use, data or profits, whether
4602 in an action of contract, negligence or other tortious action,
4603 arising out of or in connection with the use or performance of
4604 this software.
4605 ****************************************************************/
4606
4607 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4608 /* Divide the first argument by the product of the remaining
4609 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4610 returned. */
4611 #define FUNC_NAME s_divide
4612 static SCM
4613 scm_i_divide (SCM x, SCM y, int inexact)
4614 {
4615 double a;
4616
4617 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4618 {
4619 if (SCM_UNBNDP (x))
4620 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4621 else if (SCM_I_INUMP (x))
4622 {
4623 long xx = SCM_I_INUM (x);
4624 if (xx == 1 || xx == -1)
4625 return x;
4626 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4627 else if (xx == 0)
4628 scm_num_overflow (s_divide);
4629 #endif
4630 else
4631 {
4632 if (inexact)
4633 return scm_from_double (1.0 / (double) xx);
4634 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4635 }
4636 }
4637 else if (SCM_BIGP (x))
4638 {
4639 if (inexact)
4640 return scm_from_double (1.0 / scm_i_big2dbl (x));
4641 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4642 }
4643 else if (SCM_REALP (x))
4644 {
4645 double xx = SCM_REAL_VALUE (x);
4646 #ifndef ALLOW_DIVIDE_BY_ZERO
4647 if (xx == 0.0)
4648 scm_num_overflow (s_divide);
4649 else
4650 #endif
4651 return scm_from_double (1.0 / xx);
4652 }
4653 else if (SCM_COMPLEXP (x))
4654 {
4655 double r = SCM_COMPLEX_REAL (x);
4656 double i = SCM_COMPLEX_IMAG (x);
4657 if (fabs(r) <= fabs(i))
4658 {
4659 double t = r / i;
4660 double d = i * (1.0 + t * t);
4661 return scm_c_make_rectangular (t / d, -1.0 / d);
4662 }
4663 else
4664 {
4665 double t = i / r;
4666 double d = r * (1.0 + t * t);
4667 return scm_c_make_rectangular (1.0 / d, -t / d);
4668 }
4669 }
4670 else if (SCM_FRACTIONP (x))
4671 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4672 SCM_FRACTION_NUMERATOR (x));
4673 else
4674 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4675 }
4676
4677 if (SCM_LIKELY (SCM_I_INUMP (x)))
4678 {
4679 long xx = SCM_I_INUM (x);
4680 if (SCM_LIKELY (SCM_I_INUMP (y)))
4681 {
4682 long yy = SCM_I_INUM (y);
4683 if (yy == 0)
4684 {
4685 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4686 scm_num_overflow (s_divide);
4687 #else
4688 return scm_from_double ((double) xx / (double) yy);
4689 #endif
4690 }
4691 else if (xx % yy != 0)
4692 {
4693 if (inexact)
4694 return scm_from_double ((double) xx / (double) yy);
4695 else return scm_i_make_ratio (x, y);
4696 }
4697 else
4698 {
4699 long z = xx / yy;
4700 if (SCM_FIXABLE (z))
4701 return SCM_I_MAKINUM (z);
4702 else
4703 return scm_i_long2big (z);
4704 }
4705 }
4706 else if (SCM_BIGP (y))
4707 {
4708 if (inexact)
4709 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4710 else return scm_i_make_ratio (x, y);
4711 }
4712 else if (SCM_REALP (y))
4713 {
4714 double yy = SCM_REAL_VALUE (y);
4715 #ifndef ALLOW_DIVIDE_BY_ZERO
4716 if (yy == 0.0)
4717 scm_num_overflow (s_divide);
4718 else
4719 #endif
4720 return scm_from_double ((double) xx / yy);
4721 }
4722 else if (SCM_COMPLEXP (y))
4723 {
4724 a = xx;
4725 complex_div: /* y _must_ be a complex number */
4726 {
4727 double r = SCM_COMPLEX_REAL (y);
4728 double i = SCM_COMPLEX_IMAG (y);
4729 if (fabs(r) <= fabs(i))
4730 {
4731 double t = r / i;
4732 double d = i * (1.0 + t * t);
4733 return scm_c_make_rectangular ((a * t) / d, -a / d);
4734 }
4735 else
4736 {
4737 double t = i / r;
4738 double d = r * (1.0 + t * t);
4739 return scm_c_make_rectangular (a / d, -(a * t) / d);
4740 }
4741 }
4742 }
4743 else if (SCM_FRACTIONP (y))
4744 /* a / b/c = ac / b */
4745 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4746 SCM_FRACTION_NUMERATOR (y));
4747 else
4748 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4749 }
4750 else if (SCM_BIGP (x))
4751 {
4752 if (SCM_I_INUMP (y))
4753 {
4754 long int yy = SCM_I_INUM (y);
4755 if (yy == 0)
4756 {
4757 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4758 scm_num_overflow (s_divide);
4759 #else
4760 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4761 scm_remember_upto_here_1 (x);
4762 return (sgn == 0) ? scm_nan () : scm_inf ();
4763 #endif
4764 }
4765 else if (yy == 1)
4766 return x;
4767 else
4768 {
4769 /* FIXME: HMM, what are the relative performance issues here?
