Merge branch 'stable-2.0'
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4 @c 2008, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Symbols:: Symbols.
49 * Keywords:: Self-quoting, customizable display keywords.
50 * Other Types:: "Functionality-centric" data types.
51 @end menu
52
53
54 @node Booleans
55 @subsection Booleans
56 @tpindex Booleans
57
58 The two boolean values are @code{#t} for true and @code{#f} for false.
59
60 Boolean values are returned by predicate procedures, such as the general
61 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62 (@pxref{Equality}) and numerical and string comparison operators like
63 @code{string=?} (@pxref{String Comparison}) and @code{<=}
64 (@pxref{Comparison}).
65
66 @lisp
67 (<= 3 8)
68 @result{} #t
69
70 (<= 3 -3)
71 @result{} #f
72
73 (equal? "house" "houses")
74 @result{} #f
75
76 (eq? #f #f)
77 @result{}
78 #t
79 @end lisp
80
81 In test condition contexts like @code{if} and @code{cond}
82 (@pxref{Conditionals}), where a group of subexpressions will be
83 evaluated only if a @var{condition} expression evaluates to ``true'',
84 ``true'' means any value at all except @code{#f}.
85
86 @lisp
87 (if #t "yes" "no")
88 @result{} "yes"
89
90 (if 0 "yes" "no")
91 @result{} "yes"
92
93 (if #f "yes" "no")
94 @result{} "no"
95 @end lisp
96
97 A result of this asymmetry is that typical Scheme source code more often
98 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100 not necessary to represent an @code{if} or @code{cond} true value.
101
102 It is important to note that @code{#f} is @strong{not} equivalent to any
103 other Scheme value. In particular, @code{#f} is not the same as the
104 number 0 (like in C and C++), and not the same as the ``empty list''
105 (like in some Lisp dialects).
106
107 In C, the two Scheme boolean values are available as the two constants
108 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110 false when used in C conditionals. In order to test for it, use
111 @code{scm_is_false} or @code{scm_is_true}.
112
113 @rnindex not
114 @deffn {Scheme Procedure} not x
115 @deffnx {C Function} scm_not (x)
116 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117 @end deffn
118
119 @rnindex boolean?
120 @deffn {Scheme Procedure} boolean? obj
121 @deffnx {C Function} scm_boolean_p (obj)
122 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123 return @code{#f}.
124 @end deffn
125
126 @deftypevr {C Macro} SCM SCM_BOOL_T
127 The @code{SCM} representation of the Scheme object @code{#t}.
128 @end deftypevr
129
130 @deftypevr {C Macro} SCM SCM_BOOL_F
131 The @code{SCM} representation of the Scheme object @code{#f}.
132 @end deftypevr
133
134 @deftypefn {C Function} int scm_is_true (SCM obj)
135 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136 @end deftypefn
137
138 @deftypefn {C Function} int scm_is_false (SCM obj)
139 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140 @end deftypefn
141
142 @deftypefn {C Function} int scm_is_bool (SCM obj)
143 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144 return @code{0}.
145 @end deftypefn
146
147 @deftypefn {C Function} SCM scm_from_bool (int val)
148 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149 @end deftypefn
150
151 @deftypefn {C Function} int scm_to_bool (SCM val)
152 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155 You should probably use @code{scm_is_true} instead of this function
156 when you just want to test a @code{SCM} value for trueness.
157 @end deftypefn
158
159 @node Numbers
160 @subsection Numerical data types
161 @tpindex Numbers
162
163 Guile supports a rich ``tower'' of numerical types --- integer,
164 rational, real and complex --- and provides an extensive set of
165 mathematical and scientific functions for operating on numerical
166 data. This section of the manual documents those types and functions.
167
168 You may also find it illuminating to read R5RS's presentation of numbers
169 in Scheme, which is particularly clear and accessible: see
170 @ref{Numbers,,,r5rs,R5RS}.
171
172 @menu
173 * Numerical Tower:: Scheme's numerical "tower".
174 * Integers:: Whole numbers.
175 * Reals and Rationals:: Real and rational numbers.
176 * Complex Numbers:: Complex numbers.
177 * Exactness:: Exactness and inexactness.
178 * Number Syntax:: Read syntax for numerical data.
179 * Integer Operations:: Operations on integer values.
180 * Comparison:: Comparison predicates.
181 * Conversion:: Converting numbers to and from strings.
182 * Complex:: Complex number operations.
183 * Arithmetic:: Arithmetic functions.
184 * Scientific:: Scientific functions.
185 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
186 * Random:: Random number generation.
187 @end menu
188
189
190 @node Numerical Tower
191 @subsubsection Scheme's Numerical ``Tower''
192 @rnindex number?
193
194 Scheme's numerical ``tower'' consists of the following categories of
195 numbers:
196
197 @table @dfn
198 @item integers
199 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201 @item rationals
202 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204 pi (an irrational number) doesn't. These include integers
205 (@math{@var{n}/1}).
206
207 @item real numbers
208 The set of numbers that describes all possible positions along a
209 one-dimensional line. This includes rationals as well as irrational
210 numbers.
211
212 @item complex numbers
213 The set of numbers that describes all possible positions in a two
214 dimensional space. This includes real as well as imaginary numbers
215 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217 @minus{}1.)
218 @end table
219
220 It is called a tower because each category ``sits on'' the one that
221 follows it, in the sense that every integer is also a rational, every
222 rational is also real, and every real number is also a complex number
223 (but with zero imaginary part).
224
225 In addition to the classification into integers, rationals, reals and
226 complex numbers, Scheme also distinguishes between whether a number is
227 represented exactly or not. For example, the result of
228 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
230 Instead, it stores an inexact approximation, using the C type
231 @code{double}.
232
233 Guile can represent exact rationals of any magnitude, inexact
234 rationals that fit into a C @code{double}, and inexact complex numbers
235 with @code{double} real and imaginary parts.
236
237 The @code{number?} predicate may be applied to any Scheme value to
238 discover whether the value is any of the supported numerical types.
239
240 @deffn {Scheme Procedure} number? obj
241 @deffnx {C Function} scm_number_p (obj)
242 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243 @end deffn
244
245 For example:
246
247 @lisp
248 (number? 3)
249 @result{} #t
250
251 (number? "hello there!")
252 @result{} #f
253
254 (define pi 3.141592654)
255 (number? pi)
256 @result{} #t
257 @end lisp
258
259 @deftypefn {C Function} int scm_is_number (SCM obj)
260 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261 @end deftypefn
262
263 The next few subsections document each of Guile's numerical data types
264 in detail.
265
266 @node Integers
267 @subsubsection Integers
268
269 @tpindex Integer numbers
270
271 @rnindex integer?
272
273 Integers are whole numbers, that is numbers with no fractional part,
274 such as 2, 83, and @minus{}3789.
275
276 Integers in Guile can be arbitrarily big, as shown by the following
277 example.
278
279 @lisp
280 (define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286 (factorial 3)
287 @result{} 6
288
289 (factorial 20)
290 @result{} 2432902008176640000
291
292 (- (factorial 45))
293 @result{} -119622220865480194561963161495657715064383733760000000000
294 @end lisp
295
296 Readers whose background is in programming languages where integers are
297 limited by the need to fit into just 4 or 8 bytes of memory may find
298 this surprising, or suspect that Guile's representation of integers is
299 inefficient. In fact, Guile achieves a near optimal balance of
300 convenience and efficiency by using the host computer's native
301 representation of integers where possible, and a more general
302 representation where the required number does not fit in the native
303 form. Conversion between these two representations is automatic and
304 completely invisible to the Scheme level programmer.
305
306 C has a host of different integer types, and Guile offers a host of
307 functions to convert between them and the @code{SCM} representation.
308 For example, a C @code{int} can be handled with @code{scm_to_int} and
309 @code{scm_from_int}. Guile also defines a few C integer types of its
310 own, to help with differences between systems.
311
312 C integer types that are not covered can be handled with the generic
313 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314 signed types, or with @code{scm_to_unsigned_integer} and
315 @code{scm_from_unsigned_integer} for unsigned types.
316
317 Scheme integers can be exact and inexact. For example, a number
318 written as @code{3.0} with an explicit decimal-point is inexact, but
319 it is also an integer. The functions @code{integer?} and
320 @code{scm_is_integer} report true for such a number, but the functions
321 @code{exact-integer?}, @code{scm_is_exact_integer},
322 @code{scm_is_signed_integer}, and @code{scm_is_unsigned_integer} only
323 allow exact integers and thus report false. Likewise, the conversion
324 functions like @code{scm_to_signed_integer} only accept exact
325 integers.
326
327 The motivation for this behavior is that the inexactness of a number
328 should not be lost silently. If you want to allow inexact integers,
329 you can explicitly insert a call to @code{inexact->exact} or to its C
330 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
331 be converted by this call into exact integers; inexact non-integers
332 will become exact fractions.)
333
334 @deffn {Scheme Procedure} integer? x
335 @deffnx {C Function} scm_integer_p (x)
336 Return @code{#t} if @var{x} is an exact or inexact integer number, else
337 return @code{#f}.
338
339 @lisp
340 (integer? 487)
341 @result{} #t
342
343 (integer? 3.0)
344 @result{} #t
345
346 (integer? -3.4)
347 @result{} #f
348
349 (integer? +inf.0)
350 @result{} #f
351 @end lisp
352 @end deffn
353
354 @deftypefn {C Function} int scm_is_integer (SCM x)
355 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
356 @end deftypefn
357
358 @deffn {Scheme Procedure} exact-integer? x
359 @deffnx {C Function} scm_exact_integer_p (x)
360 Return @code{#t} if @var{x} is an exact integer number, else
361 return @code{#f}.
362
363 @lisp
364 (exact-integer? 37)
365 @result{} #t
366
367 (exact-integer? 3.0)
368 @result{} #f
369 @end lisp
370 @end deffn
371
372 @deftypefn {C Function} int scm_is_exact_integer (SCM x)
373 This is equivalent to @code{scm_is_true (scm_exact_integer_p (x))}.
374 @end deftypefn
375
376 @defvr {C Type} scm_t_int8
377 @defvrx {C Type} scm_t_uint8
378 @defvrx {C Type} scm_t_int16
379 @defvrx {C Type} scm_t_uint16
380 @defvrx {C Type} scm_t_int32
381 @defvrx {C Type} scm_t_uint32
382 @defvrx {C Type} scm_t_int64
383 @defvrx {C Type} scm_t_uint64
384 @defvrx {C Type} scm_t_intmax
385 @defvrx {C Type} scm_t_uintmax
386 The C types are equivalent to the corresponding ISO C types but are
387 defined on all platforms, with the exception of @code{scm_t_int64} and
388 @code{scm_t_uint64}, which are only defined when a 64-bit type is
389 available. For example, @code{scm_t_int8} is equivalent to
390 @code{int8_t}.
391
392 You can regard these definitions as a stop-gap measure until all
393 platforms provide these types. If you know that all the platforms
394 that you are interested in already provide these types, it is better
395 to use them directly instead of the types provided by Guile.
396 @end defvr
397
398 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
399 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
400 Return @code{1} when @var{x} represents an exact integer that is
401 between @var{min} and @var{max}, inclusive.
402
403 These functions can be used to check whether a @code{SCM} value will
404 fit into a given range, such as the range of a given C integer type.
405 If you just want to convert a @code{SCM} value to a given C integer
406 type, use one of the conversion functions directly.
407 @end deftypefn
408
409 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
410 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
411 When @var{x} represents an exact integer that is between @var{min} and
412 @var{max} inclusive, return that integer. Else signal an error,
413 either a `wrong-type' error when @var{x} is not an exact integer, or
414 an `out-of-range' error when it doesn't fit the given range.
415 @end deftypefn
416
417 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
418 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
419 Return the @code{SCM} value that represents the integer @var{x}. This
420 function will always succeed and will always return an exact number.
421 @end deftypefn
422
423 @deftypefn {C Function} char scm_to_char (SCM x)
424 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
425 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
426 @deftypefnx {C Function} short scm_to_short (SCM x)
427 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
428 @deftypefnx {C Function} int scm_to_int (SCM x)
429 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
430 @deftypefnx {C Function} long scm_to_long (SCM x)
431 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
432 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
433 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
434 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
435 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
436 @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
437 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
438 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
439 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
440 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
441 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
442 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
443 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
444 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
445 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
446 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
447 When @var{x} represents an exact integer that fits into the indicated
448 C type, return that integer. Else signal an error, either a
449 `wrong-type' error when @var{x} is not an exact integer, or an
450 `out-of-range' error when it doesn't fit the given range.
451
452 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
453 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
454 the corresponding types are.
455 @end deftypefn
456
457 @deftypefn {C Function} SCM scm_from_char (char x)
458 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
459 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
460 @deftypefnx {C Function} SCM scm_from_short (short x)
461 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
462 @deftypefnx {C Function} SCM scm_from_int (int x)
463 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
464 @deftypefnx {C Function} SCM scm_from_long (long x)
465 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
466 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
467 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
468 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
469 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
470 @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
471 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
472 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
473 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
474 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
475 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
476 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
477 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
478 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
479 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
480 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
481 Return the @code{SCM} value that represents the integer @var{x}.
482 These functions will always succeed and will always return an exact
483 number.
484 @end deftypefn
485
486 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
487 Assign @var{val} to the multiple precision integer @var{rop}.
488 @var{val} must be an exact integer, otherwise an error will be
489 signalled. @var{rop} must have been initialized with @code{mpz_init}
490 before this function is called. When @var{rop} is no longer needed
491 the occupied space must be freed with @code{mpz_clear}.
492 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
493 @end deftypefn
494
495 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
496 Return the @code{SCM} value that represents @var{val}.
497 @end deftypefn
498
499 @node Reals and Rationals
500 @subsubsection Real and Rational Numbers
501 @tpindex Real numbers
502 @tpindex Rational numbers
503
504 @rnindex real?
505 @rnindex rational?
506
507 Mathematically, the real numbers are the set of numbers that describe
508 all possible points along a continuous, infinite, one-dimensional line.
509 The rational numbers are the set of all numbers that can be written as
510 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
511 All rational numbers are also real, but there are real numbers that
512 are not rational, for example @m{\sqrt{2}, the square root of 2}, and
513 @m{\pi,pi}.
514
515 Guile can represent both exact and inexact rational numbers, but it
516 cannot represent precise finite irrational numbers. Exact rationals are
517 represented by storing the numerator and denominator as two exact
518 integers. Inexact rationals are stored as floating point numbers using
519 the C type @code{double}.
520
521 Exact rationals are written as a fraction of integers. There must be
522 no whitespace around the slash:
523
524 @lisp
525 1/2
526 -22/7
527 @end lisp
528
529 Even though the actual encoding of inexact rationals is in binary, it
530 may be helpful to think of it as a decimal number with a limited
531 number of significant figures and a decimal point somewhere, since
532 this corresponds to the standard notation for non-whole numbers. For
533 example:
534
535 @lisp
536 0.34
537 -0.00000142857931198
538 -5648394822220000000000.0
539 4.0
540 @end lisp
541
542 The limited precision of Guile's encoding means that any finite ``real''
543 number in Guile can be written in a rational form, by multiplying and
544 then dividing by sufficient powers of 10 (or in fact, 2). For example,
545 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
546 by 100000000000000000. In Guile's current incarnation, therefore, the
547 @code{rational?} and @code{real?} predicates are equivalent for finite
548 numbers.
549
550
551 Dividing by an exact zero leads to a error message, as one might expect.
552 However, dividing by an inexact zero does not produce an error.
553 Instead, the result of the division is either plus or minus infinity,
554 depending on the sign of the divided number and the sign of the zero
555 divisor (some platforms support signed zeroes @samp{-0.0} and
556 @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
557
558 Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
559 value, although they are actually considered numbers by Scheme.
560 Attempts to compare a @acronym{NaN} value with any number (including
561 itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
562 always returns @code{#f}. Although a @acronym{NaN} value is not
563 @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
564 and other @acronym{NaN} values. However, the preferred way to test for
565 them is by using @code{nan?}.
566
567 The real @acronym{NaN} values and infinities are written @samp{+nan.0},
568 @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
569 @code{read} as an extension to the usual Scheme syntax. These special
570 values are considered by Scheme to be inexact real numbers but not
571 rational. Note that non-real complex numbers may also contain
572 infinities or @acronym{NaN} values in their real or imaginary parts. To
573 test a real number to see if it is infinite, a @acronym{NaN} value, or
574 neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
575 Every real number in Scheme belongs to precisely one of those three
576 classes.
577
578 On platforms that follow @acronym{IEEE} 754 for their floating point
579 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
580 are implemented using the corresponding @acronym{IEEE} 754 values.
581 They behave in arithmetic operations like @acronym{IEEE} 754 describes
582 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
583
584 @deffn {Scheme Procedure} real? obj
585 @deffnx {C Function} scm_real_p (obj)
586 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
587 that the sets of integer and rational values form subsets of the set
588 of real numbers, so the predicate will also be fulfilled if @var{obj}
589 is an integer number or a rational number.
590 @end deffn
591
592 @deffn {Scheme Procedure} rational? x
593 @deffnx {C Function} scm_rational_p (x)
594 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
595 Note that the set of integer values forms a subset of the set of
596 rational numbers, i.e.@: the predicate will also be fulfilled if
597 @var{x} is an integer number.
598 @end deffn
599
600 @deffn {Scheme Procedure} rationalize x eps
601 @deffnx {C Function} scm_rationalize (x, eps)
602 Returns the @emph{simplest} rational number differing
603 from @var{x} by no more than @var{eps}.
604
605 As required by @acronym{R5RS}, @code{rationalize} only returns an
606 exact result when both its arguments are exact. Thus, you might need
607 to use @code{inexact->exact} on the arguments.
608
609 @lisp
610 (rationalize (inexact->exact 1.2) 1/100)
611 @result{} 6/5
612 @end lisp
613
614 @end deffn
615
616 @deffn {Scheme Procedure} inf? x
617 @deffnx {C Function} scm_inf_p (x)
618 Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
619 @samp{-inf.0}. Otherwise return @code{#f}.
620 @end deffn
621
622 @deffn {Scheme Procedure} nan? x
623 @deffnx {C Function} scm_nan_p (x)
624 Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
625 @code{#f} otherwise.
626 @end deffn
627
628 @deffn {Scheme Procedure} finite? x
629 @deffnx {C Function} scm_finite_p (x)
630 Return @code{#t} if the real number @var{x} is neither infinite nor a
631 NaN, @code{#f} otherwise.
632 @end deffn
633
634 @deffn {Scheme Procedure} nan
635 @deffnx {C Function} scm_nan ()
636 Return @samp{+nan.0}, a @acronym{NaN} value.
637 @end deffn
638
639 @deffn {Scheme Procedure} inf
640 @deffnx {C Function} scm_inf ()
641 Return @samp{+inf.0}, positive infinity.
642 @end deffn
643
644 @deffn {Scheme Procedure} numerator x
645 @deffnx {C Function} scm_numerator (x)
646 Return the numerator of the rational number @var{x}.
647 @end deffn
648
649 @deffn {Scheme Procedure} denominator x
650 @deffnx {C Function} scm_denominator (x)
651 Return the denominator of the rational number @var{x}.
652 @end deffn
653
654 @deftypefn {C Function} int scm_is_real (SCM val)
655 @deftypefnx {C Function} int scm_is_rational (SCM val)
656 Equivalent to @code{scm_is_true (scm_real_p (val))} and
657 @code{scm_is_true (scm_rational_p (val))}, respectively.
658 @end deftypefn
659
660 @deftypefn {C Function} double scm_to_double (SCM val)
661 Returns the number closest to @var{val} that is representable as a
662 @code{double}. Returns infinity for a @var{val} that is too large in
663 magnitude. The argument @var{val} must be a real number.
664 @end deftypefn
665
666 @deftypefn {C Function} SCM scm_from_double (double val)
667 Return the @code{SCM} value that represents @var{val}. The returned
668 value is inexact according to the predicate @code{inexact?}, but it
669 will be exactly equal to @var{val}.
670 @end deftypefn
671
672 @node Complex Numbers
673 @subsubsection Complex Numbers
674 @tpindex Complex numbers
675
676 @rnindex complex?
677
678 Complex numbers are the set of numbers that describe all possible points
679 in a two-dimensional space. The two coordinates of a particular point
680 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
681 the complex number that describes that point.
682
683 In Guile, complex numbers are written in rectangular form as the sum of
684 their real and imaginary parts, using the symbol @code{i} to indicate
685 the imaginary part.
686
687 @lisp
688 3+4i
689 @result{}
690 3.0+4.0i
691
692 (* 3-8i 2.3+0.3i)
693 @result{}
694 9.3-17.5i
695 @end lisp
696
697 @cindex polar form
698 @noindent
699 Polar form can also be used, with an @samp{@@} between magnitude and
700 angle,
701
702 @lisp
703 1@@3.141592 @result{} -1.0 (approx)
704 -1@@1.57079 @result{} 0.0-1.0i (approx)
705 @end lisp
706
707 Guile represents a complex number as a pair of inexact reals, so the
708 real and imaginary parts of a complex number have the same properties of
709 inexactness and limited precision as single inexact real numbers.
710
711 Note that each part of a complex number may contain any inexact real
712 value, including the special values @samp{+nan.0}, @samp{+inf.0} and
713 @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
714 @samp{-0.0}.
715
716
717 @deffn {Scheme Procedure} complex? z
718 @deffnx {C Function} scm_complex_p (z)
719 Return @code{#t} if @var{z} is a complex number, @code{#f}
720 otherwise. Note that the sets of real, rational and integer
721 values form subsets of the set of complex numbers, i.e.@: the
722 predicate will also be fulfilled if @var{z} is a real,
723 rational or integer number.
724 @end deffn
725
726 @deftypefn {C Function} int scm_is_complex (SCM val)
727 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
728 @end deftypefn
729
730 @node Exactness
731 @subsubsection Exact and Inexact Numbers
732 @tpindex Exact numbers
733 @tpindex Inexact numbers
734
735 @rnindex exact?
736 @rnindex inexact?
737 @rnindex exact->inexact
738 @rnindex inexact->exact
739
740 R5RS requires that, with few exceptions, a calculation involving inexact
741 numbers always produces an inexact result. To meet this requirement,
742 Guile distinguishes between an exact integer value such as @samp{5} and
743 the corresponding inexact integer value which, to the limited precision
744 available, has no fractional part, and is printed as @samp{5.0}. Guile
745 will only convert the latter value to the former when forced to do so by
746 an invocation of the @code{inexact->exact} procedure.
747
748 The only exception to the above requirement is when the values of the
749 inexact numbers do not affect the result. For example @code{(expt n 0)}
750 is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
751 permitted to return an exact @samp{1}.
752
753 @deffn {Scheme Procedure} exact? z
754 @deffnx {C Function} scm_exact_p (z)
755 Return @code{#t} if the number @var{z} is exact, @code{#f}
756 otherwise.
757
758 @lisp
759 (exact? 2)
760 @result{} #t
761
762 (exact? 0.5)
763 @result{} #f
764
765 (exact? (/ 2))
766 @result{} #t
767 @end lisp
768
769 @end deffn
770
771 @deftypefn {C Function} int scm_is_exact (SCM z)
772 Return a @code{1} if the number @var{z} is exact, and @code{0}
773 otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
774
775 An alternate approch to testing the exactness of a number is to
776 use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
777 @end deftypefn
778
779 @deffn {Scheme Procedure} inexact? z
780 @deffnx {C Function} scm_inexact_p (z)
781 Return @code{#t} if the number @var{z} is inexact, @code{#f}
782 else.
783 @end deffn
784
785 @deftypefn {C Function} int scm_is_inexact (SCM z)
786 Return a @code{1} if the number @var{z} is inexact, and @code{0}
787 otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
788 @end deftypefn
789
790 @deffn {Scheme Procedure} inexact->exact z
791 @deffnx {C Function} scm_inexact_to_exact (z)
792 Return an exact number that is numerically closest to @var{z}, when
793 there is one. For inexact rationals, Guile returns the exact rational
794 that is numerically equal to the inexact rational. Inexact complex
795 numbers with a non-zero imaginary part can not be made exact.
796
797 @lisp
798 (inexact->exact 0.5)
799 @result{} 1/2
800 @end lisp
801
802 The following happens because 12/10 is not exactly representable as a
803 @code{double} (on most platforms). However, when reading a decimal
804 number that has been marked exact with the ``#e'' prefix, Guile is
805 able to represent it correctly.
