reorder module system boot time
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. There are three situations defined. `load-toplevel' triggers for
96 ;; code evaluated at the top-level, for example from the REPL or when
97 ;; loading a file. `compile-toplevel' triggers for code compiled at the
98 ;; toplevel. `execute' triggers during execution of code not at the top
99 ;; level.
100
101 (define eval-case
102 (procedure->memoizing-macro
103 (lambda (exp env)
104 (define (toplevel-env? env)
105 (or (not (pair? env)) (not (pair? (car env)))))
106 (define (syntax)
107 (error "syntax error in eval-case"))
108 (let loop ((clauses (cdr exp)))
109 (cond
110 ((null? clauses)
111 #f)
112 ((not (list? (car clauses)))
113 (syntax))
114 ((eq? 'else (caar clauses))
115 (or (null? (cdr clauses))
116 (syntax))
117 (cons 'begin (cdar clauses)))
118 ((not (list? (caar clauses)))
119 (syntax))
120 ((and (toplevel-env? env)
121 (memq 'load-toplevel (caar clauses)))
122 (cons 'begin (cdar clauses)))
123 (else
124 (loop (cdr clauses))))))))
125
126 \f
127
128 ;; Before compiling, make sure any symbols are resolved in the (guile)
129 ;; module, the primary location of those symbols, rather than in
130 ;; (guile-user), the default module that we compile in.
131
132 (eval-case
133 ((compile-toplevel)
134 (set-current-module (resolve-module '(guile)))))
135
136 ;;; {Defmacros}
137 ;;;
138 ;;; Depends on: features, eval-case
139 ;;;
140
141 (define macro-table (make-weak-key-hash-table 61))
142 (define xformer-table (make-weak-key-hash-table 61))
143
144 (define (defmacro? m) (hashq-ref macro-table m))
145 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
146 (define (defmacro-transformer m) (hashq-ref xformer-table m))
147 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
148
149 (define defmacro:transformer
150 (lambda (f)
151 (let* ((xform (lambda (exp env)
152 (copy-tree (apply f (cdr exp)))))
153 (a (procedure->memoizing-macro xform)))
154 (assert-defmacro?! a)
155 (set-defmacro-transformer! a f)
156 a)))
157
158
159 (define defmacro
160 (let ((defmacro-transformer
161 (lambda (name parms . body)
162 (let ((transformer `(lambda ,parms ,@body)))
163 `(eval-case
164 ((load-toplevel compile-toplevel)
165 (define ,name (defmacro:transformer ,transformer)))
166 (else
167 (error "defmacro can only be used at the top level")))))))
168 (defmacro:transformer defmacro-transformer)))
169
170 (define defmacro:syntax-transformer
171 (lambda (f)
172 (procedure->syntax
173 (lambda (exp env)
174 (copy-tree (apply f (cdr exp)))))))
175
176
177 ;; XXX - should the definition of the car really be looked up in the
178 ;; current module?
179
180 (define (macroexpand-1 e)
181 (cond
182 ((pair? e) (let* ((a (car e))
183 (val (and (symbol? a) (local-ref (list a)))))
184 (if (defmacro? val)
185 (apply (defmacro-transformer val) (cdr e))
186 e)))
187 (#t e)))
188
189 (define (macroexpand e)
190 (cond
191 ((pair? e) (let* ((a (car e))
192 (val (and (symbol? a) (local-ref (list a)))))
193 (if (defmacro? val)
194 (macroexpand (apply (defmacro-transformer val) (cdr e)))
195 e)))
196 (#t e)))
197
198 (provide 'defmacro)
199
200 \f
201
202 ;;; {Deprecation}
203 ;;;
204 ;;; Depends on: defmacro
205 ;;;
206
207 (defmacro begin-deprecated forms
208 (if (include-deprecated-features)
209 `(begin ,@forms)
210 (begin)))
211
212 \f
213
214 ;;; {R4RS compliance}
215 ;;;
216
217 (primitive-load-path "ice-9/r4rs.scm")
218
219 \f
220
221 ;;; {Simple Debugging Tools}
222 ;;;
223
224 ;; peek takes any number of arguments, writes them to the
225 ;; current ouput port, and returns the last argument.
226 ;; It is handy to wrap around an expression to look at
227 ;; a value each time is evaluated, e.g.:
228 ;;
229 ;; (+ 10 (troublesome-fn))
230 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
231 ;;
232
233 (define (peek . stuff)
234 (newline)
235 (display ";;; ")
236 (write stuff)
237 (newline)
238 (car (last-pair stuff)))
239
240 (define pk peek)
241
242 (define (warn . stuff)
243 (with-output-to-port (current-error-port)
244 (lambda ()
245 (newline)
246 (display ";;; WARNING ")
247 (display stuff)
248 (newline)
249 (car (last-pair stuff)))))
250
251 \f
252
253 ;;; {Trivial Functions}
254 ;;;
255
256 (define (identity x) x)
257 (define (and=> value procedure) (and value (procedure value)))
258 (define call/cc call-with-current-continuation)
259
260 ;;; apply-to-args is functionally redundant with apply and, worse,
261 ;;; is less general than apply since it only takes two arguments.
262 ;;;
263 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
264 ;;; perform binding in many circumstances when the "let" family of
265 ;;; of forms don't cut it. E.g.:
266 ;;;
267 ;;; (apply-to-args (return-3d-mouse-coords)
268 ;;; (lambda (x y z)
269 ;;; ...))
270 ;;;
271
272 (define (apply-to-args args fn) (apply fn args))
273
274 (defmacro false-if-exception (expr)
275 `(catch #t (lambda () ,expr)
276 (lambda args #f)))
277
278 \f
279
280 ;;; {General Properties}
281 ;;;
282
283 ;; This is a more modern interface to properties. It will replace all
284 ;; other property-like things eventually.
285
286 (define (make-object-property)
287 (let ((prop (primitive-make-property #f)))
288 (make-procedure-with-setter
289 (lambda (obj) (primitive-property-ref prop obj))
290 (lambda (obj val) (primitive-property-set! prop obj val)))))
291
292 \f
293
294 ;;; {Symbol Properties}
295 ;;;
296
297 (define (symbol-property sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (and pair (cdr pair))))
300
301 (define (set-symbol-property! sym prop val)
302 (let ((pair (assoc prop (symbol-pref sym))))
303 (if pair
304 (set-cdr! pair val)
305 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
306
307 (define (symbol-property-remove! sym prop)
308 (let ((pair (assoc prop (symbol-pref sym))))
309 (if pair
310 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
311
312 \f
313
314 ;;; {Arrays}
315 ;;;
316
317 (define (array-shape a)
318 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
319 (array-dimensions a)))
320
321 \f
322
323 ;;; {Keywords}
324 ;;;
325
326 (define (kw-arg-ref args kw)
327 (let ((rem (member kw args)))
328 (and rem (pair? (cdr rem)) (cadr rem))))
329
330 \f
331
332 ;;; {Structs}
333 ;;;
334
335 (define (struct-layout s)
336 (struct-ref (struct-vtable s) vtable-index-layout))
337
338 \f
339
340 ;;; {Records}
341 ;;;
342
343 ;; Printing records: by default, records are printed as
344 ;;
345 ;; #<type-name field1: val1 field2: val2 ...>
346 ;;
347 ;; You can change that by giving a custom printing function to
348 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
349 ;; will be called like
350 ;;
351 ;; (<printer> object port)
352 ;;
353 ;; It should print OBJECT to PORT.
354
355 (define (inherit-print-state old-port new-port)
356 (if (get-print-state old-port)
357 (port-with-print-state new-port (get-print-state old-port))
358 new-port))
359
360 ;; 0: type-name, 1: fields
361 (define record-type-vtable
362 (make-vtable-vtable "prpr" 0
363 (lambda (s p)
364 (cond ((eq? s record-type-vtable)
365 (display "#<record-type-vtable>" p))
366 (else
367 (display "#<record-type " p)
368 (display (record-type-name s) p)
369 (display ">" p))))))
370
371 (define (record-type? obj)
372 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
373
374 (define (make-record-type type-name fields . opt)
375 (let ((printer-fn (and (pair? opt) (car opt))))
376 (let ((struct (make-struct record-type-vtable 0
377 (make-struct-layout
378 (apply string-append
379 (map (lambda (f) "pw") fields)))
380 (or printer-fn
381 (lambda (s p)
382 (display "#<" p)
383 (display type-name p)
384 (let loop ((fields fields)
385 (off 0))
386 (cond
387 ((not (null? fields))
388 (display " " p)
389 (display (car fields) p)
390 (display ": " p)
391 (display (struct-ref s off) p)
392 (loop (cdr fields) (+ 1 off)))))
393 (display ">" p)))
394 type-name
395 (copy-tree fields))))
396 ;; Temporary solution: Associate a name to the record type descriptor
397 ;; so that the object system can create a wrapper class for it.
398 (set-struct-vtable-name! struct (if (symbol? type-name)
399 type-name
400 (string->symbol type-name)))
401 struct)))
402
403 (define (record-type-name obj)
404 (if (record-type? obj)
405 (struct-ref obj vtable-offset-user)
406 (error 'not-a-record-type obj)))
407
408 (define (record-type-fields obj)
409 (if (record-type? obj)
410 (struct-ref obj (+ 1 vtable-offset-user))
411 (error 'not-a-record-type obj)))
412
413 (define (record-constructor rtd . opt)
414 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
415 (primitive-eval
416 `(lambda ,field-names
417 (make-struct ',rtd 0 ,@(map (lambda (f)
418 (if (memq f field-names)
419 f
420 #f))
421 (record-type-fields rtd)))))))
422
423 (define (record-predicate rtd)
424 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
425
426 (define (%record-type-error rtd obj) ;; private helper
427 (or (eq? rtd (record-type-descriptor obj))
428 (scm-error 'wrong-type-arg "%record-type-check"
429 "Wrong type record (want `~S'): ~S"
430 (list (record-type-name rtd) obj)
431 #f)))
432
433 (define (record-accessor rtd field-name)
434 (let ((pos (list-index (record-type-fields rtd) field-name)))
435 (if (not pos)
436 (error 'no-such-field field-name))
437 (lambda (obj)
438 (if (eq? (struct-vtable obj) rtd)
439 (struct-ref obj pos)
440 (%record-type-error rtd obj)))))
441
442 (define (record-modifier rtd field-name)
443 (let ((pos (list-index (record-type-fields rtd) field-name)))
444 (if (not pos)
445 (error 'no-such-field field-name))
446 (lambda (obj val)
447 (if (eq? (struct-vtable obj) rtd)
448 (struct-set! obj pos val)
449 (%record-type-error rtd obj)))))
450
451 (define (record? obj)
452 (and (struct? obj) (record-type? (struct-vtable obj))))
453
454 (define (record-type-descriptor obj)
455 (if (struct? obj)
456 (struct-vtable obj)
457 (error 'not-a-record obj)))
458
459 (provide 'record)
460
461 \f
462
463 ;;; {Booleans}
464 ;;;
465
466 (define (->bool x) (not (not x)))
467
468 \f
469
470 ;;; {Symbols}
471 ;;;
472
473 (define (symbol-append . args)
474 (string->symbol (apply string-append (map symbol->string args))))
475
476 (define (list->symbol . args)
477 (string->symbol (apply list->string args)))
478
479 (define (symbol . args)
480 (string->symbol (apply string args)))
481
482 \f
483
484 ;;; {Lists}
485 ;;;
486
487 (define (list-index l k)
488 (let loop ((n 0)
489 (l l))
490 (and (not (null? l))
491 (if (eq? (car l) k)
492 n
493 (loop (+ n 1) (cdr l))))))
494
495 \f
496
497 ;;; {and-map and or-map}
498 ;;;
499 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
500 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
501 ;;;
502
503 ;; and-map f l
504 ;;
505 ;; Apply f to successive elements of l until exhaustion or f returns #f.
506 ;; If returning early, return #f. Otherwise, return the last value returned
507 ;; by f. If f has never been called because l is empty, return #t.
508 ;;
509 (define (and-map f lst)
510 (let loop ((result #t)
511 (l lst))
512 (and result
513 (or (and (null? l)
514 result)
515 (loop (f (car l)) (cdr l))))))
516
517 ;; or-map f l
518 ;;
519 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
520 ;; If returning early, return the return value of f.
521 ;;
522 (define (or-map f lst)
523 (let loop ((result #f)
524 (l lst))
525 (or result
526 (and (not (null? l))
527 (loop (f (car l)) (cdr l))))))
528
529 \f
530
531 (if (provided? 'posix)
532 (primitive-load-path "ice-9/posix.scm"))
533
534 (if (provided? 'socket)
535 (primitive-load-path "ice-9/networking.scm"))
536
537 ;; For reference, Emacs file-exists-p uses stat in this same way.
538 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
539 ;; C where all that's needed is to inspect the return from stat().
540 (define file-exists?
541 (if (provided? 'posix)
542 (lambda (str)
543 (->bool (false-if-exception (stat str))))
544 (lambda (str)
545 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
546 (lambda args #f))))
547 (if port (begin (close-port port) #t)
548 #f)))))
549
550 (define file-is-directory?
551 (if (provided? 'posix)
552 (lambda (str)
553 (eq? (stat:type (stat str)) 'directory))
554 (lambda (str)
555 (let ((port (catch 'system-error
556 (lambda () (open-file (string-append str "/.")
557 OPEN_READ))
558 (lambda args #f))))
559 (if port (begin (close-port port) #t)
560 #f)))))
561
562 (define (has-suffix? str suffix)
563 (string-suffix? suffix str))
564
565 (define (system-error-errno args)
566 (if (eq? (car args) 'system-error)
567 (car (list-ref args 4))
568 #f))
569
570 \f
571
572 ;;; {Error Handling}
573 ;;;
574
575 (define (error . args)
576 (save-stack)
577 (if (null? args)
578 (scm-error 'misc-error #f "?" #f #f)
579 (let loop ((msg "~A")
580 (rest (cdr args)))
581 (if (not (null? rest))
582 (loop (string-append msg " ~S")
583 (cdr rest))
584 (scm-error 'misc-error #f msg args #f)))))
585
586 ;; bad-throw is the hook that is called upon a throw to a an unhandled
587 ;; key (unless the throw has four arguments, in which case
588 ;; it's usually interpreted as an error throw.)
