Fix bugs when negating SCM_MOST_POSITIVE_FIXNUM+1
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23 \f
24 /* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
29 * All objects satisfying SCM_FRACTIONP are never an integer.
30 */
31
32 /* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
43
44 #ifdef HAVE_CONFIG_H
45 # include <config.h>
46 #endif
47
48 #include <math.h>
49 #include <string.h>
50 #include <unicase.h>
51 #include <unictype.h>
52
53 #if HAVE_COMPLEX_H
54 #include <complex.h>
55 #endif
56
57 #include "libguile/_scm.h"
58 #include "libguile/feature.h"
59 #include "libguile/ports.h"
60 #include "libguile/root.h"
61 #include "libguile/smob.h"
62 #include "libguile/strings.h"
63 #include "libguile/bdw-gc.h"
64
65 #include "libguile/validate.h"
66 #include "libguile/numbers.h"
67 #include "libguile/deprecation.h"
68
69 #include "libguile/eq.h"
70
71 /* values per glibc, if not already defined */
72 #ifndef M_LOG10E
73 #define M_LOG10E 0.43429448190325182765
74 #endif
75 #ifndef M_PI
76 #define M_PI 3.14159265358979323846
77 #endif
78
79 typedef scm_t_signed_bits scm_t_inum;
80 #define scm_from_inum(x) (scm_from_signed_integer (x))
81
82 /* Tests to see if a C double is neither infinite nor a NaN.
83 TODO: if it's available, use C99's isfinite(x) instead */
84 #define DOUBLE_IS_FINITE(x) (!isinf(x) && !isnan(x))
85
86 \f
87
88 /*
89 Wonder if this might be faster for some of our code? A switch on
90 the numtag would jump directly to the right case, and the
91 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
92
93 #define SCM_I_NUMTAG_NOTNUM 0
94 #define SCM_I_NUMTAG_INUM 1
95 #define SCM_I_NUMTAG_BIG scm_tc16_big
96 #define SCM_I_NUMTAG_REAL scm_tc16_real
97 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
98 #define SCM_I_NUMTAG(x) \
99 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
100 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
101 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
102 : SCM_I_NUMTAG_NOTNUM)))
103 */
104 /* the macro above will not work as is with fractions */
105
106
107 static SCM flo0;
108
109 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
110
111 /* FLOBUFLEN is the maximum number of characters neccessary for the
112 * printed or scm_string representation of an inexact number.
113 */
114 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
115
116
117 #if !defined (HAVE_ASINH)
118 static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
119 #endif
120 #if !defined (HAVE_ACOSH)
121 static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
122 #endif
123 #if !defined (HAVE_ATANH)
124 static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
125 #endif
126
127 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
128 an explicit check. In some future gmp (don't know what version number),
129 mpz_cmp_d is supposed to do this itself. */
130 #if 1
131 #define xmpz_cmp_d(z, d) \
132 (isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
133 #else
134 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
135 #endif
136
137
138 #if defined (GUILE_I)
139 #if HAVE_COMPLEX_DOUBLE
140
141 /* For an SCM object Z which is a complex number (ie. satisfies
142 SCM_COMPLEXP), return its value as a C level "complex double". */
143 #define SCM_COMPLEX_VALUE(z) \
144 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
145
146 static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
147
148 /* Convert a C "complex double" to an SCM value. */
149 static inline SCM
150 scm_from_complex_double (complex double z)
151 {
152 return scm_c_make_rectangular (creal (z), cimag (z));
153 }
154
155 #endif /* HAVE_COMPLEX_DOUBLE */
156 #endif /* GUILE_I */
157
158 \f
159
160 static mpz_t z_negative_one;
161
162 \f
163 /* Clear the `mpz_t' embedded in bignum PTR. */
164 static void
165 finalize_bignum (GC_PTR ptr, GC_PTR data)
166 {
167 SCM bignum;
168
169 bignum = PTR2SCM (ptr);
170 mpz_clear (SCM_I_BIG_MPZ (bignum));
171 }
172
173 /* Return a new uninitialized bignum. */
174 static inline SCM
175 make_bignum (void)
176 {
177 scm_t_bits *p;
178 GC_finalization_proc prev_finalizer;
179 GC_PTR prev_finalizer_data;
180
181 /* Allocate one word for the type tag and enough room for an `mpz_t'. */
182 p = scm_gc_malloc_pointerless (sizeof (scm_t_bits) + sizeof (mpz_t),
183 "bignum");
184 p[0] = scm_tc16_big;
185
186 GC_REGISTER_FINALIZER_NO_ORDER (p, finalize_bignum, NULL,
187 &prev_finalizer,
188 &prev_finalizer_data);
189
190 return SCM_PACK (p);
191 }
192
193
194 SCM
195 scm_i_mkbig ()
196 {
197 /* Return a newly created bignum. */
198 SCM z = make_bignum ();
199 mpz_init (SCM_I_BIG_MPZ (z));
200 return z;
201 }
202
203 static SCM
204 scm_i_inum2big (scm_t_inum x)
205 {
206 /* Return a newly created bignum initialized to X. */
207 SCM z = make_bignum ();
208 #if SIZEOF_VOID_P == SIZEOF_LONG
209 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
210 #else
211 /* Note that in this case, you'll also have to check all mpz_*_ui and
212 mpz_*_si invocations in Guile. */
213 #error creation of mpz not implemented for this inum size
214 #endif
215 return z;
216 }
217
218 SCM
219 scm_i_long2big (long x)
220 {
221 /* Return a newly created bignum initialized to X. */
222 SCM z = make_bignum ();
223 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
224 return z;
225 }
226
227 SCM
228 scm_i_ulong2big (unsigned long x)
229 {
230 /* Return a newly created bignum initialized to X. */
231 SCM z = make_bignum ();
232 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
233 return z;
234 }
235
236 SCM
237 scm_i_clonebig (SCM src_big, int same_sign_p)
238 {
239 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
240 SCM z = make_bignum ();
241 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
242 if (!same_sign_p)
243 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
244 return z;
245 }
246
247 int
248 scm_i_bigcmp (SCM x, SCM y)
249 {
250 /* Return neg if x < y, pos if x > y, and 0 if x == y */
251 /* presume we already know x and y are bignums */
252 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
253 scm_remember_upto_here_2 (x, y);
254 return result;
255 }
256
257 SCM
258 scm_i_dbl2big (double d)
259 {
260 /* results are only defined if d is an integer */
261 SCM z = make_bignum ();
262 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
263 return z;
264 }
265
266 /* Convert a integer in double representation to a SCM number. */
267
268 SCM
269 scm_i_dbl2num (double u)
270 {
271 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
272 powers of 2, so there's no rounding when making "double" values
273 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
274 get rounded on a 64-bit machine, hence the "+1".
275
276 The use of floor() to force to an integer value ensures we get a
277 "numerically closest" value without depending on how a
278 double->long cast or how mpz_set_d will round. For reference,
279 double->long probably follows the hardware rounding mode,
280 mpz_set_d truncates towards zero. */
281
282 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
283 representable as a double? */
284
285 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
286 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
287 return SCM_I_MAKINUM ((scm_t_inum) u);
288 else
289 return scm_i_dbl2big (u);
290 }
291
292 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
293 with R5RS exact->inexact.
294
295 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
296 (ie. truncate towards zero), then adjust to get the closest double by
297 examining the next lower bit and adding 1 (to the absolute value) if
298 necessary.
299
300 Bignums exactly half way between representable doubles are rounded to the
301 next higher absolute value (ie. away from zero). This seems like an
302 adequate interpretation of R5RS "numerically closest", and it's easier
303 and faster than a full "nearest-even" style.
304
305 The bit test must be done on the absolute value of the mpz_t, which means
306 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
307 negatives as twos complement.
308
309 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
310 following the hardware rounding mode, but applied to the absolute value
311 of the mpz_t operand. This is not what we want so we put the high
312 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
313 mpz_get_d is supposed to always truncate towards zero.
314
315 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
316 is a slowdown. It'd be faster to pick out the relevant high bits with
317 mpz_getlimbn if we could be bothered coding that, and if the new
318 truncating gmp doesn't come out. */
319
320 double
321 scm_i_big2dbl (SCM b)
322 {
323 double result;
324 size_t bits;
325
326 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
327
328 #if 1
329 {
330 /* Current GMP, eg. 4.1.3, force truncation towards zero */
331 mpz_t tmp;
332 if (bits > DBL_MANT_DIG)
333 {
334 size_t shift = bits - DBL_MANT_DIG;
335 mpz_init2 (tmp, DBL_MANT_DIG);
336 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
337 result = ldexp (mpz_get_d (tmp), shift);
338 mpz_clear (tmp);
339 }
340 else
341 {
342 result = mpz_get_d (SCM_I_BIG_MPZ (b));
343 }
344 }
345 #else
346 /* Future GMP */
347 result = mpz_get_d (SCM_I_BIG_MPZ (b));
348 #endif
349
350 if (bits > DBL_MANT_DIG)
351 {
352 unsigned long pos = bits - DBL_MANT_DIG - 1;
353 /* test bit number "pos" in absolute value */
354 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
355 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
356 {
357 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
358 }
359 }
360
361 scm_remember_upto_here_1 (b);
362 return result;
363 }
364
365 SCM
366 scm_i_normbig (SCM b)
367 {
368 /* convert a big back to a fixnum if it'll fit */
369 /* presume b is a bignum */
370 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
371 {
372 scm_t_inum val = mpz_get_si (SCM_I_BIG_MPZ (b));
373 if (SCM_FIXABLE (val))
374 b = SCM_I_MAKINUM (val);
375 }
376 return b;
377 }
378
379 static SCM_C_INLINE_KEYWORD SCM
380 scm_i_mpz2num (mpz_t b)
381 {
382 /* convert a mpz number to a SCM number. */
383 if (mpz_fits_slong_p (b))
384 {
385 scm_t_inum val = mpz_get_si (b);
386 if (SCM_FIXABLE (val))
387 return SCM_I_MAKINUM (val);
388 }
389
390 {
391 SCM z = make_bignum ();
392 mpz_init_set (SCM_I_BIG_MPZ (z), b);
393 return z;
394 }
395 }
396
397 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
398 static SCM scm_divide2real (SCM x, SCM y);
399
400 static SCM
401 scm_i_make_ratio (SCM numerator, SCM denominator)
402 #define FUNC_NAME "make-ratio"
403 {
404 /* First make sure the arguments are proper.
405 */
406 if (SCM_I_INUMP (denominator))
407 {
408 if (scm_is_eq (denominator, SCM_INUM0))
409 scm_num_overflow ("make-ratio");
410 if (scm_is_eq (denominator, SCM_INUM1))
411 return numerator;
412 }
413 else
414 {
415 if (!(SCM_BIGP(denominator)))
416 SCM_WRONG_TYPE_ARG (2, denominator);
417 }
418 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
419 SCM_WRONG_TYPE_ARG (1, numerator);
420
421 /* Then flip signs so that the denominator is positive.
422 */
423 if (scm_is_true (scm_negative_p (denominator)))
424 {
425 numerator = scm_difference (numerator, SCM_UNDEFINED);
426 denominator = scm_difference (denominator, SCM_UNDEFINED);
427 }
428
429 /* Now consider for each of the four fixnum/bignum combinations
430 whether the rational number is really an integer.
431 */
432 if (SCM_I_INUMP (numerator))
433 {
434 scm_t_inum x = SCM_I_INUM (numerator);
435 if (scm_is_eq (numerator, SCM_INUM0))
436 return SCM_INUM0;
437 if (SCM_I_INUMP (denominator))
438 {
439 scm_t_inum y;
440 y = SCM_I_INUM (denominator);
441 if (x == y)
442 return SCM_INUM1;
443 if ((x % y) == 0)
444 return SCM_I_MAKINUM (x / y);
445 }
446 else
447 {
448 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
449 of that value for the denominator, as a bignum. Apart from
450 that case, abs(bignum) > abs(inum) so inum/bignum is not an
451 integer. */
452 if (x == SCM_MOST_NEGATIVE_FIXNUM
453 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
454 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
455 return SCM_I_MAKINUM(-1);
456 }
457 }
458 else if (SCM_BIGP (numerator))
459 {
460 if (SCM_I_INUMP (denominator))
461 {
462 scm_t_inum yy = SCM_I_INUM (denominator);
463 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
464 return scm_divide (numerator, denominator);
465 }
466 else
467 {
468 if (scm_is_eq (numerator, denominator))
469 return SCM_INUM1;
470 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
471 SCM_I_BIG_MPZ (denominator)))
472 return scm_divide(numerator, denominator);
473 }
474 }
475
476 /* No, it's a proper fraction.
477 */
478 {
479 SCM divisor = scm_gcd (numerator, denominator);
480 if (!(scm_is_eq (divisor, SCM_INUM1)))
481 {
482 numerator = scm_divide (numerator, divisor);
483 denominator = scm_divide (denominator, divisor);
484 }
485
486 return scm_double_cell (scm_tc16_fraction,
487 SCM_UNPACK (numerator),
488 SCM_UNPACK (denominator), 0);
489 }
490 }
491 #undef FUNC_NAME
492
493 double
494 scm_i_fraction2double (SCM z)
495 {
496 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
497 SCM_FRACTION_DENOMINATOR (z)));
498 }
499
500 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
501 (SCM x),
502 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
503 "otherwise.")
504 #define FUNC_NAME s_scm_exact_p
505 {
506 if (SCM_INEXACTP (x))
507 return SCM_BOOL_F;
508 else if (SCM_NUMBERP (x))
509 return SCM_BOOL_T;
510 else
511 SCM_WRONG_TYPE_ARG (1, x);
512 }
513 #undef FUNC_NAME
514
515
516 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
517 (SCM x),
518 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
519 "else.")
520 #define FUNC_NAME s_scm_inexact_p
521 {
522 if (SCM_INEXACTP (x))
523 return SCM_BOOL_T;
524 else if (SCM_NUMBERP (x))
525 return SCM_BOOL_F;
526 else
527 SCM_WRONG_TYPE_ARG (1, x);
528 }
529 #undef FUNC_NAME
530
531
532 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
533 (SCM n),
534 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
535 "otherwise.")
536 #define FUNC_NAME s_scm_odd_p
537 {
538 if (SCM_I_INUMP (n))
539 {
540 scm_t_inum val = SCM_I_INUM (n);
541 return scm_from_bool ((val & 1L) != 0);
542 }
543 else if (SCM_BIGP (n))
544 {
545 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
546 scm_remember_upto_here_1 (n);
547 return scm_from_bool (odd_p);
548 }
549 else if (scm_is_true (scm_inf_p (n)))
550 SCM_WRONG_TYPE_ARG (1, n);
551 else if (SCM_REALP (n))
552 {
553 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
554 if (rem == 1.0)
555 return SCM_BOOL_T;
556 else if (rem == 0.0)
557 return SCM_BOOL_F;
558 else
559 SCM_WRONG_TYPE_ARG (1, n);
560 }
561 else
562 SCM_WRONG_TYPE_ARG (1, n);
563 }
564 #undef FUNC_NAME
565
566
567 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
568 (SCM n),
569 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
570 "otherwise.")
571 #define FUNC_NAME s_scm_even_p
572 {
573 if (SCM_I_INUMP (n))
574 {
575 scm_t_inum val = SCM_I_INUM (n);
576 return scm_from_bool ((val & 1L) == 0);
577 }
578 else if (SCM_BIGP (n))
579 {
580 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
581 scm_remember_upto_here_1 (n);
582 return scm_from_bool (even_p);
583 }
584 else if (scm_is_true (scm_inf_p (n)))
585 SCM_WRONG_TYPE_ARG (1, n);
586 else if (SCM_REALP (n))
587 {
588 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
589 if (rem == 1.0)
590 return SCM_BOOL_F;
591 else if (rem == 0.0)
592 return SCM_BOOL_T;
593 else
594 SCM_WRONG_TYPE_ARG (1, n);
595 }
596 else
597 SCM_WRONG_TYPE_ARG (1, n);
598 }
599 #undef FUNC_NAME
600
601 SCM_DEFINE (scm_finite_p, "finite?", 1, 0, 0,
602 (SCM x),
603 "Return @code{#t} if the real number @var{x} is neither\n"
604 "infinite nor a NaN, @code{#f} otherwise.")
605 #define FUNC_NAME s_scm_finite_p
606 {
607 if (SCM_REALP (x))
608 return scm_from_bool (DOUBLE_IS_FINITE (SCM_REAL_VALUE (x)));
609 else if (scm_is_real (x))
610 return SCM_BOOL_T;
611 else
612 SCM_WRONG_TYPE_ARG (1, x);
613 }
614 #undef FUNC_NAME
615
616 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
617 (SCM x),
618 "Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n"
619 "@samp{-inf.0}. Otherwise return @code{#f}.")
620 #define FUNC_NAME s_scm_inf_p
621 {
622 if (SCM_REALP (x))
623 return scm_from_bool (isinf (SCM_REAL_VALUE (x)));
624 else if (scm_is_real (x))
625 return SCM_BOOL_F;
626 else
627 SCM_WRONG_TYPE_ARG (1, x);
628 }
629 #undef FUNC_NAME
630
631 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
632 (SCM x),
633 "Return @code{#t} if the real number @var{x} is a NaN,\n"
634 "or @code{#f} otherwise.")
635 #define FUNC_NAME s_scm_nan_p
636 {
637 if (SCM_REALP (x))
638 return scm_from_bool (isnan (SCM_REAL_VALUE (x)));
639 else if (scm_is_real (x))
640 return SCM_BOOL_F;
641 else
642 SCM_WRONG_TYPE_ARG (1, x);
643 }
644 #undef FUNC_NAME
645
646 /* Guile's idea of infinity. */
647 static double guile_Inf;
648
649 /* Guile's idea of not a number. */
650 static double guile_NaN;
651
652 static void
653 guile_ieee_init (void)
654 {
655 /* Some version of gcc on some old version of Linux used to crash when
656 trying to make Inf and NaN. */
657
658 #ifdef INFINITY
659 /* C99 INFINITY, when available.
660 FIXME: The standard allows for INFINITY to be something that overflows
661 at compile time. We ought to have a configure test to check for that
662 before trying to use it. (But in practice we believe this is not a
663 problem on any system guile is likely to target.) */
664 guile_Inf = INFINITY;
665 #elif defined HAVE_DINFINITY
666 /* OSF */
667 extern unsigned int DINFINITY[2];
668 guile_Inf = (*((double *) (DINFINITY)));
669 #else
670 double tmp = 1e+10;
671 guile_Inf = tmp;
672 for (;;)
673 {
674 guile_Inf *= 1e+10;
675 if (guile_Inf == tmp)
676 break;
677 tmp = guile_Inf;
678 }
679 #endif
680
681 #ifdef NAN
682 /* C99 NAN, when available */
683 guile_NaN = NAN;
684 #elif defined HAVE_DQNAN
685 {
686 /* OSF */
687 extern unsigned int DQNAN[2];
688 guile_NaN = (*((double *)(DQNAN)));
689 }
690 #else
691 guile_NaN = guile_Inf / guile_Inf;
692 #endif
693 }
694
695 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
696 (void),
697 "Return Inf.")
698 #define FUNC_NAME s_scm_inf
699 {
700 static int initialized = 0;
701 if (! initialized)
702 {
703 guile_ieee_init ();
704 initialized = 1;
705 }
706 return scm_from_double (guile_Inf);
707 }
708 #undef FUNC_NAME
709
710 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
711 (void),
712 "Return NaN.")
713 #define FUNC_NAME s_scm_nan
714 {
715 static int initialized = 0;
716 if (!initialized)
717 {
718 guile_ieee_init ();
719 initialized = 1;
720 }
721 return scm_from_double (guile_NaN);
722 }
723 #undef FUNC_NAME
724
725
726 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
727 (SCM x),
728 "Return the absolute value of @var{x}.")
729 #define FUNC_NAME
730 {
731 if (SCM_I_INUMP (x))
732 {
733 scm_t_inum xx = SCM_I_INUM (x);
734 if (xx >= 0)
735 return x;
736 else if (SCM_POSFIXABLE (-xx))
737 return SCM_I_MAKINUM (-xx);
738 else
739 return scm_i_inum2big (-xx);
740 }
741 else if (SCM_BIGP (x))
742 {
743 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
744 if (sgn < 0)
745 return scm_i_clonebig (x, 0);
746 else
747 return x;
748 }
749 else if (SCM_REALP (x))
750 {
751 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
752 double xx = SCM_REAL_VALUE (x);
753 if (xx < 0.0)
754 return scm_from_double (-xx);
755 else
756 return x;
757 }
758 else if (SCM_FRACTIONP (x))
759 {
760 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
761 return x;
762 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
763 SCM_FRACTION_DENOMINATOR (x));
764 }
765 else
766 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
767 }
768 #undef FUNC_NAME
769
770
771 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
772 /* "Return the quotient of the numbers @var{x} and @var{y}."