4770 We need to test. Is it faster on average to test
4771 divisible_p, then perform whichever operation, or is it
4772 faster to perform the integer div opportunistically and
4773 switch to real if there's a remainder? For now we take the
4774 middle ground: test, then if divisible, use the faster div
4775 func. */
4776
4777 long abs_yy = yy < 0 ? -yy : yy;
4778 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4779
4780 if (divisible_p)
4781 {
4782 SCM result = scm_i_mkbig ();
4783 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4784 scm_remember_upto_here_1 (x);
4785 if (yy < 0)
4786 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4787 return scm_i_normbig (result);
4788 }
4789 else
4790 {
4791 if (inexact)
4792 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4793 else return scm_i_make_ratio (x, y);
4794 }
4795 }
4796 }
4797 else if (SCM_BIGP (y))
4798 {
4799 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4800 if (y_is_zero)
4801 {
4802 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4803 scm_num_overflow (s_divide);
4804 #else
4805 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4806 scm_remember_upto_here_1 (x);
4807 return (sgn == 0) ? scm_nan () : scm_inf ();
4808 #endif
4809 }
4810 else
4811 {
4812 /* big_x / big_y */
4813 if (inexact)
4814 {
4815 /* It's easily possible for the ratio x/y to fit a double
4816 but one or both x and y be too big to fit a double,
4817 hence the use of mpq_get_d rather than converting and
4818 dividing. */
4819 mpq_t q;
4820 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
4821 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
4822 return scm_from_double (mpq_get_d (q));
4823 }
4824 else
4825 {
4826 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4827 SCM_I_BIG_MPZ (y));
4828 if (divisible_p)
4829 {
4830 SCM result = scm_i_mkbig ();
4831 mpz_divexact (SCM_I_BIG_MPZ (result),
4832 SCM_I_BIG_MPZ (x),
4833 SCM_I_BIG_MPZ (y));
4834 scm_remember_upto_here_2 (x, y);
4835 return scm_i_normbig (result);
4836 }
4837 else
4838 return scm_i_make_ratio (x, y);
4839 }
4840 }
4841 }
4842 else if (SCM_REALP (y))
4843 {
4844 double yy = SCM_REAL_VALUE (y);
4845 #ifndef ALLOW_DIVIDE_BY_ZERO
4846 if (yy == 0.0)
4847 scm_num_overflow (s_divide);
4848 else
4849 #endif
4850 return scm_from_double (scm_i_big2dbl (x) / yy);
4851 }
4852 else if (SCM_COMPLEXP (y))
4853 {
4854 a = scm_i_big2dbl (x);
4855 goto complex_div;
4856 }
4857 else if (SCM_FRACTIONP (y))
4858 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4859 SCM_FRACTION_NUMERATOR (y));
4860 else
4861 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4862 }
4863 else if (SCM_REALP (x))
4864 {
4865 double rx = SCM_REAL_VALUE (x);
4866 if (SCM_I_INUMP (y))
4867 {
4868 long int yy = SCM_I_INUM (y);
4869 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4870 if (yy == 0)
4871 scm_num_overflow (s_divide);
4872 else
4873 #endif
4874 return scm_from_double (rx / (double) yy);
4875 }
4876 else if (SCM_BIGP (y))
4877 {
4878 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4879 scm_remember_upto_here_1 (y);
4880 return scm_from_double (rx / dby);
4881 }
4882 else if (SCM_REALP (y))
4883 {
4884 double yy = SCM_REAL_VALUE (y);
4885 #ifndef ALLOW_DIVIDE_BY_ZERO
4886 if (yy == 0.0)
4887 scm_num_overflow (s_divide);
4888 else
4889 #endif
4890 return scm_from_double (rx / yy);
4891 }
4892 else if (SCM_COMPLEXP (y))
4893 {
4894 a = rx;
4895 goto complex_div;
4896 }
4897 else if (SCM_FRACTIONP (y))
4898 return scm_from_double (rx / scm_i_fraction2double (y));
4899 else
4900 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4901 }
4902 else if (SCM_COMPLEXP (x))
4903 {
4904 double rx = SCM_COMPLEX_REAL (x);
4905 double ix = SCM_COMPLEX_IMAG (x);
4906 if (SCM_I_INUMP (y))
4907 {
4908 long int yy = SCM_I_INUM (y);
4909 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4910 if (yy == 0)
4911 scm_num_overflow (s_divide);
4912 else
4913 #endif
4914 {
4915 double d = yy;
4916 return scm_c_make_rectangular (rx / d, ix / d);
4917 }
4918 }
4919 else if (SCM_BIGP (y))
4920 {
4921 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4922 scm_remember_upto_here_1 (y);
4923 return scm_c_make_rectangular (rx / dby, ix / dby);
4924 }
4925 else if (SCM_REALP (y))
4926 {
4927 double yy = SCM_REAL_VALUE (y);
4928 #ifndef ALLOW_DIVIDE_BY_ZERO
4929 if (yy == 0.0)
4930 scm_num_overflow (s_divide);
4931 else
4932 #endif
4933 return scm_c_make_rectangular (rx / yy, ix / yy);
4934 }
4935 else if (SCM_COMPLEXP (y))
4936 {
4937 double ry = SCM_COMPLEX_REAL (y);
4938 double iy = SCM_COMPLEX_IMAG (y);
4939 if (fabs(ry) <= fabs(iy))
4940 {
4941 double t = ry / iy;
4942 double d = iy * (1.0 + t * t);
4943 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
4944 }
4945 else
4946 {
4947 double t = iy / ry;
4948 double d = ry * (1.0 + t * t);
4949 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
4950 }
4951 }
4952 else if (SCM_FRACTIONP (y))
4953 {
4954 double yy = scm_i_fraction2double (y);
4955 return scm_c_make_rectangular (rx / yy, ix / yy);
4956 }
4957 else
4958 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4959 }
4960 else if (SCM_FRACTIONP (x))
4961 {
4962 if (SCM_I_INUMP (y))
4963 {
4964 long int yy = SCM_I_INUM (y);
4965 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4966 if (yy == 0)
4967 scm_num_overflow (s_divide);
4968 else
4969 #endif
4970 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4971 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4972 }
4973 else if (SCM_BIGP (y))
4974 {
4975 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4976 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4977 }
4978 else if (SCM_REALP (y))
4979 {
4980 double yy = SCM_REAL_VALUE (y);
4981 #ifndef ALLOW_DIVIDE_BY_ZERO
4982 if (yy == 0.0)
4983 scm_num_overflow (s_divide);
4984 else
4985 #endif
4986 return scm_from_double (scm_i_fraction2double (x) / yy);
4987 }
4988 else if (SCM_COMPLEXP (y))
4989 {
4990 a = scm_i_fraction2double (x);
4991 goto complex_div;
4992 }
4993 else if (SCM_FRACTIONP (y))
4994 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4995 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4996 else
4997 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4998 }
4999 else
5000 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
5001 }
5002
5003 SCM
5004 scm_divide (SCM x, SCM y)
5005 {
5006 return scm_i_divide (x, y, 0);
5007 }
5008
5009 static SCM scm_divide2real (SCM x, SCM y)
5010 {
5011 return scm_i_divide (x, y, 1);
5012 }
5013 #undef FUNC_NAME
5014
5015
5016 double
5017 scm_asinh (double x)
5018 {
5019 #if HAVE_ASINH
5020 return asinh (x);
5021 #else
5022 #define asinh scm_asinh
5023 return log (x + sqrt (x * x + 1));
5024 #endif
5025 }
5026 SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
5027 /* "Return the inverse hyperbolic sine of @var{x}."