589 ;; If the key has a default handler (a throw-handler-default property),
590 ;; it is applied to the throw.
591 ;;
592 (define (bad-throw key . args)
593 (let ((default (symbol-property key 'throw-handler-default)))
594 (or (and default (apply default key args))
595 (apply error "unhandled-exception:" key args))))
596
597 \f
598
599 (define (tm:sec obj) (vector-ref obj 0))
600 (define (tm:min obj) (vector-ref obj 1))
601 (define (tm:hour obj) (vector-ref obj 2))
602 (define (tm:mday obj) (vector-ref obj 3))
603 (define (tm:mon obj) (vector-ref obj 4))
604 (define (tm:year obj) (vector-ref obj 5))
605 (define (tm:wday obj) (vector-ref obj 6))
606 (define (tm:yday obj) (vector-ref obj 7))
607 (define (tm:isdst obj) (vector-ref obj 8))
608 (define (tm:gmtoff obj) (vector-ref obj 9))
609 (define (tm:zone obj) (vector-ref obj 10))
610
611 (define (set-tm:sec obj val) (vector-set! obj 0 val))
612 (define (set-tm:min obj val) (vector-set! obj 1 val))
613 (define (set-tm:hour obj val) (vector-set! obj 2 val))
614 (define (set-tm:mday obj val) (vector-set! obj 3 val))
615 (define (set-tm:mon obj val) (vector-set! obj 4 val))
616 (define (set-tm:year obj val) (vector-set! obj 5 val))
617 (define (set-tm:wday obj val) (vector-set! obj 6 val))
618 (define (set-tm:yday obj val) (vector-set! obj 7 val))
619 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
620 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
621 (define (set-tm:zone obj val) (vector-set! obj 10 val))
622
623 (define (tms:clock obj) (vector-ref obj 0))
624 (define (tms:utime obj) (vector-ref obj 1))
625 (define (tms:stime obj) (vector-ref obj 2))
626 (define (tms:cutime obj) (vector-ref obj 3))
627 (define (tms:cstime obj) (vector-ref obj 4))
628
629 (define file-position ftell)
630 (define (file-set-position port offset . whence)
631 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
632 (seek port offset whence)))
633
634 (define (move->fdes fd/port fd)
635 (cond ((integer? fd/port)
636 (dup->fdes fd/port fd)
637 (close fd/port)
638 fd)
639 (else
640 (primitive-move->fdes fd/port fd)
641 (set-port-revealed! fd/port 1)
642 fd/port)))
643
644 (define (release-port-handle port)
645 (let ((revealed (port-revealed port)))
646 (if (> revealed 0)
647 (set-port-revealed! port (- revealed 1)))))
648
649 (define (dup->port port/fd mode . maybe-fd)
650 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
651 mode)))
652 (if (pair? maybe-fd)
653 (set-port-revealed! port 1))
654 port))
655
656 (define (dup->inport port/fd . maybe-fd)
657 (apply dup->port port/fd "r" maybe-fd))
658
659 (define (dup->outport port/fd . maybe-fd)
660 (apply dup->port port/fd "w" maybe-fd))
661
662 (define (dup port/fd . maybe-fd)
663 (if (integer? port/fd)
664 (apply dup->fdes port/fd maybe-fd)
665 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
666
667 (define (duplicate-port port modes)
668 (dup->port port modes))
669
670 (define (fdes->inport fdes)
671 (let loop ((rest-ports (fdes->ports fdes)))
672 (cond ((null? rest-ports)
673 (let ((result (fdopen fdes "r")))
674 (set-port-revealed! result 1)
675 result))
676 ((input-port? (car rest-ports))
677 (set-port-revealed! (car rest-ports)
678 (+ (port-revealed (car rest-ports)) 1))
679 (car rest-ports))
680 (else
681 (loop (cdr rest-ports))))))
682
683 (define (fdes->outport fdes)
684 (let loop ((rest-ports (fdes->ports fdes)))
685 (cond ((null? rest-ports)
686 (let ((result (fdopen fdes "w")))
687 (set-port-revealed! result 1)
688 result))
689 ((output-port? (car rest-ports))
690 (set-port-revealed! (car rest-ports)
691 (+ (port-revealed (car rest-ports)) 1))
692 (car rest-ports))
693 (else
694 (loop (cdr rest-ports))))))
695
696 (define (port->fdes port)
697 (set-port-revealed! port (+ (port-revealed port) 1))
698 (fileno port))
699
700 (define (setenv name value)
701 (if value
702 (putenv (string-append name "=" value))
703 (putenv name)))
704
705 (define (unsetenv name)
706 "Remove the entry for NAME from the environment."
707 (putenv name))
708
709 \f
710
711 ;;; {Load Paths}
712 ;;;
713
714 ;;; Here for backward compatability
715 ;;
716 (define scheme-file-suffix (lambda () ".scm"))
717
718 (define (in-vicinity vicinity file)
719 (let ((tail (let ((len (string-length vicinity)))
720 (if (zero? len)
721 #f
722 (string-ref vicinity (- len 1))))))
723 (string-append vicinity
724 (if (or (not tail)
725 (eq? tail #\/))
726 ""
727 "/")
728 file)))
729
730 \f
731
732 ;;; {Help for scm_shell}
733 ;;;
734 ;;; The argument-processing code used by Guile-based shells generates
735 ;;; Scheme code based on the argument list. This page contains help
736 ;;; functions for the code it generates.
737 ;;;
738
739 (define (command-line) (program-arguments))
740
741 ;; This is mostly for the internal use of the code generated by
742 ;; scm_compile_shell_switches.
743
744 (define (turn-on-debugging)
745 (debug-enable 'debug)
746 (debug-enable 'backtrace)
747 (read-enable 'positions))
748
749 (define (load-user-init)
750 (let* ((home (or (getenv "HOME")
751 (false-if-exception (passwd:dir (getpwuid (getuid))))
752 "/")) ;; fallback for cygwin etc.
753 (init-file (in-vicinity home ".guile")))
754 (if (file-exists? init-file)
755 (primitive-load init-file))))
756
757 \f
758
759 ;;; {Loading by paths}
760 ;;;
761
762 ;;; Load a Scheme source file named NAME, searching for it in the
763 ;;; directories listed in %load-path, and applying each of the file
764 ;;; name extensions listed in %load-extensions.
765 (define (load-from-path name)
766 (start-stack 'load-stack
767 (primitive-load-path name)))
768
769
770 \f
771
772 ;;; {Transcendental Functions}
773 ;;;
774 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
775 ;;; Written by Jerry D. Hedden, (C) FSF.
776 ;;; See the file `COPYING' for terms applying to this program.
777 ;;;
778
779 (define expt
780 (let ((integer-expt integer-expt))
781 (lambda (z1 z2)
782 (cond ((and (exact? z2) (integer? z2))
783 (integer-expt z1 z2))
784 ((and (real? z2) (real? z1) (>= z1 0))
785 ($expt z1 z2))
786 (else
787 (exp (* z2 (log z1))))))))
788
789 (define (sinh z)
790 (if (real? z) ($sinh z)
791 (let ((x (real-part z)) (y (imag-part z)))
792 (make-rectangular (* ($sinh x) ($cos y))
793 (* ($cosh x) ($sin y))))))
794 (define (cosh z)
795 (if (real? z) ($cosh z)
796 (let ((x (real-part z)) (y (imag-part z)))
797 (make-rectangular (* ($cosh x) ($cos y))
798 (* ($sinh x) ($sin y))))))
799 (define (tanh z)
800 (if (real? z) ($tanh z)
801 (let* ((x (* 2 (real-part z)))
802 (y (* 2 (imag-part z)))
803 (w (+ ($cosh x) ($cos y))))
804 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
805
806 (define (asinh z)
807 (if (real? z) ($asinh z)
808 (log (+ z (sqrt (+ (* z z) 1))))))
809
810 (define (acosh z)
811 (if (and (real? z) (>= z 1))
812 ($acosh z)
813 (log (+ z (sqrt (- (* z z) 1))))))
814
815 (define (atanh z)
816 (if (and (real? z) (> z -1) (< z 1))
817 ($atanh z)
818 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
819
820 (define (sin z)
821 (if (real? z) ($sin z)
822 (let ((x (real-part z)) (y (imag-part z)))
823 (make-rectangular (* ($sin x) ($cosh y))
824 (* ($cos x) ($sinh y))))))
825 (define (cos z)
826 (if (real? z) ($cos z)
827 (let ((x (real-part z)) (y (imag-part z)))
828 (make-rectangular (* ($cos x) ($cosh y))
829 (- (* ($sin x) ($sinh y)))))))
830 (define (tan z)
831 (if (real? z) ($tan z)
832 (let* ((x (* 2 (real-part z)))
833 (y (* 2 (imag-part z)))
834 (w (+ ($cos x) ($cosh y))))
835 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
836
837 (define (asin z)
838 (if (and (real? z) (>= z -1) (<= z 1))
839 ($asin z)
840 (* -i (asinh (* +i z)))))
841
842 (define (acos z)
843 (if (and (real? z) (>= z -1) (<= z 1))
844 ($acos z)
845 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
846
847 (define (atan z . y)
848 (if (null? y)
849 (if (real? z) ($atan z)
850 (/ (log (/ (- +i z) (+ +i z))) +2i))
851 ($atan2 z (car y))))
852
853 \f
854
855 ;;; {Reader Extensions}
856 ;;;
857 ;;; Reader code for various "#c" forms.
858 ;;;
859
860 (read-hash-extend #\' (lambda (c port)
861 (read port)))
862
863 (define read-eval? (make-fluid))
864 (fluid-set! read-eval? #f)
865 (read-hash-extend #\.
866 (lambda (c port)
867 (if (fluid-ref read-eval?)
868 (eval (read port) (interaction-environment))
869 (error
870 "#. read expansion found and read-eval? is #f."))))
871
872 \f
873
874 ;;; {Command Line Options}
875 ;;;
876
877 (define (get-option argv kw-opts kw-args return)
878 (cond
879 ((null? argv)
880 (return #f #f argv))
881
882 ((or (not (eq? #\- (string-ref (car argv) 0)))
883 (eq? (string-length (car argv)) 1))
884 (return 'normal-arg (car argv) (cdr argv)))
885
886 ((eq? #\- (string-ref (car argv) 1))
887 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
888 (string-length (car argv))))
889 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
890 (kw-opt? (member kw kw-opts))
891 (kw-arg? (member kw kw-args))
892 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
893 (substring (car argv)
894 (+ kw-arg-pos 1)
895 (string-length (car argv))))
896 (and kw-arg?
897 (begin (set! argv (cdr argv)) (car argv))))))
898 (if (or kw-opt? kw-arg?)
899 (return kw arg (cdr argv))
900 (return 'usage-error kw (cdr argv)))))
901
902 (else
903 (let* ((char (substring (car argv) 1 2))
904 (kw (symbol->keyword char)))
905 (cond
906
907 ((member kw kw-opts)
908 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
909 (new-argv (if (= 0 (string-length rest-car))
910 (cdr argv)
911 (cons (string-append "-" rest-car) (cdr argv)))))
912 (return kw #f new-argv)))
913
914 ((member kw kw-args)
915 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
916 (arg (if (= 0 (string-length rest-car))
917 (cadr argv)
918 rest-car))
919 (new-argv (if (= 0 (string-length rest-car))
920 (cddr argv)
921 (cdr argv))))
922 (return kw arg new-argv)))
923
924 (else (return 'usage-error kw argv)))))))
925
926 (define (for-next-option proc argv kw-opts kw-args)
927 (let loop ((argv argv))
928 (get-option argv kw-opts kw-args
929 (lambda (opt opt-arg argv)
930 (and opt (proc opt opt-arg argv loop))))))
931
932 (define (display-usage-report kw-desc)
933 (for-each
934 (lambda (kw)
935 (or (eq? (car kw) #t)
936 (eq? (car kw) 'else)
937 (let* ((opt-desc kw)
938 (help (cadr opt-desc))
939 (opts (car opt-desc))
940 (opts-proper (if (string? (car opts)) (cdr opts) opts))
941 (arg-name (if (string? (car opts))
942 (string-append "<" (car opts) ">")
943 ""))
944 (left-part (string-append
945 (with-output-to-string
946 (lambda ()
947 (map (lambda (x) (display (keyword->symbol x)) (display " "))
948 opts-proper)))
949 arg-name))
950 (middle-part (if (and (< (string-length left-part) 30)
951 (< (string-length help) 40))
952 (make-string (- 30 (string-length left-part)) #\ )
953 "\n\t")))
954 (display left-part)
955 (display middle-part)
956 (display help)
957 (newline))))
958 kw-desc))
959
960
961
962 (define (transform-usage-lambda cases)
963 (let* ((raw-usage (delq! 'else (map car cases)))
964 (usage-sans-specials (map (lambda (x)
965 (or (and (not (list? x)) x)
966 (and (symbol? (car x)) #t)
967 (and (boolean? (car x)) #t)
968 x))
969 raw-usage))
970 (usage-desc (delq! #t usage-sans-specials))
971 (kw-desc (map car usage-desc))
972 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
973 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
974 (transmogrified-cases (map (lambda (case)
975 (cons (let ((opts (car case)))
976 (if (or (boolean? opts) (eq? 'else opts))
977 opts
978 (cond
979 ((symbol? (car opts)) opts)
980 ((boolean? (car opts)) opts)
981 ((string? (caar opts)) (cdar opts))
982 (else (car opts)))))
983 (cdr case)))
984 cases)))
985 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
986 (lambda (%argv)
987 (let %next-arg ((%argv %argv))
988 (get-option %argv
989 ',kw-opts
990 ',kw-args
991 (lambda (%opt %arg %new-argv)
992 (case %opt
993 ,@ transmogrified-cases))))))))
994
995
996 \f
997
998 ;;; {Low Level Modules}
999 ;;;
1000 ;;; These are the low level data structures for modules.
