Merge remote-tracking branch 'local-2.0/stable-2.0'
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19 /* #define DEBUGINFO */
20
21 #ifdef HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #include "libguile/gen-scmconfig.h"
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include <string.h>
30 #include <stdlib.h>
31 #include <math.h>
32
33 #ifdef __ia64__
34 #include <ucontext.h>
35 extern unsigned long * __libc_ia64_register_backing_store_base;
36 #endif
37
38 #include "libguile/_scm.h"
39 #include "libguile/eval.h"
40 #include "libguile/stime.h"
41 #include "libguile/stackchk.h"
42 #include "libguile/struct.h"
43 #include "libguile/smob.h"
44 #include "libguile/arrays.h"
45 #include "libguile/async.h"
46 #include "libguile/ports.h"
47 #include "libguile/root.h"
48 #include "libguile/strings.h"
49 #include "libguile/vectors.h"
50 #include "libguile/hashtab.h"
51 #include "libguile/tags.h"
52
53 #include "libguile/private-gc.h"
54 #include "libguile/validate.h"
55 #include "libguile/deprecation.h"
56 #include "libguile/gc.h"
57 #include "libguile/dynwind.h"
58
59 #include "libguile/bdw-gc.h"
60
61 /* For GC_set_start_callback. */
62 #include <gc/gc_mark.h>
63
64 #ifdef GUILE_DEBUG_MALLOC
65 #include "libguile/debug-malloc.h"
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #endif
71
72 /* Set this to != 0 if every cell that is accessed shall be checked:
73 */
74 int scm_debug_cell_accesses_p = 0;
75 int scm_expensive_debug_cell_accesses_p = 0;
76
77 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
78 * the number of cell accesses after which a gc shall be called.
79 */
80 int scm_debug_cells_gc_interval = 0;
81
82 /* Hash table that keeps a reference to objects the user wants to protect from
83 garbage collection. */
84 static SCM scm_protects;
85
86
87 #if (SCM_DEBUG_CELL_ACCESSES == 1)
88
89
90 /*
91
92 Assert that the given object is a valid reference to a valid cell. This
93 test involves to determine whether the object is a cell pointer, whether
94 this pointer actually points into a heap segment and whether the cell
95 pointed to is not a free cell. Further, additional garbage collections may
96 get executed after a user defined number of cell accesses. This helps to
97 find places in the C code where references are dropped for extremely short
98 periods.
99
100 */
101 void
102 scm_i_expensive_validation_check (SCM cell)
103 {
104 /* If desired, perform additional garbage collections after a user
105 * defined number of cell accesses.
106 */
107 if (scm_debug_cells_gc_interval)
108 {
109 static unsigned int counter = 0;
110
111 if (counter != 0)
112 {
113 --counter;
114 }
115 else
116 {
117 counter = scm_debug_cells_gc_interval;
118 scm_gc ();
119 }
120 }
121 }
122
123 /* Whether cell validation is already running. */
124 static int scm_i_cell_validation_already_running = 0;
125
126 void
127 scm_assert_cell_valid (SCM cell)
128 {
129 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
130 {
131 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
132
133 /*
134 During GC, no user-code should be run, and the guile core
135 should use non-protected accessors.
136 */
137 if (scm_gc_running_p)
138 return;
139
140 /*
141 Only scm_in_heap_p and rescanning the heap is wildly
142 expensive.
143 */
144 if (scm_expensive_debug_cell_accesses_p)
145 scm_i_expensive_validation_check (cell);
146
147 scm_i_cell_validation_already_running = 0; /* re-enable */
148 }
149 }
150
151
152
153 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
154 (SCM flag),
155 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
156 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
157 "but no additional calls to garbage collection are issued.\n"
158 "If @var{flag} is a number, strict cell access checking is enabled,\n"
159 "with an additional garbage collection after the given\n"
160 "number of cell accesses.\n"
161 "This procedure only exists when the compile-time flag\n"
162 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
163 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
164 {
165 if (scm_is_false (flag))
166 {
167 scm_debug_cell_accesses_p = 0;
168 }
169 else if (scm_is_eq (flag, SCM_BOOL_T))
170 {
171 scm_debug_cells_gc_interval = 0;
172 scm_debug_cell_accesses_p = 1;
173 scm_expensive_debug_cell_accesses_p = 0;
174 }
175 else
176 {
177 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
178 scm_debug_cell_accesses_p = 1;
179 scm_expensive_debug_cell_accesses_p = 1;
180 }
181 return SCM_UNSPECIFIED;
182 }
183 #undef FUNC_NAME
184
185
186 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
187
188 \f
189
190 /* Compatibility. */
191
192 #ifndef HAVE_GC_GET_HEAP_USAGE_SAFE
193 static void
194 GC_get_heap_usage_safe (GC_word *pheap_size, GC_word *pfree_bytes,
195 GC_word *punmapped_bytes, GC_word *pbytes_since_gc,
196 GC_word *ptotal_bytes)
197 {
198 *pheap_size = GC_get_heap_size ();
199 *pfree_bytes = GC_get_free_bytes ();
200 #ifdef HAVE_GC_GET_UNMAPPED_BYTES
201 *punmapped_bytes = GC_get_unmapped_bytes ();
202 #else
203 *punmapped_bytes = 0;
204 #endif
205 *pbytes_since_gc = GC_get_bytes_since_gc ();
206 *ptotal_bytes = GC_get_total_bytes ();
207 }
208 #endif
209
210 #ifndef HAVE_GC_GET_FREE_SPACE_DIVISOR
211 static GC_word
212 GC_get_free_space_divisor (void)
213 {
214 return GC_free_space_divisor;
215 }
216 #endif
217
218 \f
219 /* Hooks. */
220 scm_t_c_hook scm_before_gc_c_hook;
221 scm_t_c_hook scm_before_mark_c_hook;
222 scm_t_c_hook scm_before_sweep_c_hook;
223 scm_t_c_hook scm_after_sweep_c_hook;
224 scm_t_c_hook scm_after_gc_c_hook;
225
226
227 static void
228 run_before_gc_c_hook (void)
229 {
230 if (!SCM_I_CURRENT_THREAD)
231 /* GC while a thread is spinning up; punt. */
232 return;
233
234 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
235 }
236
237
238 /* GC Statistics Keeping
239 */
240 unsigned long scm_gc_ports_collected = 0;
241 static long gc_time_taken = 0;
242 static long gc_start_time = 0;
243
244 static unsigned long free_space_divisor;
245 static unsigned long minimum_free_space_divisor;
246 static double target_free_space_divisor;
247
248 static unsigned long protected_obj_count = 0;
249
250
251 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
252 SCM_SYMBOL (sym_heap_size, "heap-size");
253 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
254 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
255 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
256 SCM_SYMBOL (sym_protected_objects, "protected-objects");
257 SCM_SYMBOL (sym_times, "gc-times");
258
259
260 /* {Scheme Interface to GC}
261 */
262 static SCM
263 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
264 {
265 if (scm_is_integer (key))
266 {
267 int c_tag = scm_to_int (key);
268
269 char const * name = scm_i_tag_name (c_tag);
270 if (name != NULL)
271 {
272 key = scm_from_locale_string (name);
273 }
274 else
275 {
276 char s[100];
277 sprintf (s, "tag %d", c_tag);
278 key = scm_from_locale_string (s);
279 }
280 }
281
282 return scm_cons (scm_cons (key, val), acc);
283 }
284
285 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
286 (),
287 "Return an alist of statistics of the current live objects. ")
288 #define FUNC_NAME s_scm_gc_live_object_stats
289 {
290 SCM tab = scm_make_hash_table (scm_from_int (57));
291 SCM alist;
292
293 alist
294 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
295
296 return alist;
297 }
298 #undef FUNC_NAME
299
300 extern int scm_gc_malloc_yield_percentage;
301 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
302 (),
303 "Return an association list of statistics about Guile's current\n"
304 "use of storage.\n")
305 #define FUNC_NAME s_scm_gc_stats
306 {
307 SCM answer;
308 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
309 size_t gc_times;
310
311 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
312 &bytes_since_gc, &total_bytes);
313 gc_times = GC_gc_no;
314
315 answer =
316 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
317 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
318 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
319 scm_cons (sym_heap_total_allocated,
320 scm_from_size_t (total_bytes)),
321 scm_cons (sym_heap_allocated_since_gc,
322 scm_from_size_t (bytes_since_gc)),
323 scm_cons (sym_protected_objects,
324 scm_from_ulong (protected_obj_count)),
325 scm_cons (sym_times, scm_from_size_t (gc_times)),
326 SCM_UNDEFINED);
327
328 return answer;
329 }
330 #undef FUNC_NAME
331
332
333 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
334 (void),
335 "Dump information about the garbage collector's internal data "
336 "structures and memory usage to the standard output.")
337 #define FUNC_NAME s_scm_gc_dump
338 {
339 GC_dump ();
340
341 return SCM_UNSPECIFIED;
342 }
343 #undef FUNC_NAME
344
345
346 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
347 (SCM obj),
348 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
349 "returned by this function for @var{obj}")
350 #define FUNC_NAME s_scm_object_address
351 {
352 return scm_from_ulong (SCM_UNPACK (obj));
353 }
354 #undef FUNC_NAME
355
356
357 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
358 (),
359 "Disables the garbage collector. Nested calls are permitted. "
360 "GC is re-enabled once @code{gc-enable} has been called the "
361 "same number of times @code{gc-disable} was called.")
362 #define FUNC_NAME s_scm_gc_disable
363 {
364 GC_disable ();
365 return SCM_UNSPECIFIED;
366 }
367 #undef FUNC_NAME
368
369 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
370 (),
371 "Enables the garbage collector.")
372 #define FUNC_NAME s_scm_gc_enable
373 {
374 GC_enable ();
375 return SCM_UNSPECIFIED;
376 }
377 #undef FUNC_NAME
378
379
380 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
381 (),
382 "Scans all of SCM objects and reclaims for further use those that are\n"
383 "no longer accessible.")
384 #define FUNC_NAME s_scm_gc
385 {
386 scm_i_gc ("call");
387 /* If you're calling scm_gc(), you probably want synchronous
388 finalization. */
389 GC_invoke_finalizers ();
390 return SCM_UNSPECIFIED;
391 }
392 #undef FUNC_NAME
393
394 void
395 scm_i_gc (const char *what)
396 {
397 #ifndef HAVE_GC_SET_START_CALLBACK
398 run_before_gc_c_hook ();
399 #endif
400 GC_gcollect ();
401 }
402
403
404 \f
405 /* {GC Protection Helper Functions}
406 */
407
408
409 /*
410 * If within a function you need to protect one or more scheme objects from
411 * garbage collection, pass them as parameters to one of the
412 * scm_remember_upto_here* functions below. These functions don't do
413 * anything, but since the compiler does not know that they are actually
414 * no-ops, it will generate code that calls these functions with the given
415 * parameters. Therefore, you can be sure that the compiler will keep those
416 * scheme values alive (on the stack or in a register) up to the point where
417 * scm_remember_upto_here* is called. In other words, place the call to
418 * scm_remember_upto_here* _behind_ the last code in your function, that
419 * depends on the scheme object to exist.
420 *
421 * Example: We want to make sure that the string object str does not get
422 * garbage collected during the execution of 'some_function' in the code
423 * below, because otherwise the characters belonging to str would be freed and
424 * 'some_function' might access freed memory. To make sure that the compiler
425 * keeps str alive on the stack or in a register such that it is visible to
426 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
427 * call to 'some_function'. Note that this would not be necessary if str was
428 * used anyway after the call to 'some_function'.
429 * char *chars = scm_i_string_chars (str);
430 * some_function (chars);
431 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
432 */
433
434 /* Remove any macro versions of these while defining the functions.
435 Functions are always included in the library, for upward binary
436 compatibility and in case combinations of GCC and non-GCC are used. */
437 #undef scm_remember_upto_here_1
438 #undef scm_remember_upto_here_2
439
440 void
441 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
442 {
443 /* Empty. Protects a single object from garbage collection. */
444 }
445
446 void
447 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
448 {
449 /* Empty. Protects two objects from garbage collection. */
450 }
451
452 void
453 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
454 {
455 /* Empty. Protects any number of objects from garbage collection. */
456 }
457
458 /*
459 These crazy functions prevent garbage collection
460 of arguments after the first argument by
461 ensuring they remain live throughout the
462 function because they are used in the last
463 line of the code block.
464 It'd be better to have a nice compiler hint to
465 aid the conservative stack-scanning GC. --03/09/00 gjb */
466 SCM
467 scm_return_first (SCM elt, ...)
468 {
469 return elt;
470 }
471
472 int
473 scm_return_first_int (int i, ...)
474 {
475 return i;
476 }
477
478
479 SCM
480 scm_permanent_object (SCM obj)
481 {
482 return (scm_gc_protect_object (obj));
483 }
484
485
486 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
487 other references are dropped, until the object is unprotected by calling
488 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
489 i. e. it is possible to protect the same object several times, but it is
490 necessary to unprotect the object the same number of times to actually get
491 the object unprotected. It is an error to unprotect an object more often
492 than it has been protected before. The function scm_protect_object returns
493 OBJ.
494 */
495
496 /* Implementation note: For every object X, there is a counter which
497 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
498 */
499
500
501
502 SCM
503 scm_gc_protect_object (SCM obj)
504 {
505 SCM handle;
506
507 /* This critical section barrier will be replaced by a mutex. */
508 /* njrev: Indeed; if my comment above is correct, there is the same
509 critsec/mutex inconsistency here. */
510 SCM_CRITICAL_SECTION_START;
511
512 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
513 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
514
515 protected_obj_count ++;
516
517 SCM_CRITICAL_SECTION_END;
518
519 return obj;
520 }
521
522
523 /* Remove any protection for OBJ established by a prior call to
524 scm_protect_object. This function returns OBJ.
525
526 See scm_protect_object for more information. */
527 SCM
528 scm_gc_unprotect_object (SCM obj)
529 {
530 SCM handle;
531
532 /* This critical section barrier will be replaced by a mutex. */
533 /* njrev: and again. */
534 SCM_CRITICAL_SECTION_START;
535
536 if (scm_gc_running_p)
537 {
538 fprintf (stderr, "scm_unprotect_object called during GC.\n");
539 abort ();
540 }
541
542 handle = scm_hashq_get_handle (scm_protects, obj);
543
544 if (scm_is_false (handle))
545 {
546 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
547 abort ();
548 }
549 else
550 {
551 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
552 if (scm_is_eq (count, scm_from_int (0)))
553 scm_hashq_remove_x (scm_protects, obj);
554 else
555 SCM_SETCDR (handle, count);
556 }
557 protected_obj_count --;
558
559 SCM_CRITICAL_SECTION_END;
560
561 return obj;
562 }
563
564 void
565 scm_gc_register_root (SCM *p)
566 {
567 /* Nothing. */
568 }
569
570 void
571 scm_gc_unregister_root (SCM *p)
572 {
573 /* Nothing. */
574 }
575
576 void
577 scm_gc_register_roots (SCM *b, unsigned long n)
578 {
579 SCM *p = b;
580 for (; p < b + n; ++p)
581 scm_gc_register_root (p);
582 }
583
584 void
585 scm_gc_unregister_roots (SCM *b, unsigned long n)
586 {
587 SCM *p = b;
588 for (; p < b + n; ++p)
589 scm_gc_unregister_root (p);
590 }
591
592 \f
593
594
595 /*
596 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
597 */
598
599 /* Get an integer from an environment variable. */
600 int
601 scm_getenv_int (const char *var, int def)
602 {
603 char *end = 0;
604 char *val = getenv (var);
605 long res = def;
606 if (!val)
607 return def;
608 res = strtol (val, &end, 10);
609 if (end == val)
610 return def;
611 return res;
612 }
613
614 void
615 scm_storage_prehistory ()
616 {
617 GC_all_interior_pointers = 0;
618 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
619 minimum_free_space_divisor = free_space_divisor;
620 target_free_space_divisor = free_space_divisor;
621 GC_set_free_space_divisor (free_space_divisor);
622 GC_set_finalize_on_demand (1);
623
624 GC_INIT ();
625
626 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
627 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
628 /* When using GC 6.8, this call is required to initialize thread-local
629 freelists (shouldn't be necessary with GC 7.0). */
630 GC_init ();
631 #endif
632
633 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
634
635 /* We only need to register a displacement for those types for which the
636 higher bits of the type tag are used to store a pointer (that is, a
637 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
638 handled in `scm_alloc_struct ()'. */
639 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
640 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
641
642 /* Sanity check. */
643 if (!GC_is_visible (&scm_protects))
644 abort ();
645
646 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
647 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
648 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
649 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
650 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
651 }
652
653 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
654
655 void
656 scm_init_gc_protect_object ()
657 {
658 scm_protects = scm_c_make_hash_table (31);
659
660 #if 0
661 /* We can't have a cleanup handler since we have no thread to run it
662 in. */
663
664 #ifdef HAVE_ATEXIT
665 atexit (cleanup);
666 #else
667 #ifdef HAVE_ON_EXIT
668 on_exit (cleanup, 0);
669 #endif
670 #endif
671
672 #endif
673 }
674
675 \f
676
677 SCM scm_after_gc_hook;
678
679 static SCM after_gc_async_cell;
680
681 /* The function after_gc_async_thunk causes the execution of the
682 * after-gc-hook. It is run after the gc, as soon as the asynchronous
683 * events are handled by the evaluator.
684 */
685 static SCM
686 after_gc_async_thunk (void)
687 {
688 /* Fun, no? Hook-run *and* run-hook? */
689 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
690 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
691 return SCM_UNSPECIFIED;
692 }
693
694
695 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
696 * at the end of the garbage collection. The only purpose of this
697 * function is to mark the after_gc_async (which will eventually lead to
698 * the execution of the after_gc_async_thunk).
699 */
700 static void *
701 queue_after_gc_hook (void * hook_data SCM_UNUSED,
702 void *fn_data SCM_UNUSED,
703 void *data SCM_UNUSED)
704 {
705 /* If cell access debugging is enabled, the user may choose to perform
706 * additional garbage collections after an arbitrary number of cell
707 * accesses. We don't want the scheme level after-gc-hook to be performed
708 * for each of these garbage collections for the following reason: The
709 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
710 * after-gc-hook was performed with every gc, and if the gc was performed
711 * after a very small number of cell accesses, then the number of cell
712 * accesses during the execution of the after-gc-hook will suffice to cause
713 * the execution of the next gc. Then, guile would keep executing the
714 * after-gc-hook over and over again, and would never come to do other
715 * things.
716 *
717 * To overcome this problem, if cell access debugging with additional
718 * garbage collections is enabled, the after-gc-hook is never run by the
719 * garbage collecter. When running guile with cell access debugging and the
720 * execution of the after-gc-hook is desired, then it is necessary to run
721 * the hook explicitly from the user code. This has the effect, that from
722 * the scheme level point of view it seems that garbage collection is
723 * performed with a much lower frequency than it actually is. Obviously,
724 * this will not work for code that depends on a fixed one to one
725 * relationship between the execution counts of the C level garbage
726 * collection hooks and the execution count of the scheme level
727 * after-gc-hook.
728 */
729
730 #if (SCM_DEBUG_CELL_ACCESSES == 1)
731 if (scm_debug_cells_gc_interval == 0)
732 #endif
733 {
734 scm_i_thread *t = SCM_I_CURRENT_THREAD;
735
736 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
737 {
738 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
739 t->active_asyncs = after_gc_async_cell;
740 t->pending_asyncs = 1;
741 }
742 }
743
744 return NULL;
745 }
746
747 \f
748
749 static void *
750 start_gc_timer (void * hook_data SCM_UNUSED,
751 void *fn_data SCM_UNUSED,
752 void *data SCM_UNUSED)
753 {
754 if (!gc_start_time)
755 gc_start_time = scm_c_get_internal_run_time ();
756
757 return NULL;
758 }
759
760 static void *
761 accumulate_gc_timer (void * hook_data SCM_UNUSED,
762 void *fn_data SCM_UNUSED,
763 void *data SCM_UNUSED)
764 {
765 if (gc_start_time)
766 {
767 long now = scm_c_get_internal_run_time ();
768 gc_time_taken += now - gc_start_time;
769 gc_start_time = 0;
770 }
771
772 return NULL;
773 }
774
775 /* Return some idea of the memory footprint of a process, in bytes.
776 Currently only works on Linux systems. */
777 static size_t
778 get_image_size (void)
779 {
780 unsigned long size, resident, share;
781 size_t ret = 0;
782
783 FILE *fp = fopen ("/proc/self/statm", "r");
784
785 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
786 ret = resident * 4096;
787
788 if (fp)
789 fclose (fp);
790
791 return ret;
792 }
793
794 /* These are discussed later. */
795 static size_t bytes_until_gc;
796 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
797
798 /* Make GC run more frequently when the process image size is growing,
799 measured against the number of bytes allocated through the GC.
800
801 If Guile is allocating at a GC-managed heap size H, libgc will tend
802 to limit the process image size to H*N. But if at the same time the
803 user program is mallocating at a rate M bytes per GC-allocated byte,
804 then the process stabilizes at H*N*M -- assuming that collecting data
805 will result in malloc'd data being freed. It doesn't take a very
806 large M for this to be a bad situation. To limit the image size,
807 Guile should GC more often -- the bigger the M, the more often.
808
809 Numeric functions that produce bigger and bigger integers are
810 pessimal, because M is an increasing function of time. Here is an
811 example of such a function:
812
813 (define (factorial n)
814 (define (fac n acc)
815 (if (<= n 1)
816 acc
817 (fac (1- n) (* n acc))))
818 (fac n 1))
819
820 It is possible for a process to grow for reasons that will not be
821 solved by faster GC. In that case M will be estimated as
822 artificially high for a while, and so GC will happen more often on
823 the Guile side. But when it stabilizes, Guile can ease back the GC
824 frequency.
825
826 The key is to measure process image growth, not mallocation rate.
827 For maximum effectiveness, Guile reacts quickly to process growth,
828 and exponentially backs down when the process stops growing.
829
830 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
831 for further discussion.
832 */
833 static void *
834 adjust_gc_frequency (void * hook_data SCM_UNUSED,
835 void *fn_data SCM_UNUSED,
836 void *data SCM_UNUSED)
837 {
838 static size_t prev_image_size = 0;
839 static size_t prev_bytes_alloced = 0;
840 size_t image_size;
841 size_t bytes_alloced;
842
843 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
844 bytes_until_gc = GC_get_heap_size ();
845 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
846
847 image_size = get_image_size ();
848 bytes_alloced = GC_get_total_bytes ();
849
850 #define HEURISTICS_DEBUG 0
851
852 #if HEURISTICS_DEBUG
853 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
854 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
855 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
856 #endif
857
858 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
859 {
860 double growth_rate, new_target_free_space_divisor;
861 double decay_factor = 0.5;
862 double hysteresis = 0.1;
863
864 growth_rate = ((double) image_size - prev_image_size)
865 / ((double)bytes_alloced - prev_bytes_alloced);
866
867 #if HEURISTICS_DEBUG
868 fprintf (stderr, "growth rate %f\n", growth_rate);
869 #endif
870
871 new_target_free_space_divisor = minimum_free_space_divisor;
872
873 if (growth_rate > 0)
874 new_target_free_space_divisor *= 1.0 + growth_rate;
875
876 #if HEURISTICS_DEBUG
877 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
878 #endif
879
880 if (new_target_free_space_divisor < target_free_space_divisor)
881 /* Decay down. */
882 target_free_space_divisor =
883 (decay_factor * target_free_space_divisor
884 + (1.0 - decay_factor) * new_target_free_space_divisor);
885 else
886 /* Jump up. */
887 target_free_space_divisor = new_target_free_space_divisor;
888
889 #if HEURISTICS_DEBUG
890 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
891 #endif
892
893 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
894 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
895 {
896 free_space_divisor = lround (target_free_space_divisor);
897 #if HEURISTICS_DEBUG
898 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
899 #endif
900 GC_set_free_space_divisor (free_space_divisor);
901 }
902 }
903
904 prev_image_size = image_size;
905 prev_bytes_alloced = bytes_alloced;
906
907 return NULL;
908 }
909
910 /* The adjust_gc_frequency routine handles transients in the process
911 image size. It can't handle instense non-GC-managed steady-state
912 allocation though, as it decays the FSD at steady-state down to its
913 minimum value.
914
915 The only real way to handle continuous, high non-GC allocation is to
916 let the GC know about it. This routine can handle non-GC allocation
917 rates that are similar in size to the GC-managed heap size.
918 */
919
920 void
921 scm_gc_register_allocation (size_t size)
922 {
923 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
924 if (bytes_until_gc - size > bytes_until_gc)
925 {
926 bytes_until_gc = GC_get_heap_size ();
927 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
928 GC_gcollect ();
929 }
930 else
931 {
932 bytes_until_gc -= size;
933 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
934 }
935 }
936
937
938 \f
939
940 char const *
941 scm_i_tag_name (scm_t_bits tag)
942 {
943 switch (tag & 0x7f) /* 7 bits */
944 {
945 case scm_tcs_struct:
946 return "struct";
947 case scm_tcs_cons_imcar:
948 return "cons (immediate car)";
949 case scm_tcs_cons_nimcar:
950 return "cons (non-immediate car)";
951 case scm_tc7_pointer:
952 return "foreign";
953 case scm_tc7_hashtable:
954 return "hashtable";
955 case scm_tc7_weak_set:
956 return "weak-set";
957 case scm_tc7_weak_table:
958 return "weak-table";
959 case scm_tc7_fluid:
960 return "fluid";
961 case scm_tc7_dynamic_state:
962 return "dynamic state";
963 case scm_tc7_frame:
964 return "frame";
965 case scm_tc7_objcode:
966 return "objcode";
967 case scm_tc7_vm:
968 return "vm";
969 case scm_tc7_vm_cont:
970 return "vm continuation";
971 case scm_tc7_wvect:
972 return "weak vector";
973 case scm_tc7_vector:
974 return "vector";
975 case scm_tc7_number:
976 switch (tag)
977 {
978 case scm_tc16_real:
979 return "real";
980 break;
981 case scm_tc16_big:
982 return "bignum";
983 break;
984 case scm_tc16_complex:
985 return "complex number";
986 break;
987 case scm_tc16_fraction:
988 return "fraction";
989 break;
990 }
991 break;
992 case scm_tc7_string:
993 return "string";
994 break;
995 case scm_tc7_stringbuf:
996 return "string buffer";
997 break;
998 case scm_tc7_symbol:
999 return "symbol";
1000 break;
1001 case scm_tc7_variable:
1002 return "variable";
1003 break;
1004 case scm_tc7_port:
1005 return "port";
1006 break;
1007 case scm_tc7_smob:
1008 {
1009 int k = 0xff & (tag >> 8);
1010 return (scm_smobs[k].name);
1011 }
1012 break;
1013 }
1014
1015 return NULL;
1016 }
1017
1018
1019
1020 \f
1021 void
1022 scm_init_gc ()
1023 {
1024 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
1025
1026 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
1027 scm_c_define ("after-gc-hook", scm_after_gc_hook);
1028
1029 /* When the async is to run, the cdr of the gc_async pair gets set to
1030 the asyncs queue of the current thread. */
1031 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
1032 after_gc_async_thunk),
1033 SCM_BOOL_F);
1034
1035 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
1036 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
1037 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
1038
1039 #if HAVE_GC_GET_HEAP_USAGE_SAFE
1040 /* GC_get_heap_usage does not take a lock, and so can run in the GC
1041 start hook. */
1042 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
1043 #else
1044 /* GC_get_heap_usage might take a lock (and did from 7.2alpha1 to
1045 7.2alpha7), so call it in the after_gc_hook. */
1046 scm_c_hook_add (&scm_after_gc_c_hook, adjust_gc_frequency, NULL, 0);
1047 #endif
1048
1049 #ifdef HAVE_GC_SET_START_CALLBACK
1050 GC_set_start_callback (run_before_gc_c_hook);
1051 #endif
1052
1053 #include "libguile/gc.x"
1054 }
1055
1056
1057 void
1058 scm_gc_sweep (void)
1059 #define FUNC_NAME "scm_gc_sweep"
1060 {
1061 /* FIXME */
1062 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1063 }
1064 #undef FUNC_NAME
1065
1066 /*
1067 Local Variables:
1068 c-file-style: "gnu"
1069 End:
1070 */