Merge remote-tracking branch 'local-2.0/stable-2.0'
[bpt/guile.git] / module / ice-9 / boot-9.scm
1 ;;; -*- mode: scheme; coding: utf-8; -*-
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 ;;;; 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 ;;;; Free Software Foundation, Inc.
6 ;;;;
7 ;;;; This library is free software; you can redistribute it and/or
8 ;;;; modify it under the terms of the GNU Lesser General Public
9 ;;;; License as published by the Free Software Foundation; either
10 ;;;; version 3 of the License, or (at your option) any later version.
11 ;;;;
12 ;;;; This library is distributed in the hope that it will be useful,
13 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 ;;;; Lesser General Public License for more details.
16 ;;;;
17 ;;;; You should have received a copy of the GNU Lesser General Public
18 ;;;; License along with this library; if not, write to the Free Software
19 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 ;;;;
21
22 \f
23
24 ;;; Commentary:
25
26 ;;; This file is the first thing loaded into Guile. It adds many mundane
27 ;;; definitions and a few that are interesting.
28 ;;;
29 ;;; The module system (hence the hierarchical namespace) are defined in this
30 ;;; file.
31 ;;;
32
33 ;;; Code:
34
35 \f
36
37 ;; Before compiling, make sure any symbols are resolved in the (guile)
38 ;; module, the primary location of those symbols, rather than in
39 ;; (guile-user), the default module that we compile in.
40
41 (eval-when (compile)
42 (set-current-module (resolve-module '(guile))))
43
44 \f
45
46 ;;; {Error handling}
47 ;;;
48
49 ;; Define delimited continuation operators, and implement catch and throw in
50 ;; terms of them.
51
52 (define make-prompt-tag
53 (lambda* (#:optional (stem "prompt"))
54 (gensym stem)))
55
56 (define default-prompt-tag
57 ;; not sure if we should expose this to the user as a fluid
58 (let ((%default-prompt-tag (make-prompt-tag)))
59 (lambda ()
60 %default-prompt-tag)))
61
62 (define (call-with-prompt tag thunk handler)
63 (@prompt tag (thunk) handler))
64 (define (abort-to-prompt tag . args)
65 (@abort tag args))
66
67
68 ;; Define catch and with-throw-handler, using some common helper routines and a
69 ;; shared fluid. Hide the helpers in a lexical contour.
70
71 (define with-throw-handler #f)
72 (let ()
73 (define (default-exception-handler k . args)
74 (cond
75 ((eq? k 'quit)
76 (primitive-exit (cond
77 ((not (pair? args)) 0)
78 ((integer? (car args)) (car args))
79 ((not (car args)) 1)
80 (else 0))))
81 (else
82 (format (current-error-port) "guile: uncaught throw to ~a: ~a\n" k args)
83 (primitive-exit 1))))
84
85 (define %running-exception-handlers (make-fluid '()))
86 (define %exception-handler (make-fluid default-exception-handler))
87
88 (define (default-throw-handler prompt-tag catch-k)
89 (let ((prev (fluid-ref %exception-handler)))
90 (lambda (thrown-k . args)
91 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
92 (apply abort-to-prompt prompt-tag thrown-k args)
93 (apply prev thrown-k args)))))
94
95 (define (custom-throw-handler prompt-tag catch-k pre)
96 (let ((prev (fluid-ref %exception-handler)))
97 (lambda (thrown-k . args)
98 (if (or (eq? thrown-k catch-k) (eqv? catch-k #t))
99 (let ((running (fluid-ref %running-exception-handlers)))
100 (with-fluids ((%running-exception-handlers (cons pre running)))
101 (if (not (memq pre running))
102 (apply pre thrown-k args))
103 ;; fall through
104 (if prompt-tag
105 (apply abort-to-prompt prompt-tag thrown-k args)
106 (apply prev thrown-k args))))
107 (apply prev thrown-k args)))))
108
109 (set! catch
110 (lambda* (k thunk handler #:optional pre-unwind-handler)
111 "Invoke @var{thunk} in the dynamic context of @var{handler} for
112 exceptions matching @var{key}. If thunk throws to the symbol
113 @var{key}, then @var{handler} is invoked this way:
114 @lisp
115 (handler key args ...)
116 @end lisp
117
118 @var{key} is a symbol or @code{#t}.
119
120 @var{thunk} takes no arguments. If @var{thunk} returns
121 normally, that is the return value of @code{catch}.
122
123 Handler is invoked outside the scope of its own @code{catch}.
124 If @var{handler} again throws to the same key, a new handler
125 from further up the call chain is invoked.
126
127 If the key is @code{#t}, then a throw to @emph{any} symbol will
128 match this call to @code{catch}.
129
130 If a @var{pre-unwind-handler} is given and @var{thunk} throws
131 an exception that matches @var{key}, Guile calls the
132 @var{pre-unwind-handler} before unwinding the dynamic state and
133 invoking the main @var{handler}. @var{pre-unwind-handler} should
134 be a procedure with the same signature as @var{handler}, that
135 is @code{(lambda (key . args))}. It is typically used to save
136 the stack at the point where the exception occurred, but can also
137 query other parts of the dynamic state at that point, such as
138 fluid values.
139
140 A @var{pre-unwind-handler} can exit either normally or non-locally.
141 If it exits normally, Guile unwinds the stack and dynamic context
142 and then calls the normal (third argument) handler. If it exits
143 non-locally, that exit determines the continuation."
144 (if (not (or (symbol? k) (eqv? k #t)))
145 (scm-error 'wrong-type-arg "catch"
146 "Wrong type argument in position ~a: ~a"
147 (list 1 k) (list k)))
148 (let ((tag (make-prompt-tag "catch")))
149 (call-with-prompt
150 tag
151 (lambda ()
152 (with-fluids
153 ((%exception-handler
154 (if pre-unwind-handler
155 (custom-throw-handler tag k pre-unwind-handler)
156 (default-throw-handler tag k))))
157 (thunk)))
158 (lambda (cont k . args)
159 (apply handler k args))))))
160
161 (set! with-throw-handler
162 (lambda (k thunk pre-unwind-handler)
163 "Add @var{handler} to the dynamic context as a throw handler
164 for key @var{k}, then invoke @var{thunk}."
165 (if (not (or (symbol? k) (eqv? k #t)))
166 (scm-error 'wrong-type-arg "with-throw-handler"
167 "Wrong type argument in position ~a: ~a"
168 (list 1 k) (list k)))
169 (with-fluids ((%exception-handler
170 (custom-throw-handler #f k pre-unwind-handler)))
171 (thunk))))
172
173 (set! throw
174 (lambda (key . args)
175 "Invoke the catch form matching @var{key}, passing @var{args} to the
176 @var{handler}.
177
178 @var{key} is a symbol. It will match catches of the same symbol or of @code{#t}.
179
180 If there is no handler at all, Guile prints an error and then exits."
181 (if (not (symbol? key))
182 ((fluid-ref %exception-handler) 'wrong-type-arg "throw"
183 "Wrong type argument in position ~a: ~a" (list 1 key) (list key))
184 (apply (fluid-ref %exception-handler) key args)))))
185
186
187 \f
188
189 ;;; {R4RS compliance}
190 ;;;
191
192 (primitive-load-path "ice-9/r4rs")
193
194 \f
195
196 ;;; {Simple Debugging Tools}
197 ;;;
198
199 ;; peek takes any number of arguments, writes them to the
200 ;; current ouput port, and returns the last argument.
201 ;; It is handy to wrap around an expression to look at
202 ;; a value each time is evaluated, e.g.:
203 ;;
204 ;; (+ 10 (troublesome-fn))
205 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
206 ;;
207
208 (define (peek . stuff)
209 (newline)
210 (display ";;; ")
211 (write stuff)
212 (newline)
213 (car (last-pair stuff)))
214
215 (define pk peek)
216
217 ;; Temporary definition; replaced later.
218 (define current-warning-port current-error-port)
219
220 (define (warn . stuff)
221 (with-output-to-port (current-warning-port)
222 (lambda ()
223 (newline)
224 (display ";;; WARNING ")
225 (display stuff)
226 (newline)
227 (car (last-pair stuff)))))
228
229 \f
230
231 ;;; {Features}
232 ;;;
233
234 (define (provide sym)
235 (if (not (memq sym *features*))
236 (set! *features* (cons sym *features*))))
237
238 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
239 ;; provided? also checks to see if the module is available. We should do that
240 ;; too, but don't.
241
242 (define (provided? feature)
243 (and (memq feature *features*) #t))
244
245 \f
246
247 ;;; {Structs}
248 ;;;
249
250 (define (make-struct/no-tail vtable . args)
251 (apply make-struct vtable 0 args))
252
253 \f
254
255 ;;; Boot versions of `map' and `for-each', enough to get the expander
256 ;;; running.
257 ;;;
258 (define map
259 (case-lambda
260 ((f l)
261 (let map1 ((l l))
262 (if (null? l)
263 '()
264 (cons (f (car l)) (map1 (cdr l))))))
265 ((f l1 l2)
266 (let map2 ((l1 l1) (l2 l2))
267 (if (null? l1)
268 '()
269 (cons (f (car l1) (car l2))
270 (map2 (cdr l1) (cdr l2))))))
271 ((f l1 . rest)
272 (let lp ((l1 l1) (rest rest))
273 (if (null? l1)
274 '()
275 (cons (apply f (car l1) (map car rest))
276 (lp (cdr l1) (map cdr rest))))))))
277
278 (define for-each
279 (case-lambda
280 ((f l)
281 (let for-each1 ((l l))
282 (if (pair? l)
283 (begin
284 (f (car l))
285 (for-each1 (cdr l))))))
286 ((f l1 l2)
287 (let for-each2 ((l1 l1) (l2 l2))
288 (if (pair? l1)
289 (begin
290 (f (car l1) (car l2))
291 (for-each2 (cdr l1) (cdr l2))))))
292 ((f l1 . rest)
293 (let lp ((l1 l1) (rest rest))
294 (if (pair? l1)
295 (begin
296 (apply f (car l1) (map car rest))
297 (lp (cdr l1) (map cdr rest))))))))
298
299 ;;; {and-map and or-map}
300 ;;;
301 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
302 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
303 ;;;
304
305 ;; and-map f l
306 ;;
307 ;; Apply f to successive elements of l until exhaustion or f returns #f.
308 ;; If returning early, return #f. Otherwise, return the last value returned
309 ;; by f. If f has never been called because l is empty, return #t.
310 ;;
311 (define (and-map f lst)
312 (let loop ((result #t)
313 (l lst))
314 (and result
315 (or (and (null? l)
316 result)
317 (loop (f (car l)) (cdr l))))))
318
319 ;; or-map f l
320 ;;
321 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
322 ;; If returning early, return the return value of f.
323 ;;
324 (define (or-map f lst)
325 (let loop ((result #f)
326 (l lst))
327 (or result
328 (and (not (null? l))
329 (loop (f (car l)) (cdr l))))))
330
331 \f
332
333 ;; let format alias simple-format until the more complete version is loaded
334
335 (define format simple-format)
336
337 ;; this is scheme wrapping the C code so the final pred call is a tail call,
338 ;; per SRFI-13 spec
339 (define string-any
340 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
341 (if (and (procedure? char_pred)
342 (> end start)
343 (<= end (string-length s))) ;; let c-code handle range error
344 (or (string-any-c-code char_pred s start (1- end))
345 (char_pred (string-ref s (1- end))))
346 (string-any-c-code char_pred s start end))))
347
348 ;; this is scheme wrapping the C code so the final pred call is a tail call,
349 ;; per SRFI-13 spec
350 (define string-every
351 (lambda* (char_pred s #:optional (start 0) (end (string-length s)))
352 (if (and (procedure? char_pred)
353 (> end start)
354 (<= end (string-length s))) ;; let c-code handle range error
355 (and (string-every-c-code char_pred s start (1- end))
356 (char_pred (string-ref s (1- end))))
357 (string-every-c-code char_pred s start end))))
358
359 ;; A variant of string-fill! that we keep for compatability
360 ;;
361 (define (substring-fill! str start end fill)
362 (string-fill! str fill start end))
363
364 \f
365
366 ;; Define a minimal stub of the module API for psyntax, before modules
367 ;; have booted.
368 (define (module-name x)
369 '(guile))
370 (define (module-add! module sym var)
371 (hashq-set! (%get-pre-modules-obarray) sym var))
372 (define (module-define! module sym val)
373 (let ((v (hashq-ref (%get-pre-modules-obarray) sym)))
374 (if v
375 (variable-set! v val)
376 (module-add! (current-module) sym (make-variable val)))))
377 (define (module-ref module sym)
378 (let ((v (module-variable module sym)))
379 (if v (variable-ref v) (error "badness!" (pk module) (pk sym)))))
380 (define (resolve-module . args)
381 #f)
382
383 ;; API provided by psyntax
384 (define syntax-violation #f)
385 (define datum->syntax #f)
386 (define syntax->datum #f)
387 (define syntax-source #f)
388 (define identifier? #f)
389 (define generate-temporaries #f)
390 (define bound-identifier=? #f)
391 (define free-identifier=? #f)
392
393 ;; $sc-dispatch is an implementation detail of psyntax. It is used by
394 ;; expanded macros, to dispatch an input against a set of patterns.
395 (define $sc-dispatch #f)
396
397 ;; Load it up!
398 (primitive-load-path "ice-9/psyntax-pp")
399 ;; The binding for `macroexpand' has now been overridden, making psyntax the
400 ;; expander now.
401
402 (define-syntax and
403 (syntax-rules ()
404 ((_) #t)
405 ((_ x) x)
406 ((_ x y ...) (if x (and y ...) #f))))
407
408 (define-syntax or
409 (syntax-rules ()
410 ((_) #f)
411 ((_ x) x)
412 ((_ x y ...) (let ((t x)) (if t t (or y ...))))))
413
414 (include-from-path "ice-9/quasisyntax")
415
416 (define-syntax-rule (when test stmt stmt* ...)
417 (if test (begin stmt stmt* ...)))
418
419 (define-syntax-rule (unless test stmt stmt* ...)
420 (if (not test) (begin stmt stmt* ...)))
421
422 (define-syntax cond
423 (lambda (whole-expr)
424 (define (fold f seed xs)
425 (let loop ((xs xs) (seed seed))
426 (if (null? xs) seed
427 (loop (cdr xs) (f (car xs) seed)))))
428 (define (reverse-map f xs)
429 (fold (lambda (x seed) (cons (f x) seed))
430 '() xs))
431 (syntax-case whole-expr ()
432 ((_ clause clauses ...)
433 #`(begin
434 #,@(fold (lambda (clause-builder tail)
435 (clause-builder tail))
436 #'()
437 (reverse-map
438 (lambda (clause)
439 (define* (bad-clause #:optional (msg "invalid clause"))
440 (syntax-violation 'cond msg whole-expr clause))
441 (syntax-case clause (=> else)
442 ((else e e* ...)
443 (lambda (tail)
444 (if (null? tail)
445 #'((begin e e* ...))
446 (bad-clause "else must be the last clause"))))
447 ((else . _) (bad-clause))
448 ((test => receiver)
449 (lambda (tail)
450 #`((let ((t test))
451 (if t
452 (receiver t)
453 #,@tail)))))
454 ((test => receiver ...)
455 (bad-clause "wrong number of receiver expressions"))
456 ((generator guard => receiver)
457 (lambda (tail)
458 #`((call-with-values (lambda () generator)
459 (lambda vals
460 (if (apply guard vals)
461 (apply receiver vals)
462 #,@tail))))))
463 ((generator guard => receiver ...)
464 (bad-clause "wrong number of receiver expressions"))
465 ((test)
466 (lambda (tail)
467 #`((let ((t test))
468 (if t t #,@tail)))))
469 ((test e e* ...)
470 (lambda (tail)
471 #`((if test
472 (begin e e* ...)
473 #,@tail))))
474 (_ (bad-clause))))
475 #'(clause clauses ...))))))))
476
477 (define-syntax case
478 (lambda (whole-expr)
479 (define (fold f seed xs)
480 (let loop ((xs xs) (seed seed))
481 (if (null? xs) seed
482 (loop (cdr xs) (f (car xs) seed)))))
483 (define (fold2 f a b xs)
484 (let loop ((xs xs) (a a) (b b))
485 (if (null? xs) (values a b)
486 (call-with-values
487 (lambda () (f (car xs) a b))
488 (lambda (a b)
489 (loop (cdr xs) a b))))))
490 (define (reverse-map-with-seed f seed xs)
491 (fold2 (lambda (x ys seed)
492 (call-with-values
493 (lambda () (f x seed))
494 (lambda (y seed)
495 (values (cons y ys) seed))))
496 '() seed xs))
497 (syntax-case whole-expr ()
498 ((_ expr clause clauses ...)
499 (with-syntax ((key #'key))
500 #`(let ((key expr))
501 #,@(fold
502 (lambda (clause-builder tail)
503 (clause-builder tail))
504 #'()
505 (reverse-map-with-seed
506 (lambda (clause seen)
507 (define* (bad-clause #:optional (msg "invalid clause"))
508 (syntax-violation 'case msg whole-expr clause))
509 (syntax-case clause ()
510 ((test . rest)
511 (with-syntax
512 ((clause-expr
513 (syntax-case #'rest (=>)
514 ((=> receiver) #'(receiver key))
515 ((=> receiver ...)
516 (bad-clause
517 "wrong number of receiver expressions"))
518 ((e e* ...) #'(begin e e* ...))
519 (_ (bad-clause)))))
520 (syntax-case #'test (else)
521 ((datums ...)