5028 */
5029
5030
5031 double
5032 scm_acosh (double x)
5033 {
5034 #if HAVE_ACOSH
5035 return acosh (x);
5036 #else
5037 #define acosh scm_acosh
5038 return log (x + sqrt (x * x - 1));
5039 #endif
5040 }
5041 SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
5042 /* "Return the inverse hyperbolic cosine of @var{x}."
5043 */
5044
5045
5046 double
5047 scm_atanh (double x)
5048 {
5049 #if HAVE_ATANH
5050 return atanh (x);
5051 #else
5052 #define atanh scm_atanh
5053 return 0.5 * log ((1 + x) / (1 - x));
5054 #endif
5055 }
5056 SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
5057 /* "Return the inverse hyperbolic tangent of @var{x}."
5058 */
5059
5060
5061 double
5062 scm_c_truncate (double x)
5063 {
5064 #if HAVE_TRUNC
5065 return trunc (x);
5066 #else
5067 if (x < 0.0)
5068 return -floor (-x);
5069 return floor (x);
5070 #endif
5071 }
5072
5073 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
5074 half-way case (ie. when x is an integer plus 0.5) going upwards.
5075 Then half-way cases are identified and adjusted down if the
5076 round-upwards didn't give the desired even integer.
5077
5078 "plus_half == result" identifies a half-way case. If plus_half, which is
5079 x + 0.5, is an integer then x must be an integer plus 0.5.
5080
5081 An odd "result" value is identified with result/2 != floor(result/2).
5082 This is done with plus_half, since that value is ready for use sooner in
5083 a pipelined cpu, and we're already requiring plus_half == result.
5084
5085 Note however that we need to be careful when x is big and already an
5086 integer. In that case "x+0.5" may round to an adjacent integer, causing
5087 us to return such a value, incorrectly. For instance if the hardware is
5088 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5089 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5090 returned. Or if the hardware is in round-upwards mode, then other bigger
5091 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5092 representable value, 2^128+2^76 (or whatever), again incorrect.
5093
5094 These bad roundings of x+0.5 are avoided by testing at the start whether
5095 x is already an integer. If it is then clearly that's the desired result
5096 already. And if it's not then the exponent must be small enough to allow
5097 an 0.5 to be represented, and hence added without a bad rounding. */
5098
5099 double
5100 scm_c_round (double x)
5101 {
5102 double plus_half, result;
5103
5104 if (x == floor (x))
5105 return x;
5106
5107 plus_half = x + 0.5;
5108 result = floor (plus_half);
5109 /* Adjust so that the rounding is towards even. */
5110 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5111 ? result - 1
5112 : result);
5113 }
5114
5115 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5116 (SCM x),
5117 "Round the number @var{x} towards zero.")
5118 #define FUNC_NAME s_scm_truncate_number
5119 {
5120 if (scm_is_false (scm_negative_p (x)))
5121 return scm_floor (x);
5122 else
5123 return scm_ceiling (x);
5124 }
5125 #undef FUNC_NAME
5126
5127 static SCM exactly_one_half;
5128
5129 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5130 (SCM x),
5131 "Round the number @var{x} towards the nearest integer. "
5132 "When it is exactly halfway between two integers, "
5133 "round towards the even one.")
5134 #define FUNC_NAME s_scm_round_number
5135 {
5136 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5137 return x;
5138 else if (SCM_REALP (x))
5139 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5140 else
5141 {
5142 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5143 single quotient+remainder division then examining to see which way
5144 the rounding should go. */
5145 SCM plus_half = scm_sum (x, exactly_one_half);
5146 SCM result = scm_floor (plus_half);
5147 /* Adjust so that the rounding is towards even. */
5148 if (scm_is_true (scm_num_eq_p (plus_half, result))
5149 && scm_is_true (scm_odd_p (result)))
5150 return scm_difference (result, SCM_I_MAKINUM (1));
5151 else
5152 return result;
5153 }
5154 }
5155 #undef FUNC_NAME
5156
5157 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5158 (SCM x),
5159 "Round the number @var{x} towards minus infinity.")
5160 #define FUNC_NAME s_scm_floor
5161 {
5162 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5163 return x;
5164 else if (SCM_REALP (x))
5165 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5166 else if (SCM_FRACTIONP (x))
5167 {
5168 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5169 SCM_FRACTION_DENOMINATOR (x));
5170 if (scm_is_false (scm_negative_p (x)))
5171 {
5172 /* For positive x, rounding towards zero is correct. */
5173 return q;
5174 }
5175 else
5176 {
5177 /* For negative x, we need to return q-1 unless x is an
5178 integer. But fractions are never integer, per our
5179 assumptions. */
5180 return scm_difference (q, SCM_I_MAKINUM (1));
5181 }
5182 }
5183 else
5184 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5185 }
5186 #undef FUNC_NAME
5187
5188 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5189 (SCM x),
5190 "Round the number @var{x} towards infinity.")
