Remove private-gc.h
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006,
2 * 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public License
6 * as published by the Free Software Foundation; either version 3 of
7 * the License, or (at your option) any later version.
8 *
9 * This library is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
17 * 02110-1301 USA
18 */
19
20 /* #define DEBUGINFO */
21
22 #ifdef HAVE_CONFIG_H
23 # include <config.h>
24 #endif
25
26 #include "libguile/gen-scmconfig.h"
27
28 #include <stdio.h>
29 #include <errno.h>
30 #include <string.h>
31 #include <stdlib.h>
32 #include <math.h>
33
34 #ifdef __ia64__
35 #include <ucontext.h>
36 extern unsigned long * __libc_ia64_register_backing_store_base;
37 #endif
38
39 #include "libguile/_scm.h"
40 #include "libguile/eval.h"
41 #include "libguile/stime.h"
42 #include "libguile/stackchk.h"
43 #include "libguile/struct.h"
44 #include "libguile/smob.h"
45 #include "libguile/arrays.h"
46 #include "libguile/async.h"
47 #include "libguile/ports.h"
48 #include "libguile/root.h"
49 #include "libguile/simpos.h"
50 #include "libguile/strings.h"
51 #include "libguile/vectors.h"
52 #include "libguile/hashtab.h"
53 #include "libguile/tags.h"
54
55 #include "libguile/validate.h"
56 #include "libguile/deprecation.h"
57 #include "libguile/gc.h"
58 #include "libguile/dynwind.h"
59
60 #include "libguile/bdw-gc.h"
61
62 /* For GC_set_start_callback. */
63 #include <gc/gc_mark.h>
64
65 #ifdef GUILE_DEBUG_MALLOC
66 #include "libguile/debug-malloc.h"
67 #endif
68
69 #ifdef HAVE_UNISTD_H
70 #include <unistd.h>
71 #endif
72
73 /* Size in bytes of the initial heap. This should be about the size of
74 result of 'guile -c "(display (assq-ref (gc-stats)
75 'heap-total-allocated))"'. */
76
77 #define DEFAULT_INITIAL_HEAP_SIZE (128 * 1024 * SIZEOF_SCM_T_BITS)
78
79 /* Set this to != 0 if every cell that is accessed shall be checked:
80 */
81 int scm_debug_cell_accesses_p = 0;
82 int scm_expensive_debug_cell_accesses_p = 0;
83
84 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
85 * the number of cell accesses after which a gc shall be called.
86 */
87 int scm_debug_cells_gc_interval = 0;
88
89 /* Hash table that keeps a reference to objects the user wants to protect from
90 garbage collection. */
91 static SCM scm_protects;
92
93
94 #if (SCM_DEBUG_CELL_ACCESSES == 1)
95
96
97 /*
98
99 Assert that the given object is a valid reference to a valid cell. This
100 test involves to determine whether the object is a cell pointer, whether
101 this pointer actually points into a heap segment and whether the cell
102 pointed to is not a free cell. Further, additional garbage collections may
103 get executed after a user defined number of cell accesses. This helps to
104 find places in the C code where references are dropped for extremely short
105 periods.
106
107 */
108 void
109 scm_i_expensive_validation_check (SCM cell)
110 {
111 /* If desired, perform additional garbage collections after a user
112 * defined number of cell accesses.
113 */
114 if (scm_debug_cells_gc_interval)
115 {
116 static unsigned int counter = 0;
117
118 if (counter != 0)
119 {
120 --counter;
121 }
122 else
123 {
124 counter = scm_debug_cells_gc_interval;
125 scm_gc ();
126 }
127 }
128 }
129
130 /* Whether cell validation is already running. */
131 static int scm_i_cell_validation_already_running = 0;
132
133 void
134 scm_assert_cell_valid (SCM cell)
135 {
136 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
137 {
138 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
139
140 /*
141 During GC, no user-code should be run, and the guile core
142 should use non-protected accessors.