806
807 @lisp
808 (inexact->exact 1.2)
809 @result{} 5404319552844595/4503599627370496
810
811 #e1.2
812 @result{} 6/5
813 @end lisp
814
815 @end deffn
816
817 @c begin (texi-doc-string "guile" "exact->inexact")
818 @deffn {Scheme Procedure} exact->inexact z
819 @deffnx {C Function} scm_exact_to_inexact (z)
820 Convert the number @var{z} to its inexact representation.
821 @end deffn
822
823
824 @node Number Syntax
825 @subsubsection Read Syntax for Numerical Data
826
827 The read syntax for integers is a string of digits, optionally
828 preceded by a minus or plus character, a code indicating the
829 base in which the integer is encoded, and a code indicating whether
830 the number is exact or inexact. The supported base codes are:
831
832 @table @code
833 @item #b
834 @itemx #B
835 the integer is written in binary (base 2)
836
837 @item #o
838 @itemx #O
839 the integer is written in octal (base 8)
840
841 @item #d
842 @itemx #D
843 the integer is written in decimal (base 10)
844
845 @item #x
846 @itemx #X
847 the integer is written in hexadecimal (base 16)
848 @end table
849
850 If the base code is omitted, the integer is assumed to be decimal. The
851 following examples show how these base codes are used.
852
853 @lisp
854 -13
855 @result{} -13
856
857 #d-13
858 @result{} -13
859
860 #x-13
861 @result{} -19
862
863 #b+1101
864 @result{} 13
865
866 #o377
867 @result{} 255
868 @end lisp
869
870 The codes for indicating exactness (which can, incidentally, be applied
871 to all numerical values) are:
872
873 @table @code
874 @item #e
875 @itemx #E
876 the number is exact
877
878 @item #i
879 @itemx #I
880 the number is inexact.
881 @end table
882
883 If the exactness indicator is omitted, the number is exact unless it
884 contains a radix point. Since Guile can not represent exact complex
885 numbers, an error is signalled when asking for them.
886
887 @lisp
888 (exact? 1.2)
889 @result{} #f
890
891 (exact? #e1.2)
892 @result{} #t
893
894 (exact? #e+1i)
895 ERROR: Wrong type argument
896 @end lisp
897
898 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
899 plus and minus infinity, respectively. The value must be written
900 exactly as shown, that is, they always must have a sign and exactly
901 one zero digit after the decimal point. It also understands
902 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
903 The sign is ignored for `not-a-number' and the value is always printed
904 as @samp{+nan.0}.
905
906 @node Integer Operations
907 @subsubsection Operations on Integer Values
908 @rnindex odd?
909 @rnindex even?
910 @rnindex quotient
911 @rnindex remainder
912 @rnindex modulo
913 @rnindex gcd
914 @rnindex lcm
915
916 @deffn {Scheme Procedure} odd? n
917 @deffnx {C Function} scm_odd_p (n)
918 Return @code{#t} if @var{n} is an odd number, @code{#f}
919 otherwise.
920 @end deffn
921
922 @deffn {Scheme Procedure} even? n
923 @deffnx {C Function} scm_even_p (n)
924 Return @code{#t} if @var{n} is an even number, @code{#f}
925 otherwise.
926 @end deffn
927
928 @c begin (texi-doc-string "guile" "quotient")
929 @c begin (texi-doc-string "guile" "remainder")
930 @deffn {Scheme Procedure} quotient n d
931 @deffnx {Scheme Procedure} remainder n d
932 @deffnx {C Function} scm_quotient (n, d)
933 @deffnx {C Function} scm_remainder (n, d)
934 Return the quotient or remainder from @var{n} divided by @var{d}. The
935 quotient is rounded towards zero, and the remainder will have the same
936 sign as @var{n}. In all cases quotient and remainder satisfy
937 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
938
939 @lisp
940 (remainder 13 4) @result{} 1
941 (remainder -13 4) @result{} -1
942 @end lisp
943
944 See also @code{truncate-quotient}, @code{truncate-remainder} and
945 related operations in @ref{Arithmetic}.
946 @end deffn
947
948 @c begin (texi-doc-string "guile" "modulo")
949 @deffn {Scheme Procedure} modulo n d
950 @deffnx {C Function} scm_modulo (n, d)
951 Return the remainder from @var{n} divided by @var{d}, with the same
952 sign as @var{d}.
953
954 @lisp
955 (modulo 13 4) @result{} 1
956 (modulo -13 4) @result{} 3
957 (modulo 13 -4) @result{} -3
958 (modulo -13 -4) @result{} -1
959 @end lisp
960
961 See also @code{floor-quotient}, @code{floor-remainder} and
962 related operations in @ref{Arithmetic}.
963 @end deffn
964
965 @c begin (texi-doc-string "guile" "gcd")
966 @deffn {Scheme Procedure} gcd x@dots{}
967 @deffnx {C Function} scm_gcd (x, y)
968 Return the greatest common divisor of all arguments.
969 If called without arguments, 0 is returned.
970
971 The C function @code{scm_gcd} always takes two arguments, while the
972 Scheme function can take an arbitrary number.
973 @end deffn
974
975 @c begin (texi-doc-string "guile" "lcm")
976 @deffn {Scheme Procedure} lcm x@dots{}
977 @deffnx {C Function} scm_lcm (x, y)
978 Return the least common multiple of the arguments.
979 If called without arguments, 1 is returned.
980
981 The C function @code{scm_lcm} always takes two arguments, while the
982 Scheme function can take an arbitrary number.
983 @end deffn
984
985 @deffn {Scheme Procedure} modulo-expt n k m
986 @deffnx {C Function} scm_modulo_expt (n, k, m)
987 Return @var{n} raised to the integer exponent
988 @var{k}, modulo @var{m}.
989
990 @lisp
991 (modulo-expt 2 3 5)
992 @result{} 3
993 @end lisp
994 @end deffn
995
996 @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
997 @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
998 Return two exact non-negative integers @var{s} and @var{r}
999 such that @math{@var{k} = @var{s}^2 + @var{r}} and
1000 @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
1001 An error is raised if @var{k} is not an exact non-negative integer.
1002
1003 @lisp
1004 (exact-integer-sqrt 10) @result{} 3 and 1
1005 @end lisp
1006 @end deftypefn
1007
1008 @node Comparison
1009 @subsubsection Comparison Predicates
1010 @rnindex zero?
1011 @rnindex positive?
1012 @rnindex negative?
1013
1014 The C comparison functions below always takes two arguments, while the
1015 Scheme functions can take an arbitrary number. Also keep in mind that
1016 the C functions return one of the Scheme boolean values
1017 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
1018 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1019 y))} when testing the two Scheme numbers @code{x} and @code{y} for
1020 equality, for example.
1021
1022 @c begin (texi-doc-string "guile" "=")
1023 @deffn {Scheme Procedure} =
1024 @deffnx {C Function} scm_num_eq_p (x, y)
1025 Return @code{#t} if all parameters are numerically equal.
1026 @end deffn
1027
1028 @c begin (texi-doc-string "guile" "<")
1029 @deffn {Scheme Procedure} <
1030 @deffnx {C Function} scm_less_p (x, y)
1031 Return @code{#t} if the list of parameters is monotonically
1032 increasing.
1033 @end deffn
1034
1035 @c begin (texi-doc-string "guile" ">")
1036 @deffn {Scheme Procedure} >
1037 @deffnx {C Function} scm_gr_p (x, y)
1038 Return @code{#t} if the list of parameters is monotonically
1039 decreasing.
1040 @end deffn
1041
1042 @c begin (texi-doc-string "guile" "<=")
1043 @deffn {Scheme Procedure} <=
1044 @deffnx {C Function} scm_leq_p (x, y)
1045 Return @code{#t} if the list of parameters is monotonically
1046 non-decreasing.
1047 @end deffn
1048
1049 @c begin (texi-doc-string "guile" ">=")
1050 @deffn {Scheme Procedure} >=
1051 @deffnx {C Function} scm_geq_p (x, y)
1052 Return @code{#t} if the list of parameters is monotonically
1053 non-increasing.
1054 @end deffn
1055
1056 @c begin (texi-doc-string "guile" "zero?")
1057 @deffn {Scheme Procedure} zero? z
1058 @deffnx {C Function} scm_zero_p (z)
1059 Return @code{#t} if @var{z} is an exact or inexact number equal to
1060 zero.
1061 @end deffn
1062
1063 @c begin (texi-doc-string "guile" "positive?")
1064 @deffn {Scheme Procedure} positive? x
1065 @deffnx {C Function} scm_positive_p (x)
1066 Return @code{#t} if @var{x} is an exact or inexact number greater than
1067 zero.
1068 @end deffn
1069
1070 @c begin (texi-doc-string "guile" "negative?")
1071 @deffn {Scheme Procedure} negative? x
1072 @deffnx {C Function} scm_negative_p (x)
1073 Return @code{#t} if @var{x} is an exact or inexact number less than
1074 zero.
1075 @end deffn
1076
1077
1078 @node Conversion
1079 @subsubsection Converting Numbers To and From Strings
1080 @rnindex number->string
1081 @rnindex string->number
1082
1083 The following procedures read and write numbers according to their
1084 external representation as defined by R5RS (@pxref{Lexical structure,
1085 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1086 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1087 i18n)} module}, for locale-dependent number parsing.
1088
1089 @deffn {Scheme Procedure} number->string n [radix]
1090 @deffnx {C Function} scm_number_to_string (n, radix)
1091 Return a string holding the external representation of the
1092 number @var{n} in the given @var{radix}. If @var{n} is
1093 inexact, a radix of 10 will be used.
1094 @end deffn
1095
1096 @deffn {Scheme Procedure} string->number string [radix]
1097 @deffnx {C Function} scm_string_to_number (string, radix)
1098 Return a number of the maximally precise representation
1099 expressed by the given @var{string}. @var{radix} must be an
1100 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1101 is a default radix that may be overridden by an explicit radix
1102 prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
1103 supplied, then the default radix is 10. If string is not a
1104 syntactically valid notation for a number, then
1105 @code{string->number} returns @code{#f}.
1106 @end deffn
1107
1108 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1109 As per @code{string->number} above, but taking a C string, as pointer
1110 and length. The string characters should be in the current locale
1111 encoding (@code{locale} in the name refers only to that, there's no
1112 locale-dependent parsing).
1113 @end deftypefn
1114
1115
1116 @node Complex
1117 @subsubsection Complex Number Operations
1118 @rnindex make-rectangular
1119 @rnindex make-polar
1120 @rnindex real-part
1121 @rnindex imag-part
1122 @rnindex magnitude
1123 @rnindex angle
1124
1125 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1126 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1127 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1128 @end deffn
1129
1130 @deffn {Scheme Procedure} make-polar mag ang
1131 @deffnx {C Function} scm_make_polar (mag, ang)
1132 @cindex polar form
1133 Return the complex number @var{mag} * e^(i * @var{ang}).
1134 @end deffn
1135
1136 @c begin (texi-doc-string "guile" "real-part")
1137 @deffn {Scheme Procedure} real-part z
1138 @deffnx {C Function} scm_real_part (z)
1139 Return the real part of the number @var{z}.
1140 @end deffn
1141
1142 @c begin (texi-doc-string "guile" "imag-part")
1143 @deffn {Scheme Procedure} imag-part z
1144 @deffnx {C Function} scm_imag_part (z)
1145 Return the imaginary part of the number @var{z}.
1146 @end deffn
1147
1148 @c begin (texi-doc-string "guile" "magnitude")
1149 @deffn {Scheme Procedure} magnitude z
1150 @deffnx {C Function} scm_magnitude (z)
1151 Return the magnitude of the number @var{z}. This is the same as
1152 @code{abs} for real arguments, but also allows complex numbers.
1153 @end deffn
1154
1155 @c begin (texi-doc-string "guile" "angle")
1156 @deffn {Scheme Procedure} angle z
1157 @deffnx {C Function} scm_angle (z)
1158 Return the angle of the complex number @var{z}.
1159 @end deffn
1160
1161 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1162 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1163 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1164 respectively, but these functions take @code{double}s as their
1165 arguments.
1166 @end deftypefn
1167
1168 @deftypefn {C Function} double scm_c_real_part (z)
1169 @deftypefnx {C Function} double scm_c_imag_part (z)
1170 Returns the real or imaginary part of @var{z} as a @code{double}.
1171 @end deftypefn
1172
1173 @deftypefn {C Function} double scm_c_magnitude (z)
1174 @deftypefnx {C Function} double scm_c_angle (z)
1175 Returns the magnitude or angle of @var{z} as a @code{double}.
1176 @end deftypefn
1177
1178
1179 @node Arithmetic
1180 @subsubsection Arithmetic Functions
1181 @rnindex max
1182 @rnindex min
1183 @rnindex +
1184 @rnindex *
1185 @rnindex -
1186 @rnindex /
1187 @findex 1+
1188 @findex 1-
1189 @rnindex abs
1190 @rnindex floor
1191 @rnindex ceiling
1192 @rnindex truncate
1193 @rnindex round
1194 @rnindex euclidean/
1195 @rnindex euclidean-quotient
1196 @rnindex euclidean-remainder
1197 @rnindex floor/
1198 @rnindex floor-quotient
1199 @rnindex floor-remainder
1200 @rnindex ceiling/
1201 @rnindex ceiling-quotient
1202 @rnindex ceiling-remainder
1203 @rnindex truncate/
1204 @rnindex truncate-quotient
1205 @rnindex truncate-remainder
1206 @rnindex centered/
1207 @rnindex centered-quotient
1208 @rnindex centered-remainder
1209 @rnindex round/
1210 @rnindex round-quotient
1211 @rnindex round-remainder
1212
1213 The C arithmetic functions below always takes two arguments, while the
1214 Scheme functions can take an arbitrary number. When you need to
1215 invoke them with just one argument, for example to compute the
1216 equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1217 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1218
1219 @c begin (texi-doc-string "guile" "+")
1220 @deffn {Scheme Procedure} + z1 @dots{}
1221 @deffnx {C Function} scm_sum (z1, z2)
1222 Return the sum of all parameter values. Return 0 if called without any
1223 parameters.
1224 @end deffn
1225
1226 @c begin (texi-doc-string "guile" "-")
1227 @deffn {Scheme Procedure} - z1 z2 @dots{}
1228 @deffnx {C Function} scm_difference (z1, z2)
1229 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1230 the sum of all but the first argument are subtracted from the first
1231 argument.
1232 @end deffn
1233
1234 @c begin (texi-doc-string "guile" "*")
1235 @deffn {Scheme Procedure} * z1 @dots{}
1236 @deffnx {C Function} scm_product (z1, z2)
1237 Return the product of all arguments. If called without arguments, 1 is
1238 returned.
1239 @end deffn
1240
1241 @c begin (texi-doc-string "guile" "/")
1242 @deffn {Scheme Procedure} / z1 z2 @dots{}
1243 @deffnx {C Function} scm_divide (z1, z2)
1244 Divide the first argument by the product of the remaining arguments. If
1245 called with one argument @var{z1}, 1/@var{z1} is returned.
1246 @end deffn
1247
1248 @deffn {Scheme Procedure} 1+ z
1249 @deffnx {C Function} scm_oneplus (z)
1250 Return @math{@var{z} + 1}.
1251 @end deffn
1252
1253 @deffn {Scheme Procedure} 1- z
1254 @deffnx {C function} scm_oneminus (z)
1255 Return @math{@var{z} - 1}.
1256 @end deffn
1257
1258 @c begin (texi-doc-string "guile" "abs")
1259 @deffn {Scheme Procedure} abs x
1260 @deffnx {C Function} scm_abs (x)
1261 Return the absolute value of @var{x}.
1262
1263 @var{x} must be a number with zero imaginary part. To calculate the
1264 magnitude of a complex number, use @code{magnitude} instead.
1265 @end deffn
1266
1267 @c begin (texi-doc-string "guile" "max")
1268 @deffn {Scheme Procedure} max x1 x2 @dots{}
1269 @deffnx {C Function} scm_max (x1, x2)
1270 Return the maximum of all parameter values.
1271 @end deffn
1272
1273 @c begin (texi-doc-string "guile" "min")
1274 @deffn {Scheme Procedure} min x1 x2 @dots{}
1275 @deffnx {C Function} scm_min (x1, x2)
1276 Return the minimum of all parameter values.
1277 @end deffn
1278
1279 @c begin (texi-doc-string "guile" "truncate")
1280 @deffn {Scheme Procedure} truncate x
1281 @deffnx {C Function} scm_truncate_number (x)
1282 Round the inexact number @var{x} towards zero.
1283 @end deffn
1284
1285 @c begin (texi-doc-string "guile" "round")
1286 @deffn {Scheme Procedure} round x
1287 @deffnx {C Function} scm_round_number (x)
1288 Round the inexact number @var{x} to the nearest integer. When exactly
1289 halfway between two integers, round to the even one.
1290 @end deffn
1291
1292 @c begin (texi-doc-string "guile" "floor")
1293 @deffn {Scheme Procedure} floor x
1294 @deffnx {C Function} scm_floor (x)
1295 Round the number @var{x} towards minus infinity.
1296 @end deffn
1297
1298 @c begin (texi-doc-string "guile" "ceiling")
1299 @deffn {Scheme Procedure} ceiling x
1300 @deffnx {C Function} scm_ceiling (x)
1301 Round the number @var{x} towards infinity.
1302 @end deffn
1303
1304 @deftypefn {C Function} double scm_c_truncate (double x)
1305 @deftypefnx {C Function} double scm_c_round (double x)
1306 Like @code{scm_truncate_number} or @code{scm_round_number},
1307 respectively, but these functions take and return @code{double}
1308 values.
1309 @end deftypefn
1310
1311 @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1312 @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1313 @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1314 @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1315 @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1316 @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
1317 These procedures accept two real numbers @var{x} and @var{y}, where the
1318 divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1319 integer @var{q} and @code{euclidean-remainder} returns the real number
1320 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1321 @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
1322 @var{r}, and is more efficient than computing each separately. Note
1323 that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1324 @math{floor(@var{x}/@var{y})}, otherwise it returns
1325 @math{ceiling(@var{x}/@var{y})}.
1326
1327 Note that these operators are equivalent to the R6RS operators
1328 @code{div}, @code{mod}, and @code{div-and-mod}.
1329
1330 @lisp
1331 (euclidean-quotient 123 10) @result{} 12
1332 (euclidean-remainder 123 10) @result{} 3
1333 (euclidean/ 123 10) @result{} 12 and 3
1334 (euclidean/ 123 -10) @result{} -12 and 3
1335 (euclidean/ -123 10) @result{} -13 and 7
1336 (euclidean/ -123 -10) @result{} 13 and 7
1337 (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1338 (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1339 @end lisp
1340 @end deftypefn
1341
1342 @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1343 @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1344 @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1345 @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1346 @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1347 @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1348 These procedures accept two real numbers @var{x} and @var{y}, where the
1349 divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1350 integer @var{q} and @code{floor-remainder} returns the real number
1351 @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1352 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1353 both @var{q} and @var{r}, and is more efficient than computing each
1354 separately. Note that @var{r}, if non-zero, will have the same sign
1355 as @var{y}.
1356
1357 When @var{x} and @var{y} are integers, @code{floor-remainder} is
1358 equivalent to the R5RS integer-only operator @code{modulo}.
1359
1360 @lisp
1361 (floor-quotient 123 10) @result{} 12
1362 (floor-remainder 123 10) @result{} 3
1363 (floor/ 123 10) @result{} 12 and 3
1364 (floor/ 123 -10) @result{} -13 and -7
1365 (floor/ -123 10) @result{} -13 and 7
1366 (floor/ -123 -10) @result{} 12 and -3
1367 (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1368 (floor/ 16/3 -10/7) @result{} -4 and -8/21
1369 @end lisp
1370 @end deftypefn
1371
1372 @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1373 @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1374 @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1375 @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1376 @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1377 @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1378 These procedures accept two real numbers @var{x} and @var{y}, where the
1379 divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1380 integer @var{q} and @code{ceiling-remainder} returns the real number
1381 @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1382 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1383 both @var{q} and @var{r}, and is more efficient than computing each
1384 separately. Note that @var{r}, if non-zero, will have the opposite sign
1385 of @var{y}.
1386
1387 @lisp
1388 (ceiling-quotient 123 10) @result{} 13
1389 (ceiling-remainder 123 10) @result{} -7
1390 (ceiling/ 123 10) @result{} 13 and -7
1391 (ceiling/ 123 -10) @result{} -12 and 3
1392 (ceiling/ -123 10) @result{} -12 and -3
1393 (ceiling/ -123 -10) @result{} 13 and 7
1394 (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1395 (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1396 @end lisp
1397 @end deftypefn
1398
1399 @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1400 @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1401 @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1402 @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1403 @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1404 @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1405 These procedures accept two real numbers @var{x} and @var{y}, where the
1406 divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1407 integer @var{q} and @code{truncate-remainder} returns the real number
1408 @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1409 and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1410 both @var{q} and @var{r}, and is more efficient than computing each
1411 separately. Note that @var{r}, if non-zero, will have the same sign
1412 as @var{x}.
1413
1414 When @var{x} and @var{y} are integers, these operators are
1415 equivalent to the R5RS integer-only operators @code{quotient} and
1416 @code{remainder}.
1417
1418 @lisp
1419 (truncate-quotient 123 10) @result{} 12
1420 (truncate-remainder 123 10) @result{} 3
1421 (truncate/ 123 10) @result{} 12 and 3
1422 (truncate/ 123 -10) @result{} -12 and 3
1423 (truncate/ -123 10) @result{} -12 and -3
1424 (truncate/ -123 -10) @result{} 12 and -3
1425 (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1426 (truncate/ 16/3 -10/7) @result{} -3 and 22/21
1427 @end lisp
1428 @end deftypefn
1429
1430 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1431 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1432 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1433 @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1434 @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1435 @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
1436 These procedures accept two real numbers @var{x} and @var{y}, where the
1437 divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1438 integer @var{q} and @code{centered-remainder} returns the real number
1439 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1440 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
1441 returns both @var{q} and @var{r}, and is more efficient than computing
1442 each separately.
1443
1444 Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1445 rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1446 exactly half-way between two integers, the tie is broken according to
1447 the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1448 positive infinity, otherwise they are rounded toward negative infinity.
1449 This is a consequence of the requirement that
1450 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
1451
1452 Note that these operators are equivalent to the R6RS operators
1453 @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1454
1455 @lisp
1456 (centered-quotient 123 10) @result{} 12
1457 (centered-remainder 123 10) @result{} 3
1458 (centered/ 123 10) @result{} 12 and 3
1459 (centered/ 123 -10) @result{} -12 and 3
1460 (centered/ -123 10) @result{} -12 and -3
1461 (centered/ -123 -10) @result{} 12 and -3
1462 (centered/ 125 10) @result{} 13 and -5
1463 (centered/ 127 10) @result{} 13 and -3
1464 (centered/ 135 10) @result{} 14 and -5
1465 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1466 (centered/ 16/3 -10/7) @result{} -4 and -8/21
1467 @end lisp
1468 @end deftypefn
1469
1470 @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1471 @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1472 @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1473 @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1474 @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1475 @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1476 These procedures accept two real numbers @var{x} and @var{y}, where the
1477 divisor @var{y} must be non-zero. @code{round-quotient} returns the
1478 integer @var{q} and @code{round-remainder} returns the real number
1479 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1480 @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1481 with ties going to the nearest even integer. @code{round/}
1482 returns both @var{q} and @var{r}, and is more efficient than computing
1483 each separately.
1484
1485 Note that @code{round/} and @code{centered/} are almost equivalent, but
1486 their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1487 between two integers. In this case, @code{round/} chooses the nearest
1488 even integer, whereas @code{centered/} chooses in such a way to satisfy
1489 the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1490 is stronger than the corresponding constraint for @code{round/},
1491 @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1492 when @var{x} and @var{y} are integers, the number of possible remainders
1493 returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1494 possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1495 @var{y} is even.
1496
1497 @lisp
1498 (round-quotient 123 10) @result{} 12
1499 (round-remainder 123 10) @result{} 3
1500 (round/ 123 10) @result{} 12 and 3
1501 (round/ 123 -10) @result{} -12 and 3
1502 (round/ -123 10) @result{} -12 and -3
1503 (round/ -123 -10) @result{} 12 and -3
1504 (round/ 125 10) @result{} 12 and 5
1505 (round/ 127 10) @result{} 13 and -3
1506 (round/ 135 10) @result{} 14 and -5
1507 (round/ -123.2 -63.5) @result{} 2.0 and 3.8
1508 (round/ 16/3 -10/7) @result{} -4 and -8/21
1509 @end lisp
1510 @end deftypefn
1511
1512 @node Scientific
1513 @subsubsection Scientific Functions
1514
1515 The following procedures accept any kind of number as arguments,
1516 including complex numbers.