5191 #define FUNC_NAME s_scm_ceiling
5192 {
5193 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5194 return x;
5195 else if (SCM_REALP (x))
5196 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5197 else if (SCM_FRACTIONP (x))
5198 {
5199 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5200 SCM_FRACTION_DENOMINATOR (x));
5201 if (scm_is_false (scm_positive_p (x)))
5202 {
5203 /* For negative x, rounding towards zero is correct. */
5204 return q;
5205 }
5206 else
5207 {
5208 /* For positive x, we need to return q+1 unless x is an
5209 integer. But fractions are never integer, per our
5210 assumptions. */
5211 return scm_sum (q, SCM_I_MAKINUM (1));
5212 }
5213 }
5214 else
5215 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5216 }
5217 #undef FUNC_NAME
5218
5219 SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5220 /* "Return the square root of the real number @var{x}."
5221 */
5222 SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5223 /* "Return the absolute value of the real number @var{x}."
5224 */
5225 SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5226 /* "Return the @var{x}th power of e."
5227 */
5228 SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5229 /* "Return the natural logarithm of the real number @var{x}."
5230 */
5231 SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5232 /* "Return the sine of the real number @var{x}."
5233 */
5234 SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5235 /* "Return the cosine of the real number @var{x}."
5236 */
5237 SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5238 /* "Return the tangent of the real number @var{x}."
5239 */
5240 SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5241 /* "Return the arc sine of the real number @var{x}."
5242 */
5243 SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5244 /* "Return the arc cosine of the real number @var{x}."
5245 */
5246 SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5247 /* "Return the arc tangent of the real number @var{x}."
5248 */
5249 SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5250 /* "Return the hyperbolic sine of the real number @var{x}."
5251 */
5252 SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5253 /* "Return the hyperbolic cosine of the real number @var{x}."
5254 */
5255 SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5256 /* "Return the hyperbolic tangent of the real number @var{x}."
5257 */
5258
5259 struct dpair
5260 {
5261 double x, y;
5262 };
5263
5264 static void scm_two_doubles (SCM x,
5265 SCM y,
5266 const char *sstring,
5267 struct dpair * xy);
5268
5269 static void
5270 scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5271 {
5272 if (SCM_I_INUMP (x))
5273 xy->x = SCM_I_INUM (x);
5274 else if (SCM_BIGP (x))
5275 xy->x = scm_i_big2dbl (x);
5276 else if (SCM_REALP (x))
5277 xy->x = SCM_REAL_VALUE (x);
5278 else if (SCM_FRACTIONP (x))
5279 xy->x = scm_i_fraction2double (x);
5280 else
5281 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5282
5283 if (SCM_I_INUMP (y))
5284 xy->y = SCM_I_INUM (y);
5285 else if (SCM_BIGP (y))
5286 xy->y = scm_i_big2dbl (y);
5287 else if (SCM_REALP (y))
5288 xy->y = SCM_REAL_VALUE (y);
5289 else if (SCM_FRACTIONP (y))
5290 xy->y = scm_i_fraction2double (y);
5291 else
5292 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5293 }
5294
5295
5296 SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5297 (SCM x, SCM y),
5298 "Return @var{x} raised to the power of @var{y}. This\n"
5299 "procedure does not accept complex arguments.")
5300 #define FUNC_NAME s_scm_sys_expt
5301 {
5302 struct dpair xy;
5303 scm_two_doubles (x, y, FUNC_NAME, &xy);
5304 return scm_from_double (pow (xy.x, xy.y));
5305 }
5306 #undef FUNC_NAME
5307
5308
5309 SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5310 (SCM x, SCM y),
5311 "Return the arc tangent of the two arguments @var{x} and\n"
5312 "@var{y}. This is similar to calculating the arc tangent of\n"
5313 "@var{x} / @var{y}, except that the signs of both arguments\n"
5314 "are used to determine the quadrant of the result. This\n"
5315 "procedure does not accept complex arguments.")
5316 #define FUNC_NAME s_scm_sys_atan2
5317 {
5318 struct dpair xy;
5319 scm_two_doubles (x, y, FUNC_NAME, &xy);
5320 return scm_from_double (atan2 (xy.x, xy.y));
5321 }
5322 #undef FUNC_NAME
5323
5324 SCM
5325 scm_c_make_rectangular (double re, double im)
5326 {
5327 if (im == 0.0)
5328 return scm_from_double (re);
5329 else
5330 {
5331 SCM z;
5332 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5333 "complex"));
5334 SCM_COMPLEX_REAL (z) = re;
5335 SCM_COMPLEX_IMAG (z) = im;
5336 return z;
5337 }
5338 }
5339
5340 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5341 (SCM real_part, SCM imaginary_part),
5342 "Return a complex number constructed of the given @var{real-part} "
5343 "and @var{imaginary-part} parts.")
5344 #define FUNC_NAME s_scm_make_rectangular
5345 {
5346 struct dpair xy;
5347 scm_two_doubles (real_part, imaginary_part, FUNC_NAME, &xy);
5348 return scm_c_make_rectangular (xy.x, xy.y);
5349 }
5350 #undef FUNC_NAME
5351
5352 SCM
5353 scm_c_make_polar (double mag, double ang)
5354 {
5355 double s, c;
5356 #if HAVE_SINCOS
5357 sincos (ang, &s, &c);
5358 #else
5359 s = sin (ang);
5360 c = cos (ang);
5361 #endif
5362 return scm_c_make_rectangular (mag * c, mag * s);
5363 }
5364
5365 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5366 (SCM x, SCM y),
5367 "Return the complex number @var{x} * e^(i * @var{y}).")