143 */
144 if (scm_gc_running_p)
145 return;
146
147 /*
148 Only scm_in_heap_p and rescanning the heap is wildly
149 expensive.
150 */
151 if (scm_expensive_debug_cell_accesses_p)
152 scm_i_expensive_validation_check (cell);
153
154 scm_i_cell_validation_already_running = 0; /* re-enable */
155 }
156 }
157
158
159
160 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
161 (SCM flag),
162 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
163 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
164 "but no additional calls to garbage collection are issued.\n"
165 "If @var{flag} is a number, strict cell access checking is enabled,\n"
166 "with an additional garbage collection after the given\n"
167 "number of cell accesses.\n"
168 "This procedure only exists when the compile-time flag\n"
169 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
170 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
171 {
172 if (scm_is_false (flag))
173 {
174 scm_debug_cell_accesses_p = 0;
175 }
176 else if (scm_is_eq (flag, SCM_BOOL_T))
177 {
178 scm_debug_cells_gc_interval = 0;
179 scm_debug_cell_accesses_p = 1;
180 scm_expensive_debug_cell_accesses_p = 0;
181 }
182 else
183 {
184 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
185 scm_debug_cell_accesses_p = 1;
186 scm_expensive_debug_cell_accesses_p = 1;
187 }
188 return SCM_UNSPECIFIED;
189 }
190 #undef FUNC_NAME
191
192
193 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
194
195 \f
196
197 /* Hooks. */
198 scm_t_c_hook scm_before_gc_c_hook;
199 scm_t_c_hook scm_before_mark_c_hook;
200 scm_t_c_hook scm_before_sweep_c_hook;
201 scm_t_c_hook scm_after_sweep_c_hook;
202 scm_t_c_hook scm_after_gc_c_hook;
203
204
205 static void
206 run_before_gc_c_hook (void)
207 {
208 if (!SCM_I_CURRENT_THREAD)
209 /* GC while a thread is spinning up; punt. */
210 return;
211
212 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
213 }
214
215
216 /* GC Statistics Keeping
217 */
218 unsigned long scm_gc_ports_collected = 0;
219 static long gc_time_taken = 0;
220 static long gc_start_time = 0;
221
222 static unsigned long free_space_divisor;
223 static unsigned long minimum_free_space_divisor;
224 static double target_free_space_divisor;
225
226 static unsigned long protected_obj_count = 0;
227
228
229 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
230 SCM_SYMBOL (sym_heap_size, "heap-size");
231 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
232 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
233 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
234 SCM_SYMBOL (sym_protected_objects, "protected-objects");
235 SCM_SYMBOL (sym_times, "gc-times");
236
237
238 /* {Scheme Interface to GC}
239 */
240 static char const * scm_i_tag_name (scm_t_bits tag);
241 static SCM
242 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
243 {
244 if (scm_is_integer (key))
245 {
246 int c_tag = scm_to_int (key);
247
248 char const * name = scm_i_tag_name (c_tag);
249 if (name != NULL)
250 {
251 key = scm_from_locale_string (name);
252 }
253 else
254 {
255 char s[100];
256 sprintf (s, "tag %d", c_tag);
257 key = scm_from_locale_string (s);
258 }
259 }
260
261 return scm_cons (scm_cons (key, val), acc);
262 }
263
264 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
265 (),
266 "Return an alist of statistics of the current live objects. ")
267 #define FUNC_NAME s_scm_gc_live_object_stats
268 {
269 SCM tab = scm_make_hash_table (scm_from_int (57));
270 SCM alist;
271
272 alist
273 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
274
275 return alist;
276 }
277 #undef FUNC_NAME
278
279 extern int scm_gc_malloc_yield_percentage;
280 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
281 (),
282 "Return an association list of statistics about Guile's current\n"
283 "use of storage.\n")
284 #define FUNC_NAME s_scm_gc_stats
285 {
286 SCM answer;
287 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
288 size_t gc_times;
289
290 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
291 &bytes_since_gc, &total_bytes);
292 gc_times = GC_get_gc_no ();
293
294 answer =
295 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
296 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
297 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
298 scm_cons (sym_heap_total_allocated,
299 scm_from_size_t (total_bytes)),
300 scm_cons (sym_heap_allocated_since_gc,
301 scm_from_size_t (bytes_since_gc)),
302 scm_cons (sym_protected_objects,
303 scm_from_ulong (protected_obj_count)),
304 scm_cons (sym_times, scm_from_size_t (gc_times)),
305 SCM_UNDEFINED);
306
307 return answer;
308 }
309 #undef FUNC_NAME
310
311
312 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
313 (void),
314 "Dump information about the garbage collector's internal data "
315 "structures and memory usage to the standard output.")