1517
1518 @rnindex sqrt
1519 @c begin (texi-doc-string "guile" "sqrt")
1520 @deffn {Scheme Procedure} sqrt z
1521 Return the square root of @var{z}. Of the two possible roots
1522 (positive and negative), the one with a positive real part is
1523 returned, or if that's zero then a positive imaginary part. Thus,
1524
1525 @example
1526 (sqrt 9.0) @result{} 3.0
1527 (sqrt -9.0) @result{} 0.0+3.0i
1528 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1529 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1530 @end example
1531 @end deffn
1532
1533 @rnindex expt
1534 @c begin (texi-doc-string "guile" "expt")
1535 @deffn {Scheme Procedure} expt z1 z2
1536 Return @var{z1} raised to the power of @var{z2}.
1537 @end deffn
1538
1539 @rnindex sin
1540 @c begin (texi-doc-string "guile" "sin")
1541 @deffn {Scheme Procedure} sin z
1542 Return the sine of @var{z}.
1543 @end deffn
1544
1545 @rnindex cos
1546 @c begin (texi-doc-string "guile" "cos")
1547 @deffn {Scheme Procedure} cos z
1548 Return the cosine of @var{z}.
1549 @end deffn
1550
1551 @rnindex tan
1552 @c begin (texi-doc-string "guile" "tan")
1553 @deffn {Scheme Procedure} tan z
1554 Return the tangent of @var{z}.
1555 @end deffn
1556
1557 @rnindex asin
1558 @c begin (texi-doc-string "guile" "asin")
1559 @deffn {Scheme Procedure} asin z
1560 Return the arcsine of @var{z}.
1561 @end deffn
1562
1563 @rnindex acos
1564 @c begin (texi-doc-string "guile" "acos")
1565 @deffn {Scheme Procedure} acos z
1566 Return the arccosine of @var{z}.
1567 @end deffn
1568
1569 @rnindex atan
1570 @c begin (texi-doc-string "guile" "atan")
1571 @deffn {Scheme Procedure} atan z
1572 @deffnx {Scheme Procedure} atan y x
1573 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1574 @end deffn
1575
1576 @rnindex exp
1577 @c begin (texi-doc-string "guile" "exp")
1578 @deffn {Scheme Procedure} exp z
1579 Return e to the power of @var{z}, where e is the base of natural
1580 logarithms (2.71828@dots{}).
1581 @end deffn
1582
1583 @rnindex log
1584 @c begin (texi-doc-string "guile" "log")
1585 @deffn {Scheme Procedure} log z
1586 Return the natural logarithm of @var{z}.
1587 @end deffn
1588
1589 @c begin (texi-doc-string "guile" "log10")
1590 @deffn {Scheme Procedure} log10 z
1591 Return the base 10 logarithm of @var{z}.
1592 @end deffn
1593
1594 @c begin (texi-doc-string "guile" "sinh")
1595 @deffn {Scheme Procedure} sinh z
1596 Return the hyperbolic sine of @var{z}.
1597 @end deffn
1598
1599 @c begin (texi-doc-string "guile" "cosh")
1600 @deffn {Scheme Procedure} cosh z
1601 Return the hyperbolic cosine of @var{z}.
1602 @end deffn
1603
1604 @c begin (texi-doc-string "guile" "tanh")
1605 @deffn {Scheme Procedure} tanh z
1606 Return the hyperbolic tangent of @var{z}.
1607 @end deffn
1608
1609 @c begin (texi-doc-string "guile" "asinh")
1610 @deffn {Scheme Procedure} asinh z
1611 Return the hyperbolic arcsine of @var{z}.
1612 @end deffn
1613
1614 @c begin (texi-doc-string "guile" "acosh")
1615 @deffn {Scheme Procedure} acosh z
1616 Return the hyperbolic arccosine of @var{z}.
1617 @end deffn
1618
1619 @c begin (texi-doc-string "guile" "atanh")
1620 @deffn {Scheme Procedure} atanh z
1621 Return the hyperbolic arctangent of @var{z}.
1622 @end deffn
1623
1624
1625 @node Bitwise Operations
1626 @subsubsection Bitwise Operations
1627
1628 For the following bitwise functions, negative numbers are treated as
1629 infinite precision twos-complements. For instance @math{-6} is bits
1630 @math{@dots{}111010}, with infinitely many ones on the left. It can
1631 be seen that adding 6 (binary 110) to such a bit pattern gives all
1632 zeros.
1633
1634 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1635 @deffnx {C Function} scm_logand (n1, n2)
1636 Return the bitwise @sc{and} of the integer arguments.
1637
1638 @lisp
1639 (logand) @result{} -1
1640 (logand 7) @result{} 7
1641 (logand #b111 #b011 #b001) @result{} 1
1642 @end lisp
1643 @end deffn
1644
1645 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1646 @deffnx {C Function} scm_logior (n1, n2)
1647 Return the bitwise @sc{or} of the integer arguments.
1648
1649 @lisp
1650 (logior) @result{} 0
1651 (logior 7) @result{} 7
1652 (logior #b000 #b001 #b011) @result{} 3
1653 @end lisp
1654 @end deffn
1655
1656 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1657 @deffnx {C Function} scm_loxor (n1, n2)
1658 Return the bitwise @sc{xor} of the integer arguments. A bit is
1659 set in the result if it is set in an odd number of arguments.
1660
1661 @lisp
1662 (logxor) @result{} 0
1663 (logxor 7) @result{} 7
1664 (logxor #b000 #b001 #b011) @result{} 2
1665 (logxor #b000 #b001 #b011 #b011) @result{} 1
1666 @end lisp
1667 @end deffn
1668
1669 @deffn {Scheme Procedure} lognot n
1670 @deffnx {C Function} scm_lognot (n)
1671 Return the integer which is the ones-complement of the integer
1672 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1673
1674 @lisp
1675 (number->string (lognot #b10000000) 2)
1676 @result{} "-10000001"
1677 (number->string (lognot #b0) 2)
1678 @result{} "-1"
1679 @end lisp
1680 @end deffn
1681
1682 @deffn {Scheme Procedure} logtest j k
1683 @deffnx {C Function} scm_logtest (j, k)
1684 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1685 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1686 calculating the @code{logand}, just testing for non-zero.
1687
1688 @lisp
1689 (logtest #b0100 #b1011) @result{} #f
1690 (logtest #b0100 #b0111) @result{} #t
1691 @end lisp
1692 @end deffn
1693
1694 @deffn {Scheme Procedure} logbit? index j
1695 @deffnx {C Function} scm_logbit_p (index, j)
1696 Test whether bit number @var{index} in @var{j} is set. @var{index}
1697 starts from 0 for the least significant bit.
1698
1699 @lisp
1700 (logbit? 0 #b1101) @result{} #t
1701 (logbit? 1 #b1101) @result{} #f
1702 (logbit? 2 #b1101) @result{} #t
1703 (logbit? 3 #b1101) @result{} #t
1704 (logbit? 4 #b1101) @result{} #f
1705 @end lisp
1706 @end deffn
1707
1708 @deffn {Scheme Procedure} ash n count
1709 @deffnx {C Function} scm_ash (n, count)
1710 Return @math{floor(n * 2^count)}.
1711 @var{n} and @var{count} must be exact integers.
1712
1713 With @var{n} viewed as an infinite-precision twos-complement
1714 integer, @code{ash} means a left shift introducing zero bits
1715 when @var{count} is positive, or a right shift dropping bits
1716 when @var{count} is negative. This is an ``arithmetic'' shift.
1717
1718 @lisp
1719 (number->string (ash #b1 3) 2) @result{} "1000"
1720 (number->string (ash #b1010 -1) 2) @result{} "101"
1721
1722 ;; -23 is bits ...11101001, -6 is bits ...111010
1723 (ash -23 -2) @result{} -6
1724 @end lisp
1725 @end deffn
1726
1727 @deffn {Scheme Procedure} round-ash n count
1728 @deffnx {C Function} scm_round_ash (n, count)
1729 Return @math{round(n * 2^count)}.
1730 @var{n} and @var{count} must be exact integers.
1731
1732 With @var{n} viewed as an infinite-precision twos-complement
1733 integer, @code{round-ash} means a left shift introducing zero
1734 bits when @var{count} is positive, or a right shift rounding
1735 to the nearest integer (with ties going to the nearest even
1736 integer) when @var{count} is negative. This is a rounded
1737 ``arithmetic'' shift.
1738
1739 @lisp
1740 (number->string (round-ash #b1 3) 2) @result{} \"1000\"
1741 (number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1742 (number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1743 (number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1744 (number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1745 (number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1746 @end lisp
1747 @end deffn
1748
1749 @deffn {Scheme Procedure} logcount n
1750 @deffnx {C Function} scm_logcount (n)
1751 Return the number of bits in integer @var{n}. If @var{n} is
1752 positive, the 1-bits in its binary representation are counted.
1753 If negative, the 0-bits in its two's-complement binary
1754 representation are counted. If zero, 0 is returned.
1755
1756 @lisp
1757 (logcount #b10101010)
1758 @result{} 4
1759 (logcount 0)
1760 @result{} 0
1761 (logcount -2)
1762 @result{} 1
1763 @end lisp
1764 @end deffn
1765
1766 @deffn {Scheme Procedure} integer-length n
1767 @deffnx {C Function} scm_integer_length (n)
1768 Return the number of bits necessary to represent @var{n}.
1769
1770 For positive @var{n} this is how many bits to the most significant one
1771 bit. For negative @var{n} it's how many bits to the most significant
1772 zero bit in twos complement form.
1773
1774 @lisp
1775 (integer-length #b10101010) @result{} 8
1776 (integer-length #b1111) @result{} 4
1777 (integer-length 0) @result{} 0
1778 (integer-length -1) @result{} 0
1779 (integer-length -256) @result{} 8
1780 (integer-length -257) @result{} 9
1781 @end lisp
1782 @end deffn
1783
1784 @deffn {Scheme Procedure} integer-expt n k
1785 @deffnx {C Function} scm_integer_expt (n, k)
1786 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1787 integer, @var{n} can be any number.
1788
1789 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1790 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1791 @math{0^0} is 1.
1792
1793 @lisp
1794 (integer-expt 2 5) @result{} 32
1795 (integer-expt -3 3) @result{} -27
1796 (integer-expt 5 -3) @result{} 1/125
1797 (integer-expt 0 0) @result{} 1
1798 @end lisp
1799 @end deffn
1800
1801 @deffn {Scheme Procedure} bit-extract n start end
1802 @deffnx {C Function} scm_bit_extract (n, start, end)
1803 Return the integer composed of the @var{start} (inclusive)
1804 through @var{end} (exclusive) bits of @var{n}. The
1805 @var{start}th bit becomes the 0-th bit in the result.
1806
1807 @lisp
1808 (number->string (bit-extract #b1101101010 0 4) 2)
1809 @result{} "1010"
1810 (number->string (bit-extract #b1101101010 4 9) 2)
1811 @result{} "10110"
1812 @end lisp
1813 @end deffn
1814
1815
1816 @node Random
1817 @subsubsection Random Number Generation
1818
1819 Pseudo-random numbers are generated from a random state object, which
1820 can be created with @code{seed->random-state} or
1821 @code{datum->random-state}. An external representation (i.e.@: one
1822 which can written with @code{write} and read with @code{read}) of a
1823 random state object can be obtained via
1824 @code{random-state->datum}. The @var{state} parameter to the
1825 various functions below is optional, it defaults to the state object
1826 in the @code{*random-state*} variable.
1827
1828 @deffn {Scheme Procedure} copy-random-state [state]
1829 @deffnx {C Function} scm_copy_random_state (state)
1830 Return a copy of the random state @var{state}.
1831 @end deffn
1832
1833 @deffn {Scheme Procedure} random n [state]
1834 @deffnx {C Function} scm_random (n, state)
1835 Return a number in [0, @var{n}).
1836
1837 Accepts a positive integer or real n and returns a
1838 number of the same type between zero (inclusive) and
1839 @var{n} (exclusive). The values returned have a uniform
1840 distribution.
1841 @end deffn
1842
1843 @deffn {Scheme Procedure} random:exp [state]
1844 @deffnx {C Function} scm_random_exp (state)
1845 Return an inexact real in an exponential distribution with mean
1846 1. For an exponential distribution with mean @var{u} use @code{(*
1847 @var{u} (random:exp))}.
1848 @end deffn
1849
1850 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1851 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1852 Fills @var{vect} with inexact real random numbers the sum of whose
1853 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1854 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1855 the coordinates are uniformly distributed over the surface of the unit
1856 n-sphere.
1857 @end deffn
1858
1859 @deffn {Scheme Procedure} random:normal [state]
1860 @deffnx {C Function} scm_random_normal (state)
1861 Return an inexact real in a normal distribution. The distribution
1862 used has mean 0 and standard deviation 1. For a normal distribution
1863 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1864 (* @var{d} (random:normal)))}.
1865 @end deffn
1866
1867 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1868 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1869 Fills @var{vect} with inexact real random numbers that are
1870 independent and standard normally distributed
1871 (i.e., with mean 0 and variance 1).
1872 @end deffn
1873
1874 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1875 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1876 Fills @var{vect} with inexact real random numbers the sum of whose
1877 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1878 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1879 the coordinates are uniformly distributed within the unit
1880 @var{n}-sphere.
1881 @c FIXME: What does this mean, particularly the n-sphere part?
1882 @end deffn
1883
1884 @deffn {Scheme Procedure} random:uniform [state]
1885 @deffnx {C Function} scm_random_uniform (state)
1886 Return a uniformly distributed inexact real random number in
1887 [0,1).
1888 @end deffn
1889
1890 @deffn {Scheme Procedure} seed->random-state seed
1891 @deffnx {C Function} scm_seed_to_random_state (seed)
1892 Return a new random state using @var{seed}.
1893 @end deffn
1894
1895 @deffn {Scheme Procedure} datum->random-state datum
1896 @deffnx {C Function} scm_datum_to_random_state (datum)
1897 Return a new random state from @var{datum}, which should have been
1898 obtained by @code{random-state->datum}.
1899 @end deffn
1900
1901 @deffn {Scheme Procedure} random-state->datum state
1902 @deffnx {C Function} scm_random_state_to_datum (state)
1903 Return a datum representation of @var{state} that may be written out and
1904 read back with the Scheme reader.
1905 @end deffn
1906
1907 @deffn {Scheme Procedure} random-state-from-platform
1908 @deffnx {C Function} scm_random_state_from_platform ()
1909 Construct a new random state seeded from a platform-specific source of
1910 entropy, appropriate for use in non-security-critical applications.
1911 Currently @file{/dev/urandom} is tried first, or else the seed is based
1912 on the time, date, process ID, an address from a freshly allocated heap
1913 cell, an address from the local stack frame, and a high-resolution timer
1914 if available.
1915 @end deffn
1916
1917 @defvar *random-state*
1918 The global random state used by the above functions when the
1919 @var{state} parameter is not given.
1920 @end defvar
1921
1922 Note that the initial value of @code{*random-state*} is the same every
1923 time Guile starts up. Therefore, if you don't pass a @var{state}
1924 parameter to the above procedures, and you don't set
1925 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1926 @code{your-seed} is something that @emph{isn't} the same every time,
1927 you'll get the same sequence of ``random'' numbers on every run.
1928
1929 For example, unless the relevant source code has changed, @code{(map
1930 random (cdr (iota 30)))}, if the first use of random numbers since
1931 Guile started up, will always give:
1932
1933 @lisp
1934 (map random (cdr (iota 19)))
1935 @result{}
1936 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1937 @end lisp
1938
1939 To seed the random state in a sensible way for non-security-critical
1940 applications, do this during initialization of your program:
1941
1942 @lisp
1943 (set! *random-state* (random-state-from-platform))
1944 @end lisp
1945
1946
1947 @node Characters
1948 @subsection Characters
1949 @tpindex Characters
1950
1951 In Scheme, there is a data type to describe a single character.
1952
1953 Defining what exactly a character @emph{is} can be more complicated
1954 than it seems. Guile follows the advice of R6RS and uses The Unicode
1955 Standard to help define what a character is. So, for Guile, a
1956 character is anything in the Unicode Character Database.
1957
1958 @cindex code point
1959 @cindex Unicode code point
1960
1961 The Unicode Character Database is basically a table of characters
1962 indexed using integers called 'code points'. Valid code points are in
1963 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1964 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1965
1966 @cindex designated code point
1967 @cindex code point, designated
1968
1969 Any code point that has been assigned to a character or that has
1970 otherwise been given a meaning by Unicode is called a 'designated code
1971 point'. Most of the designated code points, about 200,000 of them,
1972 indicate characters, accents or other combining marks that modify
1973 other characters, symbols, whitespace, and control characters. Some
1974 are not characters but indicators that suggest how to format or
1975 display neighboring characters.
1976
1977 @cindex reserved code point
1978 @cindex code point, reserved
1979
1980 If a code point is not a designated code point -- if it has not been
1981 assigned to a character by The Unicode Standard -- it is a 'reserved
1982 code point', meaning that they are reserved for future use. Most of
1983 the code points, about 800,000, are 'reserved code points'.
1984
1985 By convention, a Unicode code point is written as
1986 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1987 this convenient notation is not valid code. Guile does not interpret
1988 ``U+XXXX'' as a character.
1989
1990 In Scheme, a character literal is written as @code{#\@var{name}} where
1991 @var{name} is the name of the character that you want. Printable
1992 characters have their usual single character name; for example,
1993 @code{#\a} is a lower case @code{a}.
1994
1995 Some of the code points are 'combining characters' that are not meant
1996 to be printed by themselves but are instead meant to modify the
1997 appearance of the previous character. For combining characters, an
1998 alternate form of the character literal is @code{#\} followed by
1999 U+25CC (a small, dotted circle), followed by the combining character.
2000 This allows the combining character to be drawn on the circle, not on
2001 the backslash of @code{#\}.
2002
2003 Many of the non-printing characters, such as whitespace characters and
2004 control characters, also have names.
2005
2006 The most commonly used non-printing characters have long character
2007 names, described in the table below.
2008
2009 @multitable {@code{#\backspace}} {Preferred}
2010 @item Character Name @tab Codepoint
2011 @item @code{#\nul} @tab U+0000
2012 @item @code{#\alarm} @tab u+0007
2013 @item @code{#\backspace} @tab U+0008
2014 @item @code{#\tab} @tab U+0009
2015 @item @code{#\linefeed} @tab U+000A
2016 @item @code{#\newline} @tab U+000A
2017 @item @code{#\vtab} @tab U+000B
2018 @item @code{#\page} @tab U+000C
2019 @item @code{#\return} @tab U+000D
2020 @item @code{#\esc} @tab U+001B
2021 @item @code{#\space} @tab U+0020
2022 @item @code{#\delete} @tab U+007F
2023 @end multitable
2024
2025 There are also short names for all of the ``C0 control characters''
2026 (those with code points below 32). The following table lists the short
2027 name for each character.
2028
2029 @multitable @columnfractions .25 .25 .25 .25
2030 @item 0 = @code{#\nul}
2031 @tab 1 = @code{#\soh}
2032 @tab 2 = @code{#\stx}
2033 @tab 3 = @code{#\etx}
2034 @item 4 = @code{#\eot}
2035 @tab 5 = @code{#\enq}
2036 @tab 6 = @code{#\ack}
2037 @tab 7 = @code{#\bel}
2038 @item 8 = @code{#\bs}
2039 @tab 9 = @code{#\ht}
2040 @tab 10 = @code{#\lf}
2041 @tab 11 = @code{#\vt}
2042 @item 12 = @code{#\ff}
2043 @tab 13 = @code{#\cr}
2044 @tab 14 = @code{#\so}
2045 @tab 15 = @code{#\si}
2046 @item 16 = @code{#\dle}
2047 @tab 17 = @code{#\dc1}
2048 @tab 18 = @code{#\dc2}
2049 @tab 19 = @code{#\dc3}
2050 @item 20 = @code{#\dc4}
2051 @tab 21 = @code{#\nak}
2052 @tab 22 = @code{#\syn}
2053 @tab 23 = @code{#\etb}
2054 @item 24 = @code{#\can}
2055 @tab 25 = @code{#\em}
2056 @tab 26 = @code{#\sub}
2057 @tab 27 = @code{#\esc}
2058 @item 28 = @code{#\fs}
2059 @tab 29 = @code{#\gs}
2060 @tab 30 = @code{#\rs}
2061 @tab 31 = @code{#\us}
2062 @item 32 = @code{#\sp}
2063 @end multitable
2064
2065 The short name for the ``delete'' character (code point U+007F) is
2066 @code{#\del}.
2067
2068 There are also a few alternative names left over for compatibility with
2069 previous versions of Guile.
2070
2071 @multitable {@code{#\backspace}} {Preferred}
2072 @item Alternate @tab Standard
2073 @item @code{#\nl} @tab @code{#\newline}
2074 @item @code{#\np} @tab @code{#\page}
2075 @item @code{#\null} @tab @code{#\nul}
2076 @end multitable
2077
2078 Characters may also be written using their code point values. They can
2079 be written with as an octal number, such as @code{#\10} for
2080 @code{#\bs} or @code{#\177} for @code{#\del}.
2081
2082 If one prefers hex to octal, there is an additional syntax for character
2083 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2084 number of one to eight digits.
2085
2086 @rnindex char?
2087 @deffn {Scheme Procedure} char? x
2088 @deffnx {C Function} scm_char_p (x)
2089 Return @code{#t} if @var{x} is a character, else @code{#f}.
2090 @end deffn
2091
2092 Fundamentally, the character comparison operations below are
2093 numeric comparisons of the character's code points.
2094
2095 @rnindex char=?
2096 @deffn {Scheme Procedure} char=? x y
2097 Return @code{#t} if code point of @var{x} is equal to the code point
2098 of @var{y}, else @code{#f}.
2099 @end deffn
2100
2101 @rnindex char<?
2102 @deffn {Scheme Procedure} char<? x y
2103 Return @code{#t} if the code point of @var{x} is less than the code
2104 point of @var{y}, else @code{#f}.
2105 @end deffn
2106
2107 @rnindex char<=?
2108 @deffn {Scheme Procedure} char<=? x y
2109 Return @code{#t} if the code point of @var{x} is less than or equal
2110 to the code point of @var{y}, else @code{#f}.
2111 @end deffn
2112
2113 @rnindex char>?
2114 @deffn {Scheme Procedure} char>? x y
2115 Return @code{#t} if the code point of @var{x} is greater than the
2116 code point of @var{y}, else @code{#f}.
2117 @end deffn
2118
2119 @rnindex char>=?
2120 @deffn {Scheme Procedure} char>=? x y
2121 Return @code{#t} if the code point of @var{x} is greater than or
2122 equal to the code point of @var{y}, else @code{#f}.
2123 @end deffn
2124
2125 @cindex case folding
2126
2127 Case-insensitive character comparisons use @emph{Unicode case
2128 folding}. In case folding comparisons, if a character is lowercase
2129 and has an uppercase form that can be expressed as a single character,
2130 it is converted to uppercase before comparison. All other characters
2131 undergo no conversion before the comparison occurs. This includes the
2132 German sharp S (Eszett) which is not uppercased before conversion
2133 because its uppercase form has two characters. Unicode case folding
2134 is language independent: it uses rules that are generally true, but,
2135 it cannot cover all cases for all languages.
2136
2137 @rnindex char-ci=?
2138 @deffn {Scheme Procedure} char-ci=? x y
2139 Return @code{#t} if the case-folded code point of @var{x} is the same
2140 as the case-folded code point of @var{y}, else @code{#f}.
2141 @end deffn
2142
2143 @rnindex char-ci<?
2144 @deffn {Scheme Procedure} char-ci<? x y
2145 Return @code{#t} if the case-folded code point of @var{x} is less
2146 than the case-folded code point of @var{y}, else @code{#f}.
2147 @end deffn
2148
2149 @rnindex char-ci<=?
2150 @deffn {Scheme Procedure} char-ci<=? x y
2151 Return @code{#t} if the case-folded code point of @var{x} is less
2152 than or equal to the case-folded code point of @var{y}, else
2153 @code{#f}.
2154 @end deffn
2155
2156 @rnindex char-ci>?
2157 @deffn {Scheme Procedure} char-ci>? x y
2158 Return @code{#t} if the case-folded code point of @var{x} is greater
2159 than the case-folded code point of @var{y}, else @code{#f}.
2160 @end deffn
2161
2162 @rnindex char-ci>=?
2163 @deffn {Scheme Procedure} char-ci>=? x y
2164 Return @code{#t} if the case-folded code point of @var{x} is greater
2165 than or equal to the case-folded code point of @var{y}, else
2166 @code{#f}.
2167 @end deffn
2168
2169 @rnindex char-alphabetic?
2170 @deffn {Scheme Procedure} char-alphabetic? chr
2171 @deffnx {C Function} scm_char_alphabetic_p (chr)
2172 Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
2173 @end deffn
2174
2175 @rnindex char-numeric?
2176 @deffn {Scheme Procedure} char-numeric? chr
2177 @deffnx {C Function} scm_char_numeric_p (chr)
2178 Return @code{#t} if @var{chr} is numeric, else @code{#f}.
2179 @end deffn
2180
2181 @rnindex char-whitespace?
2182 @deffn {Scheme Procedure} char-whitespace? chr
2183 @deffnx {C Function} scm_char_whitespace_p (chr)
2184 Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
2185 @end deffn
2186
2187 @rnindex char-upper-case?
2188 @deffn {Scheme Procedure} char-upper-case? chr
2189 @deffnx {C Function} scm_char_upper_case_p (chr)
2190 Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
2191 @end deffn
2192
2193 @rnindex char-lower-case?