773 */
774 SCM
775 scm_quotient (SCM x, SCM y)
776 {
777 if (SCM_I_INUMP (x))
778 {
779 scm_t_inum xx = SCM_I_INUM (x);
780 if (SCM_I_INUMP (y))
781 {
782 scm_t_inum yy = SCM_I_INUM (y);
783 if (yy == 0)
784 scm_num_overflow (s_quotient);
785 else
786 {
787 scm_t_inum z = xx / yy;
788 if (SCM_FIXABLE (z))
789 return SCM_I_MAKINUM (z);
790 else
791 return scm_i_inum2big (z);
792 }
793 }
794 else if (SCM_BIGP (y))
795 {
796 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
797 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
798 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
799 {
800 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
801 scm_remember_upto_here_1 (y);
802 return SCM_I_MAKINUM (-1);
803 }
804 else
805 return SCM_INUM0;
806 }
807 else
808 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
809 }
810 else if (SCM_BIGP (x))
811 {
812 if (SCM_I_INUMP (y))
813 {
814 scm_t_inum yy = SCM_I_INUM (y);
815 if (yy == 0)
816 scm_num_overflow (s_quotient);
817 else if (yy == 1)
818 return x;
819 else
820 {
821 SCM result = scm_i_mkbig ();
822 if (yy < 0)
823 {
824 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
825 SCM_I_BIG_MPZ (x),
826 - yy);
827 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
828 }
829 else
830 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
831 scm_remember_upto_here_1 (x);
832 return scm_i_normbig (result);
833 }
834 }
835 else if (SCM_BIGP (y))
836 {
837 SCM result = scm_i_mkbig ();
838 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
839 SCM_I_BIG_MPZ (x),
840 SCM_I_BIG_MPZ (y));
841 scm_remember_upto_here_2 (x, y);
842 return scm_i_normbig (result);
843 }
844 else
845 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
846 }
847 else
848 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
849 }
850
851 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
852 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
853 * "@lisp\n"
854 * "(remainder 13 4) @result{} 1\n"
855 * "(remainder -13 4) @result{} -1\n"
856 * "@end lisp"
857 */
858 SCM
859 scm_remainder (SCM x, SCM y)
860 {
861 if (SCM_I_INUMP (x))
862 {
863 if (SCM_I_INUMP (y))
864 {
865 scm_t_inum yy = SCM_I_INUM (y);
866 if (yy == 0)
867 scm_num_overflow (s_remainder);
868 else
869 {
870 scm_t_inum z = SCM_I_INUM (x) % yy;
871 return SCM_I_MAKINUM (z);
872 }
873 }
874 else if (SCM_BIGP (y))
875 {
876 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
877 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
878 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
879 {
880 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
881 scm_remember_upto_here_1 (y);
882 return SCM_INUM0;
883 }
884 else
885 return x;
886 }
887 else
888 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
889 }
890 else if (SCM_BIGP (x))
891 {
892 if (SCM_I_INUMP (y))
893 {
894 scm_t_inum yy = SCM_I_INUM (y);
895 if (yy == 0)
896 scm_num_overflow (s_remainder);
897 else
898 {
899 SCM result = scm_i_mkbig ();
900 if (yy < 0)
901 yy = - yy;
902 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
903 scm_remember_upto_here_1 (x);
904 return scm_i_normbig (result);
905 }
906 }
907 else if (SCM_BIGP (y))
908 {
909 SCM result = scm_i_mkbig ();
910 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
911 SCM_I_BIG_MPZ (x),
912 SCM_I_BIG_MPZ (y));
913 scm_remember_upto_here_2 (x, y);
914 return scm_i_normbig (result);
915 }
916 else
917 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
918 }
919 else
920 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
921 }
922
923
924 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
925 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
926 * "@lisp\n"
927 * "(modulo 13 4) @result{} 1\n"
928 * "(modulo -13 4) @result{} 3\n"
929 * "@end lisp"
930 */
931 SCM
932 scm_modulo (SCM x, SCM y)
933 {
934 if (SCM_I_INUMP (x))
935 {
936 scm_t_inum xx = SCM_I_INUM (x);
937 if (SCM_I_INUMP (y))
938 {
939 scm_t_inum yy = SCM_I_INUM (y);
940 if (yy == 0)
941 scm_num_overflow (s_modulo);
942 else
943 {
944 /* C99 specifies that "%" is the remainder corresponding to a
945 quotient rounded towards zero, and that's also traditional
946 for machine division, so z here should be well defined. */
947 scm_t_inum z = xx % yy;
948 scm_t_inum result;
949
950 if (yy < 0)
951 {
952 if (z > 0)
953 result = z + yy;
954 else
955 result = z;
956 }
957 else
958 {
959 if (z < 0)
960 result = z + yy;
961 else
962 result = z;
963 }
964 return SCM_I_MAKINUM (result);
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
969 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
970 {
971 mpz_t z_x;
972 SCM result;
973
974 if (sgn_y < 0)
975 {
976 SCM pos_y = scm_i_clonebig (y, 0);
977 /* do this after the last scm_op */
978 mpz_init_set_si (z_x, xx);
979 result = pos_y; /* re-use this bignum */
980 mpz_mod (SCM_I_BIG_MPZ (result),
981 z_x,
982 SCM_I_BIG_MPZ (pos_y));
983 scm_remember_upto_here_1 (pos_y);
984 }
985 else
986 {
987 result = scm_i_mkbig ();
988 /* do this after the last scm_op */
989 mpz_init_set_si (z_x, xx);
990 mpz_mod (SCM_I_BIG_MPZ (result),
991 z_x,
992 SCM_I_BIG_MPZ (y));
993 scm_remember_upto_here_1 (y);
994 }
995
996 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
997 mpz_add (SCM_I_BIG_MPZ (result),
998 SCM_I_BIG_MPZ (y),
999 SCM_I_BIG_MPZ (result));
1000 scm_remember_upto_here_1 (y);
1001 /* and do this before the next one */
1002 mpz_clear (z_x);
1003 return scm_i_normbig (result);
1004 }
1005 }
1006 else
1007 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1008 }
1009 else if (SCM_BIGP (x))
1010 {
1011 if (SCM_I_INUMP (y))
1012 {
1013 scm_t_inum yy = SCM_I_INUM (y);
1014 if (yy == 0)
1015 scm_num_overflow (s_modulo);
1016 else
1017 {
1018 SCM result = scm_i_mkbig ();
1019 mpz_mod_ui (SCM_I_BIG_MPZ (result),
1020 SCM_I_BIG_MPZ (x),
1021 (yy < 0) ? - yy : yy);
1022 scm_remember_upto_here_1 (x);
1023 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1024 mpz_sub_ui (SCM_I_BIG_MPZ (result),
1025 SCM_I_BIG_MPZ (result),
1026 - yy);
1027 return scm_i_normbig (result);
1028 }
1029 }
1030 else if (SCM_BIGP (y))
1031 {
1032 {
1033 SCM result = scm_i_mkbig ();
1034 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1035 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1036 mpz_mod (SCM_I_BIG_MPZ (result),
1037 SCM_I_BIG_MPZ (x),
1038 SCM_I_BIG_MPZ (pos_y));
1039
1040 scm_remember_upto_here_1 (x);
1041 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1042 mpz_add (SCM_I_BIG_MPZ (result),
1043 SCM_I_BIG_MPZ (y),
1044 SCM_I_BIG_MPZ (result));
1045 scm_remember_upto_here_2 (y, pos_y);
1046 return scm_i_normbig (result);
1047 }
1048 }
1049 else
1050 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1051 }
1052 else
1053 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
1054 }
1055
1056 SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1057 (SCM x, SCM y, SCM rest),
1058 "Return the greatest common divisor of all parameter values.\n"
1059 "If called without arguments, 0 is returned.")
1060 #define FUNC_NAME s_scm_i_gcd
1061 {
1062 while (!scm_is_null (rest))
1063 { x = scm_gcd (x, y);
1064 y = scm_car (rest);
1065 rest = scm_cdr (rest);
1066 }
1067 return scm_gcd (x, y);
1068 }
1069 #undef FUNC_NAME
1070
1071 #define s_gcd s_scm_i_gcd
1072 #define g_gcd g_scm_i_gcd
1073
1074 SCM
1075 scm_gcd (SCM x, SCM y)
1076 {
1077 if (SCM_UNBNDP (y))
1078 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
1079
1080 if (SCM_I_INUMP (x))
1081 {
1082 if (SCM_I_INUMP (y))
1083 {
1084 scm_t_inum xx = SCM_I_INUM (x);
1085 scm_t_inum yy = SCM_I_INUM (y);
1086 scm_t_inum u = xx < 0 ? -xx : xx;
1087 scm_t_inum v = yy < 0 ? -yy : yy;
1088 scm_t_inum result;
1089 if (xx == 0)
1090 result = v;
1091 else if (yy == 0)
1092 result = u;
1093 else
1094 {
1095 scm_t_inum k = 1;
1096 scm_t_inum t;
1097 /* Determine a common factor 2^k */
1098 while (!(1 & (u | v)))
1099 {
1100 k <<= 1;
1101 u >>= 1;
1102 v >>= 1;
1103 }
1104 /* Now, any factor 2^n can be eliminated */
1105 if (u & 1)
1106 t = -v;
1107 else
1108 {
1109 t = u;
1110 b3:
1111 t = SCM_SRS (t, 1);
1112 }
1113 if (!(1 & t))
1114 goto b3;
1115 if (t > 0)
1116 u = t;
1117 else
1118 v = -t;
1119 t = u - v;
1120 if (t != 0)
1121 goto b3;
1122 result = u * k;
1123 }
1124 return (SCM_POSFIXABLE (result)
1125 ? SCM_I_MAKINUM (result)
1126 : scm_i_inum2big (result));
1127 }
1128 else if (SCM_BIGP (y))
1129 {
1130 SCM_SWAP (x, y);
1131 goto big_inum;
1132 }
1133 else
1134 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1135 }
1136 else if (SCM_BIGP (x))
1137 {
1138 if (SCM_I_INUMP (y))
1139 {
1140 scm_t_bits result;
1141 scm_t_inum yy;
1142 big_inum:
1143 yy = SCM_I_INUM (y);
1144 if (yy == 0)
1145 return scm_abs (x);
1146 if (yy < 0)
1147 yy = -yy;
1148 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1149 scm_remember_upto_here_1 (x);
1150 return (SCM_POSFIXABLE (result)
1151 ? SCM_I_MAKINUM (result)
1152 : scm_from_unsigned_integer (result));
1153 }
1154 else if (SCM_BIGP (y))
1155 {
1156 SCM result = scm_i_mkbig ();
1157 mpz_gcd (SCM_I_BIG_MPZ (result),
1158 SCM_I_BIG_MPZ (x),
1159 SCM_I_BIG_MPZ (y));
1160 scm_remember_upto_here_2 (x, y);
1161 return scm_i_normbig (result);
1162 }
1163 else
1164 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1165 }
1166 else
1167 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1168 }
1169
1170 SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1171 (SCM x, SCM y, SCM rest),
1172 "Return the least common multiple of the arguments.\n"
1173 "If called without arguments, 1 is returned.")
1174 #define FUNC_NAME s_scm_i_lcm
1175 {
1176 while (!scm_is_null (rest))
1177 { x = scm_lcm (x, y);
1178 y = scm_car (rest);
1179 rest = scm_cdr (rest);
1180 }
1181 return scm_lcm (x, y);
1182 }
1183 #undef FUNC_NAME
1184
1185 #define s_lcm s_scm_i_lcm
1186 #define g_lcm g_scm_i_lcm
1187
1188 SCM
1189 scm_lcm (SCM n1, SCM n2)
1190 {
1191 if (SCM_UNBNDP (n2))
1192 {
1193 if (SCM_UNBNDP (n1))
1194 return SCM_I_MAKINUM (1L);
1195 n2 = SCM_I_MAKINUM (1L);
1196 }
1197
1198 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1199 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1200 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1201 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1202
1203 if (SCM_I_INUMP (n1))
1204 {
1205 if (SCM_I_INUMP (n2))
1206 {
1207 SCM d = scm_gcd (n1, n2);
1208 if (scm_is_eq (d, SCM_INUM0))
1209 return d;
1210 else
1211 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1212 }
1213 else
1214 {
1215 /* inum n1, big n2 */
1216 inumbig:
1217 {
1218 SCM result = scm_i_mkbig ();
1219 scm_t_inum nn1 = SCM_I_INUM (n1);
1220 if (nn1 == 0) return SCM_INUM0;
1221 if (nn1 < 0) nn1 = - nn1;
1222 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1223 scm_remember_upto_here_1 (n2);
1224 return result;
1225 }
1226 }
1227 }
1228 else
1229 {
1230 /* big n1 */
1231 if (SCM_I_INUMP (n2))
1232 {
1233 SCM_SWAP (n1, n2);
1234 goto inumbig;
1235 }
1236 else
1237 {
1238 SCM result = scm_i_mkbig ();
1239 mpz_lcm(SCM_I_BIG_MPZ (result),
1240 SCM_I_BIG_MPZ (n1),
1241 SCM_I_BIG_MPZ (n2));
1242 scm_remember_upto_here_2(n1, n2);
1243 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1244 return result;
1245 }
1246 }
1247 }
1248
1249 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1250
1251 Logand:
1252 X Y Result Method:
1253 (len)
1254 + + + x (map digit:logand X Y)
1255 + - + x (map digit:logand X (lognot (+ -1 Y)))
1256 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1257 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1258
1259 Logior:
1260 X Y Result Method:
1261
1262 + + + (map digit:logior X Y)
1263 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1264 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1265 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1266
1267 Logxor:
1268 X Y Result Method:
1269
1270 + + + (map digit:logxor X Y)
1271 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1272 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1273 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1274
1275 Logtest:
1276 X Y Result
1277
1278 + + (any digit:logand X Y)
1279 + - (any digit:logand X (lognot (+ -1 Y)))
1280 - + (any digit:logand (lognot (+ -1 X)) Y)
1281 - - #t
1282
1283 */
1284
1285 SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1286 (SCM x, SCM y, SCM rest),
1287 "Return the bitwise AND of the integer arguments.\n\n"
1288 "@lisp\n"
1289 "(logand) @result{} -1\n"
1290 "(logand 7) @result{} 7\n"
1291 "(logand #b111 #b011 #b001) @result{} 1\n"
1292 "@end lisp")
1293 #define FUNC_NAME s_scm_i_logand
1294 {
1295 while (!scm_is_null (rest))
1296 { x = scm_logand (x, y);
1297 y = scm_car (rest);
1298 rest = scm_cdr (rest);
1299 }
1300 return scm_logand (x, y);
1301 }
1302 #undef FUNC_NAME
1303
1304 #define s_scm_logand s_scm_i_logand
1305
1306 SCM scm_logand (SCM n1, SCM n2)
1307 #define FUNC_NAME s_scm_logand
1308 {
1309 scm_t_inum nn1;
1310
1311 if (SCM_UNBNDP (n2))
1312 {
1313 if (SCM_UNBNDP (n1))
1314 return SCM_I_MAKINUM (-1);
1315 else if (!SCM_NUMBERP (n1))
1316 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1317 else if (SCM_NUMBERP (n1))
1318 return n1;
1319 else
1320 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1321 }
1322
1323 if (SCM_I_INUMP (n1))
1324 {
1325 nn1 = SCM_I_INUM (n1);
1326 if (SCM_I_INUMP (n2))
1327 {
1328 scm_t_inum nn2 = SCM_I_INUM (n2);
1329 return SCM_I_MAKINUM (nn1 & nn2);
1330 }
1331 else if SCM_BIGP (n2)
1332 {
1333 intbig:
1334 if (n1 == 0)
1335 return SCM_INUM0;
1336 {
1337 SCM result_z = scm_i_mkbig ();
1338 mpz_t nn1_z;
1339 mpz_init_set_si (nn1_z, nn1);
1340 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1341 scm_remember_upto_here_1 (n2);
1342 mpz_clear (nn1_z);
1343 return scm_i_normbig (result_z);
1344 }
1345 }
1346 else
1347 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1348 }
1349 else if (SCM_BIGP (n1))
1350 {
1351 if (SCM_I_INUMP (n2))
1352 {
1353 SCM_SWAP (n1, n2);
1354 nn1 = SCM_I_INUM (n1);
1355 goto intbig;
1356 }
1357 else if (SCM_BIGP (n2))
1358 {
1359 SCM result_z = scm_i_mkbig ();
1360 mpz_and (SCM_I_BIG_MPZ (result_z),
1361 SCM_I_BIG_MPZ (n1),
1362 SCM_I_BIG_MPZ (n2));
1363 scm_remember_upto_here_2 (n1, n2);
1364 return scm_i_normbig (result_z);
1365 }
1366 else
1367 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1368 }
1369 else
1370 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1371 }
1372 #undef FUNC_NAME
1373
1374
1375 SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1376 (SCM x, SCM y, SCM rest),
1377 "Return the bitwise OR of the integer arguments.\n\n"
1378 "@lisp\n"
1379 "(logior) @result{} 0\n"
1380 "(logior 7) @result{} 7\n"
1381 "(logior #b000 #b001 #b011) @result{} 3\n"
1382 "@end lisp")
1383 #define FUNC_NAME s_scm_i_logior
1384 {
1385 while (!scm_is_null (rest))
1386 { x = scm_logior (x, y);
1387 y = scm_car (rest);
1388 rest = scm_cdr (rest);
1389 }
1390 return scm_logior (x, y);
1391 }
1392 #undef FUNC_NAME
1393
1394 #define s_scm_logior s_scm_i_logior
1395
1396 SCM scm_logior (SCM n1, SCM n2)
1397 #define FUNC_NAME s_scm_logior
1398 {
1399 scm_t_inum nn1;
1400
1401 if (SCM_UNBNDP (n2))
1402 {
1403 if (SCM_UNBNDP (n1))
1404 return SCM_INUM0;
1405 else if (SCM_NUMBERP (n1))
1406 return n1;
1407 else
1408 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1409 }
1410
1411 if (SCM_I_INUMP (n1))
1412 {
1413 nn1 = SCM_I_INUM (n1);
1414 if (SCM_I_INUMP (n2))
1415 {
1416 long nn2 = SCM_I_INUM (n2);
1417 return SCM_I_MAKINUM (nn1 | nn2);
1418 }
1419 else if (SCM_BIGP (n2))
1420 {
1421 intbig:
1422 if (nn1 == 0)
1423 return n2;
1424 {
1425 SCM result_z = scm_i_mkbig ();
1426 mpz_t nn1_z;
1427 mpz_init_set_si (nn1_z, nn1);
1428 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1429 scm_remember_upto_here_1 (n2);
1430 mpz_clear (nn1_z);
1431 return scm_i_normbig (result_z);
1432 }
1433 }
1434 else
1435 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1436 }
1437 else if (SCM_BIGP (n1))
1438 {
1439 if (SCM_I_INUMP (n2))
1440 {
1441 SCM_SWAP (n1, n2);
1442 nn1 = SCM_I_INUM (n1);
1443 goto intbig;
1444 }
1445 else if (SCM_BIGP (n2))
1446 {
1447 SCM result_z = scm_i_mkbig ();
1448 mpz_ior (SCM_I_BIG_MPZ (result_z),
1449 SCM_I_BIG_MPZ (n1),
1450 SCM_I_BIG_MPZ (n2));
1451 scm_remember_upto_here_2 (n1, n2);
1452 return scm_i_normbig (result_z);
1453 }
1454 else
1455 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1456 }
1457 else
1458 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1459 }
1460 #undef FUNC_NAME
1461
1462
1463 SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1464 (SCM x, SCM y, SCM rest),
1465 "Return the bitwise XOR of the integer arguments. A bit is\n"
1466 "set in the result if it is set in an odd number of arguments.\n"
1467 "@lisp\n"
1468 "(logxor) @result{} 0\n"
1469 "(logxor 7) @result{} 7\n"
1470 "(logxor #b000 #b001 #b011) @result{} 2\n"
1471 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1472 "@end lisp")
1473 #define FUNC_NAME s_scm_i_logxor
1474 {
1475 while (!scm_is_null (rest))
1476 { x = scm_logxor (x, y);
1477 y = scm_car (rest);
1478 rest = scm_cdr (rest);
1479 }
1480 return scm_logxor (x, y);
1481 }
1482 #undef FUNC_NAME
1483
1484 #define s_scm_logxor s_scm_i_logxor
1485
1486 SCM scm_logxor (SCM n1, SCM n2)
1487 #define FUNC_NAME s_scm_logxor
1488 {
1489 scm_t_inum nn1;
1490
1491 if (SCM_UNBNDP (n2))
1492 {
1493 if (SCM_UNBNDP (n1))
1494 return SCM_INUM0;
1495 else if (SCM_NUMBERP (n1))
1496 return n1;
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1499 }
1500
1501 if (SCM_I_INUMP (n1))
1502 {
1503 nn1 = SCM_I_INUM (n1);
1504 if (SCM_I_INUMP (n2))
1505 {
1506 scm_t_inum nn2 = SCM_I_INUM (n2);
1507 return SCM_I_MAKINUM (nn1 ^ nn2);
1508 }
1509 else if (SCM_BIGP (n2))
1510 {
1511 intbig:
1512 {
1513 SCM result_z = scm_i_mkbig ();
1514 mpz_t nn1_z;
1515 mpz_init_set_si (nn1_z, nn1);
1516 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1517 scm_remember_upto_here_1 (n2);
1518 mpz_clear (nn1_z);
1519 return scm_i_normbig (result_z);
1520 }
1521 }
1522 else
1523 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1524 }
1525 else if (SCM_BIGP (n1))
1526 {
1527 if (SCM_I_INUMP (n2))
1528 {
1529 SCM_SWAP (n1, n2);
1530 nn1 = SCM_I_INUM (n1);
1531 goto intbig;
1532 }
1533 else if (SCM_BIGP (n2))
1534 {
1535 SCM result_z = scm_i_mkbig ();
1536 mpz_xor (SCM_I_BIG_MPZ (result_z),
1537 SCM_I_BIG_MPZ (n1),
1538 SCM_I_BIG_MPZ (n2));
1539 scm_remember_upto_here_2 (n1, n2);
1540 return scm_i_normbig (result_z);
1541 }
1542 else
1543 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1544 }
1545 else
1546 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1547 }
1548 #undef FUNC_NAME
1549
1550
1551 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1552 (SCM j, SCM k),
1553 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1554 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1555 "without actually calculating the @code{logand}, just testing\n"
1556 "for non-zero.\n"
1557 "\n"
1558 "@lisp\n"
1559 "(logtest #b0100 #b1011) @result{} #f\n"
1560 "(logtest #b0100 #b0111) @result{} #t\n"
1561 "@end lisp")
1562 #define FUNC_NAME s_scm_logtest
1563 {
1564 scm_t_inum nj;
1565
1566 if (SCM_I_INUMP (j))
1567 {
1568 nj = SCM_I_INUM (j);
1569 if (SCM_I_INUMP (k))
1570 {
1571 scm_t_inum nk = SCM_I_INUM (k);
1572 return scm_from_bool (nj & nk);
1573 }
1574 else if (SCM_BIGP (k))
1575 {
1576 intbig:
1577 if (nj == 0)
1578 return SCM_BOOL_F;
1579 {
1580 SCM result;
1581 mpz_t nj_z;
1582 mpz_init_set_si (nj_z, nj);
1583 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1584 scm_remember_upto_here_1 (k);
1585 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1586 mpz_clear (nj_z);
1587 return result;
1588 }
1589 }
1590 else
1591 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1592 }
1593 else if (SCM_BIGP (j))
1594 {
1595 if (SCM_I_INUMP (k))
1596 {
1597 SCM_SWAP (j, k);
1598 nj = SCM_I_INUM (j);
1599 goto intbig;
1600 }
1601 else if (SCM_BIGP (k))
1602 {
1603 SCM result;
1604 mpz_t result_z;
1605 mpz_init (result_z);
1606 mpz_and (result_z,
1607 SCM_I_BIG_MPZ (j),
1608 SCM_I_BIG_MPZ (k));
1609 scm_remember_upto_here_2 (j, k);
1610 result = scm_from_bool (mpz_sgn (result_z) != 0);
1611 mpz_clear (result_z);
1612 return result;
1613 }
1614 else
1615 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1616 }
1617 else
1618 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1619 }
1620 #undef FUNC_NAME
1621
1622
1623 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1624 (SCM index, SCM j),
1625 "Test whether bit number @var{index} in @var{j} is set.\n"
1626 "@var{index} starts from 0 for the least significant bit.\n"
1627 "\n"
1628 "@lisp\n"
1629 "(logbit? 0 #b1101) @result{} #t\n"
1630 "(logbit? 1 #b1101) @result{} #f\n"
1631 "(logbit? 2 #b1101) @result{} #t\n"
1632 "(logbit? 3 #b1101) @result{} #t\n"
1633 "(logbit? 4 #b1101) @result{} #f\n"
1634 "@end lisp")
1635 #define FUNC_NAME s_scm_logbit_p
1636 {
1637 unsigned long int iindex;
1638 iindex = scm_to_ulong (index);
1639
1640 if (SCM_I_INUMP (j))
1641 {
1642 /* bits above what's in an inum follow the sign bit */
1643 iindex = min (iindex, SCM_LONG_BIT - 1);
1644 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1645 }
1646 else if (SCM_BIGP (j))
1647 {
1648 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1649 scm_remember_upto_here_1 (j);
1650 return scm_from_bool (val);
1651 }
1652 else
1653 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1654 }
1655 #undef FUNC_NAME
1656
1657
1658 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1659 (SCM n),
1660 "Return the integer which is the ones-complement of the integer\n"
1661 "argument.\n"
1662 "\n"
1663 "@lisp\n"
1664 "(number->string (lognot #b10000000) 2)\n"
1665 " @result{} \"-10000001\"\n"
1666 "(number->string (lognot #b0) 2)\n"
1667 " @result{} \"-1\"\n"
1668 "@end lisp")
1669 #define FUNC_NAME s_scm_lognot
1670 {
1671 if (SCM_I_INUMP (n)) {
1672 /* No overflow here, just need to toggle all the bits making up the inum.
1673 Enhancement: No need to strip the tag and add it back, could just xor
1674 a block of 1 bits, if that worked with the various debug versions of
1675 the SCM typedef. */
1676 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1677
1678 } else if (SCM_BIGP (n)) {
1679 SCM result = scm_i_mkbig ();
1680 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1681 scm_remember_upto_here_1 (n);
1682 return result;
1683
1684 } else {
1685 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1686 }
1687 }
1688 #undef FUNC_NAME
1689
1690 /* returns 0 if IN is not an integer. OUT must already be
1691 initialized. */
1692 static int
1693 coerce_to_big (SCM in, mpz_t out)
1694 {
1695 if (SCM_BIGP (in))
1696 mpz_set (out, SCM_I_BIG_MPZ (in));
1697 else if (SCM_I_INUMP (in))
1698 mpz_set_si (out, SCM_I_INUM (in));
1699 else
1700 return 0;
1701
1702 return 1;
1703 }
1704
1705 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1706 (SCM n, SCM k, SCM m),
1707 "Return @var{n} raised to the integer exponent\n"
1708 "@var{k}, modulo @var{m}.\n"
1709 "\n"
1710 "@lisp\n"
1711 "(modulo-expt 2 3 5)\n"
1712 " @result{} 3\n"
1713 "@end lisp")
1714 #define FUNC_NAME s_scm_modulo_expt
1715 {
1716 mpz_t n_tmp;
1717 mpz_t k_tmp;
1718 mpz_t m_tmp;
1719
1720 /* There are two classes of error we might encounter --
1721 1) Math errors, which we'll report by calling scm_num_overflow,
1722 and
1723 2) wrong-type errors, which of course we'll report by calling
1724 SCM_WRONG_TYPE_ARG.
1725 We don't report those errors immediately, however; instead we do
1726 some cleanup first. These variables tell us which error (if
1727 any) we should report after cleaning up.