5368 #define FUNC_NAME s_scm_make_polar
5369 {
5370 struct dpair xy;
5371 scm_two_doubles (x, y, FUNC_NAME, &xy);
5372 return scm_c_make_polar (xy.x, xy.y);
5373 }
5374 #undef FUNC_NAME
5375
5376
5377 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5378 /* "Return the real part of the number @var{z}."
5379 */
5380 SCM
5381 scm_real_part (SCM z)
5382 {
5383 if (SCM_I_INUMP (z))
5384 return z;
5385 else if (SCM_BIGP (z))
5386 return z;
5387 else if (SCM_REALP (z))
5388 return z;
5389 else if (SCM_COMPLEXP (z))
5390 return scm_from_double (SCM_COMPLEX_REAL (z));
5391 else if (SCM_FRACTIONP (z))
5392 return z;
5393 else
5394 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5395 }
5396
5397
5398 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5399 /* "Return the imaginary part of the number @var{z}."
5400 */
5401 SCM
5402 scm_imag_part (SCM z)
5403 {
5404 if (SCM_I_INUMP (z))
5405 return SCM_INUM0;
5406 else if (SCM_BIGP (z))
5407 return SCM_INUM0;
5408 else if (SCM_REALP (z))
5409 return scm_flo0;
5410 else if (SCM_COMPLEXP (z))
5411 return scm_from_double (SCM_COMPLEX_IMAG (z));
5412 else if (SCM_FRACTIONP (z))
5413 return SCM_INUM0;
5414 else
5415 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5416 }
5417
5418 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5419 /* "Return the numerator of the number @var{z}."
5420 */
5421 SCM
5422 scm_numerator (SCM z)
5423 {
5424 if (SCM_I_INUMP (z))
5425 return z;
5426 else if (SCM_BIGP (z))
5427 return z;
5428 else if (SCM_FRACTIONP (z))
5429 return SCM_FRACTION_NUMERATOR (z);
5430 else if (SCM_REALP (z))
5431 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5432 else
5433 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5434 }
5435
5436
5437 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5438 /* "Return the denominator of the number @var{z}."
5439 */
5440 SCM
5441 scm_denominator (SCM z)
5442 {
5443 if (SCM_I_INUMP (z))
5444 return SCM_I_MAKINUM (1);
5445 else if (SCM_BIGP (z))
5446 return SCM_I_MAKINUM (1);
5447 else if (SCM_FRACTIONP (z))
5448 return SCM_FRACTION_DENOMINATOR (z);
5449 else if (SCM_REALP (z))
5450 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5451 else
5452 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5453 }
5454
5455 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5456 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5457 * "@code{abs} for real arguments, but also allows complex numbers."
5458 */
5459 SCM
5460 scm_magnitude (SCM z)
5461 {
5462 if (SCM_I_INUMP (z))
5463 {
5464 long int zz = SCM_I_INUM (z);
5465 if (zz >= 0)
5466 return z;
5467 else if (SCM_POSFIXABLE (-zz))
5468 return SCM_I_MAKINUM (-zz);
5469 else
5470 return scm_i_long2big (-zz);
5471 }
5472 else if (SCM_BIGP (z))
5473 {
5474 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5475 scm_remember_upto_here_1 (z);
5476 if (sgn < 0)
5477 return scm_i_clonebig (z, 0);
5478 else
5479 return z;
5480 }
5481 else if (SCM_REALP (z))
5482 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5483 else if (SCM_COMPLEXP (z))
5484 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5485 else if (SCM_FRACTIONP (z))
5486 {
5487 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5488 return z;
5489 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5490 SCM_FRACTION_DENOMINATOR (z));
5491 }
5492 else
5493 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5494 }
5495
5496
5497 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5498 /* "Return the angle of the complex number @var{z}."
5499 */
5500 SCM
5501 scm_angle (SCM z)
5502 {
5503 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5504 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5505 But if atan2 follows the floating point rounding mode, then the value
5506 is not a constant. Maybe it'd be close enough though. */
5507 if (SCM_I_INUMP (z))
5508 {
5509 if (SCM_I_INUM (z) >= 0)
5510 return scm_flo0;
5511 else
5512 return scm_from_double (atan2 (0.0, -1.0));
5513 }
5514 else if (SCM_BIGP (z))
5515 {
5516 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5517 scm_remember_upto_here_1 (z);
5518 if (sgn < 0)
5519 return scm_from_double (atan2 (0.0, -1.0));
5520 else
5521 return scm_flo0;
5522 }
5523 else if (SCM_REALP (z))
5524 {
5525 if (SCM_REAL_VALUE (z) >= 0)
5526 return scm_flo0;
5527 else
5528 return scm_from_double (atan2 (0.0, -1.0));
5529 }
5530 else if (SCM_COMPLEXP (z))
5531 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5532 else if (SCM_FRACTIONP (z))
5533 {
5534 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5535 return scm_flo0;
5536 else return scm_from_double (atan2 (0.0, -1.0));
5537 }
5538 else
5539 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5540 }
5541
5542
5543 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5544 /* Convert the number @var{x} to its inexact representation.\n"
5545 */
5546 SCM
5547 scm_exact_to_inexact (SCM z)
5548 {
5549 if (SCM_I_INUMP (z))
5550 return scm_from_double ((double) SCM_I_INUM (z));
5551 else if (SCM_BIGP (z))
5552 return scm_from_double (scm_i_big2dbl (z));
5553 else if (SCM_FRACTIONP (z))
5554 return scm_from_double (scm_i_fraction2double (z));
5555 else if (SCM_INEXACTP (z))
5556 return z;
5557 else
5558 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5559 }
5560
5561
5562 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5563 (SCM z),
5564 "Return an exact number that is numerically closest to @var{z}.")