2194 @deffn {Scheme Procedure} char-lower-case? chr
2195 @deffnx {C Function} scm_char_lower_case_p (chr)
2196 Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
2197 @end deffn
2198
2199 @deffn {Scheme Procedure} char-is-both? chr
2200 @deffnx {C Function} scm_char_is_both_p (chr)
2201 Return @code{#t} if @var{chr} is either uppercase or lowercase, else
2202 @code{#f}.
2203 @end deffn
2204
2205 @deffn {Scheme Procedure} char-general-category chr
2206 @deffnx {C Function} scm_char_general_category (chr)
2207 Return a symbol giving the two-letter name of the Unicode general
2208 category assigned to @var{chr} or @code{#f} if no named category is
2209 assigned. The following table provides a list of category names along
2210 with their meanings.
2211
2212 @multitable @columnfractions .1 .4 .1 .4
2213 @item Lu
2214 @tab Uppercase letter
2215 @tab Pf
2216 @tab Final quote punctuation
2217 @item Ll
2218 @tab Lowercase letter
2219 @tab Po
2220 @tab Other punctuation
2221 @item Lt
2222 @tab Titlecase letter
2223 @tab Sm
2224 @tab Math symbol
2225 @item Lm
2226 @tab Modifier letter
2227 @tab Sc
2228 @tab Currency symbol
2229 @item Lo
2230 @tab Other letter
2231 @tab Sk
2232 @tab Modifier symbol
2233 @item Mn
2234 @tab Non-spacing mark
2235 @tab So
2236 @tab Other symbol
2237 @item Mc
2238 @tab Combining spacing mark
2239 @tab Zs
2240 @tab Space separator
2241 @item Me
2242 @tab Enclosing mark
2243 @tab Zl
2244 @tab Line separator
2245 @item Nd
2246 @tab Decimal digit number
2247 @tab Zp
2248 @tab Paragraph separator
2249 @item Nl
2250 @tab Letter number
2251 @tab Cc
2252 @tab Control
2253 @item No
2254 @tab Other number
2255 @tab Cf
2256 @tab Format
2257 @item Pc
2258 @tab Connector punctuation
2259 @tab Cs
2260 @tab Surrogate
2261 @item Pd
2262 @tab Dash punctuation
2263 @tab Co
2264 @tab Private use
2265 @item Ps
2266 @tab Open punctuation
2267 @tab Cn
2268 @tab Unassigned
2269 @item Pe
2270 @tab Close punctuation
2271 @tab
2272 @tab
2273 @item Pi
2274 @tab Initial quote punctuation
2275 @tab
2276 @tab
2277 @end multitable
2278 @end deffn
2279
2280 @rnindex char->integer
2281 @deffn {Scheme Procedure} char->integer chr
2282 @deffnx {C Function} scm_char_to_integer (chr)
2283 Return the code point of @var{chr}.
2284 @end deffn
2285
2286 @rnindex integer->char
2287 @deffn {Scheme Procedure} integer->char n
2288 @deffnx {C Function} scm_integer_to_char (n)
2289 Return the character that has code point @var{n}. The integer @var{n}
2290 must be a valid code point. Valid code points are in the ranges 0 to
2291 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
2292 @end deffn
2293
2294 @rnindex char-upcase
2295 @deffn {Scheme Procedure} char-upcase chr
2296 @deffnx {C Function} scm_char_upcase (chr)
2297 Return the uppercase character version of @var{chr}.
2298 @end deffn
2299
2300 @rnindex char-downcase
2301 @deffn {Scheme Procedure} char-downcase chr
2302 @deffnx {C Function} scm_char_downcase (chr)
2303 Return the lowercase character version of @var{chr}.
2304 @end deffn
2305
2306 @rnindex char-titlecase
2307 @deffn {Scheme Procedure} char-titlecase chr
2308 @deffnx {C Function} scm_char_titlecase (chr)
2309 Return the titlecase character version of @var{chr} if one exists;
2310 otherwise return the uppercase version.
2311
2312 For most characters these will be the same, but the Unicode Standard
2313 includes certain digraph compatibility characters, such as @code{U+01F3}
2314 ``dz'', for which the uppercase and titlecase characters are different
2315 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2316 respectively).
2317 @end deffn
2318
2319 @tindex scm_t_wchar
2320 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2321 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2322 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2323
2324 These C functions take an integer representation of a Unicode
2325 codepoint and return the codepoint corresponding to its uppercase,
2326 lowercase, and titlecase forms respectively. The type
2327 @code{scm_t_wchar} is a signed, 32-bit integer.
2328 @end deftypefn
2329
2330 @node Character Sets
2331 @subsection Character Sets
2332
2333 The features described in this section correspond directly to SRFI-14.
2334
2335 The data type @dfn{charset} implements sets of characters
2336 (@pxref{Characters}). Because the internal representation of
2337 character sets is not visible to the user, a lot of procedures for
2338 handling them are provided.
2339
2340 Character sets can be created, extended, tested for the membership of a
2341 characters and be compared to other character sets.
2342
2343 @menu
2344 * Character Set Predicates/Comparison::
2345 * Iterating Over Character Sets:: Enumerate charset elements.
2346 * Creating Character Sets:: Making new charsets.
2347 * Querying Character Sets:: Test charsets for membership etc.
2348 * Character-Set Algebra:: Calculating new charsets.
2349 * Standard Character Sets:: Variables containing predefined charsets.
2350 @end menu
2351
2352 @node Character Set Predicates/Comparison
2353 @subsubsection Character Set Predicates/Comparison
2354
2355 Use these procedures for testing whether an object is a character set,
2356 or whether several character sets are equal or subsets of each other.
2357 @code{char-set-hash} can be used for calculating a hash value, maybe for
2358 usage in fast lookup procedures.
2359
2360 @deffn {Scheme Procedure} char-set? obj
2361 @deffnx {C Function} scm_char_set_p (obj)
2362 Return @code{#t} if @var{obj} is a character set, @code{#f}
2363 otherwise.
2364 @end deffn
2365
2366 @deffn {Scheme Procedure} char-set= char_set @dots{}
2367 @deffnx {C Function} scm_char_set_eq (char_sets)
2368 Return @code{#t} if all given character sets are equal.
2369 @end deffn
2370
2371 @deffn {Scheme Procedure} char-set<= char_set @dots{}
2372 @deffnx {C Function} scm_char_set_leq (char_sets)
2373 Return @code{#t} if every character set @var{char_set}i is a subset
2374 of character set @var{char_set}i+1.
2375 @end deffn
2376
2377 @deffn {Scheme Procedure} char-set-hash cs [bound]
2378 @deffnx {C Function} scm_char_set_hash (cs, bound)
2379 Compute a hash value for the character set @var{cs}. If
2380 @var{bound} is given and non-zero, it restricts the
2381 returned value to the range 0 @dots{} @var{bound} - 1.
2382 @end deffn
2383
2384 @c ===================================================================
2385
2386 @node Iterating Over Character Sets
2387 @subsubsection Iterating Over Character Sets
2388
2389 Character set cursors are a means for iterating over the members of a
2390 character sets. After creating a character set cursor with
2391 @code{char-set-cursor}, a cursor can be dereferenced with
2392 @code{char-set-ref}, advanced to the next member with
2393 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2394 element of the set can be checked with @code{end-of-char-set?}.
2395
2396 Additionally, mapping and (un-)folding procedures for character sets are
2397 provided.
2398
2399 @deffn {Scheme Procedure} char-set-cursor cs
2400 @deffnx {C Function} scm_char_set_cursor (cs)
2401 Return a cursor into the character set @var{cs}.
2402 @end deffn
2403
2404 @deffn {Scheme Procedure} char-set-ref cs cursor
2405 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2406 Return the character at the current cursor position
2407 @var{cursor} in the character set @var{cs}. It is an error to
2408 pass a cursor for which @code{end-of-char-set?} returns true.
2409 @end deffn
2410
2411 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2412 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2413 Advance the character set cursor @var{cursor} to the next
2414 character in the character set @var{cs}. It is an error if the
2415 cursor given satisfies @code{end-of-char-set?}.
2416 @end deffn
2417
2418 @deffn {Scheme Procedure} end-of-char-set? cursor
2419 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2420 Return @code{#t} if @var{cursor} has reached the end of a
2421 character set, @code{#f} otherwise.
2422 @end deffn
2423
2424 @deffn {Scheme Procedure} char-set-fold kons knil cs
2425 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2426 Fold the procedure @var{kons} over the character set @var{cs},
2427 initializing it with @var{knil}.
2428 @end deffn
2429
2430 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2431 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2432 This is a fundamental constructor for character sets.
2433 @itemize @bullet
2434 @item @var{g} is used to generate a series of ``seed'' values
2435 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2436 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2437 @item @var{p} tells us when to stop -- when it returns true
2438 when applied to one of the seed values.
2439 @item @var{f} maps each seed value to a character. These
2440 characters are added to the base character set @var{base_cs} to
2441 form the result; @var{base_cs} defaults to the empty set.
2442 @end itemize
2443 @end deffn
2444
2445 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2446 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2447 This is a fundamental constructor for character sets.
2448 @itemize @bullet
2449 @item @var{g} is used to generate a series of ``seed'' values
2450 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2451 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2452 @item @var{p} tells us when to stop -- when it returns true
2453 when applied to one of the seed values.
2454 @item @var{f} maps each seed value to a character. These
2455 characters are added to the base character set @var{base_cs} to
2456 form the result; @var{base_cs} defaults to the empty set.
2457 @end itemize
2458 @end deffn
2459
2460 @deffn {Scheme Procedure} char-set-for-each proc cs
2461 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2462 Apply @var{proc} to every character in the character set
2463 @var{cs}. The return value is not specified.
2464 @end deffn
2465
2466 @deffn {Scheme Procedure} char-set-map proc cs
2467 @deffnx {C Function} scm_char_set_map (proc, cs)
2468 Map the procedure @var{proc} over every character in @var{cs}.
2469 @var{proc} must be a character -> character procedure.
2470 @end deffn
2471
2472 @c ===================================================================
2473
2474 @node Creating Character Sets
2475 @subsubsection Creating Character Sets
2476
2477 New character sets are produced with these procedures.
2478
2479 @deffn {Scheme Procedure} char-set-copy cs
2480 @deffnx {C Function} scm_char_set_copy (cs)
2481 Return a newly allocated character set containing all
2482 characters in @var{cs}.
2483 @end deffn
2484
2485 @deffn {Scheme Procedure} char-set chr @dots{}
2486 @deffnx {C Function} scm_char_set (chrs)
2487 Return a character set containing all given characters.
2488 @end deffn
2489
2490 @deffn {Scheme Procedure} list->char-set list [base_cs]
2491 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2492 Convert the character list @var{list} to a character set. If
2493 the character set @var{base_cs} is given, the character in this
2494 set are also included in the result.
2495 @end deffn
2496
2497 @deffn {Scheme Procedure} list->char-set! list base_cs
2498 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2499 Convert the character list @var{list} to a character set. The
2500 characters are added to @var{base_cs} and @var{base_cs} is
2501 returned.
2502 @end deffn
2503
2504 @deffn {Scheme Procedure} string->char-set str [base_cs]
2505 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2506 Convert the string @var{str} to a character set. If the
2507 character set @var{base_cs} is given, the characters in this
2508 set are also included in the result.
2509 @end deffn
2510
2511 @deffn {Scheme Procedure} string->char-set! str base_cs
2512 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2513 Convert the string @var{str} to a character set. The
2514 characters from the string are added to @var{base_cs}, and
2515 @var{base_cs} is returned.
2516 @end deffn
2517
2518 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2519 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2520 Return a character set containing every character from @var{cs}
2521 so that it satisfies @var{pred}. If provided, the characters
2522 from @var{base_cs} are added to the result.
2523 @end deffn
2524
2525 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2526 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2527 Return a character set containing every character from @var{cs}
2528 so that it satisfies @var{pred}. The characters are added to
2529 @var{base_cs} and @var{base_cs} is returned.
2530 @end deffn
2531
2532 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2533 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2534 Return a character set containing all characters whose
2535 character codes lie in the half-open range
2536 [@var{lower},@var{upper}).
2537
2538 If @var{error} is a true value, an error is signalled if the
2539 specified range contains characters which are not contained in
2540 the implemented character range. If @var{error} is @code{#f},
2541 these characters are silently left out of the resulting
2542 character set.
2543
2544 The characters in @var{base_cs} are added to the result, if
2545 given.
2546 @end deffn
2547
2548 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2549 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2550 Return a character set containing all characters whose
2551 character codes lie in the half-open range
2552 [@var{lower},@var{upper}).
2553
2554 If @var{error} is a true value, an error is signalled if the
2555 specified range contains characters which are not contained in
2556 the implemented character range. If @var{error} is @code{#f},
2557 these characters are silently left out of the resulting
2558 character set.
2559
2560 The characters are added to @var{base_cs} and @var{base_cs} is
2561 returned.
2562 @end deffn
2563
2564 @deffn {Scheme Procedure} ->char-set x
2565 @deffnx {C Function} scm_to_char_set (x)
2566 Coerces x into a char-set. @var{x} may be a string, character or
2567 char-set. A string is converted to the set of its constituent
2568 characters; a character is converted to a singleton set; a char-set is
2569 returned as-is.
2570 @end deffn
2571
2572 @c ===================================================================
2573
2574 @node Querying Character Sets
2575 @subsubsection Querying Character Sets
2576
2577 Access the elements and other information of a character set with these
2578 procedures.
2579
2580 @deffn {Scheme Procedure} %char-set-dump cs
2581 Returns an association list containing debugging information
2582 for @var{cs}. The association list has the following entries.
2583 @table @code
2584 @item char-set
2585 The char-set itself
2586 @item len
2587 The number of groups of contiguous code points the char-set
2588 contains
2589 @item ranges
2590 A list of lists where each sublist is a range of code points
2591 and their associated characters
2592 @end table
2593 The return value of this function cannot be relied upon to be
2594 consistent between versions of Guile and should not be used in code.
2595 @end deffn
2596
2597 @deffn {Scheme Procedure} char-set-size cs
2598 @deffnx {C Function} scm_char_set_size (cs)
2599 Return the number of elements in character set @var{cs}.
2600 @end deffn
2601
2602 @deffn {Scheme Procedure} char-set-count pred cs
2603 @deffnx {C Function} scm_char_set_count (pred, cs)
2604 Return the number of the elements int the character set
2605 @var{cs} which satisfy the predicate @var{pred}.
2606 @end deffn
2607
2608 @deffn {Scheme Procedure} char-set->list cs
2609 @deffnx {C Function} scm_char_set_to_list (cs)
2610 Return a list containing the elements of the character set
2611 @var{cs}.
2612 @end deffn
2613
2614 @deffn {Scheme Procedure} char-set->string cs
2615 @deffnx {C Function} scm_char_set_to_string (cs)
2616 Return a string containing the elements of the character set
2617 @var{cs}. The order in which the characters are placed in the
2618 string is not defined.
2619 @end deffn
2620
2621 @deffn {Scheme Procedure} char-set-contains? cs ch
2622 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2623 Return @code{#t} if the character @var{ch} is contained in the
2624 character set @var{cs}, or @code{#f} otherwise.
2625 @end deffn
2626
2627 @deffn {Scheme Procedure} char-set-every pred cs
2628 @deffnx {C Function} scm_char_set_every (pred, cs)
2629 Return a true value if every character in the character set
2630 @var{cs} satisfies the predicate @var{pred}.
2631 @end deffn
2632
2633 @deffn {Scheme Procedure} char-set-any pred cs
2634 @deffnx {C Function} scm_char_set_any (pred, cs)
2635 Return a true value if any character in the character set
2636 @var{cs} satisfies the predicate @var{pred}.
2637 @end deffn
2638
2639 @c ===================================================================
2640
2641 @node Character-Set Algebra
2642 @subsubsection Character-Set Algebra
2643
2644 Character sets can be manipulated with the common set algebra operation,
2645 such as union, complement, intersection etc. All of these procedures
2646 provide side-effecting variants, which modify their character set
2647 argument(s).
2648
2649 @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2650 @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
2651 Add all character arguments to the first argument, which must
2652 be a character set.
2653 @end deffn
2654
2655 @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2656 @deffnx {C Function} scm_char_set_delete (cs, chrs)
2657 Delete all character arguments from the first argument, which
2658 must be a character set.
2659 @end deffn
2660
2661 @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2662 @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
2663 Add all character arguments to the first argument, which must
2664 be a character set.
2665 @end deffn
2666
2667 @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2668 @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
2669 Delete all character arguments from the first argument, which
2670 must be a character set.
2671 @end deffn
2672
2673 @deffn {Scheme Procedure} char-set-complement cs
2674 @deffnx {C Function} scm_char_set_complement (cs)
2675 Return the complement of the character set @var{cs}.
2676 @end deffn
2677
2678 Note that the complement of a character set is likely to contain many
2679 reserved code points (code points that are not associated with
2680 characters). It may be helpful to modify the output of
2681 @code{char-set-complement} by computing its intersection with the set
2682 of designated code points, @code{char-set:designated}.
2683
2684 @deffn {Scheme Procedure} char-set-union cs @dots{}
2685 @deffnx {C Function} scm_char_set_union (char_sets)
2686 Return the union of all argument character sets.
2687 @end deffn
2688
2689 @deffn {Scheme Procedure} char-set-intersection cs @dots{}
2690 @deffnx {C Function} scm_char_set_intersection (char_sets)
2691 Return the intersection of all argument character sets.
2692 @end deffn
2693
2694 @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2695 @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
2696 Return the difference of all argument character sets.
2697 @end deffn
2698
2699 @deffn {Scheme Procedure} char-set-xor cs @dots{}
2700 @deffnx {C Function} scm_char_set_xor (char_sets)
2701 Return the exclusive-or of all argument character sets.
2702 @end deffn
2703
2704 @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2705 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
2706 Return the difference and the intersection of all argument
2707 character sets.
2708 @end deffn
2709
2710 @deffn {Scheme Procedure} char-set-complement! cs
2711 @deffnx {C Function} scm_char_set_complement_x (cs)
2712 Return the complement of the character set @var{cs}.
2713 @end deffn
2714
2715 @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2716 @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
2717 Return the union of all argument character sets.
2718 @end deffn
2719
2720 @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2721 @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
2722 Return the intersection of all argument character sets.
2723 @end deffn
2724
2725 @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2726 @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
2727 Return the difference of all argument character sets.
2728 @end deffn
2729
2730 @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2731 @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
2732 Return the exclusive-or of all argument character sets.
2733 @end deffn
2734
2735 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2736 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
2737 Return the difference and the intersection of all argument
2738 character sets.
2739 @end deffn
2740
2741 @c ===================================================================
2742
2743 @node Standard Character Sets
2744 @subsubsection Standard Character Sets
2745
2746 In order to make the use of the character set data type and procedures
2747 useful, several predefined character set variables exist.
2748
2749 @cindex codeset
2750 @cindex charset
2751 @cindex locale
2752
2753 These character sets are locale independent and are not recomputed
2754 upon a @code{setlocale} call. They contain characters from the whole
2755 range of Unicode code points. For instance, @code{char-set:letter}
2756 contains about 100,000 characters.
2757
2758 @defvr {Scheme Variable} char-set:lower-case
2759 @defvrx {C Variable} scm_char_set_lower_case
2760 All lower-case characters.
2761 @end defvr
2762
2763 @defvr {Scheme Variable} char-set:upper-case
2764 @defvrx {C Variable} scm_char_set_upper_case
2765 All upper-case characters.
2766 @end defvr
2767
2768 @defvr {Scheme Variable} char-set:title-case
2769 @defvrx {C Variable} scm_char_set_title_case
2770 All single characters that function as if they were an upper-case
2771 letter followed by a lower-case letter.
2772 @end defvr
2773
2774 @defvr {Scheme Variable} char-set:letter
2775 @defvrx {C Variable} scm_char_set_letter
2776 All letters. This includes @code{char-set:lower-case},
2777 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2778 letters that have no case at all. For example, Chinese and Japanese
2779 characters typically have no concept of case.
2780 @end defvr
2781
2782 @defvr {Scheme Variable} char-set:digit
2783 @defvrx {C Variable} scm_char_set_digit
2784 All digits.
2785 @end defvr
2786
2787 @defvr {Scheme Variable} char-set:letter+digit
2788 @defvrx {C Variable} scm_char_set_letter_and_digit
2789 The union of @code{char-set:letter} and @code{char-set:digit}.
2790 @end defvr
2791
2792 @defvr {Scheme Variable} char-set:graphic
2793 @defvrx {C Variable} scm_char_set_graphic
2794 All characters which would put ink on the paper.
2795 @end defvr
2796
2797 @defvr {Scheme Variable} char-set:printing
2798 @defvrx {C Variable} scm_char_set_printing
2799 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2800 @end defvr
2801
2802 @defvr {Scheme Variable} char-set:whitespace
2803 @defvrx {C Variable} scm_char_set_whitespace
2804 All whitespace characters.
2805 @end defvr
2806
2807 @defvr {Scheme Variable} char-set:blank
2808 @defvrx {C Variable} scm_char_set_blank
2809 All horizontal whitespace characters, which notably includes
2810 @code{#\space} and @code{#\tab}.
2811 @end defvr
2812
2813 @defvr {Scheme Variable} char-set:iso-control
2814 @defvrx {C Variable} scm_char_set_iso_control
2815 The ISO control characters are the C0 control characters (U+0000 to
2816 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2817 U+009F).
2818 @end defvr
2819
2820 @defvr {Scheme Variable} char-set:punctuation
2821 @defvrx {C Variable} scm_char_set_punctuation
2822 All punctuation characters, such as the characters
2823 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2824 @end defvr
2825
2826 @defvr {Scheme Variable} char-set:symbol
2827 @defvrx {C Variable} scm_char_set_symbol
2828 All symbol characters, such as the characters @code{$+<=>^`|~}.
2829 @end defvr
2830
2831 @defvr {Scheme Variable} char-set:hex-digit
2832 @defvrx {C Variable} scm_char_set_hex_digit
2833 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2834 @end defvr
2835
2836 @defvr {Scheme Variable} char-set:ascii
2837 @defvrx {C Variable} scm_char_set_ascii
2838 All ASCII characters.
2839 @end defvr
2840
2841 @defvr {Scheme Variable} char-set:empty
2842 @defvrx {C Variable} scm_char_set_empty
2843 The empty character set.
2844 @end defvr
2845
2846 @defvr {Scheme Variable} char-set:designated
2847 @defvrx {C Variable} scm_char_set_designated
2848 This character set contains all designated code points. This includes
2849 all the code points to which Unicode has assigned a character or other
2850 meaning.
2851 @end defvr
2852
2853 @defvr {Scheme Variable} char-set:full
2854 @defvrx {C Variable} scm_char_set_full
2855 This character set contains all possible code points. This includes
2856 both designated and reserved code points.
2857 @end defvr
2858
2859 @node Strings
2860 @subsection Strings
2861 @tpindex Strings
2862
2863 Strings are fixed-length sequences of characters. They can be created
2864 by calling constructor procedures, but they can also literally get
2865 entered at the @acronym{REPL} or in Scheme source files.
2866
2867 @c Guile provides a rich set of string processing procedures, because text
2868 @c handling is very important when Guile is used as a scripting language.
2869
2870 Strings always carry the information about how many characters they are
2871 composed of with them, so there is no special end-of-string character,
2872 like in C. That means that Scheme strings can contain any character,
2873 even the @samp{#\nul} character @samp{\0}.
2874
2875 To use strings efficiently, you need to know a bit about how Guile
2876 implements them. In Guile, a string consists of two parts, a head and
2877 the actual memory where the characters are stored. When a string (or
2878 a substring of it) is copied, only a new head gets created, the memory
2879 is usually not copied. The two heads start out pointing to the same
2880 memory.
2881
2882 When one of these two strings is modified, as with @code{string-set!},
2883 their common memory does get copied so that each string has its own
2884 memory and modifying one does not accidentally modify the other as well.
2885 Thus, Guile's strings are `copy on write'; the actual copying of their
2886 memory is delayed until one string is written to.
2887
2888 This implementation makes functions like @code{substring} very
2889 efficient in the common case that no modifications are done to the
2890 involved strings.
2891
2892 If you do know that your strings are getting modified right away, you
2893 can use @code{substring/copy} instead of @code{substring}. This
2894 function performs the copy immediately at the time of creation. This
2895 is more efficient, especially in a multi-threaded program. Also,
2896 @code{substring/copy} can avoid the problem that a short substring
2897 holds on to the memory of a very large original string that could
2898 otherwise be recycled.
2899
2900 If you want to avoid the copy altogether, so that modifications of one
2901 string show up in the other, you can use @code{substring/shared}. The
2902 strings created by this procedure are called @dfn{mutation sharing
2903 substrings} since the substring and the original string share
2904 modifications to each other.
2905
2906 If you want to prevent modifications, use @code{substring/read-only}.
2907
2908 Guile provides all procedures of SRFI-13 and a few more.
2909
2910 @menu
2911 * String Syntax:: Read syntax for strings.
2912 * String Predicates:: Testing strings for certain properties.
2913 * String Constructors:: Creating new string objects.
