repl-reader accepts optional "read" argument
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 3 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;; Before compiling, make sure any symbols are resolved in the (guile)
37 ;; module, the primary location of those symbols, rather than in
38 ;; (guile-user), the default module that we compile in.
39
40 (eval-when (compile)
41 (set-current-module (resolve-module '(guile))))
42
43 ;;; {R4RS compliance}
44 ;;;
45
46 (primitive-load-path "ice-9/r4rs")
47
48 \f
49
50 ;;; {Simple Debugging Tools}
51 ;;;
52
53 ;; peek takes any number of arguments, writes them to the
54 ;; current ouput port, and returns the last argument.
55 ;; It is handy to wrap around an expression to look at
56 ;; a value each time is evaluated, e.g.:
57 ;;
58 ;; (+ 10 (troublesome-fn))
59 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
60 ;;
61
62 (define (peek . stuff)
63 (newline)
64 (display ";;; ")
65 (write stuff)
66 (newline)
67 (car (last-pair stuff)))
68
69 (define pk peek)
70
71 (define (warn . stuff)
72 (with-output-to-port (current-error-port)
73 (lambda ()
74 (newline)
75 (display ";;; WARNING ")
76 (display stuff)
77 (newline)
78 (car (last-pair stuff)))))
79
80 \f
81
82 ;;; {Features}
83 ;;;
84
85 (define (provide sym)
86 (if (not (memq sym *features*))
87 (set! *features* (cons sym *features*))))
88
89 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
90 ;; provided? also checks to see if the module is available. We should do that
91 ;; too, but don't.
92
93 (define (provided? feature)
94 (and (memq feature *features*) #t))
95
96 \f
97
98 ;;; {and-map and or-map}
99 ;;;
100 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
101 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
102 ;;;
103
104 ;; and-map f l
105 ;;
106 ;; Apply f to successive elements of l until exhaustion or f returns #f.
107 ;; If returning early, return #f. Otherwise, return the last value returned
108 ;; by f. If f has never been called because l is empty, return #t.
109 ;;
110 (define (and-map f lst)
111 (let loop ((result #t)
112 (l lst))
113 (and result
114 (or (and (null? l)
115 result)
116 (loop (f (car l)) (cdr l))))))
117
118 ;; or-map f l
119 ;;
120 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
121 ;; If returning early, return the return value of f.
122 ;;
123 (define (or-map f lst)
124 (let loop ((result #f)
125 (l lst))
126 (or result
127 (and (not (null? l))
128 (loop (f (car l)) (cdr l))))))
129
130 \f
131
132 ;; let format alias simple-format until the more complete version is loaded
133
134 (define format simple-format)
135
136 ;; this is scheme wrapping the C code so the final pred call is a tail call,
137 ;; per SRFI-13 spec
138 (define (string-any char_pred s . rest)
139 (let ((start (if (null? rest)
140 0 (car rest)))
141 (end (if (or (null? rest) (null? (cdr rest)))
142 (string-length s) (cadr rest))))
143 (if (and (procedure? char_pred)
144 (> end start)
145 (<= end (string-length s))) ;; let c-code handle range error
146 (or (string-any-c-code char_pred s start (1- end))
147 (char_pred (string-ref s (1- end))))
148 (string-any-c-code char_pred s start end))))
149
150 ;; this is scheme wrapping the C code so the final pred call is a tail call,
151 ;; per SRFI-13 spec
152 (define (string-every char_pred s . rest)
153 (let ((start (if (null? rest)
154 0 (car rest)))
155 (end (if (or (null? rest) (null? (cdr rest)))
156 (string-length s) (cadr rest))))
157 (if (and (procedure? char_pred)
158 (> end start)
159 (<= end (string-length s))) ;; let c-code handle range error
160 (and (string-every-c-code char_pred s start (1- end))
161 (char_pred (string-ref s (1- end))))
162 (string-every-c-code char_pred s start end))))
163
164 ;; A variant of string-fill! that we keep for compatability
165 ;;
166 (define (substring-fill! str start end fill)
167 (string-fill! str fill start end))
168
169 \f
170
171 ;; Define a minimal stub of the module API for psyntax, before modules
172 ;; have booted.
173 (define (module-name x)
174 '(guile))
175 (define (module-define! module sym val)
176 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
177 (if v
178 (variable-set! v val)
179 (hashq-set! (%get-pre-modules-obarray) sym
180 (make-variable val)))))
181 (define (module-ref module sym)
182 (let ((v (module-variable module sym)))
183 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
184 (define (resolve-module . args)
185 #f)
186
187 ;; Input hook to syncase -- so that we might be able to pass annotated
188 ;; expressions in. Currently disabled. Maybe we should just use
189 ;; source-properties directly.
190 (define (annotation? x) #f)
191
192 ;; API provided by psyntax
193 (define syntax-violation #f)
194 (define datum->syntax #f)
195 (define syntax->datum #f)
196 (define identifier? #f)
197 (define generate-temporaries #f)
198 (define bound-identifier=? #f)
199 (define free-identifier=? #f)
200 (define sc-expand #f)
201
202 ;; $sc-expand is an implementation detail of psyntax. It is used by
203 ;; expanded macros, to dispatch an input against a set of patterns.
204 (define $sc-dispatch #f)
205
206 ;; Load it up!
207 (primitive-load-path "ice-9/psyntax-pp")
208
209 ;; %pre-modules-transformer is the Scheme expander from now until the
210 ;; module system has booted up.
211 (define %pre-modules-transformer sc-expand)
212
213 (define-syntax and
214 (syntax-rules ()
215 ((_) #t)
216 ((_ x) x)
217 ((_ x y ...) (if x (and y ...) #f))))
218
219 (define-syntax or
220 (syntax-rules ()
221 ((_) #f)
222 ((_ x) x)
223 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
224
225 ;; The "maybe-more" bits are something of a hack, so that we can support
226 ;; SRFI-61. Rewrites into a standalone syntax-case macro would be
227 ;; appreciated.
228 (define-syntax cond
229 (syntax-rules (=> else)
230 ((_ "maybe-more" test consequent)
231 (if test consequent))
232
233 ((_ "maybe-more" test consequent clause ...)
234 (if test consequent (cond clause ...)))
235
236 ((_ (else else1 else2 ...))
237 (begin else1 else2 ...))
238
239 ((_ (test => receiver) more-clause ...)
240 (let ((t test))
241 (cond "maybe-more" t (receiver t) more-clause ...)))
242
243 ((_ (generator guard => receiver) more-clause ...)
244 (call-with-values (lambda () generator)
245 (lambda t
246 (cond "maybe-more"
247 (apply guard t) (apply receiver t) more-clause ...))))
248
249 ((_ (test => receiver ...) more-clause ...)
250 (syntax-violation 'cond "wrong number of receiver expressions"
251 '(test => receiver ...)))
252 ((_ (generator guard => receiver ...) more-clause ...)
253 (syntax-violation 'cond "wrong number of receiver expressions"
254 '(generator guard => receiver ...)))
255
256 ((_ (test) more-clause ...)
257 (let ((t test))
258 (cond "maybe-more" t t more-clause ...)))
259
260 ((_ (test body1 body2 ...) more-clause ...)
261 (cond "maybe-more"
262 test (begin body1 body2 ...) more-clause ...))))
263
264 (define-syntax case
265 (syntax-rules (else)
266 ((case (key ...)
267 clauses ...)
268 (let ((atom-key (key ...)))
269 (case atom-key clauses ...)))
270 ((case key
271 (else result1 result2 ...))
272 (begin result1 result2 ...))
273 ((case key
274 ((atoms ...) result1 result2 ...))
275 (if (memv key '(atoms ...))
276 (begin result1 result2 ...)))
277 ((case key
278 ((atoms ...) result1 result2 ...)
279 clause clauses ...)
280 (if (memv key '(atoms ...))
281 (begin result1 result2 ...)
282 (case key clause clauses ...)))))
283
284 (define-syntax do
285 (syntax-rules ()
286 ((do ((var init step ...) ...)
287 (test expr ...)
288 command ...)
289 (letrec
290 ((loop
291 (lambda (var ...)
292 (if test
293 (begin
294 (if #f #f)
295 expr ...)
296 (begin
297 command
298 ...
299 (loop (do "step" var step ...)
300 ...))))))
301 (loop init ...)))
302 ((do "step" x)
303 x)
304 ((do "step" x y)
305 y)))
306
307 (define-syntax delay
308 (syntax-rules ()
309 ((_ exp) (make-promise (lambda () exp)))))
310
311 ;;; @bind is used by the old elisp code as a dynamic scoping mechanism.
312 ;;; Please let the Guile developers know if you are using this macro.
313 ;;;
314 (define-syntax @bind
315 (lambda (x)
316 (define (bound-member id ids)
317 (cond ((null? ids) #f)
318 ((bound-identifier=? id (car ids)) #t)
319 ((bound-member (car ids) (cdr ids)))))
320
321 (syntax-case x ()
322 ((_ () b0 b1 ...)
323 #'(let () b0 b1 ...))
324 ((_ ((id val) ...) b0 b1 ...)
325 (and-map identifier? #'(id ...))
326 (if (let lp ((ids #'(id ...)))
327 (cond ((null? ids) #f)
328 ((bound-member (car ids) (cdr ids)) #t)
329 (else (lp (cdr ids)))))
330 (syntax-violation '@bind "duplicate bound identifier" x)
331 (with-syntax (((old-v ...) (generate-temporaries #'(id ...)))
332 ((v ...) (generate-temporaries #'(id ...))))
333 #'(let ((old-v id) ...
334 (v val) ...)
335 (dynamic-wind
336 (lambda ()
337 (set! id v) ...)
338 (lambda () b0 b1 ...)
339 (lambda ()
340 (set! id old-v) ...)))))))))
341
342
343 \f
344
345 ;;; {Defmacros}
346 ;;;
347
348 (define-syntax define-macro
349 (lambda (x)
350 "Define a defmacro."
351 (syntax-case x ()
352 ((_ (macro . args) doc body1 body ...)
353 (string? (syntax->datum (syntax doc)))
354 (syntax (define-macro macro doc (lambda args body1 body ...))))
355 ((_ (macro . args) body ...)
356 (syntax (define-macro macro #f (lambda args body ...))))
357 ((_ macro doc transformer)
358 (or (string? (syntax->datum (syntax doc)))
359 (not (syntax->datum (syntax doc))))
360 (syntax
361 (define-syntax macro
362 (lambda (y)
363 doc
364 (syntax-case y ()
365 ((_ . args)
366 (let ((v (syntax->datum (syntax args))))
367 (datum->syntax y (apply transformer v))))))))))))
368
369 (define-syntax defmacro
370 (lambda (x)
371 "Define a defmacro, with the old lispy defun syntax."
372 (syntax-case x ()
373 ((_ macro args doc body1 body ...)
374 (string? (syntax->datum (syntax doc)))
375 (syntax (define-macro macro doc (lambda args body1 body ...))))
376 ((_ macro args body ...)
377 (syntax (define-macro macro #f (lambda args body ...)))))))
378
379 (provide 'defmacro)
380
381 \f
382
383 ;;; {Deprecation}
384 ;;;
385 ;;; Depends on: defmacro
386 ;;;
387
388 (defmacro begin-deprecated forms
389 (if (include-deprecated-features)
390 `(begin ,@forms)
391 `(begin)))
392
393 \f
394
395 ;;; {Trivial Functions}
396 ;;;
397
398 (define (identity x) x)
399 (define (and=> value procedure) (and value (procedure value)))
400 (define call/cc call-with-current-continuation)
401
402 ;;; apply-to-args is functionally redundant with apply and, worse,
403 ;;; is less general than apply since it only takes two arguments.
404 ;;;
405 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
406 ;;; perform binding in many circumstances when the "let" family of
407 ;;; of forms don't cut it. E.g.:
408 ;;;
409 ;;; (apply-to-args (return-3d-mouse-coords)
410 ;;; (lambda (x y z)
411 ;;; ...))
412 ;;;
413
414 (define (apply-to-args args fn) (apply fn args))
415
416 (defmacro false-if-exception (expr)
417 `(catch #t
418 (lambda ()
419 ;; avoid saving backtraces inside false-if-exception
420 (with-fluid* the-last-stack (fluid-ref the-last-stack)
421 (lambda () ,expr)))
422 (lambda args #f)))
423
424 \f
425
426 ;;; {General Properties}
427 ;;;
428
429 ;; This is a more modern interface to properties. It will replace all
430 ;; other property-like things eventually.
431
432 (define (make-object-property)
433 (let ((prop (primitive-make-property #f)))
434 (make-procedure-with-setter
435 (lambda (obj) (primitive-property-ref prop obj))
436 (lambda (obj val) (primitive-property-set! prop obj val)))))
437
438 \f
439
440 ;;; {Symbol Properties}
441 ;;;
442
443 (define (symbol-property sym prop)
444 (let ((pair (assoc prop (symbol-pref sym))))
445 (and pair (cdr pair))))
446
447 (define (set-symbol-property! sym prop val)
448 (let ((pair (assoc prop (symbol-pref sym))))
449 (if pair
450 (set-cdr! pair val)
451 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
452
453 (define (symbol-property-remove! sym prop)
454 (let ((pair (assoc prop (symbol-pref sym))))
455 (if pair
456 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
457
458 \f
459
460 ;;; {Arrays}
461 ;;;
462
463 (define (array-shape a)
464 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
465 (array-dimensions a)))
466
467 \f
468
469 ;;; {Keywords}
470 ;;;
471
472 (define (kw-arg-ref args kw)
473 (let ((rem (member kw args)))
474 (and rem (pair? (cdr rem)) (cadr rem))))
475
476 \f
477
478 ;;; {Structs}
479 ;;;
480
481 (define (struct-layout s)
482 (struct-ref (struct-vtable s) vtable-index-layout))
483
484 \f
485
486 ;;; {Records}
487 ;;;
488
489 ;; Printing records: by default, records are printed as
490 ;;
491 ;; #<type-name field1: val1 field2: val2 ...>
492 ;;
493 ;; You can change that by giving a custom printing function to
494 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
495 ;; will be called like
496 ;;
497 ;; (<printer> object port)
498 ;;
499 ;; It should print OBJECT to PORT.