5565 #define FUNC_NAME s_scm_inexact_to_exact
5566 {
5567 if (SCM_I_INUMP (z))
5568 return z;
5569 else if (SCM_BIGP (z))
5570 return z;
5571 else if (SCM_REALP (z))
5572 {
5573 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5574 SCM_OUT_OF_RANGE (1, z);
5575 else
5576 {
5577 mpq_t frac;
5578 SCM q;
5579
5580 mpq_init (frac);
5581 mpq_set_d (frac, SCM_REAL_VALUE (z));
5582 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5583 scm_i_mpz2num (mpq_denref (frac)));
5584
5585 /* When scm_i_make_ratio throws, we leak the memory allocated
5586 for frac...
5587 */
5588 mpq_clear (frac);
5589 return q;
5590 }
5591 }
5592 else if (SCM_FRACTIONP (z))
5593 return z;
5594 else
5595 SCM_WRONG_TYPE_ARG (1, z);
5596 }
5597 #undef FUNC_NAME
5598
5599 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5600 (SCM x, SCM err),
5601 "Return an exact number that is within @var{err} of @var{x}.")
5602 #define FUNC_NAME s_scm_rationalize
5603 {
5604 if (SCM_I_INUMP (x))
5605 return x;
5606 else if (SCM_BIGP (x))
5607 return x;
5608 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5609 {
5610 /* Use continued fractions to find closest ratio. All
5611 arithmetic is done with exact numbers.
5612 */
5613
5614 SCM ex = scm_inexact_to_exact (x);
5615 SCM int_part = scm_floor (ex);
5616 SCM tt = SCM_I_MAKINUM (1);
5617 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5618 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5619 SCM rx;
5620 int i = 0;
5621
5622 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5623 return ex;
5624
5625 ex = scm_difference (ex, int_part); /* x = x-int_part */
5626 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5627
5628 /* We stop after a million iterations just to be absolutely sure
5629 that we don't go into an infinite loop. The process normally
5630 converges after less than a dozen iterations.
5631 */
5632
5633 err = scm_abs (err);
5634 while (++i < 1000000)
5635 {
5636 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5637 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5638 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5639 scm_is_false
5640 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5641 err))) /* abs(x-a/b) <= err */
5642 {
5643 SCM res = scm_sum (int_part, scm_divide (a, b));
5644 if (scm_is_false (scm_exact_p (x))
5645 || scm_is_false (scm_exact_p (err)))
5646 return scm_exact_to_inexact (res);
5647 else
5648 return res;
5649 }
5650 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5651 SCM_UNDEFINED);
5652 tt = scm_floor (rx); /* tt = floor (rx) */
5653 a2 = a1;
5654 b2 = b1;
5655 a1 = a;
5656 b1 = b;
5657 }
5658 scm_num_overflow (s_scm_rationalize);
5659 }
5660 else
5661 SCM_WRONG_TYPE_ARG (1, x);
5662 }
5663 #undef FUNC_NAME
5664
5665 /* conversion functions */
5666
5667 int
5668 scm_is_integer (SCM val)
5669 {
5670 return scm_is_true (scm_integer_p (val));
5671 }
5672
5673 int
5674 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5675 {
5676 if (SCM_I_INUMP (val))
5677 {
5678 scm_t_signed_bits n = SCM_I_INUM (val);
5679 return n >= min && n <= max;
5680 }
5681 else if (SCM_BIGP (val))
5682 {
5683 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5684 return 0;
5685 else if (min >= LONG_MIN && max <= LONG_MAX)
5686 {
5687 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5688 {
5689 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5690 return n >= min && n <= max;
5691 }
5692 else
5693 return 0;
5694 }
5695 else
5696 {
5697 scm_t_intmax n;
5698 size_t count;
5699
5700 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5701 > CHAR_BIT*sizeof (scm_t_uintmax))
5702 return 0;
5703
5704 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5705 SCM_I_BIG_MPZ (val));
5706
5707 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
5708 {
5709 if (n < 0)
5710 return 0;
5711 }
5712 else
5713 {
5714 n = -n;
5715 if (n >= 0)
5716 return 0;
5717 }
5718
5719 return n >= min && n <= max;
5720 }
5721 }
5722 else
5723 return 0;
5724 }
5725
5726 int
5727 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5728 {
5729 if (SCM_I_INUMP (val))
5730 {
5731 scm_t_signed_bits n = SCM_I_INUM (val);
5732 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5733 }
5734 else if (SCM_BIGP (val))
5735 {
5736 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5737 return 0;
5738 else if (max <= ULONG_MAX)
5739 {
5740 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5741 {
5742 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5743 return n >= min && n <= max;
5744 }
5745 else
5746 return 0;
5747 }
5748 else
5749 {
5750 scm_t_uintmax n;
5751 size_t count;
5752
5753 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5754 return 0;
5755
5756 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5757 > CHAR_BIT*sizeof (scm_t_uintmax))
5758 return 0;
5759
5760 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5761 SCM_I_BIG_MPZ (val));
5762
5763 return n >= min && n <= max;
5764 }
5765 }
5766 else
5767 return 0;
5768 }
5769
5770 static void
5771 scm_i_range_error (SCM bad_val, SCM min, SCM max)
5772 {
5773 scm_error (scm_out_of_range_key,
5774 NULL,
5775 "Value out of range ~S to ~S: ~S",
5776 scm_list_3 (min, max, bad_val),
5777 scm_list_1 (bad_val));
5778 }
5779
5780 #define TYPE scm_t_intmax
5781 #define TYPE_MIN min
5782 #define TYPE_MAX max