2914 * List/String Conversion:: Converting from/to lists of characters.
2915 * String Selection:: Select portions from strings.
2916 * String Modification:: Modify parts or whole strings.
2917 * String Comparison:: Lexicographic ordering predicates.
2918 * String Searching:: Searching in strings.
2919 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2920 * Reversing and Appending Strings:: Appending strings to form a new string.
2921 * Mapping Folding and Unfolding:: Iterating over strings.
2922 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2923 * Representing Strings as Bytes:: Encoding and decoding strings.
2924 * Conversion to/from C::
2925 * String Internals:: The storage strategy for strings.
2926 @end menu
2927
2928 @node String Syntax
2929 @subsubsection String Read Syntax
2930
2931 @c In the following @code is used to get a good font in TeX etc, but
2932 @c is omitted for Info format, so as not to risk any confusion over
2933 @c whether surrounding ` ' quotes are part of the escape or are
2934 @c special in a string (they're not).
2935
2936 The read syntax for strings is an arbitrarily long sequence of
2937 characters enclosed in double quotes (@nicode{"}).
2938
2939 Backslash is an escape character and can be used to insert the following
2940 special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2941 next seven are R6RS standard --- notice they follow C syntax --- and the
2942 remaining four are Guile extensions.
2943
2944 @table @asis
2945 @item @nicode{\\}
2946 Backslash character.
2947
2948 @item @nicode{\"}
2949 Double quote character (an unescaped @nicode{"} is otherwise the end
2950 of the string).
2951
2952 @item @nicode{\a}
2953 Bell character (ASCII 7).
2954
2955 @item @nicode{\f}
2956 Formfeed character (ASCII 12).
2957
2958 @item @nicode{\n}
2959 Newline character (ASCII 10).
2960
2961 @item @nicode{\r}
2962 Carriage return character (ASCII 13).
2963
2964 @item @nicode{\t}
2965 Tab character (ASCII 9).
2966
2967 @item @nicode{\v}
2968 Vertical tab character (ASCII 11).
2969
2970 @item @nicode{\b}
2971 Backspace character (ASCII 8).
2972
2973 @item @nicode{\0}
2974 NUL character (ASCII 0).
2975
2976 @item @nicode{\} followed by newline (ASCII 10)
2977 Nothing. This way if @nicode{\} is the last character in a line, the
2978 string will continue with the first character from the next line,
2979 without a line break.
2980
2981 If the @code{hungry-eol-escapes} reader option is enabled, which is not
2982 the case by default, leading whitespace on the next line is discarded.
2983
2984 @lisp
2985 "foo\
2986 bar"
2987 @result{} "foo bar"
2988 (read-enable 'hungry-eol-escapes)
2989 "foo\
2990 bar"
2991 @result{} "foobar"
2992 @end lisp
2993 @item @nicode{\xHH}
2994 Character code given by two hexadecimal digits. For example
2995 @nicode{\x7f} for an ASCII DEL (127).
2996
2997 @item @nicode{\uHHHH}
2998 Character code given by four hexadecimal digits. For example
2999 @nicode{\u0100} for a capital A with macron (U+0100).
3000
3001 @item @nicode{\UHHHHHH}
3002 Character code given by six hexadecimal digits. For example
3003 @nicode{\U010402}.
3004 @end table
3005
3006 @noindent
3007 The following are examples of string literals:
3008
3009 @lisp
3010 "foo"
3011 "bar plonk"
3012 "Hello World"
3013 "\"Hi\", he said."
3014 @end lisp
3015
3016 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
3017 chosen to not break compatibility with code written for previous versions of
3018 Guile. The R6RS specification suggests a different, incompatible syntax for hex
3019 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3020 digits terminated with a semicolon. If this escape format is desired instead,
3021 it can be enabled with the reader option @code{r6rs-hex-escapes}.
3022
3023 @lisp
3024 (read-enable 'r6rs-hex-escapes)
3025 @end lisp
3026
3027 For more on reader options, @xref{Scheme Read}.
3028
3029 @node String Predicates
3030 @subsubsection String Predicates
3031
3032 The following procedures can be used to check whether a given string
3033 fulfills some specified property.
3034
3035 @rnindex string?
3036 @deffn {Scheme Procedure} string? obj
3037 @deffnx {C Function} scm_string_p (obj)
3038 Return @code{#t} if @var{obj} is a string, else @code{#f}.
3039 @end deffn
3040
3041 @deftypefn {C Function} int scm_is_string (SCM obj)
3042 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3043 @end deftypefn
3044
3045 @deffn {Scheme Procedure} string-null? str
3046 @deffnx {C Function} scm_string_null_p (str)
3047 Return @code{#t} if @var{str}'s length is zero, and
3048 @code{#f} otherwise.
3049 @lisp
3050 (string-null? "") @result{} #t
3051 y @result{} "foo"
3052 (string-null? y) @result{} #f
3053 @end lisp
3054 @end deffn
3055
3056 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
3057 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
3058 Check if @var{char_pred} is true for any character in string @var{s}.
3059
3060 @var{char_pred} can be a character to check for any equal to that, or
3061 a character set (@pxref{Character Sets}) to check for any in that set,
3062 or a predicate procedure to call.
3063
3064 For a procedure, calls @code{(@var{char_pred} c)} are made
3065 successively on the characters from @var{start} to @var{end}. If
3066 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3067 stops and that return value is the return from @code{string-any}. The
3068 call on the last character (ie.@: at @math{@var{end}-1}), if that
3069 point is reached, is a tail call.
3070
3071 If there are no characters in @var{s} (ie.@: @var{start} equals
3072 @var{end}) then the return is @code{#f}.
3073 @end deffn
3074
3075 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
3076 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
3077 Check if @var{char_pred} is true for every character in string
3078 @var{s}.
3079
3080 @var{char_pred} can be a character to check for every character equal
3081 to that, or a character set (@pxref{Character Sets}) to check for
3082 every character being in that set, or a predicate procedure to call.
3083
3084 For a procedure, calls @code{(@var{char_pred} c)} are made
3085 successively on the characters from @var{start} to @var{end}. If
3086 @var{char_pred} returns @code{#f}, @code{string-every} stops and
3087 returns @code{#f}. The call on the last character (ie.@: at
3088 @math{@var{end}-1}), if that point is reached, is a tail call and the
3089 return from that call is the return from @code{string-every}.
3090
3091 If there are no characters in @var{s} (ie.@: @var{start} equals
3092 @var{end}) then the return is @code{#t}.
3093 @end deffn
3094
3095 @node String Constructors
3096 @subsubsection String Constructors
3097
3098 The string constructor procedures create new string objects, possibly
3099 initializing them with some specified character data. See also
3100 @xref{String Selection}, for ways to create strings from existing
3101 strings.
3102
3103 @c FIXME::martin: list->string belongs into `List/String Conversion'
3104
3105 @deffn {Scheme Procedure} string char@dots{}
3106 @rnindex string
3107 Return a newly allocated string made from the given character
3108 arguments.
3109
3110 @example
3111 (string #\x #\y #\z) @result{} "xyz"
3112 (string) @result{} ""
3113 @end example
3114 @end deffn
3115
3116 @deffn {Scheme Procedure} list->string lst
3117 @deffnx {C Function} scm_string (lst)
3118 @rnindex list->string
3119 Return a newly allocated string made from a list of characters.
3120
3121 @example
3122 (list->string '(#\a #\b #\c)) @result{} "abc"
3123 @end example
3124 @end deffn
3125
3126 @deffn {Scheme Procedure} reverse-list->string lst
3127 @deffnx {C Function} scm_reverse_list_to_string (lst)
3128 Return a newly allocated string made from a list of characters, in
3129 reverse order.
3130
3131 @example
3132 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3133 @end example
3134 @end deffn
3135
3136 @rnindex make-string
3137 @deffn {Scheme Procedure} make-string k [chr]
3138 @deffnx {C Function} scm_make_string (k, chr)
3139 Return a newly allocated string of
3140 length @var{k}. If @var{chr} is given, then all elements of
3141 the string are initialized to @var{chr}, otherwise the contents
3142 of the string are unspecified.
3143 @end deffn
3144
3145 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3146 Like @code{scm_make_string}, but expects the length as a
3147 @code{size_t}.
3148 @end deftypefn
3149
3150 @deffn {Scheme Procedure} string-tabulate proc len
3151 @deffnx {C Function} scm_string_tabulate (proc, len)
3152 @var{proc} is an integer->char procedure. Construct a string
3153 of size @var{len} by applying @var{proc} to each index to
3154 produce the corresponding string element. The order in which
3155 @var{proc} is applied to the indices is not specified.
3156 @end deffn
3157
3158 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3159 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3160 Append the string in the string list @var{ls}, using the string
3161 @var{delimiter} as a delimiter between the elements of @var{ls}.
3162 @var{grammar} is a symbol which specifies how the delimiter is
3163 placed between the strings, and defaults to the symbol
3164 @code{infix}.
3165
3166 @table @code
3167 @item infix
3168 Insert the separator between list elements. An empty string
3169 will produce an empty list.
3170 @item strict-infix
3171 Like @code{infix}, but will raise an error if given the empty
3172 list.
3173 @item suffix
3174 Insert the separator after every list element.
3175 @item prefix
3176 Insert the separator before each list element.
3177 @end table
3178 @end deffn
3179
3180 @node List/String Conversion
3181 @subsubsection List/String conversion
3182
3183 When processing strings, it is often convenient to first convert them
3184 into a list representation by using the procedure @code{string->list},
3185 work with the resulting list, and then convert it back into a string.
3186 These procedures are useful for similar tasks.
3187
3188 @rnindex string->list
3189 @deffn {Scheme Procedure} string->list str [start [end]]
3190 @deffnx {C Function} scm_substring_to_list (str, start, end)
3191 @deffnx {C Function} scm_string_to_list (str)
3192 Convert the string @var{str} into a list of characters.
3193 @end deffn
3194
3195 @deffn {Scheme Procedure} string-split str char_pred
3196 @deffnx {C Function} scm_string_split (str, char_pred)
3197 Split the string @var{str} into a list of substrings delimited
3198 by appearances of characters that
3199
3200 @itemize @bullet
3201 @item
3202 equal @var{char_pred}, if it is a character,
3203
3204 @item
3205 satisfy the predicate @var{char_pred}, if it is a procedure,
3206
3207 @item
3208 are in the set @var{char_pred}, if it is a character set.
3209 @end itemize
3210
3211 Note that an empty substring between separator characters will result in
3212 an empty string in the result list.
3213
3214 @lisp
3215 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3216 @result{}
3217 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
3218
3219 (string-split "::" #\:)
3220 @result{}
3221 ("" "" "")
3222
3223 (string-split "" #\:)
3224 @result{}
3225 ("")
3226 @end lisp
3227 @end deffn
3228
3229
3230 @node String Selection
3231 @subsubsection String Selection
3232
3233 Portions of strings can be extracted by these procedures.
3234 @code{string-ref} delivers individual characters whereas
3235 @code{substring} can be used to extract substrings from longer strings.
3236
3237 @rnindex string-length
3238 @deffn {Scheme Procedure} string-length string
3239 @deffnx {C Function} scm_string_length (string)
3240 Return the number of characters in @var{string}.
3241 @end deffn
3242
3243 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
3244 Return the number of characters in @var{str} as a @code{size_t}.
3245 @end deftypefn
3246
3247 @rnindex string-ref
3248 @deffn {Scheme Procedure} string-ref str k
3249 @deffnx {C Function} scm_string_ref (str, k)
3250 Return character @var{k} of @var{str} using zero-origin
3251 indexing. @var{k} must be a valid index of @var{str}.
3252 @end deffn
3253
3254 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3255 Return character @var{k} of @var{str} using zero-origin
3256 indexing. @var{k} must be a valid index of @var{str}.
3257 @end deftypefn
3258
3259 @rnindex string-copy
3260 @deffn {Scheme Procedure} string-copy str [start [end]]
3261 @deffnx {C Function} scm_substring_copy (str, start, end)
3262 @deffnx {C Function} scm_string_copy (str)
3263 Return a copy of the given string @var{str}.
3264
3265 The returned string shares storage with @var{str} initially, but it is
3266 copied as soon as one of the two strings is modified.
3267 @end deffn
3268
3269 @rnindex substring
3270 @deffn {Scheme Procedure} substring str start [end]
3271 @deffnx {C Function} scm_substring (str, start, end)
3272 Return a new string formed from the characters
3273 of @var{str} beginning with index @var{start} (inclusive) and
3274 ending with index @var{end} (exclusive).
3275 @var{str} must be a string, @var{start} and @var{end} must be
3276 exact integers satisfying:
3277
3278 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
3279
3280 The returned string shares storage with @var{str} initially, but it is
3281 copied as soon as one of the two strings is modified.
3282 @end deffn
3283
3284 @deffn {Scheme Procedure} substring/shared str start [end]
3285 @deffnx {C Function} scm_substring_shared (str, start, end)
3286 Like @code{substring}, but the strings continue to share their storage
3287 even if they are modified. Thus, modifications to @var{str} show up
3288 in the new string, and vice versa.
3289 @end deffn
3290
3291 @deffn {Scheme Procedure} substring/copy str start [end]
3292 @deffnx {C Function} scm_substring_copy (str, start, end)
3293 Like @code{substring}, but the storage for the new string is copied
3294 immediately.
3295 @end deffn
3296
3297 @deffn {Scheme Procedure} substring/read-only str start [end]
3298 @deffnx {C Function} scm_substring_read_only (str, start, end)
3299 Like @code{substring}, but the resulting string can not be modified.
3300 @end deffn
3301
3302 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3303 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3304 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
3305 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
3306 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3307 @end deftypefn
3308
3309 @deffn {Scheme Procedure} string-take s n
3310 @deffnx {C Function} scm_string_take (s, n)
3311 Return the @var{n} first characters of @var{s}.
3312 @end deffn
3313
3314 @deffn {Scheme Procedure} string-drop s n
3315 @deffnx {C Function} scm_string_drop (s, n)
3316 Return all but the first @var{n} characters of @var{s}.
3317 @end deffn
3318
3319 @deffn {Scheme Procedure} string-take-right s n
3320 @deffnx {C Function} scm_string_take_right (s, n)
3321 Return the @var{n} last characters of @var{s}.
3322 @end deffn
3323
3324 @deffn {Scheme Procedure} string-drop-right s n
3325 @deffnx {C Function} scm_string_drop_right (s, n)
3326 Return all but the last @var{n} characters of @var{s}.
3327 @end deffn
3328
3329 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3330 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3331 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3332 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3333 Take characters @var{start} to @var{end} from the string @var{s} and
3334 either pad with @var{chr} or truncate them to give @var{len}
3335 characters.
3336
3337 @code{string-pad} pads or truncates on the left, so for example
3338
3339 @example
3340 (string-pad "x" 3) @result{} " x"
3341 (string-pad "abcde" 3) @result{} "cde"
3342 @end example
3343
3344 @code{string-pad-right} pads or truncates on the right, so for example
3345
3346 @example
3347 (string-pad-right "x" 3) @result{} "x "
3348 (string-pad-right "abcde" 3) @result{} "abc"
3349 @end example
3350 @end deffn
3351
3352 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3353 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3354 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3355 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3356 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3357 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3358 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3359
3360 @code{string-trim} trims @var{char_pred} characters from the left
3361 (start) of the string, @code{string-trim-right} trims them from the
3362 right (end) of the string, @code{string-trim-both} trims from both
3363 ends.
3364
3365 @var{char_pred} can be a character, a character set, or a predicate
3366 procedure to call on each character. If @var{char_pred} is not given
3367 the default is whitespace as per @code{char-set:whitespace}
3368 (@pxref{Standard Character Sets}).
3369
3370 @example
3371 (string-trim " x ") @result{} "x "
3372 (string-trim-right "banana" #\a) @result{} "banan"
3373 (string-trim-both ".,xy:;" char-set:punctuation)
3374 @result{} "xy"
3375 (string-trim-both "xyzzy" (lambda (c)
3376 (or (eqv? c #\x)
3377 (eqv? c #\y))))
3378 @result{} "zz"
3379 @end example
3380 @end deffn
3381
3382 @node String Modification
3383 @subsubsection String Modification
3384
3385 These procedures are for modifying strings in-place. This means that the
3386 result of the operation is not a new string; instead, the original string's
3387 memory representation is modified.
3388
3389 @rnindex string-set!
3390 @deffn {Scheme Procedure} string-set! str k chr
3391 @deffnx {C Function} scm_string_set_x (str, k, chr)
3392 Store @var{chr} in element @var{k} of @var{str} and return
3393 an unspecified value. @var{k} must be a valid index of
3394 @var{str}.
3395 @end deffn
3396
3397 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3398 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3399 @end deftypefn
3400
3401 @rnindex string-fill!
3402 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3403 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3404 @deffnx {C Function} scm_string_fill_x (str, chr)
3405 Stores @var{chr} in every element of the given @var{str} and
3406 returns an unspecified value.
3407 @end deffn
3408
3409 @deffn {Scheme Procedure} substring-fill! str start end fill
3410 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3411 Change every character in @var{str} between @var{start} and
3412 @var{end} to @var{fill}.
3413
3414 @lisp
3415 (define y (string-copy "abcdefg"))
3416 (substring-fill! y 1 3 #\r)
3417 y
3418 @result{} "arrdefg"
3419 @end lisp
3420 @end deffn
3421
3422 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3423 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3424 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3425 into @var{str2} beginning at position @var{start2}.
3426 @var{str1} and @var{str2} can be the same string.
3427 @end deffn
3428
3429 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3430 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3431 Copy the sequence of characters from index range [@var{start},
3432 @var{end}) in string @var{s} to string @var{target}, beginning
3433 at index @var{tstart}. The characters are copied left-to-right
3434 or right-to-left as needed -- the copy is guaranteed to work,
3435 even if @var{target} and @var{s} are the same string. It is an
3436 error if the copy operation runs off the end of the target
3437 string.
3438 @end deffn
3439
3440
3441 @node String Comparison
3442 @subsubsection String Comparison
3443
3444 The procedures in this section are similar to the character ordering
3445 predicates (@pxref{Characters}), but are defined on character sequences.
3446
3447 The first set is specified in R5RS and has names that end in @code{?}.
3448 The second set is specified in SRFI-13 and the names have not ending
3449 @code{?}.
3450
3451 The predicates ending in @code{-ci} ignore the character case
3452 when comparing strings. For now, case-insensitive comparison is done
3453 using the R5RS rules, where every lower-case character that has a
3454 single character upper-case form is converted to uppercase before
3455 comparison. See @xref{Text Collation, the @code{(ice-9
3456 i18n)} module}, for locale-dependent string comparison.
3457
3458 @rnindex string=?
3459 @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
3460 Lexicographic equality predicate; return @code{#t} if all strings are
3461 the same length and contain the same characters in the same positions,
3462 otherwise return @code{#f}.
3463
3464 The procedure @code{string-ci=?} treats upper and lower case
3465 letters as though they were the same character, but
3466 @code{string=?} treats upper and lower case as distinct
3467 characters.
3468 @end deffn
3469
3470 @rnindex string<?
3471 @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
3472 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3473 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3474 lexicographically less than @var{str_i+1}.
3475 @end deffn
3476
3477 @rnindex string<=?
3478 @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
3479 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3480 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3481 lexicographically less than or equal to @var{str_i+1}.
3482 @end deffn
3483
3484 @rnindex string>?
3485 @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
3486 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3487 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3488 lexicographically greater than @var{str_i+1}.
3489 @end deffn
3490
3491 @rnindex string>=?
3492 @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
3493 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3494 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3495 lexicographically greater than or equal to @var{str_i+1}.
3496 @end deffn
3497
3498 @rnindex string-ci=?
3499 @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
3500 Case-insensitive string equality predicate; return @code{#t} if
3501 all strings are the same length and their component
3502 characters match (ignoring case) at each position; otherwise
3503 return @code{#f}.
3504 @end deffn
3505
3506 @rnindex string-ci<?
3507 @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
3508 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3509 for every pair of consecutive string arguments @var{str_i} and
3510 @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
3511 regardless of case.
3512 @end deffn
3513
3514 @rnindex string<=?
3515 @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
3516 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3517 for every pair of consecutive string arguments @var{str_i} and
3518 @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3519 @var{str_i+1} regardless of case.
3520 @end deffn
3521
3522 @rnindex string-ci>?
3523 @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
3524 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3525 for every pair of consecutive string arguments @var{str_i} and
3526 @var{str_i+1}, @var{str_i} is lexicographically greater than
3527 @var{str_i+1} regardless of case.
3528 @end deffn
3529
3530 @rnindex string-ci>=?
3531 @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
3532 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3533 for every pair of consecutive string arguments @var{str_i} and
3534 @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3535 @var{str_i+1} regardless of case.
3536 @end deffn
3537
3538 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3539 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3540 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3541 mismatch index, depending upon whether @var{s1} is less than,
3542 equal to, or greater than @var{s2}. The mismatch index is the
3543 largest index @var{i} such that for every 0 <= @var{j} <
3544 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3545 @var{i} is the first position that does not match.
3546 @end deffn
3547
3548 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3549 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3550 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3551 mismatch index, depending upon whether @var{s1} is less than,
3552 equal to, or greater than @var{s2}. The mismatch index is the
3553 largest index @var{i} such that for every 0 <= @var{j} <
3554 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3555 @var{i} is the first position where the lowercased letters
3556 do not match.
3557
3558 @end deffn
3559
3560 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3561 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3562 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3563 value otherwise.
3564 @end deffn
3565
3566 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3567 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3568 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3569 value otherwise.
3570 @end deffn
3571
3572 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3573 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3574 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3575 true value otherwise.
3576 @end deffn
3577
3578 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3579 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3580 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3581 true value otherwise.
3582 @end deffn
3583
3584 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3585 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3586 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3587 value otherwise.
3588 @end deffn
3589
3590 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3591 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3592 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3593 otherwise.
3594 @end deffn
3595
3596 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3597 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3598 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3599 value otherwise. The character comparison is done
3600 case-insensitively.
3601 @end deffn
3602
3603 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3604 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3605 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3606 value otherwise. The character comparison is done
3607 case-insensitively.
3608 @end deffn
3609
3610 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3611 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3612 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3613 true value otherwise. The character comparison is done
3614 case-insensitively.
3615 @end deffn
3616
3617 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3618 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3619 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3620 true value otherwise. The character comparison is done
3621 case-insensitively.
3622 @end deffn
3623
3624 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3625 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3626 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3627 value otherwise. The character comparison is done
3628 case-insensitively.
3629 @end deffn
3630
3631 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3632 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3633 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3634 otherwise. The character comparison is done
3635 case-insensitively.
3636 @end deffn
3637
3638 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3639 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3640 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3641 @end deffn
3642
3643 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3644 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3645 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3646 @end deffn
3647
3648 Because the same visual appearance of an abstract Unicode character can
3649 be obtained via multiple sequences of Unicode characters, even the
3650 case-insensitive string comparison functions described above may return
3651 @code{#f} when presented with strings containing different
3652 representations of the same character. For example, the Unicode
3653 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3654 represented with a single character (U+1E69) or by the character ``LATIN
3655 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3656 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3657
3658 For this reason, it is often desirable to ensure that the strings
3659 to be compared are using a mutually consistent representation for every
3660 character. The Unicode standard defines two methods of normalizing the
3661 contents of strings: Decomposition, which breaks composite characters
3662 into a set of constituent characters with an ordering defined by the
3663 Unicode Standard; and composition, which performs the converse.
3664
3665 There are two decomposition operations. ``Canonical decomposition''
3666 produces character sequences that share the same visual appearance as
3667 the original characters, while ``compatibility decomposition'' produces
3668 ones whose visual appearances may differ from the originals but which
3669 represent the same abstract character.
3670
3671 These operations are encapsulated in the following set of normalization
3672 forms:
3673
3674 @table @dfn
3675 @item NFD
3676 Characters are decomposed to their canonical forms.
3677
3678 @item NFKD
3679 Characters are decomposed to their compatibility forms.
3680
3681 @item NFC
3682 Characters are decomposed to their canonical forms, then composed.
3683
3684 @item NFKC
3685 Characters are decomposed to their compatibility forms, then composed.
3686
3687 @end table
3688
3689 The functions below put their arguments into one of the forms described
3690 above.
3691
3692 @deffn {Scheme Procedure} string-normalize-nfd s
3693 @deffnx {C Function} scm_string_normalize_nfd (s)
3694 Return the @code{NFD} normalized form of @var{s}.
3695 @end deffn
3696
3697 @deffn {Scheme Procedure} string-normalize-nfkd s
3698 @deffnx {C Function} scm_string_normalize_nfkd (s)
3699 Return the @code{NFKD} normalized form of @var{s}.
3700 @end deffn
3701
3702 @deffn {Scheme Procedure} string-normalize-nfc s
3703 @deffnx {C Function} scm_string_normalize_nfc (s)
3704 Return the @code{NFC} normalized form of @var{s}.
3705 @end deffn
3706
3707 @deffn {Scheme Procedure} string-normalize-nfkc s
3708 @deffnx {C Function} scm_string_normalize_nfkc (s)
3709 Return the @code{NFKC} normalized form of @var{s}.
3710 @end deffn
3711
3712 @node String Searching
3713 @subsubsection String Searching
3714
3715 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3716 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3717 Search through the string @var{s} from left to right, returning
3718 the index of the first occurrence of a character which
3719
3720 @itemize @bullet
3721 @item
3722 equals @var{char_pred}, if it is character,
3723
3724 @item
3725 satisfies the predicate @var{char_pred}, if it is a procedure,
3726
3727 @item
3728 is in the set @var{char_pred}, if it is a character set.