500
501 (define (inherit-print-state old-port new-port)
502 (if (get-print-state old-port)
503 (port-with-print-state new-port (get-print-state old-port))
504 new-port))
505
506 ;; 0: type-name, 1: fields
507 (define record-type-vtable
508 (make-vtable-vtable "prpr" 0
509 (lambda (s p)
510 (cond ((eq? s record-type-vtable)
511 (display "#<record-type-vtable>" p))
512 (else
513 (display "#<record-type " p)
514 (display (record-type-name s) p)
515 (display ">" p))))))
516
517 (define (record-type? obj)
518 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
519
520 (define (make-record-type type-name fields . opt)
521 (let ((printer-fn (and (pair? opt) (car opt))))
522 (let ((struct (make-struct record-type-vtable 0
523 (make-struct-layout
524 (apply string-append
525 (map (lambda (f) "pw") fields)))
526 (or printer-fn
527 (lambda (s p)
528 (display "#<" p)
529 (display type-name p)
530 (let loop ((fields fields)
531 (off 0))
532 (cond
533 ((not (null? fields))
534 (display " " p)
535 (display (car fields) p)
536 (display ": " p)
537 (display (struct-ref s off) p)
538 (loop (cdr fields) (+ 1 off)))))
539 (display ">" p)))
540 type-name
541 (copy-tree fields))))
542 ;; Temporary solution: Associate a name to the record type descriptor
543 ;; so that the object system can create a wrapper class for it.
544 (set-struct-vtable-name! struct (if (symbol? type-name)
545 type-name
546 (string->symbol type-name)))
547 struct)))
548
549 (define (record-type-name obj)
550 (if (record-type? obj)
551 (struct-ref obj vtable-offset-user)
552 (error 'not-a-record-type obj)))
553
554 (define (record-type-fields obj)
555 (if (record-type? obj)
556 (struct-ref obj (+ 1 vtable-offset-user))
557 (error 'not-a-record-type obj)))
558
559 (define (record-constructor rtd . opt)
560 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
561 (primitive-eval
562 `(lambda ,field-names
563 (make-struct ',rtd 0 ,@(map (lambda (f)
564 (if (memq f field-names)
565 f
566 #f))
567 (record-type-fields rtd)))))))
568
569 (define (record-predicate rtd)
570 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
571
572 (define (%record-type-error rtd obj) ;; private helper
573 (or (eq? rtd (record-type-descriptor obj))
574 (scm-error 'wrong-type-arg "%record-type-check"
575 "Wrong type record (want `~S'): ~S"
576 (list (record-type-name rtd) obj)
577 #f)))
578
579 (define (record-accessor rtd field-name)
580 (let ((pos (list-index (record-type-fields rtd) field-name)))
581 (if (not pos)
582 (error 'no-such-field field-name))
583 (lambda (obj)
584 (if (eq? (struct-vtable obj) rtd)
585 (struct-ref obj pos)
586 (%record-type-error rtd obj)))))
587
588 (define (record-modifier rtd field-name)
589 (let ((pos (list-index (record-type-fields rtd) field-name)))
590 (if (not pos)
591 (error 'no-such-field field-name))
592 (lambda (obj val)
593 (if (eq? (struct-vtable obj) rtd)
594 (struct-set! obj pos val)
595 (%record-type-error rtd obj)))))
596
597 (define (record? obj)
598 (and (struct? obj) (record-type? (struct-vtable obj))))
599
600 (define (record-type-descriptor obj)
601 (if (struct? obj)
602 (struct-vtable obj)
603 (error 'not-a-record obj)))
604
605 (provide 'record)
606
607 \f
608
609 ;;; {Booleans}
610 ;;;
611
612 (define (->bool x) (not (not x)))
613
614 \f
615
616 ;;; {Symbols}
617 ;;;
618
619 (define (symbol-append . args)
620 (string->symbol (apply string-append (map symbol->string args))))
621
622 (define (list->symbol . args)
623 (string->symbol (apply list->string args)))
624
625 (define (symbol . args)
626 (string->symbol (apply string args)))
627
628 \f
629
630 ;;; {Lists}
631 ;;;
632
633 (define (list-index l k)
634 (let loop ((n 0)
635 (l l))
636 (and (not (null? l))
637 (if (eq? (car l) k)
638 n
639 (loop (+ n 1) (cdr l))))))
640
641 \f
642
643 (if (provided? 'posix)
644 (primitive-load-path "ice-9/posix"))
645
646 (if (provided? 'socket)
647 (primitive-load-path "ice-9/networking"))
648
649 ;; For reference, Emacs file-exists-p uses stat in this same way.
650 (define file-exists?
651 (if (provided? 'posix)
652 (lambda (str)
653 (->bool (stat str #f)))
654 (lambda (str)
655 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
656 (lambda args #f))))
657 (if port (begin (close-port port) #t)
658 #f)))))
659
660 (define file-is-directory?
661 (if (provided? 'posix)
662 (lambda (str)
663 (eq? (stat:type (stat str)) 'directory))
664 (lambda (str)
665 (let ((port (catch 'system-error
666 (lambda () (open-file (string-append str "/.")
667 OPEN_READ))
668 (lambda args #f))))
669 (if port (begin (close-port port) #t)
670 #f)))))
671
672 (define (has-suffix? str suffix)
673 (string-suffix? suffix str))
674
675 (define (system-error-errno args)
676 (if (eq? (car args) 'system-error)
677 (car (list-ref args 4))
678 #f))
679
680 \f
681
682 ;;; {Error Handling}
683 ;;;
684
685 (define (error . args)
686 (save-stack)
687 (if (null? args)
688 (scm-error 'misc-error #f "?" #f #f)
689 (let loop ((msg "~A")
690 (rest (cdr args)))
691 (if (not (null? rest))
692 (loop (string-append msg " ~S")
693 (cdr rest))
694 (scm-error 'misc-error #f msg args #f)))))
695
696 ;; bad-throw is the hook that is called upon a throw to a an unhandled
697 ;; key (unless the throw has four arguments, in which case
698 ;; it's usually interpreted as an error throw.)
699 ;; If the key has a default handler (a throw-handler-default property),
700 ;; it is applied to the throw.
701 ;;
702 (define (bad-throw key . args)
703 (let ((default (symbol-property key 'throw-handler-default)))
704 (or (and default (apply default key args))
705 (apply error "unhandled-exception:" key args))))
706
707 \f
708
709 (define (tm:sec obj) (vector-ref obj 0))
710 (define (tm:min obj) (vector-ref obj 1))
711 (define (tm:hour obj) (vector-ref obj 2))
712 (define (tm:mday obj) (vector-ref obj 3))
713 (define (tm:mon obj) (vector-ref obj 4))
714 (define (tm:year obj) (vector-ref obj 5))
715 (define (tm:wday obj) (vector-ref obj 6))
716 (define (tm:yday obj) (vector-ref obj 7))
717 (define (tm:isdst obj) (vector-ref obj 8))
718 (define (tm:gmtoff obj) (vector-ref obj 9))
719 (define (tm:zone obj) (vector-ref obj 10))
720
721 (define (set-tm:sec obj val) (vector-set! obj 0 val))
722 (define (set-tm:min obj val) (vector-set! obj 1 val))
723 (define (set-tm:hour obj val) (vector-set! obj 2 val))
724 (define (set-tm:mday obj val) (vector-set! obj 3 val))
725 (define (set-tm:mon obj val) (vector-set! obj 4 val))
726 (define (set-tm:year obj val) (vector-set! obj 5 val))
727 (define (set-tm:wday obj val) (vector-set! obj 6 val))
728 (define (set-tm:yday obj val) (vector-set! obj 7 val))
729 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
730 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
731 (define (set-tm:zone obj val) (vector-set! obj 10 val))
732
733 (define (tms:clock obj) (vector-ref obj 0))
734 (define (tms:utime obj) (vector-ref obj 1))
735 (define (tms:stime obj) (vector-ref obj 2))
736 (define (tms:cutime obj) (vector-ref obj 3))
737 (define (tms:cstime obj) (vector-ref obj 4))
738
739 (define file-position ftell)
740 (define (file-set-position port offset . whence)
741 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
742 (seek port offset whence)))
743
744 (define (move->fdes fd/port fd)
745 (cond ((integer? fd/port)
746 (dup->fdes fd/port fd)
747 (close fd/port)
748 fd)
749 (else
750 (primitive-move->fdes fd/port fd)
751 (set-port-revealed! fd/port 1)
752 fd/port)))
753
754 (define (release-port-handle port)
755 (let ((revealed (port-revealed port)))
756 (if (> revealed 0)
757 (set-port-revealed! port (- revealed 1)))))
758
759 (define (dup->port port/fd mode . maybe-fd)
760 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
761 mode)))
762 (if (pair? maybe-fd)
763 (set-port-revealed! port 1))
764 port))
765
766 (define (dup->inport port/fd . maybe-fd)
767 (apply dup->port port/fd "r" maybe-fd))
768
769 (define (dup->outport port/fd . maybe-fd)
770 (apply dup->port port/fd "w" maybe-fd))
771
772 (define (dup port/fd . maybe-fd)
773 (if (integer? port/fd)
774 (apply dup->fdes port/fd maybe-fd)
775 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
776
777 (define (duplicate-port port modes)
778 (dup->port port modes))
779
780 (define (fdes->inport fdes)
781 (let loop ((rest-ports (fdes->ports fdes)))
782 (cond ((null? rest-ports)
783 (let ((result (fdopen fdes "r")))
784 (set-port-revealed! result 1)
785 result))
786 ((input-port? (car rest-ports))
787 (set-port-revealed! (car rest-ports)
788 (+ (port-revealed (car rest-ports)) 1))
789 (car rest-ports))
790 (else
791 (loop (cdr rest-ports))))))
792
793 (define (fdes->outport fdes)
794 (let loop ((rest-ports (fdes->ports fdes)))
795 (cond ((null? rest-ports)
796 (let ((result (fdopen fdes "w")))
797 (set-port-revealed! result 1)
798 result))
799 ((output-port? (car rest-ports))
800 (set-port-revealed! (car rest-ports)
801 (+ (port-revealed (car rest-ports)) 1))
802 (car rest-ports))
803 (else
804 (loop (cdr rest-ports))))))
805
806 (define (port->fdes port)
807 (set-port-revealed! port (+ (port-revealed port) 1))
808 (fileno port))
809
810 (define (setenv name value)
811 (if value
812 (putenv (string-append name "=" value))
813 (putenv name)))
814
815 (define (unsetenv name)
816 "Remove the entry for NAME from the environment."
817 (putenv name))
818
819 \f
820
821 ;;; {Load Paths}
822 ;;;
823
824 ;;; Here for backward compatability
825 ;;
826 (define scheme-file-suffix (lambda () ".scm"))
827
828 (define (in-vicinity vicinity file)
829 (let ((tail (let ((len (string-length vicinity)))
830 (if (zero? len)
831 #f
832 (string-ref vicinity (- len 1))))))
833 (string-append vicinity
834 (if (or (not tail)
835 (eq? tail #\/))
836 ""
837 "/")
838 file)))
839
840 \f
841
842 ;;; {Help for scm_shell}
843 ;;;
844 ;;; The argument-processing code used by Guile-based shells generates
845 ;;; Scheme code based on the argument list. This page contains help
846 ;;; functions for the code it generates.
847 ;;;
848
849 (define (command-line) (program-arguments))
850
851 ;; This is mostly for the internal use of the code generated by
852 ;; scm_compile_shell_switches.
853
854 (define (turn-on-debugging)
855 (debug-enable 'debug)
856 (debug-enable 'backtrace)
857 (read-enable 'positions))
858
859 (define (load-user-init)
860 (let* ((home (or (getenv "HOME")
861 (false-if-exception (passwd:dir (getpwuid (getuid))))
862 "/")) ;; fallback for cygwin etc.
863 (init-file (in-vicinity home ".guile")))
864 (if (file-exists? init-file)
865 (primitive-load init-file))))
866
867 \f
868
869 ;;; {The interpreter stack}
870 ;;;
871
872 (defmacro start-stack (tag exp)
873 `(%start-stack ,tag (lambda () ,exp)))
874
875 \f
876
877 ;;; {Loading by paths}
878 ;;;
879
880 ;;; Load a Scheme source file named NAME, searching for it in the
881 ;;; directories listed in %load-path, and applying each of the file
882 ;;; name extensions listed in %load-extensions.
883 (define (load-from-path name)
884 (start-stack 'load-stack
885 (primitive-load-path name)))
886
887 (define %load-verbosely #f)
888 (define (assert-load-verbosity v) (set! %load-verbosely v))
889
890 (define (%load-announce file)
891 (if %load-verbosely
892 (with-output-to-port (current-error-port)
893 (lambda ()
894 (display ";;; ")
895 (display "loading ")
896 (display file)
897 (newline)
898 (force-output)))))
899
900 (set! %load-hook %load-announce)
901
902 (define (load name . reader)
903 ;; Returns the .go file corresponding to `name'. Does not search load
904 ;; paths, only the fallback path. If the .go file is missing or out of
905 ;; date, and autocompilation is enabled, will try autocompilation, just
906 ;; as primitive-load-path does internally. primitive-load is
907 ;; unaffected. Returns #f if autocompilation failed or was disabled.
908 (define (autocompiled-file-name name)
909 (catch #t
910 (lambda ()
911 (let* ((cfn ((@ (system base compile) compiled-file-name) name))
912 (scmstat (stat name))
913 (gostat (stat cfn #f)))
914 (if (and gostat (= (stat:mtime gostat) (stat:mtime scmstat)))
915 cfn
916 (begin
917 (if gostat
918 (format (current-error-port)
919 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
920 name cfn))
921 (cond
922 (%load-should-autocompile
923 (%warn-autocompilation-enabled)
924 (format (current-error-port) ";;; compiling ~a\n" name)
925 (let ((cfn ((@ (system base compile) compile-file) name
926 #:env (current-module))))
927 (format (current-error-port) ";;; compiled ~a\n" cfn)
928 cfn))
929 (else #f))))))
930 (lambda (k . args)
931 (format (current-error-port)
932 ";;; WARNING: compilation of ~a failed:\n;;; key ~a, throw_args ~s\n"
933 name k args)
934 #f)))
935 (with-fluid* current-reader (and (pair? reader) (car reader))
936 (lambda ()
937 (let ((cfn (autocompiled-file-name name)))
938 (if cfn
939 (load-compiled cfn)
940 (start-stack 'load-stack
941 (primitive-load name)))))))
942
943 \f
944
945 ;;; {Transcendental Functions}
946 ;;;
947 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
948 ;;; Written by Jerry D. Hedden, (C) FSF.
949 ;;; See the file `COPYING' for terms applying to this program.