1728 */
1729 int report_overflow = 0;
1730
1731 int position_of_wrong_type = 0;
1732 SCM value_of_wrong_type = SCM_INUM0;
1733
1734 SCM result = SCM_UNDEFINED;
1735
1736 mpz_init (n_tmp);
1737 mpz_init (k_tmp);
1738 mpz_init (m_tmp);
1739
1740 if (scm_is_eq (m, SCM_INUM0))
1741 {
1742 report_overflow = 1;
1743 goto cleanup;
1744 }
1745
1746 if (!coerce_to_big (n, n_tmp))
1747 {
1748 value_of_wrong_type = n;
1749 position_of_wrong_type = 1;
1750 goto cleanup;
1751 }
1752
1753 if (!coerce_to_big (k, k_tmp))
1754 {
1755 value_of_wrong_type = k;
1756 position_of_wrong_type = 2;
1757 goto cleanup;
1758 }
1759
1760 if (!coerce_to_big (m, m_tmp))
1761 {
1762 value_of_wrong_type = m;
1763 position_of_wrong_type = 3;
1764 goto cleanup;
1765 }
1766
1767 /* if the exponent K is negative, and we simply call mpz_powm, we
1768 will get a divide-by-zero exception when an inverse 1/n mod m
1769 doesn't exist (or is not unique). Since exceptions are hard to
1770 handle, we'll attempt the inversion "by hand" -- that way, we get
1771 a simple failure code, which is easy to handle. */
1772
1773 if (-1 == mpz_sgn (k_tmp))
1774 {
1775 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1776 {
1777 report_overflow = 1;
1778 goto cleanup;
1779 }
1780 mpz_neg (k_tmp, k_tmp);
1781 }
1782
1783 result = scm_i_mkbig ();
1784 mpz_powm (SCM_I_BIG_MPZ (result),
1785 n_tmp,
1786 k_tmp,
1787 m_tmp);
1788
1789 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1790 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1791
1792 cleanup:
1793 mpz_clear (m_tmp);
1794 mpz_clear (k_tmp);
1795 mpz_clear (n_tmp);
1796
1797 if (report_overflow)
1798 scm_num_overflow (FUNC_NAME);
1799
1800 if (position_of_wrong_type)
1801 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1802 value_of_wrong_type);
1803
1804 return scm_i_normbig (result);
1805 }
1806 #undef FUNC_NAME
1807
1808 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1809 (SCM n, SCM k),
1810 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1811 "exact integer, @var{n} can be any number.\n"
1812 "\n"
1813 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1814 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1815 "includes @math{0^0} is 1.\n"
1816 "\n"
1817 "@lisp\n"
1818 "(integer-expt 2 5) @result{} 32\n"
1819 "(integer-expt -3 3) @result{} -27\n"
1820 "(integer-expt 5 -3) @result{} 1/125\n"
1821 "(integer-expt 0 0) @result{} 1\n"
1822 "@end lisp")
1823 #define FUNC_NAME s_scm_integer_expt
1824 {
1825 scm_t_inum i2 = 0;
1826 SCM z_i2 = SCM_BOOL_F;
1827 int i2_is_big = 0;
1828 SCM acc = SCM_I_MAKINUM (1L);
1829
1830 SCM_VALIDATE_NUMBER (SCM_ARG1, n);
1831 if (!SCM_I_INUMP (k) && !SCM_BIGP (k))
1832 SCM_WRONG_TYPE_ARG (2, k);
1833
1834 if (scm_is_true (scm_zero_p (n)))
1835 {
1836 if (scm_is_true (scm_zero_p (k))) /* 0^0 == 1 per R5RS */
1837 return acc; /* return exact 1, regardless of n */
1838 else if (scm_is_true (scm_positive_p (k)))
1839 return n;
1840 else /* return NaN for (0 ^ k) for negative k per R6RS */
1841 return scm_nan ();
1842 }
1843 else if (scm_is_eq (n, acc))
1844 return acc;
1845 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1846 return scm_is_false (scm_even_p (k)) ? n : acc;
1847
1848 if (SCM_I_INUMP (k))
1849 i2 = SCM_I_INUM (k);
1850 else if (SCM_BIGP (k))
1851 {
1852 z_i2 = scm_i_clonebig (k, 1);
1853 scm_remember_upto_here_1 (k);
1854 i2_is_big = 1;
1855 }
1856 else
1857 SCM_WRONG_TYPE_ARG (2, k);
1858
1859 if (i2_is_big)
1860 {
1861 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1862 {
1863 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1864 n = scm_divide (n, SCM_UNDEFINED);
1865 }
1866 while (1)
1867 {
1868 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1869 {
1870 return acc;
1871 }
1872 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1873 {
1874 return scm_product (acc, n);
1875 }
1876 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1877 acc = scm_product (acc, n);
1878 n = scm_product (n, n);
1879 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1880 }
1881 }
1882 else
1883 {
1884 if (i2 < 0)
1885 {
1886 i2 = -i2;
1887 n = scm_divide (n, SCM_UNDEFINED);
1888 }
1889 while (1)
1890 {
1891 if (0 == i2)
1892 return acc;
1893 if (1 == i2)
1894 return scm_product (acc, n);
1895 if (i2 & 1)
1896 acc = scm_product (acc, n);
1897 n = scm_product (n, n);
1898 i2 >>= 1;
1899 }
1900 }
1901 }
1902 #undef FUNC_NAME
1903
1904 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1905 (SCM n, SCM cnt),
1906 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1907 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1908 "\n"
1909 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1910 "@var{cnt} is negative it's a division, rounded towards negative\n"
1911 "infinity. (Note that this is not the same rounding as\n"
1912 "@code{quotient} does.)\n"
1913 "\n"
1914 "With @var{n} viewed as an infinite precision twos complement,\n"
1915 "@code{ash} means a left shift introducing zero bits, or a right\n"
1916 "shift dropping bits.\n"
1917 "\n"
1918 "@lisp\n"
1919 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1920 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1921 "\n"
1922 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1923 "(ash -23 -2) @result{} -6\n"
1924 "@end lisp")
1925 #define FUNC_NAME s_scm_ash
1926 {
1927 long bits_to_shift;
1928 bits_to_shift = scm_to_long (cnt);
1929
1930 if (SCM_I_INUMP (n))
1931 {
1932 scm_t_inum nn = SCM_I_INUM (n);
1933
1934 if (bits_to_shift > 0)
1935 {
1936 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1937 overflow a non-zero fixnum. For smaller shifts we check the
1938 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1939 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1940 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1941 bits_to_shift)". */
1942
1943 if (nn == 0)
1944 return n;
1945
1946 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1947 && ((scm_t_bits)
1948 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1949 <= 1))
1950 {
1951 return SCM_I_MAKINUM (nn << bits_to_shift);
1952 }
1953 else
1954 {
1955 SCM result = scm_i_inum2big (nn);
1956 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1957 bits_to_shift);
1958 return result;
1959 }
1960 }
1961 else
1962 {
1963 bits_to_shift = -bits_to_shift;
1964 if (bits_to_shift >= SCM_LONG_BIT)
1965 return (nn >= 0 ? SCM_INUM0 : SCM_I_MAKINUM(-1));
1966 else
1967 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1968 }
1969
1970 }
1971 else if (SCM_BIGP (n))
1972 {
1973 SCM result;
1974
1975 if (bits_to_shift == 0)
1976 return n;
1977
1978 result = scm_i_mkbig ();
1979 if (bits_to_shift >= 0)
1980 {
1981 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1982 bits_to_shift);
1983 return result;
1984 }
1985 else
1986 {
1987 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1988 we have to allocate a bignum even if the result is going to be a
1989 fixnum. */
1990 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1991 -bits_to_shift);
1992 return scm_i_normbig (result);
1993 }
1994
1995 }
1996 else
1997 {
1998 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1999 }
2000 }
2001 #undef FUNC_NAME
2002
2003
2004 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
2005 (SCM n, SCM start, SCM end),
2006 "Return the integer composed of the @var{start} (inclusive)\n"
2007 "through @var{end} (exclusive) bits of @var{n}. The\n"
2008 "@var{start}th bit becomes the 0-th bit in the result.\n"
2009 "\n"
2010 "@lisp\n"
2011 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
2012 " @result{} \"1010\"\n"
2013 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
2014 " @result{} \"10110\"\n"
2015 "@end lisp")
2016 #define FUNC_NAME s_scm_bit_extract
2017 {
2018 unsigned long int istart, iend, bits;
2019 istart = scm_to_ulong (start);
2020 iend = scm_to_ulong (end);
2021 SCM_ASSERT_RANGE (3, end, (iend >= istart));
2022
2023 /* how many bits to keep */
2024 bits = iend - istart;
2025
2026 if (SCM_I_INUMP (n))
2027 {
2028 scm_t_inum in = SCM_I_INUM (n);
2029
2030 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
2031 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
2032 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
2033
2034 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
2035 {
2036 /* Since we emulate two's complement encoded numbers, this
2037 * special case requires us to produce a result that has
2038 * more bits than can be stored in a fixnum.
2039 */
2040 SCM result = scm_i_inum2big (in);
2041 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2042 bits);
2043 return result;
2044 }
2045
2046 /* mask down to requisite bits */
2047 bits = min (bits, SCM_I_FIXNUM_BIT);
2048 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
2049 }
2050 else if (SCM_BIGP (n))
2051 {
2052 SCM result;
2053 if (bits == 1)
2054 {
2055 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
2056 }
2057 else
2058 {
2059 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2060 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2061 such bits into a ulong. */
2062 result = scm_i_mkbig ();
2063 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2064 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2065 result = scm_i_normbig (result);
2066 }
2067 scm_remember_upto_here_1 (n);
2068 return result;
2069 }
2070 else
2071 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2072 }
2073 #undef FUNC_NAME
2074
2075
2076 static const char scm_logtab[] = {
2077 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2078 };
2079
2080 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
2081 (SCM n),
2082 "Return the number of bits in integer @var{n}. If integer is\n"
2083 "positive, the 1-bits in its binary representation are counted.\n"
2084 "If negative, the 0-bits in its two's-complement binary\n"
2085 "representation are counted. If 0, 0 is returned.\n"
2086 "\n"
2087 "@lisp\n"
2088 "(logcount #b10101010)\n"
2089 " @result{} 4\n"
2090 "(logcount 0)\n"
2091 " @result{} 0\n"
2092 "(logcount -2)\n"
2093 " @result{} 1\n"
2094 "@end lisp")
2095 #define FUNC_NAME s_scm_logcount
2096 {
2097 if (SCM_I_INUMP (n))
2098 {
2099 unsigned long c = 0;
2100 scm_t_inum nn = SCM_I_INUM (n);
2101 if (nn < 0)
2102 nn = -1 - nn;
2103 while (nn)
2104 {
2105 c += scm_logtab[15 & nn];
2106 nn >>= 4;
2107 }
2108 return SCM_I_MAKINUM (c);
2109 }
2110 else if (SCM_BIGP (n))
2111 {
2112 unsigned long count;
2113 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2114 count = mpz_popcount (SCM_I_BIG_MPZ (n));
2115 else
2116 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2117 scm_remember_upto_here_1 (n);
2118 return SCM_I_MAKINUM (count);
2119 }
2120 else
2121 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2122 }
2123 #undef FUNC_NAME
2124
2125
2126 static const char scm_ilentab[] = {
2127 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2128 };
2129
2130
2131 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2132 (SCM n),
2133 "Return the number of bits necessary to represent @var{n}.\n"
2134 "\n"
2135 "@lisp\n"
2136 "(integer-length #b10101010)\n"
2137 " @result{} 8\n"
2138 "(integer-length 0)\n"
2139 " @result{} 0\n"
2140 "(integer-length #b1111)\n"
2141 " @result{} 4\n"
2142 "@end lisp")
2143 #define FUNC_NAME s_scm_integer_length
2144 {
2145 if (SCM_I_INUMP (n))
2146 {
2147 unsigned long c = 0;
2148 unsigned int l = 4;
2149 scm_t_inum nn = SCM_I_INUM (n);
2150 if (nn < 0)
2151 nn = -1 - nn;
2152 while (nn)
2153 {
2154 c += 4;
2155 l = scm_ilentab [15 & nn];
2156 nn >>= 4;
2157 }
2158 return SCM_I_MAKINUM (c - 4 + l);
2159 }
2160 else if (SCM_BIGP (n))
2161 {
2162 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2163 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2164 1 too big, so check for that and adjust. */
2165 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2166 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2167 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2168 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2169 size--;
2170 scm_remember_upto_here_1 (n);
2171 return SCM_I_MAKINUM (size);
2172 }
2173 else
2174 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2175 }
2176 #undef FUNC_NAME
2177
2178 /*** NUMBERS -> STRINGS ***/
2179 #define SCM_MAX_DBL_PREC 60
2180 #define SCM_MAX_DBL_RADIX 36
2181
2182 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2183 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2184 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2185
2186 static
2187 void init_dblprec(int *prec, int radix) {
2188 /* determine floating point precision by adding successively
2189 smaller increments to 1.0 until it is considered == 1.0 */
2190 double f = ((double)1.0)/radix;
2191 double fsum = 1.0 + f;
2192
2193 *prec = 0;
2194 while (fsum != 1.0)
2195 {
2196 if (++(*prec) > SCM_MAX_DBL_PREC)
2197 fsum = 1.0;
2198 else
2199 {
2200 f /= radix;
2201 fsum = f + 1.0;
2202 }
2203 }
2204 (*prec) -= 1;
2205 }
2206
2207 static
2208 void init_fx_radix(double *fx_list, int radix)
2209 {
2210 /* initialize a per-radix list of tolerances. When added
2211 to a number < 1.0, we can determine if we should raund
2212 up and quit converting a number to a string. */
2213 int i;
2214 fx_list[0] = 0.0;
2215 fx_list[1] = 0.5;
2216 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2217 fx_list[i] = (fx_list[i-1] / radix);
2218 }
2219
2220 /* use this array as a way to generate a single digit */
2221 static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
2222
2223 static size_t
2224 idbl2str (double f, char *a, int radix)
2225 {
2226 int efmt, dpt, d, i, wp;
2227 double *fx;
2228 #ifdef DBL_MIN_10_EXP
2229 double f_cpy;
2230 int exp_cpy;
2231 #endif /* DBL_MIN_10_EXP */
2232 size_t ch = 0;
2233 int exp = 0;
2234
2235 if(radix < 2 ||
2236 radix > SCM_MAX_DBL_RADIX)
2237 {
2238 /* revert to existing behavior */
2239 radix = 10;
2240 }
2241
2242 wp = scm_dblprec[radix-2];
2243 fx = fx_per_radix[radix-2];
2244
2245 if (f == 0.0)
2246 {
2247 #ifdef HAVE_COPYSIGN
2248 double sgn = copysign (1.0, f);
2249
2250 if (sgn < 0.0)
2251 a[ch++] = '-';
2252 #endif
2253 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2254 }
2255
2256 if (isinf (f))
2257 {
2258 if (f < 0)
2259 strcpy (a, "-inf.0");
2260 else
2261 strcpy (a, "+inf.0");
2262 return ch+6;
2263 }
2264 else if (isnan (f))
2265 {
2266 strcpy (a, "+nan.0");
2267 return ch+6;
2268 }
2269
2270 if (f < 0.0)
2271 {
2272 f = -f;
2273 a[ch++] = '-';
2274 }
2275
2276 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2277 make-uniform-vector, from causing infinite loops. */
2278 /* just do the checking...if it passes, we do the conversion for our
2279 radix again below */
2280 f_cpy = f;
2281 exp_cpy = exp;
2282
2283 while (f_cpy < 1.0)
2284 {
2285 f_cpy *= 10.0;
2286 if (exp_cpy-- < DBL_MIN_10_EXP)
2287 {
2288 a[ch++] = '#';
2289 a[ch++] = '.';
2290 a[ch++] = '#';
2291 return ch;
2292 }
2293 }
2294 while (f_cpy > 10.0)
2295 {
2296 f_cpy *= 0.10;
2297 if (exp_cpy++ > DBL_MAX_10_EXP)
2298 {
2299 a[ch++] = '#';
2300 a[ch++] = '.';
2301 a[ch++] = '#';
2302 return ch;
2303 }
2304 }
2305 #endif
2306
2307 while (f < 1.0)
2308 {
2309 f *= radix;
2310 exp--;
2311 }
2312 while (f > radix)
2313 {
2314 f /= radix;
2315 exp++;
2316 }
2317
2318 if (f + fx[wp] >= radix)
2319 {
2320 f = 1.0;
2321 exp++;
2322 }
2323 zero:
2324 #ifdef ENGNOT
2325 /* adding 9999 makes this equivalent to abs(x) % 3 */
2326 dpt = (exp + 9999) % 3;
2327 exp -= dpt++;
2328 efmt = 1;
2329 #else
2330 efmt = (exp < -3) || (exp > wp + 2);
2331 if (!efmt)
2332 {
2333 if (exp < 0)
2334 {
2335 a[ch++] = '0';
2336 a[ch++] = '.';
2337 dpt = exp;
2338 while (++dpt)
2339 a[ch++] = '0';
2340 }
2341 else
2342 dpt = exp + 1;
2343 }
2344 else
2345 dpt = 1;
2346 #endif
2347
2348 do
2349 {
2350 d = f;
2351 f -= d;
2352 a[ch++] = number_chars[d];
2353 if (f < fx[wp])
2354 break;
2355 if (f + fx[wp] >= 1.0)
2356 {
2357 a[ch - 1] = number_chars[d+1];
2358 break;
2359 }
2360 f *= radix;
2361 if (!(--dpt))
2362 a[ch++] = '.';
2363 }
2364 while (wp--);
2365
2366 if (dpt > 0)
2367 {
2368 #ifndef ENGNOT
2369 if ((dpt > 4) && (exp > 6))
2370 {
2371 d = (a[0] == '-' ? 2 : 1);
2372 for (i = ch++; i > d; i--)
2373 a[i] = a[i - 1];
2374 a[d] = '.';
2375 efmt = 1;
2376 }
2377 else
2378 #endif
2379 {
2380 while (--dpt)
2381 a[ch++] = '0';
2382 a[ch++] = '.';
2383 }
2384 }
2385 if (a[ch - 1] == '.')
2386 a[ch++] = '0'; /* trailing zero */
2387 if (efmt && exp)
2388 {
2389 a[ch++] = 'e';
2390 if (exp < 0)
2391 {
2392 exp = -exp;
2393 a[ch++] = '-';
2394 }
2395 for (i = radix; i <= exp; i *= radix);
2396 for (i /= radix; i; i /= radix)
2397 {
2398 a[ch++] = number_chars[exp / i];
2399 exp %= i;
2400 }
2401 }
2402 return ch;
2403 }
2404
2405
2406 static size_t
2407 icmplx2str (double real, double imag, char *str, int radix)
2408 {
2409 size_t i;
2410
2411 i = idbl2str (real, str, radix);
2412 if (imag != 0.0)
2413 {
2414 /* Don't output a '+' for negative numbers or for Inf and
2415 NaN. They will provide their own sign. */
2416 if (0 <= imag && !isinf (imag) && !isnan (imag))
2417 str[i++] = '+';
2418 i += idbl2str (imag, &str[i], radix);
2419 str[i++] = 'i';
2420 }
2421 return i;
2422 }
2423
2424 static size_t
2425 iflo2str (SCM flt, char *str, int radix)
2426 {
2427 size_t i;
2428 if (SCM_REALP (flt))
2429 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2430 else
2431 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2432 str, radix);
2433 return i;
2434 }
2435
2436 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2437 characters in the result.
2438 rad is output base
2439 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2440 size_t
2441 scm_iint2str (scm_t_intmax num, int rad, char *p)
2442 {
2443 if (num < 0)
2444 {
2445 *p++ = '-';
2446 return scm_iuint2str (-num, rad, p) + 1;
2447 }
2448 else
2449 return scm_iuint2str (num, rad, p);
2450 }
2451
2452 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2453 characters in the result.
2454 rad is output base
2455 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2456 size_t
2457 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2458 {
2459 size_t j = 1;
2460 size_t i;
2461 scm_t_uintmax n = num;
2462
2463 if (rad < 2 || rad > 36)
2464 scm_out_of_range ("scm_iuint2str", scm_from_int (rad));
2465
2466 for (n /= rad; n > 0; n /= rad)
2467 j++;
2468
2469 i = j;
2470 n = num;
2471 while (i--)
2472 {
2473 int d = n % rad;
2474
2475 n /= rad;
2476 p[i] = number_chars[d];
2477 }
2478 return j;
2479 }
2480
2481 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2482 (SCM n, SCM radix),
2483 "Return a string holding the external representation of the\n"
2484 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2485 "inexact, a radix of 10 will be used.")
2486 #define FUNC_NAME s_scm_number_to_string
2487 {
2488 int base;
2489
2490 if (SCM_UNBNDP (radix))
2491 base = 10;
2492 else
2493 base = scm_to_signed_integer (radix, 2, 36);
2494
2495 if (SCM_I_INUMP (n))
2496 {
2497 char num_buf [SCM_INTBUFLEN];
2498 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2499 return scm_from_locale_stringn (num_buf, length);
2500 }
2501 else if (SCM_BIGP (n))
2502 {
2503 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2504 scm_remember_upto_here_1 (n);
2505 return scm_take_locale_string (str);
2506 }
2507 else if (SCM_FRACTIONP (n))
2508 {
2509 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2510 scm_from_locale_string ("/"),
2511 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2512 }
2513 else if (SCM_INEXACTP (n))
2514 {
2515 char num_buf [FLOBUFLEN];
2516 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2517 }
2518 else
2519 SCM_WRONG_TYPE_ARG (1, n);
2520 }
2521 #undef FUNC_NAME
2522
2523
2524 /* These print routines used to be stubbed here so that scm_repl.c
2525 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2526
2527 int
2528 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2529 {
2530 char num_buf[FLOBUFLEN];
2531 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2532 return !0;
2533 }
2534
2535 void
2536 scm_i_print_double (double val, SCM port)
2537 {
2538 char num_buf[FLOBUFLEN];
2539 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2540 }
2541
2542 int
2543 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2544
2545 {
2546 char num_buf[FLOBUFLEN];
2547 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2548 return !0;
2549 }
2550
2551 void
2552 scm_i_print_complex (double real, double imag, SCM port)
2553 {
2554 char num_buf[FLOBUFLEN];
2555 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2556 }
2557
2558 int
2559 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2560 {
2561 SCM str;
2562 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2563 scm_display (str, port);
2564 scm_remember_upto_here_1 (str);
2565 return !0;
2566 }
2567
2568 int
2569 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2570 {
2571 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2572 scm_remember_upto_here_1 (exp);
2573 scm_lfwrite (str, (size_t) strlen (str), port);
2574 free (str);
2575 return !0;
2576 }
2577 /*** END nums->strs ***/
2578
2579
2580 /*** STRINGS -> NUMBERS ***/
2581
2582 /* The following functions implement the conversion from strings to numbers.
2583 * The implementation somehow follows the grammar for numbers as it is given
2584 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2585 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2586 * points should be noted about the implementation:
2587 * * Each function keeps a local index variable 'idx' that points at the
2588 * current position within the parsed string. The global index is only
2589 * updated if the function could parse the corresponding syntactic unit
2590 * successfully.
2591 * * Similarly, the functions keep track of indicators of inexactness ('#',
2592 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2593 * global exactness information is only updated after each part has been
2594 * successfully parsed.
2595 * * Sequences of digits are parsed into temporary variables holding fixnums.
2596 * Only if these fixnums would overflow, the result variables are updated
2597 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2598 * the temporary variables holding the fixnums are cleared, and the process
2599 * starts over again. If for example fixnums were able to store five decimal
2600 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2601 * and the result was computed as 12345 * 100000 + 67890. In other words,
2602 * only every five digits two bignum operations were performed.