3729 @end itemize
3730
3731 Return @code{#f} if no match is found.
3732 @end deffn
3733
3734 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3735 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3736 Search through the string @var{s} from right to left, returning
3737 the index of the last occurrence of a character which
3738
3739 @itemize @bullet
3740 @item
3741 equals @var{char_pred}, if it is character,
3742
3743 @item
3744 satisfies the predicate @var{char_pred}, if it is a procedure,
3745
3746 @item
3747 is in the set if @var{char_pred} is a character set.
3748 @end itemize
3749
3750 Return @code{#f} if no match is found.
3751 @end deffn
3752
3753 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3754 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3755 Return the length of the longest common prefix of the two
3756 strings.
3757 @end deffn
3758
3759 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3760 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3761 Return the length of the longest common prefix of the two
3762 strings, ignoring character case.
3763 @end deffn
3764
3765 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3766 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3767 Return the length of the longest common suffix of the two
3768 strings.
3769 @end deffn
3770
3771 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3772 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3773 Return the length of the longest common suffix of the two
3774 strings, ignoring character case.
3775 @end deffn
3776
3777 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3778 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3779 Is @var{s1} a prefix of @var{s2}?
3780 @end deffn
3781
3782 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3783 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3784 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3785 @end deffn
3786
3787 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3788 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3789 Is @var{s1} a suffix of @var{s2}?
3790 @end deffn
3791
3792 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3793 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3794 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3795 @end deffn
3796
3797 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3798 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3799 Search through the string @var{s} from right to left, returning
3800 the index of the last occurrence of a character which
3801
3802 @itemize @bullet
3803 @item
3804 equals @var{char_pred}, if it is character,
3805
3806 @item
3807 satisfies the predicate @var{char_pred}, if it is a procedure,
3808
3809 @item
3810 is in the set if @var{char_pred} is a character set.
3811 @end itemize
3812
3813 Return @code{#f} if no match is found.
3814 @end deffn
3815
3816 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3817 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3818 Search through the string @var{s} from left to right, returning
3819 the index of the first occurrence of a character which
3820
3821 @itemize @bullet
3822 @item
3823 does not equal @var{char_pred}, if it is character,
3824
3825 @item
3826 does not satisfy the predicate @var{char_pred}, if it is a
3827 procedure,
3828
3829 @item
3830 is not in the set if @var{char_pred} is a character set.
3831 @end itemize
3832 @end deffn
3833
3834 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3835 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3836 Search through the string @var{s} from right to left, returning
3837 the index of the last occurrence of a character which
3838
3839 @itemize @bullet
3840 @item
3841 does not equal @var{char_pred}, if it is character,
3842
3843 @item
3844 does not satisfy the predicate @var{char_pred}, if it is a
3845 procedure,
3846
3847 @item
3848 is not in the set if @var{char_pred} is a character set.
3849 @end itemize
3850 @end deffn
3851
3852 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3853 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3854 Return the count of the number of characters in the string
3855 @var{s} which
3856
3857 @itemize @bullet
3858 @item
3859 equals @var{char_pred}, if it is character,
3860
3861 @item
3862 satisfies the predicate @var{char_pred}, if it is a procedure.
3863
3864 @item
3865 is in the set @var{char_pred}, if it is a character set.
3866 @end itemize
3867 @end deffn
3868
3869 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3870 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3871 Does string @var{s1} contain string @var{s2}? Return the index
3872 in @var{s1} where @var{s2} occurs as a substring, or false.
3873 The optional start/end indices restrict the operation to the
3874 indicated substrings.
3875 @end deffn
3876
3877 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3878 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3879 Does string @var{s1} contain string @var{s2}? Return the index
3880 in @var{s1} where @var{s2} occurs as a substring, or false.
3881 The optional start/end indices restrict the operation to the
3882 indicated substrings. Character comparison is done
3883 case-insensitively.
3884 @end deffn
3885
3886 @node Alphabetic Case Mapping
3887 @subsubsection Alphabetic Case Mapping
3888
3889 These are procedures for mapping strings to their upper- or lower-case
3890 equivalents, respectively, or for capitalizing strings.
3891
3892 They use the basic case mapping rules for Unicode characters. No
3893 special language or context rules are considered. The resulting strings
3894 are guaranteed to be the same length as the input strings.
3895
3896 @xref{Character Case Mapping, the @code{(ice-9
3897 i18n)} module}, for locale-dependent case conversions.
3898
3899 @deffn {Scheme Procedure} string-upcase str [start [end]]
3900 @deffnx {C Function} scm_substring_upcase (str, start, end)
3901 @deffnx {C Function} scm_string_upcase (str)
3902 Upcase every character in @code{str}.
3903 @end deffn
3904
3905 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3906 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3907 @deffnx {C Function} scm_string_upcase_x (str)
3908 Destructively upcase every character in @code{str}.
3909
3910 @lisp
3911 (string-upcase! y)
3912 @result{} "ARRDEFG"
3913 y
3914 @result{} "ARRDEFG"
3915 @end lisp
3916 @end deffn
3917
3918 @deffn {Scheme Procedure} string-downcase str [start [end]]
3919 @deffnx {C Function} scm_substring_downcase (str, start, end)
3920 @deffnx {C Function} scm_string_downcase (str)
3921 Downcase every character in @var{str}.
3922 @end deffn
3923
3924 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3925 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3926 @deffnx {C Function} scm_string_downcase_x (str)
3927 Destructively downcase every character in @var{str}.
3928
3929 @lisp
3930 y
3931 @result{} "ARRDEFG"
3932 (string-downcase! y)
3933 @result{} "arrdefg"
3934 y
3935 @result{} "arrdefg"
3936 @end lisp
3937 @end deffn
3938
3939 @deffn {Scheme Procedure} string-capitalize str
3940 @deffnx {C Function} scm_string_capitalize (str)
3941 Return a freshly allocated string with the characters in
3942 @var{str}, where the first character of every word is
3943 capitalized.
3944 @end deffn
3945
3946 @deffn {Scheme Procedure} string-capitalize! str
3947 @deffnx {C Function} scm_string_capitalize_x (str)
3948 Upcase the first character of every word in @var{str}
3949 destructively and return @var{str}.
3950
3951 @lisp
3952 y @result{} "hello world"
3953 (string-capitalize! y) @result{} "Hello World"
3954 y @result{} "Hello World"
3955 @end lisp
3956 @end deffn
3957
3958 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3959 @deffnx {C Function} scm_string_titlecase (str, start, end)
3960 Titlecase every first character in a word in @var{str}.
3961 @end deffn
3962
3963 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3964 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3965 Destructively titlecase every first character in a word in
3966 @var{str}.
3967 @end deffn
3968
3969 @node Reversing and Appending Strings
3970 @subsubsection Reversing and Appending Strings
3971
3972 @deffn {Scheme Procedure} string-reverse str [start [end]]
3973 @deffnx {C Function} scm_string_reverse (str, start, end)
3974 Reverse the string @var{str}. The optional arguments
3975 @var{start} and @var{end} delimit the region of @var{str} to
3976 operate on.
3977 @end deffn
3978
3979 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3980 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3981 Reverse the string @var{str} in-place. The optional arguments
3982 @var{start} and @var{end} delimit the region of @var{str} to
3983 operate on. The return value is unspecified.
3984 @end deffn
3985
3986 @rnindex string-append
3987 @deffn {Scheme Procedure} string-append arg @dots{}
3988 @deffnx {C Function} scm_string_append (args)
3989 Return a newly allocated string whose characters form the
3990 concatenation of the given strings, @var{arg} @enddots{}.
3991
3992 @example
3993 (let ((h "hello "))
3994 (string-append h "world"))
3995 @result{} "hello world"
3996 @end example
3997 @end deffn
3998
3999 @deffn {Scheme Procedure} string-append/shared arg @dots{}
4000 @deffnx {C Function} scm_string_append_shared (args)
4001 Like @code{string-append}, but the result may share memory
4002 with the argument strings.
4003 @end deffn
4004
4005 @deffn {Scheme Procedure} string-concatenate ls
4006 @deffnx {C Function} scm_string_concatenate (ls)
4007 Append the elements (which must be strings) of @var{ls} together into a
4008 single string. Guaranteed to return a freshly allocated string.
4009 @end deffn
4010
4011 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
4012 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
4013 Without optional arguments, this procedure is equivalent to
4014
4015 @lisp
4016 (string-concatenate (reverse ls))
4017 @end lisp
4018
4019 If the optional argument @var{final_string} is specified, it is
4020 consed onto the beginning to @var{ls} before performing the
4021 list-reverse and string-concatenate operations. If @var{end}
4022 is given, only the characters of @var{final_string} up to index
4023 @var{end} are used.
4024
4025 Guaranteed to return a freshly allocated string.
4026 @end deffn
4027
4028 @deffn {Scheme Procedure} string-concatenate/shared ls
4029 @deffnx {C Function} scm_string_concatenate_shared (ls)
4030 Like @code{string-concatenate}, but the result may share memory
4031 with the strings in the list @var{ls}.
4032 @end deffn
4033
4034 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4035 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4036 Like @code{string-concatenate-reverse}, but the result may
4037 share memory with the strings in the @var{ls} arguments.
4038 @end deffn
4039
4040 @node Mapping Folding and Unfolding
4041 @subsubsection Mapping, Folding, and Unfolding
4042
4043 @deffn {Scheme Procedure} string-map proc s [start [end]]
4044 @deffnx {C Function} scm_string_map (proc, s, start, end)
4045 @var{proc} is a char->char procedure, it is mapped over
4046 @var{s}. The order in which the procedure is applied to the
4047 string elements is not specified.
4048 @end deffn
4049
4050 @deffn {Scheme Procedure} string-map! proc s [start [end]]
4051 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
4052 @var{proc} is a char->char procedure, it is mapped over
4053 @var{s}. The order in which the procedure is applied to the
4054 string elements is not specified. The string @var{s} is
4055 modified in-place, the return value is not specified.
4056 @end deffn
4057
4058 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
4059 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
4060 @var{proc} is mapped over @var{s} in left-to-right order. The
4061 return value is not specified.
4062 @end deffn
4063
4064 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4065 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
4066 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4067 right.
4068
4069 For example, to change characters to alternately upper and lower case,
4070
4071 @example
4072 (define str (string-copy "studly"))
4073 (string-for-each-index
4074 (lambda (i)
4075 (string-set! str i
4076 ((if (even? i) char-upcase char-downcase)
4077 (string-ref str i))))
4078 str)
4079 str @result{} "StUdLy"
4080 @end example
4081 @end deffn
4082
4083 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4084 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4085 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4086 as the terminating element, from left to right. @var{kons}
4087 must expect two arguments: The actual character and the last
4088 result of @var{kons}' application.
4089 @end deffn
4090
4091 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4092 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4093 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4094 as the terminating element, from right to left. @var{kons}
4095 must expect two arguments: The actual character and the last
4096 result of @var{kons}' application.
4097 @end deffn
4098
4099 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4100 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4101 @itemize @bullet
4102 @item @var{g} is used to generate a series of @emph{seed}
4103 values from the initial @var{seed}: @var{seed}, (@var{g}
4104 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4105 @dots{}
4106 @item @var{p} tells us when to stop -- when it returns true
4107 when applied to one of these seed values.
4108 @item @var{f} maps each seed value to the corresponding
4109 character in the result string. These chars are assembled
4110 into the string in a left-to-right order.
4111 @item @var{base} is the optional initial/leftmost portion
4112 of the constructed string; it default to the empty
4113 string.
4114 @item @var{make_final} is applied to the terminal seed
4115 value (on which @var{p} returns true) to produce
4116 the final/rightmost portion of the constructed string.
4117 The default is nothing extra.
4118 @end itemize
4119 @end deffn
4120
4121 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4122 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4123 @itemize @bullet
4124 @item @var{g} is used to generate a series of @emph{seed}
4125 values from the initial @var{seed}: @var{seed}, (@var{g}
4126 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4127 @dots{}
4128 @item @var{p} tells us when to stop -- when it returns true
4129 when applied to one of these seed values.
4130 @item @var{f} maps each seed value to the corresponding
4131 character in the result string. These chars are assembled
4132 into the string in a right-to-left order.
4133 @item @var{base} is the optional initial/rightmost portion
4134 of the constructed string; it default to the empty
4135 string.
4136 @item @var{make_final} is applied to the terminal seed
4137 value (on which @var{p} returns true) to produce
4138 the final/leftmost portion of the constructed string.
4139 It defaults to @code{(lambda (x) )}.
4140 @end itemize
4141 @end deffn
4142
4143 @node Miscellaneous String Operations
4144 @subsubsection Miscellaneous String Operations
4145
4146 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4147 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4148 This is the @emph{extended substring} procedure that implements
4149 replicated copying of a substring of some string.
4150
4151 @var{s} is a string, @var{start} and @var{end} are optional
4152 arguments that demarcate a substring of @var{s}, defaulting to
4153 0 and the length of @var{s}. Replicate this substring up and
4154 down index space, in both the positive and negative directions.
4155 @code{xsubstring} returns the substring of this string
4156 beginning at index @var{from}, and ending at @var{to}, which
4157 defaults to @var{from} + (@var{end} - @var{start}).
4158 @end deffn
4159
4160 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4161 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4162 Exactly the same as @code{xsubstring}, but the extracted text
4163 is written into the string @var{target} starting at index
4164 @var{tstart}. The operation is not defined if @code{(eq?
4165 @var{target} @var{s})} or these arguments share storage -- you
4166 cannot copy a string on top of itself.
4167 @end deffn
4168
4169 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4170 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4171 Return the string @var{s1}, but with the characters
4172 @var{start1} @dots{} @var{end1} replaced by the characters
4173 @var{start2} @dots{} @var{end2} from @var{s2}.
4174 @end deffn
4175
4176 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4177 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4178 Split the string @var{s} into a list of substrings, where each
4179 substring is a maximal non-empty contiguous sequence of
4180 characters from the character set @var{token_set}, which
4181 defaults to @code{char-set:graphic}.
4182 If @var{start} or @var{end} indices are provided, they restrict
4183 @code{string-tokenize} to operating on the indicated substring
4184 of @var{s}.
4185 @end deffn
4186
4187 @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4188 @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
4189 Filter the string @var{s}, retaining only those characters which
4190 satisfy @var{char_pred}.
4191
4192 If @var{char_pred} is a procedure, it is applied to each character as
4193 a predicate, if it is a character, it is tested for equality and if it
4194 is a character set, it is tested for membership.
4195 @end deffn
4196
4197 @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4198 @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
4199 Delete characters satisfying @var{char_pred} from @var{s}.
4200
4201 If @var{char_pred} is a procedure, it is applied to each character as
4202 a predicate, if it is a character, it is tested for equality and if it
4203 is a character set, it is tested for membership.
4204 @end deffn
4205
4206 @node Representing Strings as Bytes
4207 @subsubsection Representing Strings as Bytes
4208
4209 Out in the cold world outside of Guile, not all strings are treated in
4210 the same way. Out there there are only bytes, and there are many ways
4211 of representing a strings (sequences of characters) as binary data
4212 (sequences of bytes).
4213
4214 As a user, usually you don't have to think about this very much. When
4215 you type on your keyboard, your system encodes your keystrokes as bytes
4216 according to the locale that you have configured on your computer.
4217 Guile uses the locale to decode those bytes back into characters --
4218 hopefully the same characters that you typed in.
4219
4220 All is not so clear when dealing with a system with multiple users, such
4221 as a web server. Your web server might get a request from one user for
4222 data encoded in the ISO-8859-1 character set, and then another request
4223 from a different user for UTF-8 data.
4224
4225 @cindex iconv
4226 @cindex character encoding
4227 Guile provides an @dfn{iconv} module for converting between strings and
4228 sequences of bytes. @xref{Bytevectors}, for more on how Guile
4229 represents raw byte sequences. This module gets its name from the
4230 common @sc{unix} command of the same name.
4231
4232 Note that often it is sufficient to just read and write strings from
4233 ports instead of using these functions. To do this, specify the port
4234 encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4235 ports and character encodings.
4236
4237 Unlike the rest of the procedures in this section, you have to load the
4238 @code{iconv} module before having access to these procedures:
4239
4240 @example
4241 (use-modules (ice-9 iconv))
4242 @end example
4243
4244 @deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
4245 Encode @var{string} as a sequence of bytes.
4246
4247 The string will be encoded in the character set specified by the
4248 @var{encoding} string. If the string has characters that cannot be
4249 represented in the encoding, by default this procedure raises an
4250 @code{encoding-error}. Pass a @var{conversion-strategy} argument to
4251 specify other behaviors.
4252
4253 The return value is a bytevector. @xref{Bytevectors}, for more on
4254 bytevectors. @xref{Ports}, for more on character encodings and
4255 conversion strategies.
4256 @end deffn
4257
4258 @deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
4259 Decode @var{bytevector} into a string.
4260
4261 The bytes will be decoded from the character set by the @var{encoding}
4262 string. If the bytes do not form a valid encoding, by default this
4263 procedure raises an @code{decoding-error}. As with
4264 @code{string->bytevector}, pass the optional @var{conversion-strategy}
4265 argument to modify this behavior. @xref{Ports}, for more on character
4266 encodings and conversion strategies.
4267 @end deffn
4268
4269 @deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
4270 Like @code{call-with-output-string}, but instead of returning a string,
4271 returns a encoding of the string according to @var{encoding}, as a
4272 bytevector. This procedure can be more efficient than collecting a
4273 string and then converting it via @code{string->bytevector}.
4274 @end deffn
4275
4276 @node Conversion to/from C
4277 @subsubsection Conversion to/from C
4278
4279 When creating a Scheme string from a C string or when converting a
4280 Scheme string to a C string, the concept of character encoding becomes
4281 important.
4282
4283 In C, a string is just a sequence of bytes, and the character encoding
4284 describes the relation between these bytes and the actual characters
4285 that make up the string. For Scheme strings, character encoding is not
4286 an issue (most of the time), since in Scheme you usually treat strings
4287 as character sequences, not byte sequences.
4288
4289 Converting to C and converting from C each have their own challenges.
4290
4291 When converting from C to Scheme, it is important that the sequence of
4292 bytes in the C string be valid with respect to its encoding. ASCII
4293 strings, for example, can't have any bytes greater than 127. An ASCII
4294 byte greater than 127 is considered @emph{ill-formed} and cannot be
4295 converted into a Scheme character.
4296
4297 Problems can occur in the reverse operation as well. Not all character
4298 encodings can hold all possible Scheme characters. Some encodings, like
4299 ASCII for example, can only describe a small subset of all possible
4300 characters. So, when converting to C, one must first decide what to do
4301 with Scheme characters that can't be represented in the C string.
4302
4303 Converting a Scheme string to a C string will often allocate fresh
4304 memory to hold the result. You must take care that this memory is
4305 properly freed eventually. In many cases, this can be achieved by
4306 using @code{scm_dynwind_free} inside an appropriate dynwind context,
4307 @xref{Dynamic Wind}.
4308
4309 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4310 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
4311 Creates a new Scheme string that has the same contents as @var{str} when
4312 interpreted in the character encoding of the current locale.
4313
4314 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4315
4316 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4317 @var{str} in bytes, and @var{str} does not need to be null-terminated.
4318 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4319 null-terminated and the real length will be found with @code{strlen}.
4320
4321 If the C string is ill-formed, an error will be raised.
4322
4323 Note that these functions should @emph{not} be used to convert C string
4324 constants, because there is no guarantee that the current locale will
4325 match that of the execution character set, used for string and character
4326 constants. Most modern C compilers use UTF-8 by default, so to convert
4327 C string constants we recommend @code{scm_from_utf8_string}.
4328 @end deftypefn
4329
4330 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
4331 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4332 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4333 respectively, but also frees @var{str} with @code{free} eventually.
4334 Thus, you can use this function when you would free @var{str} anyway
4335 immediately after creating the Scheme string. In certain cases, Guile
4336 can then use @var{str} directly as its internal representation.
4337 @end deftypefn
4338
4339 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4340 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
4341 Returns a C string with the same contents as @var{str} in the character
4342 encoding of the current locale. The C string must be freed with
4343 @code{free} eventually, maybe by using @code{scm_dynwind_free},
4344 @xref{Dynamic Wind}.
4345
4346 For @code{scm_to_locale_string}, the returned string is
4347 null-terminated and an error is signalled when @var{str} contains
4348 @code{#\nul} characters.
4349
4350 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4351 @var{str} might contain @code{#\nul} characters and the length of the
4352 returned string in bytes is stored in @code{*@var{lenp}}. The
4353 returned string will not be null-terminated in this case. If
4354 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4355 @code{scm_to_locale_string}.
4356
4357 If a character in @var{str} cannot be represented in the character
4358 encoding of the current locale, the default port conversion strategy is
4359 used. @xref{Ports}, for more on conversion strategies.
4360
4361 If the conversion strategy is @code{error}, an error will be raised. If
4362 it is @code{substitute}, a replacement character, such as a question
4363 mark, will be inserted in its place. If it is @code{escape}, a hex
4364 escape will be inserted in its place.
4365 @end deftypefn
4366
4367 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4368 Puts @var{str} as a C string in the current locale encoding into the
4369 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4370 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4371 more than that. No terminating @code{'\0'} will be stored.
4372
4373 The return value of @code{scm_to_locale_stringbuf} is the number of
4374 bytes that are needed for all of @var{str}, regardless of whether
4375 @var{buf} was large enough to hold them. Thus, when the return value
4376 is larger than @var{max_len}, only @var{max_len} bytes have been
4377 stored and you probably need to try again with a larger buffer.
4378 @end deftypefn
4379
4380 For most situations, string conversion should occur using the current
4381 locale, such as with the functions above. But there may be cases where
4382 one wants to convert strings from a character encoding other than the
4383 locale's character encoding. For these cases, the lower-level functions
4384 @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4385 functions should seldom be necessary if one is properly using locales.
4386
4387 @deftp {C Type} scm_t_string_failed_conversion_handler
4388 This is an enumerated type that can take one of three values:
4389 @code{SCM_FAILED_CONVERSION_ERROR},
4390 @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4391 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4392 a strategy for handling characters that cannot be converted to or from a
4393 given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4394 that a conversion should throw an error if some characters cannot be
4395 converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4396 conversion should replace unconvertable characters with the question
4397 mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4398 requests that a conversion should replace an unconvertable character
4399 with an escape sequence.
4400
4401 While all three strategies apply when converting Scheme strings to C,
4402 only @code{SCM_FAILED_CONVERSION_ERROR} and
4403 @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4404 strings to Scheme.
4405 @end deftp
4406
4407 @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4408 This function returns a newly allocated C string from the Guile string
4409 @var{str}. The length of the returned string in bytes will be returned in
4410 @var{lenp}. The character encoding of the C string is passed as the ASCII,
4411 null-terminated C string @var{encoding}. The @var{handler} parameter
4412 gives a strategy for dealing with characters that cannot be converted
4413 into @var{encoding}.
4414
4415 If @var{lenp} is @code{NULL}, this function will return a null-terminated C
4416 string. It will throw an error if the string contains a null
4417 character.
4418
4419 The Scheme interface to this function is @code{string->bytevector}, from the
4420 @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
4421 @end deftypefn
4422
4423 @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4424 This function returns a scheme string from the C string @var{str}. The
4425 length in bytes of the C string is input as @var{len}. The encoding of the C
4426 string is passed as the ASCII, null-terminated C string @code{encoding}.
4427 The @var{handler} parameters suggests a strategy for dealing with
4428 unconvertable characters.
4429
4430 The Scheme interface to this function is @code{bytevector->string}.
4431 @xref{Representing Strings as Bytes}.
4432 @end deftypefn
4433
4434 The following conversion functions are provided as a convenience for the
4435 most commonly used encodings.
4436
4437 @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4438 @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4439 @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4440 Return a scheme string from the null-terminated C string @var{str},
4441 which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4442 be used to convert hard-coded C string constants into Scheme strings.
4443 @end deftypefn
4444
4445 @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4446 @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4447 @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4448 Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4449 UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4450 of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4451 @code{scm_from_utf8_stringn}; it is the number of elements (code points)
4452 in @var{str} in the case of @code{scm_from_utf32_stringn}.
