implement transcendental sin, cos etc in c; deprecate $sin, $cos, etc
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23 \f
24 /* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
29 * All objects satisfying SCM_FRACTIONP are never an integer.
30 */
31
32 /* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
43
44 #ifdef HAVE_CONFIG_H
45 # include <config.h>
46 #endif
47
48 #include <math.h>
49 #include <string.h>
50 #include <unicase.h>
51 #include <unictype.h>
52
53 #if HAVE_COMPLEX_H
54 #include <complex.h>
55 #endif
56
57 #include "libguile/_scm.h"
58 #include "libguile/feature.h"
59 #include "libguile/ports.h"
60 #include "libguile/root.h"
61 #include "libguile/smob.h"
62 #include "libguile/strings.h"
63
64 #include "libguile/validate.h"
65 #include "libguile/numbers.h"
66 #include "libguile/deprecation.h"
67
68 #include "libguile/eq.h"
69
70 #include "libguile/discouraged.h"
71
72 /* values per glibc, if not already defined */
73 #ifndef M_LOG10E
74 #define M_LOG10E 0.43429448190325182765
75 #endif
76 #ifndef M_PI
77 #define M_PI 3.14159265358979323846
78 #endif
79
80 \f
81
82 /*
83 Wonder if this might be faster for some of our code? A switch on
84 the numtag would jump directly to the right case, and the
85 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
86
87 #define SCM_I_NUMTAG_NOTNUM 0
88 #define SCM_I_NUMTAG_INUM 1
89 #define SCM_I_NUMTAG_BIG scm_tc16_big
90 #define SCM_I_NUMTAG_REAL scm_tc16_real
91 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
92 #define SCM_I_NUMTAG(x) \
93 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
94 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
95 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
96 : SCM_I_NUMTAG_NOTNUM)))
97 */
98 /* the macro above will not work as is with fractions */
99
100
101 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
102
103 /* FLOBUFLEN is the maximum number of characters neccessary for the
104 * printed or scm_string representation of an inexact number.
105 */
106 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
107
108 #if defined (SCO)
109 #if ! defined (HAVE_ISNAN)
110 #define HAVE_ISNAN
111 static int
112 isnan (double x)
113 {
114 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
115 }
116 #endif
117 #if ! defined (HAVE_ISINF)
118 #define HAVE_ISINF
119 static int
120 isinf (double x)
121 {
122 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
123 }
124
125 #endif
126 #endif
127
128
129 #if !defined (HAVE_ASINH)
130 static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
131 #endif
132 #if !defined (HAVE_ACOSH)
133 static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
134 #endif
135 #if !defined (HAVE_ATANH)
136 static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
137 #endif
138
139 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
140 an explicit check. In some future gmp (don't know what version number),
141 mpz_cmp_d is supposed to do this itself. */
142 #if 1
143 #define xmpz_cmp_d(z, d) \
144 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
145 #else
146 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
147 #endif
148
149 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
150 isinf. It does have finite and isnan though, hence the use of those.
151 fpclass would be a possibility on that system too. */
152 static int
153 xisinf (double x)
154 {
155 #if defined (HAVE_ISINF)
156 return isinf (x);
157 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
158 return (! (finite (x) || isnan (x)));
159 #else
160 return 0;
161 #endif
162 }
163
164 static int
165 xisnan (double x)
166 {
167 #if defined (HAVE_ISNAN)
168 return isnan (x);
169 #else
170 return 0;
171 #endif
172 }
173
174 #if defined (GUILE_I)
175 #if HAVE_COMPLEX_DOUBLE
176
177 /* For an SCM object Z which is a complex number (ie. satisfies
178 SCM_COMPLEXP), return its value as a C level "complex double". */
179 #define SCM_COMPLEX_VALUE(z) \
180 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
181
182 static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
183
184 /* Convert a C "complex double" to an SCM value. */
185 static inline SCM
186 scm_from_complex_double (complex double z)
187 {
188 return scm_c_make_rectangular (creal (z), cimag (z));
189 }
190
191 #endif /* HAVE_COMPLEX_DOUBLE */
192 #endif /* GUILE_I */
193
194 \f
195
196 static mpz_t z_negative_one;
197
198 \f
199
200 SCM
201 scm_i_mkbig ()
202 {
203 /* Return a newly created bignum. */
204 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
205 mpz_init (SCM_I_BIG_MPZ (z));
206 return z;
207 }
208
209 SCM
210 scm_i_long2big (long x)
211 {
212 /* Return a newly created bignum initialized to X. */
213 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
214 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
215 return z;
216 }
217
218 SCM
219 scm_i_ulong2big (unsigned long x)
220 {
221 /* Return a newly created bignum initialized to X. */
222 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
223 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
224 return z;
225 }
226
227 SCM
228 scm_i_clonebig (SCM src_big, int same_sign_p)
229 {
230 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
231 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
232 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
233 if (!same_sign_p)
234 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
235 return z;
236 }
237
238 int
239 scm_i_bigcmp (SCM x, SCM y)
240 {
241 /* Return neg if x < y, pos if x > y, and 0 if x == y */
242 /* presume we already know x and y are bignums */
243 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
244 scm_remember_upto_here_2 (x, y);
245 return result;
246 }
247
248 SCM
249 scm_i_dbl2big (double d)
250 {
251 /* results are only defined if d is an integer */
252 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
253 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
254 return z;
255 }
256
257 /* Convert a integer in double representation to a SCM number. */
258
259 SCM
260 scm_i_dbl2num (double u)
261 {
262 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
263 powers of 2, so there's no rounding when making "double" values
264 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
265 get rounded on a 64-bit machine, hence the "+1".
266
267 The use of floor() to force to an integer value ensures we get a
268 "numerically closest" value without depending on how a
269 double->long cast or how mpz_set_d will round. For reference,
270 double->long probably follows the hardware rounding mode,
271 mpz_set_d truncates towards zero. */
272
273 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
274 representable as a double? */
275
276 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
277 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
278 return SCM_I_MAKINUM ((long) u);
279 else
280 return scm_i_dbl2big (u);
281 }
282
283 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
284 with R5RS exact->inexact.
285
286 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
287 (ie. truncate towards zero), then adjust to get the closest double by
288 examining the next lower bit and adding 1 (to the absolute value) if
289 necessary.
290
291 Bignums exactly half way between representable doubles are rounded to the
292 next higher absolute value (ie. away from zero). This seems like an
293 adequate interpretation of R5RS "numerically closest", and it's easier
294 and faster than a full "nearest-even" style.
295
296 The bit test must be done on the absolute value of the mpz_t, which means
297 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
298 negatives as twos complement.
299
300 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
301 following the hardware rounding mode, but applied to the absolute value
302 of the mpz_t operand. This is not what we want so we put the high
303 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
304 mpz_get_d is supposed to always truncate towards zero.
305
306 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
307 is a slowdown. It'd be faster to pick out the relevant high bits with
308 mpz_getlimbn if we could be bothered coding that, and if the new
309 truncating gmp doesn't come out. */
310
311 double
312 scm_i_big2dbl (SCM b)
313 {
314 double result;
315 size_t bits;
316
317 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
318
319 #if 1
320 {
321 /* Current GMP, eg. 4.1.3, force truncation towards zero */
322 mpz_t tmp;
323 if (bits > DBL_MANT_DIG)
324 {
325 size_t shift = bits - DBL_MANT_DIG;
326 mpz_init2 (tmp, DBL_MANT_DIG);
327 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
328 result = ldexp (mpz_get_d (tmp), shift);
329 mpz_clear (tmp);
330 }
331 else
332 {
333 result = mpz_get_d (SCM_I_BIG_MPZ (b));
334 }
335 }
336 #else
337 /* Future GMP */
338 result = mpz_get_d (SCM_I_BIG_MPZ (b));
339 #endif
340
341 if (bits > DBL_MANT_DIG)
342 {
343 unsigned long pos = bits - DBL_MANT_DIG - 1;
344 /* test bit number "pos" in absolute value */
345 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
346 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
347 {
348 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
349 }
350 }
351
352 scm_remember_upto_here_1 (b);
353 return result;
354 }
355
356 SCM
357 scm_i_normbig (SCM b)
358 {
359 /* convert a big back to a fixnum if it'll fit */
360 /* presume b is a bignum */
361 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
362 {
363 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
364 if (SCM_FIXABLE (val))
365 b = SCM_I_MAKINUM (val);
366 }
367 return b;
368 }
369
370 static SCM_C_INLINE_KEYWORD SCM
371 scm_i_mpz2num (mpz_t b)
372 {
373 /* convert a mpz number to a SCM number. */
374 if (mpz_fits_slong_p (b))
375 {
376 long val = mpz_get_si (b);
377 if (SCM_FIXABLE (val))
378 return SCM_I_MAKINUM (val);
379 }
380
381 {
382 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
383 mpz_init_set (SCM_I_BIG_MPZ (z), b);
384 return z;
385 }
386 }
387
388 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
389 static SCM scm_divide2real (SCM x, SCM y);
390
391 static SCM
392 scm_i_make_ratio (SCM numerator, SCM denominator)
393 #define FUNC_NAME "make-ratio"
394 {
395 /* First make sure the arguments are proper.
396 */
397 if (SCM_I_INUMP (denominator))
398 {
399 if (scm_is_eq (denominator, SCM_INUM0))
400 scm_num_overflow ("make-ratio");
401 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
402 return numerator;
403 }
404 else
405 {
406 if (!(SCM_BIGP(denominator)))
407 SCM_WRONG_TYPE_ARG (2, denominator);
408 }
409 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
410 SCM_WRONG_TYPE_ARG (1, numerator);
411
412 /* Then flip signs so that the denominator is positive.
413 */
414 if (scm_is_true (scm_negative_p (denominator)))
415 {
416 numerator = scm_difference (numerator, SCM_UNDEFINED);
417 denominator = scm_difference (denominator, SCM_UNDEFINED);
418 }
419
420 /* Now consider for each of the four fixnum/bignum combinations
421 whether the rational number is really an integer.
422 */
423 if (SCM_I_INUMP (numerator))
424 {
425 long x = SCM_I_INUM (numerator);
426 if (scm_is_eq (numerator, SCM_INUM0))
427 return SCM_INUM0;
428 if (SCM_I_INUMP (denominator))
429 {
430 long y;
431 y = SCM_I_INUM (denominator);
432 if (x == y)
433 return SCM_I_MAKINUM(1);
434 if ((x % y) == 0)
435 return SCM_I_MAKINUM (x / y);
436 }
437 else
438 {
439 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
440 of that value for the denominator, as a bignum. Apart from
441 that case, abs(bignum) > abs(inum) so inum/bignum is not an
442 integer. */
443 if (x == SCM_MOST_NEGATIVE_FIXNUM
444 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
445 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
446 return SCM_I_MAKINUM(-1);
447 }
448 }
449 else if (SCM_BIGP (numerator))
450 {
451 if (SCM_I_INUMP (denominator))
452 {
453 long yy = SCM_I_INUM (denominator);
454 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
455 return scm_divide (numerator, denominator);
456 }
457 else
458 {
459 if (scm_is_eq (numerator, denominator))
460 return SCM_I_MAKINUM(1);
461 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
462 SCM_I_BIG_MPZ (denominator)))
463 return scm_divide(numerator, denominator);
464 }
465 }
466
467 /* No, it's a proper fraction.
468 */
469 {
470 SCM divisor = scm_gcd (numerator, denominator);
471 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
472 {
473 numerator = scm_divide (numerator, divisor);
474 denominator = scm_divide (denominator, divisor);
475 }
476
477 return scm_double_cell (scm_tc16_fraction,
478 SCM_UNPACK (numerator),
479 SCM_UNPACK (denominator), 0);
480 }
481 }
482 #undef FUNC_NAME
483
484 double
485 scm_i_fraction2double (SCM z)
486 {
487 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
488 SCM_FRACTION_DENOMINATOR (z)));
489 }
490
491 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
492 (SCM x),
493 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
494 "otherwise.")
495 #define FUNC_NAME s_scm_exact_p
496 {
497 if (SCM_I_INUMP (x))
498 return SCM_BOOL_T;
499 if (SCM_BIGP (x))
500 return SCM_BOOL_T;
501 if (SCM_FRACTIONP (x))
502 return SCM_BOOL_T;
503 if (SCM_NUMBERP (x))
504 return SCM_BOOL_F;
505 SCM_WRONG_TYPE_ARG (1, x);
506 }
507 #undef FUNC_NAME
508
509
510 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
511 (SCM n),
512 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
513 "otherwise.")
514 #define FUNC_NAME s_scm_odd_p
515 {
516 if (SCM_I_INUMP (n))
517 {
518 long val = SCM_I_INUM (n);
519 return scm_from_bool ((val & 1L) != 0);
520 }
521 else if (SCM_BIGP (n))
522 {
523 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
524 scm_remember_upto_here_1 (n);
525 return scm_from_bool (odd_p);
526 }
527 else if (scm_is_true (scm_inf_p (n)))
528 return SCM_BOOL_T;
529 else if (SCM_REALP (n))
530 {
531 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
532 if (rem == 1.0)
533 return SCM_BOOL_T;
534 else if (rem == 0.0)
535 return SCM_BOOL_F;
536 else
537 SCM_WRONG_TYPE_ARG (1, n);
538 }
539 else
540 SCM_WRONG_TYPE_ARG (1, n);
541 }
542 #undef FUNC_NAME
543
544
545 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
546 (SCM n),
547 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
548 "otherwise.")
549 #define FUNC_NAME s_scm_even_p
550 {
551 if (SCM_I_INUMP (n))
552 {
553 long val = SCM_I_INUM (n);
554 return scm_from_bool ((val & 1L) == 0);
555 }
556 else if (SCM_BIGP (n))
557 {
558 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
559 scm_remember_upto_here_1 (n);
560 return scm_from_bool (even_p);
561 }
562 else if (scm_is_true (scm_inf_p (n)))
563 return SCM_BOOL_T;
564 else if (SCM_REALP (n))
565 {
566 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
567 if (rem == 1.0)
568 return SCM_BOOL_F;
569 else if (rem == 0.0)
570 return SCM_BOOL_T;
571 else
572 SCM_WRONG_TYPE_ARG (1, n);
573 }
574 else
575 SCM_WRONG_TYPE_ARG (1, n);
576 }
577 #undef FUNC_NAME
578
579 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
580 (SCM x),
581 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
582 "or @samp{-inf.0}, @code{#f} otherwise.")
583 #define FUNC_NAME s_scm_inf_p
584 {
585 if (SCM_REALP (x))
586 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
587 else if (SCM_COMPLEXP (x))
588 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
589 || xisinf (SCM_COMPLEX_IMAG (x)));
590 else
591 return SCM_BOOL_F;
592 }
593 #undef FUNC_NAME
594
595 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
596 (SCM n),
597 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
598 "otherwise.")
599 #define FUNC_NAME s_scm_nan_p
600 {
601 if (SCM_REALP (n))
602 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
603 else if (SCM_COMPLEXP (n))
604 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
605 || xisnan (SCM_COMPLEX_IMAG (n)));
606 else
607 return SCM_BOOL_F;
608 }
609 #undef FUNC_NAME
610
611 /* Guile's idea of infinity. */
612 static double guile_Inf;
613
614 /* Guile's idea of not a number. */
615 static double guile_NaN;
616
617 static void
618 guile_ieee_init (void)
619 {
620 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
621
622 /* Some version of gcc on some old version of Linux used to crash when
623 trying to make Inf and NaN. */
624
625 #ifdef INFINITY
626 /* C99 INFINITY, when available.
627 FIXME: The standard allows for INFINITY to be something that overflows
628 at compile time. We ought to have a configure test to check for that
629 before trying to use it. (But in practice we believe this is not a
630 problem on any system guile is likely to target.) */
631 guile_Inf = INFINITY;
632 #elif defined HAVE_DINFINITY
633 /* OSF */
634 extern unsigned int DINFINITY[2];
635 guile_Inf = (*((double *) (DINFINITY)));
636 #else
637 double tmp = 1e+10;
638 guile_Inf = tmp;
639 for (;;)
640 {
641 guile_Inf *= 1e+10;
642 if (guile_Inf == tmp)
643 break;
644 tmp = guile_Inf;
645 }
646 #endif
647
648 #endif
649
650 #if defined (HAVE_ISNAN)
651
652 #ifdef NAN
653 /* C99 NAN, when available */
654 guile_NaN = NAN;
655 #elif defined HAVE_DQNAN
656 {
657 /* OSF */
658 extern unsigned int DQNAN[2];
659 guile_NaN = (*((double *)(DQNAN)));
660 }
661 #else
662 guile_NaN = guile_Inf / guile_Inf;
663 #endif
664
665 #endif
666 }
667
668 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
669 (void),
670 "Return Inf.")
671 #define FUNC_NAME s_scm_inf
672 {
673 static int initialized = 0;
674 if (! initialized)
675 {
676 guile_ieee_init ();
677 initialized = 1;
678 }
679 return scm_from_double (guile_Inf);
680 }
681 #undef FUNC_NAME
682
683 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
684 (void),
685 "Return NaN.")
686 #define FUNC_NAME s_scm_nan
687 {
688 static int initialized = 0;
689 if (!initialized)
690 {
691 guile_ieee_init ();
692 initialized = 1;
693 }
694 return scm_from_double (guile_NaN);
695 }
696 #undef FUNC_NAME
697
698
699 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
700 (SCM x),
701 "Return the absolute value of @var{x}.")
702 #define FUNC_NAME
703 {
704 if (SCM_I_INUMP (x))
705 {
706 long int xx = SCM_I_INUM (x);
707 if (xx >= 0)
708 return x;
709 else if (SCM_POSFIXABLE (-xx))
710 return SCM_I_MAKINUM (-xx);
711 else
712 return scm_i_long2big (-xx);
713 }
714 else if (SCM_BIGP (x))
715 {
716 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
717 if (sgn < 0)
718 return scm_i_clonebig (x, 0);
719 else
720 return x;
721 }
722 else if (SCM_REALP (x))
723 {
724 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
725 double xx = SCM_REAL_VALUE (x);
726 if (xx < 0.0)
727 return scm_from_double (-xx);
728 else
729 return x;
730 }
731 else if (SCM_FRACTIONP (x))
732 {
733 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
734 return x;
735 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
736 SCM_FRACTION_DENOMINATOR (x));
737 }
738 else
739 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
740 }
741 #undef FUNC_NAME
742
743
744 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
745 /* "Return the quotient of the numbers @var{x} and @var{y}."
746 */
747 SCM
748 scm_quotient (SCM x, SCM y)
749 {
750 if (SCM_I_INUMP (x))
751 {
752 long xx = SCM_I_INUM (x);
753 if (SCM_I_INUMP (y))
754 {
755 long yy = SCM_I_INUM (y);
756 if (yy == 0)
757 scm_num_overflow (s_quotient);
758 else
759 {
760 long z = xx / yy;
761 if (SCM_FIXABLE (z))
762 return SCM_I_MAKINUM (z);
763 else
764 return scm_i_long2big (z);
765 }
766 }
767 else if (SCM_BIGP (y))
768 {
769 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
770 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
771 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
772 {
773 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
774 scm_remember_upto_here_1 (y);
775 return SCM_I_MAKINUM (-1);
776 }
777 else
778 return SCM_I_MAKINUM (0);
779 }
780 else
781 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
782 }
783 else if (SCM_BIGP (x))
784 {
785 if (SCM_I_INUMP (y))
786 {
787 long yy = SCM_I_INUM (y);
788 if (yy == 0)
789 scm_num_overflow (s_quotient);
790 else if (yy == 1)
791 return x;
792 else
793 {
794 SCM result = scm_i_mkbig ();
795 if (yy < 0)
796 {
797 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
798 SCM_I_BIG_MPZ (x),
799 - yy);
800 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
801 }
802 else
803 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
804 scm_remember_upto_here_1 (x);
805 return scm_i_normbig (result);
806 }
807 }
808 else if (SCM_BIGP (y))
809 {
810 SCM result = scm_i_mkbig ();
811 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
812 SCM_I_BIG_MPZ (x),
813 SCM_I_BIG_MPZ (y));
814 scm_remember_upto_here_2 (x, y);
815 return scm_i_normbig (result);
816 }
817 else
818 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
819 }
820 else
821 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
822 }
823
824 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
825 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
826 * "@lisp\n"
827 * "(remainder 13 4) @result{} 1\n"
828 * "(remainder -13 4) @result{} -1\n"
829 * "@end lisp"
830 */
831 SCM
832 scm_remainder (SCM x, SCM y)
833 {
834 if (SCM_I_INUMP (x))
835 {
836 if (SCM_I_INUMP (y))
837 {
838 long yy = SCM_I_INUM (y);
839 if (yy == 0)
840 scm_num_overflow (s_remainder);
841 else
842 {
843 long z = SCM_I_INUM (x) % yy;
844 return SCM_I_MAKINUM (z);
845 }
846 }
847 else if (SCM_BIGP (y))
848 {
849 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
850 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
851 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
852 {
853 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
854 scm_remember_upto_here_1 (y);
855 return SCM_I_MAKINUM (0);
856 }
857 else
858 return x;
859 }
860 else
861 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
862 }
863 else if (SCM_BIGP (x))
864 {
865 if (SCM_I_INUMP (y))
866 {
867 long yy = SCM_I_INUM (y);
868 if (yy == 0)
869 scm_num_overflow (s_remainder);
870 else
871 {
872 SCM result = scm_i_mkbig ();
873 if (yy < 0)
874 yy = - yy;
875 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
876 scm_remember_upto_here_1 (x);
877 return scm_i_normbig (result);
878 }
879 }
880 else if (SCM_BIGP (y))
881 {
882 SCM result = scm_i_mkbig ();
883 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
884 SCM_I_BIG_MPZ (x),
885 SCM_I_BIG_MPZ (y));
886 scm_remember_upto_here_2 (x, y);
887 return scm_i_normbig (result);
888 }
889 else
890 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
891 }
892 else
893 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
894 }
895
896
897 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
898 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
899 * "@lisp\n"
900 * "(modulo 13 4) @result{} 1\n"
901 * "(modulo -13 4) @result{} 3\n"
902 * "@end lisp"
903 */
904 SCM
905 scm_modulo (SCM x, SCM y)
906 {
907 if (SCM_I_INUMP (x))
908 {
909 long xx = SCM_I_INUM (x);
910 if (SCM_I_INUMP (y))
911 {
912 long yy = SCM_I_INUM (y);
913 if (yy == 0)
914 scm_num_overflow (s_modulo);
915 else
916 {
917 /* C99 specifies that "%" is the remainder corresponding to a
918 quotient rounded towards zero, and that's also traditional
919 for machine division, so z here should be well defined. */
920 long z = xx % yy;
921 long result;
922
923 if (yy < 0)
924 {
925 if (z > 0)
926 result = z + yy;
927 else
928 result = z;
929 }
930 else
931 {
932 if (z < 0)
933 result = z + yy;
934 else
935 result = z;
936 }
937 return SCM_I_MAKINUM (result);
938 }
939 }
940 else if (SCM_BIGP (y))
941 {
942 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
943 {
944 mpz_t z_x;
945 SCM result;
946
947 if (sgn_y < 0)
948 {
949 SCM pos_y = scm_i_clonebig (y, 0);
950 /* do this after the last scm_op */
951 mpz_init_set_si (z_x, xx);
952 result = pos_y; /* re-use this bignum */
953 mpz_mod (SCM_I_BIG_MPZ (result),
954 z_x,
955 SCM_I_BIG_MPZ (pos_y));
956 scm_remember_upto_here_1 (pos_y);
957 }
958 else
959 {
960 result = scm_i_mkbig ();
961 /* do this after the last scm_op */
962 mpz_init_set_si (z_x, xx);
963 mpz_mod (SCM_I_BIG_MPZ (result),
964 z_x,
965 SCM_I_BIG_MPZ (y));
966 scm_remember_upto_here_1 (y);
967 }
968
969 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
970 mpz_add (SCM_I_BIG_MPZ (result),
971 SCM_I_BIG_MPZ (y),
972 SCM_I_BIG_MPZ (result));
973 scm_remember_upto_here_1 (y);
974 /* and do this before the next one */
975 mpz_clear (z_x);
976 return scm_i_normbig (result);
977 }
978 }
979 else
980 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
981 }
982 else if (SCM_BIGP (x))
983 {
984 if (SCM_I_INUMP (y))
985 {
986 long yy = SCM_I_INUM (y);
987 if (yy == 0)
988 scm_num_overflow (s_modulo);
989 else
990 {
991 SCM result = scm_i_mkbig ();
992 mpz_mod_ui (SCM_I_BIG_MPZ (result),
993 SCM_I_BIG_MPZ (x),
994 (yy < 0) ? - yy : yy);
995 scm_remember_upto_here_1 (x);
996 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
997 mpz_sub_ui (SCM_I_BIG_MPZ (result),
998 SCM_I_BIG_MPZ (result),
999 - yy);
1000 return scm_i_normbig (result);
1001 }
1002 }
1003 else if (SCM_BIGP (y))
1004 {
1005 {
1006 SCM result = scm_i_mkbig ();
1007 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1008 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1009 mpz_mod (SCM_I_BIG_MPZ (result),
1010 SCM_I_BIG_MPZ (x),
1011 SCM_I_BIG_MPZ (pos_y));
1012
1013 scm_remember_upto_here_1 (x);
1014 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1015 mpz_add (SCM_I_BIG_MPZ (result),
1016 SCM_I_BIG_MPZ (y),
1017 SCM_I_BIG_MPZ (result));
1018 scm_remember_upto_here_2 (y, pos_y);
1019 return scm_i_normbig (result);
1020 }
1021 }
1022 else
1023 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1024 }
1025 else
1026 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
1027 }
1028
1029 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
1030 /* "Return the greatest common divisor of all arguments.\n"
1031 * "If called without arguments, 0 is returned."
1032 */
1033 SCM
1034 scm_gcd (SCM x, SCM y)
1035 {
1036 if (SCM_UNBNDP (y))
1037 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
1038
1039 if (SCM_I_INUMP (x))
1040 {
1041 if (SCM_I_INUMP (y))
1042 {
1043 long xx = SCM_I_INUM (x);
1044 long yy = SCM_I_INUM (y);
1045 long u = xx < 0 ? -xx : xx;
1046 long v = yy < 0 ? -yy : yy;
1047 long result;
1048 if (xx == 0)
1049 result = v;
1050 else if (yy == 0)
1051 result = u;
1052 else
1053 {
1054 long k = 1;
1055 long t;
1056 /* Determine a common factor 2^k */
1057 while (!(1 & (u | v)))
1058 {
1059 k <<= 1;
1060 u >>= 1;
1061 v >>= 1;
1062 }
1063 /* Now, any factor 2^n can be eliminated */
1064 if (u & 1)
1065 t = -v;
1066 else
1067 {
1068 t = u;
1069 b3:
1070 t = SCM_SRS (t, 1);
1071 }
1072 if (!(1 & t))
1073 goto b3;
1074 if (t > 0)
1075 u = t;
1076 else
1077 v = -t;
1078 t = u - v;
1079 if (t != 0)
1080 goto b3;
1081 result = u * k;
1082 }
1083 return (SCM_POSFIXABLE (result)
1084 ? SCM_I_MAKINUM (result)
1085 : scm_i_long2big (result));
1086 }
1087 else if (SCM_BIGP (y))
1088 {
1089 SCM_SWAP (x, y);
1090 goto big_inum;
1091 }
1092 else
1093 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1094 }
1095 else if (SCM_BIGP (x))
1096 {
1097 if (SCM_I_INUMP (y))
1098 {
1099 unsigned long result;
1100 long yy;
1101 big_inum:
1102 yy = SCM_I_INUM (y);
1103 if (yy == 0)
1104 return scm_abs (x);
1105 if (yy < 0)
1106 yy = -yy;
1107 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1108 scm_remember_upto_here_1 (x);
1109 return (SCM_POSFIXABLE (result)
1110 ? SCM_I_MAKINUM (result)
1111 : scm_from_ulong (result));
1112 }
1113 else if (SCM_BIGP (y))
1114 {
1115 SCM result = scm_i_mkbig ();
1116 mpz_gcd (SCM_I_BIG_MPZ (result),
1117 SCM_I_BIG_MPZ (x),
1118 SCM_I_BIG_MPZ (y));
1119 scm_remember_upto_here_2 (x, y);
1120 return scm_i_normbig (result);
1121 }
1122 else
1123 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1124 }
1125 else
1126 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1127 }
1128
1129 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1130 /* "Return the least common multiple of the arguments.\n"
1131 * "If called without arguments, 1 is returned."
1132 */
1133 SCM
1134 scm_lcm (SCM n1, SCM n2)
1135 {
1136 if (SCM_UNBNDP (n2))
1137 {
1138 if (SCM_UNBNDP (n1))
1139 return SCM_I_MAKINUM (1L);
1140 n2 = SCM_I_MAKINUM (1L);
1141 }
1142
1143 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1144 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1145 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1146 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1147
1148 if (SCM_I_INUMP (n1))
1149 {
1150 if (SCM_I_INUMP (n2))
1151 {
1152 SCM d = scm_gcd (n1, n2);
1153 if (scm_is_eq (d, SCM_INUM0))
1154 return d;
1155 else
1156 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1157 }
1158 else
1159 {
1160 /* inum n1, big n2 */
1161 inumbig:
1162 {
1163 SCM result = scm_i_mkbig ();
1164 long nn1 = SCM_I_INUM (n1);
1165 if (nn1 == 0) return SCM_INUM0;
1166 if (nn1 < 0) nn1 = - nn1;
1167 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1168 scm_remember_upto_here_1 (n2);
1169 return result;
1170 }
1171 }
1172 }
1173 else
1174 {
1175 /* big n1 */
1176 if (SCM_I_INUMP (n2))
1177 {
1178 SCM_SWAP (n1, n2);
1179 goto inumbig;
1180 }
1181 else
1182 {
1183 SCM result = scm_i_mkbig ();
1184 mpz_lcm(SCM_I_BIG_MPZ (result),
1185 SCM_I_BIG_MPZ (n1),
1186 SCM_I_BIG_MPZ (n2));
1187 scm_remember_upto_here_2(n1, n2);
1188 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1189 return result;
1190 }
1191 }
1192 }
1193
1194 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1195
1196 Logand:
1197 X Y Result Method:
1198 (len)
1199 + + + x (map digit:logand X Y)
1200 + - + x (map digit:logand X (lognot (+ -1 Y)))
1201 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1202 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1203
1204 Logior:
1205 X Y Result Method:
1206
1207 + + + (map digit:logior X Y)
1208 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1209 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1210 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1211
1212 Logxor:
1213 X Y Result Method:
1214
1215 + + + (map digit:logxor X Y)
1216 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1217 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1218 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1219
1220 Logtest:
1221 X Y Result
1222
1223 + + (any digit:logand X Y)
1224 + - (any digit:logand X (lognot (+ -1 Y)))
1225 - + (any digit:logand (lognot (+ -1 X)) Y)
1226 - - #t
1227
1228 */
1229
1230 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1231 (SCM n1, SCM n2),
1232 "Return the bitwise AND of the integer arguments.\n\n"
1233 "@lisp\n"
1234 "(logand) @result{} -1\n"
1235 "(logand 7) @result{} 7\n"
1236 "(logand #b111 #b011 #b001) @result{} 1\n"
1237 "@end lisp")
1238 #define FUNC_NAME s_scm_logand
1239 {
1240 long int nn1;
1241
1242 if (SCM_UNBNDP (n2))
1243 {
1244 if (SCM_UNBNDP (n1))
1245 return SCM_I_MAKINUM (-1);
1246 else if (!SCM_NUMBERP (n1))
1247 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1248 else if (SCM_NUMBERP (n1))
1249 return n1;
1250 else
1251 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1252 }
1253
1254 if (SCM_I_INUMP (n1))
1255 {
1256 nn1 = SCM_I_INUM (n1);
1257 if (SCM_I_INUMP (n2))
1258 {
1259 long nn2 = SCM_I_INUM (n2);
1260 return SCM_I_MAKINUM (nn1 & nn2);
1261 }
1262 else if SCM_BIGP (n2)
1263 {
1264 intbig:
1265 if (n1 == 0)
1266 return SCM_INUM0;
1267 {
1268 SCM result_z = scm_i_mkbig ();
1269 mpz_t nn1_z;
1270 mpz_init_set_si (nn1_z, nn1);
1271 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1272 scm_remember_upto_here_1 (n2);
1273 mpz_clear (nn1_z);
1274 return scm_i_normbig (result_z);
1275 }
1276 }
1277 else
1278 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1279 }
1280 else if (SCM_BIGP (n1))
1281 {
1282 if (SCM_I_INUMP (n2))
1283 {
1284 SCM_SWAP (n1, n2);
1285 nn1 = SCM_I_INUM (n1);
1286 goto intbig;
1287 }
1288 else if (SCM_BIGP (n2))
1289 {
1290 SCM result_z = scm_i_mkbig ();
1291 mpz_and (SCM_I_BIG_MPZ (result_z),
1292 SCM_I_BIG_MPZ (n1),
1293 SCM_I_BIG_MPZ (n2));
1294 scm_remember_upto_here_2 (n1, n2);
1295 return scm_i_normbig (result_z);
1296 }
1297 else
1298 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1299 }
1300 else
1301 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1302 }
1303 #undef FUNC_NAME
1304
1305
1306 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1307 (SCM n1, SCM n2),
1308 "Return the bitwise OR of the integer arguments.\n\n"
1309 "@lisp\n"
1310 "(logior) @result{} 0\n"
1311 "(logior 7) @result{} 7\n"
1312 "(logior #b000 #b001 #b011) @result{} 3\n"
1313 "@end lisp")
1314 #define FUNC_NAME s_scm_logior
1315 {
1316 long int nn1;
1317
1318 if (SCM_UNBNDP (n2))
1319 {
1320 if (SCM_UNBNDP (n1))
1321 return SCM_INUM0;
1322 else if (SCM_NUMBERP (n1))
1323 return n1;
1324 else
1325 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1326 }
1327
1328 if (SCM_I_INUMP (n1))
1329 {
1330 nn1 = SCM_I_INUM (n1);
1331 if (SCM_I_INUMP (n2))
1332 {
1333 long nn2 = SCM_I_INUM (n2);
1334 return SCM_I_MAKINUM (nn1 | nn2);
1335 }
1336 else if (SCM_BIGP (n2))
1337 {
1338 intbig:
1339 if (nn1 == 0)
1340 return n2;
1341 {
1342 SCM result_z = scm_i_mkbig ();
1343 mpz_t nn1_z;
1344 mpz_init_set_si (nn1_z, nn1);
1345 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1346 scm_remember_upto_here_1 (n2);
1347 mpz_clear (nn1_z);
1348 return scm_i_normbig (result_z);
1349 }
1350 }
1351 else
1352 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1353 }
1354 else if (SCM_BIGP (n1))
1355 {
1356 if (SCM_I_INUMP (n2))
1357 {
1358 SCM_SWAP (n1, n2);
1359 nn1 = SCM_I_INUM (n1);
1360 goto intbig;
1361 }
1362 else if (SCM_BIGP (n2))
1363 {
1364 SCM result_z = scm_i_mkbig ();
1365 mpz_ior (SCM_I_BIG_MPZ (result_z),
1366 SCM_I_BIG_MPZ (n1),
1367 SCM_I_BIG_MPZ (n2));
1368 scm_remember_upto_here_2 (n1, n2);
1369 return scm_i_normbig (result_z);
1370 }
1371 else
1372 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1373 }
1374 else
1375 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1376 }
1377 #undef FUNC_NAME
1378
1379
1380 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1381 (SCM n1, SCM n2),
1382 "Return the bitwise XOR of the integer arguments. A bit is\n"
1383 "set in the result if it is set in an odd number of arguments.\n"
1384 "@lisp\n"
1385 "(logxor) @result{} 0\n"
1386 "(logxor 7) @result{} 7\n"
1387 "(logxor #b000 #b001 #b011) @result{} 2\n"
1388 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1389 "@end lisp")
1390 #define FUNC_NAME s_scm_logxor
1391 {
1392 long int nn1;
1393
1394 if (SCM_UNBNDP (n2))
1395 {
1396 if (SCM_UNBNDP (n1))
1397 return SCM_INUM0;
1398 else if (SCM_NUMBERP (n1))
1399 return n1;
1400 else
1401 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1402 }
1403
1404 if (SCM_I_INUMP (n1))
1405 {
1406 nn1 = SCM_I_INUM (n1);
1407 if (SCM_I_INUMP (n2))
1408 {
1409 long nn2 = SCM_I_INUM (n2);
1410 return SCM_I_MAKINUM (nn1 ^ nn2);
1411 }
1412 else if (SCM_BIGP (n2))
1413 {
1414 intbig:
1415 {
1416 SCM result_z = scm_i_mkbig ();
1417 mpz_t nn1_z;
1418 mpz_init_set_si (nn1_z, nn1);
1419 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1420 scm_remember_upto_here_1 (n2);
1421 mpz_clear (nn1_z);
1422 return scm_i_normbig (result_z);
1423 }
1424 }
1425 else
1426 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1427 }
1428 else if (SCM_BIGP (n1))
1429 {
1430 if (SCM_I_INUMP (n2))
1431 {
1432 SCM_SWAP (n1, n2);
1433 nn1 = SCM_I_INUM (n1);
1434 goto intbig;
1435 }
1436 else if (SCM_BIGP (n2))
1437 {
1438 SCM result_z = scm_i_mkbig ();
1439 mpz_xor (SCM_I_BIG_MPZ (result_z),
1440 SCM_I_BIG_MPZ (n1),
1441 SCM_I_BIG_MPZ (n2));
1442 scm_remember_upto_here_2 (n1, n2);
1443 return scm_i_normbig (result_z);
1444 }
1445 else
1446 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1447 }
1448 else
1449 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1450 }
1451 #undef FUNC_NAME
1452
1453
1454 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1455 (SCM j, SCM k),
1456 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1457 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1458 "without actually calculating the @code{logand}, just testing\n"
1459 "for non-zero.\n"
1460 "\n"
1461 "@lisp\n"
1462 "(logtest #b0100 #b1011) @result{} #f\n"
1463 "(logtest #b0100 #b0111) @result{} #t\n"
1464 "@end lisp")
1465 #define FUNC_NAME s_scm_logtest
1466 {
1467 long int nj;
1468
1469 if (SCM_I_INUMP (j))
1470 {
1471 nj = SCM_I_INUM (j);
1472 if (SCM_I_INUMP (k))
1473 {
1474 long nk = SCM_I_INUM (k);
1475 return scm_from_bool (nj & nk);
1476 }
1477 else if (SCM_BIGP (k))
1478 {
1479 intbig:
1480 if (nj == 0)
1481 return SCM_BOOL_F;
1482 {
1483 SCM result;
1484 mpz_t nj_z;
1485 mpz_init_set_si (nj_z, nj);
1486 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1487 scm_remember_upto_here_1 (k);
1488 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1489 mpz_clear (nj_z);
1490 return result;
1491 }
1492 }
1493 else
1494 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1495 }
1496 else if (SCM_BIGP (j))
1497 {
1498 if (SCM_I_INUMP (k))
1499 {
1500 SCM_SWAP (j, k);
1501 nj = SCM_I_INUM (j);
1502 goto intbig;
1503 }
1504 else if (SCM_BIGP (k))
1505 {
1506 SCM result;
1507 mpz_t result_z;
1508 mpz_init (result_z);
1509 mpz_and (result_z,
1510 SCM_I_BIG_MPZ (j),
1511 SCM_I_BIG_MPZ (k));
1512 scm_remember_upto_here_2 (j, k);
1513 result = scm_from_bool (mpz_sgn (result_z) != 0);
1514 mpz_clear (result_z);
1515 return result;
1516 }
1517 else
1518 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1519 }
1520 else
1521 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1522 }
1523 #undef FUNC_NAME
1524
1525
1526 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1527 (SCM index, SCM j),
1528 "Test whether bit number @var{index} in @var{j} is set.\n"
1529 "@var{index} starts from 0 for the least significant bit.\n"
1530 "\n"
1531 "@lisp\n"
1532 "(logbit? 0 #b1101) @result{} #t\n"
1533 "(logbit? 1 #b1101) @result{} #f\n"
1534 "(logbit? 2 #b1101) @result{} #t\n"
1535 "(logbit? 3 #b1101) @result{} #t\n"
1536 "(logbit? 4 #b1101) @result{} #f\n"
1537 "@end lisp")
1538 #define FUNC_NAME s_scm_logbit_p
1539 {
1540 unsigned long int iindex;
1541 iindex = scm_to_ulong (index);
1542
1543 if (SCM_I_INUMP (j))
1544 {
1545 /* bits above what's in an inum follow the sign bit */
1546 iindex = min (iindex, SCM_LONG_BIT - 1);
1547 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1548 }
1549 else if (SCM_BIGP (j))
1550 {
1551 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1552 scm_remember_upto_here_1 (j);
1553 return scm_from_bool (val);
1554 }
1555 else
1556 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1557 }
1558 #undef FUNC_NAME
1559
1560
1561 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1562 (SCM n),
1563 "Return the integer which is the ones-complement of the integer\n"
1564 "argument.\n"
1565 "\n"
1566 "@lisp\n"
1567 "(number->string (lognot #b10000000) 2)\n"
1568 " @result{} \"-10000001\"\n"
1569 "(number->string (lognot #b0) 2)\n"
1570 " @result{} \"-1\"\n"
1571 "@end lisp")
1572 #define FUNC_NAME s_scm_lognot
1573 {
1574 if (SCM_I_INUMP (n)) {
1575 /* No overflow here, just need to toggle all the bits making up the inum.
1576 Enhancement: No need to strip the tag and add it back, could just xor
1577 a block of 1 bits, if that worked with the various debug versions of
1578 the SCM typedef. */
1579 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1580
1581 } else if (SCM_BIGP (n)) {
1582 SCM result = scm_i_mkbig ();
1583 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1584 scm_remember_upto_here_1 (n);
1585 return result;
1586
1587 } else {
1588 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1589 }
1590 }
1591 #undef FUNC_NAME
1592
1593 /* returns 0 if IN is not an integer. OUT must already be
1594 initialized. */
1595 static int
1596 coerce_to_big (SCM in, mpz_t out)
1597 {
1598 if (SCM_BIGP (in))
1599 mpz_set (out, SCM_I_BIG_MPZ (in));
1600 else if (SCM_I_INUMP (in))
1601 mpz_set_si (out, SCM_I_INUM (in));
1602 else
1603 return 0;
1604
1605 return 1;
1606 }
1607
1608 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1609 (SCM n, SCM k, SCM m),
1610 "Return @var{n} raised to the integer exponent\n"
1611 "@var{k}, modulo @var{m}.\n"
1612 "\n"
1613 "@lisp\n"
1614 "(modulo-expt 2 3 5)\n"
1615 " @result{} 3\n"
1616 "@end lisp")
1617 #define FUNC_NAME s_scm_modulo_expt
1618 {
1619 mpz_t n_tmp;
1620 mpz_t k_tmp;
1621 mpz_t m_tmp;
1622
1623 /* There are two classes of error we might encounter --
1624 1) Math errors, which we'll report by calling scm_num_overflow,
1625 and
1626 2) wrong-type errors, which of course we'll report by calling
1627 SCM_WRONG_TYPE_ARG.
1628 We don't report those errors immediately, however; instead we do
1629 some cleanup first. These variables tell us which error (if
1630 any) we should report after cleaning up.
1631 */
1632 int report_overflow = 0;
1633
1634 int position_of_wrong_type = 0;
1635 SCM value_of_wrong_type = SCM_INUM0;
1636
1637 SCM result = SCM_UNDEFINED;
1638
1639 mpz_init (n_tmp);
1640 mpz_init (k_tmp);
1641 mpz_init (m_tmp);
1642
1643 if (scm_is_eq (m, SCM_INUM0))
1644 {
1645 report_overflow = 1;
1646 goto cleanup;
1647 }
1648
1649 if (!coerce_to_big (n, n_tmp))
1650 {
1651 value_of_wrong_type = n;
1652 position_of_wrong_type = 1;
1653 goto cleanup;
1654 }
1655
1656 if (!coerce_to_big (k, k_tmp))
1657 {
1658 value_of_wrong_type = k;
1659 position_of_wrong_type = 2;
1660 goto cleanup;
1661 }
1662
1663 if (!coerce_to_big (m, m_tmp))
1664 {
1665 value_of_wrong_type = m;
1666 position_of_wrong_type = 3;
1667 goto cleanup;
1668 }
1669
1670 /* if the exponent K is negative, and we simply call mpz_powm, we
1671 will get a divide-by-zero exception when an inverse 1/n mod m
1672 doesn't exist (or is not unique). Since exceptions are hard to
1673 handle, we'll attempt the inversion "by hand" -- that way, we get
1674 a simple failure code, which is easy to handle. */
1675
1676 if (-1 == mpz_sgn (k_tmp))
1677 {
1678 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1679 {
1680 report_overflow = 1;
1681 goto cleanup;
1682 }
1683 mpz_neg (k_tmp, k_tmp);
1684 }
1685
1686 result = scm_i_mkbig ();
1687 mpz_powm (SCM_I_BIG_MPZ (result),
1688 n_tmp,
1689 k_tmp,
1690 m_tmp);
1691
1692 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1693 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1694
1695 cleanup:
1696 mpz_clear (m_tmp);
1697 mpz_clear (k_tmp);
1698 mpz_clear (n_tmp);
1699
1700 if (report_overflow)
1701 scm_num_overflow (FUNC_NAME);
1702
1703 if (position_of_wrong_type)
1704 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1705 value_of_wrong_type);
1706
1707 return scm_i_normbig (result);
1708 }
1709 #undef FUNC_NAME
1710
1711 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1712 (SCM n, SCM k),
1713 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1714 "exact integer, @var{n} can be any number.\n"
1715 "\n"
1716 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1717 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1718 "includes @math{0^0} is 1.\n"
1719 "\n"
1720 "@lisp\n"
1721 "(integer-expt 2 5) @result{} 32\n"
1722 "(integer-expt -3 3) @result{} -27\n"
1723 "(integer-expt 5 -3) @result{} 1/125\n"
1724 "(integer-expt 0 0) @result{} 1\n"
1725 "@end lisp")
1726 #define FUNC_NAME s_scm_integer_expt
1727 {
1728 long i2 = 0;
1729 SCM z_i2 = SCM_BOOL_F;
1730 int i2_is_big = 0;
1731 SCM acc = SCM_I_MAKINUM (1L);
1732
1733 /* 0^0 == 1 according to R5RS */
1734 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1735 return scm_is_false (scm_zero_p(k)) ? n : acc;
1736 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1737 return scm_is_false (scm_even_p (k)) ? n : acc;
1738
1739 if (SCM_I_INUMP (k))
1740 i2 = SCM_I_INUM (k);
1741 else if (SCM_BIGP (k))
1742 {
1743 z_i2 = scm_i_clonebig (k, 1);
1744 scm_remember_upto_here_1 (k);
1745 i2_is_big = 1;
1746 }
1747 else
1748 SCM_WRONG_TYPE_ARG (2, k);
1749
1750 if (i2_is_big)
1751 {
1752 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1753 {
1754 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1755 n = scm_divide (n, SCM_UNDEFINED);
1756 }
1757 while (1)
1758 {
1759 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1760 {
1761 return acc;
1762 }
1763 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1764 {
1765 return scm_product (acc, n);
1766 }
1767 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1768 acc = scm_product (acc, n);
1769 n = scm_product (n, n);
1770 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1771 }
1772 }
1773 else
1774 {
1775 if (i2 < 0)
1776 {
1777 i2 = -i2;
1778 n = scm_divide (n, SCM_UNDEFINED);
1779 }
1780 while (1)
1781 {
1782 if (0 == i2)
1783 return acc;
1784 if (1 == i2)
1785 return scm_product (acc, n);
1786 if (i2 & 1)
1787 acc = scm_product (acc, n);
1788 n = scm_product (n, n);
1789 i2 >>= 1;
1790 }
1791 }
1792 }
1793 #undef FUNC_NAME
1794
1795 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1796 (SCM n, SCM cnt),
1797 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1798 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1799 "\n"
1800 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1801 "@var{cnt} is negative it's a division, rounded towards negative\n"
1802 "infinity. (Note that this is not the same rounding as\n"
1803 "@code{quotient} does.)\n"
1804 "\n"
1805 "With @var{n} viewed as an infinite precision twos complement,\n"
1806 "@code{ash} means a left shift introducing zero bits, or a right\n"
1807 "shift dropping bits.\n"
1808 "\n"
1809 "@lisp\n"
1810 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1811 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1812 "\n"
1813 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1814 "(ash -23 -2) @result{} -6\n"
1815 "@end lisp")
1816 #define FUNC_NAME s_scm_ash
1817 {
1818 long bits_to_shift;
1819 bits_to_shift = scm_to_long (cnt);
1820
1821 if (SCM_I_INUMP (n))
1822 {
1823 long nn = SCM_I_INUM (n);
1824
1825 if (bits_to_shift > 0)
1826 {
1827 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1828 overflow a non-zero fixnum. For smaller shifts we check the
1829 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1830 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1831 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1832 bits_to_shift)". */
1833
1834 if (nn == 0)
1835 return n;
1836
1837 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1838 && ((unsigned long)
1839 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1840 <= 1))
1841 {
1842 return SCM_I_MAKINUM (nn << bits_to_shift);
1843 }
1844 else
1845 {
1846 SCM result = scm_i_long2big (nn);
1847 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1848 bits_to_shift);
1849 return result;
1850 }
1851 }
1852 else
1853 {
1854 bits_to_shift = -bits_to_shift;
1855 if (bits_to_shift >= SCM_LONG_BIT)
1856 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1857 else
1858 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1859 }
1860
1861 }
1862 else if (SCM_BIGP (n))
1863 {
1864 SCM result;
1865
1866 if (bits_to_shift == 0)
1867 return n;
1868
1869 result = scm_i_mkbig ();
1870 if (bits_to_shift >= 0)
1871 {
1872 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1873 bits_to_shift);
1874 return result;
1875 }
1876 else
1877 {
1878 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1879 we have to allocate a bignum even if the result is going to be a
1880 fixnum. */
1881 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1882 -bits_to_shift);
1883 return scm_i_normbig (result);
1884 }
1885
1886 }
1887 else
1888 {
1889 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1890 }
1891 }
1892 #undef FUNC_NAME
1893
1894
1895 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1896 (SCM n, SCM start, SCM end),
1897 "Return the integer composed of the @var{start} (inclusive)\n"
1898 "through @var{end} (exclusive) bits of @var{n}. The\n"
1899 "@var{start}th bit becomes the 0-th bit in the result.\n"
1900 "\n"
1901 "@lisp\n"
1902 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1903 " @result{} \"1010\"\n"
1904 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1905 " @result{} \"10110\"\n"
1906 "@end lisp")
1907 #define FUNC_NAME s_scm_bit_extract
1908 {
1909 unsigned long int istart, iend, bits;
1910 istart = scm_to_ulong (start);
1911 iend = scm_to_ulong (end);
1912 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1913
1914 /* how many bits to keep */
1915 bits = iend - istart;
1916
1917 if (SCM_I_INUMP (n))
1918 {
1919 long int in = SCM_I_INUM (n);
1920
1921 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1922 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1923 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1924
1925 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1926 {
1927 /* Since we emulate two's complement encoded numbers, this
1928 * special case requires us to produce a result that has
1929 * more bits than can be stored in a fixnum.
1930 */
1931 SCM result = scm_i_long2big (in);
1932 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1933 bits);
1934 return result;
1935 }
1936
1937 /* mask down to requisite bits */
1938 bits = min (bits, SCM_I_FIXNUM_BIT);
1939 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
1940 }
1941 else if (SCM_BIGP (n))
1942 {
1943 SCM result;
1944 if (bits == 1)
1945 {
1946 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1947 }
1948 else
1949 {
1950 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1951 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1952 such bits into a ulong. */
1953 result = scm_i_mkbig ();
1954 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1955 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1956 result = scm_i_normbig (result);
1957 }
1958 scm_remember_upto_here_1 (n);
1959 return result;
1960 }
1961 else
1962 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1963 }
1964 #undef FUNC_NAME
1965
1966
1967 static const char scm_logtab[] = {
1968 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1969 };
1970
1971 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1972 (SCM n),
1973 "Return the number of bits in integer @var{n}. If integer is\n"
1974 "positive, the 1-bits in its binary representation are counted.\n"
1975 "If negative, the 0-bits in its two's-complement binary\n"
1976 "representation are counted. If 0, 0 is returned.\n"
1977 "\n"
1978 "@lisp\n"
1979 "(logcount #b10101010)\n"
1980 " @result{} 4\n"
1981 "(logcount 0)\n"
1982 " @result{} 0\n"
1983 "(logcount -2)\n"
1984 " @result{} 1\n"
1985 "@end lisp")
1986 #define FUNC_NAME s_scm_logcount
1987 {
1988 if (SCM_I_INUMP (n))
1989 {
1990 unsigned long int c = 0;
1991 long int nn = SCM_I_INUM (n);
1992 if (nn < 0)
1993 nn = -1 - nn;
1994 while (nn)
1995 {
1996 c += scm_logtab[15 & nn];
1997 nn >>= 4;
1998 }
1999 return SCM_I_MAKINUM (c);
2000 }
2001 else if (SCM_BIGP (n))
2002 {
2003 unsigned long count;
2004 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2005 count = mpz_popcount (SCM_I_BIG_MPZ (n));
2006 else
2007 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2008 scm_remember_upto_here_1 (n);
2009 return SCM_I_MAKINUM (count);
2010 }
2011 else
2012 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2013 }
2014 #undef FUNC_NAME
2015
2016
2017 static const char scm_ilentab[] = {
2018 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2019 };
2020
2021
2022 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2023 (SCM n),
2024 "Return the number of bits necessary to represent @var{n}.\n"
2025 "\n"
2026 "@lisp\n"
2027 "(integer-length #b10101010)\n"
2028 " @result{} 8\n"
2029 "(integer-length 0)\n"
2030 " @result{} 0\n"
2031 "(integer-length #b1111)\n"
2032 " @result{} 4\n"
2033 "@end lisp")
2034 #define FUNC_NAME s_scm_integer_length
2035 {
2036 if (SCM_I_INUMP (n))
2037 {
2038 unsigned long int c = 0;
2039 unsigned int l = 4;
2040 long int nn = SCM_I_INUM (n);
2041 if (nn < 0)
2042 nn = -1 - nn;
2043 while (nn)
2044 {
2045 c += 4;
2046 l = scm_ilentab [15 & nn];
2047 nn >>= 4;
2048 }
2049 return SCM_I_MAKINUM (c - 4 + l);
2050 }
2051 else if (SCM_BIGP (n))
2052 {
2053 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2054 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2055 1 too big, so check for that and adjust. */
2056 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2057 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2058 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2059 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2060 size--;
2061 scm_remember_upto_here_1 (n);
2062 return SCM_I_MAKINUM (size);
2063 }
2064 else
2065 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2066 }
2067 #undef FUNC_NAME
2068
2069 /*** NUMBERS -> STRINGS ***/
2070 #define SCM_MAX_DBL_PREC 60
2071 #define SCM_MAX_DBL_RADIX 36
2072
2073 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2074 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2075 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2076
2077 static
2078 void init_dblprec(int *prec, int radix) {
2079 /* determine floating point precision by adding successively
2080 smaller increments to 1.0 until it is considered == 1.0 */
2081 double f = ((double)1.0)/radix;
2082 double fsum = 1.0 + f;
2083
2084 *prec = 0;
2085 while (fsum != 1.0)
2086 {
2087 if (++(*prec) > SCM_MAX_DBL_PREC)
2088 fsum = 1.0;
2089 else
2090 {
2091 f /= radix;
2092 fsum = f + 1.0;
2093 }
2094 }
2095 (*prec) -= 1;
2096 }
2097
2098 static
2099 void init_fx_radix(double *fx_list, int radix)
2100 {
2101 /* initialize a per-radix list of tolerances. When added
2102 to a number < 1.0, we can determine if we should raund
2103 up and quit converting a number to a string. */
2104 int i;
2105 fx_list[0] = 0.0;
2106 fx_list[1] = 0.5;
2107 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2108 fx_list[i] = (fx_list[i-1] / radix);
2109 }
2110
2111 /* use this array as a way to generate a single digit */
2112 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2113
2114 static size_t
2115 idbl2str (double f, char *a, int radix)
2116 {
2117 int efmt, dpt, d, i, wp;
2118 double *fx;
2119 #ifdef DBL_MIN_10_EXP
2120 double f_cpy;
2121 int exp_cpy;
2122 #endif /* DBL_MIN_10_EXP */
2123 size_t ch = 0;
2124 int exp = 0;
2125
2126 if(radix < 2 ||
2127 radix > SCM_MAX_DBL_RADIX)
2128 {
2129 /* revert to existing behavior */
2130 radix = 10;
2131 }
2132
2133 wp = scm_dblprec[radix-2];
2134 fx = fx_per_radix[radix-2];
2135
2136 if (f == 0.0)
2137 {
2138 #ifdef HAVE_COPYSIGN
2139 double sgn = copysign (1.0, f);
2140
2141 if (sgn < 0.0)
2142 a[ch++] = '-';
2143 #endif
2144 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2145 }
2146
2147 if (xisinf (f))
2148 {
2149 if (f < 0)
2150 strcpy (a, "-inf.0");
2151 else
2152 strcpy (a, "+inf.0");
2153 return ch+6;
2154 }
2155 else if (xisnan (f))
2156 {
2157 strcpy (a, "+nan.0");
2158 return ch+6;
2159 }
2160
2161 if (f < 0.0)
2162 {
2163 f = -f;
2164 a[ch++] = '-';
2165 }
2166
2167 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2168 make-uniform-vector, from causing infinite loops. */
2169 /* just do the checking...if it passes, we do the conversion for our
2170 radix again below */
2171 f_cpy = f;
2172 exp_cpy = exp;
2173
2174 while (f_cpy < 1.0)
2175 {
2176 f_cpy *= 10.0;
2177 if (exp_cpy-- < DBL_MIN_10_EXP)
2178 {
2179 a[ch++] = '#';
2180 a[ch++] = '.';
2181 a[ch++] = '#';
2182 return ch;
2183 }
2184 }
2185 while (f_cpy > 10.0)
2186 {
2187 f_cpy *= 0.10;
2188 if (exp_cpy++ > DBL_MAX_10_EXP)
2189 {
2190 a[ch++] = '#';
2191 a[ch++] = '.';
2192 a[ch++] = '#';
2193 return ch;
2194 }
2195 }
2196 #endif
2197
2198 while (f < 1.0)
2199 {
2200 f *= radix;
2201 exp--;
2202 }
2203 while (f > radix)
2204 {
2205 f /= radix;
2206 exp++;
2207 }
2208
2209 if (f + fx[wp] >= radix)
2210 {
2211 f = 1.0;
2212 exp++;
2213 }
2214 zero:
2215 #ifdef ENGNOT
2216 /* adding 9999 makes this equivalent to abs(x) % 3 */
2217 dpt = (exp + 9999) % 3;
2218 exp -= dpt++;
2219 efmt = 1;
2220 #else
2221 efmt = (exp < -3) || (exp > wp + 2);
2222 if (!efmt)
2223 {
2224 if (exp < 0)
2225 {
2226 a[ch++] = '0';
2227 a[ch++] = '.';
2228 dpt = exp;
2229 while (++dpt)
2230 a[ch++] = '0';
2231 }
2232 else
2233 dpt = exp + 1;
2234 }
2235 else
2236 dpt = 1;
2237 #endif
2238
2239 do
2240 {
2241 d = f;
2242 f -= d;
2243 a[ch++] = number_chars[d];
2244 if (f < fx[wp])
2245 break;
2246 if (f + fx[wp] >= 1.0)
2247 {
2248 a[ch - 1] = number_chars[d+1];
2249 break;
2250 }
2251 f *= radix;
2252 if (!(--dpt))
2253 a[ch++] = '.';
2254 }
2255 while (wp--);
2256
2257 if (dpt > 0)
2258 {
2259 #ifndef ENGNOT
2260 if ((dpt > 4) && (exp > 6))
2261 {
2262 d = (a[0] == '-' ? 2 : 1);
2263 for (i = ch++; i > d; i--)
2264 a[i] = a[i - 1];
2265 a[d] = '.';
2266 efmt = 1;
2267 }
2268 else
2269 #endif
2270 {
2271 while (--dpt)
2272 a[ch++] = '0';
2273 a[ch++] = '.';
2274 }
2275 }
2276 if (a[ch - 1] == '.')
2277 a[ch++] = '0'; /* trailing zero */
2278 if (efmt && exp)
2279 {
2280 a[ch++] = 'e';
2281 if (exp < 0)
2282 {
2283 exp = -exp;
2284 a[ch++] = '-';
2285 }
2286 for (i = radix; i <= exp; i *= radix);
2287 for (i /= radix; i; i /= radix)
2288 {
2289 a[ch++] = number_chars[exp / i];
2290 exp %= i;
2291 }
2292 }
2293 return ch;
2294 }
2295
2296
2297 static size_t
2298 icmplx2str (double real, double imag, char *str, int radix)
2299 {
2300 size_t i;
2301
2302 i = idbl2str (real, str, radix);
2303 if (imag != 0.0)
2304 {
2305 /* Don't output a '+' for negative numbers or for Inf and
2306 NaN. They will provide their own sign. */
2307 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2308 str[i++] = '+';
2309 i += idbl2str (imag, &str[i], radix);
2310 str[i++] = 'i';
2311 }
2312 return i;
2313 }
2314
2315 static size_t
2316 iflo2str (SCM flt, char *str, int radix)
2317 {
2318 size_t i;
2319 if (SCM_REALP (flt))
2320 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2321 else
2322 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2323 str, radix);
2324 return i;
2325 }
2326
2327 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2328 characters in the result.
2329 rad is output base
2330 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2331 size_t
2332 scm_iint2str (scm_t_intmax num, int rad, char *p)
2333 {
2334 if (num < 0)
2335 {
2336 *p++ = '-';
2337 return scm_iuint2str (-num, rad, p) + 1;
2338 }
2339 else
2340 return scm_iuint2str (num, rad, p);
2341 }
2342
2343 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2344 characters in the result.
2345 rad is output base
2346 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2347 size_t
2348 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2349 {
2350 size_t j = 1;
2351 size_t i;
2352 scm_t_uintmax n = num;
2353
2354 for (n /= rad; n > 0; n /= rad)
2355 j++;
2356
2357 i = j;
2358 n = num;
2359 while (i--)
2360 {
2361 int d = n % rad;
2362
2363 n /= rad;
2364 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2365 }
2366 return j;
2367 }
2368
2369 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2370 (SCM n, SCM radix),
2371 "Return a string holding the external representation of the\n"
2372 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2373 "inexact, a radix of 10 will be used.")
2374 #define FUNC_NAME s_scm_number_to_string
2375 {
2376 int base;
2377
2378 if (SCM_UNBNDP (radix))
2379 base = 10;
2380 else
2381 base = scm_to_signed_integer (radix, 2, 36);
2382
2383 if (SCM_I_INUMP (n))
2384 {
2385 char num_buf [SCM_INTBUFLEN];
2386 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2387 return scm_from_locale_stringn (num_buf, length);
2388 }
2389 else if (SCM_BIGP (n))
2390 {
2391 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2392 scm_remember_upto_here_1 (n);
2393 return scm_take_locale_string (str);
2394 }
2395 else if (SCM_FRACTIONP (n))
2396 {
2397 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2398 scm_from_locale_string ("/"),
2399 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2400 }
2401 else if (SCM_INEXACTP (n))
2402 {
2403 char num_buf [FLOBUFLEN];
2404 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2405 }
2406 else
2407 SCM_WRONG_TYPE_ARG (1, n);
2408 }
2409 #undef FUNC_NAME
2410
2411
2412 /* These print routines used to be stubbed here so that scm_repl.c
2413 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2414
2415 int
2416 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2417 {
2418 char num_buf[FLOBUFLEN];
2419 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2420 return !0;
2421 }
2422
2423 void
2424 scm_i_print_double (double val, SCM port)
2425 {
2426 char num_buf[FLOBUFLEN];
2427 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2428 }
2429
2430 int
2431 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2432
2433 {
2434 char num_buf[FLOBUFLEN];
2435 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2436 return !0;
2437 }
2438
2439 void
2440 scm_i_print_complex (double real, double imag, SCM port)
2441 {
2442 char num_buf[FLOBUFLEN];
2443 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2444 }
2445
2446 int
2447 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2448 {
2449 SCM str;
2450 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2451 scm_lfwrite_str (str, port);
2452 scm_remember_upto_here_1 (str);
2453 return !0;
2454 }
2455
2456 int
2457 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2458 {
2459 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2460 scm_remember_upto_here_1 (exp);
2461 scm_lfwrite (str, (size_t) strlen (str), port);
2462 free (str);
2463 return !0;
2464 }
2465 /*** END nums->strs ***/
2466
2467
2468 /*** STRINGS -> NUMBERS ***/
2469
2470 /* The following functions implement the conversion from strings to numbers.
2471 * The implementation somehow follows the grammar for numbers as it is given
2472 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2473 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2474 * points should be noted about the implementation:
2475 * * Each function keeps a local index variable 'idx' that points at the
2476 * current position within the parsed string. The global index is only
2477 * updated if the function could parse the corresponding syntactic unit
2478 * successfully.
2479 * * Similarly, the functions keep track of indicators of inexactness ('#',
2480 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2481 * global exactness information is only updated after each part has been
2482 * successfully parsed.
2483 * * Sequences of digits are parsed into temporary variables holding fixnums.
2484 * Only if these fixnums would overflow, the result variables are updated
2485 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2486 * the temporary variables holding the fixnums are cleared, and the process
2487 * starts over again. If for example fixnums were able to store five decimal
2488 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2489 * and the result was computed as 12345 * 100000 + 67890. In other words,
2490 * only every five digits two bignum operations were performed.
2491 */
2492
2493 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2494
2495 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2496
2497 /* In non ASCII-style encodings the following macro might not work. */
2498 #define XDIGIT2UINT(d) \
2499 (uc_is_property_decimal_digit ((int) (unsigned char) d) \
2500 ? (d) - '0' \
2501 : uc_tolower ((int) (unsigned char) d) - 'a' + 10)
2502
2503 static SCM
2504 mem2uinteger (SCM mem, unsigned int *p_idx,
2505 unsigned int radix, enum t_exactness *p_exactness)
2506 {
2507 unsigned int idx = *p_idx;
2508 unsigned int hash_seen = 0;
2509 scm_t_bits shift = 1;
2510 scm_t_bits add = 0;
2511 unsigned int digit_value;
2512 SCM result;
2513 char c;
2514 size_t len = scm_i_string_length (mem);
2515
2516 if (idx == len)
2517 return SCM_BOOL_F;
2518
2519 c = scm_i_string_ref (mem, idx);
2520 if (!uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
2521 return SCM_BOOL_F;
2522 digit_value = XDIGIT2UINT (c);
2523 if (digit_value >= radix)
2524 return SCM_BOOL_F;
2525
2526 idx++;
2527 result = SCM_I_MAKINUM (digit_value);
2528 while (idx != len)
2529 {
2530 scm_t_wchar c = scm_i_string_ref (mem, idx);
2531 if (uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
2532 {
2533 if (hash_seen)
2534 break;
2535 digit_value = XDIGIT2UINT (c);
2536 if (digit_value >= radix)
2537 break;
2538 }
2539 else if (c == '#')
2540 {
2541 hash_seen = 1;
2542 digit_value = 0;
2543 }
2544 else
2545 break;
2546
2547 idx++;
2548 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2549 {
2550 result = scm_product (result, SCM_I_MAKINUM (shift));
2551 if (add > 0)
2552 result = scm_sum (result, SCM_I_MAKINUM (add));
2553
2554 shift = radix;
2555 add = digit_value;
2556 }
2557 else
2558 {
2559 shift = shift * radix;
2560 add = add * radix + digit_value;
2561 }
2562 };
2563
2564 if (shift > 1)
2565 result = scm_product (result, SCM_I_MAKINUM (shift));
2566 if (add > 0)
2567 result = scm_sum (result, SCM_I_MAKINUM (add));
2568
2569 *p_idx = idx;
2570 if (hash_seen)
2571 *p_exactness = INEXACT;
2572
2573 return result;
2574 }
2575
2576
2577 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2578 * covers the parts of the rules that start at a potential point. The value
2579 * of the digits up to the point have been parsed by the caller and are given
2580 * in variable result. The content of *p_exactness indicates, whether a hash
2581 * has already been seen in the digits before the point.
2582 */
2583
2584 #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
2585
2586 static SCM
2587 mem2decimal_from_point (SCM result, SCM mem,
2588 unsigned int *p_idx, enum t_exactness *p_exactness)
2589 {
2590 unsigned int idx = *p_idx;
2591 enum t_exactness x = *p_exactness;
2592 size_t len = scm_i_string_length (mem);
2593
2594 if (idx == len)
2595 return result;
2596
2597 if (scm_i_string_ref (mem, idx) == '.')
2598 {
2599 scm_t_bits shift = 1;
2600 scm_t_bits add = 0;
2601 unsigned int digit_value;
2602 SCM big_shift = SCM_I_MAKINUM (1);
2603
2604 idx++;
2605 while (idx != len)
2606 {
2607 scm_t_wchar c = scm_i_string_ref (mem, idx);
2608 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2609 {
2610 if (x == INEXACT)
2611 return SCM_BOOL_F;
2612 else
2613 digit_value = DIGIT2UINT (c);
2614 }
2615 else if (c == '#')
2616 {
2617 x = INEXACT;
2618 digit_value = 0;
2619 }
2620 else
2621 break;
2622
2623 idx++;
2624 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2625 {
2626 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2627 result = scm_product (result, SCM_I_MAKINUM (shift));
2628 if (add > 0)
2629 result = scm_sum (result, SCM_I_MAKINUM (add));
2630
2631 shift = 10;
2632 add = digit_value;
2633 }
2634 else
2635 {
2636 shift = shift * 10;
2637 add = add * 10 + digit_value;
2638 }
2639 };
2640
2641 if (add > 0)
2642 {
2643 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2644 result = scm_product (result, SCM_I_MAKINUM (shift));
2645 result = scm_sum (result, SCM_I_MAKINUM (add));
2646 }
2647
2648 result = scm_divide (result, big_shift);
2649
2650 /* We've seen a decimal point, thus the value is implicitly inexact. */
2651 x = INEXACT;
2652 }
2653
2654 if (idx != len)
2655 {
2656 int sign = 1;
2657 unsigned int start;
2658 scm_t_wchar c;
2659 int exponent;
2660 SCM e;
2661
2662 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2663
2664 switch (scm_i_string_ref (mem, idx))
2665 {
2666 case 'd': case 'D':
2667 case 'e': case 'E':
2668 case 'f': case 'F':
2669 case 'l': case 'L':
2670 case 's': case 'S':
2671 idx++;
2672 if (idx == len)
2673 return SCM_BOOL_F;
2674
2675 start = idx;
2676 c = scm_i_string_ref (mem, idx);
2677 if (c == '-')
2678 {
2679 idx++;
2680 if (idx == len)
2681 return SCM_BOOL_F;
2682
2683 sign = -1;
2684 c = scm_i_string_ref (mem, idx);
2685 }
2686 else if (c == '+')
2687 {
2688 idx++;
2689 if (idx == len)
2690 return SCM_BOOL_F;
2691
2692 sign = 1;
2693 c = scm_i_string_ref (mem, idx);
2694 }
2695 else
2696 sign = 1;
2697
2698 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
2699 return SCM_BOOL_F;
2700
2701 idx++;
2702 exponent = DIGIT2UINT (c);
2703 while (idx != len)
2704 {
2705 scm_t_wchar c = scm_i_string_ref (mem, idx);
2706 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2707 {
2708 idx++;
2709 if (exponent <= SCM_MAXEXP)
2710 exponent = exponent * 10 + DIGIT2UINT (c);
2711 }
2712 else
2713 break;
2714 }
2715
2716 if (exponent > SCM_MAXEXP)
2717 {
2718 size_t exp_len = idx - start;
2719 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
2720 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2721 scm_out_of_range ("string->number", exp_num);
2722 }
2723
2724 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2725 if (sign == 1)
2726 result = scm_product (result, e);
2727 else
2728 result = scm_divide2real (result, e);
2729
2730 /* We've seen an exponent, thus the value is implicitly inexact. */
2731 x = INEXACT;
2732
2733 break;
2734
2735 default:
2736 break;
2737 }
2738 }
2739
2740 *p_idx = idx;
2741 if (x == INEXACT)
2742 *p_exactness = x;
2743
2744 return result;
2745 }
2746
2747
2748 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2749
2750 static SCM
2751 mem2ureal (SCM mem, unsigned int *p_idx,
2752 unsigned int radix, enum t_exactness *p_exactness)
2753 {
2754 unsigned int idx = *p_idx;
2755 SCM result;
2756 size_t len = scm_i_string_length (mem);
2757
2758 /* Start off believing that the number will be exact. This changes
2759 to INEXACT if we see a decimal point or a hash. */
2760 enum t_exactness x = EXACT;
2761
2762 if (idx == len)
2763 return SCM_BOOL_F;
2764
2765 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
2766 {
2767 *p_idx = idx+5;
2768 return scm_inf ();
2769 }
2770
2771 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
2772 {
2773 /* Cobble up the fractional part. We might want to set the
2774 NaN's mantissa from it. */
2775 idx += 4;
2776 mem2uinteger (mem, &idx, 10, &x);
2777 *p_idx = idx;
2778 return scm_nan ();
2779 }
2780
2781 if (scm_i_string_ref (mem, idx) == '.')
2782 {
2783 if (radix != 10)
2784 return SCM_BOOL_F;
2785 else if (idx + 1 == len)
2786 return SCM_BOOL_F;
2787 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
2788 return SCM_BOOL_F;
2789 else
2790 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
2791 p_idx, &x);
2792 }
2793 else
2794 {
2795 SCM uinteger;
2796
2797 uinteger = mem2uinteger (mem, &idx, radix, &x);
2798 if (scm_is_false (uinteger))
2799 return SCM_BOOL_F;
2800
2801 if (idx == len)
2802 result = uinteger;
2803 else if (scm_i_string_ref (mem, idx) == '/')
2804 {
2805 SCM divisor;
2806
2807 idx++;
2808 if (idx == len)
2809 return SCM_BOOL_F;
2810
2811 divisor = mem2uinteger (mem, &idx, radix, &x);
2812 if (scm_is_false (divisor))
2813 return SCM_BOOL_F;
2814
2815 /* both are int/big here, I assume */
2816 result = scm_i_make_ratio (uinteger, divisor);
2817 }
2818 else if (radix == 10)
2819 {
2820 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
2821 if (scm_is_false (result))
2822 return SCM_BOOL_F;
2823 }
2824 else
2825 result = uinteger;
2826
2827 *p_idx = idx;
2828 }
2829
2830 /* Update *p_exactness if the number just read was inexact. This is
2831 important for complex numbers, so that a complex number is
2832 treated as inexact overall if either its real or imaginary part
2833 is inexact.
2834 */
2835 if (x == INEXACT)
2836 *p_exactness = x;
2837
2838 /* When returning an inexact zero, make sure it is represented as a
2839 floating point value so that we can change its sign.
2840 */
2841 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2842 result = scm_from_double (0.0);
2843
2844 return result;
2845 }
2846
2847
2848 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2849
2850 static SCM
2851 mem2complex (SCM mem, unsigned int idx,
2852 unsigned int radix, enum t_exactness *p_exactness)
2853 {
2854 scm_t_wchar c;
2855 int sign = 0;
2856 SCM ureal;
2857 size_t len = scm_i_string_length (mem);
2858
2859 if (idx == len)
2860 return SCM_BOOL_F;
2861
2862 c = scm_i_string_ref (mem, idx);
2863 if (c == '+')
2864 {
2865 idx++;
2866 sign = 1;
2867 }
2868 else if (c == '-')
2869 {
2870 idx++;
2871 sign = -1;
2872 }
2873
2874 if (idx == len)
2875 return SCM_BOOL_F;
2876
2877 ureal = mem2ureal (mem, &idx, radix, p_exactness);
2878 if (scm_is_false (ureal))
2879 {
2880 /* input must be either +i or -i */
2881
2882 if (sign == 0)
2883 return SCM_BOOL_F;
2884
2885 if (scm_i_string_ref (mem, idx) == 'i'
2886 || scm_i_string_ref (mem, idx) == 'I')
2887 {
2888 idx++;
2889 if (idx != len)
2890 return SCM_BOOL_F;
2891
2892 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2893 }
2894 else
2895 return SCM_BOOL_F;
2896 }
2897 else
2898 {
2899 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2900 ureal = scm_difference (ureal, SCM_UNDEFINED);
2901
2902 if (idx == len)
2903 return ureal;
2904
2905 c = scm_i_string_ref (mem, idx);
2906 switch (c)
2907 {
2908 case 'i': case 'I':
2909 /* either +<ureal>i or -<ureal>i */
2910
2911 idx++;
2912 if (sign == 0)
2913 return SCM_BOOL_F;
2914 if (idx != len)
2915 return SCM_BOOL_F;
2916 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2917
2918 case '@':
2919 /* polar input: <real>@<real>. */
2920
2921 idx++;
2922 if (idx == len)
2923 return SCM_BOOL_F;
2924 else
2925 {
2926 int sign;
2927 SCM angle;
2928 SCM result;
2929
2930 c = scm_i_string_ref (mem, idx);
2931 if (c == '+')
2932 {
2933 idx++;
2934 if (idx == len)
2935 return SCM_BOOL_F;
2936 sign = 1;
2937 }
2938 else if (c == '-')
2939 {
2940 idx++;
2941 if (idx == len)
2942 return SCM_BOOL_F;
2943 sign = -1;
2944 }
2945 else
2946 sign = 1;
2947
2948 angle = mem2ureal (mem, &idx, radix, p_exactness);
2949 if (scm_is_false (angle))
2950 return SCM_BOOL_F;
2951 if (idx != len)
2952 return SCM_BOOL_F;
2953
2954 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2955 angle = scm_difference (angle, SCM_UNDEFINED);
2956
2957 result = scm_make_polar (ureal, angle);
2958 return result;
2959 }
2960 case '+':
2961 case '-':
2962 /* expecting input matching <real>[+-]<ureal>?i */
2963
2964 idx++;
2965 if (idx == len)
2966 return SCM_BOOL_F;
2967 else
2968 {
2969 int sign = (c == '+') ? 1 : -1;
2970 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
2971
2972 if (scm_is_false (imag))
2973 imag = SCM_I_MAKINUM (sign);
2974 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2975 imag = scm_difference (imag, SCM_UNDEFINED);
2976
2977 if (idx == len)
2978 return SCM_BOOL_F;
2979 if (scm_i_string_ref (mem, idx) != 'i'
2980 && scm_i_string_ref (mem, idx) != 'I')
2981 return SCM_BOOL_F;
2982
2983 idx++;
2984 if (idx != len)
2985 return SCM_BOOL_F;
2986
2987 return scm_make_rectangular (ureal, imag);
2988 }
2989 default:
2990 return SCM_BOOL_F;
2991 }
2992 }
2993 }
2994
2995
2996 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2997
2998 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2999
3000 SCM
3001 scm_i_string_to_number (SCM mem, unsigned int default_radix)
3002 {
3003 unsigned int idx = 0;
3004 unsigned int radix = NO_RADIX;
3005 enum t_exactness forced_x = NO_EXACTNESS;
3006 enum t_exactness implicit_x = EXACT;
3007 SCM result;
3008 size_t len = scm_i_string_length (mem);
3009
3010 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3011 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3012 {
3013 switch (scm_i_string_ref (mem, idx + 1))
3014 {
3015 case 'b': case 'B':
3016 if (radix != NO_RADIX)
3017 return SCM_BOOL_F;
3018 radix = DUAL;
3019 break;
3020 case 'd': case 'D':
3021 if (radix != NO_RADIX)
3022 return SCM_BOOL_F;
3023 radix = DEC;
3024 break;
3025 case 'i': case 'I':
3026 if (forced_x != NO_EXACTNESS)
3027 return SCM_BOOL_F;
3028 forced_x = INEXACT;
3029 break;
3030 case 'e': case 'E':
3031 if (forced_x != NO_EXACTNESS)
3032 return SCM_BOOL_F;
3033 forced_x = EXACT;
3034 break;
3035 case 'o': case 'O':
3036 if (radix != NO_RADIX)
3037 return SCM_BOOL_F;
3038 radix = OCT;
3039 break;
3040 case 'x': case 'X':
3041 if (radix != NO_RADIX)
3042 return SCM_BOOL_F;
3043 radix = HEX;
3044 break;
3045 default:
3046 return SCM_BOOL_F;
3047 }
3048 idx += 2;
3049 }
3050
3051 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3052 if (radix == NO_RADIX)
3053 result = mem2complex (mem, idx, default_radix, &implicit_x);
3054 else
3055 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3056
3057 if (scm_is_false (result))
3058 return SCM_BOOL_F;
3059
3060 switch (forced_x)
3061 {
3062 case EXACT:
3063 if (SCM_INEXACTP (result))
3064 return scm_inexact_to_exact (result);
3065 else
3066 return result;
3067 case INEXACT:
3068 if (SCM_INEXACTP (result))
3069 return result;
3070 else
3071 return scm_exact_to_inexact (result);
3072 case NO_EXACTNESS:
3073 default:
3074 if (implicit_x == INEXACT)
3075 {
3076 if (SCM_INEXACTP (result))
3077 return result;
3078 else
3079 return scm_exact_to_inexact (result);
3080 }
3081 else
3082 return result;
3083 }
3084 }
3085
3086 SCM
3087 scm_c_locale_stringn_to_number (const char* mem, size_t len,
3088 unsigned int default_radix)
3089 {
3090 SCM str = scm_from_locale_stringn (mem, len);
3091
3092 return scm_i_string_to_number (str, default_radix);
3093 }
3094
3095
3096 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3097 (SCM string, SCM radix),
3098 "Return a number of the maximally precise representation\n"
3099 "expressed by the given @var{string}. @var{radix} must be an\n"
3100 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3101 "is a default radix that may be overridden by an explicit radix\n"
3102 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3103 "supplied, then the default radix is 10. If string is not a\n"
3104 "syntactically valid notation for a number, then\n"
3105 "@code{string->number} returns @code{#f}.")
3106 #define FUNC_NAME s_scm_string_to_number
3107 {
3108 SCM answer;
3109 unsigned int base;
3110 SCM_VALIDATE_STRING (1, string);
3111
3112 if (SCM_UNBNDP (radix))
3113 base = 10;
3114 else
3115 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3116
3117 answer = scm_i_string_to_number (string, base);
3118 scm_remember_upto_here_1 (string);
3119 return answer;
3120 }
3121 #undef FUNC_NAME
3122
3123
3124 /*** END strs->nums ***/
3125
3126
3127 SCM
3128 scm_bigequal (SCM x, SCM y)
3129 {
3130 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3131 scm_remember_upto_here_2 (x, y);
3132 return scm_from_bool (0 == result);
3133 }
3134
3135 SCM
3136 scm_real_equalp (SCM x, SCM y)
3137 {
3138 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3139 }
3140
3141 SCM
3142 scm_complex_equalp (SCM x, SCM y)
3143 {
3144 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3145 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3146 }
3147
3148 SCM
3149 scm_i_fraction_equalp (SCM x, SCM y)
3150 {
3151 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3152 SCM_FRACTION_NUMERATOR (y)))
3153 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3154 SCM_FRACTION_DENOMINATOR (y))))
3155 return SCM_BOOL_F;
3156 else
3157 return SCM_BOOL_T;
3158 }
3159
3160
3161 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3162 (SCM x),
3163 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3164 "otherwise.")
3165 #define FUNC_NAME s_scm_number_p
3166 {
3167 return scm_from_bool (SCM_NUMBERP (x));
3168 }
3169 #undef FUNC_NAME
3170
3171 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3172 (SCM x),
3173 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3174 "otherwise. Note that the sets of real, rational and integer\n"
3175 "values form subsets of the set of complex numbers, i. e. the\n"
3176 "predicate will also be fulfilled if @var{x} is a real,\n"
3177 "rational or integer number.")
3178 #define FUNC_NAME s_scm_complex_p
3179 {
3180 /* all numbers are complex. */
3181 return scm_number_p (x);
3182 }
3183 #undef FUNC_NAME
3184
3185 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3186 (SCM x),
3187 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3188 "otherwise. Note that the set of integer values forms a subset of\n"
3189 "the set of real numbers, i. e. the predicate will also be\n"
3190 "fulfilled if @var{x} is an integer number.")
3191 #define FUNC_NAME s_scm_real_p
3192 {
3193 /* we can't represent irrational numbers. */
3194 return scm_rational_p (x);
3195 }
3196 #undef FUNC_NAME
3197
3198 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3199 (SCM x),
3200 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3201 "otherwise. Note that the set of integer values forms a subset of\n"
3202 "the set of rational numbers, i. e. the predicate will also be\n"
3203 "fulfilled if @var{x} is an integer number.")
3204 #define FUNC_NAME s_scm_rational_p
3205 {
3206 if (SCM_I_INUMP (x))
3207 return SCM_BOOL_T;
3208 else if (SCM_IMP (x))
3209 return SCM_BOOL_F;
3210 else if (SCM_BIGP (x))
3211 return SCM_BOOL_T;
3212 else if (SCM_FRACTIONP (x))
3213 return SCM_BOOL_T;
3214 else if (SCM_REALP (x))
3215 /* due to their limited precision, all floating point numbers are
3216 rational as well. */
3217 return SCM_BOOL_T;
3218 else
3219 return SCM_BOOL_F;
3220 }
3221 #undef FUNC_NAME
3222
3223 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3224 (SCM x),
3225 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3226 "else.")
3227 #define FUNC_NAME s_scm_integer_p
3228 {
3229 double r;
3230 if (SCM_I_INUMP (x))
3231 return SCM_BOOL_T;
3232 if (SCM_IMP (x))
3233 return SCM_BOOL_F;
3234 if (SCM_BIGP (x))
3235 return SCM_BOOL_T;
3236 if (!SCM_INEXACTP (x))
3237 return SCM_BOOL_F;
3238 if (SCM_COMPLEXP (x))
3239 return SCM_BOOL_F;
3240 r = SCM_REAL_VALUE (x);
3241 /* +/-inf passes r==floor(r), making those #t */
3242 if (r == floor (r))
3243 return SCM_BOOL_T;
3244 return SCM_BOOL_F;
3245 }
3246 #undef FUNC_NAME
3247
3248
3249 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3250 (SCM x),
3251 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3252 "else.")
3253 #define FUNC_NAME s_scm_inexact_p
3254 {
3255 if (SCM_INEXACTP (x))
3256 return SCM_BOOL_T;
3257 if (SCM_NUMBERP (x))
3258 return SCM_BOOL_F;
3259 SCM_WRONG_TYPE_ARG (1, x);
3260 }
3261 #undef FUNC_NAME
3262
3263
3264 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3265 /* "Return @code{#t} if all parameters are numerically equal." */
3266 SCM
3267 scm_num_eq_p (SCM x, SCM y)
3268 {
3269 again:
3270 if (SCM_I_INUMP (x))
3271 {
3272 long xx = SCM_I_INUM (x);
3273 if (SCM_I_INUMP (y))
3274 {
3275 long yy = SCM_I_INUM (y);
3276 return scm_from_bool (xx == yy);
3277 }
3278 else if (SCM_BIGP (y))
3279 return SCM_BOOL_F;
3280 else if (SCM_REALP (y))
3281 {
3282 /* On a 32-bit system an inum fits a double, we can cast the inum
3283 to a double and compare.
3284
3285 But on a 64-bit system an inum is bigger than a double and
3286 casting it to a double (call that dxx) will round. dxx is at
3287 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3288 an integer and fits a long. So we cast yy to a long and
3289 compare with plain xx.
3290
3291 An alternative (for any size system actually) would be to check
3292 yy is an integer (with floor) and is in range of an inum
3293 (compare against appropriate powers of 2) then test
3294 xx==(long)yy. It's just a matter of which casts/comparisons
3295 might be fastest or easiest for the cpu. */
3296
3297 double yy = SCM_REAL_VALUE (y);
3298 return scm_from_bool ((double) xx == yy
3299 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3300 || xx == (long) yy));
3301 }
3302 else if (SCM_COMPLEXP (y))
3303 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3304 && (0.0 == SCM_COMPLEX_IMAG (y)));
3305 else if (SCM_FRACTIONP (y))
3306 return SCM_BOOL_F;
3307 else
3308 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3309 }
3310 else if (SCM_BIGP (x))
3311 {
3312 if (SCM_I_INUMP (y))
3313 return SCM_BOOL_F;
3314 else if (SCM_BIGP (y))
3315 {
3316 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3317 scm_remember_upto_here_2 (x, y);
3318 return scm_from_bool (0 == cmp);
3319 }
3320 else if (SCM_REALP (y))
3321 {
3322 int cmp;
3323 if (xisnan (SCM_REAL_VALUE (y)))
3324 return SCM_BOOL_F;
3325 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3326 scm_remember_upto_here_1 (x);
3327 return scm_from_bool (0 == cmp);
3328 }
3329 else if (SCM_COMPLEXP (y))
3330 {
3331 int cmp;
3332 if (0.0 != SCM_COMPLEX_IMAG (y))
3333 return SCM_BOOL_F;
3334 if (xisnan (SCM_COMPLEX_REAL (y)))
3335 return SCM_BOOL_F;
3336 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3337 scm_remember_upto_here_1 (x);
3338 return scm_from_bool (0 == cmp);
3339 }
3340 else if (SCM_FRACTIONP (y))
3341 return SCM_BOOL_F;
3342 else
3343 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3344 }
3345 else if (SCM_REALP (x))
3346 {
3347 double xx = SCM_REAL_VALUE (x);
3348 if (SCM_I_INUMP (y))
3349 {
3350 /* see comments with inum/real above */
3351 long yy = SCM_I_INUM (y);
3352 return scm_from_bool (xx == (double) yy
3353 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3354 || (long) xx == yy));
3355 }
3356 else if (SCM_BIGP (y))
3357 {
3358 int cmp;
3359 if (xisnan (SCM_REAL_VALUE (x)))
3360 return SCM_BOOL_F;
3361 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3362 scm_remember_upto_here_1 (y);
3363 return scm_from_bool (0 == cmp);
3364 }
3365 else if (SCM_REALP (y))
3366 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3367 else if (SCM_COMPLEXP (y))
3368 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3369 && (0.0 == SCM_COMPLEX_IMAG (y)));
3370 else if (SCM_FRACTIONP (y))
3371 {
3372 double xx = SCM_REAL_VALUE (x);
3373 if (xisnan (xx))
3374 return SCM_BOOL_F;
3375 if (xisinf (xx))
3376 return scm_from_bool (xx < 0.0);
3377 x = scm_inexact_to_exact (x); /* with x as frac or int */
3378 goto again;
3379 }
3380 else
3381 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3382 }
3383 else if (SCM_COMPLEXP (x))
3384 {
3385 if (SCM_I_INUMP (y))
3386 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3387 && (SCM_COMPLEX_IMAG (x) == 0.0));
3388 else if (SCM_BIGP (y))
3389 {
3390 int cmp;
3391 if (0.0 != SCM_COMPLEX_IMAG (x))
3392 return SCM_BOOL_F;
3393 if (xisnan (SCM_COMPLEX_REAL (x)))
3394 return SCM_BOOL_F;
3395 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3396 scm_remember_upto_here_1 (y);
3397 return scm_from_bool (0 == cmp);
3398 }
3399 else if (SCM_REALP (y))
3400 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3401 && (SCM_COMPLEX_IMAG (x) == 0.0));
3402 else if (SCM_COMPLEXP (y))
3403 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3404 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3405 else if (SCM_FRACTIONP (y))
3406 {
3407 double xx;
3408 if (SCM_COMPLEX_IMAG (x) != 0.0)
3409 return SCM_BOOL_F;
3410 xx = SCM_COMPLEX_REAL (x);
3411 if (xisnan (xx))
3412 return SCM_BOOL_F;
3413 if (xisinf (xx))
3414 return scm_from_bool (xx < 0.0);
3415 x = scm_inexact_to_exact (x); /* with x as frac or int */
3416 goto again;
3417 }
3418 else
3419 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3420 }
3421 else if (SCM_FRACTIONP (x))
3422 {
3423 if (SCM_I_INUMP (y))
3424 return SCM_BOOL_F;
3425 else if (SCM_BIGP (y))
3426 return SCM_BOOL_F;
3427 else if (SCM_REALP (y))
3428 {
3429 double yy = SCM_REAL_VALUE (y);
3430 if (xisnan (yy))
3431 return SCM_BOOL_F;
3432 if (xisinf (yy))
3433 return scm_from_bool (0.0 < yy);
3434 y = scm_inexact_to_exact (y); /* with y as frac or int */
3435 goto again;
3436 }
3437 else if (SCM_COMPLEXP (y))
3438 {
3439 double yy;
3440 if (SCM_COMPLEX_IMAG (y) != 0.0)
3441 return SCM_BOOL_F;
3442 yy = SCM_COMPLEX_REAL (y);
3443 if (xisnan (yy))
3444 return SCM_BOOL_F;
3445 if (xisinf (yy))
3446 return scm_from_bool (0.0 < yy);
3447 y = scm_inexact_to_exact (y); /* with y as frac or int */
3448 goto again;
3449 }
3450 else if (SCM_FRACTIONP (y))
3451 return scm_i_fraction_equalp (x, y);
3452 else
3453 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3454 }
3455 else
3456 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3457 }
3458
3459
3460 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3461 done are good for inums, but for bignums an answer can almost always be
3462 had by just examining a few high bits of the operands, as done by GMP in
3463 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3464 of the float exponent to take into account. */
3465
3466 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3467 /* "Return @code{#t} if the list of parameters is monotonically\n"
3468 * "increasing."
3469 */
3470 SCM
3471 scm_less_p (SCM x, SCM y)
3472 {
3473 again:
3474 if (SCM_I_INUMP (x))
3475 {
3476 long xx = SCM_I_INUM (x);
3477 if (SCM_I_INUMP (y))
3478 {
3479 long yy = SCM_I_INUM (y);
3480 return scm_from_bool (xx < yy);
3481 }
3482 else if (SCM_BIGP (y))
3483 {
3484 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3485 scm_remember_upto_here_1 (y);
3486 return scm_from_bool (sgn > 0);
3487 }
3488 else if (SCM_REALP (y))
3489 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3490 else if (SCM_FRACTIONP (y))
3491 {
3492 /* "x < a/b" becomes "x*b < a" */
3493 int_frac:
3494 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3495 y = SCM_FRACTION_NUMERATOR (y);
3496 goto again;
3497 }
3498 else
3499 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3500 }
3501 else if (SCM_BIGP (x))
3502 {
3503 if (SCM_I_INUMP (y))
3504 {
3505 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3506 scm_remember_upto_here_1 (x);
3507 return scm_from_bool (sgn < 0);
3508 }
3509 else if (SCM_BIGP (y))
3510 {
3511 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3512 scm_remember_upto_here_2 (x, y);
3513 return scm_from_bool (cmp < 0);
3514 }
3515 else if (SCM_REALP (y))
3516 {
3517 int cmp;
3518 if (xisnan (SCM_REAL_VALUE (y)))
3519 return SCM_BOOL_F;
3520 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3521 scm_remember_upto_here_1 (x);
3522 return scm_from_bool (cmp < 0);
3523 }
3524 else if (SCM_FRACTIONP (y))
3525 goto int_frac;
3526 else
3527 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3528 }
3529 else if (SCM_REALP (x))
3530 {
3531 if (SCM_I_INUMP (y))
3532 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3533 else if (SCM_BIGP (y))
3534 {
3535 int cmp;
3536 if (xisnan (SCM_REAL_VALUE (x)))
3537 return SCM_BOOL_F;
3538 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3539 scm_remember_upto_here_1 (y);
3540 return scm_from_bool (cmp > 0);
3541 }
3542 else if (SCM_REALP (y))
3543 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3544 else if (SCM_FRACTIONP (y))
3545 {
3546 double xx = SCM_REAL_VALUE (x);
3547 if (xisnan (xx))
3548 return SCM_BOOL_F;
3549 if (xisinf (xx))
3550 return scm_from_bool (xx < 0.0);
3551 x = scm_inexact_to_exact (x); /* with x as frac or int */
3552 goto again;
3553 }
3554 else
3555 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3556 }
3557 else if (SCM_FRACTIONP (x))
3558 {
3559 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3560 {
3561 /* "a/b < y" becomes "a < y*b" */
3562 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3563 x = SCM_FRACTION_NUMERATOR (x);
3564 goto again;
3565 }
3566 else if (SCM_REALP (y))
3567 {
3568 double yy = SCM_REAL_VALUE (y);
3569 if (xisnan (yy))
3570 return SCM_BOOL_F;
3571 if (xisinf (yy))
3572 return scm_from_bool (0.0 < yy);
3573 y = scm_inexact_to_exact (y); /* with y as frac or int */
3574 goto again;
3575 }
3576 else if (SCM_FRACTIONP (y))
3577 {
3578 /* "a/b < c/d" becomes "a*d < c*b" */
3579 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3580 SCM_FRACTION_DENOMINATOR (y));
3581 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3582 SCM_FRACTION_DENOMINATOR (x));
3583 x = new_x;
3584 y = new_y;
3585 goto again;
3586 }
3587 else
3588 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3589 }
3590 else
3591 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3592 }
3593
3594
3595 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3596 /* "Return @code{#t} if the list of parameters is monotonically\n"
3597 * "decreasing."
3598 */
3599 #define FUNC_NAME s_scm_gr_p
3600 SCM
3601 scm_gr_p (SCM x, SCM y)
3602 {
3603 if (!SCM_NUMBERP (x))
3604 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3605 else if (!SCM_NUMBERP (y))
3606 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3607 else
3608 return scm_less_p (y, x);
3609 }
3610 #undef FUNC_NAME
3611
3612
3613 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3614 /* "Return @code{#t} if the list of parameters is monotonically\n"
3615 * "non-decreasing."
3616 */
3617 #define FUNC_NAME s_scm_leq_p
3618 SCM
3619 scm_leq_p (SCM x, SCM y)
3620 {
3621 if (!SCM_NUMBERP (x))
3622 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3623 else if (!SCM_NUMBERP (y))
3624 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3625 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3626 return SCM_BOOL_F;
3627 else
3628 return scm_not (scm_less_p (y, x));
3629 }
3630 #undef FUNC_NAME
3631
3632
3633 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3634 /* "Return @code{#t} if the list of parameters is monotonically\n"
3635 * "non-increasing."
3636 */
3637 #define FUNC_NAME s_scm_geq_p
3638 SCM
3639 scm_geq_p (SCM x, SCM y)
3640 {
3641 if (!SCM_NUMBERP (x))
3642 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3643 else if (!SCM_NUMBERP (y))
3644 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3645 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3646 return SCM_BOOL_F;
3647 else
3648 return scm_not (scm_less_p (x, y));
3649 }
3650 #undef FUNC_NAME
3651
3652
3653 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3654 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3655 * "zero."
3656 */
3657 SCM
3658 scm_zero_p (SCM z)
3659 {
3660 if (SCM_I_INUMP (z))
3661 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3662 else if (SCM_BIGP (z))
3663 return SCM_BOOL_F;
3664 else if (SCM_REALP (z))
3665 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3666 else if (SCM_COMPLEXP (z))
3667 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3668 && SCM_COMPLEX_IMAG (z) == 0.0);
3669 else if (SCM_FRACTIONP (z))
3670 return SCM_BOOL_F;
3671 else
3672 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3673 }
3674
3675
3676 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3677 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3678 * "zero."
3679 */
3680 SCM
3681 scm_positive_p (SCM x)
3682 {
3683 if (SCM_I_INUMP (x))
3684 return scm_from_bool (SCM_I_INUM (x) > 0);
3685 else if (SCM_BIGP (x))
3686 {
3687 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3688 scm_remember_upto_here_1 (x);
3689 return scm_from_bool (sgn > 0);
3690 }
3691 else if (SCM_REALP (x))
3692 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3693 else if (SCM_FRACTIONP (x))
3694 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3695 else
3696 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3697 }
3698
3699
3700 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3701 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3702 * "zero."
3703 */
3704 SCM
3705 scm_negative_p (SCM x)
3706 {
3707 if (SCM_I_INUMP (x))
3708 return scm_from_bool (SCM_I_INUM (x) < 0);
3709 else if (SCM_BIGP (x))
3710 {
3711 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3712 scm_remember_upto_here_1 (x);
3713 return scm_from_bool (sgn < 0);
3714 }
3715 else if (SCM_REALP (x))
3716 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3717 else if (SCM_FRACTIONP (x))
3718 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3719 else
3720 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3721 }
3722
3723
3724 /* scm_min and scm_max return an inexact when either argument is inexact, as
3725 required by r5rs. On that basis, for exact/inexact combinations the
3726 exact is converted to inexact to compare and possibly return. This is
3727 unlike scm_less_p above which takes some trouble to preserve all bits in
3728 its test, such trouble is not required for min and max. */
3729
3730 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3731 /* "Return the maximum of all parameter values."
3732 */
3733 SCM
3734 scm_max (SCM x, SCM y)
3735 {
3736 if (SCM_UNBNDP (y))
3737 {
3738 if (SCM_UNBNDP (x))
3739 SCM_WTA_DISPATCH_0 (g_max, s_max);
3740 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3741 return x;
3742 else
3743 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3744 }
3745
3746 if (SCM_I_INUMP (x))
3747 {
3748 long xx = SCM_I_INUM (x);
3749 if (SCM_I_INUMP (y))
3750 {
3751 long yy = SCM_I_INUM (y);
3752 return (xx < yy) ? y : x;
3753 }
3754 else if (SCM_BIGP (y))
3755 {
3756 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3757 scm_remember_upto_here_1 (y);
3758 return (sgn < 0) ? x : y;
3759 }
3760 else if (SCM_REALP (y))
3761 {
3762 double z = xx;
3763 /* if y==NaN then ">" is false and we return NaN */
3764 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3765 }
3766 else if (SCM_FRACTIONP (y))
3767 {
3768 use_less:
3769 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3770 }
3771 else
3772 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3773 }
3774 else if (SCM_BIGP (x))
3775 {
3776 if (SCM_I_INUMP (y))
3777 {
3778 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3779 scm_remember_upto_here_1 (x);
3780 return (sgn < 0) ? y : x;
3781 }
3782 else if (SCM_BIGP (y))
3783 {
3784 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3785 scm_remember_upto_here_2 (x, y);
3786 return (cmp > 0) ? x : y;
3787 }
3788 else if (SCM_REALP (y))
3789 {
3790 /* if y==NaN then xx>yy is false, so we return the NaN y */
3791 double xx, yy;
3792 big_real:
3793 xx = scm_i_big2dbl (x);
3794 yy = SCM_REAL_VALUE (y);
3795 return (xx > yy ? scm_from_double (xx) : y);
3796 }
3797 else if (SCM_FRACTIONP (y))
3798 {
3799 goto use_less;
3800 }
3801 else
3802 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3803 }
3804 else if (SCM_REALP (x))
3805 {
3806 if (SCM_I_INUMP (y))
3807 {
3808 double z = SCM_I_INUM (y);
3809 /* if x==NaN then "<" is false and we return NaN */
3810 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3811 }
3812 else if (SCM_BIGP (y))
3813 {
3814 SCM_SWAP (x, y);
3815 goto big_real;
3816 }
3817 else if (SCM_REALP (y))
3818 {
3819 /* if x==NaN then our explicit check means we return NaN
3820 if y==NaN then ">" is false and we return NaN
3821 calling isnan is unavoidable, since it's the only way to know
3822 which of x or y causes any compares to be false */
3823 double xx = SCM_REAL_VALUE (x);
3824 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3825 }
3826 else if (SCM_FRACTIONP (y))
3827 {
3828 double yy = scm_i_fraction2double (y);
3829 double xx = SCM_REAL_VALUE (x);
3830 return (xx < yy) ? scm_from_double (yy) : x;
3831 }
3832 else
3833 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3834 }
3835 else if (SCM_FRACTIONP (x))
3836 {
3837 if (SCM_I_INUMP (y))
3838 {
3839 goto use_less;
3840 }
3841 else if (SCM_BIGP (y))
3842 {
3843 goto use_less;
3844 }
3845 else if (SCM_REALP (y))
3846 {
3847 double xx = scm_i_fraction2double (x);
3848 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3849 }
3850 else if (SCM_FRACTIONP (y))
3851 {
3852 goto use_less;
3853 }
3854 else
3855 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3856 }
3857 else
3858 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3859 }
3860
3861
3862 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3863 /* "Return the minium of all parameter values."
3864 */
3865 SCM
3866 scm_min (SCM x, SCM y)
3867 {
3868 if (SCM_UNBNDP (y))
3869 {
3870 if (SCM_UNBNDP (x))
3871 SCM_WTA_DISPATCH_0 (g_min, s_min);
3872 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3873 return x;
3874 else
3875 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3876 }
3877
3878 if (SCM_I_INUMP (x))
3879 {
3880 long xx = SCM_I_INUM (x);
3881 if (SCM_I_INUMP (y))
3882 {
3883 long yy = SCM_I_INUM (y);
3884 return (xx < yy) ? x : y;
3885 }
3886 else if (SCM_BIGP (y))
3887 {
3888 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3889 scm_remember_upto_here_1 (y);
3890 return (sgn < 0) ? y : x;
3891 }
3892 else if (SCM_REALP (y))
3893 {
3894 double z = xx;
3895 /* if y==NaN then "<" is false and we return NaN */
3896 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3897 }
3898 else if (SCM_FRACTIONP (y))
3899 {
3900 use_less:
3901 return (scm_is_false (scm_less_p (x, y)) ? y : x);
3902 }
3903 else
3904 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3905 }
3906 else if (SCM_BIGP (x))
3907 {
3908 if (SCM_I_INUMP (y))
3909 {
3910 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3911 scm_remember_upto_here_1 (x);
3912 return (sgn < 0) ? x : y;
3913 }
3914 else if (SCM_BIGP (y))
3915 {
3916 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3917 scm_remember_upto_here_2 (x, y);
3918 return (cmp > 0) ? y : x;
3919 }
3920 else if (SCM_REALP (y))
3921 {
3922 /* if y==NaN then xx<yy is false, so we return the NaN y */
3923 double xx, yy;
3924 big_real:
3925 xx = scm_i_big2dbl (x);
3926 yy = SCM_REAL_VALUE (y);
3927 return (xx < yy ? scm_from_double (xx) : y);
3928 }
3929 else if (SCM_FRACTIONP (y))
3930 {
3931 goto use_less;
3932 }
3933 else
3934 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3935 }
3936 else if (SCM_REALP (x))
3937 {
3938 if (SCM_I_INUMP (y))
3939 {
3940 double z = SCM_I_INUM (y);
3941 /* if x==NaN then "<" is false and we return NaN */
3942 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
3943 }
3944 else if (SCM_BIGP (y))
3945 {
3946 SCM_SWAP (x, y);
3947 goto big_real;
3948 }
3949 else if (SCM_REALP (y))
3950 {
3951 /* if x==NaN then our explicit check means we return NaN
3952 if y==NaN then "<" is false and we return NaN
3953 calling isnan is unavoidable, since it's the only way to know
3954 which of x or y causes any compares to be false */
3955 double xx = SCM_REAL_VALUE (x);
3956 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3957 }
3958 else if (SCM_FRACTIONP (y))
3959 {
3960 double yy = scm_i_fraction2double (y);
3961 double xx = SCM_REAL_VALUE (x);
3962 return (yy < xx) ? scm_from_double (yy) : x;
3963 }
3964 else
3965 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3966 }
3967 else if (SCM_FRACTIONP (x))
3968 {
3969 if (SCM_I_INUMP (y))
3970 {
3971 goto use_less;
3972 }
3973 else if (SCM_BIGP (y))
3974 {
3975 goto use_less;
3976 }
3977 else if (SCM_REALP (y))
3978 {
3979 double xx = scm_i_fraction2double (x);
3980 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
3981 }
3982 else if (SCM_FRACTIONP (y))
3983 {
3984 goto use_less;
3985 }
3986 else
3987 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3988 }
3989 else
3990 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3991 }
3992
3993
3994 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3995 /* "Return the sum of all parameter values. Return 0 if called without\n"
3996 * "any parameters."
3997 */
3998 SCM
3999 scm_sum (SCM x, SCM y)
4000 {
4001 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4002 {
4003 if (SCM_NUMBERP (x)) return x;
4004 if (SCM_UNBNDP (x)) return SCM_INUM0;
4005 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
4006 }
4007
4008 if (SCM_LIKELY (SCM_I_INUMP (x)))
4009 {
4010 if (SCM_LIKELY (SCM_I_INUMP (y)))
4011 {
4012 long xx = SCM_I_INUM (x);
4013 long yy = SCM_I_INUM (y);
4014 long int z = xx + yy;
4015 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
4016 }
4017 else if (SCM_BIGP (y))
4018 {
4019 SCM_SWAP (x, y);
4020 goto add_big_inum;
4021 }
4022 else if (SCM_REALP (y))
4023 {
4024 long int xx = SCM_I_INUM (x);
4025 return scm_from_double (xx + SCM_REAL_VALUE (y));
4026 }
4027 else if (SCM_COMPLEXP (y))
4028 {
4029 long int xx = SCM_I_INUM (x);
4030 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
4031 SCM_COMPLEX_IMAG (y));
4032 }
4033 else if (SCM_FRACTIONP (y))
4034 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4035 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4036 SCM_FRACTION_DENOMINATOR (y));
4037 else
4038 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4039 } else if (SCM_BIGP (x))
4040 {
4041 if (SCM_I_INUMP (y))
4042 {
4043 long int inum;
4044 int bigsgn;
4045 add_big_inum:
4046 inum = SCM_I_INUM (y);
4047 if (inum == 0)
4048 return x;
4049 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4050 if (inum < 0)
4051 {
4052 SCM result = scm_i_mkbig ();
4053 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4054 scm_remember_upto_here_1 (x);
4055 /* we know the result will have to be a bignum */
4056 if (bigsgn == -1)
4057 return result;
4058 return scm_i_normbig (result);
4059 }
4060 else
4061 {
4062 SCM result = scm_i_mkbig ();
4063 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4064 scm_remember_upto_here_1 (x);
4065 /* we know the result will have to be a bignum */
4066 if (bigsgn == 1)
4067 return result;
4068 return scm_i_normbig (result);
4069 }
4070 }
4071 else if (SCM_BIGP (y))
4072 {
4073 SCM result = scm_i_mkbig ();
4074 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4075 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4076 mpz_add (SCM_I_BIG_MPZ (result),
4077 SCM_I_BIG_MPZ (x),
4078 SCM_I_BIG_MPZ (y));
4079 scm_remember_upto_here_2 (x, y);
4080 /* we know the result will have to be a bignum */
4081 if (sgn_x == sgn_y)
4082 return result;
4083 return scm_i_normbig (result);
4084 }
4085 else if (SCM_REALP (y))
4086 {
4087 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4088 scm_remember_upto_here_1 (x);
4089 return scm_from_double (result);
4090 }
4091 else if (SCM_COMPLEXP (y))
4092 {
4093 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4094 + SCM_COMPLEX_REAL (y));
4095 scm_remember_upto_here_1 (x);
4096 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4097 }
4098 else if (SCM_FRACTIONP (y))
4099 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4100 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4101 SCM_FRACTION_DENOMINATOR (y));
4102 else
4103 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4104 }
4105 else if (SCM_REALP (x))
4106 {
4107 if (SCM_I_INUMP (y))
4108 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4109 else if (SCM_BIGP (y))
4110 {
4111 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4112 scm_remember_upto_here_1 (y);
4113 return scm_from_double (result);
4114 }
4115 else if (SCM_REALP (y))
4116 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4117 else if (SCM_COMPLEXP (y))
4118 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4119 SCM_COMPLEX_IMAG (y));
4120 else if (SCM_FRACTIONP (y))
4121 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4122 else
4123 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4124 }
4125 else if (SCM_COMPLEXP (x))
4126 {
4127 if (SCM_I_INUMP (y))
4128 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4129 SCM_COMPLEX_IMAG (x));
4130 else if (SCM_BIGP (y))
4131 {
4132 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4133 + SCM_COMPLEX_REAL (x));
4134 scm_remember_upto_here_1 (y);
4135 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4136 }
4137 else if (SCM_REALP (y))
4138 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4139 SCM_COMPLEX_IMAG (x));
4140 else if (SCM_COMPLEXP (y))
4141 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4142 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4143 else if (SCM_FRACTIONP (y))
4144 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4145 SCM_COMPLEX_IMAG (x));
4146 else
4147 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4148 }
4149 else if (SCM_FRACTIONP (x))
4150 {
4151 if (SCM_I_INUMP (y))
4152 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4153 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4154 SCM_FRACTION_DENOMINATOR (x));
4155 else if (SCM_BIGP (y))
4156 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4157 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4158 SCM_FRACTION_DENOMINATOR (x));
4159 else if (SCM_REALP (y))
4160 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4161 else if (SCM_COMPLEXP (y))
4162 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4163 SCM_COMPLEX_IMAG (y));
4164 else if (SCM_FRACTIONP (y))
4165 /* a/b + c/d = (ad + bc) / bd */
4166 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4167 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4168 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4169 else
4170 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4171 }
4172 else
4173 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4174 }
4175
4176
4177 SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4178 (SCM x),
4179 "Return @math{@var{x}+1}.")
4180 #define FUNC_NAME s_scm_oneplus
4181 {
4182 return scm_sum (x, SCM_I_MAKINUM (1));
4183 }
4184 #undef FUNC_NAME
4185
4186
4187 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
4188 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4189 * the sum of all but the first argument are subtracted from the first
4190 * argument. */
4191 #define FUNC_NAME s_difference
4192 SCM
4193 scm_difference (SCM x, SCM y)
4194 {
4195 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4196 {
4197 if (SCM_UNBNDP (x))
4198 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4199 else
4200 if (SCM_I_INUMP (x))
4201 {
4202 long xx = -SCM_I_INUM (x);
4203 if (SCM_FIXABLE (xx))
4204 return SCM_I_MAKINUM (xx);
4205 else
4206 return scm_i_long2big (xx);
4207 }
4208 else if (SCM_BIGP (x))
4209 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4210 bignum, but negating that gives a fixnum. */
4211 return scm_i_normbig (scm_i_clonebig (x, 0));
4212 else if (SCM_REALP (x))
4213 return scm_from_double (-SCM_REAL_VALUE (x));
4214 else if (SCM_COMPLEXP (x))
4215 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4216 -SCM_COMPLEX_IMAG (x));
4217 else if (SCM_FRACTIONP (x))
4218 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4219 SCM_FRACTION_DENOMINATOR (x));
4220 else
4221 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4222 }
4223
4224 if (SCM_LIKELY (SCM_I_INUMP (x)))
4225 {
4226 if (SCM_LIKELY (SCM_I_INUMP (y)))
4227 {
4228 long int xx = SCM_I_INUM (x);
4229 long int yy = SCM_I_INUM (y);
4230 long int z = xx - yy;
4231 if (SCM_FIXABLE (z))
4232 return SCM_I_MAKINUM (z);
4233 else
4234 return scm_i_long2big (z);
4235 }
4236 else if (SCM_BIGP (y))
4237 {
4238 /* inum-x - big-y */
4239 long xx = SCM_I_INUM (x);
4240
4241 if (xx == 0)
4242 return scm_i_clonebig (y, 0);
4243 else
4244 {
4245 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4246 SCM result = scm_i_mkbig ();
4247
4248 if (xx >= 0)
4249 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4250 else
4251 {
4252 /* x - y == -(y + -x) */
4253 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4254 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4255 }
4256 scm_remember_upto_here_1 (y);
4257
4258 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4259 /* we know the result will have to be a bignum */
4260 return result;
4261 else
4262 return scm_i_normbig (result);
4263 }
4264 }
4265 else if (SCM_REALP (y))
4266 {
4267 long int xx = SCM_I_INUM (x);
4268 return scm_from_double (xx - SCM_REAL_VALUE (y));
4269 }
4270 else if (SCM_COMPLEXP (y))
4271 {
4272 long int xx = SCM_I_INUM (x);
4273 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4274 - SCM_COMPLEX_IMAG (y));
4275 }
4276 else if (SCM_FRACTIONP (y))
4277 /* a - b/c = (ac - b) / c */
4278 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4279 SCM_FRACTION_NUMERATOR (y)),
4280 SCM_FRACTION_DENOMINATOR (y));
4281 else
4282 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4283 }
4284 else if (SCM_BIGP (x))
4285 {
4286 if (SCM_I_INUMP (y))
4287 {
4288 /* big-x - inum-y */
4289 long yy = SCM_I_INUM (y);
4290 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4291
4292 scm_remember_upto_here_1 (x);
4293 if (sgn_x == 0)
4294 return (SCM_FIXABLE (-yy) ?
4295 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4296 else
4297 {
4298 SCM result = scm_i_mkbig ();
4299
4300 if (yy >= 0)
4301 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4302 else
4303 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4304 scm_remember_upto_here_1 (x);
4305
4306 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4307 /* we know the result will have to be a bignum */
4308 return result;
4309 else
4310 return scm_i_normbig (result);
4311 }
4312 }
4313 else if (SCM_BIGP (y))
4314 {
4315 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4316 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4317 SCM result = scm_i_mkbig ();
4318 mpz_sub (SCM_I_BIG_MPZ (result),
4319 SCM_I_BIG_MPZ (x),
4320 SCM_I_BIG_MPZ (y));
4321 scm_remember_upto_here_2 (x, y);
4322 /* we know the result will have to be a bignum */
4323 if ((sgn_x == 1) && (sgn_y == -1))
4324 return result;
4325 if ((sgn_x == -1) && (sgn_y == 1))
4326 return result;
4327 return scm_i_normbig (result);
4328 }
4329 else if (SCM_REALP (y))
4330 {
4331 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4332 scm_remember_upto_here_1 (x);
4333 return scm_from_double (result);
4334 }
4335 else if (SCM_COMPLEXP (y))
4336 {
4337 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4338 - SCM_COMPLEX_REAL (y));
4339 scm_remember_upto_here_1 (x);
4340 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4341 }
4342 else if (SCM_FRACTIONP (y))
4343 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4344 SCM_FRACTION_NUMERATOR (y)),
4345 SCM_FRACTION_DENOMINATOR (y));
4346 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4347 }
4348 else if (SCM_REALP (x))
4349 {
4350 if (SCM_I_INUMP (y))
4351 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4352 else if (SCM_BIGP (y))
4353 {
4354 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4355 scm_remember_upto_here_1 (x);
4356 return scm_from_double (result);
4357 }
4358 else if (SCM_REALP (y))
4359 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4360 else if (SCM_COMPLEXP (y))
4361 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4362 -SCM_COMPLEX_IMAG (y));
4363 else if (SCM_FRACTIONP (y))
4364 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4365 else
4366 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4367 }
4368 else if (SCM_COMPLEXP (x))
4369 {
4370 if (SCM_I_INUMP (y))
4371 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4372 SCM_COMPLEX_IMAG (x));
4373 else if (SCM_BIGP (y))
4374 {
4375 double real_part = (SCM_COMPLEX_REAL (x)
4376 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4377 scm_remember_upto_here_1 (x);
4378 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4379 }
4380 else if (SCM_REALP (y))
4381 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4382 SCM_COMPLEX_IMAG (x));
4383 else if (SCM_COMPLEXP (y))
4384 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4385 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4386 else if (SCM_FRACTIONP (y))
4387 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4388 SCM_COMPLEX_IMAG (x));
4389 else
4390 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4391 }
4392 else if (SCM_FRACTIONP (x))
4393 {
4394 if (SCM_I_INUMP (y))
4395 /* a/b - c = (a - cb) / b */
4396 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4397 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4398 SCM_FRACTION_DENOMINATOR (x));
4399 else if (SCM_BIGP (y))
4400 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4401 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4402 SCM_FRACTION_DENOMINATOR (x));
4403 else if (SCM_REALP (y))
4404 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4405 else if (SCM_COMPLEXP (y))
4406 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4407 -SCM_COMPLEX_IMAG (y));
4408 else if (SCM_FRACTIONP (y))
4409 /* a/b - c/d = (ad - bc) / bd */
4410 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4411 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4412 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4413 else
4414 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4415 }
4416 else
4417 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4418 }
4419 #undef FUNC_NAME
4420
4421
4422 SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4423 (SCM x),
4424 "Return @math{@var{x}-1}.")
4425 #define FUNC_NAME s_scm_oneminus
4426 {
4427 return scm_difference (x, SCM_I_MAKINUM (1));
4428 }
4429 #undef FUNC_NAME
4430
4431
4432 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4433 /* "Return the product of all arguments. If called without arguments,\n"
4434 * "1 is returned."
4435 */
4436 SCM
4437 scm_product (SCM x, SCM y)
4438 {
4439 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4440 {
4441 if (SCM_UNBNDP (x))
4442 return SCM_I_MAKINUM (1L);
4443 else if (SCM_NUMBERP (x))
4444 return x;
4445 else
4446 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4447 }
4448
4449 if (SCM_LIKELY (SCM_I_INUMP (x)))
4450 {
4451 long xx;
4452
4453 intbig:
4454 xx = SCM_I_INUM (x);
4455
4456 switch (xx)
4457 {
4458 case 0: return x; break;
4459 case 1: return y; break;
4460 }
4461
4462 if (SCM_LIKELY (SCM_I_INUMP (y)))
4463 {
4464 long yy = SCM_I_INUM (y);
4465 long kk = xx * yy;
4466 SCM k = SCM_I_MAKINUM (kk);
4467 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4468 return k;
4469 else
4470 {
4471 SCM result = scm_i_long2big (xx);
4472 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4473 return scm_i_normbig (result);
4474 }
4475 }
4476 else if (SCM_BIGP (y))
4477 {
4478 SCM result = scm_i_mkbig ();
4479 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4480 scm_remember_upto_here_1 (y);
4481 return result;
4482 }
4483 else if (SCM_REALP (y))
4484 return scm_from_double (xx * SCM_REAL_VALUE (y));
4485 else if (SCM_COMPLEXP (y))
4486 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4487 xx * SCM_COMPLEX_IMAG (y));
4488 else if (SCM_FRACTIONP (y))
4489 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4490 SCM_FRACTION_DENOMINATOR (y));
4491 else
4492 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4493 }
4494 else if (SCM_BIGP (x))
4495 {
4496 if (SCM_I_INUMP (y))
4497 {
4498 SCM_SWAP (x, y);
4499 goto intbig;
4500 }
4501 else if (SCM_BIGP (y))
4502 {
4503 SCM result = scm_i_mkbig ();
4504 mpz_mul (SCM_I_BIG_MPZ (result),
4505 SCM_I_BIG_MPZ (x),
4506 SCM_I_BIG_MPZ (y));
4507 scm_remember_upto_here_2 (x, y);
4508 return result;
4509 }
4510 else if (SCM_REALP (y))
4511 {
4512 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4513 scm_remember_upto_here_1 (x);
4514 return scm_from_double (result);
4515 }
4516 else if (SCM_COMPLEXP (y))
4517 {
4518 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4519 scm_remember_upto_here_1 (x);
4520 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4521 z * SCM_COMPLEX_IMAG (y));
4522 }
4523 else if (SCM_FRACTIONP (y))
4524 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4525 SCM_FRACTION_DENOMINATOR (y));
4526 else
4527 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4528 }
4529 else if (SCM_REALP (x))
4530 {
4531 if (SCM_I_INUMP (y))
4532 {
4533 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4534 if (scm_is_eq (y, SCM_INUM0))
4535 return y;
4536 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4537 }
4538 else if (SCM_BIGP (y))
4539 {
4540 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4541 scm_remember_upto_here_1 (y);
4542 return scm_from_double (result);
4543 }
4544 else if (SCM_REALP (y))
4545 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4546 else if (SCM_COMPLEXP (y))
4547 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4548 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4549 else if (SCM_FRACTIONP (y))
4550 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4551 else
4552 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4553 }
4554 else if (SCM_COMPLEXP (x))
4555 {
4556 if (SCM_I_INUMP (y))
4557 {
4558 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4559 if (scm_is_eq (y, SCM_INUM0))
4560 return y;
4561 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4562 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4563 }
4564 else if (SCM_BIGP (y))
4565 {
4566 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4567 scm_remember_upto_here_1 (y);
4568 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4569 z * SCM_COMPLEX_IMAG (x));
4570 }
4571 else if (SCM_REALP (y))
4572 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4573 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4574 else if (SCM_COMPLEXP (y))
4575 {
4576 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4577 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4578 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4579 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4580 }
4581 else if (SCM_FRACTIONP (y))
4582 {
4583 double yy = scm_i_fraction2double (y);
4584 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4585 yy * SCM_COMPLEX_IMAG (x));
4586 }
4587 else
4588 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4589 }
4590 else if (SCM_FRACTIONP (x))
4591 {
4592 if (SCM_I_INUMP (y))
4593 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4594 SCM_FRACTION_DENOMINATOR (x));
4595 else if (SCM_BIGP (y))
4596 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4597 SCM_FRACTION_DENOMINATOR (x));
4598 else if (SCM_REALP (y))
4599 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4600 else if (SCM_COMPLEXP (y))
4601 {
4602 double xx = scm_i_fraction2double (x);
4603 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4604 xx * SCM_COMPLEX_IMAG (y));
4605 }
4606 else if (SCM_FRACTIONP (y))
4607 /* a/b * c/d = ac / bd */
4608 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4609 SCM_FRACTION_NUMERATOR (y)),
4610 scm_product (SCM_FRACTION_DENOMINATOR (x),
4611 SCM_FRACTION_DENOMINATOR (y)));
4612 else
4613 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4614 }
4615 else
4616 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4617 }
4618
4619 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4620 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4621 #define ALLOW_DIVIDE_BY_ZERO
4622 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4623 #endif
4624
4625 /* The code below for complex division is adapted from the GNU
4626 libstdc++, which adapted it from f2c's libF77, and is subject to
4627 this copyright: */
4628
4629 /****************************************************************
4630 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4631
4632 Permission to use, copy, modify, and distribute this software
4633 and its documentation for any purpose and without fee is hereby
4634 granted, provided that the above copyright notice appear in all
4635 copies and that both that the copyright notice and this
4636 permission notice and warranty disclaimer appear in supporting
4637 documentation, and that the names of AT&T Bell Laboratories or
4638 Bellcore or any of their entities not be used in advertising or
4639 publicity pertaining to distribution of the software without
4640 specific, written prior permission.
4641
4642 AT&T and Bellcore disclaim all warranties with regard to this
4643 software, including all implied warranties of merchantability
4644 and fitness. In no event shall AT&T or Bellcore be liable for
4645 any special, indirect or consequential damages or any damages
4646 whatsoever resulting from loss of use, data or profits, whether
4647 in an action of contract, negligence or other tortious action,
4648 arising out of or in connection with the use or performance of
4649 this software.
4650 ****************************************************************/
4651
4652 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4653 /* Divide the first argument by the product of the remaining
4654 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4655 returned. */
4656 #define FUNC_NAME s_divide
4657 static SCM
4658 scm_i_divide (SCM x, SCM y, int inexact)
4659 {
4660 double a;
4661
4662 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4663 {
4664 if (SCM_UNBNDP (x))
4665 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4666 else if (SCM_I_INUMP (x))
4667 {
4668 long xx = SCM_I_INUM (x);
4669 if (xx == 1 || xx == -1)
4670 return x;
4671 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4672 else if (xx == 0)
4673 scm_num_overflow (s_divide);
4674 #endif
4675 else
4676 {
4677 if (inexact)
4678 return scm_from_double (1.0 / (double) xx);
4679 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4680 }
4681 }
4682 else if (SCM_BIGP (x))
4683 {
4684 if (inexact)
4685 return scm_from_double (1.0 / scm_i_big2dbl (x));
4686 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4687 }
4688 else if (SCM_REALP (x))
4689 {
4690 double xx = SCM_REAL_VALUE (x);
4691 #ifndef ALLOW_DIVIDE_BY_ZERO
4692 if (xx == 0.0)
4693 scm_num_overflow (s_divide);
4694 else
4695 #endif
4696 return scm_from_double (1.0 / xx);
4697 }
4698 else if (SCM_COMPLEXP (x))
4699 {
4700 double r = SCM_COMPLEX_REAL (x);
4701 double i = SCM_COMPLEX_IMAG (x);
4702 if (fabs(r) <= fabs(i))
4703 {
4704 double t = r / i;
4705 double d = i * (1.0 + t * t);
4706 return scm_c_make_rectangular (t / d, -1.0 / d);
4707 }
4708 else
4709 {
4710 double t = i / r;
4711 double d = r * (1.0 + t * t);
4712 return scm_c_make_rectangular (1.0 / d, -t / d);
4713 }
4714 }
4715 else if (SCM_FRACTIONP (x))
4716 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4717 SCM_FRACTION_NUMERATOR (x));
4718 else
4719 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4720 }
4721
4722 if (SCM_LIKELY (SCM_I_INUMP (x)))
4723 {
4724 long xx = SCM_I_INUM (x);
4725 if (SCM_LIKELY (SCM_I_INUMP (y)))
4726 {
4727 long yy = SCM_I_INUM (y);
4728 if (yy == 0)
4729 {
4730 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4731 scm_num_overflow (s_divide);
4732 #else
4733 return scm_from_double ((double) xx / (double) yy);
4734 #endif
4735 }
4736 else if (xx % yy != 0)
4737 {
4738 if (inexact)
4739 return scm_from_double ((double) xx / (double) yy);
4740 else return scm_i_make_ratio (x, y);
4741 }
4742 else
4743 {
4744 long z = xx / yy;
4745 if (SCM_FIXABLE (z))
4746 return SCM_I_MAKINUM (z);
4747 else
4748 return scm_i_long2big (z);
4749 }
4750 }
4751 else if (SCM_BIGP (y))
4752 {
4753 if (inexact)
4754 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4755 else return scm_i_make_ratio (x, y);
4756 }
4757 else if (SCM_REALP (y))
4758 {
4759 double yy = SCM_REAL_VALUE (y);
4760 #ifndef ALLOW_DIVIDE_BY_ZERO
4761 if (yy == 0.0)
4762 scm_num_overflow (s_divide);
4763 else
4764 #endif
4765 return scm_from_double ((double) xx / yy);
4766 }
4767 else if (SCM_COMPLEXP (y))
4768 {
4769 a = xx;
4770 complex_div: /* y _must_ be a complex number */
4771 {
4772 double r = SCM_COMPLEX_REAL (y);
4773 double i = SCM_COMPLEX_IMAG (y);
4774 if (fabs(r) <= fabs(i))
4775 {
4776 double t = r / i;
4777 double d = i * (1.0 + t * t);
4778 return scm_c_make_rectangular ((a * t) / d, -a / d);
4779 }
4780 else
4781 {
4782 double t = i / r;
4783 double d = r * (1.0 + t * t);
4784 return scm_c_make_rectangular (a / d, -(a * t) / d);
4785 }
4786 }
4787 }
4788 else if (SCM_FRACTIONP (y))
4789 /* a / b/c = ac / b */
4790 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4791 SCM_FRACTION_NUMERATOR (y));
4792 else
4793 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4794 }
4795 else if (SCM_BIGP (x))
4796 {
4797 if (SCM_I_INUMP (y))
4798 {
4799 long int yy = SCM_I_INUM (y);
4800 if (yy == 0)
4801 {
4802 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4803 scm_num_overflow (s_divide);
4804 #else
4805 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4806 scm_remember_upto_here_1 (x);
4807 return (sgn == 0) ? scm_nan () : scm_inf ();
4808 #endif
4809 }
4810 else if (yy == 1)
4811 return x;
4812 else
4813 {
4814 /* FIXME: HMM, what are the relative performance issues here?
4815 We need to test. Is it faster on average to test
4816 divisible_p, then perform whichever operation, or is it
4817 faster to perform the integer div opportunistically and
4818 switch to real if there's a remainder? For now we take the
4819 middle ground: test, then if divisible, use the faster div
4820 func. */
4821
4822 long abs_yy = yy < 0 ? -yy : yy;
4823 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4824
4825 if (divisible_p)
4826 {
4827 SCM result = scm_i_mkbig ();
4828 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4829 scm_remember_upto_here_1 (x);
4830 if (yy < 0)
4831 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4832 return scm_i_normbig (result);
4833 }
4834 else
4835 {
4836 if (inexact)
4837 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4838 else return scm_i_make_ratio (x, y);
4839 }
4840 }
4841 }
4842 else if (SCM_BIGP (y))
4843 {
4844 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4845 if (y_is_zero)
4846 {
4847 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4848 scm_num_overflow (s_divide);
4849 #else
4850 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4851 scm_remember_upto_here_1 (x);
4852 return (sgn == 0) ? scm_nan () : scm_inf ();
4853 #endif
4854 }
4855 else
4856 {
4857 /* big_x / big_y */
4858 if (inexact)
4859 {
4860 /* It's easily possible for the ratio x/y to fit a double
4861 but one or both x and y be too big to fit a double,
4862 hence the use of mpq_get_d rather than converting and
4863 dividing. */
4864 mpq_t q;
4865 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
4866 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
4867 return scm_from_double (mpq_get_d (q));
4868 }
4869 else
4870 {
4871 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4872 SCM_I_BIG_MPZ (y));
4873 if (divisible_p)
4874 {
4875 SCM result = scm_i_mkbig ();
4876 mpz_divexact (SCM_I_BIG_MPZ (result),
4877 SCM_I_BIG_MPZ (x),
4878 SCM_I_BIG_MPZ (y));
4879 scm_remember_upto_here_2 (x, y);
4880 return scm_i_normbig (result);
4881 }
4882 else
4883 return scm_i_make_ratio (x, y);
4884 }
4885 }
4886 }
4887 else if (SCM_REALP (y))
4888 {
4889 double yy = SCM_REAL_VALUE (y);
4890 #ifndef ALLOW_DIVIDE_BY_ZERO
4891 if (yy == 0.0)
4892 scm_num_overflow (s_divide);
4893 else
4894 #endif
4895 return scm_from_double (scm_i_big2dbl (x) / yy);
4896 }
4897 else if (SCM_COMPLEXP (y))
4898 {
4899 a = scm_i_big2dbl (x);
4900 goto complex_div;
4901 }
4902 else if (SCM_FRACTIONP (y))
4903 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4904 SCM_FRACTION_NUMERATOR (y));
4905 else
4906 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4907 }
4908 else if (SCM_REALP (x))
4909 {
4910 double rx = SCM_REAL_VALUE (x);
4911 if (SCM_I_INUMP (y))
4912 {
4913 long int yy = SCM_I_INUM (y);
4914 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4915 if (yy == 0)
4916 scm_num_overflow (s_divide);
4917 else
4918 #endif
4919 return scm_from_double (rx / (double) yy);
4920 }
4921 else if (SCM_BIGP (y))
4922 {
4923 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4924 scm_remember_upto_here_1 (y);
4925 return scm_from_double (rx / dby);
4926 }
4927 else if (SCM_REALP (y))
4928 {
4929 double yy = SCM_REAL_VALUE (y);
4930 #ifndef ALLOW_DIVIDE_BY_ZERO
4931 if (yy == 0.0)
4932 scm_num_overflow (s_divide);
4933 else
4934 #endif
4935 return scm_from_double (rx / yy);
4936 }
4937 else if (SCM_COMPLEXP (y))
4938 {
4939 a = rx;
4940 goto complex_div;
4941 }
4942 else if (SCM_FRACTIONP (y))
4943 return scm_from_double (rx / scm_i_fraction2double (y));
4944 else
4945 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4946 }
4947 else if (SCM_COMPLEXP (x))
4948 {
4949 double rx = SCM_COMPLEX_REAL (x);
4950 double ix = SCM_COMPLEX_IMAG (x);
4951 if (SCM_I_INUMP (y))
4952 {
4953 long int yy = SCM_I_INUM (y);
4954 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4955 if (yy == 0)
4956 scm_num_overflow (s_divide);
4957 else
4958 #endif
4959 {
4960 double d = yy;
4961 return scm_c_make_rectangular (rx / d, ix / d);
4962 }
4963 }
4964 else if (SCM_BIGP (y))
4965 {
4966 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4967 scm_remember_upto_here_1 (y);
4968 return scm_c_make_rectangular (rx / dby, ix / dby);
4969 }
4970 else if (SCM_REALP (y))
4971 {
4972 double yy = SCM_REAL_VALUE (y);
4973 #ifndef ALLOW_DIVIDE_BY_ZERO
4974 if (yy == 0.0)
4975 scm_num_overflow (s_divide);
4976 else
4977 #endif
4978 return scm_c_make_rectangular (rx / yy, ix / yy);
4979 }
4980 else if (SCM_COMPLEXP (y))
4981 {
4982 double ry = SCM_COMPLEX_REAL (y);
4983 double iy = SCM_COMPLEX_IMAG (y);
4984 if (fabs(ry) <= fabs(iy))
4985 {
4986 double t = ry / iy;
4987 double d = iy * (1.0 + t * t);
4988 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
4989 }
4990 else
4991 {
4992 double t = iy / ry;
4993 double d = ry * (1.0 + t * t);
4994 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
4995 }
4996 }
4997 else if (SCM_FRACTIONP (y))
4998 {
4999 double yy = scm_i_fraction2double (y);
5000 return scm_c_make_rectangular (rx / yy, ix / yy);
5001 }
5002 else
5003 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5004 }
5005 else if (SCM_FRACTIONP (x))
5006 {
5007 if (SCM_I_INUMP (y))
5008 {
5009 long int yy = SCM_I_INUM (y);
5010 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5011 if (yy == 0)
5012 scm_num_overflow (s_divide);
5013 else
5014 #endif
5015 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5016 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5017 }
5018 else if (SCM_BIGP (y))
5019 {
5020 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5021 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5022 }
5023 else if (SCM_REALP (y))
5024 {
5025 double yy = SCM_REAL_VALUE (y);
5026 #ifndef ALLOW_DIVIDE_BY_ZERO
5027 if (yy == 0.0)
5028 scm_num_overflow (s_divide);
5029 else
5030 #endif
5031 return scm_from_double (scm_i_fraction2double (x) / yy);
5032 }
5033 else if (SCM_COMPLEXP (y))
5034 {
5035 a = scm_i_fraction2double (x);
5036 goto complex_div;
5037 }
5038 else if (SCM_FRACTIONP (y))
5039 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
5040 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5041 else
5042 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5043 }
5044 else
5045 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
5046 }
5047
5048 SCM
5049 scm_divide (SCM x, SCM y)
5050 {
5051 return scm_i_divide (x, y, 0);
5052 }
5053
5054 static SCM scm_divide2real (SCM x, SCM y)
5055 {
5056 return scm_i_divide (x, y, 1);
5057 }
5058 #undef FUNC_NAME
5059
5060
5061 double
5062 scm_c_truncate (double x)
5063 {
5064 #if HAVE_TRUNC
5065 return trunc (x);
5066 #else
5067 if (x < 0.0)
5068 return -floor (-x);
5069 return floor (x);
5070 #endif
5071 }
5072
5073 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
5074 half-way case (ie. when x is an integer plus 0.5) going upwards.
5075 Then half-way cases are identified and adjusted down if the
5076 round-upwards didn't give the desired even integer.
5077
5078 "plus_half == result" identifies a half-way case. If plus_half, which is
5079 x + 0.5, is an integer then x must be an integer plus 0.5.
5080
5081 An odd "result" value is identified with result/2 != floor(result/2).
5082 This is done with plus_half, since that value is ready for use sooner in
5083 a pipelined cpu, and we're already requiring plus_half == result.
5084
5085 Note however that we need to be careful when x is big and already an
5086 integer. In that case "x+0.5" may round to an adjacent integer, causing
5087 us to return such a value, incorrectly. For instance if the hardware is
5088 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5089 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5090 returned. Or if the hardware is in round-upwards mode, then other bigger
5091 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5092 representable value, 2^128+2^76 (or whatever), again incorrect.
5093
5094 These bad roundings of x+0.5 are avoided by testing at the start whether
5095 x is already an integer. If it is then clearly that's the desired result
5096 already. And if it's not then the exponent must be small enough to allow
5097 an 0.5 to be represented, and hence added without a bad rounding. */
5098
5099 double
5100 scm_c_round (double x)
5101 {
5102 double plus_half, result;
5103
5104 if (x == floor (x))
5105 return x;
5106
5107 plus_half = x + 0.5;
5108 result = floor (plus_half);
5109 /* Adjust so that the rounding is towards even. */
5110 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5111 ? result - 1
5112 : result);
5113 }
5114
5115 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5116 (SCM x),
5117 "Round the number @var{x} towards zero.")
5118 #define FUNC_NAME s_scm_truncate_number
5119 {
5120 if (scm_is_false (scm_negative_p (x)))
5121 return scm_floor (x);
5122 else
5123 return scm_ceiling (x);
5124 }
5125 #undef FUNC_NAME
5126
5127 static SCM exactly_one_half;
5128
5129 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5130 (SCM x),
5131 "Round the number @var{x} towards the nearest integer. "
5132 "When it is exactly halfway between two integers, "
5133 "round towards the even one.")
5134 #define FUNC_NAME s_scm_round_number
5135 {
5136 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5137 return x;
5138 else if (SCM_REALP (x))
5139 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5140 else
5141 {
5142 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5143 single quotient+remainder division then examining to see which way
5144 the rounding should go. */
5145 SCM plus_half = scm_sum (x, exactly_one_half);
5146 SCM result = scm_floor (plus_half);
5147 /* Adjust so that the rounding is towards even. */
5148 if (scm_is_true (scm_num_eq_p (plus_half, result))
5149 && scm_is_true (scm_odd_p (result)))
5150 return scm_difference (result, SCM_I_MAKINUM (1));
5151 else
5152 return result;
5153 }
5154 }
5155 #undef FUNC_NAME
5156
5157 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5158 (SCM x),
5159 "Round the number @var{x} towards minus infinity.")
5160 #define FUNC_NAME s_scm_floor
5161 {
5162 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5163 return x;
5164 else if (SCM_REALP (x))
5165 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5166 else if (SCM_FRACTIONP (x))
5167 {
5168 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5169 SCM_FRACTION_DENOMINATOR (x));
5170 if (scm_is_false (scm_negative_p (x)))
5171 {
5172 /* For positive x, rounding towards zero is correct. */
5173 return q;
5174 }
5175 else
5176 {
5177 /* For negative x, we need to return q-1 unless x is an
5178 integer. But fractions are never integer, per our
5179 assumptions. */
5180 return scm_difference (q, SCM_I_MAKINUM (1));
5181 }
5182 }
5183 else
5184 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5185 }
5186 #undef FUNC_NAME
5187
5188 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5189 (SCM x),
5190 "Round the number @var{x} towards infinity.")
5191 #define FUNC_NAME s_scm_ceiling
5192 {
5193 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5194 return x;
5195 else if (SCM_REALP (x))
5196 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5197 else if (SCM_FRACTIONP (x))
5198 {
5199 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5200 SCM_FRACTION_DENOMINATOR (x));
5201 if (scm_is_false (scm_positive_p (x)))
5202 {
5203 /* For negative x, rounding towards zero is correct. */
5204 return q;
5205 }
5206 else
5207 {
5208 /* For positive x, we need to return q+1 unless x is an
5209 integer. But fractions are never integer, per our
5210 assumptions. */
5211 return scm_sum (q, SCM_I_MAKINUM (1));
5212 }
5213 }
5214 else
5215 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5216 }
5217 #undef FUNC_NAME
5218
5219 /* sin/cos/tan/asin/acos/atan
5220 sinh/cosh/tanh/asinh/acosh/atanh
5221 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5222 Written by Jerry D. Hedden, (C) FSF.
5223 See the file `COPYING' for terms applying to this program. */
5224
5225 SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
5226 (SCM x, SCM y),
5227 "Return @var{x} raised to the power of @var{y}.")
5228 #define FUNC_NAME s_scm_expt
5229 {
5230 if (!SCM_INEXACTP (y) && scm_is_integer (y))
5231 return scm_integer_expt (x, y);
5232 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5233 {
5234 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5235 }
5236 else
5237 return scm_exp (scm_product (scm_log (x), y));
5238 }
5239 #undef FUNC_NAME
5240
5241 SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5242 (SCM z),
5243 "Compute the sine of @var{z}.")
5244 #define FUNC_NAME s_scm_sin
5245 {
5246 if (scm_is_real (z))
5247 return scm_from_double (sin (scm_to_double (z)));
5248 else if (SCM_COMPLEXP (z))
5249 { double x, y;
5250 x = SCM_COMPLEX_REAL (z);
5251 y = SCM_COMPLEX_IMAG (z);
5252 return scm_c_make_rectangular (sin (x) * cosh (y),
5253 cos (x) * sinh (y));
5254 }
5255 else
5256 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5257 }
5258 #undef FUNC_NAME
5259
5260 SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5261 (SCM z),
5262 "Compute the cosine of @var{z}.")
5263 #define FUNC_NAME s_scm_cos
5264 {
5265 if (scm_is_real (z))
5266 return scm_from_double (cos (scm_to_double (z)));
5267 else if (SCM_COMPLEXP (z))
5268 { double x, y;
5269 x = SCM_COMPLEX_REAL (z);
5270 y = SCM_COMPLEX_IMAG (z);
5271 return scm_c_make_rectangular (cos (x) * cosh (y),
5272 -sin (x) * sinh (y));
5273 }
5274 else
5275 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5276 }
5277 #undef FUNC_NAME
5278
5279 SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5280 (SCM z),
5281 "Compute the tangent of @var{z}.")
5282 #define FUNC_NAME s_scm_tan
5283 {
5284 if (scm_is_real (z))
5285 return scm_from_double (tan (scm_to_double (z)));
5286 else if (SCM_COMPLEXP (z))
5287 { double x, y, w;
5288 x = 2.0 * SCM_COMPLEX_REAL (z);
5289 y = 2.0 * SCM_COMPLEX_IMAG (z);
5290 w = cos (x) + cosh (y);
5291 #ifndef ALLOW_DIVIDE_BY_ZERO
5292 if (w == 0.0)
5293 scm_num_overflow (s_scm_tan);
5294 #endif
5295 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5296 }
5297 else
5298 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5299 }
5300 #undef FUNC_NAME
5301
5302 SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5303 (SCM z),
5304 "Compute the hyperbolic sine of @var{z}.")
5305 #define FUNC_NAME s_scm_sinh
5306 {
5307 if (scm_is_real (z))
5308 return scm_from_double (sinh (scm_to_double (z)));
5309 else if (SCM_COMPLEXP (z))
5310 { double x, y;
5311 x = SCM_COMPLEX_REAL (z);
5312 y = SCM_COMPLEX_IMAG (z);
5313 return scm_c_make_rectangular (sinh (x) * cos (y),
5314 cosh (x) * sin (y));
5315 }
5316 else
5317 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5318 }
5319 #undef FUNC_NAME
5320
5321 SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5322 (SCM z),
5323 "Compute the hyperbolic cosine of @var{z}.")
5324 #define FUNC_NAME s_scm_cosh
5325 {
5326 if (scm_is_real (z))
5327 return scm_from_double (cosh (scm_to_double (z)));
5328 else if (SCM_COMPLEXP (z))
5329 { double x, y;
5330 x = SCM_COMPLEX_REAL (z);
5331 y = SCM_COMPLEX_IMAG (z);
5332 return scm_c_make_rectangular (cosh (x) * cos (y),
5333 sinh (x) * sin (y));
5334 }
5335 else
5336 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5337 }
5338 #undef FUNC_NAME
5339
5340 SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5341 (SCM z),
5342 "Compute the hyperbolic tangent of @var{z}.")
5343 #define FUNC_NAME s_scm_tanh
5344 {
5345 if (scm_is_real (z))
5346 return scm_from_double (tanh (scm_to_double (z)));
5347 else if (SCM_COMPLEXP (z))
5348 { double x, y, w;
5349 x = 2.0 * SCM_COMPLEX_REAL (z);
5350 y = 2.0 * SCM_COMPLEX_IMAG (z);
5351 w = cosh (x) + cos (y);
5352 #ifndef ALLOW_DIVIDE_BY_ZERO
5353 if (w == 0.0)
5354 scm_num_overflow (s_scm_tanh);
5355 #endif
5356 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5357 }
5358 else
5359 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5360 }
5361 #undef FUNC_NAME
5362
5363 SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5364 (SCM z),
5365 "Compute the arc sine of @var{z}.")
5366 #define FUNC_NAME s_scm_asin
5367 {
5368 if (scm_is_real (z))
5369 {
5370 double w = scm_to_double (z);
5371 if (w >= -1.0 && w <= 1.0)
5372 return scm_from_double (asin (w));
5373 else
5374 return scm_product (scm_c_make_rectangular (0, -1),
5375 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5376 }
5377 else if (SCM_COMPLEXP (z))
5378 { double x, y;
5379 x = SCM_COMPLEX_REAL (z);
5380 y = SCM_COMPLEX_IMAG (z);
5381 return scm_product (scm_c_make_rectangular (0, -1),
5382 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5383 }
5384 else
5385 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5386 }
5387 #undef FUNC_NAME
5388
5389 SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5390 (SCM z),
5391 "Compute the arc cosine of @var{z}.")
5392 #define FUNC_NAME s_scm_acos
5393 {
5394 if (scm_is_real (z))
5395 {
5396 double w = scm_to_double (z);
5397 if (w >= -1.0 && w <= 1.0)
5398 return scm_from_double (acos (w));
5399 else
5400 return scm_sum (scm_from_double (acos (0.0)),
5401 scm_product (scm_c_make_rectangular (0, 1),
5402 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5403 }
5404 else if (SCM_COMPLEXP (z))
5405 { double x, y;
5406 x = SCM_COMPLEX_REAL (z);
5407 y = SCM_COMPLEX_IMAG (z);
5408 return scm_sum (scm_from_double (acos (0.0)),
5409 scm_product (scm_c_make_rectangular (0, 1),
5410 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5411 }
5412 else
5413 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5414 }
5415 #undef FUNC_NAME
5416
5417 SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5418 (SCM z, SCM y),
5419 "With one argument, compute the arc tangent of @var{z}.\n"
5420 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5421 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5422 #define FUNC_NAME s_scm_atan
5423 {
5424 if (SCM_UNBNDP (y))
5425 {
5426 if (scm_is_real (z))
5427 return scm_from_double (atan (scm_to_double (z)));
5428 else if (SCM_COMPLEXP (z))
5429 {
5430 double v, w;
5431 v = SCM_COMPLEX_REAL (z);
5432 w = SCM_COMPLEX_IMAG (z);
5433 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5434 scm_c_make_rectangular (v, w + 1.0))),
5435 scm_c_make_rectangular (0, 2));
5436 }
5437 else
5438 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5439 }
5440 else if (scm_is_real (z))
5441 {
5442 if (scm_is_real (y))
5443 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5444 else
5445 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5446 }
5447 else
5448 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5449 }
5450 #undef FUNC_NAME
5451
5452 SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5453 (SCM z),
5454 "Compute the inverse hyperbolic sine of @var{z}.")
5455 #define FUNC_NAME s_scm_sys_asinh
5456 {
5457 if (scm_is_real (z))
5458 return scm_from_double (asinh (scm_to_double (z)));
5459 else if (scm_is_number (z))
5460 return scm_log (scm_sum (z,
5461 scm_sqrt (scm_sum (scm_product (z, z),
5462 SCM_I_MAKINUM (1)))));
5463 else
5464 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5465 }
5466 #undef FUNC_NAME
5467
5468 SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5469 (SCM z),
5470 "Compute the inverse hyperbolic cosine of @var{z}.")
5471 #define FUNC_NAME s_scm_sys_acosh
5472 {
5473 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5474 return scm_from_double (acosh (scm_to_double (z)));
5475 else if (scm_is_number (z))
5476 return scm_log (scm_sum (z,
5477 scm_sqrt (scm_difference (scm_product (z, z),
5478 SCM_I_MAKINUM (1)))));
5479 else
5480 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5481 }
5482 #undef FUNC_NAME
5483
5484 SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5485 (SCM z),
5486 "Compute the inverse hyperbolic tangent of @var{z}.")
5487 #define FUNC_NAME s_scm_sys_atanh
5488 {
5489 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5490 return scm_from_double (atanh (scm_to_double (z)));
5491 else if (scm_is_number (z))
5492 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5493 scm_difference (SCM_I_MAKINUM (1), z))),
5494 SCM_I_MAKINUM (2));
5495 else
5496 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
5497 }
5498 #undef FUNC_NAME
5499
5500 SCM
5501 scm_c_make_rectangular (double re, double im)
5502 {
5503 if (im == 0.0)
5504 return scm_from_double (re);
5505 else
5506 {
5507 SCM z;
5508 SCM_NEWSMOB (z, scm_tc16_complex,
5509 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5510 "complex"));
5511 SCM_COMPLEX_REAL (z) = re;
5512 SCM_COMPLEX_IMAG (z) = im;
5513 return z;
5514 }
5515 }
5516
5517 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5518 (SCM real_part, SCM imaginary_part),
5519 "Return a complex number constructed of the given @var{real-part} "
5520 "and @var{imaginary-part} parts.")
5521 #define FUNC_NAME s_scm_make_rectangular
5522 {
5523 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5524 SCM_ARG1, FUNC_NAME, "real");
5525 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5526 SCM_ARG2, FUNC_NAME, "real");
5527 return scm_c_make_rectangular (scm_to_double (real_part),
5528 scm_to_double (imaginary_part));
5529 }
5530 #undef FUNC_NAME
5531
5532 SCM
5533 scm_c_make_polar (double mag, double ang)
5534 {
5535 double s, c;
5536
5537 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5538 use it on Glibc-based systems that have it (it's a GNU extension). See
5539 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5540 details. */
5541 #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
5542 sincos (ang, &s, &c);
5543 #else
5544 s = sin (ang);
5545 c = cos (ang);
5546 #endif
5547 return scm_c_make_rectangular (mag * c, mag * s);
5548 }
5549
5550 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5551 (SCM x, SCM y),
5552 "Return the complex number @var{x} * e^(i * @var{y}).")
5553 #define FUNC_NAME s_scm_make_polar
5554 {
5555 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5556 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5557 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
5558 }
5559 #undef FUNC_NAME
5560
5561
5562 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5563 /* "Return the real part of the number @var{z}."
5564 */
5565 SCM
5566 scm_real_part (SCM z)
5567 {
5568 if (SCM_I_INUMP (z))
5569 return z;
5570 else if (SCM_BIGP (z))
5571 return z;
5572 else if (SCM_REALP (z))
5573 return z;
5574 else if (SCM_COMPLEXP (z))
5575 return scm_from_double (SCM_COMPLEX_REAL (z));
5576 else if (SCM_FRACTIONP (z))
5577 return z;
5578 else
5579 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5580 }
5581
5582
5583 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5584 /* "Return the imaginary part of the number @var{z}."
5585 */
5586 SCM
5587 scm_imag_part (SCM z)
5588 {
5589 if (SCM_I_INUMP (z))
5590 return SCM_INUM0;
5591 else if (SCM_BIGP (z))
5592 return SCM_INUM0;
5593 else if (SCM_REALP (z))
5594 return scm_flo0;
5595 else if (SCM_COMPLEXP (z))
5596 return scm_from_double (SCM_COMPLEX_IMAG (z));
5597 else if (SCM_FRACTIONP (z))
5598 return SCM_INUM0;
5599 else
5600 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5601 }
5602
5603 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5604 /* "Return the numerator of the number @var{z}."
5605 */
5606 SCM
5607 scm_numerator (SCM z)
5608 {
5609 if (SCM_I_INUMP (z))
5610 return z;
5611 else if (SCM_BIGP (z))
5612 return z;
5613 else if (SCM_FRACTIONP (z))
5614 return SCM_FRACTION_NUMERATOR (z);
5615 else if (SCM_REALP (z))
5616 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5617 else
5618 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5619 }
5620
5621
5622 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5623 /* "Return the denominator of the number @var{z}."
5624 */
5625 SCM
5626 scm_denominator (SCM z)
5627 {
5628 if (SCM_I_INUMP (z))
5629 return SCM_I_MAKINUM (1);
5630 else if (SCM_BIGP (z))
5631 return SCM_I_MAKINUM (1);
5632 else if (SCM_FRACTIONP (z))
5633 return SCM_FRACTION_DENOMINATOR (z);
5634 else if (SCM_REALP (z))
5635 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5636 else
5637 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5638 }
5639
5640 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5641 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5642 * "@code{abs} for real arguments, but also allows complex numbers."
5643 */
5644 SCM
5645 scm_magnitude (SCM z)
5646 {
5647 if (SCM_I_INUMP (z))
5648 {
5649 long int zz = SCM_I_INUM (z);
5650 if (zz >= 0)
5651 return z;
5652 else if (SCM_POSFIXABLE (-zz))
5653 return SCM_I_MAKINUM (-zz);
5654 else
5655 return scm_i_long2big (-zz);
5656 }
5657 else if (SCM_BIGP (z))
5658 {
5659 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5660 scm_remember_upto_here_1 (z);
5661 if (sgn < 0)
5662 return scm_i_clonebig (z, 0);
5663 else
5664 return z;
5665 }
5666 else if (SCM_REALP (z))
5667 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5668 else if (SCM_COMPLEXP (z))
5669 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5670 else if (SCM_FRACTIONP (z))
5671 {
5672 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5673 return z;
5674 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5675 SCM_FRACTION_DENOMINATOR (z));
5676 }
5677 else
5678 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5679 }
5680
5681
5682 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5683 /* "Return the angle of the complex number @var{z}."
5684 */
5685 SCM
5686 scm_angle (SCM z)
5687 {
5688 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5689 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5690 But if atan2 follows the floating point rounding mode, then the value
5691 is not a constant. Maybe it'd be close enough though. */
5692 if (SCM_I_INUMP (z))
5693 {
5694 if (SCM_I_INUM (z) >= 0)
5695 return scm_flo0;
5696 else
5697 return scm_from_double (atan2 (0.0, -1.0));
5698 }
5699 else if (SCM_BIGP (z))
5700 {
5701 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5702 scm_remember_upto_here_1 (z);
5703 if (sgn < 0)
5704 return scm_from_double (atan2 (0.0, -1.0));
5705 else
5706 return scm_flo0;
5707 }
5708 else if (SCM_REALP (z))
5709 {
5710 if (SCM_REAL_VALUE (z) >= 0)
5711 return scm_flo0;
5712 else
5713 return scm_from_double (atan2 (0.0, -1.0));
5714 }
5715 else if (SCM_COMPLEXP (z))
5716 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5717 else if (SCM_FRACTIONP (z))
5718 {
5719 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5720 return scm_flo0;
5721 else return scm_from_double (atan2 (0.0, -1.0));
5722 }
5723 else
5724 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5725 }
5726
5727
5728 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5729 /* Convert the number @var{x} to its inexact representation.\n"
5730 */
5731 SCM
5732 scm_exact_to_inexact (SCM z)
5733 {
5734 if (SCM_I_INUMP (z))
5735 return scm_from_double ((double) SCM_I_INUM (z));
5736 else if (SCM_BIGP (z))
5737 return scm_from_double (scm_i_big2dbl (z));
5738 else if (SCM_FRACTIONP (z))
5739 return scm_from_double (scm_i_fraction2double (z));
5740 else if (SCM_INEXACTP (z))
5741 return z;
5742 else
5743 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5744 }
5745
5746
5747 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5748 (SCM z),
5749 "Return an exact number that is numerically closest to @var{z}.")
5750 #define FUNC_NAME s_scm_inexact_to_exact
5751 {
5752 if (SCM_I_INUMP (z))
5753 return z;
5754 else if (SCM_BIGP (z))
5755 return z;
5756 else if (SCM_REALP (z))
5757 {
5758 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5759 SCM_OUT_OF_RANGE (1, z);
5760 else
5761 {
5762 mpq_t frac;
5763 SCM q;
5764
5765 mpq_init (frac);
5766 mpq_set_d (frac, SCM_REAL_VALUE (z));
5767 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5768 scm_i_mpz2num (mpq_denref (frac)));
5769
5770 /* When scm_i_make_ratio throws, we leak the memory allocated
5771 for frac...
5772 */
5773 mpq_clear (frac);
5774 return q;
5775 }
5776 }
5777 else if (SCM_FRACTIONP (z))
5778 return z;
5779 else
5780 SCM_WRONG_TYPE_ARG (1, z);
5781 }
5782 #undef FUNC_NAME
5783
5784 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5785 (SCM x, SCM eps),
5786 "Returns the @emph{simplest} rational number differing\n"
5787 "from @var{x} by no more than @var{eps}.\n"
5788 "\n"
5789 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
5790 "exact result when both its arguments are exact. Thus, you might need\n"
5791 "to use @code{inexact->exact} on the arguments.\n"
5792 "\n"
5793 "@lisp\n"
5794 "(rationalize (inexact->exact 1.2) 1/100)\n"
5795 "@result{} 6/5\n"
5796 "@end lisp")
5797 #define FUNC_NAME s_scm_rationalize
5798 {
5799 if (SCM_I_INUMP (x))
5800 return x;
5801 else if (SCM_BIGP (x))
5802 return x;
5803 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5804 {
5805 /* Use continued fractions to find closest ratio. All
5806 arithmetic is done with exact numbers.
5807 */
5808
5809 SCM ex = scm_inexact_to_exact (x);
5810 SCM int_part = scm_floor (ex);
5811 SCM tt = SCM_I_MAKINUM (1);
5812 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5813 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5814 SCM rx;
5815 int i = 0;
5816
5817 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5818 return ex;
5819
5820 ex = scm_difference (ex, int_part); /* x = x-int_part */
5821 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5822
5823 /* We stop after a million iterations just to be absolutely sure
5824 that we don't go into an infinite loop. The process normally
5825 converges after less than a dozen iterations.
5826 */
5827
5828 eps = scm_abs (eps);
5829 while (++i < 1000000)
5830 {
5831 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5832 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5833 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5834 scm_is_false
5835 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5836 eps))) /* abs(x-a/b) <= eps */
5837 {
5838 SCM res = scm_sum (int_part, scm_divide (a, b));
5839 if (scm_is_false (scm_exact_p (x))
5840 || scm_is_false (scm_exact_p (eps)))
5841 return scm_exact_to_inexact (res);
5842 else
5843 return res;
5844 }
5845 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5846 SCM_UNDEFINED);
5847 tt = scm_floor (rx); /* tt = floor (rx) */
5848 a2 = a1;
5849 b2 = b1;
5850 a1 = a;
5851 b1 = b;
5852 }
5853 scm_num_overflow (s_scm_rationalize);
5854 }
5855 else
5856 SCM_WRONG_TYPE_ARG (1, x);
5857 }
5858 #undef FUNC_NAME
5859
5860 /* conversion functions */
5861
5862 int
5863 scm_is_integer (SCM val)
5864 {
5865 return scm_is_true (scm_integer_p (val));
5866 }
5867
5868 int
5869 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5870 {
5871 if (SCM_I_INUMP (val))
5872 {
5873 scm_t_signed_bits n = SCM_I_INUM (val);
5874 return n >= min && n <= max;
5875 }
5876 else if (SCM_BIGP (val))
5877 {
5878 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5879 return 0;
5880 else if (min >= LONG_MIN && max <= LONG_MAX)
5881 {
5882 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5883 {
5884 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5885 return n >= min && n <= max;
5886 }
5887 else
5888 return 0;
5889 }
5890 else
5891 {
5892 scm_t_intmax n;
5893 size_t count;
5894
5895 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5896 > CHAR_BIT*sizeof (scm_t_uintmax))
5897 return 0;
5898
5899 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5900 SCM_I_BIG_MPZ (val));
5901
5902 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
5903 {
5904 if (n < 0)
5905 return 0;
5906 }
5907 else
5908 {
5909 n = -n;
5910 if (n >= 0)
5911 return 0;
5912 }
5913
5914 return n >= min && n <= max;
5915 }
5916 }
5917 else
5918 return 0;
5919 }
5920
5921 int
5922 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5923 {
5924 if (SCM_I_INUMP (val))
5925 {
5926 scm_t_signed_bits n = SCM_I_INUM (val);
5927 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5928 }
5929 else if (SCM_BIGP (val))
5930 {
5931 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5932 return 0;
5933 else if (max <= ULONG_MAX)
5934 {
5935 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5936 {
5937 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5938 return n >= min && n <= max;
5939 }
5940 else
5941 return 0;
5942 }
5943 else
5944 {
5945 scm_t_uintmax n;
5946 size_t count;
5947
5948 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5949 return 0;
5950
5951 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5952 > CHAR_BIT*sizeof (scm_t_uintmax))
5953 return 0;
5954
5955 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5956 SCM_I_BIG_MPZ (val));
5957
5958 return n >= min && n <= max;
5959 }
5960 }
5961 else
5962 return 0;
5963 }
5964
5965 static void
5966 scm_i_range_error (SCM bad_val, SCM min, SCM max)
5967 {
5968 scm_error (scm_out_of_range_key,
5969 NULL,
5970 "Value out of range ~S to ~S: ~S",
5971 scm_list_3 (min, max, bad_val),
5972 scm_list_1 (bad_val));
5973 }
5974
5975 #define TYPE scm_t_intmax
5976 #define TYPE_MIN min
5977 #define TYPE_MAX max
5978 #define SIZEOF_TYPE 0
5979 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5980 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5981 #include "libguile/conv-integer.i.c"
5982
5983 #define TYPE scm_t_uintmax
5984 #define TYPE_MIN min
5985 #define TYPE_MAX max
5986 #define SIZEOF_TYPE 0
5987 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5988 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5989 #include "libguile/conv-uinteger.i.c"
5990
5991 #define TYPE scm_t_int8
5992 #define TYPE_MIN SCM_T_INT8_MIN
5993 #define TYPE_MAX SCM_T_INT8_MAX
5994 #define SIZEOF_TYPE 1
5995 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5996 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5997 #include "libguile/conv-integer.i.c"
5998
5999 #define TYPE scm_t_uint8
6000 #define TYPE_MIN 0
6001 #define TYPE_MAX SCM_T_UINT8_MAX
6002 #define SIZEOF_TYPE 1
6003 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6004 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6005 #include "libguile/conv-uinteger.i.c"
6006
6007 #define TYPE scm_t_int16
6008 #define TYPE_MIN SCM_T_INT16_MIN
6009 #define TYPE_MAX SCM_T_INT16_MAX
6010 #define SIZEOF_TYPE 2
6011 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6012 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6013 #include "libguile/conv-integer.i.c"
6014
6015 #define TYPE scm_t_uint16
6016 #define TYPE_MIN 0
6017 #define TYPE_MAX SCM_T_UINT16_MAX
6018 #define SIZEOF_TYPE 2
6019 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6020 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6021 #include "libguile/conv-uinteger.i.c"
6022
6023 #define TYPE scm_t_int32
6024 #define TYPE_MIN SCM_T_INT32_MIN
6025 #define TYPE_MAX SCM_T_INT32_MAX
6026 #define SIZEOF_TYPE 4
6027 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6028 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6029 #include "libguile/conv-integer.i.c"
6030
6031 #define TYPE scm_t_uint32
6032 #define TYPE_MIN 0
6033 #define TYPE_MAX SCM_T_UINT32_MAX
6034 #define SIZEOF_TYPE 4
6035 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6036 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6037 #include "libguile/conv-uinteger.i.c"
6038
6039 #define TYPE scm_t_wchar
6040 #define TYPE_MIN (scm_t_int32)-1
6041 #define TYPE_MAX (scm_t_int32)0x10ffff
6042 #define SIZEOF_TYPE 4
6043 #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6044 #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6045 #include "libguile/conv-integer.i.c"
6046
6047 #if SCM_HAVE_T_INT64
6048
6049 #define TYPE scm_t_int64
6050 #define TYPE_MIN SCM_T_INT64_MIN
6051 #define TYPE_MAX SCM_T_INT64_MAX
6052 #define SIZEOF_TYPE 8
6053 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6054 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6055 #include "libguile/conv-integer.i.c"
6056
6057 #define TYPE scm_t_uint64
6058 #define TYPE_MIN 0
6059 #define TYPE_MAX SCM_T_UINT64_MAX
6060 #define SIZEOF_TYPE 8
6061 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6062 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6063 #include "libguile/conv-uinteger.i.c"
6064
6065 #endif
6066
6067 void
6068 scm_to_mpz (SCM val, mpz_t rop)
6069 {
6070 if (SCM_I_INUMP (val))
6071 mpz_set_si (rop, SCM_I_INUM (val));
6072 else if (SCM_BIGP (val))
6073 mpz_set (rop, SCM_I_BIG_MPZ (val));
6074 else
6075 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6076 }
6077
6078 SCM
6079 scm_from_mpz (mpz_t val)
6080 {
6081 return scm_i_mpz2num (val);
6082 }
6083
6084 int
6085 scm_is_real (SCM val)
6086 {
6087 return scm_is_true (scm_real_p (val));
6088 }
6089
6090 int
6091 scm_is_rational (SCM val)
6092 {
6093 return scm_is_true (scm_rational_p (val));
6094 }
6095
6096 double
6097 scm_to_double (SCM val)
6098 {
6099 if (SCM_I_INUMP (val))
6100 return SCM_I_INUM (val);
6101 else if (SCM_BIGP (val))
6102 return scm_i_big2dbl (val);
6103 else if (SCM_FRACTIONP (val))
6104 return scm_i_fraction2double (val);
6105 else if (SCM_REALP (val))
6106 return SCM_REAL_VALUE (val);
6107 else
6108 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
6109 }
6110
6111 SCM
6112 scm_from_double (double val)
6113 {
6114 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
6115 SCM_REAL_VALUE (z) = val;
6116 return z;
6117 }
6118
6119 #if SCM_ENABLE_DISCOURAGED == 1
6120
6121 float
6122 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
6123 {
6124 if (SCM_BIGP (num))
6125 {
6126 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6127 if (!xisinf (res))
6128 return res;
6129 else
6130 scm_out_of_range (NULL, num);
6131 }
6132 else
6133 return scm_to_double (num);
6134 }
6135
6136 double
6137 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
6138 {
6139 if (SCM_BIGP (num))
6140 {
6141 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6142 if (!xisinf (res))
6143 return res;
6144 else
6145 scm_out_of_range (NULL, num);
6146 }
6147 else
6148 return scm_to_double (num);
6149 }
6150
6151 #endif
6152
6153 int
6154 scm_is_complex (SCM val)
6155 {
6156 return scm_is_true (scm_complex_p (val));
6157 }
6158
6159 double
6160 scm_c_real_part (SCM z)
6161 {
6162 if (SCM_COMPLEXP (z))
6163 return SCM_COMPLEX_REAL (z);
6164 else
6165 {
6166 /* Use the scm_real_part to get proper error checking and
6167 dispatching.
6168 */
6169 return scm_to_double (scm_real_part (z));
6170 }
6171 }
6172
6173 double
6174 scm_c_imag_part (SCM z)
6175 {
6176 if (SCM_COMPLEXP (z))
6177 return SCM_COMPLEX_IMAG (z);
6178 else
6179 {
6180 /* Use the scm_imag_part to get proper error checking and
6181 dispatching. The result will almost always be 0.0, but not
6182 always.
6183 */
6184 return scm_to_double (scm_imag_part (z));
6185 }
6186 }
6187
6188 double
6189 scm_c_magnitude (SCM z)
6190 {
6191 return scm_to_double (scm_magnitude (z));
6192 }
6193
6194 double
6195 scm_c_angle (SCM z)
6196 {
6197 return scm_to_double (scm_angle (z));
6198 }
6199
6200 int
6201 scm_is_number (SCM z)
6202 {
6203 return scm_is_true (scm_number_p (z));
6204 }
6205
6206
6207 /* In the following functions we dispatch to the real-arg funcs like log()
6208 when we know the arg is real, instead of just handing everything to
6209 clog() for instance. This is in case clog() doesn't optimize for a
6210 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6211 well use it to go straight to the applicable C func. */
6212
6213 SCM_DEFINE (scm_log, "log", 1, 0, 0,
6214 (SCM z),
6215 "Return the natural logarithm of @var{z}.")
6216 #define FUNC_NAME s_scm_log
6217 {
6218 if (SCM_COMPLEXP (z))
6219 {
6220 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
6221 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6222 #else
6223 double re = SCM_COMPLEX_REAL (z);
6224 double im = SCM_COMPLEX_IMAG (z);
6225 return scm_c_make_rectangular (log (hypot (re, im)),
6226 atan2 (im, re));
6227 #endif
6228 }
6229 else
6230 {
6231 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6232 although the value itself overflows. */
6233 double re = scm_to_double (z);
6234 double l = log (fabs (re));
6235 if (re >= 0.0)
6236 return scm_from_double (l);
6237 else
6238 return scm_c_make_rectangular (l, M_PI);
6239 }
6240 }
6241 #undef FUNC_NAME
6242
6243
6244 SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6245 (SCM z),
6246 "Return the base 10 logarithm of @var{z}.")
6247 #define FUNC_NAME s_scm_log10
6248 {
6249 if (SCM_COMPLEXP (z))
6250 {
6251 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6252 clog() and a multiply by M_LOG10E, rather than the fallback
6253 log10+hypot+atan2.) */
6254 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
6255 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6256 #else
6257 double re = SCM_COMPLEX_REAL (z);
6258 double im = SCM_COMPLEX_IMAG (z);
6259 return scm_c_make_rectangular (log10 (hypot (re, im)),
6260 M_LOG10E * atan2 (im, re));
6261 #endif
6262 }
6263 else
6264 {
6265 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6266 although the value itself overflows. */
6267 double re = scm_to_double (z);
6268 double l = log10 (fabs (re));
6269 if (re >= 0.0)
6270 return scm_from_double (l);
6271 else
6272 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6273 }
6274 }
6275 #undef FUNC_NAME
6276
6277
6278 SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6279 (SCM z),
6280 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6281 "base of natural logarithms (2.71828@dots{}).")
6282 #define FUNC_NAME s_scm_exp
6283 {
6284 if (SCM_COMPLEXP (z))
6285 {
6286 #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
6287 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6288 #else
6289 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6290 SCM_COMPLEX_IMAG (z));
6291 #endif
6292 }
6293 else
6294 {
6295 /* When z is a negative bignum the conversion to double overflows,
6296 giving -infinity, but that's ok, the exp is still 0.0. */
6297 return scm_from_double (exp (scm_to_double (z)));
6298 }
6299 }
6300 #undef FUNC_NAME
6301
6302
6303 SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6304 (SCM x),
6305 "Return the square root of @var{z}. Of the two possible roots\n"
6306 "(positive and negative), the one with the a positive real part\n"
6307 "is returned, or if that's zero then a positive imaginary part.\n"
6308 "Thus,\n"
6309 "\n"
6310 "@example\n"
6311 "(sqrt 9.0) @result{} 3.0\n"
6312 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6313 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6314 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6315 "@end example")
6316 #define FUNC_NAME s_scm_sqrt
6317 {
6318 if (SCM_COMPLEXP (x))
6319 {
6320 #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
6321 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6322 #else
6323 double re = SCM_COMPLEX_REAL (x);
6324 double im = SCM_COMPLEX_IMAG (x);
6325 return scm_c_make_polar (sqrt (hypot (re, im)),
6326 0.5 * atan2 (im, re));
6327 #endif
6328 }
6329 else
6330 {
6331 double xx = scm_to_double (x);
6332 if (xx < 0)
6333 return scm_c_make_rectangular (0.0, sqrt (-xx));
6334 else
6335 return scm_from_double (sqrt (xx));
6336 }
6337 }
6338 #undef FUNC_NAME
6339
6340
6341
6342 void
6343 scm_init_numbers ()
6344 {
6345 int i;
6346
6347 mpz_init_set_si (z_negative_one, -1);
6348
6349 /* It may be possible to tune the performance of some algorithms by using
6350 * the following constants to avoid the creation of bignums. Please, before
6351 * using these values, remember the two rules of program optimization:
6352 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
6353 scm_c_define ("most-positive-fixnum",
6354 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
6355 scm_c_define ("most-negative-fixnum",
6356 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
6357
6358 scm_add_feature ("complex");
6359 scm_add_feature ("inexact");
6360 scm_flo0 = scm_from_double (0.0);
6361
6362 /* determine floating point precision */
6363 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
6364 {
6365 init_dblprec(&scm_dblprec[i-2],i);
6366 init_fx_radix(fx_per_radix[i-2],i);
6367 }
6368 #ifdef DBL_DIG
6369 /* hard code precision for base 10 if the preprocessor tells us to... */
6370 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6371 #endif
6372
6373 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
6374 SCM_I_MAKINUM (2)));
6375 #include "libguile/numbers.x"
6376 }
6377
6378 /*
6379 Local Variables:
6380 c-file-style: "gnu"
6381 End:
6382 */