2603 */
2604
2605 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2606
2607 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2608
2609 /* Caller is responsible for checking that the return value is in range
2610 for the given radix, which should be <= 36. */
2611 static unsigned int
2612 char_decimal_value (scm_t_uint32 c)
2613 {
2614 /* uc_decimal_value returns -1 on error. When cast to an unsigned int,
2615 that's certainly above any valid decimal, so we take advantage of
2616 that to elide some tests. */
2617 unsigned int d = (unsigned int) uc_decimal_value (c);
2618
2619 /* If that failed, try extended hexadecimals, then. Only accept ascii
2620 hexadecimals. */
2621 if (d >= 10U)
2622 {
2623 c = uc_tolower (c);
2624 if (c >= (scm_t_uint32) 'a')
2625 d = c - (scm_t_uint32)'a' + 10U;
2626 }
2627 return d;
2628 }
2629
2630 static SCM
2631 mem2uinteger (SCM mem, unsigned int *p_idx,
2632 unsigned int radix, enum t_exactness *p_exactness)
2633 {
2634 unsigned int idx = *p_idx;
2635 unsigned int hash_seen = 0;
2636 scm_t_bits shift = 1;
2637 scm_t_bits add = 0;
2638 unsigned int digit_value;
2639 SCM result;
2640 char c;
2641 size_t len = scm_i_string_length (mem);
2642
2643 if (idx == len)
2644 return SCM_BOOL_F;
2645
2646 c = scm_i_string_ref (mem, idx);
2647 digit_value = char_decimal_value (c);
2648 if (digit_value >= radix)
2649 return SCM_BOOL_F;
2650
2651 idx++;
2652 result = SCM_I_MAKINUM (digit_value);
2653 while (idx != len)
2654 {
2655 scm_t_wchar c = scm_i_string_ref (mem, idx);
2656 if (c == '#')
2657 {
2658 hash_seen = 1;
2659 digit_value = 0;
2660 }
2661 else if (hash_seen)
2662 break;
2663 else
2664 {
2665 digit_value = char_decimal_value (c);
2666 /* This check catches non-decimals in addition to out-of-range
2667 decimals. */
2668 if (digit_value >= radix)
2669 break;
2670 }
2671
2672 idx++;
2673 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2674 {
2675 result = scm_product (result, SCM_I_MAKINUM (shift));
2676 if (add > 0)
2677 result = scm_sum (result, SCM_I_MAKINUM (add));
2678
2679 shift = radix;
2680 add = digit_value;
2681 }
2682 else
2683 {
2684 shift = shift * radix;
2685 add = add * radix + digit_value;
2686 }
2687 };
2688
2689 if (shift > 1)
2690 result = scm_product (result, SCM_I_MAKINUM (shift));
2691 if (add > 0)
2692 result = scm_sum (result, SCM_I_MAKINUM (add));
2693
2694 *p_idx = idx;
2695 if (hash_seen)
2696 *p_exactness = INEXACT;
2697
2698 return result;
2699 }
2700
2701
2702 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2703 * covers the parts of the rules that start at a potential point. The value
2704 * of the digits up to the point have been parsed by the caller and are given
2705 * in variable result. The content of *p_exactness indicates, whether a hash
2706 * has already been seen in the digits before the point.
2707 */
2708
2709 #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
2710
2711 static SCM
2712 mem2decimal_from_point (SCM result, SCM mem,
2713 unsigned int *p_idx, enum t_exactness *p_exactness)
2714 {
2715 unsigned int idx = *p_idx;
2716 enum t_exactness x = *p_exactness;
2717 size_t len = scm_i_string_length (mem);
2718
2719 if (idx == len)
2720 return result;
2721
2722 if (scm_i_string_ref (mem, idx) == '.')
2723 {
2724 scm_t_bits shift = 1;
2725 scm_t_bits add = 0;
2726 unsigned int digit_value;
2727 SCM big_shift = SCM_INUM1;
2728
2729 idx++;
2730 while (idx != len)
2731 {
2732 scm_t_wchar c = scm_i_string_ref (mem, idx);
2733 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2734 {
2735 if (x == INEXACT)
2736 return SCM_BOOL_F;
2737 else
2738 digit_value = DIGIT2UINT (c);
2739 }
2740 else if (c == '#')
2741 {
2742 x = INEXACT;
2743 digit_value = 0;
2744 }
2745 else
2746 break;
2747
2748 idx++;
2749 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2750 {
2751 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2752 result = scm_product (result, SCM_I_MAKINUM (shift));
2753 if (add > 0)
2754 result = scm_sum (result, SCM_I_MAKINUM (add));
2755
2756 shift = 10;
2757 add = digit_value;
2758 }
2759 else
2760 {
2761 shift = shift * 10;
2762 add = add * 10 + digit_value;
2763 }
2764 };
2765
2766 if (add > 0)
2767 {
2768 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2769 result = scm_product (result, SCM_I_MAKINUM (shift));
2770 result = scm_sum (result, SCM_I_MAKINUM (add));
2771 }
2772
2773 result = scm_divide (result, big_shift);
2774
2775 /* We've seen a decimal point, thus the value is implicitly inexact. */
2776 x = INEXACT;
2777 }
2778
2779 if (idx != len)
2780 {
2781 int sign = 1;
2782 unsigned int start;
2783 scm_t_wchar c;
2784 int exponent;
2785 SCM e;
2786
2787 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2788
2789 switch (scm_i_string_ref (mem, idx))
2790 {
2791 case 'd': case 'D':
2792 case 'e': case 'E':
2793 case 'f': case 'F':
2794 case 'l': case 'L':
2795 case 's': case 'S':
2796 idx++;
2797 if (idx == len)
2798 return SCM_BOOL_F;
2799
2800 start = idx;
2801 c = scm_i_string_ref (mem, idx);
2802 if (c == '-')
2803 {
2804 idx++;
2805 if (idx == len)
2806 return SCM_BOOL_F;
2807
2808 sign = -1;
2809 c = scm_i_string_ref (mem, idx);
2810 }
2811 else if (c == '+')
2812 {
2813 idx++;
2814 if (idx == len)
2815 return SCM_BOOL_F;
2816
2817 sign = 1;
2818 c = scm_i_string_ref (mem, idx);
2819 }
2820 else
2821 sign = 1;
2822
2823 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
2824 return SCM_BOOL_F;
2825
2826 idx++;
2827 exponent = DIGIT2UINT (c);
2828 while (idx != len)
2829 {
2830 scm_t_wchar c = scm_i_string_ref (mem, idx);
2831 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2832 {
2833 idx++;
2834 if (exponent <= SCM_MAXEXP)
2835 exponent = exponent * 10 + DIGIT2UINT (c);
2836 }
2837 else
2838 break;
2839 }
2840
2841 if (exponent > SCM_MAXEXP)
2842 {
2843 size_t exp_len = idx - start;
2844 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
2845 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2846 scm_out_of_range ("string->number", exp_num);
2847 }
2848
2849 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2850 if (sign == 1)
2851 result = scm_product (result, e);
2852 else
2853 result = scm_divide2real (result, e);
2854
2855 /* We've seen an exponent, thus the value is implicitly inexact. */
2856 x = INEXACT;
2857
2858 break;
2859
2860 default:
2861 break;
2862 }
2863 }
2864
2865 *p_idx = idx;
2866 if (x == INEXACT)
2867 *p_exactness = x;
2868
2869 return result;
2870 }
2871
2872
2873 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2874
2875 static SCM
2876 mem2ureal (SCM mem, unsigned int *p_idx,
2877 unsigned int radix, enum t_exactness *p_exactness)
2878 {
2879 unsigned int idx = *p_idx;
2880 SCM result;
2881 size_t len = scm_i_string_length (mem);
2882
2883 /* Start off believing that the number will be exact. This changes
2884 to INEXACT if we see a decimal point or a hash. */
2885 enum t_exactness x = EXACT;
2886
2887 if (idx == len)
2888 return SCM_BOOL_F;
2889
2890 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
2891 {
2892 *p_idx = idx+5;
2893 return scm_inf ();
2894 }
2895
2896 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
2897 {
2898 /* Cobble up the fractional part. We might want to set the
2899 NaN's mantissa from it. */
2900 idx += 4;
2901 mem2uinteger (mem, &idx, 10, &x);
2902 *p_idx = idx;
2903 return scm_nan ();
2904 }
2905
2906 if (scm_i_string_ref (mem, idx) == '.')
2907 {
2908 if (radix != 10)
2909 return SCM_BOOL_F;
2910 else if (idx + 1 == len)
2911 return SCM_BOOL_F;
2912 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
2913 return SCM_BOOL_F;
2914 else
2915 result = mem2decimal_from_point (SCM_INUM0, mem,
2916 p_idx, &x);
2917 }
2918 else
2919 {
2920 SCM uinteger;
2921
2922 uinteger = mem2uinteger (mem, &idx, radix, &x);
2923 if (scm_is_false (uinteger))
2924 return SCM_BOOL_F;
2925
2926 if (idx == len)
2927 result = uinteger;
2928 else if (scm_i_string_ref (mem, idx) == '/')
2929 {
2930 SCM divisor;
2931
2932 idx++;
2933 if (idx == len)
2934 return SCM_BOOL_F;
2935
2936 divisor = mem2uinteger (mem, &idx, radix, &x);
2937 if (scm_is_false (divisor))
2938 return SCM_BOOL_F;
2939
2940 /* both are int/big here, I assume */
2941 result = scm_i_make_ratio (uinteger, divisor);
2942 }
2943 else if (radix == 10)
2944 {
2945 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
2946 if (scm_is_false (result))
2947 return SCM_BOOL_F;
2948 }
2949 else
2950 result = uinteger;
2951
2952 *p_idx = idx;
2953 }
2954
2955 /* Update *p_exactness if the number just read was inexact. This is
2956 important for complex numbers, so that a complex number is
2957 treated as inexact overall if either its real or imaginary part
2958 is inexact.
2959 */
2960 if (x == INEXACT)
2961 *p_exactness = x;
2962
2963 /* When returning an inexact zero, make sure it is represented as a
2964 floating point value so that we can change its sign.
2965 */
2966 if (scm_is_eq (result, SCM_INUM0) && *p_exactness == INEXACT)
2967 result = scm_from_double (0.0);
2968
2969 return result;
2970 }
2971
2972
2973 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2974
2975 static SCM
2976 mem2complex (SCM mem, unsigned int idx,
2977 unsigned int radix, enum t_exactness *p_exactness)
2978 {
2979 scm_t_wchar c;
2980 int sign = 0;
2981 SCM ureal;
2982 size_t len = scm_i_string_length (mem);
2983
2984 if (idx == len)
2985 return SCM_BOOL_F;
2986
2987 c = scm_i_string_ref (mem, idx);
2988 if (c == '+')
2989 {
2990 idx++;
2991 sign = 1;
2992 }
2993 else if (c == '-')
2994 {
2995 idx++;
2996 sign = -1;
2997 }
2998
2999 if (idx == len)
3000 return SCM_BOOL_F;
3001
3002 ureal = mem2ureal (mem, &idx, radix, p_exactness);
3003 if (scm_is_false (ureal))
3004 {
3005 /* input must be either +i or -i */
3006
3007 if (sign == 0)
3008 return SCM_BOOL_F;
3009
3010 if (scm_i_string_ref (mem, idx) == 'i'
3011 || scm_i_string_ref (mem, idx) == 'I')
3012 {
3013 idx++;
3014 if (idx != len)
3015 return SCM_BOOL_F;
3016
3017 return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign));
3018 }
3019 else
3020 return SCM_BOOL_F;
3021 }
3022 else
3023 {
3024 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3025 ureal = scm_difference (ureal, SCM_UNDEFINED);
3026
3027 if (idx == len)
3028 return ureal;
3029
3030 c = scm_i_string_ref (mem, idx);
3031 switch (c)
3032 {
3033 case 'i': case 'I':
3034 /* either +<ureal>i or -<ureal>i */
3035
3036 idx++;
3037 if (sign == 0)
3038 return SCM_BOOL_F;
3039 if (idx != len)
3040 return SCM_BOOL_F;
3041 return scm_make_rectangular (SCM_INUM0, ureal);
3042
3043 case '@':
3044 /* polar input: <real>@<real>. */
3045
3046 idx++;
3047 if (idx == len)
3048 return SCM_BOOL_F;
3049 else
3050 {
3051 int sign;
3052 SCM angle;
3053 SCM result;
3054
3055 c = scm_i_string_ref (mem, idx);
3056 if (c == '+')
3057 {
3058 idx++;
3059 if (idx == len)
3060 return SCM_BOOL_F;
3061 sign = 1;
3062 }
3063 else if (c == '-')
3064 {
3065 idx++;
3066 if (idx == len)
3067 return SCM_BOOL_F;
3068 sign = -1;
3069 }
3070 else
3071 sign = 1;
3072
3073 angle = mem2ureal (mem, &idx, radix, p_exactness);
3074 if (scm_is_false (angle))
3075 return SCM_BOOL_F;
3076 if (idx != len)
3077 return SCM_BOOL_F;
3078
3079 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3080 angle = scm_difference (angle, SCM_UNDEFINED);
3081
3082 result = scm_make_polar (ureal, angle);
3083 return result;
3084 }
3085 case '+':
3086 case '-':
3087 /* expecting input matching <real>[+-]<ureal>?i */
3088
3089 idx++;
3090 if (idx == len)
3091 return SCM_BOOL_F;
3092 else
3093 {
3094 int sign = (c == '+') ? 1 : -1;
3095 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
3096
3097 if (scm_is_false (imag))
3098 imag = SCM_I_MAKINUM (sign);
3099 else if (sign == -1 && scm_is_false (scm_nan_p (imag)))
3100 imag = scm_difference (imag, SCM_UNDEFINED);
3101
3102 if (idx == len)
3103 return SCM_BOOL_F;
3104 if (scm_i_string_ref (mem, idx) != 'i'
3105 && scm_i_string_ref (mem, idx) != 'I')
3106 return SCM_BOOL_F;
3107
3108 idx++;
3109 if (idx != len)
3110 return SCM_BOOL_F;
3111
3112 return scm_make_rectangular (ureal, imag);
3113 }
3114 default:
3115 return SCM_BOOL_F;
3116 }
3117 }
3118 }
3119
3120
3121 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3122
3123 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
3124
3125 SCM
3126 scm_i_string_to_number (SCM mem, unsigned int default_radix)
3127 {
3128 unsigned int idx = 0;
3129 unsigned int radix = NO_RADIX;
3130 enum t_exactness forced_x = NO_EXACTNESS;
3131 enum t_exactness implicit_x = EXACT;
3132 SCM result;
3133 size_t len = scm_i_string_length (mem);
3134
3135 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3136 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3137 {
3138 switch (scm_i_string_ref (mem, idx + 1))
3139 {
3140 case 'b': case 'B':
3141 if (radix != NO_RADIX)
3142 return SCM_BOOL_F;
3143 radix = DUAL;
3144 break;
3145 case 'd': case 'D':
3146 if (radix != NO_RADIX)
3147 return SCM_BOOL_F;
3148 radix = DEC;
3149 break;
3150 case 'i': case 'I':
3151 if (forced_x != NO_EXACTNESS)
3152 return SCM_BOOL_F;
3153 forced_x = INEXACT;
3154 break;
3155 case 'e': case 'E':
3156 if (forced_x != NO_EXACTNESS)
3157 return SCM_BOOL_F;
3158 forced_x = EXACT;
3159 break;
3160 case 'o': case 'O':
3161 if (radix != NO_RADIX)
3162 return SCM_BOOL_F;
3163 radix = OCT;
3164 break;
3165 case 'x': case 'X':
3166 if (radix != NO_RADIX)
3167 return SCM_BOOL_F;
3168 radix = HEX;
3169 break;
3170 default:
3171 return SCM_BOOL_F;
3172 }
3173 idx += 2;
3174 }
3175
3176 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3177 if (radix == NO_RADIX)
3178 result = mem2complex (mem, idx, default_radix, &implicit_x);
3179 else
3180 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3181
3182 if (scm_is_false (result))
3183 return SCM_BOOL_F;
3184
3185 switch (forced_x)
3186 {
3187 case EXACT:
3188 if (SCM_INEXACTP (result))
3189 return scm_inexact_to_exact (result);
3190 else
3191 return result;
3192 case INEXACT:
3193 if (SCM_INEXACTP (result))
3194 return result;
3195 else
3196 return scm_exact_to_inexact (result);
3197 case NO_EXACTNESS:
3198 default:
3199 if (implicit_x == INEXACT)
3200 {
3201 if (SCM_INEXACTP (result))
3202 return result;
3203 else
3204 return scm_exact_to_inexact (result);
3205 }
3206 else
3207 return result;
3208 }
3209 }
3210
3211 SCM
3212 scm_c_locale_stringn_to_number (const char* mem, size_t len,
3213 unsigned int default_radix)
3214 {
3215 SCM str = scm_from_locale_stringn (mem, len);
3216
3217 return scm_i_string_to_number (str, default_radix);
3218 }
3219
3220
3221 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3222 (SCM string, SCM radix),
3223 "Return a number of the maximally precise representation\n"
3224 "expressed by the given @var{string}. @var{radix} must be an\n"
3225 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3226 "is a default radix that may be overridden by an explicit radix\n"
3227 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3228 "supplied, then the default radix is 10. If string is not a\n"
3229 "syntactically valid notation for a number, then\n"
3230 "@code{string->number} returns @code{#f}.")
3231 #define FUNC_NAME s_scm_string_to_number
3232 {
3233 SCM answer;
3234 unsigned int base;
3235 SCM_VALIDATE_STRING (1, string);
3236
3237 if (SCM_UNBNDP (radix))
3238 base = 10;
3239 else
3240 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3241
3242 answer = scm_i_string_to_number (string, base);
3243 scm_remember_upto_here_1 (string);
3244 return answer;
3245 }
3246 #undef FUNC_NAME
3247
3248
3249 /*** END strs->nums ***/
3250
3251
3252 SCM
3253 scm_bigequal (SCM x, SCM y)
3254 {
3255 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3256 scm_remember_upto_here_2 (x, y);
3257 return scm_from_bool (0 == result);
3258 }
3259
3260 SCM
3261 scm_real_equalp (SCM x, SCM y)
3262 {
3263 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3264 }
3265
3266 SCM
3267 scm_complex_equalp (SCM x, SCM y)
3268 {
3269 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3270 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3271 }
3272
3273 SCM
3274 scm_i_fraction_equalp (SCM x, SCM y)
3275 {
3276 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3277 SCM_FRACTION_NUMERATOR (y)))
3278 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3279 SCM_FRACTION_DENOMINATOR (y))))
3280 return SCM_BOOL_F;
3281 else
3282 return SCM_BOOL_T;
3283 }
3284
3285
3286 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3287 (SCM x),
3288 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3289 "otherwise.")
3290 #define FUNC_NAME s_scm_number_p
3291 {
3292 return scm_from_bool (SCM_NUMBERP (x));
3293 }
3294 #undef FUNC_NAME
3295
3296 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3297 (SCM x),
3298 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3299 "otherwise. Note that the sets of real, rational and integer\n"
3300 "values form subsets of the set of complex numbers, i. e. the\n"
3301 "predicate will also be fulfilled if @var{x} is a real,\n"
3302 "rational or integer number.")
3303 #define FUNC_NAME s_scm_complex_p
3304 {
3305 /* all numbers are complex. */
3306 return scm_number_p (x);
3307 }
3308 #undef FUNC_NAME
3309
3310 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3311 (SCM x),
3312 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3313 "otherwise. Note that the set of integer values forms a subset of\n"
3314 "the set of real numbers, i. e. the predicate will also be\n"
3315 "fulfilled if @var{x} is an integer number.")
3316 #define FUNC_NAME s_scm_real_p
3317 {
3318 /* we can't represent irrational numbers. */
3319 return scm_rational_p (x);
3320 }
3321 #undef FUNC_NAME
3322
3323 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3324 (SCM x),
3325 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3326 "otherwise. Note that the set of integer values forms a subset of\n"
3327 "the set of rational numbers, i. e. the predicate will also be\n"
3328 "fulfilled if @var{x} is an integer number.")
3329 #define FUNC_NAME s_scm_rational_p
3330 {
3331 if (SCM_I_INUMP (x))
3332 return SCM_BOOL_T;
3333 else if (SCM_IMP (x))
3334 return SCM_BOOL_F;
3335 else if (SCM_BIGP (x))
3336 return SCM_BOOL_T;
3337 else if (SCM_FRACTIONP (x))
3338 return SCM_BOOL_T;
3339 else if (SCM_REALP (x))
3340 /* due to their limited precision, all floating point numbers are
3341 rational as well. */
3342 return SCM_BOOL_T;
3343 else
3344 return SCM_BOOL_F;
3345 }
3346 #undef FUNC_NAME
3347
3348 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3349 (SCM x),
3350 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3351 "else.")
3352 #define FUNC_NAME s_scm_integer_p
3353 {
3354 double r;
3355 if (SCM_I_INUMP (x))
3356 return SCM_BOOL_T;
3357 if (SCM_IMP (x))
3358 return SCM_BOOL_F;
3359 if (SCM_BIGP (x))
3360 return SCM_BOOL_T;
3361 if (!SCM_INEXACTP (x))
3362 return SCM_BOOL_F;
3363 if (SCM_COMPLEXP (x))
3364 return SCM_BOOL_F;
3365 r = SCM_REAL_VALUE (x);
3366 if (isinf (r))
3367 return SCM_BOOL_F;
3368 if (r == floor (r))
3369 return SCM_BOOL_T;
3370 return SCM_BOOL_F;
3371 }
3372 #undef FUNC_NAME
3373
3374
3375 SCM scm_i_num_eq_p (SCM, SCM, SCM);
3376 SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3377 (SCM x, SCM y, SCM rest),
3378 "Return @code{#t} if all parameters are numerically equal.")
3379 #define FUNC_NAME s_scm_i_num_eq_p
3380 {
3381 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3382 return SCM_BOOL_T;
3383 while (!scm_is_null (rest))
3384 {
3385 if (scm_is_false (scm_num_eq_p (x, y)))
3386 return SCM_BOOL_F;
3387 x = y;
3388 y = scm_car (rest);
3389 rest = scm_cdr (rest);
3390 }
3391 return scm_num_eq_p (x, y);
3392 }
3393 #undef FUNC_NAME
3394 SCM
3395 scm_num_eq_p (SCM x, SCM y)
3396 {
3397 again:
3398 if (SCM_I_INUMP (x))
3399 {
3400 scm_t_signed_bits xx = SCM_I_INUM (x);
3401 if (SCM_I_INUMP (y))
3402 {
3403 scm_t_signed_bits yy = SCM_I_INUM (y);
3404 return scm_from_bool (xx == yy);
3405 }
3406 else if (SCM_BIGP (y))
3407 return SCM_BOOL_F;
3408 else if (SCM_REALP (y))
3409 {
3410 /* On a 32-bit system an inum fits a double, we can cast the inum
3411 to a double and compare.
3412
3413 But on a 64-bit system an inum is bigger than a double and
3414 casting it to a double (call that dxx) will round. dxx is at
3415 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3416 an integer and fits a long. So we cast yy to a long and
3417 compare with plain xx.