522 (let ((seen
523 (fold
524 (lambda (datum seen)
525 (define (warn-datum type)
526 ((@ (system base message)
527 warning)
528 type
529 (append (source-properties datum)
530 (source-properties
531 (syntax->datum #'test)))
532 datum
533 (syntax->datum clause)
534 (syntax->datum whole-expr)))
535 (if (memv datum seen)
536 (warn-datum 'duplicate-case-datum))
537 (if (or (pair? datum)
538 (array? datum)
539 (generalized-vector? datum))
540 (warn-datum 'bad-case-datum))
541 (cons datum seen))
542 seen
543 (map syntax->datum #'(datums ...)))))
544 (values (lambda (tail)
545 #`((if (memv key '(datums ...))
546 clause-expr
547 #,@tail)))
548 seen)))
549 (else (values (lambda (tail)
550 (if (null? tail)
551 #'(clause-expr)
552 (bad-clause
553 "else must be the last clause")))
554 seen))
555 (_ (bad-clause)))))
556 (_ (bad-clause))))
557 '() #'(clause clauses ...)))))))))
558
559 (define-syntax do
560 (syntax-rules ()
561 ((do ((var init step ...) ...)
562 (test expr ...)
563 command ...)
564 (letrec
565 ((loop
566 (lambda (var ...)
567 (if test
568 (begin
569 (if #f #f)
570 expr ...)
571 (begin
572 command
573 ...
574 (loop (do "step" var step ...)
575 ...))))))
576 (loop init ...)))
577 ((do "step" x)
578 x)
579 ((do "step" x y)
580 y)))
581
582 (define-syntax-rule (delay exp)
583 (make-promise (lambda () exp)))
584
585 (define-syntax current-source-location
586 (lambda (x)
587 (syntax-case x ()
588 ((_)
589 (with-syntax ((s (datum->syntax x (syntax-source x))))
590 #''s)))))
591
592 ;; We provide this accessor out of convenience. current-line and
593 ;; current-column aren't so interesting, because they distort what they
594 ;; are measuring; better to use syntax-source from a macro.
595 ;;
596 (define-syntax current-filename
597 (lambda (x)
598 "A macro that expands to the current filename: the filename that
599 the (current-filename) form appears in. Expands to #f if this
600 information is unavailable."
601 (false-if-exception
602 (canonicalize-path (assq-ref (syntax-source x) 'filename)))))
603
604 (define-syntax-rule (define-once sym val)
605 (define sym
606 (if (module-locally-bound? (current-module) 'sym) sym val)))
607
608 ;;; The real versions of `map' and `for-each', with cycle detection, and
609 ;;; that use reverse! instead of recursion in the case of `map'.
610 ;;;
611 (define map
612 (case-lambda
613 ((f l)
614 (let map1 ((hare l) (tortoise l) (move? #f) (out '()))
615 (if (pair? hare)
616 (if move?
617 (if (eq? tortoise hare)
618 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
619 (list l) #f)
620 (map1 (cdr hare) (cdr tortoise) #f
621 (cons (f (car hare)) out)))
622 (map1 (cdr hare) tortoise #t
623 (cons (f (car hare)) out)))
624 (if (null? hare)
625 (reverse! out)
626 (scm-error 'wrong-type-arg "map" "Not a list: ~S"
627 (list l) #f)))))
628
629 ((f l1 l2)
630 (let map2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f) (out '()))
631 (cond
632 ((pair? h1)
633 (cond
634 ((not (pair? h2))
635 (scm-error 'wrong-type-arg "map"
636 (if (list? h2)
637 "List of wrong length: ~S"
638 "Not a list: ~S")
639 (list l2) #f))
640 ((not move?)
641 (map2 (cdr h1) (cdr h2) t1 t2 #t
642 (cons (f (car h1) (car h2)) out)))
643 ((eq? t1 h1)
644 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
645 (list l1) #f))
646 ((eq? t2 h2)
647 (scm-error 'wrong-type-arg "map" "Circular list: ~S"
648 (list l2) #f))
649 (else
650 (map2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f
651 (cons (f (car h1) (car h2)) out)))))
652
653 ((and (null? h1) (null? h2))
654 (reverse! out))
655
656 ((null? h1)
657 (scm-error 'wrong-type-arg "map"
658 (if (list? h2)
659 "List of wrong length: ~S"
660 "Not a list: ~S")
661 (list l2) #f))
662 (else
663 (scm-error 'wrong-type-arg "map"
664 "Not a list: ~S"
665 (list l1) #f)))))
666
667 ((f l1 . rest)
668 (let ((len (length l1)))
669 (let mapn ((rest rest))
670 (or (null? rest)
671 (if (= (length (car rest)) len)
672 (mapn (cdr rest))
673 (scm-error 'wrong-type-arg "map" "List of wrong length: ~S"
674 (list (car rest)) #f)))))
675 (let mapn ((l1 l1) (rest rest) (out '()))
676 (if (null? l1)
677 (reverse! out)
678 (mapn (cdr l1) (map cdr rest)
679 (cons (apply f (car l1) (map car rest)) out)))))))
680
681 (define map-in-order map)
682
683 (define for-each
684 (case-lambda
685 ((f l)
686 (let for-each1 ((hare l) (tortoise l) (move? #f))
687 (if (pair? hare)
688 (if move?
689 (if (eq? tortoise hare)
690 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
691 (list l) #f)
692 (begin
693 (f (car hare))
694 (for-each1 (cdr hare) (cdr tortoise) #f)))
695 (begin
696 (f (car hare))
697 (for-each1 (cdr hare) tortoise #t)))
698
699 (if (not (null? hare))
700 (scm-error 'wrong-type-arg "for-each" "Not a list: ~S"
701 (list l) #f)))))
702
703 ((f l1 l2)
704 (let for-each2 ((h1 l1) (h2 l2) (t1 l1) (t2 l2) (move? #f))
705 (cond
706 ((and (pair? h1) (pair? h2))
707 (cond
708 ((not move?)
709 (f (car h1) (car h2))
710 (for-each2 (cdr h1) (cdr h2) t1 t2 #t))
711 ((eq? t1 h1)
712 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
713 (list l1) #f))
714 ((eq? t2 h2)
715 (scm-error 'wrong-type-arg "for-each" "Circular list: ~S"
716 (list l2) #f))
717 (else
718 (f (car h1) (car h2))
719 (for-each2 (cdr h1) (cdr h2) (cdr t1) (cdr t2) #f))))
720
721 ((if (null? h1)
722 (or (null? h2) (pair? h2))
723 (and (pair? h1) (null? h2)))
724 (if #f #f))
725
726 ((list? h1)
727 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
728 (list h2) #f))
729 (else
730 (scm-error 'wrong-type-arg "for-each" "Unexpected tail: ~S"
731 (list h1) #f)))))
732
733 ((f l1 . rest)
734 (let ((len (length l1)))
735 (let for-eachn ((rest rest))
736 (or (null? rest)
737 (if (= (length (car rest)) len)
738 (for-eachn (cdr rest))
739 (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
740 (list (car rest)) #f)))))
741
742 (let for-eachn ((l1 l1) (rest rest))
743 (if (pair? l1)
744 (begin
745 (apply f (car l1) (map car rest))
746 (for-eachn (cdr l1) (map cdr rest))))))))
747
748
749 \f
750
751 ;;;
752 ;;; Extensible exception printing.
753 ;;;
754
755 (define set-exception-printer! #f)
756 ;; There is already a definition of print-exception from backtrace.c
757 ;; that we will override.
758
759 (let ((exception-printers '()))
760 (define (print-location frame port)
761 (let ((source (and=> frame frame-source)))
762 ;; source := (addr . (filename . (line . column)))
763 (if source
764 (let ((filename (or (cadr source) "<unnamed port>"))
765 (line (caddr source))
766 (col (cdddr source)))
767 (format port "~a:~a:~a: " filename (1+ line) col))
768 (format port "ERROR: "))))
769
770 (set! set-exception-printer!
771 (lambda (key proc)
772 (set! exception-printers (acons key proc exception-printers))))
773
774 (set! print-exception
775 (lambda (port frame key args)
776 (define (default-printer)
777 (format port "Throw to key `~a' with args `~s'." key args))
778
779 (if frame
780 (let ((proc (frame-procedure frame)))
781 (print-location frame port)
782 (format port "In procedure ~a:\n"
783 (or (procedure-name proc) proc))))
784
785 (print-location frame port)
786 (catch #t
787 (lambda ()
788 (let ((printer (assq-ref exception-printers key)))
789 (if printer
790 (printer port key args default-printer)
791 (default-printer))))
792 (lambda (k . args)
793 (format port "Error while printing exception.")))
794 (newline port)
795 (force-output port))))
796
797 ;;;
798 ;;; Printers for those keys thrown by Guile.
799 ;;;
800 (let ()
801 (define (scm-error-printer port key args default-printer)
802 ;; Abuse case-lambda as a pattern matcher, given that we don't have
803 ;; ice-9 match at this point.
804 (apply (case-lambda
805 ((subr msg args . rest)
806 (if subr
807 (format port "In procedure ~a: " subr))
808 (apply format port msg (or args '())))
809 (_ (default-printer)))
810 args))
811
812 (define (syntax-error-printer port key args default-printer)
813 (apply (case-lambda
814 ((who what where form subform . extra)
815 (format port "Syntax error:\n")
816 (if where
817 (let ((file (or (assq-ref where 'filename) "unknown file"))
818 (line (and=> (assq-ref where 'line) 1+))
819 (col (assq-ref where 'column)))
820 (format port "~a:~a:~a: " file line col))
821 (format port "unknown location: "))
822 (if who
823 (format port "~a: " who))
824 (format port "~a" what)
825 (if subform
826 (format port " in subform ~s of ~s" subform form)
827 (if form
828 (format port " in form ~s" form))))
829 (_ (default-printer)))
830 args))
831
832 (define (getaddrinfo-error-printer port key args default-printer)
833 (format port "In procedure getaddrinfo: ~a" (gai-strerror (car args))))
834
835 (set-exception-printer! 'goops-error scm-error-printer)
836 (set-exception-printer! 'host-not-found scm-error-printer)
837 (set-exception-printer! 'keyword-argument-error scm-error-printer)
838 (set-exception-printer! 'misc-error scm-error-printer)
839 (set-exception-printer! 'no-data scm-error-printer)
840 (set-exception-printer! 'no-recovery scm-error-printer)
841 (set-exception-printer! 'null-pointer-error scm-error-printer)
842 (set-exception-printer! 'out-of-range scm-error-printer)
843 (set-exception-printer! 'program-error scm-error-printer)
844 (set-exception-printer! 'read-error scm-error-printer)
845 (set-exception-printer! 'regular-expression-syntax scm-error-printer)
846 (set-exception-printer! 'signal scm-error-printer)
847 (set-exception-printer! 'stack-overflow scm-error-printer)
848 (set-exception-printer! 'system-error scm-error-printer)
849 (set-exception-printer! 'try-again scm-error-printer)
850 (set-exception-printer! 'unbound-variable scm-error-printer)
851 (set-exception-printer! 'wrong-number-of-args scm-error-printer)
852 (set-exception-printer! 'wrong-type-arg scm-error-printer)
853
854 (set-exception-printer! 'syntax-error syntax-error-printer)
855
856 (set-exception-printer! 'getaddrinfo-error getaddrinfo-error-printer))
857
858
859 \f
860
861 ;;; {Defmacros}
862 ;;;
863
864 (define-syntax define-macro
865 (lambda (x)
866 "Define a defmacro."
867 (syntax-case x ()
868 ((_ (macro . args) doc body1 body ...)
869 (string? (syntax->datum #'doc))
870 #'(define-macro macro doc (lambda args body1 body ...)))
871 ((_ (macro . args) body ...)
872 #'(define-macro macro #f (lambda args body ...)))
873 ((_ macro doc transformer)
874 (or (string? (syntax->datum #'doc))
875 (not (syntax->datum #'doc)))
876 #'(define-syntax macro
877 (lambda (y)
878 doc
879 #((macro-type . defmacro)
880 (defmacro-args args))
881 (syntax-case y ()
882 ((_ . args)
883 (let ((v (syntax->datum #'args)))
884 (datum->syntax y (apply transformer v)))))))))))
885
886 (define-syntax defmacro
887 (lambda (x)
888 "Define a defmacro, with the old lispy defun syntax."
889 (syntax-case x ()
890 ((_ macro args doc body1 body ...)
891 (string? (syntax->datum #'doc))
892 #'(define-macro macro doc (lambda args body1 body ...)))
893 ((_ macro args body ...)
894 #'(define-macro macro #f (lambda args body ...))))))
895
896 (provide 'defmacro)
897
898 \f
899
900 ;;; {Deprecation}
901 ;;;
902
903 (define-syntax begin-deprecated
904 (lambda (x)
905 (syntax-case x ()
906 ((_ form form* ...)
907 (if (include-deprecated-features)
908 #'(begin form form* ...)
909 #'(begin))))))
910
911 \f
912
913 ;;; {Trivial Functions}
914 ;;;
915
916 (define (identity x) x)
917
918 (define (compose proc . rest)
919 "Compose PROC with the procedures in REST, such that the last one in
920 REST is applied first and PROC last, and return the resulting procedure.
921 The given procedures must have compatible arity."
922 (if (null? rest)
923 proc
924 (let ((g (apply compose rest)))
925 (lambda args
926 (call-with-values (lambda () (apply g args)) proc)))))
927
928 (define (negate proc)
929 "Return a procedure with the same arity as PROC that returns the `not'
930 of PROC's result."
931 (lambda args
932 (not (apply proc args))))
933
934 (define (const value)
935 "Return a procedure that accepts any number of arguments and returns
936 VALUE."
937 (lambda _
938 value))
939
940 (define (and=> value procedure) (and value (procedure value)))
941 (define call/cc call-with-current-continuation)
942
943 (define-syntax-rule (false-if-exception expr)
944 (catch #t
945 (lambda () expr)
946 (lambda (k . args) #f)))
947
948 \f
949
950 ;;; {General Properties}
951 ;;;
952
953 ;; Properties are a lispy way to associate random info with random objects.
954 ;; Traditionally properties are implemented as an alist or a plist actually
955 ;; pertaining to the object in question.
956 ;;
957 ;; These "object properties" have the advantage that they can be associated with
958 ;; any object, even if the object has no plist. Object properties are good when
959 ;; you are extending pre-existing objects in unexpected ways. They also present
960 ;; a pleasing, uniform procedure-with-setter interface. But if you have a data
961 ;; type that always has properties, it's often still best to store those
962 ;; properties within the object itself.
963
964 (define (make-object-property)
965 ;; Weak tables are thread-safe.
966 (let ((prop (make-weak-key-hash-table)))
967 (make-procedure-with-setter
968 (lambda (obj) (hashq-ref prop obj))
969 (lambda (obj val) (hashq-set! prop obj val)))))
970
971
972 \f
973
974 ;;; {Symbol Properties}
975 ;;;
976
977 ;;; Symbol properties are something you see in old Lisp code. In most current
978 ;;; Guile code, symbols are not used as a data structure -- they are used as
979 ;;; keys into other data structures.
980
981 (define (symbol-property sym prop)
982 (let ((pair (assoc prop (symbol-pref sym))))
983 (and pair (cdr pair))))
984
985 (define (set-symbol-property! sym prop val)
986 (let ((pair (assoc prop (symbol-pref sym))))
987 (if pair
988 (set-cdr! pair val)
989 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
990
991 (define (symbol-property-remove! sym prop)
992 (let ((pair (assoc prop (symbol-pref sym))))
993 (if pair
994 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
995
996 \f
997
998 ;;; {Arrays}
999 ;;;
1000
1001 (define (array-shape a)
1002 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
1003 (array-dimensions a)))
1004
1005 \f
1006
1007 ;;; {Keywords}
1008 ;;;
1009
1010 ;;; It's much better if you can use lambda* / define*, of course.
1011
1012 (define (kw-arg-ref args kw)
1013 (let ((rem (member kw args)))
1014 (and rem (pair? (cdr rem)) (cadr rem))))
1015
1016 \f
1017
1018 ;;; {Structs}
1019 ;;;
1020
1021 (define (struct-layout s)
1022 (struct-ref (struct-vtable s) vtable-index-layout))
1023
1024 \f
1025
1026 ;;; {Records}
1027 ;;;
1028
1029 ;; Printing records: by default, records are printed as
1030 ;;
1031 ;; #<type-name field1: val1 field2: val2 ...>
1032 ;;
1033 ;; You can change that by giving a custom printing function to
1034 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
1035 ;; will be called like
1036 ;;
1037 ;; (<printer> object port)
1038 ;;
1039 ;; It should print OBJECT to PORT.
1040
1041 (define (inherit-print-state old-port new-port)
1042 (if (get-print-state old-port)
1043 (port-with-print-state new-port (get-print-state old-port))
1044 new-port))
1045
1046 ;; 0: type-name, 1: fields, 2: constructor
1047 (define record-type-vtable
1048 (let ((s (make-vtable (string-append standard-vtable-fields "prprpw")
1049 (lambda (s p)
1050 (display "#<record-type " p)
1051 (display (record-type-name s) p)
1052 (display ">" p)))))
1053 (set-struct-vtable-name! s 'record-type)
1054 s))
1055
1056 (define (record-type? obj)
1057 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
1058
1059 (define* (make-record-type type-name fields #:optional printer)
1060 ;; Pre-generate constructors for nfields < 20.
1061 (define-syntax make-constructor
1062 (lambda (x)
1063 (define *max-static-argument-count* 20)
1064 (define (make-formals n)
1065 (let lp ((i 0))
1066 (if (< i n)
1067 (cons (datum->syntax
1068 x
1069 (string->symbol
1070 (string (integer->char (+ (char->integer #\a) i)))))
1071 (lp (1+ i)))
1072 '())))
1073 (syntax-case x ()
1074 ((_ rtd exp) (not (identifier? #'exp))
1075 #'(let ((n exp))
1076 (make-constructor rtd n)))
1077 ((_ rtd nfields)
1078 #`(case nfields
1079 #,@(let lp ((n 0))
1080 (if (< n *max-static-argument-count*)
1081 (cons (with-syntax (((formal ...) (make-formals n))
1082 (n n))
1083 #'((n)
1084 (lambda (formal ...)
1085 (make-struct rtd 0 formal ...))))
1086 (lp (1+ n)))
1087 '()))
1088 (else
1089 (lambda args
1090 (if (= (length args) nfields)
1091 (apply make-struct rtd 0 args)
1092 (scm-error 'wrong-number-of-args
1093 (format #f "make-~a" type-name)
1094 "Wrong number of arguments" '() #f)))))))))
1095
1096 (define (default-record-printer s p)
1097 (display "#<" p)
1098 (display (record-type-name (record-type-descriptor s)) p)
1099 (let loop ((fields (record-type-fields (record-type-descriptor s)))
1100 (off 0))
1101 (cond
1102 ((not (null? fields))
1103 (display " " p)
1104 (display (car fields) p)
1105 (display ": " p)
1106 (display (struct-ref s off) p)
1107 (loop (cdr fields) (+ 1 off)))))
1108 (display ">" p))
1109
1110 (let ((rtd (make-struct record-type-vtable 0
1111 (make-struct-layout
1112 (apply string-append
1113 (map (lambda (f) "pw") fields)))
1114 (or printer default-record-printer)
1115 type-name
1116 (copy-tree fields))))
1117 (struct-set! rtd (+ vtable-offset-user 2)
1118 (make-constructor rtd (length fields)))
1119 ;; Temporary solution: Associate a name to the record type descriptor
1120 ;; so that the object system can create a wrapper class for it.
1121 (set-struct-vtable-name! rtd (if (symbol? type-name)
1122 type-name
1123 (string->symbol type-name)))
1124 rtd))
1125
1126 (define (record-type-name obj)
1127 (if (record-type? obj)
1128 (struct-ref obj vtable-offset-user)
1129 (error 'not-a-record-type obj)))
1130
1131 (define (record-type-fields obj)
1132 (if (record-type? obj)
1133 (struct-ref obj (+ 1 vtable-offset-user))
1134 (error 'not-a-record-type obj)))
1135
1136 (define* (record-constructor rtd #:optional field-names)
1137 (if (not field-names)
1138 (struct-ref rtd (+ 2 vtable-offset-user))
1139 (primitive-eval
1140 `(lambda ,field-names
1141 (make-struct ',rtd 0 ,@(map (lambda (f)
1142 (if (memq f field-names)
1143 f
1144 #f))
1145 (record-type-fields rtd)))))))
1146
1147 (define (record-predicate rtd)
1148 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
1149
1150 (define (%record-type-error rtd obj) ;; private helper
1151 (or (eq? rtd (record-type-descriptor obj))
1152 (scm-error 'wrong-type-arg "%record-type-check"
1153 "Wrong type record (want `~S'): ~S"
1154 (list (record-type-name rtd) obj)
1155 #f)))
1156
1157 (define (record-accessor rtd field-name)
1158 (let ((pos (list-index (record-type-fields rtd) field-name)))
1159 (if (not pos)
1160 (error 'no-such-field field-name))
1161 (lambda (obj)
1162 (if (eq? (struct-vtable obj) rtd)
1163 (struct-ref obj pos)
1164 (%record-type-error rtd obj)))))
1165
1166 (define (record-modifier rtd field-name)
1167 (let ((pos (list-index (record-type-fields rtd) field-name)))
1168 (if (not pos)
1169 (error 'no-such-field field-name))
1170 (lambda (obj val)
1171 (if (eq? (struct-vtable obj) rtd)
1172 (struct-set! obj pos val)
1173 (%record-type-error rtd obj)))))
1174
1175 (define (record? obj)
1176 (and (struct? obj) (record-type? (struct-vtable obj))))
1177
1178 (define (record-type-descriptor obj)
1179 (if (struct? obj)
1180 (struct-vtable obj)
1181 (error 'not-a-record obj)))
1182
1183 (provide 'record)
1184
1185 \f
1186
1187 ;;; {Booleans}
1188 ;;;
1189
1190 (define (->bool x) (not (not x)))
1191
1192 \f
1193
1194 ;;; {Symbols}
1195 ;;;
1196
1197 (define (symbol-append . args)
1198 (string->symbol (apply string-append (map symbol->string args))))
1199
1200 (define (list->symbol . args)
1201 (string->symbol (apply list->string args)))
1202
1203 (define (symbol . args)
1204 (string->symbol (apply string args)))
1205
1206 \f
1207
1208 ;;; {Lists}
1209 ;;;
1210
1211 (define (list-index l k)
1212 (let loop ((n 0)
1213 (l l))
1214 (and (not (null? l))
1215 (if (eq? (car l) k)
1216 n
1217 (loop (+ n 1) (cdr l))))))
1218
1219 \f
1220
1221 ;; Load `posix.scm' even when not (provided? 'posix) so that we get the
1222 ;; `stat' accessors.
1223 (primitive-load-path "ice-9/posix")
1224
1225 (if (provided? 'socket)
1226 (primitive-load-path "ice-9/networking"))
1227
1228 ;; For reference, Emacs file-exists-p uses stat in this same way.
1229 (define file-exists?
1230 (if (provided? 'posix)
1231 (lambda (str)
1232 (->bool (stat str #f)))
1233 (lambda (str)
1234 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
1235 (lambda args #f))))
1236 (if port (begin (close-port port) #t)
1237 #f)))))
1238
1239 (define file-is-directory?
1240 (if (provided? 'posix)
1241 (lambda (str)
1242 (eq? (stat:type (stat str)) 'directory))
1243 (lambda (str)
1244 (let ((port (catch 'system-error
1245 (lambda () (open-file (string-append str "/.")
1246 OPEN_READ))
1247 (lambda args #f))))
1248 (if port (begin (close-port port) #t)
1249 #f)))))
1250
1251 (define (system-error-errno args)
1252 (if (eq? (car args) 'system-error)
1253 (car (list-ref args 4))
1254 #f))
1255
1256 \f
1257
1258 ;;; {Error Handling}
1259 ;;;
1260
1261 (define error
1262 (case-lambda
1263 (()
1264 (scm-error 'misc-error #f "?" #f #f))
1265 ((message . args)
1266 (let ((msg (string-join (cons "~A" (make-list (length args) "~S")))))
1267 (scm-error 'misc-error #f msg (cons message args) #f)))))
1268
1269 \f
1270
1271 ;;; {Time Structures}
1272 ;;;
1273
1274 (define (tm:sec obj) (vector-ref obj 0))
1275 (define (tm:min obj) (vector-ref obj 1))
1276 (define (tm:hour obj) (vector-ref obj 2))
1277 (define (tm:mday obj) (vector-ref obj 3))
1278 (define (tm:mon obj) (vector-ref obj 4))
1279 (define (tm:year obj) (vector-ref obj 5))
1280 (define (tm:wday obj) (vector-ref obj 6))
1281 (define (tm:yday obj) (vector-ref obj 7))
1282 (define (tm:isdst obj) (vector-ref obj 8))
1283 (define (tm:gmtoff obj) (vector-ref obj 9))
1284 (define (tm:zone obj) (vector-ref obj 10))
1285
1286 (define (set-tm:sec obj val) (vector-set! obj 0 val))
1287 (define (set-tm:min obj val) (vector-set! obj 1 val))
1288 (define (set-tm:hour obj val) (vector-set! obj 2 val))
1289 (define (set-tm:mday obj val) (vector-set! obj 3 val))
1290 (define (set-tm:mon obj val) (vector-set! obj 4 val))
1291 (define (set-tm:year obj val) (vector-set! obj 5 val))
1292 (define (set-tm:wday obj val) (vector-set! obj 6 val))
1293 (define (set-tm:yday obj val) (vector-set! obj 7 val))
1294 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
1295 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
1296 (define (set-tm:zone obj val) (vector-set! obj 10 val))
1297
1298 (define (tms:clock obj) (vector-ref obj 0))
1299 (define (tms:utime obj) (vector-ref obj 1))
1300 (define (tms:stime obj) (vector-ref obj 2))
1301 (define (tms:cutime obj) (vector-ref obj 3))
1302 (define (tms:cstime obj) (vector-ref obj 4))
1303
1304 \f
1305
1306 ;;; {File Descriptors and Ports}
1307 ;;;
1308
1309 (define file-position ftell)
1310 (define* (file-set-position port offset #:optional (whence SEEK_SET))
1311 (seek port offset whence))
1312
1313 (define (move->fdes fd/port fd)
1314 (cond ((integer? fd/port)
1315 (dup->fdes fd/port fd)
1316 (close fd/port)
1317 fd)
1318 (else
1319 (primitive-move->fdes fd/port fd)
1320 (set-port-revealed! fd/port 1)
1321 fd/port)))
1322
1323 (define (release-port-handle port)
1324 (let ((revealed (port-revealed port)))
1325 (if (> revealed 0)
1326 (set-port-revealed! port (- revealed 1)))))
1327
1328 (define dup->port
1329 (case-lambda
1330 ((port/fd mode)
1331 (fdopen (dup->fdes port/fd) mode))
1332 ((port/fd mode new-fd)
1333 (let ((port (fdopen (dup->fdes port/fd new-fd) mode)))
1334 (set-port-revealed! port 1)
1335 port))))
1336
1337 (define dup->inport
1338 (case-lambda
1339 ((port/fd)
1340 (dup->port port/fd "r"))
1341 ((port/fd new-fd)
1342 (dup->port port/fd "r" new-fd))))
1343
1344 (define dup->outport
1345 (case-lambda
1346 ((port/fd)
1347 (dup->port port/fd "w"))
1348 ((port/fd new-fd)
1349 (dup->port port/fd "w" new-fd))))
1350
1351 (define dup
1352 (case-lambda
1353 ((port/fd)
1354 (if (integer? port/fd)
1355 (dup->fdes port/fd)
1356 (dup->port port/fd (port-mode port/fd))))
1357 ((port/fd new-fd)
1358 (if (integer? port/fd)
1359 (dup->fdes port/fd new-fd)
1360 (dup->port port/fd (port-mode port/fd) new-fd)))))
1361
1362 (define (duplicate-port port modes)
1363 (dup->port port modes))
1364
1365 (define (fdes->inport fdes)
1366 (let loop ((rest-ports (fdes->ports fdes)))
1367 (cond ((null? rest-ports)
1368 (let ((result (fdopen fdes "r")))
1369 (set-port-revealed! result 1)
1370 result))
1371 ((input-port? (car rest-ports))
1372 (set-port-revealed! (car rest-ports)
1373 (+ (port-revealed (car rest-ports)) 1))
1374 (car rest-ports))
1375 (else
1376 (loop (cdr rest-ports))))))
1377
1378 (define (fdes->outport fdes)
1379 (let loop ((rest-ports (fdes->ports fdes)))
1380 (cond ((null? rest-ports)
1381 (let ((result (fdopen fdes "w")))
1382 (set-port-revealed! result 1)
1383 result))
1384 ((output-port? (car rest-ports))
1385 (set-port-revealed! (car rest-ports)
1386 (+ (port-revealed (car rest-ports)) 1))
1387 (car rest-ports))
1388 (else
1389 (loop (cdr rest-ports))))))
1390
1391 (define (port->fdes port)
1392 (set-port-revealed! port (+ (port-revealed port) 1))
1393 (fileno port))
1394
1395 (define (setenv name value)
1396 (if value
1397 (putenv (string-append name "=" value))
1398 (putenv name)))
1399
1400 (define (unsetenv name)
1401 "Remove the entry for NAME from the environment."
1402 (putenv name))
1403
1404 \f
1405
1406 ;;; {Load Paths}
1407 ;;;
1408
1409 (define (in-vicinity vicinity file)
1410 (let ((tail (let ((len (string-length vicinity)))
1411 (if (zero? len)
1412 #f
1413 (string-ref vicinity (- len 1))))))
1414 (string-append vicinity
1415 (if (or (not tail)
1416 (eq? tail #\/))
1417 ""
1418 "/")
1419 file)))
1420
1421 \f
1422
1423 ;;; {Help for scm_shell}
1424 ;;;
1425 ;;; The argument-processing code used by Guile-based shells generates
1426 ;;; Scheme code based on the argument list. This page contains help
1427 ;;; functions for the code it generates.
1428 ;;;
1429
1430 (define (command-line) (program-arguments))
1431
1432 ;; This is mostly for the internal use of the code generated by
1433 ;; scm_compile_shell_switches.
1434
1435 (define (load-user-init)
1436 (let* ((home (or (getenv "HOME")
1437 (false-if-exception (passwd:dir (getpwuid (getuid))))
1438 "/")) ;; fallback for cygwin etc.
1439 (init-file (in-vicinity home ".guile")))
1440 (if (file-exists? init-file)
1441 (primitive-load init-file))))
1442
1443 \f
1444
1445 ;;; {The interpreter stack}
1446 ;;;
1447
1448 ;; %stacks defined in stacks.c
1449 (define (%start-stack tag thunk)
1450 (let ((prompt-tag (make-prompt-tag "start-stack")))
1451 (call-with-prompt
1452 prompt-tag
1453 (lambda ()
1454 (with-fluids ((%stacks (acons tag prompt-tag
1455 (or (fluid-ref %stacks) '()))))
1456 (thunk)))
1457 (lambda (k . args)
1458 (%start-stack tag (lambda () (apply k args)))))))
1459
1460 (define-syntax-rule (start-stack tag exp)
1461 (%start-stack tag (lambda () exp)))
1462
1463 \f
1464
1465 ;;; {Loading by paths}
1466 ;;;
1467
1468 ;;; Load a Scheme source file named NAME, searching for it in the
1469 ;;; directories listed in %load-path, and applying each of the file
1470 ;;; name extensions listed in %load-extensions.
1471 (define (load-from-path name)
1472 (start-stack 'load-stack
1473 (primitive-load-path name)))
1474
1475 (define-syntax-rule (add-to-load-path elt)
1476 "Add ELT to Guile's load path, at compile-time and at run-time."
1477 (eval-when (compile load eval)
1478 (set! %load-path (cons elt %load-path))))
1479
1480 (define %load-verbosely #f)
1481 (define (assert-load-verbosity v) (set! %load-verbosely v))
1482
1483 (define (%load-announce file)
1484 (if %load-verbosely
1485 (with-output-to-port (current-warning-port)
1486 (lambda ()
1487 (display ";;; ")
1488 (display "loading ")
1489 (display file)
1490 (newline)
1491 (force-output)))))
1492
1493 (set! %load-hook %load-announce)
1494
1495 \f
1496
1497 ;;; {Reader Extensions}
1498 ;;;
1499 ;;; Reader code for various "#c" forms.
1500 ;;;
1501
1502 (define read-eval? (make-fluid #f))
1503 (read-hash-extend #\.
1504 (lambda (c port)
1505 (if (fluid-ref read-eval?)
1506 (eval (read port) (interaction-environment))
1507 (error
1508 "#. read expansion found and read-eval? is #f."))))
1509
1510 \f
1511
1512 ;;; {Low Level Modules}
1513 ;;;
1514 ;;; These are the low level data structures for modules.
1515 ;;;
1516 ;;; Every module object is of the type 'module-type', which is a record
1517 ;;; consisting of the following members:
1518 ;;;
1519 ;;; - eval-closure: the function that defines for its module the strategy that
1520 ;;; shall be followed when looking up symbols in the module.
1521 ;;;
1522 ;;; An eval-closure is a function taking two arguments: the symbol to be
1523 ;;; looked up and a boolean value telling whether a binding for the symbol
1524 ;;; should be created if it does not exist yet. If the symbol lookup
1525 ;;; succeeded (either because an existing binding was found or because a new
1526 ;;; binding was created), a variable object representing the binding is
1527 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1528 ;;; closure does not take the module to be searched as an argument: During
1529 ;;; construction of the eval-closure, the eval-closure has to store the
1530 ;;; module it belongs to in its environment. This means, that any
1531 ;;; eval-closure can belong to only one module.
1532 ;;;
1533 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1534 ;;; special cases of eval-closures are to be distinguished: During startup
1535 ;;; the module system is not yet activated. In this phase, no modules are
1536 ;;; defined and all bindings are automatically stored by the system in the
1537 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1538 ;;; functions which require an eval-closure as their argument need to be
1539 ;;; passed the value #f.
1540 ;;;
1541 ;;; The other two special cases of eval-closures are the
1542 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1543 ;;; behave equally for the case that no new binding is to be created. The
1544 ;;; difference between the two comes in, when the boolean argument to the
1545 ;;; eval-closure indicates that a new binding shall be created if it is not
1546 ;;; found.
1547 ;;;
1548 ;;; Given that no new binding shall be created, both standard eval-closures
1549 ;;; define the following standard strategy of searching bindings in the
1550 ;;; module: First, the module's obarray is searched for the symbol. Second,
1551 ;;; if no binding for the symbol was found in the module's obarray, the
1552 ;;; module's binder procedure is exececuted. If this procedure did not
1553 ;;; return a binding for the symbol, the modules referenced in the module's
1554 ;;; uses list are recursively searched for a binding of the symbol. If the
1555 ;;; binding can not be found in these modules also, the symbol lookup has
1556 ;;; failed.
1557 ;;;
1558 ;;; If a new binding shall be created, the standard-interface-eval-closure
1559 ;;; immediately returns indicating failure. That is, it does not even try
1560 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1561 ;;; first search the obarray, and if no binding was found there, would
1562 ;;; create a new binding in the obarray, therefore not calling the binder
1563 ;;; procedure or searching the modules in the uses list.
1564 ;;;
1565 ;;; The explanation of the following members obarray, binder and uses
1566 ;;; assumes that the symbol lookup follows the strategy that is defined in
1567 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1568 ;;;
1569 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1570 ;;; hash table, the definitions are found that are local to the module (that
1571 ;;; is, not imported from other modules). When looking up bindings in the
1572 ;;; module, this hash table is searched first.
1573 ;;;
1574 ;;; - binder: either #f or a function taking a module and a symbol argument.
1575 ;;; If it is a function it is called after the obarray has been
1576 ;;; unsuccessfully searched for a binding. It then can provide bindings
1577 ;;; that would otherwise not be found locally in the module.
1578 ;;;
1579 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1580 ;;; These modules are the third place queried for bindings after the obarray
1581 ;;; has been unsuccessfully searched and the binder function did not deliver
1582 ;;; a result either.
1583 ;;;
1584 ;;; - transformer: either #f or a function taking a scheme expression as
1585 ;;; delivered by read. If it is a function, it will be called to perform
1586 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1587 ;;; expression. The output of the transformer function will then be passed
1588 ;;; to Guile's internal memoizer. This means that the output must be valid
1589 ;;; scheme code. The only exception is, that the output may make use of the
1590 ;;; syntax extensions provided to identify the modules that a binding
1591 ;;; belongs to.
1592 ;;;
1593 ;;; - name: the name of the module. This is used for all kinds of printing
1594 ;;; outputs. In certain places the module name also serves as a way of
1595 ;;; identification. When adding a module to the uses list of another
1596 ;;; module, it is made sure that the new uses list will not contain two
1597 ;;; modules of the same name.
1598 ;;;
1599 ;;; - kind: classification of the kind of module. The value is (currently?)
1600 ;;; only used for printing. It has no influence on how a module is treated.
1601 ;;; Currently the following values are used when setting the module kind:
1602 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1603 ;;; is set, it defaults to 'module.
1604 ;;;
1605 ;;; - duplicates-handlers: a list of procedures that get called to make a
1606 ;;; choice between two duplicate bindings when name clashes occur. See the
1607 ;;; `duplicate-handlers' global variable below.
1608 ;;;
1609 ;;; - observers: a list of procedures that get called when the module is
1610 ;;; modified.
1611 ;;;
1612 ;;; - weak-observers: a weak-key hash table of procedures that get called
1613 ;;; when the module is modified. See `module-observe-weak' for details.
1614 ;;;
1615 ;;; In addition, the module may (must?) contain a binding for
1616 ;;; `%module-public-interface'. This variable should be bound to a module
1617 ;;; representing the exported interface of a module. See the
1618 ;;; `module-public-interface' and `module-export!' procedures.
1619 ;;;
1620 ;;; !!! warning: The interface to lazy binder procedures is going
1621 ;;; to be changed in an incompatible way to permit all the basic
1622 ;;; module ops to be virtualized.
1623 ;;;
1624 ;;; (make-module size use-list lazy-binding-proc) => module
1625 ;;; module-{obarray,uses,binder}[|-set!]
1626 ;;; (module? obj) => [#t|#f]
1627 ;;; (module-locally-bound? module symbol) => [#t|#f]
1628 ;;; (module-bound? module symbol) => [#t|#f]
1629 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1630 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1631 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1632 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1633 ;;; (module-symbol-binding module symbol opt-value)
1634 ;;; => [ <obj> | opt-value | an error occurs ]
1635 ;;; (module-make-local-var! module symbol) => #<variable...>
1636 ;;; (module-add! module symbol var) => unspecified
1637 ;;; (module-remove! module symbol) => unspecified
1638 ;;; (module-for-each proc module) => unspecified
1639 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1640 ;;; (set-current-module module) => unspecified
1641 ;;; (current-module) => #<module...>
1642 ;;;
1643 ;;;
1644
1645 \f
1646
1647 ;;; {Printing Modules}
1648 ;;;
1649
1650 ;; This is how modules are printed. You can re-define it.
1651 (define (%print-module mod port)
1652 (display "#<" port)
1653 (display (or (module-kind mod) "module") port)
1654 (display " " port)
1655 (display (module-name mod) port)
1656 (display " " port)
1657 (display (number->string (object-address mod) 16) port)
1658 (display ">" port))
1659
1660 (letrec-syntax
1661 ;; Locally extend the syntax to allow record accessors to be defined at
1662 ;; compile-time. Cache the rtd locally to the constructor, the getters and
1663 ;; the setters, in order to allow for redefinition of the record type; not
1664 ;; relevant in the case of modules, but perhaps if we make this public, it
1665 ;; could matter.
1666
1667 ((define-record-type
1668 (lambda (x)
1669 (define (make-id scope . fragments)
1670 (datum->syntax scope
1671 (apply symbol-append
1672 (map (lambda (x)
1673 (if (symbol? x) x (syntax->datum x)))
1674 fragments))))
1675
1676 (define (getter rtd type-name field slot)
1677 #`(define #,(make-id rtd type-name '- field)
1678 (let ((rtd #,rtd))
1679 (lambda (#,type-name)
1680 (if (eq? (struct-vtable #,type-name) rtd)
1681 (struct-ref #,type-name #,slot)
1682 (%record-type-error rtd #,type-name))))))
1683
1684 (define (setter rtd type-name field slot)
1685 #`(define #,(make-id rtd 'set- type-name '- field '!)
1686 (let ((rtd #,rtd))
1687 (lambda (#,type-name val)
1688 (if (eq? (struct-vtable #,type-name) rtd)
1689 (struct-set! #,type-name #,slot val)
1690 (%record-type-error rtd #,type-name))))))
1691
1692 (define (accessors rtd type-name fields n exp)
1693 (syntax-case fields ()
1694 (() exp)
1695 (((field #:no-accessors) field* ...) (identifier? #'field)
1696 (accessors rtd type-name #'(field* ...) (1+ n)
1697 exp))
1698 (((field #:no-setter) field* ...) (identifier? #'field)
1699 (accessors rtd type-name #'(field* ...) (1+ n)
1700 #`(begin #,exp
1701 #,(getter rtd type-name #'field n))))
1702 (((field #:no-getter) field* ...) (identifier? #'field)
1703 (accessors rtd type-name #'(field* ...) (1+ n)
1704 #`(begin #,exp
1705 #,(setter rtd type-name #'field n))))
1706 ((field field* ...) (identifier? #'field)
1707 (accessors rtd type-name #'(field* ...) (1+ n)
1708 #`(begin #,exp
1709 #,(getter rtd type-name #'field n)
1710 #,(setter rtd type-name #'field n))))))
1711
1712 (define (predicate rtd type-name fields exp)
1713 (accessors
1714 rtd type-name fields 0
1715 #`(begin
1716 #,exp
1717 (define (#,(make-id rtd type-name '?) obj)
1718 (and (struct? obj) (eq? (struct-vtable obj) #,rtd))))))
1719
1720 (define (field-list fields)
1721 (syntax-case fields ()
1722 (() '())
1723 (((f . opts) . rest) (identifier? #'f)
1724 (cons #'f (field-list #'rest)))
1725 ((f . rest) (identifier? #'f)
1726 (cons #'f (field-list #'rest)))))
1727
1728 (define (constructor rtd type-name fields exp)
1729 (let ((ctor (make-id rtd type-name '-constructor))
1730 (args (field-list fields)))
1731 (predicate rtd type-name fields
1732 #`(begin #,exp
1733 (define #,ctor
1734 (let ((rtd #,rtd))
1735 (lambda #,args
1736 (make-struct rtd 0 #,@args))))
1737 (struct-set! #,rtd (+ vtable-offset-user 2)
1738 #,ctor)))))
1739
1740 (define (type type-name printer fields)
1741 (define (make-layout)
1742 (let lp ((fields fields) (slots '()))
1743 (syntax-case fields ()
1744 (() (datum->syntax #'here
1745 (make-struct-layout
1746 (apply string-append slots))))
1747 ((_ . rest) (lp #'rest (cons "pw" slots))))))
1748
1749 (let ((rtd (make-id type-name type-name '-type)))
1750 (constructor rtd type-name fields
1751 #`(begin
1752 (define #,rtd
1753 (make-struct record-type-vtable 0
1754 '#,(make-layout)
1755 #,printer
1756 '#,type-name
1757 '#,(field-list fields)))
1758 (set-struct-vtable-name! #,rtd '#,type-name)))))
1759
1760 (syntax-case x ()
1761 ((_ type-name printer (field ...))
1762 (type #'type-name #'printer #'(field ...)))))))
1763
1764 ;; module-type
1765 ;;
1766 ;; A module is characterized by an obarray in which local symbols
1767 ;; are interned, a list of modules, "uses", from which non-local
1768 ;; bindings can be inherited, and an optional lazy-binder which
1769 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1770 ;; bindings that would otherwise not be found locally in the module.
1771 ;;
1772 ;; NOTE: If you change the set of fields or their order, you also need to
1773 ;; change the constants in libguile/modules.h.
1774 ;;
1775 ;; NOTE: The getter `module-eval-closure' is used in libguile/modules.c.
1776 ;; NOTE: The getter `module-transfomer' is defined libguile/modules.c.
1777 ;; NOTE: The getter `module-name' is defined later, due to boot reasons.
1778 ;; NOTE: The getter `module-public-interface' is used in libguile/modules.c.
1779 ;;
1780 (define-record-type module
1781 (lambda (obj port) (%print-module obj port))
1782 (obarray
1783 uses
1784 binder
1785 eval-closure
1786 (transformer #:no-getter)
1787 (name #:no-getter)
1788 kind
1789 duplicates-handlers
1790 (import-obarray #:no-setter)
1791 observers
1792 (weak-observers #:no-setter)
1793 version
1794 submodules
1795 submodule-binder
1796 public-interface
1797 filename)))
1798
1799
1800 ;; make-module &opt size uses binder
1801 ;;
1802 ;; Create a new module, perhaps with a particular size of obarray,
1803 ;; initial uses list, or binding procedure.
1804 ;;
1805 (define* (make-module #:optional (size 31) (uses '()) (binder #f))
1806 (if (not (integer? size))
1807 (error "Illegal size to make-module." size))
1808 (if (not (and (list? uses)
1809 (and-map module? uses)))
1810 (error "Incorrect use list." uses))
1811 (if (and binder (not (procedure? binder)))
1812 (error
1813 "Lazy-binder expected to be a procedure or #f." binder))
1814
1815 (let ((module (module-constructor (make-hash-table size)
1816 uses binder #f macroexpand
1817 #f #f #f
1818 (make-hash-table)
1819 '()
1820 (make-weak-key-hash-table 31) #f
1821 (make-hash-table 7) #f #f #f)))
1822
1823 ;; We can't pass this as an argument to module-constructor,
1824 ;; because we need it to close over a pointer to the module
1825 ;; itself.
1826 (set-module-eval-closure! module (standard-eval-closure module))
1827
1828 module))
1829
1830
1831 \f
1832
1833 ;;; {Observer protocol}
1834 ;;;
1835
1836 (define (module-observe module proc)
1837 (set-module-observers! module (cons proc (module-observers module)))
1838 (cons module proc))
1839
1840 (define* (module-observe-weak module observer-id #:optional (proc observer-id))
1841 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1842 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1843 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1844 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1845 ;; for instance).
1846
1847 ;; The two-argument version is kept for backward compatibility: when called
1848 ;; with two arguments, the observer gets unregistered when closure PROC
1849 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1850 (hashq-set! (module-weak-observers module) observer-id proc))
1851
1852 (define (module-unobserve token)
1853 (let ((module (car token))
1854 (id (cdr token)))
1855 (if (integer? id)
1856 (hash-remove! (module-weak-observers module) id)
1857 (set-module-observers! module (delq1! id (module-observers module)))))
1858 *unspecified*)
1859
1860 (define module-defer-observers #f)
1861 (define module-defer-observers-mutex (make-mutex 'recursive))
1862 (define module-defer-observers-table (make-hash-table))
1863
1864 (define (module-modified m)
1865 (if module-defer-observers
1866 (hash-set! module-defer-observers-table m #t)
1867 (module-call-observers m)))
1868
1869 ;;; This function can be used to delay calls to observers so that they
1870 ;;; can be called once only in the face of massive updating of modules.
1871 ;;;
1872 (define (call-with-deferred-observers thunk)
1873 (dynamic-wind
1874 (lambda ()
1875 (lock-mutex module-defer-observers-mutex)
1876 (set! module-defer-observers #t))
1877 thunk
1878 (lambda ()
1879 (set! module-defer-observers #f)
1880 (hash-for-each (lambda (m dummy)
1881 (module-call-observers m))
1882 module-defer-observers-table)
1883 (hash-clear! module-defer-observers-table)
1884 (unlock-mutex module-defer-observers-mutex))))
1885
1886 (define (module-call-observers m)
1887 (for-each (lambda (proc) (proc m)) (module-observers m))
1888
1889 ;; We assume that weak observers don't (un)register themselves as they are
1890 ;; called since this would preclude proper iteration over the hash table
1891 ;; elements.
1892 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1893
1894 \f
1895
1896 ;;; {Module Searching in General}
1897 ;;;
1898 ;;; We sometimes want to look for properties of a symbol
1899 ;;; just within the obarray of one module. If the property
1900 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1901 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1902 ;;;
1903 ;;;
1904 ;;; Other times, we want to test for a symbol property in the obarray
1905 ;;; of M and, if it is not found there, try each of the modules in the
1906 ;;; uses list of M. This is the normal way of testing for some
1907 ;;; property, so we state these properties without qualification as
1908 ;;; in: ``The symbol 'fnord is interned in module M because it is
1909 ;;; interned locally in module M2 which is a member of the uses list
1910 ;;; of M.''
1911 ;;;
1912
1913 ;; module-search fn m
1914 ;;
1915 ;; return the first non-#f result of FN applied to M and then to
1916 ;; the modules in the uses of m, and so on recursively. If all applications
1917 ;; return #f, then so does this function.
1918 ;;
1919 (define (module-search fn m v)
1920 (define (loop pos)
1921 (and (pair? pos)
1922 (or (module-search fn (car pos) v)
1923 (loop (cdr pos)))))
1924 (or (fn m v)
1925 (loop (module-uses m))))
1926
1927
1928 ;;; {Is a symbol bound in a module?}
1929 ;;;
1930 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1931 ;;; of S in M has been set to some well-defined value.
1932 ;;;
1933
1934 ;; module-locally-bound? module symbol
1935 ;;
1936 ;; Is a symbol bound (interned and defined) locally in a given module?
1937 ;;
1938 (define (module-locally-bound? m v)
1939 (let ((var (module-local-variable m v)))
1940 (and var
1941 (variable-bound? var))))
1942
1943 ;; module-bound? module symbol
1944 ;;
1945 ;; Is a symbol bound (interned and defined) anywhere in a given module
1946 ;; or its uses?
1947 ;;
1948 (define (module-bound? m v)
1949 (let ((var (module-variable m v)))
1950 (and var
1951 (variable-bound? var))))
1952
1953 ;;; {Is a symbol interned in a module?}
1954 ;;;
1955 ;;; Symbol S in Module M is interned if S occurs in
1956 ;;; of S in M has been set to some well-defined value.
1957 ;;;
1958 ;;; It is possible to intern a symbol in a module without providing
1959 ;;; an initial binding for the corresponding variable. This is done
1960 ;;; with:
1961 ;;; (module-add! module symbol (make-undefined-variable))
1962 ;;;
1963 ;;; In that case, the symbol is interned in the module, but not
1964 ;;; bound there. The unbound symbol shadows any binding for that
1965 ;;; symbol that might otherwise be inherited from a member of the uses list.
1966 ;;;
1967
1968 (define (module-obarray-get-handle ob key)
1969 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1970
1971 (define (module-obarray-ref ob key)
1972 ((if (symbol? key) hashq-ref hash-ref) ob key))
1973
1974 (define (module-obarray-set! ob key val)
1975 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1976
1977 (define (module-obarray-remove! ob key)
1978 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1979
1980 ;; module-symbol-locally-interned? module symbol
1981 ;;
1982 ;; is a symbol interned (not neccessarily defined) locally in a given module
1983 ;; or its uses? Interned symbols shadow inherited bindings even if
1984 ;; they are not themselves bound to a defined value.
1985 ;;
1986 (define (module-symbol-locally-interned? m v)
1987 (not (not (module-obarray-get-handle (module-obarray m) v))))
1988
1989 ;; module-symbol-interned? module symbol
1990 ;;
1991 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1992 ;; or its uses? Interned symbols shadow inherited bindings even if
1993 ;; they are not themselves bound to a defined value.
1994 ;;
1995 (define (module-symbol-interned? m v)
1996 (module-search module-symbol-locally-interned? m v))
1997
1998
1999 ;;; {Mapping modules x symbols --> variables}
2000 ;;;
2001
2002 ;; module-local-variable module symbol
2003 ;; return the local variable associated with a MODULE and SYMBOL.
2004 ;;
2005 ;;; This function is very important. It is the only function that can
2006 ;;; return a variable from a module other than the mutators that store
2007 ;;; new variables in modules. Therefore, this function is the location
2008 ;;; of the "lazy binder" hack.
2009 ;;;
2010 ;;; If symbol is defined in MODULE, and if the definition binds symbol
2011 ;;; to a variable, return that variable object.
2012 ;;;
2013 ;;; If the symbols is not found at first, but the module has a lazy binder,
2014 ;;; then try the binder.
2015 ;;;
2016 ;;; If the symbol is not found at all, return #f.
2017 ;;;
2018 ;;; (This is now written in C, see `modules.c'.)
2019 ;;;
2020
2021 ;;; {Mapping modules x symbols --> bindings}
2022 ;;;
2023 ;;; These are similar to the mapping to variables, except that the
2024 ;;; variable is dereferenced.
2025 ;;;
2026
2027 ;; module-symbol-binding module symbol opt-value
2028 ;;
2029 ;; return the binding of a variable specified by name within
2030 ;; a given module, signalling an error if the variable is unbound.
2031 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2032 ;; return OPT-VALUE.
2033 ;;
2034 (define (module-symbol-local-binding m v . opt-val)
2035 (let ((var (module-local-variable m v)))
2036 (if (and var (variable-bound? var))
2037 (variable-ref var)
2038 (if (not (null? opt-val))
2039 (car opt-val)
2040 (error "Locally unbound variable." v)))))
2041
2042 ;; module-symbol-binding module symbol opt-value
2043 ;;
2044 ;; return the binding of a variable specified by name within
2045 ;; a given module, signalling an error if the variable is unbound.
2046 ;; If the OPT-VALUE is passed, then instead of signalling an error,
2047 ;; return OPT-VALUE.
2048 ;;
2049 (define (module-symbol-binding m v . opt-val)
2050 (let ((var (module-variable m v)))
2051 (if (and var (variable-bound? var))
2052 (variable-ref var)
2053 (if (not (null? opt-val))
2054 (car opt-val)
2055 (error "Unbound variable." v)))))
2056
2057
2058 \f
2059
2060 ;;; {Adding Variables to Modules}
2061 ;;;
2062
2063 ;; module-make-local-var! module symbol
2064 ;;
2065 ;; ensure a variable for V in the local namespace of M.
2066 ;; If no variable was already there, then create a new and uninitialzied
2067 ;; variable.
2068 ;;
2069 ;; This function is used in modules.c.
2070 ;;
2071 (define (module-make-local-var! m v)
2072 (or (let ((b (module-obarray-ref (module-obarray m) v)))
2073 (and (variable? b)
2074 (begin
2075 ;; Mark as modified since this function is called when
2076 ;; the standard eval closure defines a binding
2077 (module-modified m)
2078 b)))
2079
2080 ;; Create a new local variable.
2081 (let ((local-var (make-undefined-variable)))
2082 (module-add! m v local-var)
2083 local-var)))
2084
2085 ;; module-ensure-local-variable! module symbol
2086 ;;
2087 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
2088 ;; there is no binding for SYMBOL, create a new uninitialized
2089 ;; variable. Return the local variable.
2090 ;;
2091 (define (module-ensure-local-variable! module symbol)
2092 (or (module-local-variable module symbol)
2093 (let ((var (make-undefined-variable)))
2094 (module-add! module symbol var)
2095 var)))
2096
2097 ;; module-add! module symbol var
2098 ;;
2099 ;; ensure a particular variable for V in the local namespace of M.
2100 ;;
2101 (define (module-add! m v var)
2102 (if (not (variable? var))
2103 (error "Bad variable to module-add!" var))
2104 (module-obarray-set! (module-obarray m) v var)
2105 (module-modified m))
2106
2107 ;; module-remove!
2108 ;;
2109 ;; make sure that a symbol is undefined in the local namespace of M.
2110 ;;
2111 (define (module-remove! m v)
2112 (module-obarray-remove! (module-obarray m) v)
2113 (module-modified m))
2114
2115 (define (module-clear! m)
2116 (hash-clear! (module-obarray m))
2117 (module-modified m))
2118
2119 ;; MODULE-FOR-EACH -- exported
2120 ;;
2121 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
2122 ;;
2123 (define (module-for-each proc module)
2124 (hash-for-each proc (module-obarray module)))
2125
2126 (define (module-map proc module)
2127 (hash-map->list proc (module-obarray module)))
2128
2129 ;; Submodules
2130 ;;
2131 ;; Modules exist in a separate namespace from values, because you generally do
2132 ;; not want the name of a submodule, which you might not even use, to collide
2133 ;; with local variables that happen to be named the same as the submodule.
2134 ;;
2135 (define (module-ref-submodule module name)
2136 (or (hashq-ref (module-submodules module) name)
2137 (and (module-submodule-binder module)
2138 ((module-submodule-binder module) module name))))
2139
2140 (define (module-define-submodule! module name submodule)
2141 (hashq-set! (module-submodules module) name submodule))
2142
2143 \f
2144
2145 ;;; {Module-based Loading}
2146 ;;;
2147
2148 (define (save-module-excursion thunk)
2149 (let ((inner-module (current-module))
2150 (outer-module #f))
2151 (dynamic-wind (lambda ()
2152 (set! outer-module (current-module))
2153 (set-current-module inner-module)
2154 (set! inner-module #f))
2155 thunk
2156 (lambda ()
2157 (set! inner-module (current-module))
2158 (set-current-module outer-module)
2159 (set! outer-module #f)))))
2160
2161 \f
2162
2163 ;;; {MODULE-REF -- exported}
2164 ;;;
2165
2166 ;; Returns the value of a variable called NAME in MODULE or any of its
2167 ;; used modules. If there is no such variable, then if the optional third
2168 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
2169 ;;
2170 (define (module-ref module name . rest)
2171 (let ((variable (module-variable module name)))
2172 (if (and variable (variable-bound? variable))
2173 (variable-ref variable)
2174 (if (null? rest)
2175 (error "No variable named" name 'in module)
2176 (car rest) ; default value
2177 ))))
2178
2179 ;; MODULE-SET! -- exported
2180 ;;
2181 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
2182 ;; to VALUE; if there is no such variable, an error is signaled.
2183 ;;
2184 (define (module-set! module name value)
2185 (let ((variable (module-variable module name)))
2186 (if variable
2187 (variable-set! variable value)
2188 (error "No variable named" name 'in module))))
2189
2190 ;; MODULE-DEFINE! -- exported
2191 ;;
2192 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
2193 ;; variable, it is added first.
2194 ;;
2195 (define (module-define! module name value)
2196 (let ((variable (module-local-variable module name)))
2197 (if variable
2198 (begin
2199 (variable-set! variable value)
2200 (module-modified module))
2201 (let ((variable (make-variable value)))
2202 (module-add! module name variable)))))
2203
2204 ;; MODULE-DEFINED? -- exported
2205 ;;
2206 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
2207 ;; uses)
2208 ;;
2209 (define (module-defined? module name)
2210 (let ((variable (module-variable module name)))
2211 (and variable (variable-bound? variable))))
2212
2213 ;; MODULE-USE! module interface
2214 ;;
2215 ;; Add INTERFACE to the list of interfaces used by MODULE.
2216 ;;
2217 (define (module-use! module interface)
2218 (if (not (or (eq? module interface)
2219 (memq interface (module-uses module))))
2220 (begin
2221 ;; Newly used modules must be appended rather than consed, so that
2222 ;; `module-variable' traverses the use list starting from the first
2223 ;; used module.
2224 (set-module-uses! module (append (module-uses module)
2225 (list interface)))
2226 (hash-clear! (module-import-obarray module))
2227 (module-modified module))))
2228
2229 ;; MODULE-USE-INTERFACES! module interfaces
2230 ;;
2231 ;; Same as MODULE-USE!, but only notifies module observers after all
2232 ;; interfaces are added to the inports list.
2233 ;;
2234 (define (module-use-interfaces! module interfaces)
2235 (let* ((cur (module-uses module))
2236 (new (let lp ((in interfaces) (out '()))
2237 (if (null? in)
2238 (reverse out)
2239 (lp (cdr in)
2240 (let ((iface (car in)))
2241 (if (or (memq iface cur) (memq iface out))
2242 out
2243 (cons iface out))))))))
2244 (set-module-uses! module (append cur new))
2245 (hash-clear! (module-import-obarray module))
2246 (module-modified module)))
2247
2248 \f
2249
2250 ;;; {Recursive Namespaces}
2251 ;;;
2252 ;;; A hierarchical namespace emerges if we consider some module to be
2253 ;;; root, and submodules of that module to be nested namespaces.
2254 ;;;
2255 ;;; The routines here manage variable names in hierarchical namespace.
2256 ;;; Each variable name is a list of elements, looked up in successively nested
2257 ;;; modules.
2258 ;;;
2259 ;;; (nested-ref some-root-module '(foo bar baz))
2260 ;;; => <value of a variable named baz in the submodule bar of
2261 ;;; the submodule foo of some-root-module>
2262 ;;;
2263 ;;;
2264 ;;; There are:
2265 ;;;
2266 ;;; ;; a-root is a module
2267 ;;; ;; name is a list of symbols
2268 ;;;
2269 ;;; nested-ref a-root name
2270 ;;; nested-set! a-root name val
2271 ;;; nested-define! a-root name val
2272 ;;; nested-remove! a-root name
2273 ;;;
2274 ;;; These functions manipulate values in namespaces. For referencing the
2275 ;;; namespaces themselves, use the following:
2276 ;;;
2277 ;;; nested-ref-module a-root name
2278 ;;; nested-define-module! a-root name mod
2279 ;;;
2280 ;;; (current-module) is a natural choice for a root so for convenience there are
2281 ;;; also:
2282 ;;;
2283 ;;; local-ref name == nested-ref (current-module) name
2284 ;;; local-set! name val == nested-set! (current-module) name val
2285 ;;; local-define name val == nested-define! (current-module) name val
2286 ;;; local-remove name == nested-remove! (current-module) name
2287 ;;; local-ref-module name == nested-ref-module (current-module) name
2288 ;;; local-define-module! name m == nested-define-module! (current-module) name m
2289 ;;;
2290
2291
2292 (define (nested-ref root names)
2293 (if (null? names)
2294 root
2295 (let loop ((cur root)
2296 (head (car names))
2297 (tail (cdr names)))
2298 (if (null? tail)
2299 (module-ref cur head #f)
2300 (let ((cur (module-ref-submodule cur head)))
2301 (and cur
2302 (loop cur (car tail) (cdr tail))))))))
2303
2304 (define (nested-set! root names val)
2305 (let loop ((cur root)
2306 (head (car names))
2307 (tail (cdr names)))
2308 (if (null? tail)
2309 (module-set! cur head val)
2310 (let ((cur (module-ref-submodule cur head)))
2311 (if (not cur)
2312 (error "failed to resolve module" names)
2313 (loop cur (car tail) (cdr tail)))))))
2314
2315 (define (nested-define! root names val)
2316 (let loop ((cur root)
2317 (head (car names))
2318 (tail (cdr names)))
2319 (if (null? tail)
2320 (module-define! cur head val)
2321 (let ((cur (module-ref-submodule cur head)))
2322 (if (not cur)
2323 (error "failed to resolve module" names)
2324 (loop cur (car tail) (cdr tail)))))))
2325
2326 (define (nested-remove! root names)
2327 (let loop ((cur root)
2328 (head (car names))
2329 (tail (cdr names)))
2330 (if (null? tail)
2331 (module-remove! cur head)
2332 (let ((cur (module-ref-submodule cur head)))
2333 (if (not cur)
2334 (error "failed to resolve module" names)
2335 (loop cur (car tail) (cdr tail)))))))
2336
2337
2338 (define (nested-ref-module root names)
2339 (let loop ((cur root)
2340 (names names))
2341 (if (null? names)
2342 cur
2343 (let ((cur (module-ref-submodule cur (car names))))
2344 (and cur
2345 (loop cur (cdr names)))))))
2346
2347 (define (nested-define-module! root names module)
2348 (if (null? names)
2349 (error "can't redefine root module" root module)
2350 (let loop ((cur root)
2351 (head (car names))
2352 (tail (cdr names)))
2353 (if (null? tail)
2354 (module-define-submodule! cur head module)
2355 (let ((cur (or (module-ref-submodule cur head)
2356 (let ((m (make-module 31)))
2357 (set-module-kind! m 'directory)
2358 (set-module-name! m (append (module-name cur)
2359 (list head)))
2360 (module-define-submodule! cur head m)
2361 m))))
2362 (loop cur (car tail) (cdr tail)))))))
2363
2364
2365 (define (local-ref names)
2366 (nested-ref (current-module) names))
2367
2368 (define (local-set! names val)
2369 (nested-set! (current-module) names val))
2370
2371 (define (local-define names val)
2372 (nested-define! (current-module) names val))
2373
2374 (define (local-remove names)
2375 (nested-remove! (current-module) names))
2376
2377 (define (local-ref-module names)
2378 (nested-ref-module (current-module) names))
2379
2380 (define (local-define-module names mod)
2381 (nested-define-module! (current-module) names mod))
2382
2383
2384
2385 \f
2386
2387 ;;; {The (guile) module}
2388 ;;;
2389 ;;; The standard module, which has the core Guile bindings. Also called the
2390 ;;; "root module", as it is imported by many other modules, but it is not
2391 ;;; necessarily the root of anything; and indeed, the module named '() might be
2392 ;;; better thought of as a root.
2393 ;;;
2394
2395 (define (set-system-module! m s)
2396 (set-procedure-property! (module-eval-closure m) 'system-module s))
2397
2398 ;; The root module uses the pre-modules-obarray as its obarray. This
2399 ;; special obarray accumulates all bindings that have been established
2400 ;; before the module system is fully booted.
2401 ;;
2402 ;; (The obarray continues to be used by code that has been closed over
2403 ;; before the module system has been booted.)
2404 ;;
2405 (define the-root-module
2406 (let ((m (make-module 0)))
2407 (set-module-obarray! m (%get-pre-modules-obarray))
2408 (set-module-name! m '(guile))
2409 (set-system-module! m #t)
2410 m))
2411
2412 ;; The root interface is a module that uses the same obarray as the
2413 ;; root module. It does not allow new definitions, tho.
2414 ;;
2415 (define the-scm-module
2416 (let ((m (make-module 0)))
2417 (set-module-obarray! m (%get-pre-modules-obarray))
2418 (set-module-eval-closure! m (standard-interface-eval-closure m))
2419 (set-module-name! m '(guile))
2420 (set-module-kind! m 'interface)
2421 (set-system-module! m #t)
2422
2423 ;; In Guile 1.8 and earlier M was its own public interface.
2424 (set-module-public-interface! m m)
2425
2426 m))
2427
2428 (set-module-public-interface! the-root-module the-scm-module)
2429
2430 \f
2431
2432 ;; Now that we have a root module, even though modules aren't fully booted,
2433 ;; expand the definition of resolve-module.
2434 ;;
2435 (define (resolve-module name . args)
2436 (if (equal? name '(guile))
2437 the-root-module
2438 (error "unexpected module to resolve during module boot" name)))
2439
2440 ;; Cheat. These bindings are needed by modules.c, but we don't want
2441 ;; to move their real definition here because that would be unnatural.
2442 ;;
2443 (define define-module* #f)
2444 (define process-use-modules #f)
2445 (define module-export! #f)
2446 (define default-duplicate-binding-procedures #f)
2447
2448 ;; This boots the module system. All bindings needed by modules.c
2449 ;; must have been defined by now.
2450 ;;
2451 (set-current-module the-root-module)
2452
2453
2454 \f
2455
2456 ;; Now that modules are booted, give module-name its final definition.
2457 ;;
2458 (define module-name
2459 (let ((accessor (record-accessor module-type 'name)))
2460 (lambda (mod)
2461 (or (accessor mod)
2462 (let ((name (list (gensym))))
2463 ;; Name MOD and bind it in the module root so that it's visible to
2464 ;; `resolve-module'. This is important as `psyntax' stores module
2465 ;; names and relies on being able to `resolve-module' them.
2466 (set-module-name! mod name)
2467 (nested-define-module! (resolve-module '() #f) name mod)
2468 (accessor mod))))))
2469
2470 (define (make-modules-in module name)
2471 (or (nested-ref-module module name)
2472 (let ((m (make-module 31)))
2473 (set-module-kind! m 'directory)
2474 (set-module-name! m (append (module-name module) name))
2475 (nested-define-module! module name m)
2476 m)))
2477
2478 (define (beautify-user-module! module)
2479 (let ((interface (module-public-interface module)))
2480 (if (or (not interface)
2481 (eq? interface module))
2482 (let ((interface (make-module 31)))
2483 (set-module-name! interface (module-name module))
2484 (set-module-version! interface (module-version module))
2485 (set-module-kind! interface 'interface)
2486 (set-module-public-interface! module interface))))
2487 (if (and (not (memq the-scm-module (module-uses module)))
2488 (not (eq? module the-root-module)))
2489 ;; Import the default set of bindings (from the SCM module) in MODULE.
2490 (module-use! module the-scm-module)))
2491
2492 (define (version-matches? version-ref target)
2493 (define (sub-versions-match? v-refs t)
2494 (define (sub-version-matches? v-ref t)
2495 (let ((matches? (lambda (v) (sub-version-matches? v t))))
2496 (cond
2497 ((number? v-ref) (eqv? v-ref t))
2498 ((list? v-ref)
2499 (case (car v-ref)
2500 ((>=) (>= t (cadr v-ref)))
2501 ((<=) (<= t (cadr v-ref)))
2502 ((and) (and-map matches? (cdr v-ref)))
2503 ((or) (or-map matches? (cdr v-ref)))
2504 ((not) (not (matches? (cadr v-ref))))
2505 (else (error "Invalid sub-version reference" v-ref))))
2506 (else (error "Invalid sub-version reference" v-ref)))))
2507 (or (null? v-refs)
2508 (and (not (null? t))
2509 (sub-version-matches? (car v-refs) (car t))
2510 (sub-versions-match? (cdr v-refs) (cdr t)))))
2511
2512 (let ((matches? (lambda (v) (version-matches? v target))))
2513 (or (null? version-ref)
2514 (case (car version-ref)
2515 ((and) (and-map matches? (cdr version-ref)))
2516 ((or) (or-map matches? (cdr version-ref)))
2517 ((not) (not (matches? (cadr version-ref))))
2518 (else (sub-versions-match? version-ref target))))))
2519
2520 (define (make-fresh-user-module)
2521 (let ((m (make-module)))
2522 (beautify-user-module! m)
2523 m))
2524
2525 ;; NOTE: This binding is used in libguile/modules.c.
2526 ;;
2527 (define resolve-module
2528 (let ((root (make-module)))
2529 (set-module-name! root '())
2530 ;; Define the-root-module as '(guile).
2531 (module-define-submodule! root 'guile the-root-module)
2532
2533 (lambda* (name #:optional (autoload #t) (version #f) #:key (ensure #t))
2534 (let ((already (nested-ref-module root name)))
2535 (cond
2536 ((and already
2537 (or (not autoload) (module-public-interface already)))
2538 ;; A hit, a palpable hit.
2539 (if (and version
2540 (not (version-matches? version (module-version already))))
2541 (error "incompatible module version already loaded" name))
2542 already)
2543 (autoload
2544 ;; Try to autoload the module, and recurse.
2545 (try-load-module name version)
2546 (resolve-module name #f #:ensure ensure))
2547 (else
2548 ;; No module found (or if one was, it had no public interface), and
2549 ;; we're not autoloading. Make an empty module if #:ensure is true.
2550 (or already
2551 (and ensure
2552 (make-modules-in root name)))))))))
2553
2554
2555 (define (try-load-module name version)
2556 (try-module-autoload name version))
2557
2558 (define (reload-module m)
2559 "Revisit the source file corresponding to the module @var{m}."
2560 (let ((f (module-filename m)))
2561 (if f
2562 (save-module-excursion
2563 (lambda ()
2564 ;; Re-set the initial environment, as in try-module-autoload.
2565 (set-current-module (make-fresh-user-module))
2566 (primitive-load-path f)
2567 m))
2568 ;; Though we could guess, we *should* know it.
2569 (error "unknown file name for module" m))))
2570
2571 (define (purify-module! module)
2572 "Removes bindings in MODULE which are inherited from the (guile) module."
2573 (let ((use-list (module-uses module)))
2574 (if (and (pair? use-list)
2575 (eq? (car (last-pair use-list)) the-scm-module))
2576 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
2577
2578 ;; Return a module that is an interface to the module designated by
2579 ;; NAME.
2580 ;;
2581 ;; `resolve-interface' takes four keyword arguments:
2582 ;;
2583 ;; #:select SELECTION
2584 ;;
2585 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
2586 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
2587 ;; is the name in the used module and SEEN is the name in the using
2588 ;; module. Note that SEEN is also passed through RENAMER, below. The
2589 ;; default is to select all bindings. If you specify no selection but
2590 ;; a renamer, only the bindings that already exist in the used module
2591 ;; are made available in the interface. Bindings that are added later
2592 ;; are not picked up.
2593 ;;
2594 ;; #:hide BINDINGS
2595 ;;
2596 ;; BINDINGS is a list of bindings which should not be imported.
2597 ;;
2598 ;; #:prefix PREFIX
2599 ;;
2600 ;; PREFIX is a symbol that will be appended to each exported name.
2601 ;; The default is to not perform any renaming.
2602 ;;
2603 ;; #:renamer RENAMER
2604 ;;
2605 ;; RENAMER is a procedure that takes a symbol and returns its new
2606 ;; name. The default is not perform any renaming.
2607 ;;
2608 ;; Signal "no code for module" error if module name is not resolvable
2609 ;; or its public interface is not available. Signal "no binding"
2610 ;; error if selected binding does not exist in the used module.
2611 ;;
2612 (define* (resolve-interface name #:key
2613 (select #f)
2614 (hide '())
2615 (prefix #f)
2616 (renamer (if prefix
2617 (symbol-prefix-proc prefix)
2618 identity))
2619 version)
2620 (let* ((module (resolve-module name #t version #:ensure #f))
2621 (public-i (and module (module-public-interface module))))
2622 (and (or (not module) (not public-i))
2623 (error "no code for module" name))
2624 (if (and (not select) (null? hide) (eq? renamer identity))
2625 public-i
2626 (let ((selection (or select (module-map (lambda (sym var) sym)
2627 public-i)))
2628 (custom-i (make-module 31)))
2629 (set-module-kind! custom-i 'custom-interface)
2630 (set-module-name! custom-i name)
2631 ;; XXX - should use a lazy binder so that changes to the
2632 ;; used module are picked up automatically.
2633 (for-each (lambda (bspec)
2634 (let* ((direct? (symbol? bspec))
2635 (orig (if direct? bspec (car bspec)))
2636 (seen (if direct? bspec (cdr bspec)))
2637 (var (or (module-local-variable public-i orig)
2638 (module-local-variable module orig)
2639 (error
2640 ;; fixme: format manually for now
2641 (simple-format
2642 #f "no binding `~A' in module ~A"
2643 orig name)))))
2644 (if (memq orig hide)
2645 (set! hide (delq! orig hide))
2646 (module-add! custom-i
2647 (renamer seen)
2648 var))))
2649 selection)
2650 ;; Check that we are not hiding bindings which don't exist
2651 (for-each (lambda (binding)
2652 (if (not (module-local-variable public-i binding))
2653 (error
2654 (simple-format
2655 #f "no binding `~A' to hide in module ~A"
2656 binding name))))
2657 hide)
2658 custom-i))))
2659
2660 (define (symbol-prefix-proc prefix)
2661 (lambda (symbol)
2662 (symbol-append prefix symbol)))
2663
2664 ;; This function is called from "modules.c". If you change it, be
2665 ;; sure to update "modules.c" as well.
2666
2667 (define* (define-module* name
2668 #:key filename pure version (duplicates '())
2669 (imports '()) (exports '()) (replacements '())
2670 (re-exports '()) (autoloads '()) transformer)
2671 (define (list-of pred l)
2672 (or (null? l)
2673 (and (pair? l) (pred (car l)) (list-of pred (cdr l)))))
2674 (define (valid-export? x)
2675 (or (symbol? x) (and (pair? x) (symbol? (car x)) (symbol? (cdr x)))))
2676 (define (valid-autoload? x)
2677 (and (pair? x) (list-of symbol? (car x)) (list-of symbol? (cdr x))))
2678
2679 (define (resolve-imports imports)
2680 (define (resolve-import import-spec)
2681 (if (list? import-spec)
2682 (apply resolve-interface import-spec)
2683 (error "unexpected use-module specification" import-spec)))
2684 (let lp ((imports imports) (out '()))
2685 (cond
2686 ((null? imports) (reverse! out))
2687 ((pair? imports)
2688 (lp (cdr imports)
2689 (cons (resolve-import (car imports)) out)))
2690 (else (error "unexpected tail of imports list" imports)))))
2691
2692 ;; We could add a #:no-check arg, set by the define-module macro, if
2693 ;; these checks are taking too much time.
2694 ;;
2695 (let ((module (resolve-module name #f)))
2696 (beautify-user-module! module)
2697 (if filename
2698 (set-module-filename! module filename))
2699 (if pure
2700 (purify-module! module))
2701 (if version
2702 (begin
2703 (if (not (list-of integer? version))
2704 (error "expected list of integers for version"))
2705 (set-module-version! module version)
2706 (set-module-version! (module-public-interface module) version)))
2707 (let ((imports (resolve-imports imports)))
2708 (call-with-deferred-observers
2709 (lambda ()
2710 (if (pair? imports)
2711 (module-use-interfaces! module imports))
2712 (if (list-of valid-export? exports)
2713 (if (pair? exports)
2714 (module-export! module exports))
2715 (error "expected exports to be a list of symbols or symbol pairs"))
2716 (if (list-of valid-export? replacements)
2717 (if (pair? replacements)
2718 (module-replace! module replacements))
2719 (error "expected replacements to be a list of symbols or symbol pairs"))
2720 (if (list-of valid-export? re-exports)
2721 (if (pair? re-exports)
2722 (module-re-export! module re-exports))
2723 (error "expected re-exports to be a list of symbols or symbol pairs"))
2724 ;; FIXME
2725 (if (not (null? autoloads))
2726 (apply module-autoload! module autoloads))
2727 ;; Wait until modules have been loaded to resolve duplicates
2728 ;; handlers.
2729 (if (pair? duplicates)
2730 (let ((handlers (lookup-duplicates-handlers duplicates)))
2731 (set-module-duplicates-handlers! module handlers))))))
2732
2733 (if transformer
2734 (if (and (pair? transformer) (list-of symbol? transformer))
2735 (let ((iface (resolve-interface transformer))
2736 (sym (car (last-pair transformer))))
2737 (set-module-transformer! module (module-ref iface sym)))
2738 (error "expected transformer to be a module name" transformer)))
2739
2740 (run-hook module-defined-hook module)
2741 module))
2742
2743 ;; `module-defined-hook' is a hook that is run whenever a new module
2744 ;; is defined. Its members are called with one argument, the new
2745 ;; module.
2746 (define module-defined-hook (make-hook 1))
2747
2748 \f
2749
2750 ;;; {Autoload}
2751 ;;;
2752
2753 (define (make-autoload-interface module name bindings)
2754 (let ((b (lambda (a sym definep)
2755 (and (memq sym bindings)
2756 (let ((i (module-public-interface (resolve-module name))))
2757 (if (not i)
2758 (error "missing interface for module" name))
2759 (let ((autoload (memq a (module-uses module))))
2760 ;; Replace autoload-interface with actual interface if
2761 ;; that has not happened yet.
2762 (if (pair? autoload)
2763 (set-car! autoload i)))
2764 (module-local-variable i sym))))))
2765 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2766 (make-hash-table 0) '() (make-weak-value-hash-table 31) #f
2767 (make-hash-table 0) #f #f #f)))
2768
2769 (define (module-autoload! module . args)
2770 "Have @var{module} automatically load the module named @var{name} when one
2771 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2772 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2773 module '(ice-9 q) '(make-q q-length))}."
2774 (let loop ((args args))
2775 (cond ((null? args)
2776 #t)
2777 ((null? (cdr args))
2778 (error "invalid name+binding autoload list" args))
2779 (else
2780 (let ((name (car args))
2781 (bindings (cadr args)))
2782 (module-use! module (make-autoload-interface module
2783 name bindings))
2784 (loop (cddr args)))))))
2785
2786
2787 \f
2788
2789 ;;; {Autoloading modules}
2790 ;;;
2791
2792 (define autoloads-in-progress '())
2793
2794 ;; This function is called from "modules.c". If you change it, be
2795 ;; sure to update "modules.c" as well.
2796
2797 (define* (try-module-autoload module-name #:optional version)
2798 (let* ((reverse-name (reverse module-name))
2799 (name (symbol->string (car reverse-name)))
2800 (dir-hint-module-name (reverse (cdr reverse-name)))
2801 (dir-hint (apply string-append
2802 (map (lambda (elt)
2803 (string-append (symbol->string elt) "/"))
2804 dir-hint-module-name))))
2805 (resolve-module dir-hint-module-name #f)
2806 (and (not (autoload-done-or-in-progress? dir-hint name))
2807 (let ((didit #f))
2808 (dynamic-wind
2809 (lambda () (autoload-in-progress! dir-hint name))
2810 (lambda ()
2811 (with-fluids ((current-reader #f))
2812 (save-module-excursion
2813 (lambda ()
2814 ;; The initial environment when loading a module is a fresh
2815 ;; user module.
2816 (set-current-module (make-fresh-user-module))
2817 ;; Here we could allow some other search strategy (other than
2818 ;; primitive-load-path), for example using versions encoded
2819 ;; into the file system -- but then we would have to figure
2820 ;; out how to locate the compiled file, do auto-compilation,
2821 ;; etc. Punt for now, and don't use versions when locating
2822 ;; the file.
2823 (primitive-load-path (in-vicinity dir-hint name) #f)
2824 (set! didit #t)))))
2825 (lambda () (set-autoloaded! dir-hint name didit)))
2826 didit))))
2827
2828 \f
2829
2830 ;;; {Dynamic linking of modules}
2831 ;;;
2832
2833 (define autoloads-done '((guile . guile)))
2834
2835 (define (autoload-done-or-in-progress? p m)
2836 (let ((n (cons p m)))
2837 (->bool (or (member n autoloads-done)
2838 (member n autoloads-in-progress)))))
2839
2840 (define (autoload-done! p m)
2841 (let ((n (cons p m)))
2842 (set! autoloads-in-progress
2843 (delete! n autoloads-in-progress))
2844 (or (member n autoloads-done)
2845 (set! autoloads-done (cons n autoloads-done)))))
2846
2847 (define (autoload-in-progress! p m)
2848 (let ((n (cons p m)))
2849 (set! autoloads-done
2850 (delete! n autoloads-done))
2851 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2852
2853 (define (set-autoloaded! p m done?)
2854 (if done?
2855 (autoload-done! p m)
2856 (let ((n (cons p m)))
2857 (set! autoloads-done (delete! n autoloads-done))
2858 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2859
2860 \f
2861
2862 ;;; {Run-time options}
2863 ;;;
2864
2865 (define-syntax define-option-interface
2866 (syntax-rules ()
2867 ((_ (interface (options enable disable) (option-set!)))
2868 (begin
2869 (define options
2870 (case-lambda
2871 (() (interface))
2872 ((arg)
2873 (if (list? arg)
2874 (begin (interface arg) (interface))
2875 (for-each
2876 (lambda (option)
2877 (apply (lambda (name value documentation)
2878 (display name)
2879 (if (< (string-length (symbol->string name)) 8)
2880 (display #\tab))
2881 (display #\tab)
2882 (display value)
2883 (display #\tab)
2884 (display documentation)
2885 (newline))
2886 option))
2887 (interface #t))))))
2888 (define (enable . flags)
2889 (interface (append flags (interface)))
2890 (interface))
2891 (define (disable . flags)
2892 (let ((options (interface)))
2893 (for-each (lambda (flag) (set! options (delq! flag options)))
2894 flags)
2895 (interface options)
2896 (interface)))
2897 (define-syntax-rule (option-set! opt val)
2898 (eval-when (eval load compile expand)
2899 (options (append (options) (list 'opt val)))))))))
2900
2901 (define-option-interface
2902 (debug-options-interface
2903 (debug-options debug-enable debug-disable)
2904 (debug-set!)))
2905
2906 (define-option-interface
2907 (read-options-interface
2908 (read-options read-enable read-disable)
2909 (read-set!)))
2910
2911 (define-option-interface
2912 (print-options-interface
2913 (print-options print-enable print-disable)
2914 (print-set!)))
2915
2916 \f
2917
2918 ;;; {The Unspecified Value}
2919 ;;;
2920 ;;; Currently Guile represents unspecified values via one particular value,
2921 ;;; which may be obtained by evaluating (if #f #f). It would be nice in the
2922 ;;; future if we could replace this with a return of 0 values, though.
2923 ;;;
2924
2925 (define-syntax *unspecified*
2926 (identifier-syntax (if #f #f)))
2927
2928 (define (unspecified? v) (eq? v *unspecified*))
2929
2930
2931 \f
2932
2933 ;;; {Parameters}
2934 ;;;
2935
2936 (define <parameter>
2937 ;; Three fields: the procedure itself, the fluid, and the converter.
2938 (make-struct <applicable-struct-vtable> 0 'pwprpr))
2939 (set-struct-vtable-name! <parameter> '<parameter>)
2940
2941 (define* (make-parameter init #:optional (conv (lambda (x) x)))
2942 (let ((fluid (make-fluid (conv init))))
2943 (make-struct <parameter> 0
2944 (case-lambda
2945 (() (fluid-ref fluid))
2946 ((x) (let ((prev (fluid-ref fluid)))
2947 (fluid-set! fluid (conv x))
2948 prev)))
2949 fluid conv)))
2950
2951 (define (parameter? x)
2952 (and (struct? x) (eq? (struct-vtable x) <parameter>)))
2953
2954 (define (parameter-fluid p)
2955 (if (parameter? p)
2956 (struct-ref p 1)
2957 (scm-error 'wrong-type-arg "parameter-fluid"
2958 "Not a parameter: ~S" (list p) #f)))
2959
2960 (define (parameter-converter p)
2961 (if (parameter? p)
2962 (struct-ref p 2)
2963 (scm-error 'wrong-type-arg "parameter-fluid"
2964 "Not a parameter: ~S" (list p) #f)))
2965
2966 (define-syntax parameterize
2967 (lambda (x)
2968 (syntax-case x ()
2969 ((_ ((param value) ...) body body* ...)
2970 (with-syntax (((p ...) (generate-temporaries #'(param ...))))
2971 #'(let ((p param) ...)
2972 (if (not (parameter? p))
2973 (scm-error 'wrong-type-arg "parameterize"
2974 "Not a parameter: ~S" (list p) #f))
2975 ...
2976 (with-fluids (((struct-ref p 1) ((struct-ref p 2) value))
2977 ...)
2978 body body* ...)))))))
2979
2980 \f
2981 ;;;
2982 ;;; Current ports as parameters.
2983 ;;;
2984
2985 (let ((fluid->parameter
2986 (lambda (fluid conv)
2987 (make-struct <parameter> 0
2988 (case-lambda
2989 (() (fluid-ref fluid))
2990 ((x) (let ((prev (fluid-ref fluid)))
2991 (fluid-set! fluid (conv x))
2992 prev)))
2993 fluid conv))))
2994 (define-syntax-rule (port-parameterize! binding fluid predicate msg)
2995 (begin
2996 (set! binding (fluid->parameter (module-ref (current-module) 'fluid)
2997 (lambda (x)
2998 (if (predicate x) x
2999 (error msg x)))))
3000 (module-remove! (current-module) 'fluid)))
3001
3002 (port-parameterize! current-input-port %current-input-port-fluid
3003 input-port? "expected an input port")
3004 (port-parameterize! current-output-port %current-output-port-fluid
3005 output-port? "expected an output port")
3006 (port-parameterize! current-error-port %current-error-port-fluid
3007 output-port? "expected an output port"))
3008
3009
3010 \f
3011 ;;;
3012 ;;; Warnings.
3013 ;;;
3014
3015 (define current-warning-port
3016 (make-parameter (current-error-port)
3017 (lambda (x)
3018 (if (output-port? x)
3019 x
3020 (error "expected an output port" x)))))
3021
3022
3023 \f
3024
3025 ;;; {Running Repls}
3026 ;;;
3027
3028 (define *repl-stack* (make-fluid '()))
3029
3030 ;; Programs can call `batch-mode?' to see if they are running as part of a
3031 ;; script or if they are running interactively. REPL implementations ensure that
3032 ;; `batch-mode?' returns #f during their extent.
3033 ;;
3034 (define (batch-mode?)
3035 (null? (fluid-ref *repl-stack*)))
3036
3037 ;; Programs can re-enter batch mode, for example after a fork, by calling
3038 ;; `ensure-batch-mode!'. It's not a great interface, though; it would be better
3039 ;; to abort to the outermost prompt, and call a thunk there.
3040 ;;
3041 (define (ensure-batch-mode!)
3042 (set! batch-mode? (lambda () #t)))
3043
3044 (define (quit . args)
3045 (apply throw 'quit args))
3046
3047 (define exit quit)
3048
3049 (define (gc-run-time)
3050 (cdr (assq 'gc-time-taken (gc-stats))))
3051
3052 (define abort-hook (make-hook))
3053 (define before-error-hook (make-hook))
3054 (define after-error-hook (make-hook))
3055 (define before-backtrace-hook (make-hook))
3056 (define after-backtrace-hook (make-hook))
3057
3058 (define before-read-hook (make-hook))
3059 (define after-read-hook (make-hook))
3060 (define before-eval-hook (make-hook 1))
3061 (define after-eval-hook (make-hook 1))
3062 (define before-print-hook (make-hook 1))
3063 (define after-print-hook (make-hook 1))
3064
3065 ;;; This hook is run at the very end of an interactive session.
3066 ;;;
3067 (define exit-hook (make-hook))
3068
3069 ;;; The default repl-reader function. We may override this if we've
3070 ;;; the readline library.
3071 (define repl-reader
3072 (lambda* (prompt #:optional (reader (fluid-ref current-reader)))
3073 (if (not (char-ready?))
3074 (begin
3075 (display (if (string? prompt) prompt (prompt)))
3076 ;; An interesting situation. The printer resets the column to
3077 ;; 0 by printing a newline, but we then advance it by printing
3078 ;; the prompt. However the port-column of the output port
3079 ;; does not typically correspond with the actual column on the
3080 ;; screen, because the input is echoed back! Since the
3081 ;; input is line-buffered and thus ends with a newline, the
3082 ;; output will really start on column zero. So, here we zero
3083 ;; it out. See bug 9664.
3084 ;;
3085 ;; Note that for similar reasons, the output-line will not
3086 ;; reflect the actual line on the screen. But given the
3087 ;; possibility of multiline input, the fix is not as
3088 ;; straightforward, so we don't bother.
3089 ;;
3090 ;; Also note that the readline implementation papers over
3091 ;; these concerns, because it's readline itself printing the
3092 ;; prompt, and not Guile.
3093 (set-port-column! (current-output-port) 0)))
3094 (force-output)
3095 (run-hook before-read-hook)
3096 ((or reader read) (current-input-port))))
3097
3098
3099 \f
3100
3101 ;;; {IOTA functions: generating lists of numbers}
3102 ;;;
3103
3104 (define (iota n)
3105 (let loop ((count (1- n)) (result '()))
3106 (if (< count 0) result
3107 (loop (1- count) (cons count result)))))
3108
3109 \f
3110
3111 ;;; {While}
3112 ;;;
3113 ;;; with `continue' and `break'.
3114 ;;;
3115
3116 ;; The inliner will remove the prompts at compile-time if it finds that
3117 ;; `continue' or `break' are not used.
3118 ;;
3119 (define-syntax while
3120 (lambda (x)
3121 (syntax-case x ()
3122 ((while cond body ...)
3123 #`(let ((break-tag (make-prompt-tag "break"))
3124 (continue-tag (make-prompt-tag "continue")))
3125 (call-with-prompt
3126 break-tag
3127 (lambda ()
3128 (define-syntax #,(datum->syntax #'while 'break)
3129 (lambda (x)
3130 (syntax-case x ()
3131 ((_ arg (... ...))
3132 #'(abort-to-prompt break-tag arg (... ...)))
3133 (_
3134 #'(lambda args
3135 (apply abort-to-prompt break-tag args))))))
3136 (let lp ()
3137 (call-with-prompt
3138 continue-tag
3139 (lambda ()
3140 (define-syntax #,(datum->syntax #'while 'continue)
3141 (lambda (x)
3142 (syntax-case x ()
3143 ((_)
3144 #'(abort-to-prompt continue-tag))
3145 ((_ . args)
3146 (syntax-violation 'continue "too many arguments" x))
3147 (_
3148 #'(lambda ()
3149 (abort-to-prompt continue-tag))))))
3150 (do () ((not cond) #f) body ...))
3151 (lambda (k) (lp)))))
3152 (lambda (k . args)
3153 (if (null? args)
3154 #t
3155 (apply values args)))))))))
3156
3157
3158 \f
3159
3160 ;;; {Module System Macros}
3161 ;;;
3162
3163 ;; Return a list of expressions that evaluate to the appropriate
3164 ;; arguments for resolve-interface according to SPEC.
3165
3166 (eval-when (compile)
3167 (if (memq 'prefix (read-options))
3168 (error "boot-9 must be compiled with #:kw, not :kw")))
3169
3170 (define (keyword-like-symbol->keyword sym)
3171 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3172
3173 (define-syntax define-module
3174 (lambda (x)
3175 (define (keyword-like? stx)
3176 (let ((dat (syntax->datum stx)))
3177 (and (symbol? dat)
3178 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3179 (define (->keyword sym)
3180 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3181
3182 (define (parse-iface args)
3183 (let loop ((in args) (out '()))
3184 (syntax-case in ()
3185 (() (reverse! out))
3186 ;; The user wanted #:foo, but wrote :foo. Fix it.
3187 ((sym . in) (keyword-like? #'sym)
3188 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3189 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3190 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3191 ((#:renamer renamer . in)
3192 (loop #'in (cons* #',renamer #:renamer out)))
3193 ((kw val . in)
3194 (loop #'in (cons* #'val #'kw out))))))
3195
3196 (define (parse args imp exp rex rep aut)
3197 ;; Just quote everything except #:use-module and #:use-syntax. We
3198 ;; need to know about all arguments regardless since we want to turn
3199 ;; symbols that look like keywords into real keywords, and the
3200 ;; keyword args in a define-module form are not regular
3201 ;; (i.e. no-backtrace doesn't take a value).
3202 (syntax-case args ()
3203 (()
3204 (let ((imp (if (null? imp) '() #`(#:imports `#,imp)))
3205 (exp (if (null? exp) '() #`(#:exports '#,exp)))
3206 (rex (if (null? rex) '() #`(#:re-exports '#,rex)))
3207 (rep (if (null? rep) '() #`(#:replacements '#,rep)))
3208 (aut (if (null? aut) '() #`(#:autoloads '#,aut))))
3209 #`(#,@imp #,@exp #,@rex #,@rep #,@aut)))
3210 ;; The user wanted #:foo, but wrote :foo. Fix it.
3211 ((sym . args) (keyword-like? #'sym)
3212 (parse #`(#,(->keyword (syntax->datum #'sym)) . args)
3213 imp exp rex rep aut))
3214 ((kw . args) (not (keyword? (syntax->datum #'kw)))
3215 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3216 ((#:no-backtrace . args)
3217 ;; Ignore this one.
3218 (parse #'args imp exp rex rep aut))
3219 ((#:pure . args)
3220 #`(#:pure #t . #,(parse #'args imp exp rex rep aut)))
3221 ((kw)
3222 (syntax-violation 'define-module "keyword arg without value" x #'kw))
3223 ((#:version (v ...) . args)
3224 #`(#:version '(v ...) . #,(parse #'args imp exp rex rep aut)))
3225 ((#:duplicates (d ...) . args)
3226 #`(#:duplicates '(d ...) . #,(parse #'args imp exp rex rep aut)))
3227 ((#:filename f . args)
3228 #`(#:filename 'f . #,(parse #'args imp exp rex rep aut)))
3229 ((#:use-module (name name* ...) . args)
3230 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3231 (parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut))
3232 ((#:use-syntax (name name* ...) . args)
3233 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3234 #`(#:transformer '(name name* ...)
3235 . #,(parse #'args #`(#,@imp ((name name* ...))) exp rex rep aut)))
3236 ((#:use-module ((name name* ...) arg ...) . args)
3237 (and (and-map symbol? (syntax->datum #'(name name* ...))))
3238 (parse #'args
3239 #`(#,@imp ((name name* ...) #,@(parse-iface #'(arg ...))))
3240 exp rex rep aut))
3241 ((#:export (ex ...) . args)
3242 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3243 ((#:export-syntax (ex ...) . args)
3244 (parse #'args imp #`(#,@exp ex ...) rex rep aut))
3245 ((#:re-export (re ...) . args)
3246 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3247 ((#:re-export-syntax (re ...) . args)
3248 (parse #'args imp exp #`(#,@rex re ...) rep aut))
3249 ((#:replace (r ...) . args)
3250 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3251 ((#:replace-syntax (r ...) . args)
3252 (parse #'args imp exp rex #`(#,@rep r ...) aut))
3253 ((#:autoload name bindings . args)
3254 (parse #'args imp exp rex rep #`(#,@aut name bindings)))
3255 ((kw val . args)
3256 (syntax-violation 'define-module "unknown keyword or bad argument"
3257 #'kw #'val))))
3258
3259 (syntax-case x ()
3260 ((_ (name name* ...) arg ...)
3261 (and-map symbol? (syntax->datum #'(name name* ...)))
3262 (with-syntax (((quoted-arg ...)
3263 (parse #'(arg ...) '() '() '() '() '()))
3264 ;; Ideally the filename is either a string or #f;
3265 ;; this hack is to work around a case in which
3266 ;; port-filename returns a symbol (`socket') for
3267 ;; sockets.
3268 (filename (let ((f (assq-ref (or (syntax-source x) '())
3269 'filename)))
3270 (and (string? f) f))))
3271 #'(eval-when (eval load compile expand)
3272 (let ((m (define-module* '(name name* ...)
3273 #:filename filename quoted-arg ...)))
3274 (set-current-module m)
3275 m)))))))
3276
3277 ;; The guts of the use-modules macro. Add the interfaces of the named
3278 ;; modules to the use-list of the current module, in order.
3279
3280 ;; This function is called by "modules.c". If you change it, be sure
3281 ;; to change scm_c_use_module as well.
3282
3283 (define (process-use-modules module-interface-args)
3284 (let ((interfaces (map (lambda (mif-args)
3285 (or (apply resolve-interface mif-args)
3286 (error "no such module" mif-args)))
3287 module-interface-args)))
3288 (call-with-deferred-observers
3289 (lambda ()
3290 (module-use-interfaces! (current-module) interfaces)))))
3291
3292 (define-syntax use-modules
3293 (lambda (x)
3294 (define (keyword-like? stx)
3295 (let ((dat (syntax->datum stx)))
3296 (and (symbol? dat)
3297 (eqv? (string-ref (symbol->string dat) 0) #\:))))
3298 (define (->keyword sym)
3299 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
3300
3301 (define (quotify-iface args)
3302 (let loop ((in args) (out '()))
3303 (syntax-case in ()
3304 (() (reverse! out))
3305 ;; The user wanted #:foo, but wrote :foo. Fix it.
3306 ((sym . in) (keyword-like? #'sym)
3307 (loop #`(#,(->keyword (syntax->datum #'sym)) . in) out))
3308 ((kw . in) (not (keyword? (syntax->datum #'kw)))
3309 (syntax-violation 'define-module "expected keyword arg" x #'kw))
3310 ((#:renamer renamer . in)
3311 (loop #'in (cons* #'renamer #:renamer out)))
3312 ((kw val . in)
3313 (loop #'in (cons* #''val #'kw out))))))
3314
3315 (define (quotify specs)
3316 (let lp ((in specs) (out '()))
3317 (syntax-case in ()
3318 (() (reverse out))
3319 (((name name* ...) . in)
3320 (and-map symbol? (syntax->datum #'(name name* ...)))
3321 (lp #'in (cons #''((name name* ...)) out)))
3322 ((((name name* ...) arg ...) . in)
3323 (and-map symbol? (syntax->datum #'(name name* ...)))
3324 (with-syntax (((quoted-arg ...) (quotify-iface #'(arg ...))))
3325 (lp #'in (cons #`(list '(name name* ...) quoted-arg ...)
3326 out)))))))
3327
3328 (syntax-case x ()
3329 ((_ spec ...)
3330 (with-syntax (((quoted-args ...) (quotify #'(spec ...))))
3331 #'(eval-when (eval load compile expand)
3332 (process-use-modules (list quoted-args ...))
3333 *unspecified*))))))
3334
3335 (include-from-path "ice-9/r6rs-libraries")
3336
3337 (define-syntax-rule (define-private foo bar)
3338 (define foo bar))
3339
3340 (define-syntax define-public
3341 (syntax-rules ()
3342 ((_ (name . args) . body)
3343 (define-public name (lambda args . body)))
3344 ((_ name val)
3345 (begin
3346 (define name val)
3347 (export name)))))
3348
3349 (define-syntax-rule (defmacro-public name args body ...)
3350 (begin
3351 (defmacro name args body ...)
3352 (export-syntax name)))
3353
3354 ;; And now for the most important macro.
3355 (define-syntax-rule (λ formals body ...)
3356 (lambda formals body ...))
3357
3358 \f
3359 ;; Export a local variable
3360
3361 ;; This function is called from "modules.c". If you change it, be
3362 ;; sure to update "modules.c" as well.
3363
3364 (define (module-export! m names)
3365 (let ((public-i (module-public-interface m)))
3366 (for-each (lambda (name)
3367 (let* ((internal-name (if (pair? name) (car name) name))
3368 (external-name (if (pair? name) (cdr name) name))
3369 (var (module-ensure-local-variable! m internal-name)))
3370 (module-add! public-i external-name var)))
3371 names)))
3372
3373 (define (module-replace! m names)
3374 (let ((public-i (module-public-interface m)))
3375 (for-each (lambda (name)
3376 (let* ((internal-name (if (pair? name) (car name) name))
3377 (external-name (if (pair? name) (cdr name) name))
3378 (var (module-ensure-local-variable! m internal-name)))
3379 ;; FIXME: use a bit on variables instead of object
3380 ;; properties.
3381 (set-object-property! var 'replace #t)
3382 (module-add! public-i external-name var)))
3383 names)))
3384
3385 ;; Export all local variables from a module
3386 ;;
3387 (define (module-export-all! mod)
3388 (define (fresh-interface!)
3389 (let ((iface (make-module)))
3390 (set-module-name! iface (module-name mod))
3391 (set-module-version! iface (module-version mod))
3392 (set-module-kind! iface 'interface)
3393 (set-module-public-interface! mod iface)
3394 iface))
3395 (let ((iface (or (module-public-interface mod)
3396 (fresh-interface!))))
3397 (set-module-obarray! iface (module-obarray mod))))
3398
3399 ;; Re-export a imported variable
3400 ;;
3401 (define (module-re-export! m names)
3402 (let ((public-i (module-public-interface m)))
3403 (for-each (lambda (name)
3404 (let* ((internal-name (if (pair? name) (car name) name))
3405 (external-name (if (pair? name) (cdr name) name))
3406 (var (module-variable m internal-name)))
3407 (cond ((not var)
3408 (error "Undefined variable:" internal-name))
3409 ((eq? var (module-local-variable m internal-name))
3410 (error "re-exporting local variable:" internal-name))
3411 (else
3412 (module-add! public-i external-name var)))))
3413 names)))
3414
3415 (define-syntax-rule (export name ...)
3416 (eval-when (eval load compile expand)
3417 (call-with-deferred-observers
3418 (lambda ()
3419 (module-export! (current-module) '(name ...))))))
3420
3421 (define-syntax-rule (re-export name ...)
3422 (eval-when (eval load compile expand)
3423 (call-with-deferred-observers
3424 (lambda ()
3425 (module-re-export! (current-module) '(name ...))))))
3426
3427 (define-syntax-rule (export! name ...)
3428 (eval-when (eval load compile expand)
3429 (call-with-deferred-observers
3430 (lambda ()
3431 (module-replace! (current-module) '(name ...))))))
3432
3433 (define-syntax-rule (export-syntax name ...)
3434 (export name ...))
3435
3436 (define-syntax-rule (re-export-syntax name ...)
3437 (re-export name ...))
3438
3439 \f
3440
3441 ;;; {Parameters}
3442 ;;;
3443
3444 (define* (make-mutable-parameter init #:optional (converter identity))
3445 (let ((fluid (make-fluid (converter init))))
3446 (case-lambda
3447 (() (fluid-ref fluid))
3448 ((val) (fluid-set! fluid (converter val))))))
3449
3450
3451 \f
3452
3453 ;;; {Handling of duplicate imported bindings}
3454 ;;;
3455
3456 ;; Duplicate handlers take the following arguments:
3457 ;;
3458 ;; module importing module
3459 ;; name conflicting name
3460 ;; int1 old interface where name occurs
3461 ;; val1 value of binding in old interface
3462 ;; int2 new interface where name occurs
3463 ;; val2 value of binding in new interface
3464 ;; var previous resolution or #f
3465 ;; val value of previous resolution
3466 ;;
3467 ;; A duplicate handler can take three alternative actions:
3468 ;;
3469 ;; 1. return #f => leave responsibility to next handler
3470 ;; 2. exit with an error
3471 ;; 3. return a variable resolving the conflict
3472 ;;
3473
3474 (define duplicate-handlers
3475 (let ((m (make-module 7)))
3476
3477 (define (check module name int1 val1 int2 val2 var val)
3478 (scm-error 'misc-error
3479 #f
3480 "~A: `~A' imported from both ~A and ~A"
3481 (list (module-name module)
3482 name
3483 (module-name int1)
3484 (module-name int2))
3485 #f))
3486
3487 (define (warn module name int1 val1 int2 val2 var val)
3488 (format (current-warning-port)
3489 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3490 (module-name module)
3491 name
3492 (module-name int1)
3493 (module-name int2))
3494 #f)
3495
3496 (define (replace module name int1 val1 int2 val2 var val)
3497 (let ((old (or (and var (object-property var 'replace) var)
3498 (module-variable int1 name)))
3499 (new (module-variable int2 name)))
3500 (if (object-property old 'replace)
3501 (and (or (eq? old new)
3502 (not (object-property new 'replace)))
3503 old)
3504 (and (object-property new 'replace)
3505 new))))
3506
3507 (define (warn-override-core module name int1 val1 int2 val2 var val)
3508 (and (eq? int1 the-scm-module)
3509 (begin
3510 (format (current-warning-port)
3511 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3512 (module-name module)
3513 (module-name int2)
3514 name)
3515 (module-local-variable int2 name))))
3516
3517 (define (first module name int1 val1 int2 val2 var val)
3518 (or var (module-local-variable int1 name)))
3519
3520 (define (last module name int1 val1 int2 val2 var val)
3521 (module-local-variable int2 name))
3522
3523 (define (noop module name int1 val1 int2 val2 var val)
3524 #f)
3525
3526 (set-module-name! m 'duplicate-handlers)
3527 (set-module-kind! m 'interface)
3528 (module-define! m 'check check)
3529 (module-define! m 'warn warn)
3530 (module-define! m 'replace replace)
3531 (module-define! m 'warn-override-core warn-override-core)
3532 (module-define! m 'first first)
3533 (module-define! m 'last last)
3534 (module-define! m 'merge-generics noop)
3535 (module-define! m 'merge-accessors noop)
3536 m))
3537
3538 (define (lookup-duplicates-handlers handler-names)
3539 (and handler-names
3540 (map (lambda (handler-name)
3541 (or (module-symbol-local-binding
3542 duplicate-handlers handler-name #f)
3543 (error "invalid duplicate handler name:"
3544 handler-name)))
3545 (if (list? handler-names)
3546 handler-names
3547 (list handler-names)))))
3548
3549 (define default-duplicate-binding-procedures
3550 (make-mutable-parameter #f))
3551
3552 (define default-duplicate-binding-handler
3553 (make-mutable-parameter '(replace warn-override-core warn last)
3554 (lambda (handler-names)
3555 (default-duplicate-binding-procedures
3556 (lookup-duplicates-handlers handler-names))
3557 handler-names)))
3558
3559 \f
3560
3561 ;;; {`load'.}
3562 ;;;
3563 ;;; Load is tricky when combined with relative paths, compilation, and
3564 ;;; the file system. If a path is relative, what is it relative to? The
3565 ;;; path of the source file at the time it was compiled? The path of
3566 ;;; the compiled file? What if both or either were installed? And how
3567 ;;; do you get that information? Tricky, I say.
3568 ;;;
3569 ;;; To get around all of this, we're going to do something nasty, and
3570 ;;; turn `load' into a macro. That way it can know the path of the
3571 ;;; source file with respect to which it was invoked, so it can resolve
3572 ;;; relative paths with respect to the original source path.
3573 ;;;
3574 ;;; There is an exception, and that is that if the source file was in
3575 ;;; the load path when it was compiled, instead of looking up against
3576 ;;; the absolute source location, we load-from-path against the relative
3577 ;;; source location.
3578 ;;;
3579
3580 (define %auto-compilation-options
3581 ;; Default `compile-file' option when auto-compiling.
3582 '(#:warnings (unbound-variable arity-mismatch format)))
3583
3584 (define* (load-in-vicinity dir path #:optional reader)
3585 (define (canonical->suffix canon)
3586 (cond
3587 ((string-prefix? "/" canon) canon)
3588 ((and (> (string-length canon) 2)
3589 (eqv? (string-ref canon 1) #\:))
3590 ;; Paths like C:... transform to /C...
3591 (string-append "/" (substring canon 0 1) (substring canon 2)))
3592 (else canon)))
3593
3594 ;; Returns the .go file corresponding to `name'. Does not search load
3595 ;; paths, only the fallback path. If the .go file is missing or out of
3596 ;; date, and auto-compilation is enabled, will try auto-compilation, just
3597 ;; as primitive-load-path does internally. primitive-load is
3598 ;; unaffected. Returns #f if auto-compilation failed or was disabled.
3599 ;;
3600 ;; NB: Unless we need to compile the file, this function should not cause
3601 ;; (system base compile) to be loaded up. For that reason compiled-file-name
3602 ;; partially duplicates functionality from (system base compile).
3603 ;;
3604 (define (compiled-file-name canon-path)
3605 ;; FIXME: would probably be better just to append SHA1(canon-path)
3606 ;; to the %compile-fallback-path, to avoid deep directory stats.
3607 (and %compile-fallback-path
3608 (string-append
3609 %compile-fallback-path
3610 (canonical->suffix canon-path)
3611 (cond ((or (null? %load-compiled-extensions)
3612 (string-null? (car %load-compiled-extensions)))
3613 (warn "invalid %load-compiled-extensions"
3614 %load-compiled-extensions)
3615 ".go")
3616 (else (car %load-compiled-extensions))))))
3617
3618 (define (fresh-compiled-file-name name go-path)
3619 (catch #t
3620 (lambda ()
3621 (let* ((scmstat (stat name))
3622 (gostat (and (not %fresh-auto-compile)
3623 (stat go-path #f))))
3624 (if (and gostat
3625 (or (> (stat:mtime gostat) (stat:mtime scmstat))
3626 (and (= (stat:mtime gostat) (stat:mtime scmstat))
3627 (>= (stat:mtimensec gostat)
3628 (stat:mtimensec scmstat)))))
3629 go-path
3630 (begin
3631 (if gostat
3632 (format (current-warning-port)
3633 ";;; note: source file ~a\n;;; newer than compiled ~a\n"
3634 name go-path))
3635 (cond
3636 (%load-should-auto-compile
3637 (%warn-auto-compilation-enabled)
3638 (format (current-warning-port) ";;; compiling ~a\n" name)
3639 (let ((cfn
3640 ((module-ref
3641 (resolve-interface '(system base compile))
3642 'compile-file)
3643 name
3644 #:opts %auto-compilation-options
3645 #:env (current-module))))
3646 (format (current-warning-port) ";;; compiled ~a\n" cfn)
3647 cfn))
3648 (else #f))))))
3649 (lambda (k . args)
3650 (format (current-warning-port)
3651 ";;; WARNING: compilation of ~a failed:\n" name)
3652 (for-each (lambda (s)
3653 (if (not (string-null? s))
3654 (format (current-warning-port) ";;; ~a\n" s)))
3655 (string-split
3656 (call-with-output-string
3657 (lambda (port) (print-exception port #f k args)))
3658 #\newline))
3659 #f)))
3660
3661 (define (absolute-path? path)
3662 (string-prefix? "/" path))
3663
3664 (define (load-absolute abs-path)
3665 (let ((cfn (let ((canon (false-if-exception (canonicalize-path abs-path))))
3666 (and canon
3667 (let ((go-path (compiled-file-name canon)))
3668 (and go-path
3669 (fresh-compiled-file-name abs-path go-path)))))))
3670 (if cfn
3671 (begin
3672 (if %load-hook
3673 (%load-hook abs-path))
3674 (load-compiled cfn))
3675 (start-stack 'load-stack
3676 (primitive-load abs-path)))))
3677
3678 (save-module-excursion
3679 (lambda ()
3680 (with-fluids ((current-reader reader)
3681 (%file-port-name-canonicalization 'relative))
3682 (cond
3683 ((or (absolute-path? path))
3684 (load-absolute path))
3685 ((absolute-path? dir)
3686 (load-absolute (in-vicinity dir path)))
3687 (else
3688 (load-from-path (in-vicinity dir path))))))))
3689
3690 (define-syntax load
3691 (make-variable-transformer
3692 (lambda (x)
3693 (let* ((src (syntax-source x))
3694 (file (and src (assq-ref src 'filename)))
3695 (dir (and (string? file) (dirname file))))
3696 (syntax-case x ()
3697 ((_ arg ...)
3698 #`(load-in-vicinity #,(or dir #'(getcwd)) arg ...))
3699 (id
3700 (identifier? #'id)
3701 #`(lambda args
3702 (apply load-in-vicinity #,(or dir #'(getcwd)) args))))))))
3703
3704 \f
3705
3706 ;;; {`cond-expand' for SRFI-0 support.}
3707 ;;;
3708 ;;; This syntactic form expands into different commands or
3709 ;;; definitions, depending on the features provided by the Scheme
3710 ;;; implementation.
3711 ;;;
3712 ;;; Syntax:
3713 ;;;
3714 ;;; <cond-expand>
3715 ;;; --> (cond-expand <cond-expand-clause>+)
3716 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3717 ;;; <cond-expand-clause>
3718 ;;; --> (<feature-requirement> <command-or-definition>*)
3719 ;;; <feature-requirement>
3720 ;;; --> <feature-identifier>
3721 ;;; | (and <feature-requirement>*)
3722 ;;; | (or <feature-requirement>*)
3723 ;;; | (not <feature-requirement>)
3724 ;;; <feature-identifier>
3725 ;;; --> <a symbol which is the name or alias of a SRFI>
3726 ;;;
3727 ;;; Additionally, this implementation provides the
3728 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3729 ;;; determine the implementation type and the supported standard.
3730 ;;;
3731 ;;; Currently, the following feature identifiers are supported:
3732 ;;;
3733 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3734 ;;;
3735 ;;; Remember to update the features list when adding more SRFIs.
3736 ;;;
3737
3738 (define %cond-expand-features
3739 ;; Adjust the above comment when changing this.
3740 '(guile
3741 guile-2
3742 r5rs
3743 srfi-0 ;; cond-expand itself
3744 srfi-4 ;; homogenous numeric vectors
3745 srfi-6 ;; open-input-string etc, in the guile core
3746 srfi-13 ;; string library
3747 srfi-14 ;; character sets
3748 srfi-23 ;; `error` procedure
3749 srfi-39 ;; parameterize
3750 srfi-55 ;; require-extension
3751 srfi-61 ;; general cond clause
3752 ))
3753
3754 ;; This table maps module public interfaces to the list of features.
3755 ;;
3756 (define %cond-expand-table (make-hash-table 31))
3757
3758 ;; Add one or more features to the `cond-expand' feature list of the
3759 ;; module `module'.
3760 ;;
3761 (define (cond-expand-provide module features)
3762 (let ((mod (module-public-interface module)))
3763 (and mod
3764 (hashq-set! %cond-expand-table mod
3765 (append (hashq-ref %cond-expand-table mod '())
3766 features)))))
3767
3768 (define-syntax cond-expand
3769 (lambda (x)
3770 (define (module-has-feature? mod sym)
3771 (or-map (lambda (mod)
3772 (memq sym (hashq-ref %cond-expand-table mod '())))
3773 (module-uses mod)))
3774
3775 (define (condition-matches? condition)
3776 (syntax-case condition (and or not)
3777 ((and c ...)
3778 (and-map condition-matches? #'(c ...)))
3779 ((or c ...)
3780 (or-map condition-matches? #'(c ...)))
3781 ((not c)
3782 (if (condition-matches? #'c) #f #t))
3783 (c
3784 (identifier? #'c)
3785 (let ((sym (syntax->datum #'c)))
3786 (if (memq sym %cond-expand-features)
3787 #t
3788 (module-has-feature? (current-module) sym))))))
3789
3790 (define (match clauses alternate)
3791 (syntax-case clauses ()
3792 (((condition form ...) . rest)
3793 (if (condition-matches? #'condition)
3794 #'(begin form ...)
3795 (match #'rest alternate)))
3796 (() (alternate))))
3797
3798 (syntax-case x (else)
3799 ((_ clause ... (else form ...))
3800 (match #'(clause ...)
3801 (lambda ()
3802 #'(begin form ...))))
3803 ((_ clause ...)
3804 (match #'(clause ...)
3805 (lambda ()
3806 (syntax-violation 'cond-expand "unfulfilled cond-expand" x)))))))
3807
3808 ;; This procedure gets called from the startup code with a list of
3809 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3810 ;;
3811 (define (use-srfis srfis)
3812 (process-use-modules
3813 (map (lambda (num)
3814 (list (list 'srfi (string->symbol
3815 (string-append "srfi-" (number->string num))))))
3816 srfis)))
3817
3818 \f
3819
3820 ;;; srfi-55: require-extension
3821 ;;;
3822
3823 (define-syntax require-extension
3824 (lambda (x)
3825 (syntax-case x (srfi)
3826 ((_ (srfi n ...))
3827 (and-map integer? (syntax->datum #'(n ...)))
3828 (with-syntax
3829 (((srfi-n ...)
3830 (map (lambda (n)
3831 (datum->syntax x (symbol-append 'srfi- n)))
3832 (map string->symbol
3833 (map number->string (syntax->datum #'(n ...)))))))
3834 #'(use-modules (srfi srfi-n) ...)))
3835 ((_ (type arg ...))
3836 (identifier? #'type)
3837 (syntax-violation 'require-extension "Not a recognized extension type"
3838 x)))))
3839
3840 \f
3841 ;;; Defining transparently inlinable procedures
3842 ;;;
3843
3844 (define-syntax define-inlinable
3845 ;; Define a macro and a procedure such that direct calls are inlined, via
3846 ;; the macro expansion, whereas references in non-call contexts refer to
3847 ;; the procedure. Inspired by the `define-integrable' macro by Dybvig et al.
3848 (lambda (x)
3849 ;; Use a space in the prefix to avoid potential -Wunused-toplevel
3850 ;; warning
3851 (define prefix (string->symbol "% "))
3852 (define (make-procedure-name name)
3853 (datum->syntax name
3854 (symbol-append prefix (syntax->datum name)
3855 '-procedure)))
3856
3857 (syntax-case x ()
3858 ((_ (name formals ...) body ...)
3859 (identifier? #'name)
3860 (with-syntax ((proc-name (make-procedure-name #'name))
3861 ((args ...) (generate-temporaries #'(formals ...))))
3862 #`(begin
3863 (define (proc-name formals ...)
3864 (syntax-parameterize ((name (identifier-syntax proc-name)))
3865 body ...))
3866 (define-syntax-parameter name
3867 (lambda (x)
3868 (syntax-case x ()
3869 ((_ args ...)
3870 #'((syntax-parameterize ((name (identifier-syntax proc-name)))
3871 (lambda (formals ...)
3872 body ...))
3873 args ...))
3874 (_
3875 (identifier? x)
3876 #'proc-name))))))))))
3877
3878 \f
3879
3880 (define using-readline?
3881 (let ((using-readline? (make-fluid)))
3882 (make-procedure-with-setter
3883 (lambda () (fluid-ref using-readline?))
3884 (lambda (v) (fluid-set! using-readline? v)))))
3885
3886 \f
3887
3888 ;;; {Deprecated stuff}
3889 ;;;
3890
3891 (begin-deprecated
3892 (module-use! the-scm-module (resolve-interface '(ice-9 deprecated))))
3893
3894 \f
3895
3896 ;;; SRFI-4 in the default environment. FIXME: we should figure out how
3897 ;;; to deprecate this.
3898 ;;;
3899
3900 ;; FIXME:
3901 (module-use! the-scm-module (resolve-interface '(srfi srfi-4)))
3902
3903 \f
3904
3905 ;;; A few identifiers that need to be defined in this file are really
3906 ;;; internal implementation details. We shove them off into internal
3907 ;;; modules, removing them from the (guile) module.
3908 ;;;
3909
3910 (define-module (system syntax))
3911
3912 (let ()
3913 (define (steal-bindings! from to ids)
3914 (for-each
3915 (lambda (sym)
3916 (let ((v (module-local-variable from sym)))
3917 (module-remove! from sym)
3918 (module-add! to sym v)))
3919 ids)
3920 (module-export! to ids))
3921
3922 (steal-bindings! the-root-module (resolve-module '(system syntax))
3923 '(syntax-local-binding
3924 syntax-module
3925 syntax-locally-bound-identifiers
3926 syntax-session-id)))
3927
3928
3929 \f
3930
3931 ;;; Place the user in the guile-user module.
3932 ;;;
3933
3934 ;; Set filename to #f to prevent reload.
3935 (define-module (guile-user)
3936 #:autoload (system base compile) (compile compile-file)
3937 #:filename #f)
3938
3939 ;; Remain in the `(guile)' module at compilation-time so that the
3940 ;; `-Wunused-toplevel' warning works as expected.
3941 (eval-when (compile) (set-current-module the-root-module))
3942
3943 ;;; boot-9.scm ends here