5783 #define SIZEOF_TYPE 0
5784 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5785 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5786 #include "libguile/conv-integer.i.c"
5787
5788 #define TYPE scm_t_uintmax
5789 #define TYPE_MIN min
5790 #define TYPE_MAX max
5791 #define SIZEOF_TYPE 0
5792 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5793 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5794 #include "libguile/conv-uinteger.i.c"
5795
5796 #define TYPE scm_t_int8
5797 #define TYPE_MIN SCM_T_INT8_MIN
5798 #define TYPE_MAX SCM_T_INT8_MAX
5799 #define SIZEOF_TYPE 1
5800 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5801 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5802 #include "libguile/conv-integer.i.c"
5803
5804 #define TYPE scm_t_uint8
5805 #define TYPE_MIN 0
5806 #define TYPE_MAX SCM_T_UINT8_MAX
5807 #define SIZEOF_TYPE 1
5808 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5809 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5810 #include "libguile/conv-uinteger.i.c"
5811
5812 #define TYPE scm_t_int16
5813 #define TYPE_MIN SCM_T_INT16_MIN
5814 #define TYPE_MAX SCM_T_INT16_MAX
5815 #define SIZEOF_TYPE 2
5816 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5817 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5818 #include "libguile/conv-integer.i.c"
5819
5820 #define TYPE scm_t_uint16
5821 #define TYPE_MIN 0
5822 #define TYPE_MAX SCM_T_UINT16_MAX
5823 #define SIZEOF_TYPE 2
5824 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5825 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5826 #include "libguile/conv-uinteger.i.c"
5827
5828 #define TYPE scm_t_int32
5829 #define TYPE_MIN SCM_T_INT32_MIN
5830 #define TYPE_MAX SCM_T_INT32_MAX
5831 #define SIZEOF_TYPE 4
5832 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5833 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5834 #include "libguile/conv-integer.i.c"
5835
5836 #define TYPE scm_t_uint32
5837 #define TYPE_MIN 0
5838 #define TYPE_MAX SCM_T_UINT32_MAX
5839 #define SIZEOF_TYPE 4
5840 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5841 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5842 #include "libguile/conv-uinteger.i.c"
5843
5844 #if SCM_HAVE_T_INT64
5845
5846 #define TYPE scm_t_int64
5847 #define TYPE_MIN SCM_T_INT64_MIN
5848 #define TYPE_MAX SCM_T_INT64_MAX
5849 #define SIZEOF_TYPE 8
5850 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5851 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5852 #include "libguile/conv-integer.i.c"
5853
5854 #define TYPE scm_t_uint64
5855 #define TYPE_MIN 0
5856 #define TYPE_MAX SCM_T_UINT64_MAX
5857 #define SIZEOF_TYPE 8
5858 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5859 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5860 #include "libguile/conv-uinteger.i.c"
5861
5862 #endif
5863
5864 void
5865 scm_to_mpz (SCM val, mpz_t rop)
5866 {
5867 if (SCM_I_INUMP (val))
5868 mpz_set_si (rop, SCM_I_INUM (val));
5869 else if (SCM_BIGP (val))
5870 mpz_set (rop, SCM_I_BIG_MPZ (val));
5871 else
5872 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
5873 }
5874
5875 SCM
5876 scm_from_mpz (mpz_t val)
5877 {
5878 return scm_i_mpz2num (val);
5879 }
5880
5881 int
5882 scm_is_real (SCM val)
5883 {
5884 return scm_is_true (scm_real_p (val));
5885 }
5886
5887 int
5888 scm_is_rational (SCM val)
5889 {
5890 return scm_is_true (scm_rational_p (val));
5891 }
5892
5893 double
5894 scm_to_double (SCM val)
5895 {
5896 if (SCM_I_INUMP (val))
5897 return SCM_I_INUM (val);
5898 else if (SCM_BIGP (val))
5899 return scm_i_big2dbl (val);
5900 else if (SCM_FRACTIONP (val))
5901 return scm_i_fraction2double (val);
5902 else if (SCM_REALP (val))
5903 return SCM_REAL_VALUE (val);
5904 else
5905 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
5906 }
5907
5908 SCM
5909 scm_from_double (double val)
5910 {
5911 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5912 SCM_REAL_VALUE (z) = val;
5913 return z;
5914 }
5915
5916 #if SCM_ENABLE_DISCOURAGED == 1
5917
5918 float
5919 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5920 {
5921 if (SCM_BIGP (num))
5922 {
5923 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5924 if (!xisinf (res))
5925 return res;
5926 else
5927 scm_out_of_range (NULL, num);
5928 }
5929 else
5930 return scm_to_double (num);
5931 }
5932
5933 double
5934 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5935 {
5936 if (SCM_BIGP (num))
5937 {
5938 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5939 if (!xisinf (res))
5940 return res;
5941 else
5942 scm_out_of_range (NULL, num);
5943 }
5944 else
5945 return scm_to_double (num);
5946 }
5947
5948 #endif
5949
5950 int
5951 scm_is_complex (SCM val)
5952 {
5953 return scm_is_true (scm_complex_p (val));
5954 }
5955
5956 double
5957 scm_c_real_part (SCM z)
5958 {
5959 if (SCM_COMPLEXP (z))
5960 return SCM_COMPLEX_REAL (z);
5961 else
5962 {
5963 /* Use the scm_real_part to get proper error checking and
5964 dispatching.
5965 */
5966 return scm_to_double (scm_real_part (z));
5967 }
5968 }
5969
5970 double
5971 scm_c_imag_part (SCM z)
5972 {
5973 if (SCM_COMPLEXP (z))
5974 return SCM_COMPLEX_IMAG (z);
5975 else
5976 {
5977 /* Use the scm_imag_part to get proper error checking and
5978 dispatching. The result will almost always be 0.0, but not
5979 always.