3418
3419 An alternative (for any size system actually) would be to check
3420 yy is an integer (with floor) and is in range of an inum
3421 (compare against appropriate powers of 2) then test
3422 xx==(scm_t_signed_bits)yy. It's just a matter of which
3423 casts/comparisons might be fastest or easiest for the cpu. */
3424
3425 double yy = SCM_REAL_VALUE (y);
3426 return scm_from_bool ((double) xx == yy
3427 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3428 || xx == (scm_t_signed_bits) yy));
3429 }
3430 else if (SCM_COMPLEXP (y))
3431 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3432 && (0.0 == SCM_COMPLEX_IMAG (y)));
3433 else if (SCM_FRACTIONP (y))
3434 return SCM_BOOL_F;
3435 else
3436 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3437 }
3438 else if (SCM_BIGP (x))
3439 {
3440 if (SCM_I_INUMP (y))
3441 return SCM_BOOL_F;
3442 else if (SCM_BIGP (y))
3443 {
3444 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3445 scm_remember_upto_here_2 (x, y);
3446 return scm_from_bool (0 == cmp);
3447 }
3448 else if (SCM_REALP (y))
3449 {
3450 int cmp;
3451 if (isnan (SCM_REAL_VALUE (y)))
3452 return SCM_BOOL_F;
3453 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3454 scm_remember_upto_here_1 (x);
3455 return scm_from_bool (0 == cmp);
3456 }
3457 else if (SCM_COMPLEXP (y))
3458 {
3459 int cmp;
3460 if (0.0 != SCM_COMPLEX_IMAG (y))
3461 return SCM_BOOL_F;
3462 if (isnan (SCM_COMPLEX_REAL (y)))
3463 return SCM_BOOL_F;
3464 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3465 scm_remember_upto_here_1 (x);
3466 return scm_from_bool (0 == cmp);
3467 }
3468 else if (SCM_FRACTIONP (y))
3469 return SCM_BOOL_F;
3470 else
3471 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3472 }
3473 else if (SCM_REALP (x))
3474 {
3475 double xx = SCM_REAL_VALUE (x);
3476 if (SCM_I_INUMP (y))
3477 {
3478 /* see comments with inum/real above */
3479 scm_t_signed_bits yy = SCM_I_INUM (y);
3480 return scm_from_bool (xx == (double) yy
3481 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3482 || (scm_t_signed_bits) xx == yy));
3483 }
3484 else if (SCM_BIGP (y))
3485 {
3486 int cmp;
3487 if (isnan (SCM_REAL_VALUE (x)))
3488 return SCM_BOOL_F;
3489 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3490 scm_remember_upto_here_1 (y);
3491 return scm_from_bool (0 == cmp);
3492 }
3493 else if (SCM_REALP (y))
3494 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3495 else if (SCM_COMPLEXP (y))
3496 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3497 && (0.0 == SCM_COMPLEX_IMAG (y)));
3498 else if (SCM_FRACTIONP (y))
3499 {
3500 double xx = SCM_REAL_VALUE (x);
3501 if (isnan (xx))
3502 return SCM_BOOL_F;
3503 if (isinf (xx))
3504 return scm_from_bool (xx < 0.0);
3505 x = scm_inexact_to_exact (x); /* with x as frac or int */
3506 goto again;
3507 }
3508 else
3509 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3510 }
3511 else if (SCM_COMPLEXP (x))
3512 {
3513 if (SCM_I_INUMP (y))
3514 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3515 && (SCM_COMPLEX_IMAG (x) == 0.0));
3516 else if (SCM_BIGP (y))
3517 {
3518 int cmp;
3519 if (0.0 != SCM_COMPLEX_IMAG (x))
3520 return SCM_BOOL_F;
3521 if (isnan (SCM_COMPLEX_REAL (x)))
3522 return SCM_BOOL_F;
3523 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3524 scm_remember_upto_here_1 (y);
3525 return scm_from_bool (0 == cmp);
3526 }
3527 else if (SCM_REALP (y))
3528 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3529 && (SCM_COMPLEX_IMAG (x) == 0.0));
3530 else if (SCM_COMPLEXP (y))
3531 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3532 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3533 else if (SCM_FRACTIONP (y))
3534 {
3535 double xx;
3536 if (SCM_COMPLEX_IMAG (x) != 0.0)
3537 return SCM_BOOL_F;
3538 xx = SCM_COMPLEX_REAL (x);
3539 if (isnan (xx))
3540 return SCM_BOOL_F;
3541 if (isinf (xx))
3542 return scm_from_bool (xx < 0.0);
3543 x = scm_inexact_to_exact (x); /* with x as frac or int */
3544 goto again;
3545 }
3546 else
3547 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3548 }
3549 else if (SCM_FRACTIONP (x))
3550 {
3551 if (SCM_I_INUMP (y))
3552 return SCM_BOOL_F;
3553 else if (SCM_BIGP (y))
3554 return SCM_BOOL_F;
3555 else if (SCM_REALP (y))
3556 {
3557 double yy = SCM_REAL_VALUE (y);
3558 if (isnan (yy))
3559 return SCM_BOOL_F;
3560 if (isinf (yy))
3561 return scm_from_bool (0.0 < yy);
3562 y = scm_inexact_to_exact (y); /* with y as frac or int */
3563 goto again;
3564 }
3565 else if (SCM_COMPLEXP (y))
3566 {
3567 double yy;
3568 if (SCM_COMPLEX_IMAG (y) != 0.0)
3569 return SCM_BOOL_F;
3570 yy = SCM_COMPLEX_REAL (y);
3571 if (isnan (yy))
3572 return SCM_BOOL_F;
3573 if (isinf (yy))
3574 return scm_from_bool (0.0 < yy);
3575 y = scm_inexact_to_exact (y); /* with y as frac or int */
3576 goto again;
3577 }
3578 else if (SCM_FRACTIONP (y))
3579 return scm_i_fraction_equalp (x, y);
3580 else
3581 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3582 }
3583 else
3584 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
3585 }
3586
3587
3588 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3589 done are good for inums, but for bignums an answer can almost always be
3590 had by just examining a few high bits of the operands, as done by GMP in
3591 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3592 of the float exponent to take into account. */
3593
3594 SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
3595 SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3596 (SCM x, SCM y, SCM rest),
3597 "Return @code{#t} if the list of parameters is monotonically\n"
3598 "increasing.")
3599 #define FUNC_NAME s_scm_i_num_less_p
3600 {
3601 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3602 return SCM_BOOL_T;
3603 while (!scm_is_null (rest))
3604 {
3605 if (scm_is_false (scm_less_p (x, y)))
3606 return SCM_BOOL_F;
3607 x = y;
3608 y = scm_car (rest);
3609 rest = scm_cdr (rest);
3610 }
3611 return scm_less_p (x, y);
3612 }
3613 #undef FUNC_NAME
3614 SCM
3615 scm_less_p (SCM x, SCM y)
3616 {
3617 again:
3618 if (SCM_I_INUMP (x))
3619 {
3620 scm_t_inum xx = SCM_I_INUM (x);
3621 if (SCM_I_INUMP (y))
3622 {
3623 scm_t_inum yy = SCM_I_INUM (y);
3624 return scm_from_bool (xx < yy);
3625 }
3626 else if (SCM_BIGP (y))
3627 {
3628 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3629 scm_remember_upto_here_1 (y);
3630 return scm_from_bool (sgn > 0);
3631 }
3632 else if (SCM_REALP (y))
3633 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3634 else if (SCM_FRACTIONP (y))
3635 {
3636 /* "x < a/b" becomes "x*b < a" */
3637 int_frac:
3638 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3639 y = SCM_FRACTION_NUMERATOR (y);
3640 goto again;
3641 }
3642 else
3643 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3644 }
3645 else if (SCM_BIGP (x))
3646 {
3647 if (SCM_I_INUMP (y))
3648 {
3649 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3650 scm_remember_upto_here_1 (x);
3651 return scm_from_bool (sgn < 0);
3652 }
3653 else if (SCM_BIGP (y))
3654 {
3655 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3656 scm_remember_upto_here_2 (x, y);
3657 return scm_from_bool (cmp < 0);
3658 }
3659 else if (SCM_REALP (y))
3660 {
3661 int cmp;
3662 if (isnan (SCM_REAL_VALUE (y)))
3663 return SCM_BOOL_F;
3664 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3665 scm_remember_upto_here_1 (x);
3666 return scm_from_bool (cmp < 0);
3667 }
3668 else if (SCM_FRACTIONP (y))
3669 goto int_frac;
3670 else
3671 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3672 }
3673 else if (SCM_REALP (x))
3674 {
3675 if (SCM_I_INUMP (y))
3676 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3677 else if (SCM_BIGP (y))
3678 {
3679 int cmp;
3680 if (isnan (SCM_REAL_VALUE (x)))
3681 return SCM_BOOL_F;
3682 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3683 scm_remember_upto_here_1 (y);
3684 return scm_from_bool (cmp > 0);
3685 }
3686 else if (SCM_REALP (y))
3687 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3688 else if (SCM_FRACTIONP (y))
3689 {
3690 double xx = SCM_REAL_VALUE (x);
3691 if (isnan (xx))
3692 return SCM_BOOL_F;
3693 if (isinf (xx))
3694 return scm_from_bool (xx < 0.0);
3695 x = scm_inexact_to_exact (x); /* with x as frac or int */
3696 goto again;
3697 }
3698 else
3699 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3700 }
3701 else if (SCM_FRACTIONP (x))
3702 {
3703 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3704 {
3705 /* "a/b < y" becomes "a < y*b" */
3706 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3707 x = SCM_FRACTION_NUMERATOR (x);
3708 goto again;
3709 }
3710 else if (SCM_REALP (y))
3711 {
3712 double yy = SCM_REAL_VALUE (y);
3713 if (isnan (yy))
3714 return SCM_BOOL_F;
3715 if (isinf (yy))
3716 return scm_from_bool (0.0 < yy);
3717 y = scm_inexact_to_exact (y); /* with y as frac or int */
3718 goto again;
3719 }
3720 else if (SCM_FRACTIONP (y))
3721 {
3722 /* "a/b < c/d" becomes "a*d < c*b" */
3723 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3724 SCM_FRACTION_DENOMINATOR (y));
3725 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3726 SCM_FRACTION_DENOMINATOR (x));
3727 x = new_x;
3728 y = new_y;
3729 goto again;
3730 }
3731 else
3732 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3733 }
3734 else
3735 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
3736 }
3737
3738
3739 SCM scm_i_num_gr_p (SCM, SCM, SCM);
3740 SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3741 (SCM x, SCM y, SCM rest),
3742 "Return @code{#t} if the list of parameters is monotonically\n"
3743 "decreasing.")
3744 #define FUNC_NAME s_scm_i_num_gr_p
3745 {
3746 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3747 return SCM_BOOL_T;
3748 while (!scm_is_null (rest))
3749 {
3750 if (scm_is_false (scm_gr_p (x, y)))
3751 return SCM_BOOL_F;
3752 x = y;
3753 y = scm_car (rest);
3754 rest = scm_cdr (rest);
3755 }
3756 return scm_gr_p (x, y);
3757 }
3758 #undef FUNC_NAME
3759 #define FUNC_NAME s_scm_i_num_gr_p
3760 SCM
3761 scm_gr_p (SCM x, SCM y)
3762 {
3763 if (!SCM_NUMBERP (x))
3764 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3765 else if (!SCM_NUMBERP (y))
3766 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3767 else
3768 return scm_less_p (y, x);
3769 }
3770 #undef FUNC_NAME
3771
3772
3773 SCM scm_i_num_leq_p (SCM, SCM, SCM);
3774 SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3775 (SCM x, SCM y, SCM rest),
3776 "Return @code{#t} if the list of parameters is monotonically\n"
3777 "non-decreasing.")
3778 #define FUNC_NAME s_scm_i_num_leq_p
3779 {
3780 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3781 return SCM_BOOL_T;
3782 while (!scm_is_null (rest))
3783 {
3784 if (scm_is_false (scm_leq_p (x, y)))
3785 return SCM_BOOL_F;
3786 x = y;
3787 y = scm_car (rest);
3788 rest = scm_cdr (rest);
3789 }
3790 return scm_leq_p (x, y);
3791 }
3792 #undef FUNC_NAME
3793 #define FUNC_NAME s_scm_i_num_leq_p
3794 SCM
3795 scm_leq_p (SCM x, SCM y)
3796 {
3797 if (!SCM_NUMBERP (x))
3798 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3799 else if (!SCM_NUMBERP (y))
3800 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3801 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3802 return SCM_BOOL_F;
3803 else
3804 return scm_not (scm_less_p (y, x));
3805 }
3806 #undef FUNC_NAME
3807
3808
3809 SCM scm_i_num_geq_p (SCM, SCM, SCM);
3810 SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3811 (SCM x, SCM y, SCM rest),
3812 "Return @code{#t} if the list of parameters is monotonically\n"
3813 "non-increasing.")
3814 #define FUNC_NAME s_scm_i_num_geq_p
3815 {
3816 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3817 return SCM_BOOL_T;
3818 while (!scm_is_null (rest))
3819 {
3820 if (scm_is_false (scm_geq_p (x, y)))
3821 return SCM_BOOL_F;
3822 x = y;
3823 y = scm_car (rest);
3824 rest = scm_cdr (rest);
3825 }
3826 return scm_geq_p (x, y);
3827 }
3828 #undef FUNC_NAME
3829 #define FUNC_NAME s_scm_i_num_geq_p
3830 SCM
3831 scm_geq_p (SCM x, SCM y)
3832 {
3833 if (!SCM_NUMBERP (x))
3834 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3835 else if (!SCM_NUMBERP (y))
3836 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3837 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3838 return SCM_BOOL_F;
3839 else
3840 return scm_not (scm_less_p (x, y));
3841 }
3842 #undef FUNC_NAME
3843
3844
3845 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3846 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3847 * "zero."
3848 */
3849 SCM
3850 scm_zero_p (SCM z)
3851 {
3852 if (SCM_I_INUMP (z))
3853 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3854 else if (SCM_BIGP (z))
3855 return SCM_BOOL_F;
3856 else if (SCM_REALP (z))
3857 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3858 else if (SCM_COMPLEXP (z))
3859 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3860 && SCM_COMPLEX_IMAG (z) == 0.0);
3861 else if (SCM_FRACTIONP (z))
3862 return SCM_BOOL_F;
3863 else
3864 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3865 }
3866
3867
3868 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3869 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3870 * "zero."
3871 */
3872 SCM
3873 scm_positive_p (SCM x)
3874 {
3875 if (SCM_I_INUMP (x))
3876 return scm_from_bool (SCM_I_INUM (x) > 0);
3877 else if (SCM_BIGP (x))
3878 {
3879 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3880 scm_remember_upto_here_1 (x);
3881 return scm_from_bool (sgn > 0);
3882 }
3883 else if (SCM_REALP (x))
3884 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3885 else if (SCM_FRACTIONP (x))
3886 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3887 else
3888 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3889 }
3890
3891
3892 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3893 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3894 * "zero."
3895 */
3896 SCM
3897 scm_negative_p (SCM x)
3898 {
3899 if (SCM_I_INUMP (x))
3900 return scm_from_bool (SCM_I_INUM (x) < 0);
3901 else if (SCM_BIGP (x))
3902 {
3903 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3904 scm_remember_upto_here_1 (x);
3905 return scm_from_bool (sgn < 0);
3906 }
3907 else if (SCM_REALP (x))
3908 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3909 else if (SCM_FRACTIONP (x))
3910 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3911 else
3912 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3913 }
3914
3915
3916 /* scm_min and scm_max return an inexact when either argument is inexact, as
3917 required by r5rs. On that basis, for exact/inexact combinations the
3918 exact is converted to inexact to compare and possibly return. This is
3919 unlike scm_less_p above which takes some trouble to preserve all bits in
3920 its test, such trouble is not required for min and max. */
3921
3922 SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3923 (SCM x, SCM y, SCM rest),
3924 "Return the maximum of all parameter values.")
3925 #define FUNC_NAME s_scm_i_max
3926 {
3927 while (!scm_is_null (rest))
3928 { x = scm_max (x, y);
3929 y = scm_car (rest);
3930 rest = scm_cdr (rest);
3931 }
3932 return scm_max (x, y);
3933 }
3934 #undef FUNC_NAME
3935
3936 #define s_max s_scm_i_max
3937 #define g_max g_scm_i_max
3938
3939 SCM
3940 scm_max (SCM x, SCM y)
3941 {
3942 if (SCM_UNBNDP (y))
3943 {
3944 if (SCM_UNBNDP (x))
3945 SCM_WTA_DISPATCH_0 (g_max, s_max);
3946 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3947 return x;
3948 else
3949 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3950 }
3951
3952 if (SCM_I_INUMP (x))
3953 {
3954 scm_t_inum xx = SCM_I_INUM (x);
3955 if (SCM_I_INUMP (y))
3956 {
3957 scm_t_inum yy = SCM_I_INUM (y);
3958 return (xx < yy) ? y : x;
3959 }
3960 else if (SCM_BIGP (y))
3961 {
3962 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3963 scm_remember_upto_here_1 (y);
3964 return (sgn < 0) ? x : y;
3965 }
3966 else if (SCM_REALP (y))
3967 {
3968 double z = xx;
3969 /* if y==NaN then ">" is false and we return NaN */
3970 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3971 }
3972 else if (SCM_FRACTIONP (y))
3973 {
3974 use_less:
3975 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3976 }
3977 else
3978 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3979 }
3980 else if (SCM_BIGP (x))
3981 {
3982 if (SCM_I_INUMP (y))
3983 {
3984 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3985 scm_remember_upto_here_1 (x);
3986 return (sgn < 0) ? y : x;
3987 }
3988 else if (SCM_BIGP (y))
3989 {
3990 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3991 scm_remember_upto_here_2 (x, y);
3992 return (cmp > 0) ? x : y;
3993 }
3994 else if (SCM_REALP (y))
3995 {
3996 /* if y==NaN then xx>yy is false, so we return the NaN y */
3997 double xx, yy;
3998 big_real:
3999 xx = scm_i_big2dbl (x);
4000 yy = SCM_REAL_VALUE (y);
4001 return (xx > yy ? scm_from_double (xx) : y);
4002 }
4003 else if (SCM_FRACTIONP (y))
4004 {
4005 goto use_less;
4006 }
4007 else
4008 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4009 }
4010 else if (SCM_REALP (x))
4011 {
4012 if (SCM_I_INUMP (y))
4013 {
4014 double z = SCM_I_INUM (y);
4015 /* if x==NaN then "<" is false and we return NaN */
4016 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
4017 }
4018 else if (SCM_BIGP (y))
4019 {
4020 SCM_SWAP (x, y);
4021 goto big_real;
4022 }
4023 else if (SCM_REALP (y))
4024 {
4025 /* if x==NaN then our explicit check means we return NaN
4026 if y==NaN then ">" is false and we return NaN
4027 calling isnan is unavoidable, since it's the only way to know
4028 which of x or y causes any compares to be false */
4029 double xx = SCM_REAL_VALUE (x);
4030 return (isnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
4031 }
4032 else if (SCM_FRACTIONP (y))
4033 {
4034 double yy = scm_i_fraction2double (y);
4035 double xx = SCM_REAL_VALUE (x);
4036 return (xx < yy) ? scm_from_double (yy) : x;
4037 }
4038 else
4039 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4040 }
4041 else if (SCM_FRACTIONP (x))
4042 {
4043 if (SCM_I_INUMP (y))
4044 {
4045 goto use_less;
4046 }
4047 else if (SCM_BIGP (y))
4048 {
4049 goto use_less;
4050 }
4051 else if (SCM_REALP (y))
4052 {
4053 double xx = scm_i_fraction2double (x);
4054 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
4055 }
4056 else if (SCM_FRACTIONP (y))
4057 {
4058 goto use_less;
4059 }
4060 else
4061 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4062 }
4063 else
4064 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
4065 }
4066
4067
4068 SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4069 (SCM x, SCM y, SCM rest),
4070 "Return the minimum of all parameter values.")
4071 #define FUNC_NAME s_scm_i_min
4072 {
4073 while (!scm_is_null (rest))
4074 { x = scm_min (x, y);
4075 y = scm_car (rest);
4076 rest = scm_cdr (rest);
4077 }
4078 return scm_min (x, y);
4079 }
4080 #undef FUNC_NAME
4081
4082 #define s_min s_scm_i_min
4083 #define g_min g_scm_i_min
4084
4085 SCM
4086 scm_min (SCM x, SCM y)
4087 {
4088 if (SCM_UNBNDP (y))
4089 {
4090 if (SCM_UNBNDP (x))
4091 SCM_WTA_DISPATCH_0 (g_min, s_min);
4092 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
4093 return x;
4094 else
4095 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
4096 }
4097
4098 if (SCM_I_INUMP (x))
4099 {
4100 scm_t_inum xx = SCM_I_INUM (x);
4101 if (SCM_I_INUMP (y))
4102 {
4103 scm_t_inum yy = SCM_I_INUM (y);
4104 return (xx < yy) ? x : y;
4105 }
4106 else if (SCM_BIGP (y))
4107 {
4108 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4109 scm_remember_upto_here_1 (y);
4110 return (sgn < 0) ? y : x;
4111 }
4112 else if (SCM_REALP (y))
4113 {
4114 double z = xx;
4115 /* if y==NaN then "<" is false and we return NaN */
4116 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
4117 }
4118 else if (SCM_FRACTIONP (y))
4119 {
4120 use_less:
4121 return (scm_is_false (scm_less_p (x, y)) ? y : x);
4122 }
4123 else
4124 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4125 }
4126 else if (SCM_BIGP (x))
4127 {
4128 if (SCM_I_INUMP (y))
4129 {
4130 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4131 scm_remember_upto_here_1 (x);
4132 return (sgn < 0) ? x : y;
4133 }
4134 else if (SCM_BIGP (y))
4135 {
4136 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4137 scm_remember_upto_here_2 (x, y);
4138 return (cmp > 0) ? y : x;
4139 }
4140 else if (SCM_REALP (y))
4141 {
4142 /* if y==NaN then xx<yy is false, so we return the NaN y */
4143 double xx, yy;
4144 big_real:
4145 xx = scm_i_big2dbl (x);
4146 yy = SCM_REAL_VALUE (y);
4147 return (xx < yy ? scm_from_double (xx) : y);
4148 }
4149 else if (SCM_FRACTIONP (y))
4150 {
4151 goto use_less;
4152 }
4153 else
4154 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4155 }
4156 else if (SCM_REALP (x))
4157 {
4158 if (SCM_I_INUMP (y))
4159 {
4160 double z = SCM_I_INUM (y);
4161 /* if x==NaN then "<" is false and we return NaN */
4162 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
4163 }
4164 else if (SCM_BIGP (y))
4165 {
4166 SCM_SWAP (x, y);
4167 goto big_real;
4168 }
4169 else if (SCM_REALP (y))
4170 {
4171 /* if x==NaN then our explicit check means we return NaN
4172 if y==NaN then "<" is false and we return NaN
4173 calling isnan is unavoidable, since it's the only way to know
4174 which of x or y causes any compares to be false */
4175 double xx = SCM_REAL_VALUE (x);
4176 return (isnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
4177 }
4178 else if (SCM_FRACTIONP (y))
4179 {
4180 double yy = scm_i_fraction2double (y);
4181 double xx = SCM_REAL_VALUE (x);
4182 return (yy < xx) ? scm_from_double (yy) : x;
4183 }
4184 else
4185 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4186 }
4187 else if (SCM_FRACTIONP (x))
4188 {
4189 if (SCM_I_INUMP (y))
4190 {
4191 goto use_less;
4192 }
4193 else if (SCM_BIGP (y))
4194 {
4195 goto use_less;
4196 }
4197 else if (SCM_REALP (y))
4198 {
4199 double xx = scm_i_fraction2double (x);
4200 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
4201 }
4202 else if (SCM_FRACTIONP (y))
4203 {
4204 goto use_less;
4205 }
4206 else
4207 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4208 }
4209 else
4210 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
4211 }
4212
4213
4214 SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4215 (SCM x, SCM y, SCM rest),
4216 "Return the sum of all parameter values. Return 0 if called without\n"
4217 "any parameters." )
4218 #define FUNC_NAME s_scm_i_sum
4219 {
4220 while (!scm_is_null (rest))
4221 { x = scm_sum (x, y);
4222 y = scm_car (rest);
4223 rest = scm_cdr (rest);
4224 }
4225 return scm_sum (x, y);
4226 }
4227 #undef FUNC_NAME
4228
4229 #define s_sum s_scm_i_sum
4230 #define g_sum g_scm_i_sum
4231
4232 SCM
4233 scm_sum (SCM x, SCM y)
4234 {
4235 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4236 {
4237 if (SCM_NUMBERP (x)) return x;
4238 if (SCM_UNBNDP (x)) return SCM_INUM0;
4239 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
4240 }
4241
4242 if (SCM_LIKELY (SCM_I_INUMP (x)))
4243 {
4244 if (SCM_LIKELY (SCM_I_INUMP (y)))
4245 {
4246 scm_t_inum xx = SCM_I_INUM (x);
4247 scm_t_inum yy = SCM_I_INUM (y);
4248 scm_t_inum z = xx + yy;
4249 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_inum2big (z);
4250 }
4251 else if (SCM_BIGP (y))
4252 {
4253 SCM_SWAP (x, y);
4254 goto add_big_inum;
4255 }
4256 else if (SCM_REALP (y))
4257 {
4258 scm_t_inum xx = SCM_I_INUM (x);
4259 return scm_from_double (xx + SCM_REAL_VALUE (y));
4260 }
4261 else if (SCM_COMPLEXP (y))
4262 {
4263 scm_t_inum xx = SCM_I_INUM (x);
4264 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
4265 SCM_COMPLEX_IMAG (y));
4266 }
4267 else if (SCM_FRACTIONP (y))
4268 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4269 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4270 SCM_FRACTION_DENOMINATOR (y));
4271 else
4272 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4273 } else if (SCM_BIGP (x))
4274 {
4275 if (SCM_I_INUMP (y))
4276 {
4277 scm_t_inum inum;
4278 int bigsgn;
4279 add_big_inum:
4280 inum = SCM_I_INUM (y);
4281 if (inum == 0)
4282 return x;
4283 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4284 if (inum < 0)
4285 {
4286 SCM result = scm_i_mkbig ();
4287 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4288 scm_remember_upto_here_1 (x);
4289 /* we know the result will have to be a bignum */
4290 if (bigsgn == -1)
4291 return result;
4292 return scm_i_normbig (result);
4293 }
4294 else
4295 {
4296 SCM result = scm_i_mkbig ();
4297 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4298 scm_remember_upto_here_1 (x);
4299 /* we know the result will have to be a bignum */
4300 if (bigsgn == 1)
4301 return result;
4302 return scm_i_normbig (result);
4303 }
4304 }
4305 else if (SCM_BIGP (y))
4306 {
4307 SCM result = scm_i_mkbig ();
4308 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4309 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4310 mpz_add (SCM_I_BIG_MPZ (result),
4311 SCM_I_BIG_MPZ (x),
4312 SCM_I_BIG_MPZ (y));
4313 scm_remember_upto_here_2 (x, y);
4314 /* we know the result will have to be a bignum */
4315 if (sgn_x == sgn_y)
4316 return result;
4317 return scm_i_normbig (result);
4318 }
4319 else if (SCM_REALP (y))
4320 {
4321 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4322 scm_remember_upto_here_1 (x);
4323 return scm_from_double (result);
4324 }
4325 else if (SCM_COMPLEXP (y))
4326 {
4327 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4328 + SCM_COMPLEX_REAL (y));
4329 scm_remember_upto_here_1 (x);
4330 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4331 }
4332 else if (SCM_FRACTIONP (y))
4333 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4334 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4335 SCM_FRACTION_DENOMINATOR (y));
4336 else
4337 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4338 }
4339 else if (SCM_REALP (x))
4340 {
4341 if (SCM_I_INUMP (y))
4342 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4343 else if (SCM_BIGP (y))
4344 {
4345 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4346 scm_remember_upto_here_1 (y);
4347 return scm_from_double (result);
4348 }
4349 else if (SCM_REALP (y))
4350 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4351 else if (SCM_COMPLEXP (y))
4352 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4353 SCM_COMPLEX_IMAG (y));
4354 else if (SCM_FRACTIONP (y))
4355 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4356 else
4357 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4358 }
4359 else if (SCM_COMPLEXP (x))
4360 {
4361 if (SCM_I_INUMP (y))
4362 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4363 SCM_COMPLEX_IMAG (x));
4364 else if (SCM_BIGP (y))
4365 {
4366 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4367 + SCM_COMPLEX_REAL (x));
4368 scm_remember_upto_here_1 (y);
4369 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4370 }
4371 else if (SCM_REALP (y))
4372 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4373 SCM_COMPLEX_IMAG (x));
4374 else if (SCM_COMPLEXP (y))
4375 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4376 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4377 else if (SCM_FRACTIONP (y))
4378 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4379 SCM_COMPLEX_IMAG (x));
4380 else
4381 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4382 }
4383 else if (SCM_FRACTIONP (x))
4384 {
4385 if (SCM_I_INUMP (y))
4386 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4387 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4388 SCM_FRACTION_DENOMINATOR (x));
4389 else if (SCM_BIGP (y))
4390 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4391 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4392 SCM_FRACTION_DENOMINATOR (x));
4393 else if (SCM_REALP (y))
4394 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4395 else if (SCM_COMPLEXP (y))
4396 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4397 SCM_COMPLEX_IMAG (y));
4398 else if (SCM_FRACTIONP (y))
4399 /* a/b + c/d = (ad + bc) / bd */
4400 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4401 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4402 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4403 else
4404 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4405 }
4406 else
4407 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4408 }
4409
4410
4411 SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4412 (SCM x),
4413 "Return @math{@var{x}+1}.")
4414 #define FUNC_NAME s_scm_oneplus
4415 {
4416 return scm_sum (x, SCM_INUM1);
4417 }
4418 #undef FUNC_NAME
4419
4420
4421 SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4422 (SCM x, SCM y, SCM rest),
4423 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4424 "the sum of all but the first argument are subtracted from the first\n"
4425 "argument.")
4426 #define FUNC_NAME s_scm_i_difference
4427 {
4428 while (!scm_is_null (rest))
4429 { x = scm_difference (x, y);
4430 y = scm_car (rest);
4431 rest = scm_cdr (rest);
4432 }
4433 return scm_difference (x, y);
4434 }
4435 #undef FUNC_NAME
4436
4437 #define s_difference s_scm_i_difference
4438 #define g_difference g_scm_i_difference
4439
4440 SCM
4441 scm_difference (SCM x, SCM y)
4442 #define FUNC_NAME s_difference
4443 {
4444 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4445 {
4446 if (SCM_UNBNDP (x))
4447 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4448 else
4449 if (SCM_I_INUMP (x))
4450 {
4451 scm_t_inum xx = -SCM_I_INUM (x);
4452 if (SCM_FIXABLE (xx))
4453 return SCM_I_MAKINUM (xx);
4454 else
4455 return scm_i_inum2big (xx);
4456 }
4457 else if (SCM_BIGP (x))
4458 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4459 bignum, but negating that gives a fixnum. */
4460 return scm_i_normbig (scm_i_clonebig (x, 0));
4461 else if (SCM_REALP (x))
4462 return scm_from_double (-SCM_REAL_VALUE (x));
4463 else if (SCM_COMPLEXP (x))
4464 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4465 -SCM_COMPLEX_IMAG (x));
4466 else if (SCM_FRACTIONP (x))
4467 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4468 SCM_FRACTION_DENOMINATOR (x));
4469 else
4470 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4471 }
4472
4473 if (SCM_LIKELY (SCM_I_INUMP (x)))
4474 {
4475 if (SCM_LIKELY (SCM_I_INUMP (y)))
4476 {
4477 scm_t_inum xx = SCM_I_INUM (x);
4478 scm_t_inum yy = SCM_I_INUM (y);
4479 scm_t_inum z = xx - yy;
4480 if (SCM_FIXABLE (z))
4481 return SCM_I_MAKINUM (z);
4482 else
4483 return scm_i_inum2big (z);
4484 }
4485 else if (SCM_BIGP (y))
4486 {
4487 /* inum-x - big-y */
4488 scm_t_inum xx = SCM_I_INUM (x);
4489
4490 if (xx == 0)
4491 {
4492 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4493 bignum, but negating that gives a fixnum. */
4494 return scm_i_normbig (scm_i_clonebig (y, 0));
4495 }
4496 else
4497 {
4498 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4499 SCM result = scm_i_mkbig ();
4500
4501 if (xx >= 0)
4502 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4503 else
4504 {
4505 /* x - y == -(y + -x) */
4506 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4507 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4508 }
4509 scm_remember_upto_here_1 (y);
4510
4511 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4512 /* we know the result will have to be a bignum */
4513 return result;
4514 else
4515 return scm_i_normbig (result);
4516 }
4517 }
4518 else if (SCM_REALP (y))
4519 {
4520 scm_t_inum xx = SCM_I_INUM (x);
4521 return scm_from_double (xx - SCM_REAL_VALUE (y));
4522 }
4523 else if (SCM_COMPLEXP (y))
4524 {
4525 scm_t_inum xx = SCM_I_INUM (x);
4526 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4527 - SCM_COMPLEX_IMAG (y));
4528 }
4529 else if (SCM_FRACTIONP (y))
4530 /* a - b/c = (ac - b) / c */
4531 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4532 SCM_FRACTION_NUMERATOR (y)),
4533 SCM_FRACTION_DENOMINATOR (y));
4534 else
4535 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4536 }
4537 else if (SCM_BIGP (x))
4538 {
4539 if (SCM_I_INUMP (y))
4540 {
4541 /* big-x - inum-y */
4542 scm_t_inum yy = SCM_I_INUM (y);
4543 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4544
4545 scm_remember_upto_here_1 (x);
4546 if (sgn_x == 0)
4547 return (SCM_FIXABLE (-yy) ?
4548 SCM_I_MAKINUM (-yy) : scm_from_inum (-yy));
4549 else
4550 {
4551 SCM result = scm_i_mkbig ();
4552
4553 if (yy >= 0)
4554 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4555 else
4556 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4557 scm_remember_upto_here_1 (x);
4558
4559 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4560 /* we know the result will have to be a bignum */
4561 return result;
4562 else
4563 return scm_i_normbig (result);
4564 }
4565 }
4566 else if (SCM_BIGP (y))
4567 {
4568 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4569 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4570 SCM result = scm_i_mkbig ();
4571 mpz_sub (SCM_I_BIG_MPZ (result),
4572 SCM_I_BIG_MPZ (x),
4573 SCM_I_BIG_MPZ (y));
4574 scm_remember_upto_here_2 (x, y);
4575 /* we know the result will have to be a bignum */
4576 if ((sgn_x == 1) && (sgn_y == -1))
4577 return result;
4578 if ((sgn_x == -1) && (sgn_y == 1))
4579 return result;
4580 return scm_i_normbig (result);
4581 }
4582 else if (SCM_REALP (y))
4583 {
4584 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4585 scm_remember_upto_here_1 (x);
4586 return scm_from_double (result);
4587 }
4588 else if (SCM_COMPLEXP (y))
4589 {
4590 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4591 - SCM_COMPLEX_REAL (y));
4592 scm_remember_upto_here_1 (x);
4593 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4594 }
4595 else if (SCM_FRACTIONP (y))
4596 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4597 SCM_FRACTION_NUMERATOR (y)),
4598 SCM_FRACTION_DENOMINATOR (y));
4599 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4600 }
4601 else if (SCM_REALP (x))
4602 {
4603 if (SCM_I_INUMP (y))
4604 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4605 else if (SCM_BIGP (y))
4606 {
4607 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4608 scm_remember_upto_here_1 (x);
4609 return scm_from_double (result);
4610 }
4611 else if (SCM_REALP (y))
4612 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4613 else if (SCM_COMPLEXP (y))
4614 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4615 -SCM_COMPLEX_IMAG (y));
4616 else if (SCM_FRACTIONP (y))
4617 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4618 else
4619 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4620 }
4621 else if (SCM_COMPLEXP (x))
4622 {
4623 if (SCM_I_INUMP (y))
4624 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4625 SCM_COMPLEX_IMAG (x));
4626 else if (SCM_BIGP (y))
4627 {
4628 double real_part = (SCM_COMPLEX_REAL (x)
4629 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4630 scm_remember_upto_here_1 (x);
4631 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4632 }
4633 else if (SCM_REALP (y))
4634 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4635 SCM_COMPLEX_IMAG (x));
4636 else if (SCM_COMPLEXP (y))
4637 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4638 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4639 else if (SCM_FRACTIONP (y))
4640 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4641 SCM_COMPLEX_IMAG (x));
4642 else
4643 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4644 }
4645 else if (SCM_FRACTIONP (x))
4646 {
4647 if (SCM_I_INUMP (y))
4648 /* a/b - c = (a - cb) / b */
4649 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4650 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4651 SCM_FRACTION_DENOMINATOR (x));
4652 else if (SCM_BIGP (y))
4653 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4654 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4655 SCM_FRACTION_DENOMINATOR (x));
4656 else if (SCM_REALP (y))
4657 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4658 else if (SCM_COMPLEXP (y))
4659 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4660 -SCM_COMPLEX_IMAG (y));
4661 else if (SCM_FRACTIONP (y))
4662 /* a/b - c/d = (ad - bc) / bd */
4663 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4664 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4665 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4666 else
4667 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4668 }
4669 else
4670 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4671 }
4672 #undef FUNC_NAME
4673
4674
4675 SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4676 (SCM x),
4677 "Return @math{@var{x}-1}.")
4678 #define FUNC_NAME s_scm_oneminus
4679 {
4680 return scm_difference (x, SCM_INUM1);
4681 }
4682 #undef FUNC_NAME
4683
4684
4685 SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4686 (SCM x, SCM y, SCM rest),
4687 "Return the product of all arguments. If called without arguments,\n"
4688 "1 is returned.")
4689 #define FUNC_NAME s_scm_i_product
4690 {
4691 while (!scm_is_null (rest))
4692 { x = scm_product (x, y);
4693 y = scm_car (rest);
4694 rest = scm_cdr (rest);
4695 }
4696 return scm_product (x, y);
4697 }
4698 #undef FUNC_NAME
4699
4700 #define s_product s_scm_i_product
4701 #define g_product g_scm_i_product
4702
4703 SCM
4704 scm_product (SCM x, SCM y)
4705 {
4706 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4707 {
4708 if (SCM_UNBNDP (x))
4709 return SCM_I_MAKINUM (1L);
4710 else if (SCM_NUMBERP (x))
4711 return x;
4712 else
4713 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4714 }
4715
4716 if (SCM_LIKELY (SCM_I_INUMP (x)))
4717 {
4718 scm_t_inum xx;
4719
4720 intbig:
4721 xx = SCM_I_INUM (x);
4722
4723 switch (xx)
4724 {
4725 case 0: return x; break;
4726 case 1: return y; break;
4727 /*
4728 * The following case (x = -1) is important for more than
4729 * just optimization. It handles the case of negating
4730 * (+ 1 most-positive-fixnum) aka (- most-negative-fixnum),
4731 * which is a bignum that must be changed back into a fixnum.
4732 * Failure to do so will cause the following to return #f:
4733 * (= most-negative-fixnum (* -1 (- most-negative-fixnum)))
4734 */
4735 case -1:
4736 return scm_difference(y, SCM_UNDEFINED);
4737 break;
4738 }
4739
4740 if (SCM_LIKELY (SCM_I_INUMP (y)))
4741 {
4742 scm_t_inum yy = SCM_I_INUM (y);
4743 scm_t_inum kk = xx * yy;
4744 SCM k = SCM_I_MAKINUM (kk);
4745 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4746 return k;
4747 else
4748 {
4749 SCM result = scm_i_inum2big (xx);
4750 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4751 return scm_i_normbig (result);
4752 }
4753 }
4754 else if (SCM_BIGP (y))
4755 {
4756 SCM result = scm_i_mkbig ();
4757 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4758 scm_remember_upto_here_1 (y);
4759 return result;
4760 }
4761 else if (SCM_REALP (y))
4762 return scm_from_double (xx * SCM_REAL_VALUE (y));
4763 else if (SCM_COMPLEXP (y))
4764 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4765 xx * SCM_COMPLEX_IMAG (y));
4766 else if (SCM_FRACTIONP (y))
4767 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4768 SCM_FRACTION_DENOMINATOR (y));
4769 else
4770 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4771 }
4772 else if (SCM_BIGP (x))
4773 {
4774 if (SCM_I_INUMP (y))
4775 {
4776 SCM_SWAP (x, y);
4777 goto intbig;
4778 }
4779 else if (SCM_BIGP (y))
4780 {
4781 SCM result = scm_i_mkbig ();
4782 mpz_mul (SCM_I_BIG_MPZ (result),
4783 SCM_I_BIG_MPZ (x),
4784 SCM_I_BIG_MPZ (y));
4785 scm_remember_upto_here_2 (x, y);
4786 return result;
4787 }
4788 else if (SCM_REALP (y))
4789 {
4790 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4791 scm_remember_upto_here_1 (x);
4792 return scm_from_double (result);
4793 }
4794 else if (SCM_COMPLEXP (y))
4795 {
4796 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4797 scm_remember_upto_here_1 (x);
4798 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4799 z * SCM_COMPLEX_IMAG (y));
4800 }
4801 else if (SCM_FRACTIONP (y))
4802 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4803 SCM_FRACTION_DENOMINATOR (y));
4804 else
4805 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4806 }
4807 else if (SCM_REALP (x))
4808 {
4809 if (SCM_I_INUMP (y))
4810 {
4811 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4812 if (scm_is_eq (y, SCM_INUM0))
4813 return y;
4814 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4815 }
4816 else if (SCM_BIGP (y))
4817 {
4818 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4819 scm_remember_upto_here_1 (y);
4820 return scm_from_double (result);
4821 }
4822 else if (SCM_REALP (y))
4823 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4824 else if (SCM_COMPLEXP (y))
4825 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4826 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4827 else if (SCM_FRACTIONP (y))
4828 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4829 else
4830 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4831 }
4832 else if (SCM_COMPLEXP (x))
4833 {
4834 if (SCM_I_INUMP (y))
4835 {
4836 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4837 if (scm_is_eq (y, SCM_INUM0))
4838 return y;
4839 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4840 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4841 }
4842 else if (SCM_BIGP (y))
4843 {
4844 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4845 scm_remember_upto_here_1 (y);
4846 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4847 z * SCM_COMPLEX_IMAG (x));
4848 }
4849 else if (SCM_REALP (y))
4850 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4851 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4852 else if (SCM_COMPLEXP (y))
4853 {
4854 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4855 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4856 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4857 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4858 }
4859 else if (SCM_FRACTIONP (y))
4860 {
4861 double yy = scm_i_fraction2double (y);
4862 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4863 yy * SCM_COMPLEX_IMAG (x));
4864 }
4865 else
4866 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4867 }
4868 else if (SCM_FRACTIONP (x))
4869 {
4870 if (SCM_I_INUMP (y))
4871 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4872 SCM_FRACTION_DENOMINATOR (x));
4873 else if (SCM_BIGP (y))
4874 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4875 SCM_FRACTION_DENOMINATOR (x));
4876 else if (SCM_REALP (y))
4877 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4878 else if (SCM_COMPLEXP (y))
4879 {
4880 double xx = scm_i_fraction2double (x);
4881 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4882 xx * SCM_COMPLEX_IMAG (y));
4883 }
4884 else if (SCM_FRACTIONP (y))
4885 /* a/b * c/d = ac / bd */
4886 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4887 SCM_FRACTION_NUMERATOR (y)),
4888 scm_product (SCM_FRACTION_DENOMINATOR (x),
4889 SCM_FRACTION_DENOMINATOR (y)));
4890 else
4891 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4892 }
4893 else
4894 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4895 }
4896
4897 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4898 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4899 #define ALLOW_DIVIDE_BY_ZERO
4900 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4901 #endif
4902
4903 /* The code below for complex division is adapted from the GNU
4904 libstdc++, which adapted it from f2c's libF77, and is subject to
4905 this copyright: */
4906
4907 /****************************************************************
4908 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4909
4910 Permission to use, copy, modify, and distribute this software
4911 and its documentation for any purpose and without fee is hereby
4912 granted, provided that the above copyright notice appear in all
4913 copies and that both that the copyright notice and this
4914 permission notice and warranty disclaimer appear in supporting
4915 documentation, and that the names of AT&T Bell Laboratories or
4916 Bellcore or any of their entities not be used in advertising or
4917 publicity pertaining to distribution of the software without
4918 specific, written prior permission.
4919
4920 AT&T and Bellcore disclaim all warranties with regard to this
4921 software, including all implied warranties of merchantability
4922 and fitness. In no event shall AT&T or Bellcore be liable for
4923 any special, indirect or consequential damages or any damages
4924 whatsoever resulting from loss of use, data or profits, whether
4925 in an action of contract, negligence or other tortious action,
4926 arising out of or in connection with the use or performance of
4927 this software.
4928 ****************************************************************/
4929
4930 SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4931 (SCM x, SCM y, SCM rest),
4932 "Divide the first argument by the product of the remaining\n"
4933 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4934 "returned.")
4935 #define FUNC_NAME s_scm_i_divide
4936 {
4937 while (!scm_is_null (rest))
4938 { x = scm_divide (x, y);
4939 y = scm_car (rest);
4940 rest = scm_cdr (rest);
4941 }
4942 return scm_divide (x, y);
4943 }
4944 #undef FUNC_NAME
4945
4946 #define s_divide s_scm_i_divide
4947 #define g_divide g_scm_i_divide
4948
4949 static SCM
4950 do_divide (SCM x, SCM y, int inexact)
4951 #define FUNC_NAME s_divide
4952 {
4953 double a;
4954
4955 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4956 {
4957 if (SCM_UNBNDP (x))
4958 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4959 else if (SCM_I_INUMP (x))
4960 {
4961 scm_t_inum xx = SCM_I_INUM (x);
4962 if (xx == 1 || xx == -1)
4963 return x;
4964 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4965 else if (xx == 0)
4966 scm_num_overflow (s_divide);
4967 #endif
4968 else
4969 {
4970 if (inexact)
4971 return scm_from_double (1.0 / (double) xx);
4972 else return scm_i_make_ratio (SCM_INUM1, x);
4973 }
4974 }
4975 else if (SCM_BIGP (x))
4976 {
4977 if (inexact)
4978 return scm_from_double (1.0 / scm_i_big2dbl (x));
4979 else return scm_i_make_ratio (SCM_INUM1, x);
4980 }
4981 else if (SCM_REALP (x))
4982 {
4983 double xx = SCM_REAL_VALUE (x);
4984 #ifndef ALLOW_DIVIDE_BY_ZERO
4985 if (xx == 0.0)
4986 scm_num_overflow (s_divide);
4987 else
4988 #endif
4989 return scm_from_double (1.0 / xx);
4990 }
4991 else if (SCM_COMPLEXP (x))
4992 {
4993 double r = SCM_COMPLEX_REAL (x);
4994 double i = SCM_COMPLEX_IMAG (x);
4995 if (fabs(r) <= fabs(i))
4996 {
4997 double t = r / i;
4998 double d = i * (1.0 + t * t);
4999 return scm_c_make_rectangular (t / d, -1.0 / d);
5000 }
5001 else
5002 {
5003 double t = i / r;
5004 double d = r * (1.0 + t * t);
5005 return scm_c_make_rectangular (1.0 / d, -t / d);
5006 }
5007 }
5008 else if (SCM_FRACTIONP (x))
5009 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
5010 SCM_FRACTION_NUMERATOR (x));
5011 else
5012 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
5013 }
5014
5015 if (SCM_LIKELY (SCM_I_INUMP (x)))
5016 {
5017 scm_t_inum xx = SCM_I_INUM (x);
5018 if (SCM_LIKELY (SCM_I_INUMP (y)))
5019 {
5020 scm_t_inum yy = SCM_I_INUM (y);
5021 if (yy == 0)
5022 {
5023 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5024 scm_num_overflow (s_divide);
5025 #else
5026 return scm_from_double ((double) xx / (double) yy);
5027 #endif
5028 }
5029 else if (xx % yy != 0)
5030 {
5031 if (inexact)
5032 return scm_from_double ((double) xx / (double) yy);
5033 else return scm_i_make_ratio (x, y);
5034 }
5035 else
5036 {
5037 scm_t_inum z = xx / yy;
5038 if (SCM_FIXABLE (z))
5039 return SCM_I_MAKINUM (z);
5040 else
5041 return scm_i_inum2big (z);
5042 }
5043 }
5044 else if (SCM_BIGP (y))
5045 {
5046 if (inexact)
5047 return scm_from_double ((double) xx / scm_i_big2dbl (y));
5048 else return scm_i_make_ratio (x, y);
5049 }
5050 else if (SCM_REALP (y))
5051 {
5052 double yy = SCM_REAL_VALUE (y);
5053 #ifndef ALLOW_DIVIDE_BY_ZERO
5054 if (yy == 0.0)
5055 scm_num_overflow (s_divide);
5056 else
5057 #endif
5058 return scm_from_double ((double) xx / yy);
5059 }
5060 else if (SCM_COMPLEXP (y))
5061 {
5062 a = xx;
5063 complex_div: /* y _must_ be a complex number */
5064 {
5065 double r = SCM_COMPLEX_REAL (y);
5066 double i = SCM_COMPLEX_IMAG (y);
5067 if (fabs(r) <= fabs(i))
5068 {
5069 double t = r / i;
5070 double d = i * (1.0 + t * t);
5071 return scm_c_make_rectangular ((a * t) / d, -a / d);
5072 }
5073 else
5074 {
5075 double t = i / r;
5076 double d = r * (1.0 + t * t);
5077 return scm_c_make_rectangular (a / d, -(a * t) / d);
5078 }
5079 }
5080 }
5081 else if (SCM_FRACTIONP (y))
5082 /* a / b/c = ac / b */
5083 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
5084 SCM_FRACTION_NUMERATOR (y));
5085 else
5086 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5087 }
5088 else if (SCM_BIGP (x))
5089 {
5090 if (SCM_I_INUMP (y))
5091 {
5092 scm_t_inum yy = SCM_I_INUM (y);
5093 if (yy == 0)
5094 {
5095 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5096 scm_num_overflow (s_divide);
5097 #else
5098 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5099 scm_remember_upto_here_1 (x);
5100 return (sgn == 0) ? scm_nan () : scm_inf ();
5101 #endif
5102 }
5103 else if (yy == 1)
5104 return x;
5105 else
5106 {
5107 /* FIXME: HMM, what are the relative performance issues here?
5108 We need to test. Is it faster on average to test
5109 divisible_p, then perform whichever operation, or is it
5110 faster to perform the integer div opportunistically and
5111 switch to real if there's a remainder? For now we take the
5112 middle ground: test, then if divisible, use the faster div
5113 func. */
5114
5115 scm_t_inum abs_yy = yy < 0 ? -yy : yy;
5116 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5117
5118 if (divisible_p)
5119 {
5120 SCM result = scm_i_mkbig ();
5121 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5122 scm_remember_upto_here_1 (x);
5123 if (yy < 0)
5124 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5125 return scm_i_normbig (result);
5126 }
5127 else
5128 {
5129 if (inexact)
5130 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
5131 else return scm_i_make_ratio (x, y);
5132 }
5133 }
5134 }
5135 else if (SCM_BIGP (y))
5136 {
5137 /* big_x / big_y */
5138 if (inexact)
5139 {
5140 /* It's easily possible for the ratio x/y to fit a double
5141 but one or both x and y be too big to fit a double,
5142 hence the use of mpq_get_d rather than converting and
5143 dividing. */
5144 mpq_t q;
5145 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5146 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5147 return scm_from_double (mpq_get_d (q));
5148 }
5149 else
5150 {
5151 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5152 SCM_I_BIG_MPZ (y));
5153 if (divisible_p)
5154 {
5155 SCM result = scm_i_mkbig ();
5156 mpz_divexact (SCM_I_BIG_MPZ (result),
5157 SCM_I_BIG_MPZ (x),
5158 SCM_I_BIG_MPZ (y));
5159 scm_remember_upto_here_2 (x, y);
5160 return scm_i_normbig (result);
5161 }
5162 else
5163 return scm_i_make_ratio (x, y);
5164 }
5165 }
5166 else if (SCM_REALP (y))
5167 {
5168 double yy = SCM_REAL_VALUE (y);
5169 #ifndef ALLOW_DIVIDE_BY_ZERO
5170 if (yy == 0.0)
5171 scm_num_overflow (s_divide);
5172 else
5173 #endif
5174 return scm_from_double (scm_i_big2dbl (x) / yy);
5175 }
5176 else if (SCM_COMPLEXP (y))
5177 {
5178 a = scm_i_big2dbl (x);
5179 goto complex_div;
5180 }
5181 else if (SCM_FRACTIONP (y))
5182 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
5183 SCM_FRACTION_NUMERATOR (y));
5184 else
5185 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5186 }
5187 else if (SCM_REALP (x))
5188 {
5189 double rx = SCM_REAL_VALUE (x);
5190 if (SCM_I_INUMP (y))
5191 {
5192 scm_t_inum yy = SCM_I_INUM (y);
5193 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5194 if (yy == 0)
5195 scm_num_overflow (s_divide);
5196 else
5197 #endif
5198 return scm_from_double (rx / (double) yy);
5199 }
5200 else if (SCM_BIGP (y))
5201 {
5202 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5203 scm_remember_upto_here_1 (y);
5204 return scm_from_double (rx / dby);
5205 }
5206 else if (SCM_REALP (y))
5207 {
5208 double yy = SCM_REAL_VALUE (y);
5209 #ifndef ALLOW_DIVIDE_BY_ZERO
5210 if (yy == 0.0)
5211 scm_num_overflow (s_divide);
5212 else
5213 #endif
5214 return scm_from_double (rx / yy);
5215 }
5216 else if (SCM_COMPLEXP (y))
5217 {
5218 a = rx;
5219 goto complex_div;
5220 }
5221 else if (SCM_FRACTIONP (y))
5222 return scm_from_double (rx / scm_i_fraction2double (y));
5223 else
5224 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5225 }
5226 else if (SCM_COMPLEXP (x))
5227 {
5228 double rx = SCM_COMPLEX_REAL (x);
5229 double ix = SCM_COMPLEX_IMAG (x);
5230 if (SCM_I_INUMP (y))
5231 {
5232 scm_t_inum yy = SCM_I_INUM (y);
5233 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5234 if (yy == 0)
5235 scm_num_overflow (s_divide);
5236 else
5237 #endif
5238 {
5239 double d = yy;
5240 return scm_c_make_rectangular (rx / d, ix / d);
5241 }
5242 }
5243 else if (SCM_BIGP (y))
5244 {
5245 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5246 scm_remember_upto_here_1 (y);
5247 return scm_c_make_rectangular (rx / dby, ix / dby);
5248 }
5249 else if (SCM_REALP (y))
5250 {
5251 double yy = SCM_REAL_VALUE (y);
5252 #ifndef ALLOW_DIVIDE_BY_ZERO
5253 if (yy == 0.0)
5254 scm_num_overflow (s_divide);
5255 else
5256 #endif
5257 return scm_c_make_rectangular (rx / yy, ix / yy);
5258 }
5259 else if (SCM_COMPLEXP (y))
5260 {
5261 double ry = SCM_COMPLEX_REAL (y);
5262 double iy = SCM_COMPLEX_IMAG (y);
5263 if (fabs(ry) <= fabs(iy))
5264 {
5265 double t = ry / iy;
5266 double d = iy * (1.0 + t * t);
5267 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
5268 }
5269 else
5270 {
5271 double t = iy / ry;
5272 double d = ry * (1.0 + t * t);
5273 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
5274 }
5275 }
5276 else if (SCM_FRACTIONP (y))
5277 {
5278 double yy = scm_i_fraction2double (y);
5279 return scm_c_make_rectangular (rx / yy, ix / yy);
5280 }
5281 else
5282 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5283 }
5284 else if (SCM_FRACTIONP (x))
5285 {
5286 if (SCM_I_INUMP (y))
5287 {
5288 scm_t_inum yy = SCM_I_INUM (y);
5289 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5290 if (yy == 0)
5291 scm_num_overflow (s_divide);
5292 else
5293 #endif
5294 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5295 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5296 }
5297 else if (SCM_BIGP (y))
5298 {
5299 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5300 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5301 }
5302 else if (SCM_REALP (y))
5303 {
5304 double yy = SCM_REAL_VALUE (y);
5305 #ifndef ALLOW_DIVIDE_BY_ZERO
5306 if (yy == 0.0)
5307 scm_num_overflow (s_divide);
5308 else
5309 #endif
5310 return scm_from_double (scm_i_fraction2double (x) / yy);
5311 }
5312 else if (SCM_COMPLEXP (y))
5313 {
5314 a = scm_i_fraction2double (x);
5315 goto complex_div;
5316 }
5317 else if (SCM_FRACTIONP (y))
5318 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
5319 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5320 else
5321 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5322 }
5323 else
5324 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
5325 }
5326
5327 SCM
5328 scm_divide (SCM x, SCM y)
5329 {
5330 return do_divide (x, y, 0);
5331 }
5332
5333 static SCM scm_divide2real (SCM x, SCM y)
5334 {
5335 return do_divide (x, y, 1);
5336 }
5337 #undef FUNC_NAME
5338
5339
5340 double
5341 scm_c_truncate (double x)
5342 {
5343 #if HAVE_TRUNC
5344 return trunc (x);
5345 #else
5346 if (x < 0.0)
5347 return -floor (-x);
5348 return floor (x);
5349 #endif
5350 }
5351
5352 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
5353 half-way case (ie. when x is an integer plus 0.5) going upwards.
5354 Then half-way cases are identified and adjusted down if the
5355 round-upwards didn't give the desired even integer.
5356
5357 "plus_half == result" identifies a half-way case. If plus_half, which is
5358 x + 0.5, is an integer then x must be an integer plus 0.5.
5359
5360 An odd "result" value is identified with result/2 != floor(result/2).
5361 This is done with plus_half, since that value is ready for use sooner in
5362 a pipelined cpu, and we're already requiring plus_half == result.
5363
5364 Note however that we need to be careful when x is big and already an
5365 integer. In that case "x+0.5" may round to an adjacent integer, causing
5366 us to return such a value, incorrectly. For instance if the hardware is
5367 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5368 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5369 returned. Or if the hardware is in round-upwards mode, then other bigger
5370 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5371 representable value, 2^128+2^76 (or whatever), again incorrect.
5372
5373 These bad roundings of x+0.5 are avoided by testing at the start whether
5374 x is already an integer. If it is then clearly that's the desired result
5375 already. And if it's not then the exponent must be small enough to allow
5376 an 0.5 to be represented, and hence added without a bad rounding. */
5377
5378 double
5379 scm_c_round (double x)
5380 {
5381 double plus_half, result;
5382
5383 if (x == floor (x))
5384 return x;
5385
5386 plus_half = x + 0.5;
5387 result = floor (plus_half);
5388 /* Adjust so that the rounding is towards even. */
5389 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5390 ? result - 1
5391 : result);
5392 }
5393
5394 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5395 (SCM x),
5396 "Round the number @var{x} towards zero.")
5397 #define FUNC_NAME s_scm_truncate_number
5398 {
5399 if (scm_is_false (scm_negative_p (x)))
5400 return scm_floor (x);
5401 else
5402 return scm_ceiling (x);
5403 }
5404 #undef FUNC_NAME
5405
5406 static SCM exactly_one_half;
5407
5408 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5409 (SCM x),
5410 "Round the number @var{x} towards the nearest integer. "
5411 "When it is exactly halfway between two integers, "
5412 "round towards the even one.")
5413 #define FUNC_NAME s_scm_round_number
5414 {
5415 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5416 return x;
5417 else if (SCM_REALP (x))
5418 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5419 else
5420 {
5421 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5422 single quotient+remainder division then examining to see which way
5423 the rounding should go. */
5424 SCM plus_half = scm_sum (x, exactly_one_half);
5425 SCM result = scm_floor (plus_half);
5426 /* Adjust so that the rounding is towards even. */
5427 if (scm_is_true (scm_num_eq_p (plus_half, result))
5428 && scm_is_true (scm_odd_p (result)))
5429 return scm_difference (result, SCM_INUM1);
5430 else
5431 return result;
5432 }
5433 }
5434 #undef FUNC_NAME
5435
5436 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5437 (SCM x),
5438 "Round the number @var{x} towards minus infinity.")
5439 #define FUNC_NAME s_scm_floor
5440 {
5441 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5442 return x;
5443 else if (SCM_REALP (x))
5444 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5445 else if (SCM_FRACTIONP (x))
5446 {
5447 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5448 SCM_FRACTION_DENOMINATOR (x));
5449 if (scm_is_false (scm_negative_p (x)))
5450 {
5451 /* For positive x, rounding towards zero is correct. */
5452 return q;
5453 }
5454 else
5455 {
5456 /* For negative x, we need to return q-1 unless x is an
5457 integer. But fractions are never integer, per our
5458 assumptions. */
5459 return scm_difference (q, SCM_INUM1);
5460 }
5461 }
5462 else
5463 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5464 }
5465 #undef FUNC_NAME
5466
5467 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5468 (SCM x),
5469 "Round the number @var{x} towards infinity.")
5470 #define FUNC_NAME s_scm_ceiling
5471 {
5472 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5473 return x;
5474 else if (SCM_REALP (x))
5475 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5476 else if (SCM_FRACTIONP (x))
5477 {
5478 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5479 SCM_FRACTION_DENOMINATOR (x));
5480 if (scm_is_false (scm_positive_p (x)))
5481 {
5482 /* For negative x, rounding towards zero is correct. */
5483 return q;
5484 }
5485 else
5486 {
5487 /* For positive x, we need to return q+1 unless x is an
5488 integer. But fractions are never integer, per our
5489 assumptions. */
5490 return scm_sum (q, SCM_INUM1);
5491 }
5492 }
5493 else
5494 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5495 }
5496 #undef FUNC_NAME
5497
5498 /* sin/cos/tan/asin/acos/atan
5499 sinh/cosh/tanh/asinh/acosh/atanh
5500 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5501 Written by Jerry D. Hedden, (C) FSF.
5502 See the file `COPYING' for terms applying to this program. */
5503
5504 SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
5505 (SCM x, SCM y),
5506 "Return @var{x} raised to the power of @var{y}.")
5507 #define FUNC_NAME s_scm_expt
5508 {
5509 if (scm_is_integer (y))
5510 {
5511 if (scm_is_true (scm_exact_p (y)))
5512 return scm_integer_expt (x, y);
5513 else
5514 {
5515 /* Here we handle the case where the exponent is an inexact
5516 integer. We make the exponent exact in order to use
5517 scm_integer_expt, and thus avoid the spurious imaginary
5518 parts that may result from round-off errors in the general
5519 e^(y log x) method below (for example when squaring a large
5520 negative number). In this case, we must return an inexact
5521 result for correctness. We also make the base inexact so
5522 that scm_integer_expt will use fast inexact arithmetic
5523 internally. Note that making the base inexact is not
5524 sufficient to guarantee an inexact result, because
5525 scm_integer_expt will return an exact 1 when the exponent
5526 is 0, even if the base is inexact. */
5527 return scm_exact_to_inexact
5528 (scm_integer_expt (scm_exact_to_inexact (x),
5529 scm_inexact_to_exact (y)));
5530 }
5531 }
5532 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5533 {
5534 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5535 }
5536 else
5537 return scm_exp (scm_product (scm_log (x), y));
5538 }
5539 #undef FUNC_NAME
5540
5541 SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5542 (SCM z),
5543 "Compute the sine of @var{z}.")
5544 #define FUNC_NAME s_scm_sin
5545 {
5546 if (scm_is_real (z))
5547 return scm_from_double (sin (scm_to_double (z)));
5548 else if (SCM_COMPLEXP (z))
5549 { double x, y;
5550 x = SCM_COMPLEX_REAL (z);
5551 y = SCM_COMPLEX_IMAG (z);
5552 return scm_c_make_rectangular (sin (x) * cosh (y),
5553 cos (x) * sinh (y));
5554 }
5555 else
5556 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5557 }
5558 #undef FUNC_NAME
5559
5560 SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5561 (SCM z),
5562 "Compute the cosine of @var{z}.")
5563 #define FUNC_NAME s_scm_cos
5564 {
5565 if (scm_is_real (z))
5566 return scm_from_double (cos (scm_to_double (z)));
5567 else if (SCM_COMPLEXP (z))
5568 { double x, y;
5569 x = SCM_COMPLEX_REAL (z);
5570 y = SCM_COMPLEX_IMAG (z);
5571 return scm_c_make_rectangular (cos (x) * cosh (y),
5572 -sin (x) * sinh (y));
5573 }
5574 else
5575 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5576 }
5577 #undef FUNC_NAME
5578
5579 SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5580 (SCM z),
5581 "Compute the tangent of @var{z}.")
5582 #define FUNC_NAME s_scm_tan
5583 {
5584 if (scm_is_real (z))
5585 return scm_from_double (tan (scm_to_double (z)));
5586 else if (SCM_COMPLEXP (z))
5587 { double x, y, w;
5588 x = 2.0 * SCM_COMPLEX_REAL (z);
5589 y = 2.0 * SCM_COMPLEX_IMAG (z);
5590 w = cos (x) + cosh (y);
5591 #ifndef ALLOW_DIVIDE_BY_ZERO
5592 if (w == 0.0)
5593 scm_num_overflow (s_scm_tan);
5594 #endif
5595 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5596 }
5597 else
5598 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5599 }
5600 #undef FUNC_NAME
5601
5602 SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5603 (SCM z),
5604 "Compute the hyperbolic sine of @var{z}.")
5605 #define FUNC_NAME s_scm_sinh
5606 {
5607 if (scm_is_real (z))
5608 return scm_from_double (sinh (scm_to_double (z)));
5609 else if (SCM_COMPLEXP (z))
5610 { double x, y;
5611 x = SCM_COMPLEX_REAL (z);
5612 y = SCM_COMPLEX_IMAG (z);
5613 return scm_c_make_rectangular (sinh (x) * cos (y),
5614 cosh (x) * sin (y));
5615 }
5616 else
5617 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5618 }
5619 #undef FUNC_NAME
5620
5621 SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5622 (SCM z),
5623 "Compute the hyperbolic cosine of @var{z}.")
5624 #define FUNC_NAME s_scm_cosh
5625 {
5626 if (scm_is_real (z))
5627 return scm_from_double (cosh (scm_to_double (z)));
5628 else if (SCM_COMPLEXP (z))
5629 { double x, y;
5630 x = SCM_COMPLEX_REAL (z);
5631 y = SCM_COMPLEX_IMAG (z);
5632 return scm_c_make_rectangular (cosh (x) * cos (y),
5633 sinh (x) * sin (y));
5634 }
5635 else
5636 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5637 }
5638 #undef FUNC_NAME
5639
5640 SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5641 (SCM z),
5642 "Compute the hyperbolic tangent of @var{z}.")
5643 #define FUNC_NAME s_scm_tanh
5644 {
5645 if (scm_is_real (z))
5646 return scm_from_double (tanh (scm_to_double (z)));
5647 else if (SCM_COMPLEXP (z))
5648 { double x, y, w;
5649 x = 2.0 * SCM_COMPLEX_REAL (z);
5650 y = 2.0 * SCM_COMPLEX_IMAG (z);
5651 w = cosh (x) + cos (y);
5652 #ifndef ALLOW_DIVIDE_BY_ZERO
5653 if (w == 0.0)
5654 scm_num_overflow (s_scm_tanh);
5655 #endif
5656 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5657 }
5658 else
5659 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5660 }
5661 #undef FUNC_NAME
5662
5663 SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5664 (SCM z),
5665 "Compute the arc sine of @var{z}.")
5666 #define FUNC_NAME s_scm_asin
5667 {
5668 if (scm_is_real (z))
5669 {
5670 double w = scm_to_double (z);
5671 if (w >= -1.0 && w <= 1.0)
5672 return scm_from_double (asin (w));
5673 else
5674 return scm_product (scm_c_make_rectangular (0, -1),
5675 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5676 }
5677 else if (SCM_COMPLEXP (z))
5678 { double x, y;
5679 x = SCM_COMPLEX_REAL (z);
5680 y = SCM_COMPLEX_IMAG (z);
5681 return scm_product (scm_c_make_rectangular (0, -1),
5682 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5683 }
5684 else
5685 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5686 }
5687 #undef FUNC_NAME
5688
5689 SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5690 (SCM z),
5691 "Compute the arc cosine of @var{z}.")
5692 #define FUNC_NAME s_scm_acos
5693 {
5694 if (scm_is_real (z))
5695 {
5696 double w = scm_to_double (z);
5697 if (w >= -1.0 && w <= 1.0)
5698 return scm_from_double (acos (w));
5699 else
5700 return scm_sum (scm_from_double (acos (0.0)),
5701 scm_product (scm_c_make_rectangular (0, 1),
5702 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5703 }
5704 else if (SCM_COMPLEXP (z))
5705 { double x, y;
5706 x = SCM_COMPLEX_REAL (z);
5707 y = SCM_COMPLEX_IMAG (z);
5708 return scm_sum (scm_from_double (acos (0.0)),
5709 scm_product (scm_c_make_rectangular (0, 1),
5710 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5711 }
5712 else
5713 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5714 }
5715 #undef FUNC_NAME
5716
5717 SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5718 (SCM z, SCM y),
5719 "With one argument, compute the arc tangent of @var{z}.\n"
5720 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5721 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5722 #define FUNC_NAME s_scm_atan
5723 {
5724 if (SCM_UNBNDP (y))
5725 {
5726 if (scm_is_real (z))
5727 return scm_from_double (atan (scm_to_double (z)));
5728 else if (SCM_COMPLEXP (z))
5729 {
5730 double v, w;
5731 v = SCM_COMPLEX_REAL (z);
5732 w = SCM_COMPLEX_IMAG (z);
5733 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5734 scm_c_make_rectangular (v, w + 1.0))),
5735 scm_c_make_rectangular (0, 2));
5736 }
5737 else
5738 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5739 }
5740 else if (scm_is_real (z))
5741 {
5742 if (scm_is_real (y))
5743 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5744 else
5745 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5746 }
5747 else
5748 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5749 }
5750 #undef FUNC_NAME
5751
5752 SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5753 (SCM z),
5754 "Compute the inverse hyperbolic sine of @var{z}.")
5755 #define FUNC_NAME s_scm_sys_asinh
5756 {
5757 if (scm_is_real (z))
5758 return scm_from_double (asinh (scm_to_double (z)));
5759 else if (scm_is_number (z))
5760 return scm_log (scm_sum (z,
5761 scm_sqrt (scm_sum (scm_product (z, z),
5762 SCM_INUM1))));
5763 else
5764 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5765 }
5766 #undef FUNC_NAME
5767
5768 SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5769 (SCM z),
5770 "Compute the inverse hyperbolic cosine of @var{z}.")
5771 #define FUNC_NAME s_scm_sys_acosh
5772 {
5773 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5774 return scm_from_double (acosh (scm_to_double (z)));
5775 else if (scm_is_number (z))
5776 return scm_log (scm_sum (z,
5777 scm_sqrt (scm_difference (scm_product (z, z),
5778 SCM_INUM1))));
5779 else
5780 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5781 }
5782 #undef FUNC_NAME
5783
5784 SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5785 (SCM z),
5786 "Compute the inverse hyperbolic tangent of @var{z}.")
5787 #define FUNC_NAME s_scm_sys_atanh
5788 {
5789 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5790 return scm_from_double (atanh (scm_to_double (z)));
5791 else if (scm_is_number (z))
5792 return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z),
5793 scm_difference (SCM_INUM1, z))),
5794 SCM_I_MAKINUM (2));
5795 else
5796 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
5797 }
5798 #undef FUNC_NAME
5799
5800 SCM
5801 scm_c_make_rectangular (double re, double im)
5802 {
5803 if (im == 0.0)
5804 return scm_from_double (re);
5805 else
5806 {
5807 SCM z;
5808
5809 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5810 "complex"));
5811 SCM_SET_CELL_TYPE (z, scm_tc16_complex);
5812 SCM_COMPLEX_REAL (z) = re;
5813 SCM_COMPLEX_IMAG (z) = im;
5814 return z;
5815 }
5816 }
5817
5818 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5819 (SCM real_part, SCM imaginary_part),
5820 "Return a complex number constructed of the given @var{real-part} "
5821 "and @var{imaginary-part} parts.")
5822 #define FUNC_NAME s_scm_make_rectangular
5823 {
5824 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5825 SCM_ARG1, FUNC_NAME, "real");
5826 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5827 SCM_ARG2, FUNC_NAME, "real");
5828 return scm_c_make_rectangular (scm_to_double (real_part),
5829 scm_to_double (imaginary_part));
5830 }
5831 #undef FUNC_NAME
5832
5833 SCM
5834 scm_c_make_polar (double mag, double ang)
5835 {
5836 double s, c;
5837
5838 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5839 use it on Glibc-based systems that have it (it's a GNU extension). See
5840 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5841 details. */
5842 #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
5843 sincos (ang, &s, &c);
5844 #else
5845 s = sin (ang);
5846 c = cos (ang);
5847 #endif
5848 return scm_c_make_rectangular (mag * c, mag * s);
5849 }
5850
5851 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5852 (SCM x, SCM y),
5853 "Return the complex number @var{x} * e^(i * @var{y}).")