4453 @end deftypefn
4454
4455 @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4456 @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4457 @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4458 Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4459 from Scheme string @var{str}. An error is thrown when @var{str}
4460 cannot be converted to the specified encoding. If @var{lenp} is
4461 @code{NULL}, the returned C string will be null terminated, and an error
4462 will be thrown if the C string would otherwise contain null
4463 characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4464 and the length of the returned string is returned in @var{lenp}. The length
4465 returned is the number of bytes for @code{scm_to_latin1_stringn} and
4466 @code{scm_to_utf8_stringn}; it is the number of elements (code points)
4467 for @code{scm_to_utf32_stringn}.
4468 @end deftypefn
4469
4470 It is not often the case, but sometimes when you are dealing with the
4471 implementation details of a port, you need to encode and decode strings
4472 according to the encoding and conversion strategy of the port. There
4473 are some convenience functions for that purpose as well.
4474
4475 @deftypefn {C Function} SCM scm_from_port_string (const char *str, SCM port)
4476 @deftypefnx {C Function} SCM scm_from_port_stringn (const char *str, size_t len, SCM port)
4477 @deftypefnx {C Function} char* scm_to_port_string (SCM str, SCM port)
4478 @deftypefnx {C Function} char* scm_to_port_stringn (SCM str, size_t *lenp, SCM port)
4479 Like @code{scm_from_stringn} and friends, except they take their
4480 encoding and conversion strategy from a given port object.
4481 @end deftypefn
4482
4483 @node String Internals
4484 @subsubsection String Internals
4485
4486 Guile stores each string in memory as a contiguous array of Unicode code
4487 points along with an associated set of attributes. If all of the code
4488 points of a string have an integer range between 0 and 255 inclusive,
4489 the code point array is stored as one byte per code point: it is stored
4490 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4491 string has an integer value greater that 255, the code point array is
4492 stored as four bytes per code point: it is stored as a UTF-32 string.
4493
4494 Conversion between the one-byte-per-code-point and
4495 four-bytes-per-code-point representations happens automatically as
4496 necessary.
4497
4498 No API is provided to set the internal representation of strings;
4499 however, there are pair of procedures available to query it. These are
4500 debugging procedures. Using them in production code is discouraged,
4501 since the details of Guile's internal representation of strings may
4502 change from release to release.
4503
4504 @deffn {Scheme Procedure} string-bytes-per-char str
4505 @deffnx {C Function} scm_string_bytes_per_char (str)
4506 Return the number of bytes used to encode a Unicode code point in string
4507 @var{str}. The result is one or four.
4508 @end deffn
4509
4510 @deffn {Scheme Procedure} %string-dump str
4511 @deffnx {C Function} scm_sys_string_dump (str)
4512 Returns an association list containing debugging information for
4513 @var{str}. The association list has the following entries.
4514 @table @code
4515
4516 @item string
4517 The string itself.
4518
4519 @item start
4520 The start index of the string into its stringbuf
4521
4522 @item length
4523 The length of the string
4524
4525 @item shared
4526 If this string is a substring, it returns its
4527 parent string. Otherwise, it returns @code{#f}
4528
4529 @item read-only
4530 @code{#t} if the string is read-only
4531
4532 @item stringbuf-chars
4533 A new string containing this string's stringbuf's characters
4534
4535 @item stringbuf-length
4536 The number of characters in this stringbuf
4537
4538 @item stringbuf-shared
4539 @code{#t} if this stringbuf is shared
4540
4541 @item stringbuf-wide
4542 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4543 or @code{#f} if they are stored in an 8-bit buffer
4544 @end table
4545 @end deffn
4546
4547
4548 @node Bytevectors
4549 @subsection Bytevectors
4550
4551 @cindex bytevector
4552 @cindex R6RS
4553
4554 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4555 module provides the programming interface specified by the
4556 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4557 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4558 interpret their contents in a number of ways: bytevector contents can be
4559 accessed as signed or unsigned integer of various sizes and endianness,
4560 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4561 to encode and decode binary data.
4562
4563 The R6RS (Section 4.3.4) specifies an external representation for
4564 bytevectors, whereby the octets (integers in the range 0--255) contained
4565 in the bytevector are represented as a list prefixed by @code{#vu8}:
4566
4567 @lisp
4568 #vu8(1 53 204)
4569 @end lisp
4570
4571 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4572 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4573 they do not need to be quoted:
4574
4575 @lisp
4576 #vu8(1 53 204)
4577 @result{} #vu8(1 53 204)
4578 @end lisp
4579
4580 Bytevectors can be used with the binary input/output primitives of the
4581 R6RS (@pxref{R6RS I/O Ports}).
4582
4583 @menu
4584 * Bytevector Endianness:: Dealing with byte order.
4585 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4586 * Bytevectors as Integers:: Interpreting bytes as integers.
4587 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4588 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4589 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4590 * Bytevectors as Arrays:: Guile extension to the bytevector API.
4591 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4592 @end menu
4593
4594 @node Bytevector Endianness
4595 @subsubsection Endianness
4596
4597 @cindex endianness
4598 @cindex byte order
4599 @cindex word order
4600
4601 Some of the following procedures take an @var{endianness} parameter.
4602 The @dfn{endianness} is defined as the order of bytes in multi-byte
4603 numbers: numbers encoded in @dfn{big endian} have their most
4604 significant bytes written first, whereas numbers encoded in
4605 @dfn{little endian} have their least significant bytes
4606 first@footnote{Big-endian and little-endian are the most common
4607 ``endiannesses'', but others do exist. For instance, the GNU MP
4608 library allows @dfn{word order} to be specified independently of
4609 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4610 Multiple Precision Arithmetic Library Manual}).}.
4611
4612 Little-endian is the native endianness of the IA32 architecture and
4613 its derivatives, while big-endian is native to SPARC and PowerPC,
4614 among others. The @code{native-endianness} procedure returns the
4615 native endianness of the machine it runs on.
4616
4617 @deffn {Scheme Procedure} native-endianness
4618 @deffnx {C Function} scm_native_endianness ()
4619 Return a value denoting the native endianness of the host machine.
4620 @end deffn
4621
4622 @deffn {Scheme Macro} endianness symbol
4623 Return an object denoting the endianness specified by @var{symbol}. If
4624 @var{symbol} is neither @code{big} nor @code{little} then an error is
4625 raised at expand-time.
4626 @end deffn
4627
4628 @defvr {C Variable} scm_endianness_big
4629 @defvrx {C Variable} scm_endianness_little
4630 The objects denoting big- and little-endianness, respectively.
4631 @end defvr
4632
4633
4634 @node Bytevector Manipulation
4635 @subsubsection Manipulating Bytevectors
4636
4637 Bytevectors can be created, copied, and analyzed with the following
4638 procedures and C functions.
4639
4640 @deffn {Scheme Procedure} make-bytevector len [fill]
4641 @deffnx {C Function} scm_make_bytevector (len, fill)
4642 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4643 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4644 is given, fill it with @var{fill}; @var{fill} must be in the range
4645 [-128,255].
4646 @end deffn
4647
4648 @deffn {Scheme Procedure} bytevector? obj
4649 @deffnx {C Function} scm_bytevector_p (obj)
4650 Return true if @var{obj} is a bytevector.
4651 @end deffn
4652
4653 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4654 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4655 @end deftypefn
4656
4657 @deffn {Scheme Procedure} bytevector-length bv
4658 @deffnx {C Function} scm_bytevector_length (bv)
4659 Return the length in bytes of bytevector @var{bv}.
4660 @end deffn
4661
4662 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4663 Likewise, return the length in bytes of bytevector @var{bv}.
4664 @end deftypefn
4665
4666 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4667 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4668 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4669 length and contents.
4670 @end deffn
4671
4672 @deffn {Scheme Procedure} bytevector-fill! bv fill
4673 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4674 Fill bytevector @var{bv} with @var{fill}, a byte.
4675 @end deffn
4676
4677 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4678 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4679 Copy @var{len} bytes from @var{source} into @var{target}, starting
4680 reading from @var{source-start} (a positive index within @var{source})
4681 and start writing at @var{target-start}. It is permitted for the
4682 @var{source} and @var{target} regions to overlap.
4683 @end deffn
4684
4685 @deffn {Scheme Procedure} bytevector-copy bv
4686 @deffnx {C Function} scm_bytevector_copy (bv)
4687 Return a newly allocated copy of @var{bv}.
4688 @end deffn
4689
4690 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4691 Return the byte at @var{index} in bytevector @var{bv}.
4692 @end deftypefn
4693
4694 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4695 Set the byte at @var{index} in @var{bv} to @var{value}.
4696 @end deftypefn
4697
4698 Low-level C macros are available. They do not perform any
4699 type-checking; as such they should be used with care.
4700
4701 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4702 Return the length in bytes of bytevector @var{bv}.
4703 @end deftypefn
4704
4705 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4706 Return a pointer to the contents of bytevector @var{bv}.
4707 @end deftypefn
4708
4709
4710 @node Bytevectors as Integers
4711 @subsubsection Interpreting Bytevector Contents as Integers
4712
4713 The contents of a bytevector can be interpreted as a sequence of
4714 integers of any given size, sign, and endianness.
4715
4716 @lisp
4717 (let ((bv (make-bytevector 4)))
4718 (bytevector-u8-set! bv 0 #x12)
4719 (bytevector-u8-set! bv 1 #x34)
4720 (bytevector-u8-set! bv 2 #x56)
4721 (bytevector-u8-set! bv 3 #x78)
4722
4723 (map (lambda (number)
4724 (number->string number 16))
4725 (list (bytevector-u8-ref bv 0)
4726 (bytevector-u16-ref bv 0 (endianness big))
4727 (bytevector-u32-ref bv 0 (endianness little)))))
4728
4729 @result{} ("12" "1234" "78563412")
4730 @end lisp
4731
4732 The most generic procedures to interpret bytevector contents as integers
4733 are described below.
4734
4735 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4736 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4737 Return the @var{size}-byte long unsigned integer at index @var{index} in
4738 @var{bv}, decoded according to @var{endianness}.
4739 @end deffn
4740
4741 @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
4742 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4743 Return the @var{size}-byte long signed integer at index @var{index} in
4744 @var{bv}, decoded according to @var{endianness}.
4745 @end deffn
4746
4747 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4748 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4749 Set the @var{size}-byte long unsigned integer at @var{index} to
4750 @var{value}, encoded according to @var{endianness}.
4751 @end deffn
4752
4753 @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4754 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4755 Set the @var{size}-byte long signed integer at @var{index} to
4756 @var{value}, encoded according to @var{endianness}.
4757 @end deffn
4758
4759 The following procedures are similar to the ones above, but specialized
4760 to a given integer size:
4761
4762 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4763 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4764 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4765 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4766 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4767 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4768 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4769 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4770 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4771 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4772 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4773 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4774 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4775 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4776 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4777 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4778 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4779 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4780 @var{endianness}.
4781 @end deffn
4782
4783 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4784 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4785 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4786 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4787 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4788 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4789 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4790 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4791 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4792 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4793 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4794 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4795 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4796 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4797 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4798 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4799 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4800 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4801 @var{endianness}.
4802 @end deffn
4803
4804 Finally, a variant specialized for the host's endianness is available
4805 for each of these functions (with the exception of the @code{u8}
4806 accessors, for obvious reasons):
4807
4808 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4809 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4810 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4811 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4812 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4813 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4814 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4815 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4816 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4817 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4818 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4819 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4820 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4821 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4822 host's native endianness.
4823 @end deffn
4824
4825 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4826 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4827 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4828 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4829 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4830 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4831 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4832 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4833 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4834 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4835 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4836 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4837 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4838 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4839 host's native endianness.
4840 @end deffn
4841
4842
4843 @node Bytevectors and Integer Lists
4844 @subsubsection Converting Bytevectors to/from Integer Lists
4845
4846 Bytevector contents can readily be converted to/from lists of signed or
4847 unsigned integers:
4848
4849 @lisp
4850 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4851 (endianness little) 2)
4852 @result{} (-1 -1)
4853 @end lisp
4854
4855 @deffn {Scheme Procedure} bytevector->u8-list bv
4856 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4857 Return a newly allocated list of unsigned 8-bit integers from the
4858 contents of @var{bv}.
4859 @end deffn
4860
4861 @deffn {Scheme Procedure} u8-list->bytevector lst
4862 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4863 Return a newly allocated bytevector consisting of the unsigned 8-bit
4864 integers listed in @var{lst}.
4865 @end deffn
4866
4867 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4868 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4869 Return a list of unsigned integers of @var{size} bytes representing the
4870 contents of @var{bv}, decoded according to @var{endianness}.
4871 @end deffn
4872
4873 @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
4874 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4875 Return a list of signed integers of @var{size} bytes representing the
4876 contents of @var{bv}, decoded according to @var{endianness}.
4877 @end deffn
4878
4879 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4880 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4881 Return a new bytevector containing the unsigned integers listed in
4882 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4883 @end deffn
4884
4885 @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
4886 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4887 Return a new bytevector containing the signed integers listed in
4888 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4889 @end deffn
4890
4891 @node Bytevectors as Floats
4892 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4893
4894 @cindex IEEE-754 floating point numbers
4895
4896 Bytevector contents can also be accessed as IEEE-754 single- or
4897 double-precision floating point numbers (respectively 32 and 64-bit
4898 long) using the procedures described here.
4899
4900 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4901 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4902 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4903 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4904 Return the IEEE-754 single-precision floating point number from @var{bv}
4905 at @var{index} according to @var{endianness}.
4906 @end deffn
4907
4908 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4909 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4910 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4911 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4912 Store real number @var{value} in @var{bv} at @var{index} according to
4913 @var{endianness}.
4914 @end deffn
4915
4916 Specialized procedures are also available:
4917
4918 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4919 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4920 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4921 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4922 Return the IEEE-754 single-precision floating point number from @var{bv}
4923 at @var{index} according to the host's native endianness.
4924 @end deffn
4925
4926 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4927 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4928 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4929 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4930 Store real number @var{value} in @var{bv} at @var{index} according to
4931 the host's native endianness.
4932 @end deffn
4933
4934
4935 @node Bytevectors as Strings
4936 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4937
4938 @cindex Unicode string encoding
4939
4940 Bytevector contents can also be interpreted as Unicode strings encoded
4941 in one of the most commonly available encoding formats.
4942 @xref{Representing Strings as Bytes}, for a more generic interface.
4943
4944 @lisp
4945 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4946 @result{} "cafe"
4947
4948 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4949 @result{} #vu8(99 97 102 195 169)
4950 @end lisp
4951
4952 @deffn {Scheme Procedure} string->utf8 str
4953 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4954 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4955 @deffnx {C Function} scm_string_to_utf8 (str)
4956 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4957 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4958 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4959 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4960 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4961 it defaults to big endian.
4962 @end deffn
4963
4964 @deffn {Scheme Procedure} utf8->string utf
4965 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4966 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4967 @deffnx {C Function} scm_utf8_to_string (utf)
4968 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4969 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4970 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4971 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4972 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4973 it defaults to big endian.
4974 @end deffn
4975
4976 @node Bytevectors as Arrays
4977 @subsubsection Accessing Bytevectors with the Array API
4978
4979 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4980 with the @dfn{array} procedures (@pxref{Arrays}). When using these
4981 APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4982
4983 @example
4984 (define bv #vu8(0 1 2 3))
4985
4986 (array? bv)
4987 @result{} #t
4988
4989 (array-rank bv)
4990 @result{} 1
4991
4992 (array-ref bv 2)
4993 @result{} 2
4994
4995 ;; Note the different argument order on array-set!.
4996 (array-set! bv 77 2)
4997 (array-ref bv 2)
4998 @result{} 77
4999
5000 (array-type bv)
5001 @result{} vu8
5002 @end example
5003
5004
5005 @node Bytevectors as Uniform Vectors
5006 @subsubsection Accessing Bytevectors with the SRFI-4 API
5007
5008 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
5009 Bytevectors}, for more information.
5010
5011
5012 @node Symbols
5013 @subsection Symbols
5014 @tpindex Symbols
5015
5016 Symbols in Scheme are widely used in three ways: as items of discrete
5017 data, as lookup keys for alists and hash tables, and to denote variable
5018 references.
5019
5020 A @dfn{symbol} is similar to a string in that it is defined by a
5021 sequence of characters. The sequence of characters is known as the
5022 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5023 name doesn't include any characters that could be confused with other
5024 elements of Scheme syntax --- a symbol is written in a Scheme program by
5025 writing the sequence of characters that make up the name, @emph{without}
5026 any quotation marks or other special syntax. For example, the symbol
5027 whose name is ``multiply-by-2'' is written, simply:
5028
5029 @lisp
5030 multiply-by-2
5031 @end lisp
5032
5033 Notice how this differs from a @emph{string} with contents
5034 ``multiply-by-2'', which is written with double quotation marks, like
5035 this:
5036
5037 @lisp
5038 "multiply-by-2"
5039 @end lisp
5040
5041 Looking beyond how they are written, symbols are different from strings
5042 in two important respects.
5043
5044 The first important difference is uniqueness. If the same-looking
5045 string is read twice from two different places in a program, the result
5046 is two @emph{different} string objects whose contents just happen to be
5047 the same. If, on the other hand, the same-looking symbol is read twice
5048 from two different places in a program, the result is the @emph{same}
5049 symbol object both times.
5050
5051 Given two read symbols, you can use @code{eq?} to test whether they are
5052 the same (that is, have the same name). @code{eq?} is the most
5053 efficient comparison operator in Scheme, and comparing two symbols like
5054 this is as fast as comparing, for example, two numbers. Given two
5055 strings, on the other hand, you must use @code{equal?} or
5056 @code{string=?}, which are much slower comparison operators, to
5057 determine whether the strings have the same contents.
5058
5059 @lisp
5060 (define sym1 (quote hello))
5061 (define sym2 (quote hello))
5062 (eq? sym1 sym2) @result{} #t
5063
5064 (define str1 "hello")
5065 (define str2 "hello")
5066 (eq? str1 str2) @result{} #f
5067 (equal? str1 str2) @result{} #t
5068 @end lisp
5069
5070 The second important difference is that symbols, unlike strings, are not
5071 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5072 example above: @code{(quote hello)} evaluates to the symbol named
5073 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5074 symbol named "hello" and evaluated as a variable reference @dots{} about
5075 which more below (@pxref{Symbol Variables}).
5076
5077 @menu
5078 * Symbol Data:: Symbols as discrete data.
5079 * Symbol Keys:: Symbols as lookup keys.
5080 * Symbol Variables:: Symbols as denoting variables.
5081 * Symbol Primitives:: Operations related to symbols.
5082 * Symbol Props:: Function slots and property lists.
5083 * Symbol Read Syntax:: Extended read syntax for symbols.
5084 * Symbol Uninterned:: Uninterned symbols.
5085 @end menu
5086
5087
5088 @node Symbol Data
5089 @subsubsection Symbols as Discrete Data
5090
5091 Numbers and symbols are similar to the extent that they both lend
5092 themselves to @code{eq?} comparison. But symbols are more descriptive
5093 than numbers, because a symbol's name can be used directly to describe
5094 the concept for which that symbol stands.
5095
5096 For example, imagine that you need to represent some colours in a
5097 computer program. Using numbers, you would have to choose arbitrarily
5098 some mapping between numbers and colours, and then take care to use that
5099 mapping consistently:
5100
5101 @lisp
5102 ;; 1=red, 2=green, 3=purple
5103
5104 (if (eq? (colour-of car) 1)
5105 ...)
5106 @end lisp
5107
5108 @noindent
5109 You can make the mapping more explicit and the code more readable by
5110 defining constants:
5111
5112 @lisp
5113 (define red 1)
5114 (define green 2)
5115 (define purple 3)
5116
5117 (if (eq? (colour-of car) red)
5118 ...)
5119 @end lisp
5120
5121 @noindent
5122 But the simplest and clearest approach is not to use numbers at all, but
5123 symbols whose names specify the colours that they refer to:
5124
5125 @lisp
5126 (if (eq? (colour-of car) 'red)
5127 ...)
5128 @end lisp
5129
5130 The descriptive advantages of symbols over numbers increase as the set
5131 of concepts that you want to describe grows. Suppose that a car object
5132 can have other properties as well, such as whether it has or uses:
5133
5134 @itemize @bullet
5135 @item
5136 automatic or manual transmission
5137 @item
5138 leaded or unleaded fuel
5139 @item
5140 power steering (or not).
5141 @end itemize
5142
5143 @noindent
5144 Then a car's combined property set could be naturally represented and
5145 manipulated as a list of symbols:
5146
5147 @lisp
5148 (properties-of car1)
5149 @result{}
5150 (red manual unleaded power-steering)
5151
5152 (if (memq 'power-steering (properties-of car1))
5153 (display "Unfit people can drive this car.\n")
5154 (display "You'll need strong arms to drive this car!\n"))
5155 @print{}
5156 Unfit people can drive this car.
5157 @end lisp
5158
5159 Remember, the fundamental property of symbols that we are relying on
5160 here is that an occurrence of @code{'red} in one part of a program is an
5161 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5162 another part of a program; this means that symbols can usefully be
5163 compared using @code{eq?}. At the same time, symbols have naturally
5164 descriptive names. This combination of efficiency and descriptive power
5165 makes them ideal for use as discrete data.
5166
5167
5168 @node Symbol Keys
5169 @subsubsection Symbols as Lookup Keys
5170
5171 Given their efficiency and descriptive power, it is natural to use
5172 symbols as the keys in an association list or hash table.
5173
5174 To illustrate this, consider a more structured representation of the car
5175 properties example from the preceding subsection. Rather than
5176 mixing all the properties up together in a flat list, we could use an
5177 association list like this:
5178
5179 @lisp
5180 (define car1-properties '((colour . red)
5181 (transmission . manual)
5182 (fuel . unleaded)
5183 (steering . power-assisted)))
5184 @end lisp
5185
5186 Notice how this structure is more explicit and extensible than the flat
5187 list. For example it makes clear that @code{manual} refers to the
5188 transmission rather than, say, the windows or the locking of the car.
5189 It also allows further properties to use the same symbols among their
5190 possible values without becoming ambiguous:
5191
5192 @lisp
5193 (define car1-properties '((colour . red)
5194 (transmission . manual)
5195 (fuel . unleaded)
5196 (steering . power-assisted)
5197 (seat-colour . red)
5198 (locking . manual)))
5199 @end lisp
5200
5201 With a representation like this, it is easy to use the efficient
5202 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5203 extract or change individual pieces of information:
5204
5205 @lisp
5206 (assq-ref car1-properties 'fuel) @result{} unleaded
5207 (assq-ref car1-properties 'transmission) @result{} manual
5208
5209 (assq-set! car1-properties 'seat-colour 'black)
5210 @result{}
5211 ((colour . red)
5212 (transmission . manual)
5213 (fuel . unleaded)
5214 (steering . power-assisted)
5215 (seat-colour . black)
5216 (locking . manual)))
5217 @end lisp
5218
5219 Hash tables also have keys, and exactly the same arguments apply to the
5220 use of symbols in hash tables as in association lists. The hash value
5221 that Guile uses to decide where to add a symbol-keyed entry to a hash
5222 table can be obtained by calling the @code{symbol-hash} procedure:
5223
5224 @deffn {Scheme Procedure} symbol-hash symbol
5225 @deffnx {C Function} scm_symbol_hash (symbol)
5226 Return a hash value for @var{symbol}.
5227 @end deffn
5228
5229 See @ref{Hash Tables} for information about hash tables in general, and
5230 for why you might choose to use a hash table rather than an association
5231 list.
5232
5233
5234 @node Symbol Variables
5235 @subsubsection Symbols as Denoting Variables
5236
5237 When an unquoted symbol in a Scheme program is evaluated, it is
5238 interpreted as a variable reference, and the result of the evaluation is
5239 the appropriate variable's value.
5240
5241 For example, when the expression @code{(string-length "abcd")} is read
5242 and evaluated, the sequence of characters @code{string-length} is read
5243 as the symbol whose name is "string-length". This symbol is associated
5244 with a variable whose value is the procedure that implements string
5245 length calculation. Therefore evaluation of the @code{string-length}
5246 symbol results in that procedure.
5247
5248 The details of the connection between an unquoted symbol and the
5249 variable to which it refers are explained elsewhere. See @ref{Binding
5250 Constructs}, for how associations between symbols and variables are
5251 created, and @ref{Modules}, for how those associations are affected by
5252 Guile's module system.
5253
5254
5255 @node Symbol Primitives
5256 @subsubsection Operations Related to Symbols
5257
5258 Given any Scheme value, you can determine whether it is a symbol using
5259 the @code{symbol?} primitive:
5260
5261 @rnindex symbol?
5262 @deffn {Scheme Procedure} symbol? obj
5263 @deffnx {C Function} scm_symbol_p (obj)
5264 Return @code{#t} if @var{obj} is a symbol, otherwise return
5265 @code{#f}.