5980 */
5981 return scm_to_double (scm_imag_part (z));
5982 }
5983 }
5984
5985 double
5986 scm_c_magnitude (SCM z)
5987 {
5988 return scm_to_double (scm_magnitude (z));
5989 }
5990
5991 double
5992 scm_c_angle (SCM z)
5993 {
5994 return scm_to_double (scm_angle (z));
5995 }
5996
5997 int
5998 scm_is_number (SCM z)
5999 {
6000 return scm_is_true (scm_number_p (z));
6001 }
6002
6003
6004 /* In the following functions we dispatch to the real-arg funcs like log()
6005 when we know the arg is real, instead of just handing everything to
6006 clog() for instance. This is in case clog() doesn't optimize for a
6007 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6008 well use it to go straight to the applicable C func. */
6009
6010 SCM_DEFINE (scm_log, "log", 1, 0, 0,
6011 (SCM z),
6012 "Return the natural logarithm of @var{z}.")
6013 #define FUNC_NAME s_scm_log
6014 {
6015 if (SCM_COMPLEXP (z))
6016 {
6017 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
6018 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6019 #else
6020 double re = SCM_COMPLEX_REAL (z);
6021 double im = SCM_COMPLEX_IMAG (z);
6022 return scm_c_make_rectangular (log (hypot (re, im)),
6023 atan2 (im, re));
6024 #endif
6025 }
6026 else
6027 {
6028 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6029 although the value itself overflows. */
6030 double re = scm_to_double (z);
6031 double l = log (fabs (re));
6032 if (re >= 0.0)
6033 return scm_from_double (l);
6034 else
6035 return scm_c_make_rectangular (l, M_PI);
6036 }
6037 }
6038 #undef FUNC_NAME
6039
6040
6041 SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6042 (SCM z),
6043 "Return the base 10 logarithm of @var{z}.")
6044 #define FUNC_NAME s_scm_log10
6045 {
6046 if (SCM_COMPLEXP (z))
6047 {
6048 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6049 clog() and a multiply by M_LOG10E, rather than the fallback
6050 log10+hypot+atan2.) */
6051 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
6052 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6053 #else
6054 double re = SCM_COMPLEX_REAL (z);
6055 double im = SCM_COMPLEX_IMAG (z);
6056 return scm_c_make_rectangular (log10 (hypot (re, im)),
6057 M_LOG10E * atan2 (im, re));
6058 #endif
6059 }
6060 else
6061 {
6062 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6063 although the value itself overflows. */
6064 double re = scm_to_double (z);
6065 double l = log10 (fabs (re));
6066 if (re >= 0.0)
6067 return scm_from_double (l);
6068 else
6069 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6070 }
6071 }
6072 #undef FUNC_NAME
6073
6074
6075 SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6076 (SCM z),
6077 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6078 "base of natural logarithms (2.71828@dots{}).")
6079 #define FUNC_NAME s_scm_exp
6080 {
6081 if (SCM_COMPLEXP (z))
6082 {
6083 #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
6084 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6085 #else
6086 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6087 SCM_COMPLEX_IMAG (z));
6088 #endif
6089 }
6090 else
6091 {
6092 /* When z is a negative bignum the conversion to double overflows,
6093 giving -infinity, but that's ok, the exp is still 0.0. */
6094 return scm_from_double (exp (scm_to_double (z)));
6095 }
6096 }
6097 #undef FUNC_NAME
6098
6099
6100 SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6101 (SCM x),
6102 "Return the square root of @var{z}. Of the two possible roots\n"
6103 "(positive and negative), the one with the a positive real part\n"
6104 "is returned, or if that's zero then a positive imaginary part.\n"
6105 "Thus,\n"
6106 "\n"
6107 "@example\n"
6108 "(sqrt 9.0) @result{} 3.0\n"
6109 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6110 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6111 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6112 "@end example")
6113 #define FUNC_NAME s_scm_sqrt
6114 {
6115 if (SCM_COMPLEXP (x))
6116 {
6117 #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
6118 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6119 #else
6120 double re = SCM_COMPLEX_REAL (x);
6121 double im = SCM_COMPLEX_IMAG (x);
6122 return scm_c_make_polar (sqrt (hypot (re, im)),
6123 0.5 * atan2 (im, re));
6124 #endif
6125 }
6126 else
6127 {
6128 double xx = scm_to_double (x);
6129 if (xx < 0)
6130 return scm_c_make_rectangular (0.0, sqrt (-xx));
6131 else
6132 return scm_from_double (sqrt (xx));
6133 }
6134 }
6135 #undef FUNC_NAME
6136
6137
6138
6139 void
6140 scm_init_numbers ()
6141 {
6142 int i;
6143
6144 mpz_init_set_si (z_negative_one, -1);
6145
6146 /* It may be possible to tune the performance of some algorithms by using
6147 * the following constants to avoid the creation of bignums. Please, before
6148 * using these values, remember the two rules of program optimization:
6149 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
6150 scm_c_define ("most-positive-fixnum",
6151 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
6152 scm_c_define ("most-negative-fixnum",
6153 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
6154
6155 scm_add_feature ("complex");
6156 scm_add_feature ("inexact");
6157 scm_flo0 = scm_from_double (0.0);
6158
6159 /* determine floating point precision */
6160 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
6161 {
6162 init_dblprec(&scm_dblprec[i-2],i);
6163 init_fx_radix(fx_per_radix[i-2],i);
6164 }
6165 #ifdef DBL_DIG
6166 /* hard code precision for base 10 if the preprocessor tells us to... */
6167 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6168 #endif
6169
6170 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
6171 SCM_I_MAKINUM (2)));
6172 #include "libguile/numbers.x"
6173 }
6174
6175 /*
6176 Local Variables:
6177 c-file-style: "gnu"
6178 End:
6179 */