5854 #define FUNC_NAME s_scm_make_polar
5855 {
5856 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5857 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5858 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
5859 }
5860 #undef FUNC_NAME
5861
5862
5863 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5864 /* "Return the real part of the number @var{z}."
5865 */
5866 SCM
5867 scm_real_part (SCM z)
5868 {
5869 if (SCM_I_INUMP (z))
5870 return z;
5871 else if (SCM_BIGP (z))
5872 return z;
5873 else if (SCM_REALP (z))
5874 return z;
5875 else if (SCM_COMPLEXP (z))
5876 return scm_from_double (SCM_COMPLEX_REAL (z));
5877 else if (SCM_FRACTIONP (z))
5878 return z;
5879 else
5880 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5881 }
5882
5883
5884 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5885 /* "Return the imaginary part of the number @var{z}."
5886 */
5887 SCM
5888 scm_imag_part (SCM z)
5889 {
5890 if (SCM_I_INUMP (z))
5891 return SCM_INUM0;
5892 else if (SCM_BIGP (z))
5893 return SCM_INUM0;
5894 else if (SCM_REALP (z))
5895 return flo0;
5896 else if (SCM_COMPLEXP (z))
5897 return scm_from_double (SCM_COMPLEX_IMAG (z));
5898 else if (SCM_FRACTIONP (z))
5899 return SCM_INUM0;
5900 else
5901 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5902 }
5903
5904 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5905 /* "Return the numerator of the number @var{z}."
5906 */
5907 SCM
5908 scm_numerator (SCM z)
5909 {
5910 if (SCM_I_INUMP (z))
5911 return z;
5912 else if (SCM_BIGP (z))
5913 return z;
5914 else if (SCM_FRACTIONP (z))
5915 return SCM_FRACTION_NUMERATOR (z);
5916 else if (SCM_REALP (z))
5917 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5918 else
5919 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5920 }
5921
5922
5923 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5924 /* "Return the denominator of the number @var{z}."
5925 */
5926 SCM
5927 scm_denominator (SCM z)
5928 {
5929 if (SCM_I_INUMP (z))
5930 return SCM_INUM1;
5931 else if (SCM_BIGP (z))
5932 return SCM_INUM1;
5933 else if (SCM_FRACTIONP (z))
5934 return SCM_FRACTION_DENOMINATOR (z);
5935 else if (SCM_REALP (z))
5936 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5937 else
5938 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5939 }
5940
5941 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5942 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5943 * "@code{abs} for real arguments, but also allows complex numbers."
5944 */
5945 SCM
5946 scm_magnitude (SCM z)
5947 {
5948 if (SCM_I_INUMP (z))
5949 {
5950 scm_t_inum zz = SCM_I_INUM (z);
5951 if (zz >= 0)
5952 return z;
5953 else if (SCM_POSFIXABLE (-zz))
5954 return SCM_I_MAKINUM (-zz);
5955 else
5956 return scm_i_inum2big (-zz);
5957 }
5958 else if (SCM_BIGP (z))
5959 {
5960 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5961 scm_remember_upto_here_1 (z);
5962 if (sgn < 0)
5963 return scm_i_clonebig (z, 0);
5964 else
5965 return z;
5966 }
5967 else if (SCM_REALP (z))
5968 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5969 else if (SCM_COMPLEXP (z))
5970 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5971 else if (SCM_FRACTIONP (z))
5972 {
5973 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5974 return z;
5975 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5976 SCM_FRACTION_DENOMINATOR (z));
5977 }
5978 else
5979 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5980 }
5981
5982
5983 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5984 /* "Return the angle of the complex number @var{z}."
5985 */
5986 SCM
5987 scm_angle (SCM z)
5988 {
5989 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5990 flo0 to save allocating a new flonum with scm_from_double each time.
5991 But if atan2 follows the floating point rounding mode, then the value
5992 is not a constant. Maybe it'd be close enough though. */
5993 if (SCM_I_INUMP (z))
5994 {
5995 if (SCM_I_INUM (z) >= 0)
5996 return flo0;
5997 else
5998 return scm_from_double (atan2 (0.0, -1.0));
5999 }
6000 else if (SCM_BIGP (z))
6001 {
6002 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
6003 scm_remember_upto_here_1 (z);
6004 if (sgn < 0)
6005 return scm_from_double (atan2 (0.0, -1.0));
6006 else
6007 return flo0;
6008 }
6009 else if (SCM_REALP (z))
6010 {
6011 if (SCM_REAL_VALUE (z) >= 0)
6012 return flo0;
6013 else
6014 return scm_from_double (atan2 (0.0, -1.0));
6015 }
6016 else if (SCM_COMPLEXP (z))
6017 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
6018 else if (SCM_FRACTIONP (z))
6019 {
6020 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
6021 return flo0;
6022 else return scm_from_double (atan2 (0.0, -1.0));
6023 }
6024 else
6025 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
6026 }
6027
6028
6029 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
6030 /* Convert the number @var{x} to its inexact representation.\n"
6031 */
6032 SCM
6033 scm_exact_to_inexact (SCM z)
6034 {
6035 if (SCM_I_INUMP (z))
6036 return scm_from_double ((double) SCM_I_INUM (z));
6037 else if (SCM_BIGP (z))
6038 return scm_from_double (scm_i_big2dbl (z));
6039 else if (SCM_FRACTIONP (z))
6040 return scm_from_double (scm_i_fraction2double (z));
6041 else if (SCM_INEXACTP (z))
6042 return z;
6043 else
6044 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
6045 }
6046
6047
6048 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
6049 (SCM z),
6050 "Return an exact number that is numerically closest to @var{z}.")
6051 #define FUNC_NAME s_scm_inexact_to_exact
6052 {
6053 if (SCM_I_INUMP (z))
6054 return z;
6055 else if (SCM_BIGP (z))
6056 return z;
6057 else if (SCM_REALP (z))
6058 {
6059 if (isinf (SCM_REAL_VALUE (z)) || isnan (SCM_REAL_VALUE (z)))
6060 SCM_OUT_OF_RANGE (1, z);
6061 else
6062 {
6063 mpq_t frac;
6064 SCM q;
6065
6066 mpq_init (frac);
6067 mpq_set_d (frac, SCM_REAL_VALUE (z));
6068 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
6069 scm_i_mpz2num (mpq_denref (frac)));
6070
6071 /* When scm_i_make_ratio throws, we leak the memory allocated
6072 for frac...
6073 */
6074 mpq_clear (frac);
6075 return q;
6076 }
6077 }
6078 else if (SCM_FRACTIONP (z))
6079 return z;
6080 else
6081 SCM_WRONG_TYPE_ARG (1, z);
6082 }
6083 #undef FUNC_NAME
6084
6085 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
6086 (SCM x, SCM eps),
6087 "Returns the @emph{simplest} rational number differing\n"
6088 "from @var{x} by no more than @var{eps}.\n"
6089 "\n"
6090 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6091 "exact result when both its arguments are exact. Thus, you might need\n"
6092 "to use @code{inexact->exact} on the arguments.\n"
6093 "\n"
6094 "@lisp\n"
6095 "(rationalize (inexact->exact 1.2) 1/100)\n"
6096 "@result{} 6/5\n"
6097 "@end lisp")
6098 #define FUNC_NAME s_scm_rationalize
6099 {
6100 if (SCM_I_INUMP (x))
6101 return x;
6102 else if (SCM_BIGP (x))
6103 return x;
6104 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6105 {
6106 /* Use continued fractions to find closest ratio. All
6107 arithmetic is done with exact numbers.
6108 */
6109
6110 SCM ex = scm_inexact_to_exact (x);
6111 SCM int_part = scm_floor (ex);
6112 SCM tt = SCM_INUM1;
6113 SCM a1 = SCM_INUM0, a2 = SCM_INUM1, a = SCM_INUM0;
6114 SCM b1 = SCM_INUM1, b2 = SCM_INUM0, b = SCM_INUM0;
6115 SCM rx;
6116 int i = 0;
6117
6118 if (scm_is_true (scm_num_eq_p (ex, int_part)))
6119 return ex;
6120
6121 ex = scm_difference (ex, int_part); /* x = x-int_part */
6122 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6123
6124 /* We stop after a million iterations just to be absolutely sure
6125 that we don't go into an infinite loop. The process normally
6126 converges after less than a dozen iterations.
6127 */
6128
6129 eps = scm_abs (eps);
6130 while (++i < 1000000)
6131 {
6132 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6133 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
6134 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6135 scm_is_false
6136 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
6137 eps))) /* abs(x-a/b) <= eps */
6138 {
6139 SCM res = scm_sum (int_part, scm_divide (a, b));
6140 if (scm_is_false (scm_exact_p (x))
6141 || scm_is_false (scm_exact_p (eps)))
6142 return scm_exact_to_inexact (res);
6143 else
6144 return res;
6145 }
6146 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6147 SCM_UNDEFINED);
6148 tt = scm_floor (rx); /* tt = floor (rx) */
6149 a2 = a1;
6150 b2 = b1;
6151 a1 = a;
6152 b1 = b;
6153 }
6154 scm_num_overflow (s_scm_rationalize);
6155 }
6156 else
6157 SCM_WRONG_TYPE_ARG (1, x);
6158 }
6159 #undef FUNC_NAME
6160
6161 /* conversion functions */
6162
6163 int
6164 scm_is_integer (SCM val)
6165 {
6166 return scm_is_true (scm_integer_p (val));
6167 }
6168
6169 int
6170 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6171 {
6172 if (SCM_I_INUMP (val))
6173 {
6174 scm_t_signed_bits n = SCM_I_INUM (val);
6175 return n >= min && n <= max;
6176 }
6177 else if (SCM_BIGP (val))
6178 {
6179 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6180 return 0;
6181 else if (min >= LONG_MIN && max <= LONG_MAX)
6182 {
6183 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6184 {
6185 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6186 return n >= min && n <= max;
6187 }
6188 else
6189 return 0;
6190 }
6191 else
6192 {
6193 scm_t_intmax n;
6194 size_t count;
6195
6196 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6197 > CHAR_BIT*sizeof (scm_t_uintmax))
6198 return 0;
6199
6200 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6201 SCM_I_BIG_MPZ (val));
6202
6203 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
6204 {
6205 if (n < 0)
6206 return 0;
6207 }
6208 else
6209 {
6210 n = -n;
6211 if (n >= 0)
6212 return 0;
6213 }
6214
6215 return n >= min && n <= max;
6216 }
6217 }
6218 else
6219 return 0;
6220 }
6221
6222 int
6223 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6224 {
6225 if (SCM_I_INUMP (val))
6226 {
6227 scm_t_signed_bits n = SCM_I_INUM (val);
6228 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6229 }
6230 else if (SCM_BIGP (val))
6231 {
6232 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6233 return 0;
6234 else if (max <= ULONG_MAX)
6235 {
6236 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6237 {
6238 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6239 return n >= min && n <= max;
6240 }
6241 else
6242 return 0;
6243 }
6244 else
6245 {
6246 scm_t_uintmax n;
6247 size_t count;
6248
6249 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6250 return 0;
6251
6252 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6253 > CHAR_BIT*sizeof (scm_t_uintmax))
6254 return 0;
6255
6256 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6257 SCM_I_BIG_MPZ (val));
6258
6259 return n >= min && n <= max;
6260 }
6261 }
6262 else
6263 return 0;
6264 }
6265
6266 static void
6267 scm_i_range_error (SCM bad_val, SCM min, SCM max)
6268 {
6269 scm_error (scm_out_of_range_key,
6270 NULL,
6271 "Value out of range ~S to ~S: ~S",
6272 scm_list_3 (min, max, bad_val),
6273 scm_list_1 (bad_val));
6274 }
6275
6276 #define TYPE scm_t_intmax
6277 #define TYPE_MIN min
6278 #define TYPE_MAX max
6279 #define SIZEOF_TYPE 0
6280 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6281 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6282 #include "libguile/conv-integer.i.c"
6283
6284 #define TYPE scm_t_uintmax
6285 #define TYPE_MIN min
6286 #define TYPE_MAX max
6287 #define SIZEOF_TYPE 0
6288 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6289 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6290 #include "libguile/conv-uinteger.i.c"
6291
6292 #define TYPE scm_t_int8
6293 #define TYPE_MIN SCM_T_INT8_MIN
6294 #define TYPE_MAX SCM_T_INT8_MAX
6295 #define SIZEOF_TYPE 1
6296 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6297 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6298 #include "libguile/conv-integer.i.c"
6299
6300 #define TYPE scm_t_uint8
6301 #define TYPE_MIN 0
6302 #define TYPE_MAX SCM_T_UINT8_MAX
6303 #define SIZEOF_TYPE 1
6304 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6305 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6306 #include "libguile/conv-uinteger.i.c"
6307
6308 #define TYPE scm_t_int16
6309 #define TYPE_MIN SCM_T_INT16_MIN
6310 #define TYPE_MAX SCM_T_INT16_MAX
6311 #define SIZEOF_TYPE 2
6312 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6313 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6314 #include "libguile/conv-integer.i.c"
6315
6316 #define TYPE scm_t_uint16
6317 #define TYPE_MIN 0
6318 #define TYPE_MAX SCM_T_UINT16_MAX
6319 #define SIZEOF_TYPE 2
6320 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6321 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6322 #include "libguile/conv-uinteger.i.c"
6323
6324 #define TYPE scm_t_int32
6325 #define TYPE_MIN SCM_T_INT32_MIN
6326 #define TYPE_MAX SCM_T_INT32_MAX
6327 #define SIZEOF_TYPE 4
6328 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6329 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6330 #include "libguile/conv-integer.i.c"
6331
6332 #define TYPE scm_t_uint32
6333 #define TYPE_MIN 0
6334 #define TYPE_MAX SCM_T_UINT32_MAX
6335 #define SIZEOF_TYPE 4
6336 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6337 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6338 #include "libguile/conv-uinteger.i.c"
6339
6340 #define TYPE scm_t_wchar
6341 #define TYPE_MIN (scm_t_int32)-1
6342 #define TYPE_MAX (scm_t_int32)0x10ffff
6343 #define SIZEOF_TYPE 4
6344 #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6345 #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6346 #include "libguile/conv-integer.i.c"
6347
6348 #define TYPE scm_t_int64
6349 #define TYPE_MIN SCM_T_INT64_MIN
6350 #define TYPE_MAX SCM_T_INT64_MAX
6351 #define SIZEOF_TYPE 8
6352 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6353 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6354 #include "libguile/conv-integer.i.c"
6355
6356 #define TYPE scm_t_uint64
6357 #define TYPE_MIN 0
6358 #define TYPE_MAX SCM_T_UINT64_MAX
6359 #define SIZEOF_TYPE 8
6360 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6361 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6362 #include "libguile/conv-uinteger.i.c"
6363
6364 void
6365 scm_to_mpz (SCM val, mpz_t rop)
6366 {
6367 if (SCM_I_INUMP (val))
6368 mpz_set_si (rop, SCM_I_INUM (val));
6369 else if (SCM_BIGP (val))
6370 mpz_set (rop, SCM_I_BIG_MPZ (val));
6371 else
6372 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6373 }
6374
6375 SCM
6376 scm_from_mpz (mpz_t val)
6377 {
6378 return scm_i_mpz2num (val);
6379 }
6380
6381 int
6382 scm_is_real (SCM val)
6383 {
6384 return scm_is_true (scm_real_p (val));
6385 }
6386
6387 int
6388 scm_is_rational (SCM val)
6389 {
6390 return scm_is_true (scm_rational_p (val));
6391 }
6392
6393 double
6394 scm_to_double (SCM val)
6395 {
6396 if (SCM_I_INUMP (val))
6397 return SCM_I_INUM (val);
6398 else if (SCM_BIGP (val))
6399 return scm_i_big2dbl (val);
6400 else if (SCM_FRACTIONP (val))
6401 return scm_i_fraction2double (val);
6402 else if (SCM_REALP (val))
6403 return SCM_REAL_VALUE (val);
6404 else
6405 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
6406 }
6407
6408 SCM
6409 scm_from_double (double val)
6410 {
6411 SCM z;
6412
6413 z = PTR2SCM (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real"));
6414
6415 SCM_SET_CELL_TYPE (z, scm_tc16_real);
6416 SCM_REAL_VALUE (z) = val;
6417
6418 return z;
6419 }
6420
6421 #if SCM_ENABLE_DEPRECATED == 1
6422
6423 float
6424 scm_num2float (SCM num, unsigned long pos, const char *s_caller)
6425 {
6426 scm_c_issue_deprecation_warning
6427 ("`scm_num2float' is deprecated. Use scm_to_double instead.");
6428
6429 if (SCM_BIGP (num))
6430 {
6431 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6432 if (!isinf (res))
6433 return res;
6434 else
6435 scm_out_of_range (NULL, num);
6436 }
6437 else
6438 return scm_to_double (num);
6439 }
6440
6441 double
6442 scm_num2double (SCM num, unsigned long pos, const char *s_caller)
6443 {
6444 scm_c_issue_deprecation_warning
6445 ("`scm_num2double' is deprecated. Use scm_to_double instead.");
6446
6447 if (SCM_BIGP (num))
6448 {
6449 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6450 if (!isinf (res))
6451 return res;
6452 else
6453 scm_out_of_range (NULL, num);
6454 }
6455 else
6456 return scm_to_double (num);
6457 }
6458
6459 #endif
6460
6461 int
6462 scm_is_complex (SCM val)
6463 {
6464 return scm_is_true (scm_complex_p (val));
6465 }
6466
6467 double
6468 scm_c_real_part (SCM z)
6469 {
6470 if (SCM_COMPLEXP (z))
6471 return SCM_COMPLEX_REAL (z);
6472 else
6473 {
6474 /* Use the scm_real_part to get proper error checking and
6475 dispatching.
6476 */
6477 return scm_to_double (scm_real_part (z));
6478 }
6479 }
6480
6481 double
6482 scm_c_imag_part (SCM z)
6483 {
6484 if (SCM_COMPLEXP (z))
6485 return SCM_COMPLEX_IMAG (z);
6486 else
6487 {
6488 /* Use the scm_imag_part to get proper error checking and
6489 dispatching. The result will almost always be 0.0, but not
6490 always.
6491 */
6492 return scm_to_double (scm_imag_part (z));
6493 }
6494 }
6495
6496 double
6497 scm_c_magnitude (SCM z)
6498 {
6499 return scm_to_double (scm_magnitude (z));
6500 }
6501
6502 double
6503 scm_c_angle (SCM z)
6504 {
6505 return scm_to_double (scm_angle (z));
6506 }
6507
6508 int
6509 scm_is_number (SCM z)
6510 {
6511 return scm_is_true (scm_number_p (z));
6512 }
6513
6514
6515 /* In the following functions we dispatch to the real-arg funcs like log()
6516 when we know the arg is real, instead of just handing everything to
6517 clog() for instance. This is in case clog() doesn't optimize for a
6518 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6519 well use it to go straight to the applicable C func. */
6520
6521 SCM_DEFINE (scm_log, "log", 1, 0, 0,
6522 (SCM z),
6523 "Return the natural logarithm of @var{z}.")
6524 #define FUNC_NAME s_scm_log
6525 {
6526 if (SCM_COMPLEXP (z))
6527 {
6528 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
6529 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6530 #else
6531 double re = SCM_COMPLEX_REAL (z);
6532 double im = SCM_COMPLEX_IMAG (z);
6533 return scm_c_make_rectangular (log (hypot (re, im)),
6534 atan2 (im, re));
6535 #endif
6536 }
6537 else
6538 {
6539 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6540 although the value itself overflows. */
6541 double re = scm_to_double (z);
6542 double l = log (fabs (re));
6543 if (re >= 0.0)
6544 return scm_from_double (l);
6545 else
6546 return scm_c_make_rectangular (l, M_PI);
6547 }
6548 }
6549 #undef FUNC_NAME
6550
6551
6552 SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6553 (SCM z),
6554 "Return the base 10 logarithm of @var{z}.")
6555 #define FUNC_NAME s_scm_log10
6556 {
6557 if (SCM_COMPLEXP (z))
6558 {
6559 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6560 clog() and a multiply by M_LOG10E, rather than the fallback
6561 log10+hypot+atan2.) */
6562 #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \
6563 && defined SCM_COMPLEX_VALUE
6564 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6565 #else
6566 double re = SCM_COMPLEX_REAL (z);
6567 double im = SCM_COMPLEX_IMAG (z);
6568 return scm_c_make_rectangular (log10 (hypot (re, im)),
6569 M_LOG10E * atan2 (im, re));
6570 #endif
6571 }
6572 else
6573 {
6574 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6575 although the value itself overflows. */
6576 double re = scm_to_double (z);
6577 double l = log10 (fabs (re));
6578 if (re >= 0.0)
6579 return scm_from_double (l);
6580 else
6581 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6582 }
6583 }
6584 #undef FUNC_NAME
6585
6586
6587 SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6588 (SCM z),
6589 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6590 "base of natural logarithms (2.71828@dots{}).")
6591 #define FUNC_NAME s_scm_exp
6592 {
6593 if (SCM_COMPLEXP (z))
6594 {
6595 #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
6596 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6597 #else
6598 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6599 SCM_COMPLEX_IMAG (z));
6600 #endif
6601 }
6602 else
6603 {
6604 /* When z is a negative bignum the conversion to double overflows,
6605 giving -infinity, but that's ok, the exp is still 0.0. */
6606 return scm_from_double (exp (scm_to_double (z)));
6607 }
6608 }
6609 #undef FUNC_NAME
6610
6611
6612 SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6613 (SCM x),
6614 "Return the square root of @var{z}. Of the two possible roots\n"
6615 "(positive and negative), the one with the a positive real part\n"
6616 "is returned, or if that's zero then a positive imaginary part.\n"
6617 "Thus,\n"
6618 "\n"
6619 "@example\n"
6620 "(sqrt 9.0) @result{} 3.0\n"
6621 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6622 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6623 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6624 "@end example")
6625 #define FUNC_NAME s_scm_sqrt
6626 {
6627 if (SCM_COMPLEXP (x))
6628 {
6629 #if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \
6630 && defined SCM_COMPLEX_VALUE
6631 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6632 #else
6633 double re = SCM_COMPLEX_REAL (x);
6634 double im = SCM_COMPLEX_IMAG (x);
6635 return scm_c_make_polar (sqrt (hypot (re, im)),
6636 0.5 * atan2 (im, re));
6637 #endif
6638 }
6639 else
6640 {
6641 double xx = scm_to_double (x);
6642 if (xx < 0)
6643 return scm_c_make_rectangular (0.0, sqrt (-xx));
6644 else
6645 return scm_from_double (sqrt (xx));
6646 }
6647 }
6648 #undef FUNC_NAME
6649
6650
6651
6652 void
6653 scm_init_numbers ()
6654 {
6655 int i;
6656
6657 mpz_init_set_si (z_negative_one, -1);
6658
6659 /* It may be possible to tune the performance of some algorithms by using
6660 * the following constants to avoid the creation of bignums. Please, before
6661 * using these values, remember the two rules of program optimization:
6662 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
6663 scm_c_define ("most-positive-fixnum",
6664 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
6665 scm_c_define ("most-negative-fixnum",
6666 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
6667
6668 scm_add_feature ("complex");
6669 scm_add_feature ("inexact");
6670 flo0 = scm_from_double (0.0);
6671
6672 /* determine floating point precision */
6673 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
6674 {
6675 init_dblprec(&scm_dblprec[i-2],i);
6676 init_fx_radix(fx_per_radix[i-2],i);
6677 }
6678 #ifdef DBL_DIG
6679 /* hard code precision for base 10 if the preprocessor tells us to... */
6680 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6681 #endif
6682
6683 exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2));
6684 #include "libguile/numbers.x"
6685 }
6686
6687 /*
6688 Local Variables:
6689 c-file-style: "gnu"
6690 End:
6691 */