5266 @end deffn
5267
5268 @deftypefn {C Function} int scm_is_symbol (SCM val)
5269 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5270 @end deftypefn
5271
5272 Once you know that you have a symbol, you can obtain its name as a
5273 string by calling @code{symbol->string}. Note that Guile differs by
5274 default from R5RS on the details of @code{symbol->string} as regards
5275 case-sensitivity:
5276
5277 @rnindex symbol->string
5278 @deffn {Scheme Procedure} symbol->string s
5279 @deffnx {C Function} scm_symbol_to_string (s)
5280 Return the name of symbol @var{s} as a string. By default, Guile reads
5281 symbols case-sensitively, so the string returned will have the same case
5282 variation as the sequence of characters that caused @var{s} to be
5283 created.
5284
5285 If Guile is set to read symbols case-insensitively (as specified by
5286 R5RS), and @var{s} comes into being as part of a literal expression
5287 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5288 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5289 Guile converts any alphabetic characters in the symbol's name to
5290 lower case before creating the symbol object, so the string returned
5291 here will be in lower case.
5292
5293 If @var{s} was created by @code{string->symbol}, the case of characters
5294 in the string returned will be the same as that in the string that was
5295 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5296 setting at the time @var{s} was created.
5297
5298 It is an error to apply mutation procedures like @code{string-set!} to
5299 strings returned by this procedure.
5300 @end deffn
5301
5302 Most symbols are created by writing them literally in code. However it
5303 is also possible to create symbols programmatically using the following
5304 procedures:
5305
5306 @deffn {Scheme Procedure} symbol char@dots{}
5307 @rnindex symbol
5308 Return a newly allocated symbol made from the given character arguments.
5309
5310 @example
5311 (symbol #\x #\y #\z) @result{} xyz
5312 @end example
5313 @end deffn
5314
5315 @deffn {Scheme Procedure} list->symbol lst
5316 @rnindex list->symbol
5317 Return a newly allocated symbol made from a list of characters.
5318
5319 @example
5320 (list->symbol '(#\a #\b #\c)) @result{} abc
5321 @end example
5322 @end deffn
5323
5324 @rnindex symbol-append
5325 @deffn {Scheme Procedure} symbol-append arg @dots{}
5326 Return a newly allocated symbol whose characters form the
5327 concatenation of the given symbols, @var{arg} @enddots{}.
5328
5329 @example
5330 (let ((h 'hello))
5331 (symbol-append h 'world))
5332 @result{} helloworld
5333 @end example
5334 @end deffn
5335
5336 @rnindex string->symbol
5337 @deffn {Scheme Procedure} string->symbol string
5338 @deffnx {C Function} scm_string_to_symbol (string)
5339 Return the symbol whose name is @var{string}. This procedure can create
5340 symbols with names containing special characters or letters in the
5341 non-standard case, but it is usually a bad idea to create such symbols
5342 because in some implementations of Scheme they cannot be read as
5343 themselves.
5344 @end deffn
5345
5346 @deffn {Scheme Procedure} string-ci->symbol str
5347 @deffnx {C Function} scm_string_ci_to_symbol (str)
5348 Return the symbol whose name is @var{str}. If Guile is currently
5349 reading symbols case-insensitively, @var{str} is converted to lowercase
5350 before the returned symbol is looked up or created.
5351 @end deffn
5352
5353 The following examples illustrate Guile's detailed behaviour as regards
5354 the case-sensitivity of symbols:
5355
5356 @lisp
5357 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5358
5359 (symbol->string 'flying-fish) @result{} "flying-fish"
5360 (symbol->string 'Martin) @result{} "martin"
5361 (symbol->string
5362 (string->symbol "Malvina")) @result{} "Malvina"
5363
5364 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5365 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5366 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5367 (eq? 'LolliPop
5368 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5369 (string=? "K. Harper, M.D."
5370 (symbol->string
5371 (string->symbol "K. Harper, M.D."))) @result{} #t
5372
5373 (read-disable 'case-insensitive) ; Guile default behaviour
5374
5375 (symbol->string 'flying-fish) @result{} "flying-fish"
5376 (symbol->string 'Martin) @result{} "Martin"
5377 (symbol->string
5378 (string->symbol "Malvina")) @result{} "Malvina"
5379
5380 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5381 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5382 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5383 (eq? 'LolliPop
5384 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5385 (string=? "K. Harper, M.D."
5386 (symbol->string
5387 (string->symbol "K. Harper, M.D."))) @result{} #t
5388 @end lisp
5389
5390 From C, there are lower level functions that construct a Scheme symbol
5391 from a C string in the current locale encoding.
5392
5393 When you want to do more from C, you should convert between symbols
5394 and strings using @code{scm_symbol_to_string} and
5395 @code{scm_string_to_symbol} and work with the strings.
5396
5397 @deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
5398 @deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
5399 Construct and return a Scheme symbol whose name is specified by the
5400 null-terminated C string @var{name}. These are appropriate when
5401 the C string is hard-coded in the source code.
5402 @end deftypefn
5403
5404 @deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
5405 @deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
5406 Construct and return a Scheme symbol whose name is specified by
5407 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5408 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5409 specified explicitly by @var{len}.
5410
5411 Note that these functions should @emph{not} be used when @var{name} is a
5412 C string constant, because there is no guarantee that the current locale
5413 will match that of the execution character set, used for string and
5414 character constants. Most modern C compilers use UTF-8 by default, so
5415 in such cases we recommend @code{scm_from_utf8_symbol}.
5416 @end deftypefn
5417
5418 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5419 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5420 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5421 respectively, but also frees @var{str} with @code{free} eventually.
5422 Thus, you can use this function when you would free @var{str} anyway
5423 immediately after creating the Scheme string. In certain cases, Guile
5424 can then use @var{str} directly as its internal representation.
5425 @end deftypefn
5426
5427 The size of a symbol can also be obtained from C:
5428
5429 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5430 Return the number of characters in @var{sym}.
5431 @end deftypefn
5432
5433 Finally, some applications, especially those that generate new Scheme
5434 code dynamically, need to generate symbols for use in the generated
5435 code. The @code{gensym} primitive meets this need:
5436
5437 @deffn {Scheme Procedure} gensym [prefix]
5438 @deffnx {C Function} scm_gensym (prefix)
5439 Create a new symbol with a name constructed from a prefix and a counter
5440 value. The string @var{prefix} can be specified as an optional
5441 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5442 at each call. There is no provision for resetting the counter.
5443 @end deffn
5444
5445 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5446 since their names begin with a space and it is only otherwise possible
5447 to generate such symbols if a programmer goes out of their way to do
5448 so. Uniqueness can be guaranteed by instead using uninterned symbols
5449 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5450 and read back in.
5451
5452
5453 @node Symbol Props
5454 @subsubsection Function Slots and Property Lists
5455
5456 In traditional Lisp dialects, symbols are often understood as having
5457 three kinds of value at once:
5458
5459 @itemize @bullet
5460 @item
5461 a @dfn{variable} value, which is used when the symbol appears in
5462 code in a variable reference context
5463
5464 @item
5465 a @dfn{function} value, which is used when the symbol appears in
5466 code in a function name position (i.e.@: as the first element in an
5467 unquoted list)
5468
5469 @item
5470 a @dfn{property list} value, which is used when the symbol is given as
5471 the first argument to Lisp's @code{put} or @code{get} functions.
5472 @end itemize
5473
5474 Although Scheme (as one of its simplifications with respect to Lisp)
5475 does away with the distinction between variable and function namespaces,
5476 Guile currently retains some elements of the traditional structure in
5477 case they turn out to be useful when implementing translators for other
5478 languages, in particular Emacs Lisp.
5479
5480 Specifically, Guile symbols have two extra slots, one for a symbol's
5481 property list, and one for its ``function value.'' The following procedures
5482 are provided to access these slots.
5483
5484 @deffn {Scheme Procedure} symbol-fref symbol
5485 @deffnx {C Function} scm_symbol_fref (symbol)
5486 Return the contents of @var{symbol}'s @dfn{function slot}.
5487 @end deffn
5488
5489 @deffn {Scheme Procedure} symbol-fset! symbol value
5490 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5491 Set the contents of @var{symbol}'s function slot to @var{value}.
5492 @end deffn
5493
5494 @deffn {Scheme Procedure} symbol-pref symbol
5495 @deffnx {C Function} scm_symbol_pref (symbol)
5496 Return the @dfn{property list} currently associated with @var{symbol}.
5497 @end deffn
5498
5499 @deffn {Scheme Procedure} symbol-pset! symbol value
5500 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5501 Set @var{symbol}'s property list to @var{value}.
5502 @end deffn
5503
5504 @deffn {Scheme Procedure} symbol-property sym prop
5505 From @var{sym}'s property list, return the value for property
5506 @var{prop}. The assumption is that @var{sym}'s property list is an
5507 association list whose keys are distinguished from each other using
5508 @code{equal?}; @var{prop} should be one of the keys in that list. If
5509 the property list has no entry for @var{prop}, @code{symbol-property}
5510 returns @code{#f}.
5511 @end deffn
5512
5513 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5514 In @var{sym}'s property list, set the value for property @var{prop} to
5515 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5516 none already exists. For the structure of the property list, see
5517 @code{symbol-property}.
5518 @end deffn
5519
5520 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5521 From @var{sym}'s property list, remove the entry for property
5522 @var{prop}, if there is one. For the structure of the property list,
5523 see @code{symbol-property}.
5524 @end deffn
5525
5526 Support for these extra slots may be removed in a future release, and it
5527 is probably better to avoid using them. For a more modern and Schemely
5528 approach to properties, see @ref{Object Properties}.
5529
5530
5531 @node Symbol Read Syntax
5532 @subsubsection Extended Read Syntax for Symbols
5533
5534 The read syntax for a symbol is a sequence of letters, digits, and
5535 @dfn{extended alphabetic characters}, beginning with a character that
5536 cannot begin a number. In addition, the special cases of @code{+},
5537 @code{-}, and @code{...} are read as symbols even though numbers can
5538 begin with @code{+}, @code{-} or @code{.}.
5539
5540 Extended alphabetic characters may be used within identifiers as if
5541 they were letters. The set of extended alphabetic characters is:
5542
5543 @example
5544 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5545 @end example
5546
5547 In addition to the standard read syntax defined above (which is taken
5548 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5549 Scheme})), Guile provides an extended symbol read syntax that allows the
5550 inclusion of unusual characters such as space characters, newlines and
5551 parentheses. If (for whatever reason) you need to write a symbol
5552 containing characters not mentioned above, you can do so as follows.
5553
5554 @itemize @bullet
5555 @item
5556 Begin the symbol with the characters @code{#@{},
5557
5558 @item
5559 write the characters of the symbol and
5560
5561 @item
5562 finish the symbol with the characters @code{@}#}.
5563 @end itemize
5564
5565 Here are a few examples of this form of read syntax. The first symbol
5566 needs to use extended syntax because it contains a space character, the
5567 second because it contains a line break, and the last because it looks
5568 like a number.
5569
5570 @lisp
5571 #@{foo bar@}#
5572
5573 #@{what
5574 ever@}#
5575
5576 #@{4242@}#
5577 @end lisp
5578
5579 Although Guile provides this extended read syntax for symbols,
5580 widespread usage of it is discouraged because it is not portable and not
5581 very readable.
5582
5583
5584 @node Symbol Uninterned
5585 @subsubsection Uninterned Symbols
5586
5587 What makes symbols useful is that they are automatically kept unique.
5588 There are no two symbols that are distinct objects but have the same
5589 name. But of course, there is no rule without exception. In addition
5590 to the normal symbols that have been discussed up to now, you can also
5591 create special @dfn{uninterned} symbols that behave slightly
5592 differently.
5593
5594 To understand what is different about them and why they might be useful,
5595 we look at how normal symbols are actually kept unique.
5596
5597 Whenever Guile wants to find the symbol with a specific name, for
5598 example during @code{read} or when executing @code{string->symbol}, it
5599 first looks into a table of all existing symbols to find out whether a
5600 symbol with the given name already exists. When this is the case, Guile
5601 just returns that symbol. When not, a new symbol with the name is
5602 created and entered into the table so that it can be found later.
5603
5604 Sometimes you might want to create a symbol that is guaranteed `fresh',
5605 i.e.@: a symbol that did not exist previously. You might also want to
5606 somehow guarantee that no one else will ever unintentionally stumble
5607 across your symbol in the future. These properties of a symbol are
5608 often needed when generating code during macro expansion. When
5609 introducing new temporary variables, you want to guarantee that they
5610 don't conflict with variables in other people's code.
5611
5612 The simplest way to arrange for this is to create a new symbol but
5613 not enter it into the global table of all symbols. That way, no one
5614 will ever get access to your symbol by chance. Symbols that are not in
5615 the table are called @dfn{uninterned}. Of course, symbols that
5616 @emph{are} in the table are called @dfn{interned}.
5617
5618 You create new uninterned symbols with the function @code{make-symbol}.
5619 You can test whether a symbol is interned or not with
5620 @code{symbol-interned?}.
5621
5622 Uninterned symbols break the rule that the name of a symbol uniquely
5623 identifies the symbol object. Because of this, they can not be written
5624 out and read back in like interned symbols. Currently, Guile has no
5625 support for reading uninterned symbols. Note that the function
5626 @code{gensym} does not return uninterned symbols for this reason.
5627
5628 @deffn {Scheme Procedure} make-symbol name
5629 @deffnx {C Function} scm_make_symbol (name)
5630 Return a new uninterned symbol with the name @var{name}. The returned
5631 symbol is guaranteed to be unique and future calls to
5632 @code{string->symbol} will not return it.
5633 @end deffn
5634
5635 @deffn {Scheme Procedure} symbol-interned? symbol
5636 @deffnx {C Function} scm_symbol_interned_p (symbol)
5637 Return @code{#t} if @var{symbol} is interned, otherwise return
5638 @code{#f}.
5639 @end deffn
5640
5641 For example:
5642
5643 @lisp
5644 (define foo-1 (string->symbol "foo"))
5645 (define foo-2 (string->symbol "foo"))
5646 (define foo-3 (make-symbol "foo"))
5647 (define foo-4 (make-symbol "foo"))
5648
5649 (eq? foo-1 foo-2)
5650 @result{} #t
5651 ; Two interned symbols with the same name are the same object,
5652
5653 (eq? foo-1 foo-3)
5654 @result{} #f
5655 ; but a call to make-symbol with the same name returns a
5656 ; distinct object.
5657
5658 (eq? foo-3 foo-4)
5659 @result{} #f
5660 ; A call to make-symbol always returns a new object, even for
5661 ; the same name.
5662
5663 foo-3
5664 @result{} #<uninterned-symbol foo 8085290>
5665 ; Uninterned symbols print differently from interned symbols,
5666
5667 (symbol? foo-3)
5668 @result{} #t
5669 ; but they are still symbols,
5670
5671 (symbol-interned? foo-3)
5672 @result{} #f
5673 ; just not interned.
5674 @end lisp
5675
5676
5677 @node Keywords
5678 @subsection Keywords
5679 @tpindex Keywords
5680
5681 Keywords are self-evaluating objects with a convenient read syntax that
5682 makes them easy to type.
5683
5684 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5685 syntax extension to permit keywords to begin with @code{:} as well as
5686 @code{#:}, or to end with @code{:}.
5687
5688 @menu
5689 * Why Use Keywords?:: Motivation for keyword usage.
5690 * Coding With Keywords:: How to use keywords.
5691 * Keyword Read Syntax:: Read syntax for keywords.
5692 * Keyword Procedures:: Procedures for dealing with keywords.
5693 @end menu
5694
5695 @node Why Use Keywords?
5696 @subsubsection Why Use Keywords?
5697
5698 Keywords are useful in contexts where a program or procedure wants to be
5699 able to accept a large number of optional arguments without making its
5700 interface unmanageable.
5701
5702 To illustrate this, consider a hypothetical @code{make-window}
5703 procedure, which creates a new window on the screen for drawing into
5704 using some graphical toolkit. There are many parameters that the caller
5705 might like to specify, but which could also be sensibly defaulted, for
5706 example:
5707
5708 @itemize @bullet
5709 @item
5710 color depth -- Default: the color depth for the screen
5711
5712 @item
5713 background color -- Default: white
5714
5715 @item
5716 width -- Default: 600
5717
5718 @item
5719 height -- Default: 400
5720 @end itemize
5721
5722 If @code{make-window} did not use keywords, the caller would have to
5723 pass in a value for each possible argument, remembering the correct
5724 argument order and using a special value to indicate the default value
5725 for that argument:
5726
5727 @lisp
5728 (make-window 'default ;; Color depth
5729 'default ;; Background color
5730 800 ;; Width
5731 100 ;; Height
5732 @dots{}) ;; More make-window arguments
5733 @end lisp
5734
5735 With keywords, on the other hand, defaulted arguments are omitted, and
5736 non-default arguments are clearly tagged by the appropriate keyword. As
5737 a result, the invocation becomes much clearer:
5738
5739 @lisp
5740 (make-window #:width 800 #:height 100)
5741 @end lisp
5742
5743 On the other hand, for a simpler procedure with few arguments, the use
5744 of keywords would be a hindrance rather than a help. The primitive
5745 procedure @code{cons}, for example, would not be improved if it had to
5746 be invoked as
5747
5748 @lisp
5749 (cons #:car x #:cdr y)
5750 @end lisp
5751
5752 So the decision whether to use keywords or not is purely pragmatic: use
5753 them if they will clarify the procedure invocation at point of call.
5754
5755 @node Coding With Keywords
5756 @subsubsection Coding With Keywords
5757
5758 If a procedure wants to support keywords, it should take a rest argument
5759 and then use whatever means is convenient to extract keywords and their
5760 corresponding arguments from the contents of that rest argument.
5761
5762 The following example illustrates the principle: the code for
5763 @code{make-window} uses a helper procedure called
5764 @code{get-keyword-value} to extract individual keyword arguments from
5765 the rest argument.
5766
5767 @lisp
5768 (define (get-keyword-value args keyword default)
5769 (let ((kv (memq keyword args)))
5770 (if (and kv (>= (length kv) 2))
5771 (cadr kv)
5772 default)))
5773
5774 (define (make-window . args)
5775 (let ((depth (get-keyword-value args #:depth screen-depth))
5776 (bg (get-keyword-value args #:bg "white"))
5777 (width (get-keyword-value args #:width 800))
5778 (height (get-keyword-value args #:height 100))
5779 @dots{})
5780 @dots{}))
5781 @end lisp
5782
5783 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5784 optargs)} module provides a set of powerful macros that you can use to
5785 implement keyword-supporting procedures like this:
5786
5787 @lisp
5788 (use-modules (ice-9 optargs))
5789
5790 (define (make-window . args)
5791 (let-keywords args #f ((depth screen-depth)
5792 (bg "white")
5793 (width 800)
5794 (height 100))
5795 ...))
5796 @end lisp
5797
5798 @noindent
5799 Or, even more economically, like this:
5800
5801 @lisp
5802 (use-modules (ice-9 optargs))
5803
5804 (define* (make-window #:key (depth screen-depth)
5805 (bg "white")
5806 (width 800)
5807 (height 100))
5808 ...)
5809 @end lisp
5810
5811 For further details on @code{let-keywords}, @code{define*} and other
5812 facilities provided by the @code{(ice-9 optargs)} module, see
5813 @ref{Optional Arguments}.
5814
5815 To handle keyword arguments from procedures implemented in C,
5816 use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
5817
5818 @node Keyword Read Syntax
5819 @subsubsection Keyword Read Syntax
5820
5821 Guile, by default, only recognizes a keyword syntax that is compatible
5822 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5823 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5824 external representation of the keyword named @code{NAME}. Keyword
5825 objects print using this syntax as well, so values containing keyword
5826 objects can be read back into Guile. When used in an expression,
5827 keywords are self-quoting objects.
5828
5829 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5830 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5831 of the form @code{:NAME} are read as symbols, as required by R5RS.
5832
5833 @cindex SRFI-88 keyword syntax
5834
5835 If the @code{keyword} read option is set to @code{'postfix}, Guile
5836 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5837 Otherwise, tokens of this form are read as symbols.
5838
5839 To enable and disable the alternative non-R5RS keyword syntax, you use
5840 the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5841 the @code{prefix} and @code{postfix} syntax are mutually exclusive.
5842
5843 @lisp
5844 (read-set! keywords 'prefix)
5845
5846 #:type
5847 @result{}
5848 #:type
5849
5850 :type
5851 @result{}
5852 #:type
5853
5854 (read-set! keywords 'postfix)
5855
5856 type:
5857 @result{}
5858 #:type
5859
5860 :type
5861 @result{}
5862 :type
5863
5864 (read-set! keywords #f)
5865
5866 #:type
5867 @result{}
5868 #:type
5869
5870 :type
5871 @print{}
5872 ERROR: In expression :type:
5873 ERROR: Unbound variable: :type
5874 ABORT: (unbound-variable)
5875 @end lisp
5876
5877 @node Keyword Procedures
5878 @subsubsection Keyword Procedures
5879
5880 @deffn {Scheme Procedure} keyword? obj
5881 @deffnx {C Function} scm_keyword_p (obj)
5882 Return @code{#t} if the argument @var{obj} is a keyword, else
5883 @code{#f}.
5884 @end deffn
5885
5886 @deffn {Scheme Procedure} keyword->symbol keyword
5887 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5888 Return the symbol with the same name as @var{keyword}.
5889 @end deffn
5890
5891 @deffn {Scheme Procedure} symbol->keyword symbol
5892 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5893 Return the keyword with the same name as @var{symbol}.
5894 @end deffn
5895
5896 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5897 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5898 @end deftypefn
5899
5900 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5901 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
5902 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5903 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5904 (@var{name}, @var{len}))}, respectively.
5905
5906 Note that these functions should @emph{not} be used when @var{name} is a
5907 C string constant, because there is no guarantee that the current locale
5908 will match that of the execution character set, used for string and
5909 character constants. Most modern C compilers use UTF-8 by default, so
5910 in such cases we recommend @code{scm_from_utf8_keyword}.
5911 @end deftypefn
5912
5913 @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5914 @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5915 Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5916 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5917 (@var{name}))}, respectively.
5918 @end deftypefn
5919
5920 @deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
5921 SCM rest, scm_t_keyword_arguments_flags flags, @
5922 SCM keyword1, SCM *argp1, @
5923 @dots{}, @
5924 SCM keywordN, SCM *argpN, @
5925 @nicode{SCM_UNDEFINED})
5926
5927 Extract the specified keyword arguments from @var{rest}, which is not
5928 modified. If the keyword argument @var{keyword1} is present in
5929 @var{rest} with an associated value, that value is stored in the
5930 variable pointed to by @var{argp1}, otherwise the variable is left
5931 unchanged. Similarly for the other keywords and argument pointers up to
5932 @var{keywordN} and @var{argpN}. The argument list to
5933 @code{scm_c_bind_keyword_arguments} must be terminated by
5934 @code{SCM_UNDEFINED}.
5935
5936 Note that since the variables pointed to by @var{argp1} through
5937 @var{argpN} are left unchanged if the associated keyword argument is not
5938 present, they should be initialized to their default values before
5939 calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
5940 initialize them to @code{SCM_UNDEFINED} before the call, and then use
5941 @code{SCM_UNBNDP} after the call to see which ones were provided.
5942
5943 If an unrecognized keyword argument is present in @var{rest} and
5944 @var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
5945 non-keyword arguments are present and @var{flags} does not contain
5946 @code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
5947 @var{subr} should be the name of the procedure receiving the keyword
5948 arguments, for purposes of error reporting.
5949
5950 For example:
5951
5952 @example
5953 SCM k_delimiter;
5954 SCM k_grammar;
5955 SCM sym_infix;
5956
5957 SCM my_string_join (SCM strings, SCM rest)
5958 @{
5959 SCM delimiter = SCM_UNDEFINED;
5960 SCM grammar = sym_infix;
5961
5962 scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
5963 k_delimiter, &delimiter,
5964 k_grammar, &grammar,
5965 SCM_UNDEFINED);
5966
5967 if (SCM_UNBNDP (delimiter))
5968 delimiter = scm_from_utf8_string (" ");
5969
5970 return scm_string_join (strings, delimiter, grammar);
5971 @}
5972
5973 void my_init ()
5974 @{
5975 k_delimiter = scm_from_utf8_keyword ("delimiter");
5976 k_grammar = scm_from_utf8_keyword ("grammar");
5977 sym_infix = scm_from_utf8_symbol ("infix");
5978 scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
5979 @}
5980 @end example
5981 @end deftypefn
5982
5983
5984 @node Other Types
5985 @subsection ``Functionality-Centric'' Data Types
5986
5987 Procedures and macros are documented in their own sections: see
5988 @ref{Procedures} and @ref{Macros}.
5989
5990 Variable objects are documented as part of the description of Guile's
5991 module system: see @ref{Variables}.
5992
5993 Asyncs, dynamic roots and fluids are described in the section on
5994 scheduling: see @ref{Scheduling}.
5995
5996 Hooks are documented in the section on general utility functions: see
5997 @ref{Hooks}.
5998
5999 Ports are described in the section on I/O: see @ref{Input and Output}.
6000
6001 Regular expressions are described in their own section: see @ref{Regular
6002 Expressions}.
6003
6004 @c Local Variables:
6005 @c TeX-master: "guile.texi"
6006 @c End: