fix uninitialized variable in gc.c
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19 /* #define DEBUGINFO */
20
21 #ifdef HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #include "libguile/gen-scmconfig.h"
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include <string.h>
30 #include <math.h>
31
32 #ifdef __ia64__
33 #include <ucontext.h>
34 extern unsigned long * __libc_ia64_register_backing_store_base;
35 #endif
36
37 #include "libguile/_scm.h"
38 #include "libguile/eval.h"
39 #include "libguile/stime.h"
40 #include "libguile/stackchk.h"
41 #include "libguile/struct.h"
42 #include "libguile/smob.h"
43 #include "libguile/arrays.h"
44 #include "libguile/async.h"
45 #include "libguile/ports.h"
46 #include "libguile/root.h"
47 #include "libguile/strings.h"
48 #include "libguile/vectors.h"
49 #include "libguile/weaks.h"
50 #include "libguile/hashtab.h"
51 #include "libguile/tags.h"
52
53 #include "libguile/private-gc.h"
54 #include "libguile/validate.h"
55 #include "libguile/deprecation.h"
56 #include "libguile/gc.h"
57 #include "libguile/dynwind.h"
58
59 #include "libguile/bdw-gc.h"
60
61 /* For GC_set_start_callback. */
62 #include <gc/gc_mark.h>
63
64 #ifdef GUILE_DEBUG_MALLOC
65 #include "libguile/debug-malloc.h"
66 #endif
67
68 #ifdef HAVE_MALLOC_H
69 #include <malloc.h>
70 #endif
71
72 #ifdef HAVE_UNISTD_H
73 #include <unistd.h>
74 #endif
75
76 /* Set this to != 0 if every cell that is accessed shall be checked:
77 */
78 int scm_debug_cell_accesses_p = 0;
79 int scm_expensive_debug_cell_accesses_p = 0;
80
81 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
82 * the number of cell accesses after which a gc shall be called.
83 */
84 int scm_debug_cells_gc_interval = 0;
85
86 #if SCM_ENABLE_DEPRECATED == 1
87 /* Hash table that keeps a reference to objects the user wants to protect from
88 garbage collection. It could arguably be private but applications have come
89 to rely on it (e.g., Lilypond 2.13.9). */
90 SCM scm_protects;
91 #else
92 static SCM scm_protects;
93 #endif
94
95 #if (SCM_DEBUG_CELL_ACCESSES == 1)
96
97
98 /*
99
100 Assert that the given object is a valid reference to a valid cell. This
101 test involves to determine whether the object is a cell pointer, whether
102 this pointer actually points into a heap segment and whether the cell
103 pointed to is not a free cell. Further, additional garbage collections may
104 get executed after a user defined number of cell accesses. This helps to
105 find places in the C code where references are dropped for extremely short
106 periods.
107
108 */
109 void
110 scm_i_expensive_validation_check (SCM cell)
111 {
112 /* If desired, perform additional garbage collections after a user
113 * defined number of cell accesses.
114 */
115 if (scm_debug_cells_gc_interval)
116 {
117 static unsigned int counter = 0;
118
119 if (counter != 0)
120 {
121 --counter;
122 }
123 else
124 {
125 counter = scm_debug_cells_gc_interval;
126 scm_gc ();
127 }
128 }
129 }
130
131 /* Whether cell validation is already running. */
132 static int scm_i_cell_validation_already_running = 0;
133
134 void
135 scm_assert_cell_valid (SCM cell)
136 {
137 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
138 {
139 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
140
141 /*
142 During GC, no user-code should be run, and the guile core
143 should use non-protected accessors.
144 */
145 if (scm_gc_running_p)
146 return;
147
148 /*
149 Only scm_in_heap_p and rescanning the heap is wildly
150 expensive.
151 */
152 if (scm_expensive_debug_cell_accesses_p)
153 scm_i_expensive_validation_check (cell);
154
155 scm_i_cell_validation_already_running = 0; /* re-enable */
156 }
157 }
158
159
160
161 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
162 (SCM flag),
163 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
164 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
165 "but no additional calls to garbage collection are issued.\n"
166 "If @var{flag} is a number, strict cell access checking is enabled,\n"
167 "with an additional garbage collection after the given\n"
168 "number of cell accesses.\n"
169 "This procedure only exists when the compile-time flag\n"
170 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
171 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
172 {
173 if (scm_is_false (flag))
174 {
175 scm_debug_cell_accesses_p = 0;
176 }
177 else if (scm_is_eq (flag, SCM_BOOL_T))
178 {
179 scm_debug_cells_gc_interval = 0;
180 scm_debug_cell_accesses_p = 1;
181 scm_expensive_debug_cell_accesses_p = 0;
182 }
183 else
184 {
185 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
186 scm_debug_cell_accesses_p = 1;
187 scm_expensive_debug_cell_accesses_p = 1;
188 }
189 return SCM_UNSPECIFIED;
190 }
191 #undef FUNC_NAME
192
193
194 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
195
196 \f
197
198 /* Compatibility. */
199
200 #ifndef HAVE_GC_GET_HEAP_USAGE_SAFE
201 static void
202 GC_get_heap_usage_safe (GC_word *pheap_size, GC_word *pfree_bytes,
203 GC_word *punmapped_bytes, GC_word *pbytes_since_gc,
204 GC_word *ptotal_bytes)
205 {
206 *pheap_size = GC_get_heap_size ();
207 *pfree_bytes = GC_get_free_bytes ();
208 *punmapped_bytes = GC_get_unmapped_bytes ();
209 *pbytes_since_gc = GC_get_bytes_since_gc ();
210 *ptotal_bytes = GC_get_total_bytes ();
211 }
212 #endif
213
214 #ifndef HAVE_GC_GET_FREE_SPACE_DIVISOR
215 static GC_word
216 GC_get_free_space_divisor (void)
217 {
218 return GC_free_space_divisor;
219 }
220 #endif
221
222 \f
223 /* Hooks. */
224 scm_t_c_hook scm_before_gc_c_hook;
225 scm_t_c_hook scm_before_mark_c_hook;
226 scm_t_c_hook scm_before_sweep_c_hook;
227 scm_t_c_hook scm_after_sweep_c_hook;
228 scm_t_c_hook scm_after_gc_c_hook;
229
230
231 static void
232 run_before_gc_c_hook (void)
233 {
234 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
235 }
236
237
238 /* GC Statistics Keeping
239 */
240 unsigned long scm_gc_ports_collected = 0;
241 static long gc_time_taken = 0;
242 static long gc_start_time = 0;
243
244 static unsigned long free_space_divisor;
245 static unsigned long minimum_free_space_divisor;
246 static double target_free_space_divisor;
247
248 static unsigned long protected_obj_count = 0;
249
250
251 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
252 SCM_SYMBOL (sym_heap_size, "heap-size");
253 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
254 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
255 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
256 SCM_SYMBOL (sym_protected_objects, "protected-objects");
257 SCM_SYMBOL (sym_times, "gc-times");
258
259
260 /* {Scheme Interface to GC}
261 */
262 static SCM
263 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
264 {
265 if (scm_is_integer (key))
266 {
267 int c_tag = scm_to_int (key);
268
269 char const * name = scm_i_tag_name (c_tag);
270 if (name != NULL)
271 {
272 key = scm_from_locale_string (name);
273 }
274 else
275 {
276 char s[100];
277 sprintf (s, "tag %d", c_tag);
278 key = scm_from_locale_string (s);
279 }
280 }
281
282 return scm_cons (scm_cons (key, val), acc);
283 }
284
285 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
286 (),
287 "Return an alist of statistics of the current live objects. ")
288 #define FUNC_NAME s_scm_gc_live_object_stats
289 {
290 SCM tab = scm_make_hash_table (scm_from_int (57));
291 SCM alist;
292
293 alist
294 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
295
296 return alist;
297 }
298 #undef FUNC_NAME
299
300 extern int scm_gc_malloc_yield_percentage;
301 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
302 (),
303 "Return an association list of statistics about Guile's current\n"
304 "use of storage.\n")
305 #define FUNC_NAME s_scm_gc_stats
306 {
307 SCM answer;
308 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
309 size_t gc_times;
310
311 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
312 &bytes_since_gc, &total_bytes);
313 gc_times = GC_gc_no;
314
315 answer =
316 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
317 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
318 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
319 scm_cons (sym_heap_total_allocated,
320 scm_from_size_t (total_bytes)),
321 scm_cons (sym_heap_allocated_since_gc,
322 scm_from_size_t (bytes_since_gc)),
323 scm_cons (sym_protected_objects,
324 scm_from_ulong (protected_obj_count)),
325 scm_cons (sym_times, scm_from_size_t (gc_times)),
326 SCM_UNDEFINED);
327
328 return answer;
329 }
330 #undef FUNC_NAME
331
332
333 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
334 (void),
335 "Dump information about the garbage collector's internal data "
336 "structures and memory usage to the standard output.")
337 #define FUNC_NAME s_scm_gc_dump
338 {
339 GC_dump ();
340
341 return SCM_UNSPECIFIED;
342 }
343 #undef FUNC_NAME
344
345
346 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
347 (SCM obj),
348 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
349 "returned by this function for @var{obj}")
350 #define FUNC_NAME s_scm_object_address
351 {
352 return scm_from_ulong (SCM_UNPACK (obj));
353 }
354 #undef FUNC_NAME
355
356
357 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
358 (),
359 "Disables the garbage collector. Nested calls are permitted. "
360 "GC is re-enabled once @code{gc-enable} has been called the "
361 "same number of times @code{gc-disable} was called.")
362 #define FUNC_NAME s_scm_gc_disable
363 {
364 GC_disable ();
365 return SCM_UNSPECIFIED;
366 }
367 #undef FUNC_NAME
368
369 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
370 (),
371 "Enables the garbage collector.")
372 #define FUNC_NAME s_scm_gc_enable
373 {
374 GC_enable ();
375 return SCM_UNSPECIFIED;
376 }
377 #undef FUNC_NAME
378
379
380 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
381 (),
382 "Scans all of SCM objects and reclaims for further use those that are\n"
383 "no longer accessible.")
384 #define FUNC_NAME s_scm_gc
385 {
386 scm_i_gc ("call");
387 return SCM_UNSPECIFIED;
388 }
389 #undef FUNC_NAME
390
391 void
392 scm_i_gc (const char *what)
393 {
394 #ifndef HAVE_GC_SET_START_CALLBACK
395 run_before_gc_c_hook ();
396 #endif
397 GC_gcollect ();
398 }
399
400
401 \f
402 /* {GC Protection Helper Functions}
403 */
404
405
406 /*
407 * If within a function you need to protect one or more scheme objects from
408 * garbage collection, pass them as parameters to one of the
409 * scm_remember_upto_here* functions below. These functions don't do
410 * anything, but since the compiler does not know that they are actually
411 * no-ops, it will generate code that calls these functions with the given
412 * parameters. Therefore, you can be sure that the compiler will keep those
413 * scheme values alive (on the stack or in a register) up to the point where
414 * scm_remember_upto_here* is called. In other words, place the call to
415 * scm_remember_upto_here* _behind_ the last code in your function, that
416 * depends on the scheme object to exist.
417 *
418 * Example: We want to make sure that the string object str does not get
419 * garbage collected during the execution of 'some_function' in the code
420 * below, because otherwise the characters belonging to str would be freed and
421 * 'some_function' might access freed memory. To make sure that the compiler
422 * keeps str alive on the stack or in a register such that it is visible to
423 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
424 * call to 'some_function'. Note that this would not be necessary if str was
425 * used anyway after the call to 'some_function'.
426 * char *chars = scm_i_string_chars (str);
427 * some_function (chars);
428 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
429 */
430
431 /* Remove any macro versions of these while defining the functions.
432 Functions are always included in the library, for upward binary
433 compatibility and in case combinations of GCC and non-GCC are used. */
434 #undef scm_remember_upto_here_1
435 #undef scm_remember_upto_here_2
436
437 void
438 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
439 {
440 /* Empty. Protects a single object from garbage collection. */
441 }
442
443 void
444 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
445 {
446 /* Empty. Protects two objects from garbage collection. */
447 }
448
449 void
450 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
451 {
452 /* Empty. Protects any number of objects from garbage collection. */
453 }
454
455 /*
456 These crazy functions prevent garbage collection
457 of arguments after the first argument by
458 ensuring they remain live throughout the
459 function because they are used in the last
460 line of the code block.
461 It'd be better to have a nice compiler hint to
462 aid the conservative stack-scanning GC. --03/09/00 gjb */
463 SCM
464 scm_return_first (SCM elt, ...)
465 {
466 return elt;
467 }
468
469 int
470 scm_return_first_int (int i, ...)
471 {
472 return i;
473 }
474
475
476 SCM
477 scm_permanent_object (SCM obj)
478 {
479 return (scm_gc_protect_object (obj));
480 }
481
482
483 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
484 other references are dropped, until the object is unprotected by calling
485 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
486 i. e. it is possible to protect the same object several times, but it is
487 necessary to unprotect the object the same number of times to actually get
488 the object unprotected. It is an error to unprotect an object more often
489 than it has been protected before. The function scm_protect_object returns
490 OBJ.
491 */
492
493 /* Implementation note: For every object X, there is a counter which
494 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
495 */
496
497
498
499 SCM
500 scm_gc_protect_object (SCM obj)
501 {
502 SCM handle;
503
504 /* This critical section barrier will be replaced by a mutex. */
505 /* njrev: Indeed; if my comment above is correct, there is the same
506 critsec/mutex inconsistency here. */
507 SCM_CRITICAL_SECTION_START;
508
509 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
510 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
511
512 protected_obj_count ++;
513
514 SCM_CRITICAL_SECTION_END;
515
516 return obj;
517 }
518
519
520 /* Remove any protection for OBJ established by a prior call to
521 scm_protect_object. This function returns OBJ.
522
523 See scm_protect_object for more information. */
524 SCM
525 scm_gc_unprotect_object (SCM obj)
526 {
527 SCM handle;
528
529 /* This critical section barrier will be replaced by a mutex. */
530 /* njrev: and again. */
531 SCM_CRITICAL_SECTION_START;
532
533 if (scm_gc_running_p)
534 {
535 fprintf (stderr, "scm_unprotect_object called during GC.\n");
536 abort ();
537 }
538
539 handle = scm_hashq_get_handle (scm_protects, obj);
540
541 if (scm_is_false (handle))
542 {
543 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
544 abort ();
545 }
546 else
547 {
548 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
549 if (scm_is_eq (count, scm_from_int (0)))
550 scm_hashq_remove_x (scm_protects, obj);
551 else
552 SCM_SETCDR (handle, count);
553 }
554 protected_obj_count --;
555
556 SCM_CRITICAL_SECTION_END;
557
558 return obj;
559 }
560
561 void
562 scm_gc_register_root (SCM *p)
563 {
564 /* Nothing. */
565 }
566
567 void
568 scm_gc_unregister_root (SCM *p)
569 {
570 /* Nothing. */
571 }
572
573 void
574 scm_gc_register_roots (SCM *b, unsigned long n)
575 {
576 SCM *p = b;
577 for (; p < b + n; ++p)
578 scm_gc_register_root (p);
579 }
580
581 void
582 scm_gc_unregister_roots (SCM *b, unsigned long n)
583 {
584 SCM *p = b;
585 for (; p < b + n; ++p)
586 scm_gc_unregister_root (p);
587 }
588
589 \f
590
591
592 /*
593 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
594 */
595
596 /* Get an integer from an environment variable. */
597 int
598 scm_getenv_int (const char *var, int def)
599 {
600 char *end = 0;
601 char *val = getenv (var);
602 long res = def;
603 if (!val)
604 return def;
605 res = strtol (val, &end, 10);
606 if (end == val)
607 return def;
608 return res;
609 }
610
611 void
612 scm_storage_prehistory ()
613 {
614 GC_all_interior_pointers = 0;
615 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
616 minimum_free_space_divisor = free_space_divisor;
617 target_free_space_divisor = free_space_divisor;
618 GC_set_free_space_divisor (free_space_divisor);
619
620 GC_INIT ();
621
622 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
623 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
624 /* When using GC 6.8, this call is required to initialize thread-local
625 freelists (shouldn't be necessary with GC 7.0). */
626 GC_init ();
627 #endif
628
629 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
630
631 /* We only need to register a displacement for those types for which the
632 higher bits of the type tag are used to store a pointer (that is, a
633 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
634 handled in `scm_alloc_struct ()'. */
635 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
636 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
637
638 /* Sanity check. */
639 if (!GC_is_visible (&scm_protects))
640 abort ();
641
642 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
643 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
644 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
645 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
646 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
647 }
648
649 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
650
651 void
652 scm_init_gc_protect_object ()
653 {
654 scm_protects = scm_c_make_hash_table (31);
655
656 #if 0
657 /* We can't have a cleanup handler since we have no thread to run it
658 in. */
659
660 #ifdef HAVE_ATEXIT
661 atexit (cleanup);
662 #else
663 #ifdef HAVE_ON_EXIT
664 on_exit (cleanup, 0);
665 #endif
666 #endif
667
668 #endif
669 }
670
671 \f
672
673 SCM scm_after_gc_hook;
674
675 static SCM after_gc_async_cell;
676
677 /* The function after_gc_async_thunk causes the execution of the
678 * after-gc-hook. It is run after the gc, as soon as the asynchronous
679 * events are handled by the evaluator.
680 */
681 static SCM
682 after_gc_async_thunk (void)
683 {
684 /* Fun, no? Hook-run *and* run-hook? */
685 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
686 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
687 return SCM_UNSPECIFIED;
688 }
689
690
691 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
692 * at the end of the garbage collection. The only purpose of this
693 * function is to mark the after_gc_async (which will eventually lead to
694 * the execution of the after_gc_async_thunk).
695 */
696 static void *
697 queue_after_gc_hook (void * hook_data SCM_UNUSED,
698 void *fn_data SCM_UNUSED,
699 void *data SCM_UNUSED)
700 {
701 /* If cell access debugging is enabled, the user may choose to perform
702 * additional garbage collections after an arbitrary number of cell
703 * accesses. We don't want the scheme level after-gc-hook to be performed
704 * for each of these garbage collections for the following reason: The
705 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
706 * after-gc-hook was performed with every gc, and if the gc was performed
707 * after a very small number of cell accesses, then the number of cell
708 * accesses during the execution of the after-gc-hook will suffice to cause
709 * the execution of the next gc. Then, guile would keep executing the
710 * after-gc-hook over and over again, and would never come to do other
711 * things.
712 *
713 * To overcome this problem, if cell access debugging with additional
714 * garbage collections is enabled, the after-gc-hook is never run by the
715 * garbage collecter. When running guile with cell access debugging and the
716 * execution of the after-gc-hook is desired, then it is necessary to run
717 * the hook explicitly from the user code. This has the effect, that from
718 * the scheme level point of view it seems that garbage collection is
719 * performed with a much lower frequency than it actually is. Obviously,
720 * this will not work for code that depends on a fixed one to one
721 * relationship between the execution counts of the C level garbage
722 * collection hooks and the execution count of the scheme level
723 * after-gc-hook.
724 */
725
726 #if (SCM_DEBUG_CELL_ACCESSES == 1)
727 if (scm_debug_cells_gc_interval == 0)
728 #endif
729 {
730 scm_i_thread *t = SCM_I_CURRENT_THREAD;
731
732 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
733 {
734 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
735 t->active_asyncs = after_gc_async_cell;
736 t->pending_asyncs = 1;
737 }
738 }
739
740 return NULL;
741 }
742
743 \f
744
745 static void *
746 start_gc_timer (void * hook_data SCM_UNUSED,
747 void *fn_data SCM_UNUSED,
748 void *data SCM_UNUSED)
749 {
750 if (!gc_start_time)
751 gc_start_time = scm_c_get_internal_run_time ();
752
753 return NULL;
754 }
755
756 static void *
757 accumulate_gc_timer (void * hook_data SCM_UNUSED,
758 void *fn_data SCM_UNUSED,
759 void *data SCM_UNUSED)
760 {
761 if (gc_start_time)
762 {
763 long now = scm_c_get_internal_run_time ();
764 gc_time_taken += now - gc_start_time;
765 gc_start_time = 0;
766 }
767
768 return NULL;
769 }
770
771 /* Return some idea of the memory footprint of a process, in bytes.
772 Currently only works on Linux systems. */
773 static size_t
774 get_image_size (void)
775 {
776 unsigned long size, resident, share;
777 size_t ret = 0;
778
779 FILE *fp = fopen ("/proc/self/statm", "r");
780
781 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
782 ret = resident * 4096;
783
784 if (fp)
785 fclose (fp);
786
787 return ret;
788 }
789
790 /* Make GC run more frequently when the process image size is growing,
791 measured against the number of bytes allocated through the GC.
792
793 If Guile is allocating at a GC-managed heap size H, libgc will tend
794 to limit the process image size to H*N. But if at the same time the
795 user program is mallocating at a rate M bytes per GC-allocated byte,
796 then the process stabilizes at H*N*M -- assuming that collecting data
797 will result in malloc'd data being freed. It doesn't take a very
798 large M for this to be a bad situation. To limit the image size,
799 Guile should GC more often -- the bigger the M, the more often.
800
801 Numeric functions that produce bigger and bigger integers are
802 pessimal, because M is an increasing function of time. Here is an
803 example of such a function:
804
805 (define (factorial n)
806 (define (fac n acc)
807 (if (<= n 1)
808 acc
809 (fac (1- n) (* n acc))))
810 (fac n 1))
811
812 It is possible for a process to grow for reasons that will not be
813 solved by faster GC. In that case M will be estimated as
814 artificially high for a while, and so GC will happen more often on
815 the Guile side. But when it stabilizes, Guile can ease back the GC
816 frequency.
817
818 The key is to measure process image growth, not mallocation rate.
819 For maximum effectiveness, Guile reacts quickly to process growth,
820 and exponentially backs down when the process stops growing.
821
822 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
823 for further discussion.
824 */
825 static void *
826 adjust_gc_frequency (void * hook_data SCM_UNUSED,
827 void *fn_data SCM_UNUSED,
828 void *data SCM_UNUSED)
829 {
830 static size_t prev_image_size = 0;
831 static size_t prev_bytes_alloced = 0;
832 size_t image_size;
833 size_t bytes_alloced;
834
835 image_size = get_image_size ();
836 bytes_alloced = GC_get_total_bytes ();
837
838 #define HEURISTICS_DEBUG 0
839
840 #if HEURISTICS_DEBUG
841 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
842 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
843 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
844 #endif
845
846 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
847 {
848 double growth_rate, new_target_free_space_divisor;
849 double decay_factor = 0.5;
850 double hysteresis = 0.1;
851
852 growth_rate = ((double) image_size - prev_image_size)
853 / ((double)bytes_alloced - prev_bytes_alloced);
854
855 #if HEURISTICS_DEBUG
856 fprintf (stderr, "growth rate %f\n", growth_rate);
857 #endif
858
859 new_target_free_space_divisor = minimum_free_space_divisor;
860
861 if (growth_rate > 0)
862 new_target_free_space_divisor *= 1.0 + growth_rate;
863
864 #if HEURISTICS_DEBUG
865 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
866 #endif
867
868 if (new_target_free_space_divisor < target_free_space_divisor)
869 /* Decay down. */
870 target_free_space_divisor =
871 (decay_factor * target_free_space_divisor
872 + (1.0 - decay_factor) * new_target_free_space_divisor);
873 else
874 /* Jump up. */
875 target_free_space_divisor = new_target_free_space_divisor;
876
877 #if HEURISTICS_DEBUG
878 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
879 #endif
880
881 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
882 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
883 {
884 free_space_divisor = lround (target_free_space_divisor);
885 #if HEURISTICS_DEBUG
886 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
887 #endif
888 GC_set_free_space_divisor (free_space_divisor);
889 }
890 }
891
892 prev_image_size = image_size;
893 prev_bytes_alloced = bytes_alloced;
894
895 return NULL;
896 }
897
898
899 \f
900
901 char const *
902 scm_i_tag_name (scm_t_bits tag)
903 {
904 switch (tag & 0x7f) /* 7 bits */
905 {
906 case scm_tcs_struct:
907 return "struct";
908 case scm_tcs_cons_imcar:
909 return "cons (immediate car)";
910 case scm_tcs_cons_nimcar:
911 return "cons (non-immediate car)";
912 case scm_tc7_pointer:
913 return "foreign";
914 case scm_tc7_hashtable:
915 return "hashtable";
916 case scm_tc7_fluid:
917 return "fluid";
918 case scm_tc7_dynamic_state:
919 return "dynamic state";
920 case scm_tc7_frame:
921 return "frame";
922 case scm_tc7_objcode:
923 return "objcode";
924 case scm_tc7_vm:
925 return "vm";
926 case scm_tc7_vm_cont:
927 return "vm continuation";
928 case scm_tc7_wvect:
929 return "weak vector";
930 case scm_tc7_vector:
931 return "vector";
932 case scm_tc7_number:
933 switch (tag)
934 {
935 case scm_tc16_real:
936 return "real";
937 break;
938 case scm_tc16_big:
939 return "bignum";
940 break;
941 case scm_tc16_complex:
942 return "complex number";
943 break;
944 case scm_tc16_fraction:
945 return "fraction";
946 break;
947 }
948 break;
949 case scm_tc7_string:
950 return "string";
951 break;
952 case scm_tc7_stringbuf:
953 return "string buffer";
954 break;
955 case scm_tc7_symbol:
956 return "symbol";
957 break;
958 case scm_tc7_variable:
959 return "variable";
960 break;
961 case scm_tc7_port:
962 return "port";
963 break;
964 case scm_tc7_smob:
965 {
966 int k = 0xff & (tag >> 8);
967 return (scm_smobs[k].name);
968 }
969 break;
970 }
971
972 return NULL;
973 }
974
975
976
977 \f
978 void
979 scm_init_gc ()
980 {
981 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
982
983 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
984 scm_c_define ("after-gc-hook", scm_after_gc_hook);
985
986 /* When the async is to run, the cdr of the gc_async pair gets set to
987 the asyncs queue of the current thread. */
988 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
989 after_gc_async_thunk),
990 SCM_BOOL_F);
991
992 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
993 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
994 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
995 scm_c_hook_add (&scm_after_gc_c_hook, adjust_gc_frequency, NULL, 0);
996
997 #ifdef HAVE_GC_SET_START_CALLBACK
998 GC_set_start_callback (run_before_gc_c_hook);
999 #endif
1000
1001 #include "libguile/gc.x"
1002 }
1003
1004
1005 void
1006 scm_gc_sweep (void)
1007 #define FUNC_NAME "scm_gc_sweep"
1008 {
1009 /* FIXME */
1010 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1011 }
1012 #undef FUNC_NAME
1013
1014 /*
1015 Local Variables:
1016 c-file-style: "gnu"
1017 End:
1018 */