950 ;;;
951
952 (define expt
953 (let ((integer-expt integer-expt))
954 (lambda (z1 z2)
955 (cond ((and (exact? z2) (integer? z2))
956 (integer-expt z1 z2))
957 ((and (real? z2) (real? z1) (>= z1 0))
958 ($expt z1 z2))
959 (else
960 (exp (* z2 (log z1))))))))
961
962 (define (sinh z)
963 (if (real? z) ($sinh z)
964 (let ((x (real-part z)) (y (imag-part z)))
965 (make-rectangular (* ($sinh x) ($cos y))
966 (* ($cosh x) ($sin y))))))
967 (define (cosh z)
968 (if (real? z) ($cosh z)
969 (let ((x (real-part z)) (y (imag-part z)))
970 (make-rectangular (* ($cosh x) ($cos y))
971 (* ($sinh x) ($sin y))))))
972 (define (tanh z)
973 (if (real? z) ($tanh z)
974 (let* ((x (* 2 (real-part z)))
975 (y (* 2 (imag-part z)))
976 (w (+ ($cosh x) ($cos y))))
977 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
978
979 (define (asinh z)
980 (if (real? z) ($asinh z)
981 (log (+ z (sqrt (+ (* z z) 1))))))
982
983 (define (acosh z)
984 (if (and (real? z) (>= z 1))
985 ($acosh z)
986 (log (+ z (sqrt (- (* z z) 1))))))
987
988 (define (atanh z)
989 (if (and (real? z) (> z -1) (< z 1))
990 ($atanh z)
991 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
992
993 (define (sin z)
994 (if (real? z) ($sin z)
995 (let ((x (real-part z)) (y (imag-part z)))
996 (make-rectangular (* ($sin x) ($cosh y))
997 (* ($cos x) ($sinh y))))))
998 (define (cos z)
999 (if (real? z) ($cos z)
1000 (let ((x (real-part z)) (y (imag-part z)))
1001 (make-rectangular (* ($cos x) ($cosh y))
1002 (- (* ($sin x) ($sinh y)))))))
1003 (define (tan z)
1004 (if (real? z) ($tan z)
1005 (let* ((x (* 2 (real-part z)))
1006 (y (* 2 (imag-part z)))
1007 (w (+ ($cos x) ($cosh y))))
1008 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
1009
1010 (define (asin z)
1011 (if (and (real? z) (>= z -1) (<= z 1))
1012 ($asin z)
1013 (* -i (asinh (* +i z)))))
1014
1015 (define (acos z)
1016 (if (and (real? z) (>= z -1) (<= z 1))
1017 ($acos z)
1018 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
1019
1020 (define (atan z . y)
1021 (if (null? y)
1022 (if (real? z) ($atan z)
1023 (/ (log (/ (- +i z) (+ +i z))) +2i))
1024 ($atan2 z (car y))))
1025
1026 \f
1027
1028 ;;; {Reader Extensions}
1029 ;;;
1030 ;;; Reader code for various "#c" forms.
1031 ;;;
1032
1033 (define read-eval? (make-fluid))
1034 (fluid-set! read-eval? #f)
1035 (read-hash-extend #\.
1036 (lambda (c port)
1037 (if (fluid-ref read-eval?)
1038 (eval (read port) (interaction-environment))
1039 (error
1040 "#. read expansion found and read-eval? is #f."))))
1041
1042 \f
1043
1044 ;;; {Command Line Options}
1045 ;;;
1046
1047 (define (get-option argv kw-opts kw-args return)
1048 (cond
1049 ((null? argv)
1050 (return #f #f argv))
1051
1052 ((or (not (eq? #\- (string-ref (car argv) 0)))
1053 (eq? (string-length (car argv)) 1))
1054 (return 'normal-arg (car argv) (cdr argv)))
1055
1056 ((eq? #\- (string-ref (car argv) 1))
1057 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
1058 (string-length (car argv))))
1059 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
1060 (kw-opt? (member kw kw-opts))
1061 (kw-arg? (member kw kw-args))
1062 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
1063 (substring (car argv)
1064 (+ kw-arg-pos 1)
1065 (string-length (car argv))))
1066 (and kw-arg?
1067 (begin (set! argv (cdr argv)) (car argv))))))
1068 (if (or kw-opt? kw-arg?)
1069 (return kw arg (cdr argv))
1070 (return 'usage-error kw (cdr argv)))))
1071
1072 (else
1073 (let* ((char (substring (car argv) 1 2))
1074 (kw (symbol->keyword char)))
1075 (cond
1076
1077 ((member kw kw-opts)
1078 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1079 (new-argv (if (= 0 (string-length rest-car))
1080 (cdr argv)
1081 (cons (string-append "-" rest-car) (cdr argv)))))
1082 (return kw #f new-argv)))
1083
1084 ((member kw kw-args)
1085 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
1086 (arg (if (= 0 (string-length rest-car))
1087 (cadr argv)
1088 rest-car))
1089 (new-argv (if (= 0 (string-length rest-car))
1090 (cddr argv)
1091 (cdr argv))))
1092 (return kw arg new-argv)))
1093
1094 (else (return 'usage-error kw argv)))))))
1095
1096 (define (for-next-option proc argv kw-opts kw-args)
1097 (let loop ((argv argv))
1098 (get-option argv kw-opts kw-args
1099 (lambda (opt opt-arg argv)
1100 (and opt (proc opt opt-arg argv loop))))))
1101
1102 (define (display-usage-report kw-desc)
1103 (for-each
1104 (lambda (kw)
1105 (or (eq? (car kw) #t)
1106 (eq? (car kw) 'else)
1107 (let* ((opt-desc kw)
1108 (help (cadr opt-desc))
1109 (opts (car opt-desc))
1110 (opts-proper (if (string? (car opts)) (cdr opts) opts))
1111 (arg-name (if (string? (car opts))
1112 (string-append "<" (car opts) ">")
1113 ""))
1114 (left-part (string-append
1115 (with-output-to-string
1116 (lambda ()
1117 (map (lambda (x) (display (keyword->symbol x)) (display " "))
1118 opts-proper)))
1119 arg-name))
1120 (middle-part (if (and (< (string-length left-part) 30)
1121 (< (string-length help) 40))
1122 (make-string (- 30 (string-length left-part)) #\ )
1123 "\n\t")))
1124 (display left-part)
1125 (display middle-part)
1126 (display help)
1127 (newline))))
1128 kw-desc))
1129
1130
1131
1132 (define (transform-usage-lambda cases)
1133 (let* ((raw-usage (delq! 'else (map car cases)))
1134 (usage-sans-specials (map (lambda (x)
1135 (or (and (not (list? x)) x)
1136 (and (symbol? (car x)) #t)
1137 (and (boolean? (car x)) #t)
1138 x))
1139 raw-usage))
1140 (usage-desc (delq! #t usage-sans-specials))
1141 (kw-desc (map car usage-desc))
1142 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
1143 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
1144 (transmogrified-cases (map (lambda (case)
1145 (cons (let ((opts (car case)))
1146 (if (or (boolean? opts) (eq? 'else opts))
1147 opts
1148 (cond
1149 ((symbol? (car opts)) opts)
1150 ((boolean? (car opts)) opts)
1151 ((string? (caar opts)) (cdar opts))
1152 (else (car opts)))))
1153 (cdr case)))
1154 cases)))
1155 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1156 (lambda (%argv)
1157 (let %next-arg ((%argv %argv))
1158 (get-option %argv
1159 ',kw-opts
1160 ',kw-args
1161 (lambda (%opt %arg %new-argv)
1162 (case %opt
1163 ,@ transmogrified-cases))))))))
1164
1165
1166 \f
1167
1168 ;;; {Low Level Modules}
1169 ;;;
1170 ;;; These are the low level data structures for modules.
1171 ;;;
1172 ;;; Every module object is of the type 'module-type', which is a record
1173 ;;; consisting of the following members:
1174 ;;;
1175 ;;; - eval-closure: the function that defines for its module the strategy that
1176 ;;; shall be followed when looking up symbols in the module.
1177 ;;;
1178 ;;; An eval-closure is a function taking two arguments: the symbol to be
1179 ;;; looked up and a boolean value telling whether a binding for the symbol
1180 ;;; should be created if it does not exist yet. If the symbol lookup
1181 ;;; succeeded (either because an existing binding was found or because a new
1182 ;;; binding was created), a variable object representing the binding is
1183 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1184 ;;; closure does not take the module to be searched as an argument: During
1185 ;;; construction of the eval-closure, the eval-closure has to store the
1186 ;;; module it belongs to in its environment. This means, that any
1187 ;;; eval-closure can belong to only one module.
1188 ;;;
1189 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1190 ;;; special cases of eval-closures are to be distinguished: During startup
1191 ;;; the module system is not yet activated. In this phase, no modules are
1192 ;;; defined and all bindings are automatically stored by the system in the
1193 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1194 ;;; functions which require an eval-closure as their argument need to be
1195 ;;; passed the value #f.
1196 ;;;
1197 ;;; The other two special cases of eval-closures are the
1198 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1199 ;;; behave equally for the case that no new binding is to be created. The
1200 ;;; difference between the two comes in, when the boolean argument to the
1201 ;;; eval-closure indicates that a new binding shall be created if it is not
1202 ;;; found.
1203 ;;;
1204 ;;; Given that no new binding shall be created, both standard eval-closures
1205 ;;; define the following standard strategy of searching bindings in the
1206 ;;; module: First, the module's obarray is searched for the symbol. Second,
1207 ;;; if no binding for the symbol was found in the module's obarray, the
1208 ;;; module's binder procedure is exececuted. If this procedure did not
1209 ;;; return a binding for the symbol, the modules referenced in the module's
1210 ;;; uses list are recursively searched for a binding of the symbol. If the
1211 ;;; binding can not be found in these modules also, the symbol lookup has
1212 ;;; failed.
1213 ;;;
1214 ;;; If a new binding shall be created, the standard-interface-eval-closure
1215 ;;; immediately returns indicating failure. That is, it does not even try
1216 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1217 ;;; first search the obarray, and if no binding was found there, would
1218 ;;; create a new binding in the obarray, therefore not calling the binder
1219 ;;; procedure or searching the modules in the uses list.
1220 ;;;
1221 ;;; The explanation of the following members obarray, binder and uses
1222 ;;; assumes that the symbol lookup follows the strategy that is defined in
1223 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1224 ;;;
1225 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1226 ;;; hash table, the definitions are found that are local to the module (that
1227 ;;; is, not imported from other modules). When looking up bindings in the
1228 ;;; module, this hash table is searched first.
1229 ;;;
1230 ;;; - binder: either #f or a function taking a module and a symbol argument.
1231 ;;; If it is a function it is called after the obarray has been
1232 ;;; unsuccessfully searched for a binding. It then can provide bindings
1233 ;;; that would otherwise not be found locally in the module.
1234 ;;;
1235 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1236 ;;; These modules are the third place queried for bindings after the obarray
1237 ;;; has been unsuccessfully searched and the binder function did not deliver
1238 ;;; a result either.
1239 ;;;
1240 ;;; - transformer: either #f or a function taking a scheme expression as
1241 ;;; delivered by read. If it is a function, it will be called to perform
1242 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1243 ;;; expression. The output of the transformer function will then be passed
1244 ;;; to Guile's internal memoizer. This means that the output must be valid
1245 ;;; scheme code. The only exception is, that the output may make use of the
1246 ;;; syntax extensions provided to identify the modules that a binding
1247 ;;; belongs to.
1248 ;;;
1249 ;;; - name: the name of the module. This is used for all kinds of printing
1250 ;;; outputs. In certain places the module name also serves as a way of
1251 ;;; identification. When adding a module to the uses list of another
1252 ;;; module, it is made sure that the new uses list will not contain two
1253 ;;; modules of the same name.
1254 ;;;
1255 ;;; - kind: classification of the kind of module. The value is (currently?)
1256 ;;; only used for printing. It has no influence on how a module is treated.
1257 ;;; Currently the following values are used when setting the module kind:
1258 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1259 ;;; is set, it defaults to 'module.
1260 ;;;
1261 ;;; - duplicates-handlers: a list of procedures that get called to make a
1262 ;;; choice between two duplicate bindings when name clashes occur. See the
1263 ;;; `duplicate-handlers' global variable below.
1264 ;;;
1265 ;;; - observers: a list of procedures that get called when the module is
1266 ;;; modified.
1267 ;;;
1268 ;;; - weak-observers: a weak-key hash table of procedures that get called
1269 ;;; when the module is modified. See `module-observe-weak' for details.
1270 ;;;
1271 ;;; In addition, the module may (must?) contain a binding for
1272 ;;; `%module-public-interface'. This variable should be bound to a module
1273 ;;; representing the exported interface of a module. See the
1274 ;;; `module-public-interface' and `module-export!' procedures.
1275 ;;;
1276 ;;; !!! warning: The interface to lazy binder procedures is going
1277 ;;; to be changed in an incompatible way to permit all the basic
1278 ;;; module ops to be virtualized.
1279 ;;;
1280 ;;; (make-module size use-list lazy-binding-proc) => module
1281 ;;; module-{obarray,uses,binder}[|-set!]
1282 ;;; (module? obj) => [#t|#f]
1283 ;;; (module-locally-bound? module symbol) => [#t|#f]
1284 ;;; (module-bound? module symbol) => [#t|#f]
1285 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1286 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1287 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1288 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1289 ;;; (module-symbol-binding module symbol opt-value)
1290 ;;; => [ <obj> | opt-value | an error occurs ]
1291 ;;; (module-make-local-var! module symbol) => #<variable...>
1292 ;;; (module-add! module symbol var) => unspecified
1293 ;;; (module-remove! module symbol) => unspecified
1294 ;;; (module-for-each proc module) => unspecified
1295 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1296 ;;; (set-current-module module) => unspecified
1297 ;;; (current-module) => #<module...>
1298 ;;;
1299 ;;;
1300
1301 \f
1302
1303 ;;; {Printing Modules}
1304 ;;;
1305
1306 ;; This is how modules are printed. You can re-define it.
1307 ;; (Redefining is actually more complicated than simply redefining
1308 ;; %print-module because that would only change the binding and not
1309 ;; the value stored in the vtable that determines how record are
1310 ;; printed. Sigh.)
1311
1312 (define (%print-module mod port) ; unused args: depth length style table)
1313 (display "#<" port)
1314 (display (or (module-kind mod) "module") port)
1315 (display " " port)
1316 (display (module-name mod) port)
1317 (display " " port)
1318 (display (number->string (object-address mod) 16) port)
1319 (display ">" port))
1320
1321 ;; module-type
1322 ;;
1323 ;; A module is characterized by an obarray in which local symbols
1324 ;; are interned, a list of modules, "uses", from which non-local
1325 ;; bindings can be inherited, and an optional lazy-binder which
1326 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1327 ;; bindings that would otherwise not be found locally in the module.
1328 ;;
1329 ;; NOTE: If you change anything here, you also need to change
1330 ;; libguile/modules.h.
1331 ;;
1332 (define module-type
1333 (make-record-type 'module
1334 '(obarray uses binder eval-closure transformer name kind
1335 duplicates-handlers import-obarray
1336 observers weak-observers)
1337 %print-module))
1338
1339 ;; make-module &opt size uses binder
1340 ;;
1341 ;; Create a new module, perhaps with a particular size of obarray,
1342 ;; initial uses list, or binding procedure.
1343 ;;
1344 (define make-module
1345 (lambda args
1346
1347 (define (parse-arg index default)
1348 (if (> (length args) index)
1349 (list-ref args index)
1350 default))
1351
1352 (define %default-import-size
1353 ;; Typical number of imported bindings actually used by a module.