1001 ;;;
1002 ;;; Every module object is of the type 'module-type', which is a record
1003 ;;; consisting of the following members:
1004 ;;;
1005 ;;; - eval-closure: the function that defines for its module the strategy that
1006 ;;; shall be followed when looking up symbols in the module.
1007 ;;;
1008 ;;; An eval-closure is a function taking two arguments: the symbol to be
1009 ;;; looked up and a boolean value telling whether a binding for the symbol
1010 ;;; should be created if it does not exist yet. If the symbol lookup
1011 ;;; succeeded (either because an existing binding was found or because a new
1012 ;;; binding was created), a variable object representing the binding is
1013 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1014 ;;; closure does not take the module to be searched as an argument: During
1015 ;;; construction of the eval-closure, the eval-closure has to store the
1016 ;;; module it belongs to in its environment. This means, that any
1017 ;;; eval-closure can belong to only one module.
1018 ;;;
1019 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1020 ;;; special cases of eval-closures are to be distinguished: During startup
1021 ;;; the module system is not yet activated. In this phase, no modules are
1022 ;;; defined and all bindings are automatically stored by the system in the
1023 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1024 ;;; functions which require an eval-closure as their argument need to be
1025 ;;; passed the value #f.
1026 ;;;
1027 ;;; The other two special cases of eval-closures are the
1028 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1029 ;;; behave equally for the case that no new binding is to be created. The
1030 ;;; difference between the two comes in, when the boolean argument to the
1031 ;;; eval-closure indicates that a new binding shall be created if it is not
1032 ;;; found.
1033 ;;;
1034 ;;; Given that no new binding shall be created, both standard eval-closures
1035 ;;; define the following standard strategy of searching bindings in the
1036 ;;; module: First, the module's obarray is searched for the symbol. Second,
1037 ;;; if no binding for the symbol was found in the module's obarray, the
1038 ;;; module's binder procedure is exececuted. If this procedure did not
1039 ;;; return a binding for the symbol, the modules referenced in the module's
1040 ;;; uses list are recursively searched for a binding of the symbol. If the
1041 ;;; binding can not be found in these modules also, the symbol lookup has
1042 ;;; failed.
1043 ;;;
1044 ;;; If a new binding shall be created, the standard-interface-eval-closure
1045 ;;; immediately returns indicating failure. That is, it does not even try
1046 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1047 ;;; first search the obarray, and if no binding was found there, would
1048 ;;; create a new binding in the obarray, therefore not calling the binder
1049 ;;; procedure or searching the modules in the uses list.
1050 ;;;
1051 ;;; The explanation of the following members obarray, binder and uses
1052 ;;; assumes that the symbol lookup follows the strategy that is defined in
1053 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1054 ;;;
1055 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1056 ;;; hash table, the definitions are found that are local to the module (that
1057 ;;; is, not imported from other modules). When looking up bindings in the
1058 ;;; module, this hash table is searched first.
1059 ;;;
1060 ;;; - binder: either #f or a function taking a module and a symbol argument.
1061 ;;; If it is a function it is called after the obarray has been
1062 ;;; unsuccessfully searched for a binding. It then can provide bindings
1063 ;;; that would otherwise not be found locally in the module.
1064 ;;;
1065 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1066 ;;; These modules are the third place queried for bindings after the obarray
1067 ;;; has been unsuccessfully searched and the binder function did not deliver
1068 ;;; a result either.
1069 ;;;
1070 ;;; - transformer: either #f or a function taking a scheme expression as
1071 ;;; delivered by read. If it is a function, it will be called to perform
1072 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1073 ;;; expression. The output of the transformer function will then be passed
1074 ;;; to Guile's internal memoizer. This means that the output must be valid
1075 ;;; scheme code. The only exception is, that the output may make use of the
1076 ;;; syntax extensions provided to identify the modules that a binding
1077 ;;; belongs to.
1078 ;;;
1079 ;;; - name: the name of the module. This is used for all kinds of printing
1080 ;;; outputs. In certain places the module name also serves as a way of
1081 ;;; identification. When adding a module to the uses list of another
1082 ;;; module, it is made sure that the new uses list will not contain two
1083 ;;; modules of the same name.
1084 ;;;
1085 ;;; - kind: classification of the kind of module. The value is (currently?)
1086 ;;; only used for printing. It has no influence on how a module is treated.
1087 ;;; Currently the following values are used when setting the module kind:
1088 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1089 ;;; is set, it defaults to 'module.
1090 ;;;
1091 ;;; - duplicates-handlers: a list of procedures that get called to make a
1092 ;;; choice between two duplicate bindings when name clashes occur. See the
1093 ;;; `duplicate-handlers' global variable below.
1094 ;;;
1095 ;;; - observers: a list of procedures that get called when the module is
1096 ;;; modified.
1097 ;;;
1098 ;;; - weak-observers: a weak-key hash table of procedures that get called
1099 ;;; when the module is modified. See `module-observe-weak' for details.
1100 ;;;
1101 ;;; In addition, the module may (must?) contain a binding for
1102 ;;; `%module-public-interface'. This variable should be bound to a module
1103 ;;; representing the exported interface of a module. See the
1104 ;;; `module-public-interface' and `module-export!' procedures.
1105 ;;;
1106 ;;; !!! warning: The interface to lazy binder procedures is going
1107 ;;; to be changed in an incompatible way to permit all the basic
1108 ;;; module ops to be virtualized.
1109 ;;;
1110 ;;; (make-module size use-list lazy-binding-proc) => module
1111 ;;; module-{obarray,uses,binder}[|-set!]
1112 ;;; (module? obj) => [#t|#f]
1113 ;;; (module-locally-bound? module symbol) => [#t|#f]
1114 ;;; (module-bound? module symbol) => [#t|#f]
1115 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1116 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1117 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1118 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1119 ;;; (module-symbol-binding module symbol opt-value)
1120 ;;; => [ <obj> | opt-value | an error occurs ]
1121 ;;; (module-make-local-var! module symbol) => #<variable...>
1122 ;;; (module-add! module symbol var) => unspecified
1123 ;;; (module-remove! module symbol) => unspecified
1124 ;;; (module-for-each proc module) => unspecified
1125 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1126 ;;; (set-current-module module) => unspecified
1127 ;;; (current-module) => #<module...>
1128 ;;;
1129 ;;;
1130
1131 \f
1132
1133 ;;; {Printing Modules}
1134 ;;;
1135
1136 ;; This is how modules are printed. You can re-define it.
1137 ;; (Redefining is actually more complicated than simply redefining
1138 ;; %print-module because that would only change the binding and not
1139 ;; the value stored in the vtable that determines how record are
1140 ;; printed. Sigh.)
1141
1142 (define (%print-module mod port) ; unused args: depth length style table)
1143 (display "#<" port)
1144 (display (or (module-kind mod) "module") port)
1145 (let ((name (module-name mod)))
1146 (if name
1147 (begin
1148 (display " " port)
1149 (display name port))))
1150 (display " " port)
1151 (display (number->string (object-address mod) 16) port)
1152 (display ">" port))
1153
1154 ;; module-type
1155 ;;
1156 ;; A module is characterized by an obarray in which local symbols
1157 ;; are interned, a list of modules, "uses", from which non-local
1158 ;; bindings can be inherited, and an optional lazy-binder which
1159 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1160 ;; bindings that would otherwise not be found locally in the module.
1161 ;;
1162 ;; NOTE: If you change anything here, you also need to change
1163 ;; libguile/modules.h.
1164 ;;
1165 (define module-type
1166 (make-record-type 'module
1167 '(obarray uses binder eval-closure transformer name kind
1168 duplicates-handlers import-obarray
1169 observers weak-observers)
1170 %print-module))
1171
1172 ;; make-module &opt size uses binder
1173 ;;
1174 ;; Create a new module, perhaps with a particular size of obarray,
1175 ;; initial uses list, or binding procedure.
1176 ;;
1177 (define make-module
1178 (lambda args
1179
1180 (define (parse-arg index default)
1181 (if (> (length args) index)
1182 (list-ref args index)
1183 default))
1184
1185 (define %default-import-size
1186 ;; Typical number of imported bindings actually used by a module.
1187 600)
1188
1189 (if (> (length args) 3)
1190 (error "Too many args to make-module." args))
1191
1192 (let ((size (parse-arg 0 31))
1193 (uses (parse-arg 1 '()))
1194 (binder (parse-arg 2 #f)))
1195
1196 (if (not (integer? size))
1197 (error "Illegal size to make-module." size))
1198 (if (not (and (list? uses)
1199 (and-map module? uses)))
1200 (error "Incorrect use list." uses))
1201 (if (and binder (not (procedure? binder)))
1202 (error
1203 "Lazy-binder expected to be a procedure or #f." binder))
1204
1205 (let ((module (module-constructor (make-hash-table size)
1206 uses binder #f #f #f #f #f
1207 (make-hash-table %default-import-size)
1208 '()
1209 (make-weak-key-hash-table 31))))
1210
1211 ;; We can't pass this as an argument to module-constructor,
1212 ;; because we need it to close over a pointer to the module
1213 ;; itself.
1214 (set-module-eval-closure! module (standard-eval-closure module))
1215
1216 module))))
1217
1218 (define module-constructor (record-constructor module-type))
1219 (define module-obarray (record-accessor module-type 'obarray))
1220 (define set-module-obarray! (record-modifier module-type 'obarray))
1221 (define module-uses (record-accessor module-type 'uses))
1222 (define set-module-uses! (record-modifier module-type 'uses))
1223 (define module-binder (record-accessor module-type 'binder))
1224 (define set-module-binder! (record-modifier module-type 'binder))
1225
1226 ;; NOTE: This binding is used in libguile/modules.c.
1227 (define module-eval-closure (record-accessor module-type 'eval-closure))
1228
1229 (define module-transformer (record-accessor module-type 'transformer))
1230 (define set-module-transformer! (record-modifier module-type 'transformer))
1231 (define module-name (record-accessor module-type 'name))
1232 (define set-module-name! (record-modifier module-type 'name))
1233 (define module-kind (record-accessor module-type 'kind))
1234 (define set-module-kind! (record-modifier module-type 'kind))
1235 (define module-duplicates-handlers
1236 (record-accessor module-type 'duplicates-handlers))
1237 (define set-module-duplicates-handlers!
1238 (record-modifier module-type 'duplicates-handlers))
1239 (define module-observers (record-accessor module-type 'observers))
1240 (define set-module-observers! (record-modifier module-type 'observers))
1241 (define module-weak-observers (record-accessor module-type 'weak-observers))
1242 (define module? (record-predicate module-type))
1243
1244 (define module-import-obarray (record-accessor module-type 'import-obarray))
1245
1246 (define set-module-eval-closure!
1247 (let ((setter (record-modifier module-type 'eval-closure)))
1248 (lambda (module closure)
1249 (setter module closure)
1250 ;; Make it possible to lookup the module from the environment.
1251 ;; This implementation is correct since an eval closure can belong
1252 ;; to maximally one module.
1253 (set-procedure-property! closure 'module module))))
1254
1255 \f
1256
1257 ;;; {Observer protocol}
1258 ;;;
1259
1260 (define (module-observe module proc)
1261 (set-module-observers! module (cons proc (module-observers module)))
1262 (cons module proc))
1263
1264 (define (module-observe-weak module observer-id . proc)
1265 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1266 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1267 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1268 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1269 ;; for instance).
1270
1271 ;; The two-argument version is kept for backward compatibility: when called
1272 ;; with two arguments, the observer gets unregistered when closure PROC
1273 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1274
1275 (let ((proc (if (null? proc) observer-id (car proc))))
1276 (hashq-set! (module-weak-observers module) observer-id proc)))
1277
1278 (define (module-unobserve token)
1279 (let ((module (car token))
1280 (id (cdr token)))
1281 (if (integer? id)
1282 (hash-remove! (module-weak-observers module) id)
1283 (set-module-observers! module (delq1! id (module-observers module)))))
1284 *unspecified*)
1285
1286 (define module-defer-observers #f)
1287 (define module-defer-observers-mutex (make-mutex))
1288 (define module-defer-observers-table (make-hash-table))
1289
1290 (define (module-modified m)
1291 (if module-defer-observers
1292 (hash-set! module-defer-observers-table m #t)
1293 (module-call-observers m)))
1294
1295 ;;; This function can be used to delay calls to observers so that they
1296 ;;; can be called once only in the face of massive updating of modules.
1297 ;;;
1298 (define (call-with-deferred-observers thunk)
1299 (dynamic-wind
1300 (lambda ()
1301 (lock-mutex module-defer-observers-mutex)
1302 (set! module-defer-observers #t))
1303 thunk
1304 (lambda ()
1305 (set! module-defer-observers #f)
1306 (hash-for-each (lambda (m dummy)
1307 (module-call-observers m))
1308 module-defer-observers-table)
1309 (hash-clear! module-defer-observers-table)
1310 (unlock-mutex module-defer-observers-mutex))))
1311
1312 (define (module-call-observers m)
1313 (for-each (lambda (proc) (proc m)) (module-observers m))
1314
1315 ;; We assume that weak observers don't (un)register themselves as they are
1316 ;; called since this would preclude proper iteration over the hash table
1317 ;; elements.
1318 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1319
1320 \f
1321
1322 ;;; {Module Searching in General}
1323 ;;;
1324 ;;; We sometimes want to look for properties of a symbol
1325 ;;; just within the obarray of one module. If the property
1326 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1327 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1328 ;;;
1329 ;;;
1330 ;;; Other times, we want to test for a symbol property in the obarray
1331 ;;; of M and, if it is not found there, try each of the modules in the
1332 ;;; uses list of M. This is the normal way of testing for some
1333 ;;; property, so we state these properties without qualification as
1334 ;;; in: ``The symbol 'fnord is interned in module M because it is
1335 ;;; interned locally in module M2 which is a member of the uses list
1336 ;;; of M.''
1337 ;;;
1338
1339 ;; module-search fn m
1340 ;;
1341 ;; return the first non-#f result of FN applied to M and then to
1342 ;; the modules in the uses of m, and so on recursively. If all applications
1343 ;; return #f, then so does this function.
1344 ;;
1345 (define (module-search fn m v)
1346 (define (loop pos)
1347 (and (pair? pos)
1348 (or (module-search fn (car pos) v)
1349 (loop (cdr pos)))))
1350 (or (fn m v)
1351 (loop (module-uses m))))
1352
1353
1354 ;;; {Is a symbol bound in a module?}
1355 ;;;
1356 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1357 ;;; of S in M has been set to some well-defined value.
1358 ;;;
1359
1360 ;; module-locally-bound? module symbol
1361 ;;
1362 ;; Is a symbol bound (interned and defined) locally in a given module?
1363 ;;
1364 (define (module-locally-bound? m v)
1365 (let ((var (module-local-variable m v)))
1366 (and var
1367 (variable-bound? var))))
1368
1369 ;; module-bound? module symbol
1370 ;;
1371 ;; Is a symbol bound (interned and defined) anywhere in a given module
1372 ;; or its uses?
1373 ;;
1374 (define (module-bound? m v)
1375 (module-search module-locally-bound? m v))
1376
1377 ;;; {Is a symbol interned in a module?}
1378 ;;;
1379 ;;; Symbol S in Module M is interned if S occurs in
1380 ;;; of S in M has been set to some well-defined value.
1381 ;;;
1382 ;;; It is possible to intern a symbol in a module without providing
1383 ;;; an initial binding for the corresponding variable. This is done
1384 ;;; with:
1385 ;;; (module-add! module symbol (make-undefined-variable))
1386 ;;;
1387 ;;; In that case, the symbol is interned in the module, but not
1388 ;;; bound there. The unbound symbol shadows any binding for that
1389 ;;; symbol that might otherwise be inherited from a member of the uses list.
1390 ;;;
1391
1392 (define (module-obarray-get-handle ob key)
1393 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1394
1395 (define (module-obarray-ref ob key)
1396 ((if (symbol? key) hashq-ref hash-ref) ob key))
1397
1398 (define (module-obarray-set! ob key val)
1399 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1400
1401 (define (module-obarray-remove! ob key)
1402 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1403
1404 ;; module-symbol-locally-interned? module symbol
1405 ;;
1406 ;; is a symbol interned (not neccessarily defined) locally in a given module
1407 ;; or its uses? Interned symbols shadow inherited bindings even if
1408 ;; they are not themselves bound to a defined value.
1409 ;;
1410 (define (module-symbol-locally-interned? m v)
1411 (not (not (module-obarray-get-handle (module-obarray m) v))))
1412
1413 ;; module-symbol-interned? module symbol
1414 ;;
1415 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1416 ;; or its uses? Interned symbols shadow inherited bindings even if
1417 ;; they are not themselves bound to a defined value.
1418 ;;
1419 (define (module-symbol-interned? m v)
1420 (module-search module-symbol-locally-interned? m v))
1421
1422
1423 ;;; {Mapping modules x symbols --> variables}
1424 ;;;
1425
1426 ;; module-local-variable module symbol
1427 ;; return the local variable associated with a MODULE and SYMBOL.
1428 ;;
1429 ;;; This function is very important. It is the only function that can
1430 ;;; return a variable from a module other than the mutators that store
1431 ;;; new variables in modules. Therefore, this function is the location
1432 ;;; of the "lazy binder" hack.
1433 ;;;
1434 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1435 ;;; to a variable, return that variable object.
1436 ;;;
1437 ;;; If the symbols is not found at first, but the module has a lazy binder,
1438 ;;; then try the binder.
1439 ;;;
1440 ;;; If the symbol is not found at all, return #f.
1441 ;;;
1442 ;;; (This is now written in C, see `modules.c'.)
1443 ;;;
1444
1445 ;;; {Mapping modules x symbols --> bindings}
1446 ;;;
1447 ;;; These are similar to the mapping to variables, except that the
1448 ;;; variable is dereferenced.
1449 ;;;
1450
1451 ;; module-symbol-binding module symbol opt-value
1452 ;;
1453 ;; return the binding of a variable specified by name within
1454 ;; a given module, signalling an error if the variable is unbound.
1455 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1456 ;; return OPT-VALUE.
1457 ;;
1458 (define (module-symbol-local-binding m v . opt-val)
1459 (let ((var (module-local-variable m v)))
1460 (if (and var (variable-bound? var))
1461 (variable-ref var)
1462 (if (not (null? opt-val))
1463 (car opt-val)
1464 (error "Locally unbound variable." v)))))
1465
1466 ;; module-symbol-binding module symbol opt-value
1467 ;;
1468 ;; return the binding of a variable specified by name within
1469 ;; a given module, signalling an error if the variable is unbound.
1470 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1471 ;; return OPT-VALUE.
1472 ;;
1473 (define (module-symbol-binding m v . opt-val)
1474 (let ((var (module-variable m v)))
1475 (if (and var (variable-bound? var))
1476 (variable-ref var)
1477 (if (not (null? opt-val))
1478 (car opt-val)
1479 (error "Unbound variable." v)))))
1480
1481
1482 \f
1483
1484 ;;; {Adding Variables to Modules}
1485 ;;;
1486
1487 ;; module-make-local-var! module symbol
1488 ;;
1489 ;; ensure a variable for V in the local namespace of M.
1490 ;; If no variable was already there, then create a new and uninitialzied
1491 ;; variable.
1492 ;;
1493 ;; This function is used in modules.c.
1494 ;;
1495 (define (module-make-local-var! m v)
1496 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1497 (and (variable? b)
1498 (begin
1499 ;; Mark as modified since this function is called when
1500 ;; the standard eval closure defines a binding
1501 (module-modified m)
1502 b)))
1503
1504 ;; Create a new local variable.
1505 (let ((local-var (make-undefined-variable)))
1506 (module-add! m v local-var)
1507 local-var)))
1508
1509 ;; module-ensure-local-variable! module symbol
1510 ;;
1511 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1512 ;; there is no binding for SYMBOL, create a new uninitialized
1513 ;; variable. Return the local variable.
1514 ;;
1515 (define (module-ensure-local-variable! module symbol)
1516 (or (module-local-variable module symbol)
1517 (let ((var (make-undefined-variable)))
1518 (module-add! module symbol var)
1519 var)))
1520
1521 ;; module-add! module symbol var
1522 ;;
1523 ;; ensure a particular variable for V in the local namespace of M.
1524 ;;
1525 (define (module-add! m v var)
1526 (if (not (variable? var))
1527 (error "Bad variable to module-add!" var))
1528 (module-obarray-set! (module-obarray m) v var)
1529 (module-modified m))
1530
1531 ;; module-remove!
1532 ;;
1533 ;; make sure that a symbol is undefined in the local namespace of M.
1534 ;;
1535 (define (module-remove! m v)
1536 (module-obarray-remove! (module-obarray m) v)
1537 (module-modified m))
1538
1539 (define (module-clear! m)
1540 (hash-clear! (module-obarray m))
1541 (module-modified m))
1542
1543 ;; MODULE-FOR-EACH -- exported
1544 ;;
1545 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1546 ;;
1547 (define (module-for-each proc module)
1548 (hash-for-each proc (module-obarray module)))
1549
1550 (define (module-map proc module)
1551 (hash-map->list proc (module-obarray module)))
1552
1553 \f
1554
1555 ;;; {Low Level Bootstrapping}
1556 ;;;
1557
1558 ;; make-root-module
1559
1560 ;; A root module uses the pre-modules-obarray as its obarray. This
1561 ;; special obarray accumulates all bindings that have been established
1562 ;; before the module system is fully booted.
1563 ;;
1564 ;; (The obarray continues to be used by code that has been closed over
1565 ;; before the module system has been booted.)
1566
1567 (define (make-root-module)
1568 (let ((m (make-module 0)))
1569 (set-module-obarray! m (%get-pre-modules-obarray))
1570 m))
1571
1572 ;; make-scm-module
1573
1574 ;; The root interface is a module that uses the same obarray as the
1575 ;; root module. It does not allow new definitions, tho.
1576
1577 (define (make-scm-module)
1578 (let ((m (make-module 0)))
1579 (set-module-obarray! m (%get-pre-modules-obarray))
1580 (set-module-eval-closure! m (standard-interface-eval-closure m))
1581 m))
1582
1583
1584 \f
1585
1586 ;;; {Module-based Loading}
1587 ;;;
1588
1589 (define (save-module-excursion thunk)
1590 (let ((inner-module (current-module))
1591 (outer-module #f))
1592 (dynamic-wind (lambda ()
1593 (set! outer-module (current-module))
1594 (set-current-module inner-module)
1595 (set! inner-module #f))
1596 thunk
1597 (lambda ()
1598 (set! inner-module (current-module))
1599 (set-current-module outer-module)
1600 (set! outer-module #f)))))
1601
1602 (define basic-load load)
1603
1604 (define (load-module filename . reader)
1605 (save-module-excursion
1606 (lambda ()
1607 (let ((oldname (and (current-load-port)
1608 (port-filename (current-load-port)))))
1609 (apply basic-load
1610 (if (and oldname
1611 (> (string-length filename) 0)
1612 (not (char=? (string-ref filename 0) #\/))
1613 (not (string=? (dirname oldname) ".")))
1614 (string-append (dirname oldname) "/" filename)
1615 filename)
1616 reader)))))
1617
1618
1619 \f
1620
1621 ;;; {MODULE-REF -- exported}
1622 ;;;
1623
1624 ;; Returns the value of a variable called NAME in MODULE or any of its
1625 ;; used modules. If there is no such variable, then if the optional third
1626 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1627 ;;
1628 (define (module-ref module name . rest)
1629 (let ((variable (module-variable module name)))
1630 (if (and variable (variable-bound? variable))
1631 (variable-ref variable)
1632 (if (null? rest)
1633 (error "No variable named" name 'in module)
1634 (car rest) ; default value
1635 ))))
1636
1637 ;; MODULE-SET! -- exported
1638 ;;
1639 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1640 ;; to VALUE; if there is no such variable, an error is signaled.
1641 ;;
1642 (define (module-set! module name value)
1643 (let ((variable (module-variable module name)))
1644 (if variable
1645 (variable-set! variable value)
1646 (error "No variable named" name 'in module))))
1647
1648 ;; MODULE-DEFINE! -- exported
1649 ;;
1650 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1651 ;; variable, it is added first.
1652 ;;
1653 (define (module-define! module name value)
1654 (let ((variable (module-local-variable module name)))
1655 (if variable
1656 (begin
1657 (variable-set! variable value)
1658 (module-modified module))
1659 (let ((variable (make-variable value)))
1660 (module-add! module name variable)))))
1661
1662 ;; MODULE-DEFINED? -- exported
1663 ;;
1664 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1665 ;; uses)
1666 ;;
1667 (define (module-defined? module name)
1668 (let ((variable (module-variable module name)))
1669 (and variable (variable-bound? variable))))
1670
1671 ;; MODULE-USE! module interface
1672 ;;
1673 ;; Add INTERFACE to the list of interfaces used by MODULE.
1674 ;;
1675 (define (module-use! module interface)
1676 (if (not (eq? module interface))
1677 (begin
1678 ;; Newly used modules must be appended rather than consed, so that
1679 ;; `module-variable' traverses the use list starting from the first
1680 ;; used module.
1681 (set-module-uses! module
1682 (append (filter (lambda (m)
1683 (not
1684 (equal? (module-name m)
1685 (module-name interface))))
1686 (module-uses module))
1687 (list interface)))
1688
1689 (module-modified module))))
1690
1691 ;; MODULE-USE-INTERFACES! module interfaces
1692 ;;
1693 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1694 ;;
1695 (define (module-use-interfaces! module interfaces)
1696 (set-module-uses! module
1697 (append (module-uses module) interfaces))
1698 (module-modified module))
1699
1700 \f
1701
1702 ;;; {Recursive Namespaces}
1703 ;;;
1704 ;;; A hierarchical namespace emerges if we consider some module to be
1705 ;;; root, and variables bound to modules as nested namespaces.
1706 ;;;
1707 ;;; The routines in this file manage variable names in hierarchical namespace.
1708 ;;; Each variable name is a list of elements, looked up in successively nested
1709 ;;; modules.
1710 ;;;
1711 ;;; (nested-ref some-root-module '(foo bar baz))
1712 ;;; => <value of a variable named baz in the module bound to bar in
1713 ;;; the module bound to foo in some-root-module>
1714 ;;;
1715 ;;;
1716 ;;; There are:
1717 ;;;
1718 ;;; ;; a-root is a module
1719 ;;; ;; name is a list of symbols
1720 ;;;
1721 ;;; nested-ref a-root name
1722 ;;; nested-set! a-root name val
1723 ;;; nested-define! a-root name val
1724 ;;; nested-remove! a-root name
1725 ;;;
1726 ;;;
1727 ;;; (current-module) is a natural choice for a-root so for convenience there are
1728 ;;; also:
1729 ;;;
1730 ;;; local-ref name == nested-ref (current-module) name
1731 ;;; local-set! name val == nested-set! (current-module) name val
1732 ;;; local-define! name val == nested-define! (current-module) name val
1733 ;;; local-remove! name == nested-remove! (current-module) name
1734 ;;;
1735
1736
1737 (define (nested-ref root names)
1738 (let loop ((cur root)
1739 (elts names))
1740 (cond
1741 ((null? elts) cur)
1742 ((not (module? cur)) #f)
1743 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1744
1745 (define (nested-set! root names val)
1746 (let loop ((cur root)
1747 (elts names))
1748 (if (null? (cdr elts))
1749 (module-set! cur (car elts) val)
1750 (loop (module-ref cur (car elts)) (cdr elts)))))
1751
1752 (define (nested-define! root names val)
1753 (let loop ((cur root)
1754 (elts names))
1755 (if (null? (cdr elts))
1756 (module-define! cur (car elts) val)
1757 (loop (module-ref cur (car elts)) (cdr elts)))))
1758
1759 (define (nested-remove! root names)
1760 (let loop ((cur root)
1761 (elts names))
1762 (if (null? (cdr elts))
1763 (module-remove! cur (car elts))
1764 (loop (module-ref cur (car elts)) (cdr elts)))))
1765
1766 (define (local-ref names) (nested-ref (current-module) names))
1767 (define (local-set! names val) (nested-set! (current-module) names val))
1768 (define (local-define names val) (nested-define! (current-module) names val))
1769 (define (local-remove names) (nested-remove! (current-module) names))
1770
1771
1772 \f
1773
1774 ;;; {The (%app) module}
1775 ;;;
1776 ;;; The root of conventionally named objects not directly in the top level.
1777 ;;;
1778 ;;; (%app modules)
1779 ;;; (%app modules guile)
1780 ;;;
1781 ;;; The directory of all modules and the standard root module.
1782 ;;;
1783
1784 (define (module-public-interface m)
1785 (module-ref m '%module-public-interface #f))
1786 (define (set-module-public-interface! m i)
1787 (module-define! m '%module-public-interface i))
1788 (define (set-system-module! m s)
1789 (set-procedure-property! (module-eval-closure m) 'system-module s))
1790 (define the-root-module (make-root-module))
1791 (define the-scm-module (make-scm-module))
1792 (set-module-public-interface! the-root-module the-scm-module)
1793 (set-module-name! the-root-module '(guile))
1794 (set-module-name! the-scm-module '(guile))
1795 (set-module-kind! the-scm-module 'interface)
1796 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1797
1798 ;; NOTE: This binding is used in libguile/modules.c.
1799 ;;
1800 (define (make-modules-in module name)
1801 (if (null? name)
1802 module
1803 (cond
1804 ((module-ref module (car name) #f)
1805 => (lambda (m) (make-modules-in m (cdr name))))
1806 (else (let ((m (make-module 31)))
1807 (set-module-kind! m 'directory)
1808 (set-module-name! m (append (or (module-name module)
1809 '())
1810 (list (car name))))
1811 (module-define! module (car name) m)
1812 (make-modules-in m (cdr name)))))))
1813
1814 (define (beautify-user-module! module)
1815 (let ((interface (module-public-interface module)))
1816 (if (or (not interface)
1817 (eq? interface module))
1818 (let ((interface (make-module 31)))
1819 (set-module-name! interface (module-name module))
1820 (set-module-kind! interface 'interface)
1821 (set-module-public-interface! module interface))))
1822 (if (and (not (memq the-scm-module (module-uses module)))
1823 (not (eq? module the-root-module)))
1824 ;; Import the default set of bindings (from the SCM module) in MODULE.
1825 (module-use! module the-scm-module)))
1826
1827 ;; NOTE: This binding is used in libguile/modules.c.
1828 ;;
1829 (define resolve-module
1830 (let ((the-root-module the-root-module))
1831 (lambda (name . maybe-autoload)
1832 (if (equal? name '(guile))
1833 the-root-module
1834 (let ((full-name (append '(%app modules) name)))
1835 (let ((already (nested-ref the-root-module full-name)))
1836 (if already
1837 ;; The module already exists...
1838 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1839 (not (module-public-interface already)))
1840 ;; ...but we are told to load and it doesn't contain source, so
1841 (begin
1842 (try-load-module name)
1843 already)
1844 ;; simply return it.
1845 already)
1846 (begin
1847 ;; Try to autoload it if we are told so
1848 (if (or (null? maybe-autoload) (car maybe-autoload))
1849 (try-load-module name))
1850 ;; Get/create it.
1851 (make-modules-in (current-module) full-name)))))))))
1852
1853 ;; Cheat. These bindings are needed by modules.c, but we don't want
1854 ;; to move their real definition here because that would be unnatural.
1855 ;;
1856 (define try-module-autoload #f)
1857 (define process-define-module #f)
1858 (define process-use-modules #f)
1859 (define module-export! #f)
1860 (define default-duplicate-binding-procedures #f)
1861
1862 (define %app (make-module 31))
1863 (define app %app) ;; for backwards compatability
1864
1865 (local-define '(%app modules) (make-module 31))
1866 (local-define '(%app modules guile) the-root-module)
1867
1868 ;; This boots the module system. All bindings needed by modules.c
1869 ;; must have been defined by now.
1870 ;;
1871 (set-current-module the-root-module)
1872
1873 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1874
1875 (define (try-load-module name)
1876 (or (begin-deprecated (try-module-linked name))
1877 (try-module-autoload name)
1878 (begin-deprecated (try-module-dynamic-link name))))
1879
1880 (define (purify-module! module)
1881 "Removes bindings in MODULE which are inherited from the (guile) module."
1882 (let ((use-list (module-uses module)))
1883 (if (and (pair? use-list)
1884 (eq? (car (last-pair use-list)) the-scm-module))
1885 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1886
1887 ;; Return a module that is an interface to the module designated by
1888 ;; NAME.
1889 ;;
1890 ;; `resolve-interface' takes four keyword arguments:
1891 ;;
1892 ;; #:select SELECTION
1893 ;;
1894 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1895 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1896 ;; is the name in the used module and SEEN is the name in the using
1897 ;; module. Note that SEEN is also passed through RENAMER, below. The
1898 ;; default is to select all bindings. If you specify no selection but
1899 ;; a renamer, only the bindings that already exist in the used module
1900 ;; are made available in the interface. Bindings that are added later
1901 ;; are not picked up.
1902 ;;
1903 ;; #:hide BINDINGS
1904 ;;
1905 ;; BINDINGS is a list of bindings which should not be imported.
1906 ;;
1907 ;; #:prefix PREFIX
1908 ;;
1909 ;; PREFIX is a symbol that will be appended to each exported name.
1910 ;; The default is to not perform any renaming.
1911 ;;
1912 ;; #:renamer RENAMER
1913 ;;
1914 ;; RENAMER is a procedure that takes a symbol and returns its new
1915 ;; name. The default is not perform any renaming.
1916 ;;
1917 ;; Signal "no code for module" error if module name is not resolvable
1918 ;; or its public interface is not available. Signal "no binding"
1919 ;; error if selected binding does not exist in the used module.
1920 ;;
1921 (define (resolve-interface name . args)
1922
1923 (define (get-keyword-arg args kw def)
1924 (cond ((memq kw args)
1925 => (lambda (kw-arg)
1926 (if (null? (cdr kw-arg))
1927 (error "keyword without value: " kw))
1928 (cadr kw-arg)))
1929 (else
1930 def)))
1931
1932 (let* ((select (get-keyword-arg args #:select #f))
1933 (hide (get-keyword-arg args #:hide '()))
1934 (renamer (or (get-keyword-arg args #:renamer #f)
1935 (let ((prefix (get-keyword-arg args #:prefix #f)))
1936 (and prefix (symbol-prefix-proc prefix)))
1937 identity))
1938 (module (resolve-module name))
1939 (public-i (and module (module-public-interface module))))
1940 (and (or (not module) (not public-i))
1941 (error "no code for module" name))
1942 (if (and (not select) (null? hide) (eq? renamer identity))
1943 public-i
1944 (let ((selection (or select (module-map (lambda (sym var) sym)
1945 public-i)))
1946 (custom-i (make-module 31)))
1947 (set-module-kind! custom-i 'custom-interface)
1948 (set-module-name! custom-i name)
1949 ;; XXX - should use a lazy binder so that changes to the
1950 ;; used module are picked up automatically.
1951 (for-each (lambda (bspec)
1952 (let* ((direct? (symbol? bspec))
1953 (orig (if direct? bspec (car bspec)))
1954 (seen (if direct? bspec (cdr bspec)))
1955 (var (or (module-local-variable public-i orig)
1956 (module-local-variable module orig)
1957 (error
1958 ;; fixme: format manually for now
1959 (simple-format
1960 #f "no binding `~A' in module ~A"
1961 orig name)))))
1962 (if (memq orig hide)
1963 (set! hide (delq! orig hide))
1964 (module-add! custom-i
1965 (renamer seen)
1966 var))))
1967 selection)
1968 ;; Check that we are not hiding bindings which don't exist
1969 (for-each (lambda (binding)
1970 (if (not (module-local-variable public-i binding))
1971 (error
1972 (simple-format
1973 #f "no binding `~A' to hide in module ~A"
1974 binding name))))
1975 hide)
1976 custom-i))))
1977
1978 (define (symbol-prefix-proc prefix)
1979 (lambda (symbol)
1980 (symbol-append prefix symbol)))
1981
1982 ;; This function is called from "modules.c". If you change it, be
1983 ;; sure to update "modules.c" as well.
1984
1985 (define (process-define-module args)
1986 (let* ((module-id (car args))
1987 (module (resolve-module module-id #f))
1988 (kws (cdr args))
1989 (unrecognized (lambda (arg)
1990 (error "unrecognized define-module argument" arg))))
1991 (beautify-user-module! module)
1992 (let loop ((kws kws)
1993 (reversed-interfaces '())
1994 (exports '())
1995 (re-exports '())
1996 (replacements '())
1997 (autoloads '()))
1998
1999 (if (null? kws)
2000 (call-with-deferred-observers
2001 (lambda ()
2002 (module-use-interfaces! module (reverse reversed-interfaces))
2003 (module-export! module exports)
2004 (module-replace! module replacements)
2005 (module-re-export! module re-exports)
2006 (if (not (null? autoloads))
2007 (apply module-autoload! module autoloads))))
2008 (case (car kws)
2009 ((#:use-module #:use-syntax)
2010 (or (pair? (cdr kws))
2011 (unrecognized kws))
2012 (let* ((interface-args (cadr kws))
2013 (interface (apply resolve-interface interface-args)))
2014 (and (eq? (car kws) #:use-syntax)
2015 (or (symbol? (caar interface-args))
2016 (error "invalid module name for use-syntax"
2017 (car interface-args)))
2018 (set-module-transformer!
2019 module
2020 (module-ref interface
2021 (car (last-pair (car interface-args)))
2022 #f)))
2023 (loop (cddr kws)
2024 (cons interface reversed-interfaces)
2025 exports
2026 re-exports
2027 replacements
2028 autoloads)))
2029 ((#:autoload)
2030 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2031 (unrecognized kws))
2032 (loop (cdddr kws)
2033 reversed-interfaces
2034 exports
2035 re-exports
2036 replacements
2037 (let ((name (cadr kws))
2038 (bindings (caddr kws)))
2039 (cons* name bindings autoloads))))
2040 ((#:no-backtrace)
2041 (set-system-module! module #t)
2042 (loop (cdr kws) reversed-interfaces exports re-exports
2043 replacements autoloads))
2044 ((#:pure)
2045 (purify-module! module)
2046 (loop (cdr kws) reversed-interfaces exports re-exports
2047 replacements autoloads))
2048 ((#:duplicates)
2049 (if (not (pair? (cdr kws)))
2050 (unrecognized kws))
2051 (set-module-duplicates-handlers!
2052 module
2053 (lookup-duplicates-handlers (cadr kws)))
2054 (loop (cddr kws) reversed-interfaces exports re-exports
2055 replacements autoloads))
2056 ((#:export #:export-syntax)
2057 (or (pair? (cdr kws))
2058 (unrecognized kws))
2059 (loop (cddr kws)
2060 reversed-interfaces
2061 (append (cadr kws) exports)
2062 re-exports
2063 replacements
2064 autoloads))
2065 ((#:re-export #:re-export-syntax)
2066 (or (pair? (cdr kws))
2067 (unrecognized kws))
2068 (loop (cddr kws)
2069 reversed-interfaces
2070 exports
2071 (append (cadr kws) re-exports)
2072 replacements
2073 autoloads))
2074 ((#:replace #:replace-syntax)
2075 (or (pair? (cdr kws))
2076 (unrecognized kws))
2077 (loop (cddr kws)
2078 reversed-interfaces
2079 exports
2080 re-exports
2081 (append (cadr kws) replacements)
2082 autoloads))
2083 (else
2084 (unrecognized kws)))))
2085 (run-hook module-defined-hook module)
2086 module))
2087
2088 ;; `module-defined-hook' is a hook that is run whenever a new module
2089 ;; is defined. Its members are called with one argument, the new
2090 ;; module.
2091 (define module-defined-hook (make-hook 1))
2092
2093 \f
2094
2095 ;;; {Autoload}
2096 ;;;
2097
2098 (define (make-autoload-interface module name bindings)
2099 (let ((b (lambda (a sym definep)
2100 (and (memq sym bindings)
2101 (let ((i (module-public-interface (resolve-module name))))
2102 (if (not i)
2103 (error "missing interface for module" name))
2104 (let ((autoload (memq a (module-uses module))))
2105 ;; Replace autoload-interface with actual interface if
2106 ;; that has not happened yet.
2107 (if (pair? autoload)
2108 (set-car! autoload i)))
2109 (module-local-variable i sym))))))
2110 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2111 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2112
2113 (define (module-autoload! module . args)
2114 "Have @var{module} automatically load the module named @var{name} when one
2115 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2116 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2117 module '(ice-9 q) '(make-q q-length))}."
2118 (let loop ((args args))
2119 (cond ((null? args)
2120 #t)
2121 ((null? (cdr args))
2122 (error "invalid name+binding autoload list" args))
2123 (else
2124 (let ((name (car args))
2125 (bindings (cadr args)))
2126 (module-use! module (make-autoload-interface module
2127 name bindings))
2128 (loop (cddr args)))))))
2129
2130
2131 ;;; {Compiled module}
2132
2133 (if (not (defined? 'load-compiled))
2134 (define load-compiled #f))
2135
2136 \f
2137
2138 ;;; {Autoloading modules}
2139 ;;;
2140
2141 (define autoloads-in-progress '())
2142
2143 ;; This function is called from "modules.c". If you change it, be
2144 ;; sure to update "modules.c" as well.
2145
2146 (define (try-module-autoload module-name)
2147 (let* ((reverse-name (reverse module-name))
2148 (name (symbol->string (car reverse-name)))
2149 (dir-hint-module-name (reverse (cdr reverse-name)))
2150 (dir-hint (apply string-append
2151 (map (lambda (elt)
2152 (string-append (symbol->string elt) "/"))
2153 dir-hint-module-name))))
2154 (resolve-module dir-hint-module-name #f)
2155 (and (not (autoload-done-or-in-progress? dir-hint name))
2156 (let ((didit #f))
2157 (define (load-file proc file)
2158 (save-module-excursion (lambda () (proc file)))
2159 (set! didit #t))
2160 (dynamic-wind
2161 (lambda () (autoload-in-progress! dir-hint name))
2162 (lambda ()
2163 (let ((file (in-vicinity dir-hint name)))
2164 (let ((compiled (and load-compiled
2165 (%search-load-path
2166 (string-append file ".go"))))
2167 (source (%search-load-path file)))
2168 (cond ((and source
2169 (or (not compiled)
2170 (< (stat:mtime (stat compiled))
2171 (stat:mtime (stat source)))))
2172 (if compiled
2173 (warn "source file" source "newer than" compiled))
2174 (with-fluids ((current-reader #f))
2175 (load-file primitive-load source)))
2176 (compiled
2177 (load-file load-compiled compiled))))))
2178 (lambda () (set-autoloaded! dir-hint name didit)))
2179 didit))))
2180
2181 \f
2182
2183 ;;; {Dynamic linking of modules}
2184 ;;;
2185
2186 (define autoloads-done '((guile . guile)))
2187
2188 (define (autoload-done-or-in-progress? p m)
2189 (let ((n (cons p m)))
2190 (->bool (or (member n autoloads-done)
2191 (member n autoloads-in-progress)))))
2192
2193 (define (autoload-done! p m)
2194 (let ((n (cons p m)))
2195 (set! autoloads-in-progress
2196 (delete! n autoloads-in-progress))
2197 (or (member n autoloads-done)
2198 (set! autoloads-done (cons n autoloads-done)))))
2199
2200 (define (autoload-in-progress! p m)
2201 (let ((n (cons p m)))
2202 (set! autoloads-done
2203 (delete! n autoloads-done))
2204 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2205
2206 (define (set-autoloaded! p m done?)
2207 (if done?
2208 (autoload-done! p m)
2209 (let ((n (cons p m)))
2210 (set! autoloads-done (delete! n autoloads-done))
2211 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2212
2213 \f
2214
2215 ;;; {Run-time options}
2216 ;;;
2217
2218 (defmacro define-option-interface (option-group)
2219 (let* ((option-name car)
2220 (option-value cadr)
2221 (option-documentation caddr)
2222
2223 ;; Below follow the macros defining the run-time option interfaces.
2224
2225 (make-options (lambda (interface)
2226 `(lambda args
2227 (cond ((null? args) (,interface))
2228 ((list? (car args))
2229 (,interface (car args)) (,interface))
2230 (else (for-each
2231 (lambda (option)
2232 (display (option-name option))
2233 (if (< (string-length
2234 (symbol->string (option-name option)))
2235 8)
2236 (display #\tab))
2237 (display #\tab)
2238 (display (option-value option))
2239 (display #\tab)
2240 (display (option-documentation option))
2241 (newline))
2242 (,interface #t)))))))
2243
2244 (make-enable (lambda (interface)
2245 `(lambda flags
2246 (,interface (append flags (,interface)))
2247 (,interface))))
2248
2249 (make-disable (lambda (interface)
2250 `(lambda flags
2251 (let ((options (,interface)))
2252 (for-each (lambda (flag)
2253 (set! options (delq! flag options)))
2254 flags)
2255 (,interface options)
2256 (,interface))))))
2257 (let* ((interface (car option-group))
2258 (options/enable/disable (cadr option-group)))
2259 `(begin
2260 (define ,(car options/enable/disable)
2261 ,(make-options interface))
2262 (define ,(cadr options/enable/disable)
2263 ,(make-enable interface))
2264 (define ,(caddr options/enable/disable)
2265 ,(make-disable interface))
2266 (defmacro ,(caaddr option-group) (opt val)
2267 `(,',(car options/enable/disable)
2268 (append (,',(car options/enable/disable))
2269 (list ',opt ,val))))))))
2270
2271 (define-option-interface
2272 (eval-options-interface
2273 (eval-options eval-enable eval-disable)
2274 (eval-set!)))
2275
2276 (define-option-interface
2277 (debug-options-interface
2278 (debug-options debug-enable debug-disable)
2279 (debug-set!)))
2280
2281 (define-option-interface
2282 (evaluator-traps-interface
2283 (traps trap-enable trap-disable)
2284 (trap-set!)))
2285
2286 (define-option-interface
2287 (read-options-interface
2288 (read-options read-enable read-disable)
2289 (read-set!)))
2290
2291 (define-option-interface
2292 (print-options-interface
2293 (print-options print-enable print-disable)
2294 (print-set!)))
2295
2296 \f
2297
2298 ;;; {Running Repls}
2299 ;;;
2300
2301 (define (repl read evaler print)
2302 (let loop ((source (read (current-input-port))))
2303 (print (evaler source))
2304 (loop (read (current-input-port)))))
2305
2306 ;; A provisional repl that acts like the SCM repl:
2307 ;;
2308 (define scm-repl-silent #f)
2309 (define (assert-repl-silence v) (set! scm-repl-silent v))
2310
2311 (define *unspecified* (if #f #f))
2312 (define (unspecified? v) (eq? v *unspecified*))
2313
2314 (define scm-repl-print-unspecified #f)
2315 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2316
2317 (define scm-repl-verbose #f)
2318 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2319
2320 (define scm-repl-prompt "guile> ")
2321
2322 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2323
2324 (define (default-lazy-handler key . args)
2325 (save-stack lazy-handler-dispatch)
2326 (apply throw key args))
2327
2328 (define (lazy-handler-dispatch key . args)
2329 (apply default-lazy-handler key args))
2330
2331 (define abort-hook (make-hook))
2332
2333 ;; these definitions are used if running a script.
2334 ;; otherwise redefined in error-catching-loop.
2335 (define (set-batch-mode?! arg) #t)
2336 (define (batch-mode?) #t)
2337
2338 (define (error-catching-loop thunk)
2339 (let ((status #f)
2340 (interactive #t))
2341 (define (loop first)
2342 (let ((next
2343 (catch #t
2344
2345 (lambda ()
2346 (call-with-unblocked-asyncs
2347 (lambda ()
2348 (with-traps
2349 (lambda ()
2350 (first)
2351
2352 ;; This line is needed because mark
2353 ;; doesn't do closures quite right.
2354 ;; Unreferenced locals should be
2355 ;; collected.
2356 (set! first #f)
2357 (let loop ((v (thunk)))
2358 (loop (thunk)))
2359 #f)))))
2360
2361 (lambda (key . args)
2362 (case key
2363 ((quit)
2364 (set! status args)
2365 #f)
2366
2367 ((switch-repl)
2368 (apply throw 'switch-repl args))
2369
2370 ((abort)
2371 ;; This is one of the closures that require
2372 ;; (set! first #f) above
2373 ;;
2374 (lambda ()
2375 (run-hook abort-hook)
2376 (force-output (current-output-port))
2377 (display "ABORT: " (current-error-port))
2378 (write args (current-error-port))
2379 (newline (current-error-port))
2380 (if interactive
2381 (begin
2382 (if (and
2383 (not has-shown-debugger-hint?)
2384 (not (memq 'backtrace
2385 (debug-options-interface)))
2386 (stack? (fluid-ref the-last-stack)))
2387 (begin
2388 (newline (current-error-port))
2389 (display
2390 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2391 (current-error-port))
2392 (set! has-shown-debugger-hint? #t)))
2393 (force-output (current-error-port)))
2394 (begin
2395 (primitive-exit 1)))
2396 (set! stack-saved? #f)))
2397
2398 (else
2399 ;; This is the other cons-leak closure...
2400 (lambda ()
2401 (cond ((= (length args) 4)
2402 (apply handle-system-error key args))
2403 (else
2404 (apply bad-throw key args)))))))
2405
2406 ;; Note that having just `lazy-handler-dispatch'
2407 ;; here is connected with the mechanism that
2408 ;; produces a nice backtrace upon error. If, for
2409 ;; example, this is replaced with (lambda args
2410 ;; (apply lazy-handler-dispatch args)), the stack
2411 ;; cutting (in save-stack) goes wrong and ends up
2412 ;; saving no stack at all, so there is no
2413 ;; backtrace.
2414 lazy-handler-dispatch)))
2415
2416 (if next (loop next) status)))
2417 (set! set-batch-mode?! (lambda (arg)
2418 (cond (arg
2419 (set! interactive #f)
2420 (restore-signals))
2421 (#t
2422 (error "sorry, not implemented")))))
2423 (set! batch-mode? (lambda () (not interactive)))
2424 (call-with-blocked-asyncs
2425 (lambda () (loop (lambda () #t))))))
2426
2427 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2428 (define before-signal-stack (make-fluid))
2429 (define stack-saved? #f)
2430
2431 (define (save-stack . narrowing)
2432 (or stack-saved?
2433 (cond ((not (memq 'debug (debug-options-interface)))
2434 (fluid-set! the-last-stack #f)
2435 (set! stack-saved? #t))
2436 (else
2437 (fluid-set!
2438 the-last-stack
2439 (case (stack-id #t)
2440 ((repl-stack)
2441 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2442 ((load-stack)
2443 (apply make-stack #t save-stack 0 #t 0 narrowing))
2444 ((tk-stack)
2445 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2446 ((#t)
2447 (apply make-stack #t save-stack 0 1 narrowing))
2448 (else
2449 (let ((id (stack-id #t)))
2450 (and (procedure? id)
2451 (apply make-stack #t save-stack id #t 0 narrowing))))))
2452 (set! stack-saved? #t)))))
2453
2454 (define before-error-hook (make-hook))
2455 (define after-error-hook (make-hook))
2456 (define before-backtrace-hook (make-hook))
2457 (define after-backtrace-hook (make-hook))
2458
2459 (define has-shown-debugger-hint? #f)
2460
2461 (define (handle-system-error key . args)
2462 (let ((cep (current-error-port)))
2463 (cond ((not (stack? (fluid-ref the-last-stack))))
2464 ((memq 'backtrace (debug-options-interface))
2465 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2466 (eq? key 'out-of-range))
2467 (list-ref args 3)
2468 '())))
2469 (run-hook before-backtrace-hook)
2470 (newline cep)
2471 (display "Backtrace:\n")
2472 (display-backtrace (fluid-ref the-last-stack) cep
2473 #f #f highlights)
2474 (newline cep)
2475 (run-hook after-backtrace-hook))))
2476 (run-hook before-error-hook)
2477 (apply display-error (fluid-ref the-last-stack) cep args)
2478 (run-hook after-error-hook)
2479 (force-output cep)
2480 (throw 'abort key)))
2481
2482 (define (quit . args)
2483 (apply throw 'quit args))
2484
2485 (define exit quit)
2486
2487 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2488
2489 ;; Replaced by C code:
2490 ;;(define (backtrace)
2491 ;; (if (fluid-ref the-last-stack)
2492 ;; (begin
2493 ;; (newline)
2494 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2495 ;; (newline)
2496 ;; (if (and (not has-shown-backtrace-hint?)
2497 ;; (not (memq 'backtrace (debug-options-interface))))
2498 ;; (begin
2499 ;; (display
2500 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2501 ;;automatically if an error occurs in the future.\n")
2502 ;; (set! has-shown-backtrace-hint? #t))))
2503 ;; (display "No backtrace available.\n")))
2504
2505 (define (error-catching-repl r e p)
2506 (error-catching-loop
2507 (lambda ()
2508 (call-with-values (lambda () (e (r)))
2509 (lambda the-values (for-each p the-values))))))
2510
2511 (define (gc-run-time)
2512 (cdr (assq 'gc-time-taken (gc-stats))))
2513
2514 (define before-read-hook (make-hook))
2515 (define after-read-hook (make-hook))
2516 (define before-eval-hook (make-hook 1))
2517 (define after-eval-hook (make-hook 1))
2518 (define before-print-hook (make-hook 1))
2519 (define after-print-hook (make-hook 1))
2520
2521 ;;; The default repl-reader function. We may override this if we've
2522 ;;; the readline library.
2523 (define repl-reader
2524 (lambda (prompt)
2525 (display (if (string? prompt) prompt (prompt)))
2526 (force-output)
2527 (run-hook before-read-hook)
2528 ((or (fluid-ref current-reader) read) (current-input-port))))
2529
2530 (define (scm-style-repl)
2531
2532 (letrec (
2533 (start-gc-rt #f)
2534 (start-rt #f)
2535 (repl-report-start-timing (lambda ()
2536 (set! start-gc-rt (gc-run-time))
2537 (set! start-rt (get-internal-run-time))))
2538 (repl-report (lambda ()
2539 (display ";;; ")
2540 (display (inexact->exact
2541 (* 1000 (/ (- (get-internal-run-time) start-rt)
2542 internal-time-units-per-second))))
2543 (display " msec (")
2544 (display (inexact->exact
2545 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2546 internal-time-units-per-second))))
2547 (display " msec in gc)\n")))
2548
2549 (consume-trailing-whitespace
2550 (lambda ()
2551 (let ((ch (peek-char)))
2552 (cond
2553 ((eof-object? ch))
2554 ((or (char=? ch #\space) (char=? ch #\tab))
2555 (read-char)
2556 (consume-trailing-whitespace))
2557 ((char=? ch #\newline)
2558 (read-char))))))
2559 (-read (lambda ()
2560 (let ((val
2561 (let ((prompt (cond ((string? scm-repl-prompt)
2562 scm-repl-prompt)
2563 ((thunk? scm-repl-prompt)
2564 (scm-repl-prompt))
2565 (scm-repl-prompt "> ")
2566 (else ""))))
2567 (repl-reader prompt))))
2568
2569 ;; As described in R4RS, the READ procedure updates the
2570 ;; port to point to the first character past the end of
2571 ;; the external representation of the object. This
2572 ;; means that it doesn't consume the newline typically
2573 ;; found after an expression. This means that, when
2574 ;; debugging Guile with GDB, GDB gets the newline, which
2575 ;; it often interprets as a "continue" command, making
2576 ;; breakpoints kind of useless. So, consume any
2577 ;; trailing newline here, as well as any whitespace
2578 ;; before it.
2579 ;; But not if EOF, for control-D.
2580 (if (not (eof-object? val))
2581 (consume-trailing-whitespace))
2582 (run-hook after-read-hook)
2583 (if (eof-object? val)
2584 (begin
2585 (repl-report-start-timing)
2586 (if scm-repl-verbose
2587 (begin
2588 (newline)
2589 (display ";;; EOF -- quitting")
2590 (newline)))
2591 (quit 0)))
2592 val)))
2593
2594 (-eval (lambda (sourc)
2595 (repl-report-start-timing)
2596 (run-hook before-eval-hook sourc)
2597 (let ((val (start-stack 'repl-stack
2598 ;; If you change this procedure
2599 ;; (primitive-eval), please also
2600 ;; modify the repl-stack case in
2601 ;; save-stack so that stack cutting
2602 ;; continues to work.
2603 (primitive-eval sourc))))
2604 (run-hook after-eval-hook sourc)
2605 val)))
2606
2607
2608 (-print (let ((maybe-print (lambda (result)
2609 (if (or scm-repl-print-unspecified
2610 (not (unspecified? result)))
2611 (begin
2612 (write result)
2613 (newline))))))
2614 (lambda (result)
2615 (if (not scm-repl-silent)
2616 (begin
2617 (run-hook before-print-hook result)
2618 (maybe-print result)
2619 (run-hook after-print-hook result)
2620 (if scm-repl-verbose
2621 (repl-report))
2622 (force-output))))))
2623
2624 (-quit (lambda (args)
2625 (if scm-repl-verbose
2626 (begin
2627 (display ";;; QUIT executed, repl exitting")
2628 (newline)
2629 (repl-report)))
2630 args))
2631
2632 (-abort (lambda ()
2633 (if scm-repl-verbose
2634 (begin
2635 (display ";;; ABORT executed.")
2636 (newline)
2637 (repl-report)))
2638 (repl -read -eval -print))))
2639
2640 (let ((status (error-catching-repl -read
2641 -eval
2642 -print)))
2643 (-quit status))))
2644
2645
2646 \f
2647
2648 ;;; {IOTA functions: generating lists of numbers}
2649 ;;;
2650
2651 (define (iota n)
2652 (let loop ((count (1- n)) (result '()))
2653 (if (< count 0) result
2654 (loop (1- count) (cons count result)))))
2655
2656 \f
2657
2658 ;;; {collect}
2659 ;;;
2660 ;;; Similar to `begin' but returns a list of the results of all constituent
2661 ;;; forms instead of the result of the last form.
2662 ;;; (The definition relies on the current left-to-right
2663 ;;; order of evaluation of operands in applications.)
2664 ;;;
2665
2666 (defmacro collect forms
2667 (cons 'list forms))
2668
2669 \f
2670
2671 ;;; {with-fluids}
2672 ;;;
2673
2674 ;; with-fluids is a convenience wrapper for the builtin procedure
2675 ;; `with-fluids*'. The syntax is just like `let':
2676 ;;
2677 ;; (with-fluids ((fluid val)
2678 ;; ...)
2679 ;; body)
2680
2681 (defmacro with-fluids (bindings . body)
2682 (let ((fluids (map car bindings))
2683 (values (map cadr bindings)))
2684 (if (and (= (length fluids) 1) (= (length values) 1))
2685 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2686 `(with-fluids* (list ,@fluids) (list ,@values)
2687 (lambda () ,@body)))))
2688
2689 \f
2690
2691 ;;; {Macros}
2692 ;;;
2693
2694 ;; actually....hobbit might be able to hack these with a little
2695 ;; coaxing
2696 ;;
2697
2698 (define (primitive-macro? m)
2699 (and (macro? m)
2700 (not (macro-transformer m))))
2701
2702 (defmacro define-macro (first . rest)
2703 (let ((name (if (symbol? first) first (car first)))
2704 (transformer
2705 (if (symbol? first)
2706 (car rest)
2707 `(lambda ,(cdr first) ,@rest))))
2708 `(eval-case
2709 ((load-toplevel compile-toplevel)
2710 (define ,name (defmacro:transformer ,transformer)))
2711 (else
2712 (error "define-macro can only be used at the top level")))))
2713
2714
2715 (defmacro define-syntax-macro (first . rest)
2716 (let ((name (if (symbol? first) first (car first)))
2717 (transformer
2718 (if (symbol? first)
2719 (car rest)
2720 `(lambda ,(cdr first) ,@rest))))
2721 `(eval-case
2722 ((load-toplevel compile-toplevel)
2723 (define ,name (defmacro:syntax-transformer ,transformer)))
2724 (else
2725 (error "define-syntax-macro can only be used at the top level")))))
2726
2727 \f
2728
2729 ;;; {While}
2730 ;;;
2731 ;;; with `continue' and `break'.
2732 ;;;
2733
2734 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2735 ;; that's only necessary if continue is actually used. A new key is
2736 ;; generated every time, so break and continue apply to their originating
2737 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2738 ;; `key' binding away from the cond and body code.
2739 ;;
2740 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2741 ;; for lambda and not, so as to protect against any user rebinding of that
2742 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2743 ;;
2744 ;; (use-modules (ice-9 syncase))
2745 ;; (while #f)
2746 ;; => ERROR: invalid syntax ()
2747 ;;
2748 ;; This is probably a bug in syncase.
2749 ;;
2750 (define-macro (while cond . body)
2751 (define (while-helper proc)
2752 (do ((key (make-symbol "while-key")))
2753 ((catch key
2754 (lambda ()
2755 (proc (lambda () (throw key #t))
2756 (lambda () (throw key #f))))
2757 (lambda (key arg) arg)))))
2758 `(,while-helper (,lambda (break continue)
2759 (do ()
2760 ((,not ,cond))
2761 ,@body)
2762 #t)))
2763
2764
2765 \f
2766
2767 ;;; {Module System Macros}
2768 ;;;
2769
2770 ;; Return a list of expressions that evaluate to the appropriate
2771 ;; arguments for resolve-interface according to SPEC.
2772
2773 (define (compile-interface-spec spec)
2774 (define (make-keyarg sym key quote?)
2775 (cond ((or (memq sym spec)
2776 (memq key spec))
2777 => (lambda (rest)
2778 (if quote?
2779 (list key (list 'quote (cadr rest)))
2780 (list key (cadr rest)))))
2781 (else
2782 '())))
2783 (define (map-apply func list)
2784 (map (lambda (args) (apply func args)) list))
2785 (define keys
2786 ;; sym key quote?
2787 '((:select #:select #t)
2788 (:hide #:hide #t)
2789 (:prefix #:prefix #t)
2790 (:renamer #:renamer #f)))
2791 (if (not (pair? (car spec)))
2792 `(',spec)
2793 `(',(car spec)
2794 ,@(apply append (map-apply make-keyarg keys)))))
2795
2796 (define (keyword-like-symbol->keyword sym)
2797 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2798
2799 (define (compile-define-module-args args)
2800 ;; Just quote everything except #:use-module and #:use-syntax. We
2801 ;; need to know about all arguments regardless since we want to turn
2802 ;; symbols that look like keywords into real keywords, and the
2803 ;; keyword args in a define-module form are not regular
2804 ;; (i.e. no-backtrace doesn't take a value).
2805 (let loop ((compiled-args `((quote ,(car args))))
2806 (args (cdr args)))
2807 (cond ((null? args)
2808 (reverse! compiled-args))
2809 ;; symbol in keyword position
2810 ((symbol? (car args))
2811 (loop compiled-args
2812 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2813 ((memq (car args) '(#:no-backtrace #:pure))
2814 (loop (cons (car args) compiled-args)
2815 (cdr args)))
2816 ((null? (cdr args))
2817 (error "keyword without value:" (car args)))
2818 ((memq (car args) '(#:use-module #:use-syntax))
2819 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2820 (car args)
2821 compiled-args)
2822 (cddr args)))
2823 ((eq? (car args) #:autoload)
2824 (loop (cons* `(quote ,(caddr args))
2825 `(quote ,(cadr args))
2826 (car args)
2827 compiled-args)
2828 (cdddr args)))
2829 (else
2830 (loop (cons* `(quote ,(cadr args))
2831 (car args)
2832 compiled-args)
2833 (cddr args))))))
2834
2835 (defmacro define-module args
2836 `(eval-case
2837 ((load-toplevel compile-toplevel)
2838 (let ((m (process-define-module
2839 (list ,@(compile-define-module-args args)))))
2840 (set-current-module m)
2841 m))
2842 (else
2843 (error "define-module can only be used at the top level"))))
2844
2845 ;; The guts of the use-modules macro. Add the interfaces of the named
2846 ;; modules to the use-list of the current module, in order.
2847
2848 ;; This function is called by "modules.c". If you change it, be sure
2849 ;; to change scm_c_use_module as well.
2850
2851 (define (process-use-modules module-interface-args)
2852 (let ((interfaces (map (lambda (mif-args)
2853 (or (apply resolve-interface mif-args)
2854 (error "no such module" mif-args)))
2855 module-interface-args)))
2856 (call-with-deferred-observers
2857 (lambda ()
2858 (module-use-interfaces! (current-module) interfaces)))))
2859
2860 (defmacro use-modules modules
2861 `(eval-case
2862 ((load-toplevel compile-toplevel)
2863 (process-use-modules
2864 (list ,@(map (lambda (m)
2865 `(list ,@(compile-interface-spec m)))
2866 modules)))
2867 *unspecified*)
2868 (else
2869 (error "use-modules can only be used at the top level"))))
2870
2871 (defmacro use-syntax (spec)
2872 `(eval-case
2873 ((load-toplevel compile-toplevel)
2874 ,@(if (pair? spec)
2875 `((process-use-modules (list
2876 (list ,@(compile-interface-spec spec))))
2877 (set-module-transformer! (current-module)
2878 ,(car (last-pair spec))))
2879 `((set-module-transformer! (current-module) ,spec)))
2880 *unspecified*)
2881 (else
2882 (error "use-syntax can only be used at the top level"))))
2883
2884 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2885 ;; as soon as guile supports hygienic macros.
2886 (define define-private define)
2887
2888 (defmacro define-public args
2889 (define (syntax)
2890 (error "bad syntax" (list 'define-public args)))
2891 (define (defined-name n)
2892 (cond
2893 ((symbol? n) n)
2894 ((pair? n) (defined-name (car n)))
2895 (else (syntax))))
2896 (cond
2897 ((null? args)
2898 (syntax))
2899 (#t
2900 (let ((name (defined-name (car args))))
2901 `(begin
2902 (define-private ,@args)
2903 (eval-case ((load-toplevel compile-toplevel) (export ,name))))))))
2904
2905 (defmacro defmacro-public args
2906 (define (syntax)
2907 (error "bad syntax" (list 'defmacro-public args)))
2908 (define (defined-name n)
2909 (cond
2910 ((symbol? n) n)
2911 (else (syntax))))
2912 (cond
2913 ((null? args)
2914 (syntax))
2915 (#t
2916 (let ((name (defined-name (car args))))
2917 `(begin
2918 (eval-case ((load-toplevel compile-toplevel) (export-syntax ,name)))
2919 (defmacro ,@args))))))
2920
2921 ;; Export a local variable
2922
2923 ;; This function is called from "modules.c". If you change it, be
2924 ;; sure to update "modules.c" as well.
2925
2926 (define (module-export! m names)
2927 (let ((public-i (module-public-interface m)))
2928 (for-each (lambda (name)
2929 (let ((var (module-ensure-local-variable! m name)))
2930 (module-add! public-i name var)))
2931 names)))
2932
2933 (define (module-replace! m names)
2934 (let ((public-i (module-public-interface m)))
2935 (for-each (lambda (name)
2936 (let ((var (module-ensure-local-variable! m name)))
2937 (set-object-property! var 'replace #t)
2938 (module-add! public-i name var)))
2939 names)))
2940
2941 ;; Re-export a imported variable
2942 ;;
2943 (define (module-re-export! m names)
2944 (let ((public-i (module-public-interface m)))
2945 (for-each (lambda (name)
2946 (let ((var (module-variable m name)))
2947 (cond ((not var)
2948 (error "Undefined variable:" name))
2949 ((eq? var (module-local-variable m name))
2950 (error "re-exporting local variable:" name))
2951 (else
2952 (module-add! public-i name var)))))
2953 names)))
2954
2955 (defmacro export names
2956 `(eval-case
2957 ((load-toplevel compile-toplevel)
2958 (call-with-deferred-observers
2959 (lambda ()
2960 (module-export! (current-module) ',names))))
2961 (else
2962 (error "export can only be used at the top level"))))
2963
2964 (defmacro re-export names
2965 `(eval-case
2966 ((load-toplevel compile-toplevel)
2967 (call-with-deferred-observers
2968 (lambda ()
2969 (module-re-export! (current-module) ',names))))
2970 (else
2971 (error "re-export can only be used at the top level"))))
2972
2973 (defmacro export-syntax names
2974 `(export ,@names))
2975
2976 (defmacro re-export-syntax names
2977 `(re-export ,@names))
2978
2979 (define load load-module)
2980
2981 ;; The following macro allows one to write, for example,
2982 ;;
2983 ;; (@ (ice-9 pretty-print) pretty-print)
2984 ;;
2985 ;; to refer directly to the pretty-print variable in module (ice-9
2986 ;; pretty-print). It works by looking up the variable and inserting
2987 ;; it directly into the code. This is understood by the evaluator.
2988 ;; Indeed, all references to global variables are memoized into such
2989 ;; variable objects.
2990
2991 (define-macro (@ mod-name var-name)
2992 (let ((var (module-variable (resolve-interface mod-name) var-name)))
2993 (if (not var)
2994 (error "no such public variable" (list '@ mod-name var-name)))
2995 var))
2996
2997 ;; The '@@' macro is like '@' but it can also access bindings that
2998 ;; have not been explicitely exported.
2999
3000 (define-macro (@@ mod-name var-name)
3001 (let ((var (module-variable (resolve-module mod-name) var-name)))
3002 (if (not var)
3003 (error "no such variable" (list '@@ mod-name var-name)))
3004 var))
3005
3006 \f
3007
3008 ;;; {Parameters}
3009 ;;;
3010
3011 (define make-mutable-parameter
3012 (let ((make (lambda (fluid converter)
3013 (lambda args
3014 (if (null? args)
3015 (fluid-ref fluid)
3016 (fluid-set! fluid (converter (car args))))))))
3017 (lambda (init . converter)
3018 (let ((fluid (make-fluid))
3019 (converter (if (null? converter)
3020 identity
3021 (car converter))))
3022 (fluid-set! fluid (converter init))
3023 (make fluid converter)))))
3024
3025 \f
3026
3027 ;;; {Handling of duplicate imported bindings}
3028 ;;;
3029
3030 ;; Duplicate handlers take the following arguments:
3031 ;;
3032 ;; module importing module
3033 ;; name conflicting name
3034 ;; int1 old interface where name occurs
3035 ;; val1 value of binding in old interface
3036 ;; int2 new interface where name occurs
3037 ;; val2 value of binding in new interface
3038 ;; var previous resolution or #f
3039 ;; val value of previous resolution
3040 ;;
3041 ;; A duplicate handler can take three alternative actions:
3042 ;;
3043 ;; 1. return #f => leave responsibility to next handler
3044 ;; 2. exit with an error
3045 ;; 3. return a variable resolving the conflict
3046 ;;
3047
3048 (define duplicate-handlers
3049 (let ((m (make-module 7)))
3050
3051 (define (check module name int1 val1 int2 val2 var val)
3052 (scm-error 'misc-error
3053 #f
3054 "~A: `~A' imported from both ~A and ~A"
3055 (list (module-name module)
3056 name
3057 (module-name int1)
3058 (module-name int2))
3059 #f))
3060
3061 (define (warn module name int1 val1 int2 val2 var val)
3062 (format (current-error-port)
3063 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3064 (module-name module)
3065 name
3066 (module-name int1)
3067 (module-name int2))
3068 #f)
3069
3070 (define (replace module name int1 val1 int2 val2 var val)
3071 (let ((old (or (and var (object-property var 'replace) var)
3072 (module-variable int1 name)))
3073 (new (module-variable int2 name)))
3074 (if (object-property old 'replace)
3075 (and (or (eq? old new)
3076 (not (object-property new 'replace)))
3077 old)
3078 (and (object-property new 'replace)
3079 new))))
3080
3081 (define (warn-override-core module name int1 val1 int2 val2 var val)
3082 (and (eq? int1 the-scm-module)
3083 (begin
3084 (format (current-error-port)
3085 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3086 (module-name module)
3087 (module-name int2)
3088 name)
3089 (module-local-variable int2 name))))
3090
3091 (define (first module name int1 val1 int2 val2 var val)
3092 (or var (module-local-variable int1 name)))
3093
3094 (define (last module name int1 val1 int2 val2 var val)
3095 (module-local-variable int2 name))
3096
3097 (define (noop module name int1 val1 int2 val2 var val)
3098 #f)
3099
3100 (set-module-name! m 'duplicate-handlers)
3101 (set-module-kind! m 'interface)
3102 (module-define! m 'check check)
3103 (module-define! m 'warn warn)
3104 (module-define! m 'replace replace)
3105 (module-define! m 'warn-override-core warn-override-core)
3106 (module-define! m 'first first)
3107 (module-define! m 'last last)
3108 (module-define! m 'merge-generics noop)
3109 (module-define! m 'merge-accessors noop)
3110 m))
3111
3112 (define (lookup-duplicates-handlers handler-names)
3113 (and handler-names
3114 (map (lambda (handler-name)
3115 (or (module-symbol-local-binding
3116 duplicate-handlers handler-name #f)
3117 (error "invalid duplicate handler name:"
3118 handler-name)))
3119 (if (list? handler-names)
3120 handler-names
3121 (list handler-names)))))
3122
3123 (define default-duplicate-binding-procedures
3124 (make-mutable-parameter #f))
3125
3126 (define default-duplicate-binding-handler
3127 (make-mutable-parameter '(replace warn-override-core warn last)
3128 (lambda (handler-names)
3129 (default-duplicate-binding-procedures
3130 (lookup-duplicates-handlers handler-names))
3131 handler-names)))
3132
3133 \f
3134
3135 ;;; {`cond-expand' for SRFI-0 support.}
3136 ;;;
3137 ;;; This syntactic form expands into different commands or
3138 ;;; definitions, depending on the features provided by the Scheme
3139 ;;; implementation.
3140 ;;;
3141 ;;; Syntax:
3142 ;;;
3143 ;;; <cond-expand>
3144 ;;; --> (cond-expand <cond-expand-clause>+)
3145 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3146 ;;; <cond-expand-clause>
3147 ;;; --> (<feature-requirement> <command-or-definition>*)
3148 ;;; <feature-requirement>
3149 ;;; --> <feature-identifier>
3150 ;;; | (and <feature-requirement>*)
3151 ;;; | (or <feature-requirement>*)
3152 ;;; | (not <feature-requirement>)
3153 ;;; <feature-identifier>
3154 ;;; --> <a symbol which is the name or alias of a SRFI>
3155 ;;;
3156 ;;; Additionally, this implementation provides the
3157 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3158 ;;; determine the implementation type and the supported standard.
3159 ;;;
3160 ;;; Currently, the following feature identifiers are supported:
3161 ;;;
3162 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3163 ;;;
3164 ;;; Remember to update the features list when adding more SRFIs.
3165 ;;;
3166
3167 (define %cond-expand-features
3168 ;; Adjust the above comment when changing this.
3169 '(guile
3170 r5rs
3171 srfi-0 ;; cond-expand itself
3172 srfi-4 ;; homogenous numeric vectors
3173 srfi-6 ;; open-input-string etc, in the guile core
3174 srfi-13 ;; string library
3175 srfi-14 ;; character sets
3176 srfi-55 ;; require-extension
3177 srfi-61 ;; general cond clause
3178 ))
3179
3180 ;; This table maps module public interfaces to the list of features.
3181 ;;
3182 (define %cond-expand-table (make-hash-table 31))
3183
3184 ;; Add one or more features to the `cond-expand' feature list of the
3185 ;; module `module'.
3186 ;;
3187 (define (cond-expand-provide module features)
3188 (let ((mod (module-public-interface module)))
3189 (and mod
3190 (hashq-set! %cond-expand-table mod
3191 (append (hashq-ref %cond-expand-table mod '())
3192 features)))))
3193
3194 (define cond-expand
3195 (procedure->memoizing-macro
3196 (lambda (exp env)
3197 (let ((clauses (cdr exp))
3198 (syntax-error (lambda (cl)
3199 (error "invalid clause in `cond-expand'" cl))))
3200 (letrec
3201 ((test-clause
3202 (lambda (clause)
3203 (cond
3204 ((symbol? clause)
3205 (or (memq clause %cond-expand-features)
3206 (let lp ((uses (module-uses (env-module env))))
3207 (if (pair? uses)
3208 (or (memq clause
3209 (hashq-ref %cond-expand-table
3210 (car uses) '()))
3211 (lp (cdr uses)))
3212 #f))))
3213 ((pair? clause)
3214 (cond
3215 ((eq? 'and (car clause))
3216 (let lp ((l (cdr clause)))
3217 (cond ((null? l)
3218 #t)
3219 ((pair? l)
3220 (and (test-clause (car l)) (lp (cdr l))))
3221 (else
3222 (syntax-error clause)))))
3223 ((eq? 'or (car clause))
3224 (let lp ((l (cdr clause)))
3225 (cond ((null? l)
3226 #f)
3227 ((pair? l)
3228 (or (test-clause (car l)) (lp (cdr l))))
3229 (else
3230 (syntax-error clause)))))
3231 ((eq? 'not (car clause))
3232 (cond ((not (pair? (cdr clause)))
3233 (syntax-error clause))
3234 ((pair? (cddr clause))
3235 ((syntax-error clause))))
3236 (not (test-clause (cadr clause))))
3237 (else
3238 (syntax-error clause))))
3239 (else
3240 (syntax-error clause))))))
3241 (let lp ((c clauses))
3242 (cond
3243 ((null? c)
3244 (error "Unfulfilled `cond-expand'"))
3245 ((not (pair? c))
3246 (syntax-error c))
3247 ((not (pair? (car c)))
3248 (syntax-error (car c)))
3249 ((test-clause (caar c))
3250 `(begin ,@(cdar c)))
3251 ((eq? (caar c) 'else)
3252 (if (pair? (cdr c))
3253 (syntax-error c))
3254 `(begin ,@(cdar c)))
3255 (else
3256 (lp (cdr c))))))))))
3257
3258 ;; This procedure gets called from the startup code with a list of
3259 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3260 ;;
3261 (define (use-srfis srfis)
3262 (process-use-modules
3263 (map (lambda (num)
3264 (list (list 'srfi (string->symbol
3265 (string-append "srfi-" (number->string num))))))
3266 srfis)))
3267
3268 \f
3269
3270 ;;; srfi-55: require-extension
3271 ;;;
3272
3273 (define-macro (require-extension extension-spec)
3274 ;; This macro only handles the srfi extension, which, at present, is
3275 ;; the only one defined by the standard.
3276 (if (not (pair? extension-spec))
3277 (scm-error 'wrong-type-arg "require-extension"
3278 "Not an extension: ~S" (list extension-spec) #f))
3279 (let ((extension (car extension-spec))
3280 (extension-args (cdr extension-spec)))
3281 (case extension
3282 ((srfi)
3283 (let ((use-list '()))
3284 (for-each
3285 (lambda (i)
3286 (if (not (integer? i))
3287 (scm-error 'wrong-type-arg "require-extension"
3288 "Invalid srfi name: ~S" (list i) #f))
3289 (let ((srfi-sym (string->symbol
3290 (string-append "srfi-" (number->string i)))))
3291 (if (not (memq srfi-sym %cond-expand-features))
3292 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3293 use-list)))))
3294 extension-args)
3295 (if (pair? use-list)
3296 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3297 `(begin ,@(reverse! use-list)))))
3298 (else
3299 (scm-error
3300 'wrong-type-arg "require-extension"
3301 "Not a recognized extension type: ~S" (list extension) #f)))))
3302
3303 \f
3304
3305 ;;; {Load emacs interface support if emacs option is given.}
3306 ;;;
3307
3308 (define (named-module-use! user usee)
3309 (module-use! (resolve-module user) (resolve-interface usee)))
3310
3311 (define (load-emacs-interface)
3312 (and (provided? 'debug-extensions)
3313 (debug-enable 'backtrace))
3314 (named-module-use! '(guile-user) '(ice-9 emacs)))
3315
3316 \f
3317
3318 (define using-readline?
3319 (let ((using-readline? (make-fluid)))
3320 (make-procedure-with-setter
3321 (lambda () (fluid-ref using-readline?))
3322 (lambda (v) (fluid-set! using-readline? v)))))
3323
3324 (define (top-repl)
3325 (let ((guile-user-module (resolve-module '(guile-user))))
3326
3327 ;; Load emacs interface support if emacs option is given.
3328 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3329 (module-ref guile-user-module 'use-emacs-interface))
3330 (load-emacs-interface))
3331
3332 ;; Use some convenient modules (in reverse order)
3333
3334 (set-current-module guile-user-module)
3335 (process-use-modules
3336 (append
3337 '(((ice-9 r5rs))
3338 ((ice-9 session))
3339 ((ice-9 debug)))
3340 (if (provided? 'regex)
3341 '(((ice-9 regex)))
3342 '())
3343 (if (provided? 'threads)
3344 '(((ice-9 threads)))
3345 '())))
3346 ;; load debugger on demand
3347 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3348
3349 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3350 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3351 ;; no effect.
3352 (let ((old-handlers #f)
3353 (signals (if (provided? 'posix)
3354 `((,SIGINT . "User interrupt")
3355 (,SIGFPE . "Arithmetic error")
3356 (,SIGSEGV
3357 . "Bad memory access (Segmentation violation)"))
3358 '())))
3359 ;; no SIGBUS on mingw
3360 (if (defined? 'SIGBUS)
3361 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3362 signals)))
3363
3364 (dynamic-wind
3365
3366 ;; call at entry
3367 (lambda ()
3368 (let ((make-handler (lambda (msg)
3369 (lambda (sig)
3370 ;; Make a backup copy of the stack
3371 (fluid-set! before-signal-stack
3372 (fluid-ref the-last-stack))
3373 (save-stack 2)
3374 (scm-error 'signal
3375 #f
3376 msg
3377 #f
3378 (list sig))))))
3379 (set! old-handlers
3380 (map (lambda (sig-msg)
3381 (sigaction (car sig-msg)
3382 (make-handler (cdr sig-msg))))
3383 signals))))
3384
3385 ;; the protected thunk.
3386 (lambda ()
3387 (let ((status (scm-style-repl)))
3388 (run-hook exit-hook)
3389 status))
3390
3391 ;; call at exit.
3392 (lambda ()
3393 (map (lambda (sig-msg old-handler)
3394 (if (not (car old-handler))
3395 ;; restore original C handler.
3396 (sigaction (car sig-msg) #f)
3397 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3398 (sigaction (car sig-msg)
3399 (car old-handler)
3400 (cdr old-handler))))
3401 signals old-handlers))))))
3402
3403 ;;; This hook is run at the very end of an interactive session.
3404 ;;;
3405 (define exit-hook (make-hook))
3406
3407 \f
3408
3409 ;;; {Deprecated stuff}
3410 ;;;
3411
3412 (begin-deprecated
3413 (define (feature? sym)
3414 (issue-deprecation-warning
3415 "`feature?' is deprecated. Use `provided?' instead.")
3416 (provided? sym)))
3417
3418 (begin-deprecated
3419 (primitive-load-path "ice-9/deprecated.scm"))
3420
3421 \f
3422
3423 ;;; Place the user in the guile-user module.
3424 ;;;
3425
3426 (define-module (guile-user))
3427
3428 ;;; boot-9.scm ends here