1354 600)
1355
1356 (if (> (length args) 3)
1357 (error "Too many args to make-module." args))
1358
1359 (let ((size (parse-arg 0 31))
1360 (uses (parse-arg 1 '()))
1361 (binder (parse-arg 2 #f)))
1362
1363 (if (not (integer? size))
1364 (error "Illegal size to make-module." size))
1365 (if (not (and (list? uses)
1366 (and-map module? uses)))
1367 (error "Incorrect use list." uses))
1368 (if (and binder (not (procedure? binder)))
1369 (error
1370 "Lazy-binder expected to be a procedure or #f." binder))
1371
1372 (let ((module (module-constructor (make-hash-table size)
1373 uses binder #f %pre-modules-transformer
1374 #f #f #f
1375 (make-hash-table %default-import-size)
1376 '()
1377 (make-weak-key-hash-table 31))))
1378
1379 ;; We can't pass this as an argument to module-constructor,
1380 ;; because we need it to close over a pointer to the module
1381 ;; itself.
1382 (set-module-eval-closure! module (standard-eval-closure module))
1383
1384 module))))
1385
1386 (define module-constructor (record-constructor module-type))
1387 (define module-obarray (record-accessor module-type 'obarray))
1388 (define set-module-obarray! (record-modifier module-type 'obarray))
1389 (define module-uses (record-accessor module-type 'uses))
1390 (define set-module-uses! (record-modifier module-type 'uses))
1391 (define module-binder (record-accessor module-type 'binder))
1392 (define set-module-binder! (record-modifier module-type 'binder))
1393
1394 ;; NOTE: This binding is used in libguile/modules.c.
1395 (define module-eval-closure (record-accessor module-type 'eval-closure))
1396
1397 (define module-transformer (record-accessor module-type 'transformer))
1398 (define set-module-transformer! (record-modifier module-type 'transformer))
1399 ;; (define module-name (record-accessor module-type 'name)) wait until mods are booted
1400 (define set-module-name! (record-modifier module-type 'name))
1401 (define module-kind (record-accessor module-type 'kind))
1402 (define set-module-kind! (record-modifier module-type 'kind))
1403 (define module-duplicates-handlers
1404 (record-accessor module-type 'duplicates-handlers))
1405 (define set-module-duplicates-handlers!
1406 (record-modifier module-type 'duplicates-handlers))
1407 (define module-observers (record-accessor module-type 'observers))
1408 (define set-module-observers! (record-modifier module-type 'observers))
1409 (define module-weak-observers (record-accessor module-type 'weak-observers))
1410 (define module? (record-predicate module-type))
1411
1412 (define module-import-obarray (record-accessor module-type 'import-obarray))
1413
1414 (define set-module-eval-closure!
1415 (let ((setter (record-modifier module-type 'eval-closure)))
1416 (lambda (module closure)
1417 (setter module closure)
1418 ;; Make it possible to lookup the module from the environment.
1419 ;; This implementation is correct since an eval closure can belong
1420 ;; to maximally one module.
1421
1422 ;; XXX: The following line introduces a circular reference that
1423 ;; precludes garbage collection of modules with the current weak hash
1424 ;; table semantics (see
1425 ;; http://lists.gnu.org/archive/html/guile-devel/2009-01/msg00102.html and
1426 ;; http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2465
1427 ;; for details). Since it doesn't appear to be used (only in
1428 ;; `scm_lookup_closure_module ()', which has 1 caller), we just comment
1429 ;; it out.
1430
1431 ;(set-procedure-property! closure 'module module)
1432 )))
1433
1434 \f
1435
1436 ;;; {Observer protocol}
1437 ;;;
1438
1439 (define (module-observe module proc)
1440 (set-module-observers! module (cons proc (module-observers module)))
1441 (cons module proc))
1442
1443 (define (module-observe-weak module observer-id . proc)
1444 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1445 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1446 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1447 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1448 ;; for instance).
1449
1450 ;; The two-argument version is kept for backward compatibility: when called
1451 ;; with two arguments, the observer gets unregistered when closure PROC
1452 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1453
1454 (let ((proc (if (null? proc) observer-id (car proc))))
1455 (hashq-set! (module-weak-observers module) observer-id proc)))
1456
1457 (define (module-unobserve token)
1458 (let ((module (car token))
1459 (id (cdr token)))
1460 (if (integer? id)
1461 (hash-remove! (module-weak-observers module) id)
1462 (set-module-observers! module (delq1! id (module-observers module)))))
1463 *unspecified*)
1464
1465 (define module-defer-observers #f)
1466 (define module-defer-observers-mutex (make-mutex 'recursive))
1467 (define module-defer-observers-table (make-hash-table))
1468
1469 (define (module-modified m)
1470 (if module-defer-observers
1471 (hash-set! module-defer-observers-table m #t)
1472 (module-call-observers m)))
1473
1474 ;;; This function can be used to delay calls to observers so that they
1475 ;;; can be called once only in the face of massive updating of modules.
1476 ;;;
1477 (define (call-with-deferred-observers thunk)
1478 (dynamic-wind
1479 (lambda ()
1480 (lock-mutex module-defer-observers-mutex)
1481 (set! module-defer-observers #t))
1482 thunk
1483 (lambda ()
1484 (set! module-defer-observers #f)
1485 (hash-for-each (lambda (m dummy)
1486 (module-call-observers m))
1487 module-defer-observers-table)
1488 (hash-clear! module-defer-observers-table)
1489 (unlock-mutex module-defer-observers-mutex))))
1490
1491 (define (module-call-observers m)
1492 (for-each (lambda (proc) (proc m)) (module-observers m))
1493
1494 ;; We assume that weak observers don't (un)register themselves as they are
1495 ;; called since this would preclude proper iteration over the hash table
1496 ;; elements.
1497 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1498
1499 \f
1500
1501 ;;; {Module Searching in General}
1502 ;;;
1503 ;;; We sometimes want to look for properties of a symbol
1504 ;;; just within the obarray of one module. If the property
1505 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1506 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1507 ;;;
1508 ;;;
1509 ;;; Other times, we want to test for a symbol property in the obarray
1510 ;;; of M and, if it is not found there, try each of the modules in the
1511 ;;; uses list of M. This is the normal way of testing for some
1512 ;;; property, so we state these properties without qualification as
1513 ;;; in: ``The symbol 'fnord is interned in module M because it is
1514 ;;; interned locally in module M2 which is a member of the uses list
1515 ;;; of M.''
1516 ;;;
1517
1518 ;; module-search fn m
1519 ;;
1520 ;; return the first non-#f result of FN applied to M and then to
1521 ;; the modules in the uses of m, and so on recursively. If all applications
1522 ;; return #f, then so does this function.
1523 ;;
1524 (define (module-search fn m v)
1525 (define (loop pos)
1526 (and (pair? pos)
1527 (or (module-search fn (car pos) v)
1528 (loop (cdr pos)))))
1529 (or (fn m v)
1530 (loop (module-uses m))))
1531
1532
1533 ;;; {Is a symbol bound in a module?}
1534 ;;;
1535 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1536 ;;; of S in M has been set to some well-defined value.
1537 ;;;
1538
1539 ;; module-locally-bound? module symbol
1540 ;;
1541 ;; Is a symbol bound (interned and defined) locally in a given module?
1542 ;;
1543 (define (module-locally-bound? m v)
1544 (let ((var (module-local-variable m v)))
1545 (and var
1546 (variable-bound? var))))
1547
1548 ;; module-bound? module symbol
1549 ;;
1550 ;; Is a symbol bound (interned and defined) anywhere in a given module
1551 ;; or its uses?
1552 ;;
1553 (define (module-bound? m v)
1554 (let ((var (module-variable m v)))
1555 (and var
1556 (variable-bound? var))))
1557
1558 ;;; {Is a symbol interned in a module?}
1559 ;;;
1560 ;;; Symbol S in Module M is interned if S occurs in
1561 ;;; of S in M has been set to some well-defined value.
1562 ;;;
1563 ;;; It is possible to intern a symbol in a module without providing
1564 ;;; an initial binding for the corresponding variable. This is done
1565 ;;; with:
1566 ;;; (module-add! module symbol (make-undefined-variable))
1567 ;;;
1568 ;;; In that case, the symbol is interned in the module, but not
1569 ;;; bound there. The unbound symbol shadows any binding for that
1570 ;;; symbol that might otherwise be inherited from a member of the uses list.
1571 ;;;
1572
1573 (define (module-obarray-get-handle ob key)
1574 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1575
1576 (define (module-obarray-ref ob key)
1577 ((if (symbol? key) hashq-ref hash-ref) ob key))
1578
1579 (define (module-obarray-set! ob key val)
1580 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1581
1582 (define (module-obarray-remove! ob key)
1583 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1584
1585 ;; module-symbol-locally-interned? module symbol
1586 ;;
1587 ;; is a symbol interned (not neccessarily defined) locally in a given module
1588 ;; or its uses? Interned symbols shadow inherited bindings even if
1589 ;; they are not themselves bound to a defined value.
1590 ;;
1591 (define (module-symbol-locally-interned? m v)
1592 (not (not (module-obarray-get-handle (module-obarray m) v))))
1593
1594 ;; module-symbol-interned? module symbol
1595 ;;
1596 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1597 ;; or its uses? Interned symbols shadow inherited bindings even if
1598 ;; they are not themselves bound to a defined value.
1599 ;;
1600 (define (module-symbol-interned? m v)
1601 (module-search module-symbol-locally-interned? m v))
1602
1603
1604 ;;; {Mapping modules x symbols --> variables}
1605 ;;;
1606
1607 ;; module-local-variable module symbol
1608 ;; return the local variable associated with a MODULE and SYMBOL.
1609 ;;
1610 ;;; This function is very important. It is the only function that can
1611 ;;; return a variable from a module other than the mutators that store
1612 ;;; new variables in modules. Therefore, this function is the location
1613 ;;; of the "lazy binder" hack.
1614 ;;;
1615 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1616 ;;; to a variable, return that variable object.
1617 ;;;
1618 ;;; If the symbols is not found at first, but the module has a lazy binder,
1619 ;;; then try the binder.
1620 ;;;
1621 ;;; If the symbol is not found at all, return #f.
1622 ;;;
1623 ;;; (This is now written in C, see `modules.c'.)
1624 ;;;
1625
1626 ;;; {Mapping modules x symbols --> bindings}
1627 ;;;
1628 ;;; These are similar to the mapping to variables, except that the
1629 ;;; variable is dereferenced.
1630 ;;;
1631
1632 ;; module-symbol-binding module symbol opt-value
1633 ;;
1634 ;; return the binding of a variable specified by name within
1635 ;; a given module, signalling an error if the variable is unbound.
1636 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1637 ;; return OPT-VALUE.
1638 ;;
1639 (define (module-symbol-local-binding m v . opt-val)
1640 (let ((var (module-local-variable m v)))
1641 (if (and var (variable-bound? var))
1642 (variable-ref var)
1643 (if (not (null? opt-val))
1644 (car opt-val)
1645 (error "Locally unbound variable." v)))))
1646
1647 ;; module-symbol-binding module symbol opt-value
1648 ;;
1649 ;; return the binding of a variable specified by name within
1650 ;; a given module, signalling an error if the variable is unbound.
1651 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1652 ;; return OPT-VALUE.
1653 ;;
1654 (define (module-symbol-binding m v . opt-val)
1655 (let ((var (module-variable m v)))
1656 (if (and var (variable-bound? var))
1657 (variable-ref var)
1658 (if (not (null? opt-val))
1659 (car opt-val)
1660 (error "Unbound variable." v)))))
1661
1662
1663 \f
1664
1665 ;;; {Adding Variables to Modules}
1666 ;;;
1667
1668 ;; module-make-local-var! module symbol
1669 ;;
1670 ;; ensure a variable for V in the local namespace of M.
1671 ;; If no variable was already there, then create a new and uninitialzied
1672 ;; variable.
1673 ;;
1674 ;; This function is used in modules.c.
1675 ;;
1676 (define (module-make-local-var! m v)
1677 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1678 (and (variable? b)
1679 (begin
1680 ;; Mark as modified since this function is called when
1681 ;; the standard eval closure defines a binding
1682 (module-modified m)
1683 b)))
1684
1685 ;; Create a new local variable.
1686 (let ((local-var (make-undefined-variable)))
1687 (module-add! m v local-var)
1688 local-var)))
1689
1690 ;; module-ensure-local-variable! module symbol
1691 ;;
1692 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1693 ;; there is no binding for SYMBOL, create a new uninitialized
1694 ;; variable. Return the local variable.
1695 ;;
1696 (define (module-ensure-local-variable! module symbol)
1697 (or (module-local-variable module symbol)
1698 (let ((var (make-undefined-variable)))
1699 (module-add! module symbol var)
1700 var)))
1701
1702 ;; module-add! module symbol var
1703 ;;
1704 ;; ensure a particular variable for V in the local namespace of M.
1705 ;;
1706 (define (module-add! m v var)
1707 (if (not (variable? var))
1708 (error "Bad variable to module-add!" var))
1709 (module-obarray-set! (module-obarray m) v var)
1710 (module-modified m))
1711
1712 ;; module-remove!
1713 ;;
1714 ;; make sure that a symbol is undefined in the local namespace of M.
1715 ;;
1716 (define (module-remove! m v)
1717 (module-obarray-remove! (module-obarray m) v)
1718 (module-modified m))
1719
1720 (define (module-clear! m)
1721 (hash-clear! (module-obarray m))
1722 (module-modified m))
1723
1724 ;; MODULE-FOR-EACH -- exported
1725 ;;
1726 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1727 ;;
1728 (define (module-for-each proc module)
1729 (hash-for-each proc (module-obarray module)))
1730
1731 (define (module-map proc module)
1732 (hash-map->list proc (module-obarray module)))
1733
1734 \f
1735
1736 ;;; {Low Level Bootstrapping}
1737 ;;;
1738
1739 ;; make-root-module
1740
1741 ;; A root module uses the pre-modules-obarray as its obarray. This
1742 ;; special obarray accumulates all bindings that have been established
1743 ;; before the module system is fully booted.
1744 ;;
1745 ;; (The obarray continues to be used by code that has been closed over
1746 ;; before the module system has been booted.)
1747
1748 (define (make-root-module)
1749 (let ((m (make-module 0)))
1750 (set-module-obarray! m (%get-pre-modules-obarray))
1751 m))
1752
1753 ;; make-scm-module
1754
1755 ;; The root interface is a module that uses the same obarray as the
1756 ;; root module. It does not allow new definitions, tho.
1757
1758 (define (make-scm-module)
1759 (let ((m (make-module 0)))
1760 (set-module-obarray! m (%get-pre-modules-obarray))
1761 (set-module-eval-closure! m (standard-interface-eval-closure m))
1762 m))
1763
1764
1765 \f
1766
1767 ;;; {Module-based Loading}
1768 ;;;
1769
1770 (define (save-module-excursion thunk)
1771 (let ((inner-module (current-module))
1772 (outer-module #f))
1773 (dynamic-wind (lambda ()
1774 (set! outer-module (current-module))
1775 (set-current-module inner-module)
1776 (set! inner-module #f))
1777 thunk
1778 (lambda ()
1779 (set! inner-module (current-module))
1780 (set-current-module outer-module)
1781 (set! outer-module #f)))))
1782
1783 (define basic-load load)
1784
1785 (define (load-module filename . reader)
1786 (save-module-excursion
1787 (lambda ()
1788 (let ((oldname (and (current-load-port)
1789 (port-filename (current-load-port)))))
1790 (apply basic-load
1791 (if (and oldname
1792 (> (string-length filename) 0)
1793 (not (char=? (string-ref filename 0) #\/))
1794 (not (string=? (dirname oldname) ".")))
1795 (string-append (dirname oldname) "/" filename)
1796 filename)
1797 reader)))))
1798
1799
1800 \f
1801
1802 ;;; {MODULE-REF -- exported}
1803 ;;;
1804
1805 ;; Returns the value of a variable called NAME in MODULE or any of its
1806 ;; used modules. If there is no such variable, then if the optional third
1807 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1808 ;;
1809 (define (module-ref module name . rest)
1810 (let ((variable (module-variable module name)))
1811 (if (and variable (variable-bound? variable))
1812 (variable-ref variable)
1813 (if (null? rest)
1814 (error "No variable named" name 'in module)
1815 (car rest) ; default value
1816 ))))
1817
1818 ;; MODULE-SET! -- exported
1819 ;;
1820 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1821 ;; to VALUE; if there is no such variable, an error is signaled.
1822 ;;
1823 (define (module-set! module name value)
1824 (let ((variable (module-variable module name)))
1825 (if variable
1826 (variable-set! variable value)
1827 (error "No variable named" name 'in module))))
1828
1829 ;; MODULE-DEFINE! -- exported
1830 ;;
1831 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1832 ;; variable, it is added first.
1833 ;;
1834 (define (module-define! module name value)
1835 (let ((variable (module-local-variable module name)))
1836 (if variable
1837 (begin
1838 (variable-set! variable value)
1839 (module-modified module))
1840 (let ((variable (make-variable value)))
1841 (module-add! module name variable)))))
1842
1843 ;; MODULE-DEFINED? -- exported
1844 ;;
1845 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1846 ;; uses)
1847 ;;
1848 (define (module-defined? module name)
1849 (let ((variable (module-variable module name)))
1850 (and variable (variable-bound? variable))))
1851
1852 ;; MODULE-USE! module interface
1853 ;;
1854 ;; Add INTERFACE to the list of interfaces used by MODULE.
1855 ;;
1856 (define (module-use! module interface)
1857 (if (not (or (eq? module interface)
1858 (memq interface (module-uses module))))
1859 (begin
1860 ;; Newly used modules must be appended rather than consed, so that
1861 ;; `module-variable' traverses the use list starting from the first
1862 ;; used module.
1863 (set-module-uses! module
1864 (append (filter (lambda (m)
1865 (not
1866 (equal? (module-name m)
1867 (module-name interface))))
1868 (module-uses module))
1869 (list interface)))
1870
1871 (module-modified module))))
1872
1873 ;; MODULE-USE-INTERFACES! module interfaces
1874 ;;
1875 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1876 ;;
1877 (define (module-use-interfaces! module interfaces)
1878 (set-module-uses! module
1879 (append (module-uses module) interfaces))
1880 (module-modified module))
1881
1882 \f
1883
1884 ;;; {Recursive Namespaces}
1885 ;;;
1886 ;;; A hierarchical namespace emerges if we consider some module to be
1887 ;;; root, and variables bound to modules as nested namespaces.
1888 ;;;
1889 ;;; The routines in this file manage variable names in hierarchical namespace.
1890 ;;; Each variable name is a list of elements, looked up in successively nested
1891 ;;; modules.
1892 ;;;
1893 ;;; (nested-ref some-root-module '(foo bar baz))
1894 ;;; => <value of a variable named baz in the module bound to bar in
1895 ;;; the module bound to foo in some-root-module>
1896 ;;;
1897 ;;;
1898 ;;; There are:
1899 ;;;
1900 ;;; ;; a-root is a module
1901 ;;; ;; name is a list of symbols
1902 ;;;
1903 ;;; nested-ref a-root name
1904 ;;; nested-set! a-root name val
1905 ;;; nested-define! a-root name val
1906 ;;; nested-remove! a-root name
1907 ;;;
1908 ;;;
1909 ;;; (current-module) is a natural choice for a-root so for convenience there are
1910 ;;; also:
1911 ;;;
1912 ;;; local-ref name == nested-ref (current-module) name
1913 ;;; local-set! name val == nested-set! (current-module) name val
1914 ;;; local-define! name val == nested-define! (current-module) name val
1915 ;;; local-remove! name == nested-remove! (current-module) name
1916 ;;;
1917
1918
1919 (define (nested-ref root names)
1920 (let loop ((cur root)
1921 (elts names))
1922 (cond
1923 ((null? elts) cur)
1924 ((not (module? cur)) #f)
1925 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1926
1927 (define (nested-set! root names val)
1928 (let loop ((cur root)
1929 (elts names))
1930 (if (null? (cdr elts))
1931 (module-set! cur (car elts) val)
1932 (loop (module-ref cur (car elts)) (cdr elts)))))
1933
1934 (define (nested-define! root names val)
1935 (let loop ((cur root)
1936 (elts names))
1937 (if (null? (cdr elts))
1938 (module-define! cur (car elts) val)
1939 (loop (module-ref cur (car elts)) (cdr elts)))))
1940
1941 (define (nested-remove! root names)
1942 (let loop ((cur root)
1943 (elts names))
1944 (if (null? (cdr elts))
1945 (module-remove! cur (car elts))
1946 (loop (module-ref cur (car elts)) (cdr elts)))))
1947
1948 (define (local-ref names) (nested-ref (current-module) names))
1949 (define (local-set! names val) (nested-set! (current-module) names val))
1950 (define (local-define names val) (nested-define! (current-module) names val))
1951 (define (local-remove names) (nested-remove! (current-module) names))
1952
1953
1954 \f
1955
1956 ;;; {The (%app) module}
1957 ;;;
1958 ;;; The root of conventionally named objects not directly in the top level.
1959 ;;;
1960 ;;; (%app modules)
1961 ;;; (%app modules guile)
1962 ;;;
1963 ;;; The directory of all modules and the standard root module.
1964 ;;;
1965
1966 ;; module-public-interface is defined in C.
1967 (define (set-module-public-interface! m i)
1968 (module-define! m '%module-public-interface i))
1969 (define (set-system-module! m s)
1970 (set-procedure-property! (module-eval-closure m) 'system-module s))
1971 (define the-root-module (make-root-module))
1972 (define the-scm-module (make-scm-module))
1973 (set-module-public-interface! the-root-module the-scm-module)
1974 (set-module-name! the-root-module '(guile))
1975 (set-module-name! the-scm-module '(guile))
1976 (set-module-kind! the-scm-module 'interface)
1977 (set-system-module! the-root-module #t)
1978 (set-system-module! the-scm-module #t)
1979
1980 ;; NOTE: This binding is used in libguile/modules.c.
1981 ;;
1982 (define (make-modules-in module name)
1983 (if (null? name)
1984 module
1985 (make-modules-in
1986 (let* ((var (module-local-variable module (car name)))
1987 (val (and var (variable-bound? var) (variable-ref var))))
1988 (if (module? val)
1989 val
1990 (let ((m (make-module 31)))
1991 (set-module-kind! m 'directory)
1992 (set-module-name! m (append (module-name module)
1993 (list (car name))))
1994 (module-define! module (car name) m)
1995 m)))
1996 (cdr name))))
1997
1998 (define (beautify-user-module! module)
1999 (let ((interface (module-public-interface module)))
2000 (if (or (not interface)
2001 (eq? interface module))
2002 (let ((interface (make-module 31)))
2003 (set-module-name! interface (module-name module))
2004 (set-module-kind! interface 'interface)
2005 (set-module-public-interface! module interface))))
2006 (if (and (not (memq the-scm-module (module-uses module)))
2007 (not (eq? module the-root-module)))
2008 ;; Import the default set of bindings (from the SCM module) in MODULE.
2009 (module-use! module the-scm-module)))
2010
2011 ;; NOTE: This binding is used in libguile/modules.c.
2012 ;;
2013 (define resolve-module
2014 (let ((the-root-module the-root-module))
2015 (lambda (name . maybe-autoload)
2016 (if (equal? name '(guile))
2017 the-root-module
2018 (let ((full-name (append '(%app modules) name)))
2019 (let ((already (nested-ref the-root-module full-name))
2020 (autoload (or (null? maybe-autoload) (car maybe-autoload))))
2021 (cond
2022 ((and already (module? already)
2023 (or (not autoload) (module-public-interface already)))
2024 ;; A hit, a palpable hit.
2025 already)
2026 (autoload
2027 ;; Try to autoload the module, and recurse.
2028 (try-load-module name)
2029 (resolve-module name #f))
2030 (else
2031 ;; A module is not bound (but maybe something else is),
2032 ;; we're not autoloading -- here's the weird semantics,
2033 ;; we create an empty module.
2034 (make-modules-in the-root-module full-name)))))))))
2035
2036 ;; Cheat. These bindings are needed by modules.c, but we don't want
2037 ;; to move their real definition here because that would be unnatural.
2038 ;;
2039 (define try-module-autoload #f)
2040 (define process-define-module #f)
2041 (define process-use-modules #f)
2042 (define module-export! #f)
2043 (define default-duplicate-binding-procedures #f)
2044
2045 (define %app (make-module 31))
2046 (set-module-name! %app '(%app))
2047 (define app %app) ;; for backwards compatability
2048
2049 (let ((m (make-module 31)))
2050 (set-module-name! m '())
2051 (local-define '(%app modules) m))
2052 (local-define '(%app modules guile) the-root-module)
2053
2054 ;; This boots the module system. All bindings needed by modules.c
2055 ;; must have been defined by now.
2056 ;;
2057 (set-current-module the-root-module)
2058 ;; definition deferred for syncase's benefit.
2059 (define module-name
2060 (let ((accessor (record-accessor module-type 'name)))
2061 (lambda (mod)
2062 (or (accessor mod)
2063 (let ((name (list (gensym))))
2064 ;; Name MOD and bind it in THE-ROOT-MODULE so that it's visible
2065 ;; to `resolve-module'. This is important as `psyntax' stores
2066 ;; module names and relies on being able to `resolve-module'
2067 ;; them.
2068 (set-module-name! mod name)
2069 (nested-define! the-root-module `(%app modules ,@name) mod)
2070 (accessor mod))))))
2071
2072 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
2073
2074 (define (try-load-module name)
2075 (try-module-autoload name))
2076
2077 (define (purify-module! module)
2078 "Removes bindings in MODULE which are inherited from the (guile) module."
2079 (let ((use-list (module-uses module)))
2080 (if (and (pair? use-list)
2081 (eq? (car (last-pair use-list)) the-scm-module))
2082 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2083
2084 ;; Return a module that is an interface to the module designated by
2085 ;; NAME.
2086 ;;
2087 ;; `resolve-interface' takes four keyword arguments:
2088 ;;
2089 ;; #:select SELECTION
2090 ;;
2091 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2092 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2093 ;; is the name in the used module and SEEN is the name in the using
2094 ;; module. Note that SEEN is also passed through RENAMER, below. The
2095 ;; default is to select all bindings. If you specify no selection but
2096 ;; a renamer, only the bindings that already exist in the used module
2097 ;; are made available in the interface. Bindings that are added later
2098 ;; are not picked up.
2099 ;;
2100 ;; #:hide BINDINGS
2101 ;;
2102 ;; BINDINGS is a list of bindings which should not be imported.
2103 ;;
2104 ;; #:prefix PREFIX
2105 ;;
2106 ;; PREFIX is a symbol that will be appended to each exported name.
2107 ;; The default is to not perform any renaming.
2108 ;;
2109 ;; #:renamer RENAMER
2110 ;;
2111 ;; RENAMER is a procedure that takes a symbol and returns its new
2112 ;; name. The default is not perform any renaming.
2113 ;;
2114 ;; Signal "no code for module" error if module name is not resolvable
2115 ;; or its public interface is not available. Signal "no binding"
2116 ;; error if selected binding does not exist in the used module.
2117 ;;
2118 (define (resolve-interface name . args)
2119
2120 (define (get-keyword-arg args kw def)
2121 (cond ((memq kw args)
2122 => (lambda (kw-arg)
2123 (if (null? (cdr kw-arg))
2124 (error "keyword without value: " kw))
2125 (cadr kw-arg)))
2126 (else
2127 def)))
2128
2129 (let* ((select (get-keyword-arg args #:select #f))
2130 (hide (get-keyword-arg args #:hide '()))
2131 (renamer (or (get-keyword-arg args #:renamer #f)
2132 (let ((prefix (get-keyword-arg args #:prefix #f)))
2133 (and prefix (symbol-prefix-proc prefix)))
2134 identity))
2135 (module (resolve-module name))
2136 (public-i (and module (module-public-interface module))))
2137 (and (or (not module) (not public-i))
2138 (error "no code for module" name))
2139 (if (and (not select) (null? hide) (eq? renamer identity))
2140 public-i
2141 (let ((selection (or select (module-map (lambda (sym var) sym)
2142 public-i)))
2143 (custom-i (make-module 31)))
2144 (set-module-kind! custom-i 'custom-interface)
2145 (set-module-name! custom-i name)
2146 ;; XXX - should use a lazy binder so that changes to the
2147 ;; used module are picked up automatically.
2148 (for-each (lambda (bspec)
2149 (let* ((direct? (symbol? bspec))
2150 (orig (if direct? bspec (car bspec)))
2151 (seen (if direct? bspec (cdr bspec)))
2152 (var (or (module-local-variable public-i orig)
2153 (module-local-variable module orig)
2154 (error
2155 ;; fixme: format manually for now
2156 (simple-format
2157 #f "no binding `~A' in module ~A"
2158 orig name)))))
2159 (if (memq orig hide)
2160 (set! hide (delq! orig hide))
2161 (module-add! custom-i
2162 (renamer seen)
2163 var))))
2164 selection)
2165 ;; Check that we are not hiding bindings which don't exist
2166 (for-each (lambda (binding)
2167 (if (not (module-local-variable public-i binding))
2168 (error
2169 (simple-format
2170 #f "no binding `~A' to hide in module ~A"
2171 binding name))))
2172 hide)
2173 custom-i))))
2174
2175 (define (symbol-prefix-proc prefix)
2176 (lambda (symbol)
2177 (symbol-append prefix symbol)))
2178
2179 ;; This function is called from "modules.c". If you change it, be
2180 ;; sure to update "modules.c" as well.
2181
2182 (define (process-define-module args)
2183 (let* ((module-id (car args))
2184 (module (resolve-module module-id #f))
2185 (kws (cdr args))
2186 (unrecognized (lambda (arg)
2187 (error "unrecognized define-module argument" arg))))
2188 (beautify-user-module! module)
2189 (let loop ((kws kws)
2190 (reversed-interfaces '())
2191 (exports '())
2192 (re-exports '())
2193 (replacements '())
2194 (autoloads '()))
2195
2196 (if (null? kws)
2197 (call-with-deferred-observers
2198 (lambda ()
2199 (module-use-interfaces! module (reverse reversed-interfaces))
2200 (module-export! module exports)
2201 (module-replace! module replacements)
2202 (module-re-export! module re-exports)
2203 (if (not (null? autoloads))
2204 (apply module-autoload! module autoloads))))
2205 (case (car kws)
2206 ((#:use-module #:use-syntax)
2207 (or (pair? (cdr kws))
2208 (unrecognized kws))
2209 (cond
2210 ((equal? (caadr kws) '(ice-9 syncase))
2211 (issue-deprecation-warning
2212 "(ice-9 syncase) is deprecated. Support for syntax-case is now in Guile core.")
2213 (loop (cddr kws)
2214 reversed-interfaces
2215 exports
2216 re-exports
2217 replacements
2218 autoloads))
2219 (else
2220 (let* ((interface-args (cadr kws))
2221 (interface (apply resolve-interface interface-args)))
2222 (and (eq? (car kws) #:use-syntax)
2223 (or (symbol? (caar interface-args))
2224 (error "invalid module name for use-syntax"
2225 (car interface-args)))
2226 (set-module-transformer!
2227 module
2228 (module-ref interface
2229 (car (last-pair (car interface-args)))
2230 #f)))
2231 (loop (cddr kws)
2232 (cons interface reversed-interfaces)
2233 exports
2234 re-exports
2235 replacements
2236 autoloads)))))
2237 ((#:autoload)
2238 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2239 (unrecognized kws))
2240 (loop (cdddr kws)
2241 reversed-interfaces
2242 exports
2243 re-exports
2244 replacements
2245 (let ((name (cadr kws))
2246 (bindings (caddr kws)))
2247 (cons* name bindings autoloads))))
2248 ((#:no-backtrace)
2249 (set-system-module! module #t)
2250 (loop (cdr kws) reversed-interfaces exports re-exports
2251 replacements autoloads))
2252 ((#:pure)
2253 (purify-module! module)
2254 (loop (cdr kws) reversed-interfaces exports re-exports
2255 replacements autoloads))
2256 ((#:duplicates)
2257 (if (not (pair? (cdr kws)))
2258 (unrecognized kws))
2259 (set-module-duplicates-handlers!
2260 module
2261 (lookup-duplicates-handlers (cadr kws)))
2262 (loop (cddr kws) reversed-interfaces exports re-exports
2263 replacements autoloads))
2264 ((#:export #:export-syntax)
2265 (or (pair? (cdr kws))
2266 (unrecognized kws))
2267 (loop (cddr kws)
2268 reversed-interfaces
2269 (append (cadr kws) exports)
2270 re-exports
2271 replacements
2272 autoloads))
2273 ((#:re-export #:re-export-syntax)
2274 (or (pair? (cdr kws))
2275 (unrecognized kws))
2276 (loop (cddr kws)
2277 reversed-interfaces
2278 exports
2279 (append (cadr kws) re-exports)
2280 replacements
2281 autoloads))
2282 ((#:replace #:replace-syntax)
2283 (or (pair? (cdr kws))
2284 (unrecognized kws))
2285 (loop (cddr kws)
2286 reversed-interfaces
2287 exports
2288 re-exports
2289 (append (cadr kws) replacements)
2290 autoloads))
2291 (else
2292 (unrecognized kws)))))
2293 (run-hook module-defined-hook module)
2294 module))
2295
2296 ;; `module-defined-hook' is a hook that is run whenever a new module
2297 ;; is defined. Its members are called with one argument, the new
2298 ;; module.
2299 (define module-defined-hook (make-hook 1))
2300
2301 \f
2302
2303 ;;; {Autoload}
2304 ;;;
2305
2306 (define (make-autoload-interface module name bindings)
2307 (let ((b (lambda (a sym definep)
2308 (and (memq sym bindings)
2309 (let ((i (module-public-interface (resolve-module name))))
2310 (if (not i)
2311 (error "missing interface for module" name))
2312 (let ((autoload (memq a (module-uses module))))
2313 ;; Replace autoload-interface with actual interface if
2314 ;; that has not happened yet.
2315 (if (pair? autoload)
2316 (set-car! autoload i)))
2317 (module-local-variable i sym))))))
2318 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2319 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2320
2321 (define (module-autoload! module . args)
2322 "Have @var{module} automatically load the module named @var{name} when one
2323 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2324 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2325 module '(ice-9 q) '(make-q q-length))}."
2326 (let loop ((args args))
2327 (cond ((null? args)
2328 #t)
2329 ((null? (cdr args))
2330 (error "invalid name+binding autoload list" args))
2331 (else
2332 (let ((name (car args))
2333 (bindings (cadr args)))
2334 (module-use! module (make-autoload-interface module
2335 name bindings))
2336 (loop (cddr args)))))))
2337
2338
2339 \f
2340
2341 ;;; {Autoloading modules}
2342 ;;;
2343
2344 (define autoloads-in-progress '())
2345
2346 ;; This function is called from "modules.c". If you change it, be
2347 ;; sure to update "modules.c" as well.
2348
2349 (define (try-module-autoload module-name)
2350 (let* ((reverse-name (reverse module-name))
2351 (name (symbol->string (car reverse-name)))
2352 (dir-hint-module-name (reverse (cdr reverse-name)))
2353 (dir-hint (apply string-append
2354 (map (lambda (elt)
2355 (string-append (symbol->string elt) "/"))
2356 dir-hint-module-name))))
2357 (resolve-module dir-hint-module-name #f)
2358 (and (not (autoload-done-or-in-progress? dir-hint name))
2359 (let ((didit #f))
2360 (dynamic-wind
2361 (lambda () (autoload-in-progress! dir-hint name))
2362 (lambda ()
2363 (with-fluid* current-reader #f
2364 (lambda ()
2365 (save-module-excursion
2366 (lambda ()
2367 (primitive-load-path (in-vicinity dir-hint name) #f)
2368 (set! didit #t))))))
2369 (lambda () (set-autoloaded! dir-hint name didit)))
2370 didit))))
2371
2372 \f
2373
2374 ;;; {Dynamic linking of modules}
2375 ;;;
2376
2377 (define autoloads-done '((guile . guile)))
2378
2379 (define (autoload-done-or-in-progress? p m)
2380 (let ((n (cons p m)))
2381 (->bool (or (member n autoloads-done)
2382 (member n autoloads-in-progress)))))
2383
2384 (define (autoload-done! p m)
2385 (let ((n (cons p m)))
2386 (set! autoloads-in-progress
2387 (delete! n autoloads-in-progress))
2388 (or (member n autoloads-done)
2389 (set! autoloads-done (cons n autoloads-done)))))
2390
2391 (define (autoload-in-progress! p m)
2392 (let ((n (cons p m)))
2393 (set! autoloads-done
2394 (delete! n autoloads-done))
2395 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2396
2397 (define (set-autoloaded! p m done?)
2398 (if done?
2399 (autoload-done! p m)
2400 (let ((n (cons p m)))
2401 (set! autoloads-done (delete! n autoloads-done))
2402 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2403
2404 \f
2405
2406 ;;; {Run-time options}
2407 ;;;
2408
2409 (defmacro define-option-interface (option-group)
2410 (let* ((option-name 'car)
2411 (option-value 'cadr)
2412 (option-documentation 'caddr)
2413
2414 ;; Below follow the macros defining the run-time option interfaces.
2415
2416 (make-options (lambda (interface)
2417 `(lambda args
2418 (cond ((null? args) (,interface))
2419 ((list? (car args))
2420 (,interface (car args)) (,interface))
2421 (else (for-each
2422 (lambda (option)
2423 (display (,option-name option))
2424 (if (< (string-length
2425 (symbol->string (,option-name option)))
2426 8)
2427 (display #\tab))
2428 (display #\tab)
2429 (display (,option-value option))
2430 (display #\tab)
2431 (display (,option-documentation option))
2432 (newline))
2433 (,interface #t)))))))
2434
2435 (make-enable (lambda (interface)
2436 `(lambda flags
2437 (,interface (append flags (,interface)))
2438 (,interface))))
2439
2440 (make-disable (lambda (interface)
2441 `(lambda flags
2442 (let ((options (,interface)))
2443 (for-each (lambda (flag)
2444 (set! options (delq! flag options)))
2445 flags)
2446 (,interface options)
2447 (,interface))))))
2448 (let* ((interface (car option-group))
2449 (options/enable/disable (cadr option-group)))
2450 `(begin
2451 (define ,(car options/enable/disable)
2452 ,(make-options interface))
2453 (define ,(cadr options/enable/disable)
2454 ,(make-enable interface))
2455 (define ,(caddr options/enable/disable)
2456 ,(make-disable interface))
2457 (defmacro ,(caaddr option-group) (opt val)
2458 `(,',(car options/enable/disable)
2459 (append (,',(car options/enable/disable))
2460 (list ',opt ,val))))))))
2461
2462 (define-option-interface
2463 (eval-options-interface
2464 (eval-options eval-enable eval-disable)
2465 (eval-set!)))
2466
2467 (define-option-interface
2468 (debug-options-interface
2469 (debug-options debug-enable debug-disable)
2470 (debug-set!)))
2471
2472 (define-option-interface
2473 (evaluator-traps-interface
2474 (traps trap-enable trap-disable)
2475 (trap-set!)))
2476
2477 (define-option-interface
2478 (read-options-interface
2479 (read-options read-enable read-disable)
2480 (read-set!)))
2481
2482 (define-option-interface
2483 (print-options-interface
2484 (print-options print-enable print-disable)
2485 (print-set!)))
2486
2487 \f
2488
2489 ;;; {Running Repls}
2490 ;;;
2491
2492 (define (repl read evaler print)
2493 (let loop ((source (read (current-input-port))))
2494 (print (evaler source))
2495 (loop (read (current-input-port)))))
2496
2497 ;; A provisional repl that acts like the SCM repl:
2498 ;;
2499 (define scm-repl-silent #f)
2500 (define (assert-repl-silence v) (set! scm-repl-silent v))
2501
2502 (define *unspecified* (if #f #f))
2503 (define (unspecified? v) (eq? v *unspecified*))
2504
2505 (define scm-repl-print-unspecified #f)
2506 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2507
2508 (define scm-repl-verbose #f)
2509 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2510
2511 (define scm-repl-prompt "guile> ")
2512
2513 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2514
2515 (define (default-pre-unwind-handler key . args)
2516 (save-stack 1)
2517 (apply throw key args))
2518
2519 (begin-deprecated
2520 (define (pre-unwind-handler-dispatch key . args)
2521 (apply default-pre-unwind-handler key args)))
2522
2523 (define abort-hook (make-hook))
2524
2525 ;; these definitions are used if running a script.
2526 ;; otherwise redefined in error-catching-loop.
2527 (define (set-batch-mode?! arg) #t)
2528 (define (batch-mode?) #t)
2529
2530 (define (error-catching-loop thunk)
2531 (let ((status #f)
2532 (interactive #t))
2533 (define (loop first)
2534 (let ((next
2535 (catch #t
2536
2537 (lambda ()
2538 (call-with-unblocked-asyncs
2539 (lambda ()
2540 (with-traps
2541 (lambda ()
2542 (first)
2543
2544 ;; This line is needed because mark
2545 ;; doesn't do closures quite right.
2546 ;; Unreferenced locals should be
2547 ;; collected.
2548 (set! first #f)
2549 (let loop ((v (thunk)))
2550 (loop (thunk)))
2551 #f)))))
2552
2553 (lambda (key . args)
2554 (case key
2555 ((quit)
2556 (set! status args)
2557 #f)
2558
2559 ((switch-repl)
2560 (apply throw 'switch-repl args))
2561
2562 ((abort)
2563 ;; This is one of the closures that require
2564 ;; (set! first #f) above
2565 ;;
2566 (lambda ()
2567 (run-hook abort-hook)
2568 (force-output (current-output-port))
2569 (display "ABORT: " (current-error-port))
2570 (write args (current-error-port))
2571 (newline (current-error-port))
2572 (if interactive
2573 (begin
2574 (if (and
2575 (not has-shown-debugger-hint?)
2576 (not (memq 'backtrace
2577 (debug-options-interface)))
2578 (stack? (fluid-ref the-last-stack)))
2579 (begin
2580 (newline (current-error-port))
2581 (display
2582 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2583 (current-error-port))
2584 (set! has-shown-debugger-hint? #t)))
2585 (force-output (current-error-port)))
2586 (begin
2587 (primitive-exit 1)))
2588 (set! stack-saved? #f)))
2589
2590 (else
2591 ;; This is the other cons-leak closure...
2592 (lambda ()
2593 (cond ((= (length args) 4)
2594 (apply handle-system-error key args))
2595 (else
2596 (apply bad-throw key args)))))))
2597
2598 default-pre-unwind-handler)))
2599
2600 (if next (loop next) status)))
2601 (set! set-batch-mode?! (lambda (arg)
2602 (cond (arg
2603 (set! interactive #f)
2604 (restore-signals))
2605 (#t
2606 (error "sorry, not implemented")))))
2607 (set! batch-mode? (lambda () (not interactive)))
2608 (call-with-blocked-asyncs
2609 (lambda () (loop (lambda () #t))))))
2610
2611 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2612 (define before-signal-stack (make-fluid))
2613 (define stack-saved? #f)
2614
2615 (define (save-stack . narrowing)
2616 (or stack-saved?
2617 (cond ((not (memq 'debug (debug-options-interface)))
2618 (fluid-set! the-last-stack #f)
2619 (set! stack-saved? #t))
2620 (else
2621 (fluid-set!
2622 the-last-stack
2623 (case (stack-id #t)
2624 ((repl-stack)
2625 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2626 ((load-stack)
2627 (apply make-stack #t save-stack 0 #t 0 narrowing))
2628 ((tk-stack)
2629 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2630 ((#t)
2631 (apply make-stack #t save-stack 0 1 narrowing))
2632 (else
2633 (let ((id (stack-id #t)))
2634 (and (procedure? id)
2635 (apply make-stack #t save-stack id #t 0 narrowing))))))
2636 (set! stack-saved? #t)))))
2637
2638 (define before-error-hook (make-hook))
2639 (define after-error-hook (make-hook))
2640 (define before-backtrace-hook (make-hook))
2641 (define after-backtrace-hook (make-hook))
2642
2643 (define has-shown-debugger-hint? #f)
2644
2645 (define (handle-system-error key . args)
2646 (let ((cep (current-error-port)))
2647 (cond ((not (stack? (fluid-ref the-last-stack))))
2648 ((memq 'backtrace (debug-options-interface))
2649 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2650 (eq? key 'out-of-range))
2651 (list-ref args 3)
2652 '())))
2653 (run-hook before-backtrace-hook)
2654 (newline cep)
2655 (display "Backtrace:\n")
2656 (display-backtrace (fluid-ref the-last-stack) cep
2657 #f #f highlights)
2658 (newline cep)
2659 (run-hook after-backtrace-hook))))
2660 (run-hook before-error-hook)
2661 (apply display-error (fluid-ref the-last-stack) cep args)
2662 (run-hook after-error-hook)
2663 (force-output cep)
2664 (throw 'abort key)))
2665
2666 (define (quit . args)
2667 (apply throw 'quit args))
2668
2669 (define exit quit)
2670
2671 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2672
2673 ;; Replaced by C code:
2674 ;;(define (backtrace)
2675 ;; (if (fluid-ref the-last-stack)
2676 ;; (begin
2677 ;; (newline)
2678 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2679 ;; (newline)
2680 ;; (if (and (not has-shown-backtrace-hint?)
2681 ;; (not (memq 'backtrace (debug-options-interface))))
2682 ;; (begin
2683 ;; (display
2684 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2685 ;;automatically if an error occurs in the future.\n")
2686 ;; (set! has-shown-backtrace-hint? #t))))
2687 ;; (display "No backtrace available.\n")))
2688
2689 (define (error-catching-repl r e p)
2690 (error-catching-loop
2691 (lambda ()
2692 (call-with-values (lambda () (e (r)))
2693 (lambda the-values (for-each p the-values))))))
2694
2695 (define (gc-run-time)
2696 (cdr (assq 'gc-time-taken (gc-stats))))
2697
2698 (define before-read-hook (make-hook))
2699 (define after-read-hook (make-hook))
2700 (define before-eval-hook (make-hook 1))
2701 (define after-eval-hook (make-hook 1))
2702 (define before-print-hook (make-hook 1))
2703 (define after-print-hook (make-hook 1))
2704
2705 ;;; The default repl-reader function. We may override this if we've
2706 ;;; the readline library.
2707 (define repl-reader
2708 (lambda (prompt . reader)
2709 (display (if (string? prompt) prompt (prompt)))
2710 (force-output)
2711 (run-hook before-read-hook)
2712 ((or (and (pair? reader) (car reader))
2713 (fluid-ref current-reader)
2714 read)
2715 (current-input-port))))
2716
2717 (define (scm-style-repl)
2718
2719 (letrec (
2720 (start-gc-rt #f)
2721 (start-rt #f)
2722 (repl-report-start-timing (lambda ()
2723 (set! start-gc-rt (gc-run-time))
2724 (set! start-rt (get-internal-run-time))))
2725 (repl-report (lambda ()
2726 (display ";;; ")
2727 (display (inexact->exact
2728 (* 1000 (/ (- (get-internal-run-time) start-rt)
2729 internal-time-units-per-second))))
2730 (display " msec (")
2731 (display (inexact->exact
2732 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2733 internal-time-units-per-second))))
2734 (display " msec in gc)\n")))
2735
2736 (consume-trailing-whitespace
2737 (lambda ()
2738 (let ((ch (peek-char)))
2739 (cond
2740 ((eof-object? ch))
2741 ((or (char=? ch #\space) (char=? ch #\tab))
2742 (read-char)
2743 (consume-trailing-whitespace))
2744 ((char=? ch #\newline)
2745 (read-char))))))
2746 (-read (lambda ()
2747 (let ((val
2748 (let ((prompt (cond ((string? scm-repl-prompt)
2749 scm-repl-prompt)
2750 ((thunk? scm-repl-prompt)
2751 (scm-repl-prompt))
2752 (scm-repl-prompt "> ")
2753 (else ""))))
2754 (repl-reader prompt))))
2755
2756 ;; As described in R4RS, the READ procedure updates the
2757 ;; port to point to the first character past the end of
2758 ;; the external representation of the object. This
2759 ;; means that it doesn't consume the newline typically
2760 ;; found after an expression. This means that, when
2761 ;; debugging Guile with GDB, GDB gets the newline, which
2762 ;; it often interprets as a "continue" command, making
2763 ;; breakpoints kind of useless. So, consume any
2764 ;; trailing newline here, as well as any whitespace
2765 ;; before it.
2766 ;; But not if EOF, for control-D.
2767 (if (not (eof-object? val))
2768 (consume-trailing-whitespace))
2769 (run-hook after-read-hook)
2770 (if (eof-object? val)
2771 (begin
2772 (repl-report-start-timing)
2773 (if scm-repl-verbose
2774 (begin
2775 (newline)
2776 (display ";;; EOF -- quitting")
2777 (newline)))
2778 (quit 0)))
2779 val)))
2780
2781 (-eval (lambda (sourc)
2782 (repl-report-start-timing)
2783 (run-hook before-eval-hook sourc)
2784 (let ((val (start-stack 'repl-stack
2785 ;; If you change this procedure
2786 ;; (primitive-eval), please also
2787 ;; modify the repl-stack case in
2788 ;; save-stack so that stack cutting
2789 ;; continues to work.
2790 (primitive-eval sourc))))
2791 (run-hook after-eval-hook sourc)
2792 val)))
2793
2794
2795 (-print (let ((maybe-print (lambda (result)
2796 (if (or scm-repl-print-unspecified
2797 (not (unspecified? result)))
2798 (begin
2799 (write result)
2800 (newline))))))
2801 (lambda (result)
2802 (if (not scm-repl-silent)
2803 (begin
2804 (run-hook before-print-hook result)
2805 (maybe-print result)
2806 (run-hook after-print-hook result)
2807 (if scm-repl-verbose
2808 (repl-report))
2809 (force-output))))))
2810
2811 (-quit (lambda (args)
2812 (if scm-repl-verbose
2813 (begin
2814 (display ";;; QUIT executed, repl exitting")
2815 (newline)
2816 (repl-report)))
2817 args)))
2818
2819 (let ((status (error-catching-repl -read
2820 -eval
2821 -print)))
2822 (-quit status))))
2823
2824
2825 \f
2826
2827 ;;; {IOTA functions: generating lists of numbers}
2828 ;;;
2829
2830 (define (iota n)
2831 (let loop ((count (1- n)) (result '()))
2832 (if (< count 0) result
2833 (loop (1- count) (cons count result)))))
2834
2835 \f
2836
2837 ;;; {collect}
2838 ;;;
2839 ;;; Similar to `begin' but returns a list of the results of all constituent
2840 ;;; forms instead of the result of the last form.
2841 ;;; (The definition relies on the current left-to-right
2842 ;;; order of evaluation of operands in applications.)
2843 ;;;
2844
2845 (defmacro collect forms
2846 (cons 'list forms))
2847
2848 \f
2849
2850 ;;; {with-fluids}
2851 ;;;
2852
2853 ;; with-fluids is a convenience wrapper for the builtin procedure
2854 ;; `with-fluids*'. The syntax is just like `let':
2855 ;;
2856 ;; (with-fluids ((fluid val)
2857 ;; ...)
2858 ;; body)
2859
2860 (defmacro with-fluids (bindings . body)
2861 (let ((fluids (map car bindings))
2862 (values (map cadr bindings)))
2863 (if (and (= (length fluids) 1) (= (length values) 1))
2864 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2865 `(with-fluids* (list ,@fluids) (list ,@values)
2866 (lambda () ,@body)))))
2867
2868 ;;; {While}
2869 ;;;
2870 ;;; with `continue' and `break'.
2871 ;;;
2872
2873 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2874 ;; that's only necessary if continue is actually used. A new key is
2875 ;; generated every time, so break and continue apply to their originating
2876 ;; `while' even when recursing.
2877 ;;
2878 ;; FIXME: This macro is unintentionally unhygienic with respect to let,
2879 ;; make-symbol, do, throw, catch, lambda, and not.
2880 ;;
2881 (define-macro (while cond . body)
2882 (let ((keyvar (make-symbol "while-keyvar")))
2883 `(let ((,keyvar (make-symbol "while-key")))
2884 (do ()
2885 ((catch ,keyvar
2886 (lambda ()
2887 (let ((break (lambda () (throw ,keyvar #t)))
2888 (continue (lambda () (throw ,keyvar #f))))
2889 (do ()
2890 ((not ,cond))
2891 ,@body)
2892 #t))
2893 (lambda (key arg)
2894 arg)))))))
2895
2896
2897 \f
2898
2899 ;;; {Module System Macros}
2900 ;;;
2901
2902 ;; Return a list of expressions that evaluate to the appropriate
2903 ;; arguments for resolve-interface according to SPEC.
2904
2905 (eval-when
2906 (compile)
2907 (if (memq 'prefix (read-options))
2908 (error "boot-9 must be compiled with #:kw, not :kw")))
2909
2910 (define (compile-interface-spec spec)
2911 (define (make-keyarg sym key quote?)
2912 (cond ((or (memq sym spec)
2913 (memq key spec))
2914 => (lambda (rest)
2915 (if quote?
2916 (list key (list 'quote (cadr rest)))
2917 (list key (cadr rest)))))
2918 (else
2919 '())))
2920 (define (map-apply func list)
2921 (map (lambda (args) (apply func args)) list))
2922 (define keys
2923 ;; sym key quote?
2924 '((:select #:select #t)
2925 (:hide #:hide #t)
2926 (:prefix #:prefix #t)
2927 (:renamer #:renamer #f)))
2928 (if (not (pair? (car spec)))
2929 `(',spec)
2930 `(',(car spec)
2931 ,@(apply append (map-apply make-keyarg keys)))))
2932
2933 (define (keyword-like-symbol->keyword sym)
2934 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2935
2936 (define (compile-define-module-args args)
2937 ;; Just quote everything except #:use-module and #:use-syntax. We
2938 ;; need to know about all arguments regardless since we want to turn
2939 ;; symbols that look like keywords into real keywords, and the
2940 ;; keyword args in a define-module form are not regular
2941 ;; (i.e. no-backtrace doesn't take a value).
2942 (let loop ((compiled-args `((quote ,(car args))))
2943 (args (cdr args)))
2944 (cond ((null? args)
2945 (reverse! compiled-args))
2946 ;; symbol in keyword position
2947 ((symbol? (car args))
2948 (loop compiled-args
2949 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2950 ((memq (car args) '(#:no-backtrace #:pure))
2951 (loop (cons (car args) compiled-args)
2952 (cdr args)))
2953 ((null? (cdr args))
2954 (error "keyword without value:" (car args)))
2955 ((memq (car args) '(#:use-module #:use-syntax))
2956 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2957 (car args)
2958 compiled-args)
2959 (cddr args)))
2960 ((eq? (car args) #:autoload)
2961 (loop (cons* `(quote ,(caddr args))
2962 `(quote ,(cadr args))
2963 (car args)
2964 compiled-args)
2965 (cdddr args)))
2966 (else
2967 (loop (cons* `(quote ,(cadr args))
2968 (car args)
2969 compiled-args)
2970 (cddr args))))))
2971
2972 (defmacro define-module args
2973 `(eval-when
2974 (eval load compile)
2975 (let ((m (process-define-module
2976 (list ,@(compile-define-module-args args)))))
2977 (set-current-module m)
2978 m)))
2979
2980 ;; The guts of the use-modules macro. Add the interfaces of the named
2981 ;; modules to the use-list of the current module, in order.
2982
2983 ;; This function is called by "modules.c". If you change it, be sure
2984 ;; to change scm_c_use_module as well.
2985
2986 (define (process-use-modules module-interface-args)
2987 (let ((interfaces (map (lambda (mif-args)
2988 (or (apply resolve-interface mif-args)
2989 (error "no such module" mif-args)))
2990 module-interface-args)))
2991 (call-with-deferred-observers
2992 (lambda ()
2993 (module-use-interfaces! (current-module) interfaces)))))
2994
2995 (defmacro use-modules modules
2996 `(eval-when
2997 (eval load compile)
2998 (process-use-modules
2999 (list ,@(map (lambda (m)
3000 `(list ,@(compile-interface-spec m)))
3001 modules)))
3002 *unspecified*))
3003
3004 (defmacro use-syntax (spec)
3005 `(eval-when
3006 (eval load compile)
3007 (issue-deprecation-warning
3008 "`use-syntax' is deprecated. Please contact guile-devel for more info.")
3009 (process-use-modules (list (list ,@(compile-interface-spec spec))))
3010 *unspecified*))
3011
3012 (define-syntax define-private
3013 (syntax-rules ()
3014 ((_ foo bar)
3015 (define foo bar))))
3016
3017 (define-syntax define-public
3018 (syntax-rules ()
3019 ((_ (name . args) . body)
3020 (define-public name (lambda args . body)))
3021 ((_ name val)
3022 (begin
3023 (define name val)
3024 (export name)))))
3025
3026 (define-syntax defmacro-public
3027 (syntax-rules ()
3028 ((_ name args . body)
3029 (begin
3030 (defmacro name args . body)
3031 (export-syntax name)))))
3032
3033 ;; And now for the most important macro.
3034 (define-syntax λ
3035 (syntax-rules ()
3036 ((_ formals body ...)
3037 (lambda formals body ...))))
3038
3039 \f
3040 ;; Export a local variable
3041
3042 ;; This function is called from "modules.c". If you change it, be
3043 ;; sure to update "modules.c" as well.
3044
3045 (define (module-export! m names)
3046 (let ((public-i (module-public-interface m)))
3047 (for-each (lambda (name)
3048 (let ((var (module-ensure-local-variable! m name)))
3049 (module-add! public-i name var)))
3050 names)))
3051
3052 (define (module-replace! m names)
3053 (let ((public-i (module-public-interface m)))
3054 (for-each (lambda (name)
3055 (let ((var (module-ensure-local-variable! m name)))
3056 (set-object-property! var 'replace #t)
3057 (module-add! public-i name var)))
3058 names)))
3059
3060 ;; Re-export a imported variable
3061 ;;
3062 (define (module-re-export! m names)
3063 (let ((public-i (module-public-interface m)))
3064 (for-each (lambda (name)
3065 (let ((var (module-variable m name)))
3066 (cond ((not var)
3067 (error "Undefined variable:" name))
3068 ((eq? var (module-local-variable m name))
3069 (error "re-exporting local variable:" name))
3070 (else
3071 (module-add! public-i name var)))))
3072 names)))
3073
3074 (defmacro export names
3075 `(call-with-deferred-observers
3076 (lambda ()
3077 (module-export! (current-module) ',names))))
3078
3079 (defmacro re-export names
3080 `(call-with-deferred-observers
3081 (lambda ()
3082 (module-re-export! (current-module) ',names))))
3083
3084 (defmacro export-syntax names
3085 `(export ,@names))
3086
3087 (defmacro re-export-syntax names
3088 `(re-export ,@names))
3089
3090 (define load load-module)
3091
3092 \f
3093
3094 ;;; {Parameters}
3095 ;;;
3096
3097 (define make-mutable-parameter
3098 (let ((make (lambda (fluid converter)
3099 (lambda args
3100 (if (null? args)
3101 (fluid-ref fluid)
3102 (fluid-set! fluid (converter (car args))))))))
3103 (lambda (init . converter)
3104 (let ((fluid (make-fluid))
3105 (converter (if (null? converter)
3106 identity
3107 (car converter))))
3108 (fluid-set! fluid (converter init))
3109 (make fluid converter)))))
3110
3111 \f
3112
3113 ;;; {Handling of duplicate imported bindings}
3114 ;;;
3115
3116 ;; Duplicate handlers take the following arguments:
3117 ;;
3118 ;; module importing module
3119 ;; name conflicting name
3120 ;; int1 old interface where name occurs
3121 ;; val1 value of binding in old interface
3122 ;; int2 new interface where name occurs
3123 ;; val2 value of binding in new interface
3124 ;; var previous resolution or #f
3125 ;; val value of previous resolution
3126 ;;
3127 ;; A duplicate handler can take three alternative actions:
3128 ;;
3129 ;; 1. return #f => leave responsibility to next handler
3130 ;; 2. exit with an error
3131 ;; 3. return a variable resolving the conflict
3132 ;;
3133
3134 (define duplicate-handlers
3135 (let ((m (make-module 7)))
3136
3137 (define (check module name int1 val1 int2 val2 var val)
3138 (scm-error 'misc-error
3139 #f
3140 "~A: `~A' imported from both ~A and ~A"
3141 (list (module-name module)
3142 name
3143 (module-name int1)
3144 (module-name int2))
3145 #f))
3146
3147 (define (warn module name int1 val1 int2 val2 var val)
3148 (format (current-error-port)
3149 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3150 (module-name module)
3151 name
3152 (module-name int1)
3153 (module-name int2))
3154 #f)
3155
3156 (define (replace module name int1 val1 int2 val2 var val)
3157 (let ((old (or (and var (object-property var 'replace) var)
3158 (module-variable int1 name)))
3159 (new (module-variable int2 name)))
3160 (if (object-property old 'replace)
3161 (and (or (eq? old new)
3162 (not (object-property new 'replace)))
3163 old)
3164 (and (object-property new 'replace)
3165 new))))
3166
3167 (define (warn-override-core module name int1 val1 int2 val2 var val)
3168 (and (eq? int1 the-scm-module)
3169 (begin
3170 (format (current-error-port)
3171 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3172 (module-name module)
3173 (module-name int2)
3174 name)
3175 (module-local-variable int2 name))))
3176
3177 (define (first module name int1 val1 int2 val2 var val)
3178 (or var (module-local-variable int1 name)))
3179
3180 (define (last module name int1 val1 int2 val2 var val)
3181 (module-local-variable int2 name))
3182
3183 (define (noop module name int1 val1 int2 val2 var val)
3184 #f)
3185
3186 (set-module-name! m 'duplicate-handlers)
3187 (set-module-kind! m 'interface)
3188 (module-define! m 'check check)
3189 (module-define! m 'warn warn)
3190 (module-define! m 'replace replace)
3191 (module-define! m 'warn-override-core warn-override-core)
3192 (module-define! m 'first first)
3193 (module-define! m 'last last)
3194 (module-define! m 'merge-generics noop)
3195 (module-define! m 'merge-accessors noop)
3196 m))
3197
3198 (define (lookup-duplicates-handlers handler-names)
3199 (and handler-names
3200 (map (lambda (handler-name)
3201 (or (module-symbol-local-binding
3202 duplicate-handlers handler-name #f)
3203 (error "invalid duplicate handler name:"
3204 handler-name)))
3205 (if (list? handler-names)
3206 handler-names
3207 (list handler-names)))))
3208
3209 (define default-duplicate-binding-procedures
3210 (make-mutable-parameter #f))
3211
3212 (define default-duplicate-binding-handler
3213 (make-mutable-parameter '(replace warn-override-core warn last)
3214 (lambda (handler-names)
3215 (default-duplicate-binding-procedures
3216 (lookup-duplicates-handlers handler-names))
3217 handler-names)))
3218
3219 \f
3220
3221 ;;; {`cond-expand' for SRFI-0 support.}
3222 ;;;
3223 ;;; This syntactic form expands into different commands or
3224 ;;; definitions, depending on the features provided by the Scheme
3225 ;;; implementation.
3226 ;;;
3227 ;;; Syntax:
3228 ;;;
3229 ;;; <cond-expand>
3230 ;;; --> (cond-expand <cond-expand-clause>+)
3231 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3232 ;;; <cond-expand-clause>
3233 ;;; --> (<feature-requirement> <command-or-definition>*)
3234 ;;; <feature-requirement>
3235 ;;; --> <feature-identifier>
3236 ;;; | (and <feature-requirement>*)
3237 ;;; | (or <feature-requirement>*)
3238 ;;; | (not <feature-requirement>)
3239 ;;; <feature-identifier>
3240 ;;; --> <a symbol which is the name or alias of a SRFI>
3241 ;;;
3242 ;;; Additionally, this implementation provides the
3243 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3244 ;;; determine the implementation type and the supported standard.
3245 ;;;
3246 ;;; Currently, the following feature identifiers are supported:
3247 ;;;
3248 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3249 ;;;
3250 ;;; Remember to update the features list when adding more SRFIs.
3251 ;;;
3252
3253 (define %cond-expand-features
3254 ;; Adjust the above comment when changing this.
3255 '(guile
3256 r5rs
3257 srfi-0 ;; cond-expand itself
3258 srfi-4 ;; homogenous numeric vectors
3259 srfi-6 ;; open-input-string etc, in the guile core
3260 srfi-13 ;; string library
3261 srfi-14 ;; character sets
3262 srfi-55 ;; require-extension
3263 srfi-61 ;; general cond clause
3264 ))
3265
3266 ;; This table maps module public interfaces to the list of features.
3267 ;;
3268 (define %cond-expand-table (make-hash-table 31))
3269
3270 ;; Add one or more features to the `cond-expand' feature list of the
3271 ;; module `module'.
3272 ;;
3273 (define (cond-expand-provide module features)
3274 (let ((mod (module-public-interface module)))
3275 (and mod
3276 (hashq-set! %cond-expand-table mod
3277 (append (hashq-ref %cond-expand-table mod '())
3278 features)))))
3279
3280 (define-macro (cond-expand . clauses)
3281 (let ((syntax-error (lambda (cl)
3282 (error "invalid clause in `cond-expand'" cl))))
3283 (letrec
3284 ((test-clause
3285 (lambda (clause)
3286 (cond
3287 ((symbol? clause)
3288 (or (memq clause %cond-expand-features)
3289 (let lp ((uses (module-uses (current-module))))
3290 (if (pair? uses)
3291 (or (memq clause
3292 (hashq-ref %cond-expand-table
3293 (car uses) '()))
3294 (lp (cdr uses)))
3295 #f))))
3296 ((pair? clause)
3297 (cond
3298 ((eq? 'and (car clause))
3299 (let lp ((l (cdr clause)))
3300 (cond ((null? l)
3301 #t)
3302 ((pair? l)
3303 (and (test-clause (car l)) (lp (cdr l))))
3304 (else
3305 (syntax-error clause)))))
3306 ((eq? 'or (car clause))
3307 (let lp ((l (cdr clause)))
3308 (cond ((null? l)
3309 #f)
3310 ((pair? l)
3311 (or (test-clause (car l)) (lp (cdr l))))
3312 (else
3313 (syntax-error clause)))))
3314 ((eq? 'not (car clause))
3315 (cond ((not (pair? (cdr clause)))
3316 (syntax-error clause))
3317 ((pair? (cddr clause))
3318 ((syntax-error clause))))
3319 (not (test-clause (cadr clause))))
3320 (else
3321 (syntax-error clause))))
3322 (else
3323 (syntax-error clause))))))
3324 (let lp ((c clauses))
3325 (cond
3326 ((null? c)
3327 (error "Unfulfilled `cond-expand'"))
3328 ((not (pair? c))
3329 (syntax-error c))
3330 ((not (pair? (car c)))
3331 (syntax-error (car c)))
3332 ((test-clause (caar c))
3333 `(begin ,@(cdar c)))
3334 ((eq? (caar c) 'else)
3335 (if (pair? (cdr c))
3336 (syntax-error c))
3337 `(begin ,@(cdar c)))
3338 (else
3339 (lp (cdr c))))))))
3340
3341 ;; This procedure gets called from the startup code with a list of
3342 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3343 ;;
3344 (define (use-srfis srfis)
3345 (process-use-modules
3346 (map (lambda (num)
3347 (list (list 'srfi (string->symbol
3348 (string-append "srfi-" (number->string num))))))
3349 srfis)))
3350
3351 \f
3352
3353 ;;; srfi-55: require-extension
3354 ;;;
3355
3356 (define-macro (require-extension extension-spec)
3357 ;; This macro only handles the srfi extension, which, at present, is
3358 ;; the only one defined by the standard.
3359 (if (not (pair? extension-spec))
3360 (scm-error 'wrong-type-arg "require-extension"
3361 "Not an extension: ~S" (list extension-spec) #f))
3362 (let ((extension (car extension-spec))
3363 (extension-args (cdr extension-spec)))
3364 (case extension
3365 ((srfi)
3366 (let ((use-list '()))
3367 (for-each
3368 (lambda (i)
3369 (if (not (integer? i))
3370 (scm-error 'wrong-type-arg "require-extension"
3371 "Invalid srfi name: ~S" (list i) #f))
3372 (let ((srfi-sym (string->symbol
3373 (string-append "srfi-" (number->string i)))))
3374 (if (not (memq srfi-sym %cond-expand-features))
3375 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3376 use-list)))))
3377 extension-args)
3378 (if (pair? use-list)
3379 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3380 `(begin ,@(reverse! use-list)))))
3381 (else
3382 (scm-error
3383 'wrong-type-arg "require-extension"
3384 "Not a recognized extension type: ~S" (list extension) #f)))))
3385
3386 \f
3387
3388 ;;; {Load emacs interface support if emacs option is given.}
3389 ;;;
3390
3391 (define (named-module-use! user usee)
3392 (module-use! (resolve-module user) (resolve-interface usee)))
3393
3394 (define (load-emacs-interface)
3395 (and (provided? 'debug-extensions)
3396 (debug-enable 'backtrace))
3397 (named-module-use! '(guile-user) '(ice-9 emacs)))
3398
3399 \f
3400
3401 (define using-readline?
3402 (let ((using-readline? (make-fluid)))
3403 (make-procedure-with-setter
3404 (lambda () (fluid-ref using-readline?))
3405 (lambda (v) (fluid-set! using-readline? v)))))
3406
3407 (define (top-repl)
3408 (let ((guile-user-module (resolve-module '(guile-user))))
3409
3410 ;; Load emacs interface support if emacs option is given.
3411 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3412 (module-ref guile-user-module 'use-emacs-interface))
3413 (load-emacs-interface))
3414
3415 ;; Use some convenient modules (in reverse order)
3416
3417 (set-current-module guile-user-module)
3418 (process-use-modules
3419 (append
3420 '(((ice-9 r5rs))
3421 ((ice-9 session))
3422 ((ice-9 debug)))
3423 (if (provided? 'regex)
3424 '(((ice-9 regex)))
3425 '())
3426 (if (provided? 'threads)
3427 '(((ice-9 threads)))
3428 '())))
3429 ;; load debugger on demand
3430 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3431
3432 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3433 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3434 ;; no effect.
3435 (let ((old-handlers #f)
3436 (start-repl (module-ref (resolve-interface '(system repl repl))
3437 'start-repl))
3438 (signals (if (provided? 'posix)
3439 `((,SIGINT . "User interrupt")
3440 (,SIGFPE . "Arithmetic error")
3441 (,SIGSEGV
3442 . "Bad memory access (Segmentation violation)"))
3443 '())))
3444 ;; no SIGBUS on mingw
3445 (if (defined? 'SIGBUS)
3446 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3447 signals)))
3448
3449 (dynamic-wind
3450
3451 ;; call at entry
3452 (lambda ()
3453 (let ((make-handler (lambda (msg)
3454 (lambda (sig)
3455 ;; Make a backup copy of the stack
3456 (fluid-set! before-signal-stack
3457 (fluid-ref the-last-stack))
3458 (save-stack 2)
3459 (scm-error 'signal
3460 #f
3461 msg
3462 #f
3463 (list sig))))))
3464 (set! old-handlers
3465 (map (lambda (sig-msg)
3466 (sigaction (car sig-msg)
3467 (make-handler (cdr sig-msg))))
3468 signals))))
3469
3470 ;; the protected thunk.
3471 (lambda ()
3472 (let ((status (start-repl 'scheme)))
3473 (run-hook exit-hook)
3474 status))
3475
3476 ;; call at exit.
3477 (lambda ()
3478 (map (lambda (sig-msg old-handler)
3479 (if (not (car old-handler))
3480 ;; restore original C handler.
3481 (sigaction (car sig-msg) #f)
3482 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3483 (sigaction (car sig-msg)
3484 (car old-handler)
3485 (cdr old-handler))))
3486 signals old-handlers))))))
3487
3488 ;;; This hook is run at the very end of an interactive session.
3489 ;;;
3490 (define exit-hook (make-hook))
3491
3492 \f
3493
3494 ;;; {Deprecated stuff}
3495 ;;;
3496
3497 (begin-deprecated
3498 (define (feature? sym)
3499 (issue-deprecation-warning
3500 "`feature?' is deprecated. Use `provided?' instead.")
3501 (provided? sym)))
3502
3503 (begin-deprecated
3504 (primitive-load-path "ice-9/deprecated"))
3505
3506 \f
3507
3508 ;;; Place the user in the guile-user module.
3509 ;;;
3510
3511 ;;; FIXME: annotate ?
3512 ;; (define (syncase exp)
3513 ;; (with-fluids ((expansion-eval-closure
3514 ;; (module-eval-closure (current-module))))
3515 ;; (deannotate/source-properties (sc-expand (annotate exp)))))
3516
3517 (define-module (guile-user)
3518 #:autoload (system base compile) (compile))
3519
3520 ;;; boot-9.scm ends here