316 #define FUNC_NAME s_scm_gc_dump
317 {
318 GC_dump ();
319
320 return SCM_UNSPECIFIED;
321 }
322 #undef FUNC_NAME
323
324
325 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
326 (SCM obj),
327 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
328 "returned by this function for @var{obj}")
329 #define FUNC_NAME s_scm_object_address
330 {
331 return scm_from_ulong (SCM_UNPACK (obj));
332 }
333 #undef FUNC_NAME
334
335
336 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
337 (),
338 "Disables the garbage collector. Nested calls are permitted. "
339 "GC is re-enabled once @code{gc-enable} has been called the "
340 "same number of times @code{gc-disable} was called.")
341 #define FUNC_NAME s_scm_gc_disable
342 {
343 GC_disable ();
344 return SCM_UNSPECIFIED;
345 }
346 #undef FUNC_NAME
347
348 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
349 (),
350 "Enables the garbage collector.")
351 #define FUNC_NAME s_scm_gc_enable
352 {
353 GC_enable ();
354 return SCM_UNSPECIFIED;
355 }
356 #undef FUNC_NAME
357
358
359 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
360 (),
361 "Scans all of SCM objects and reclaims for further use those that are\n"
362 "no longer accessible.")
363 #define FUNC_NAME s_scm_gc
364 {
365 scm_i_gc ("call");
366 /* If you're calling scm_gc(), you probably want synchronous
367 finalization. */
368 GC_invoke_finalizers ();
369 return SCM_UNSPECIFIED;
370 }
371 #undef FUNC_NAME
372
373 void
374 scm_i_gc (const char *what)
375 {
376 GC_gcollect ();
377 }
378
379
380 \f
381 /* {GC Protection Helper Functions}
382 */
383
384
385 /*
386 * If within a function you need to protect one or more scheme objects from
387 * garbage collection, pass them as parameters to one of the
388 * scm_remember_upto_here* functions below. These functions don't do
389 * anything, but since the compiler does not know that they are actually
390 * no-ops, it will generate code that calls these functions with the given
391 * parameters. Therefore, you can be sure that the compiler will keep those
392 * scheme values alive (on the stack or in a register) up to the point where
393 * scm_remember_upto_here* is called. In other words, place the call to
394 * scm_remember_upto_here* _behind_ the last code in your function, that
395 * depends on the scheme object to exist.
396 *
397 * Example: We want to make sure that the string object str does not get
398 * garbage collected during the execution of 'some_function' in the code
399 * below, because otherwise the characters belonging to str would be freed and
400 * 'some_function' might access freed memory. To make sure that the compiler
401 * keeps str alive on the stack or in a register such that it is visible to
402 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
403 * call to 'some_function'. Note that this would not be necessary if str was
404 * used anyway after the call to 'some_function'.
405 * char *chars = scm_i_string_chars (str);
406 * some_function (chars);
407 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
408 */
409
410 /* Remove any macro versions of these while defining the functions.
411 Functions are always included in the library, for upward binary
412 compatibility and in case combinations of GCC and non-GCC are used. */
413 #undef scm_remember_upto_here_1
414 #undef scm_remember_upto_here_2
415
416 void
417 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
418 {
419 /* Empty. Protects a single object from garbage collection. */
420 }
421
422 void
423 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
424 {
425 /* Empty. Protects two objects from garbage collection. */
426 }
427
428 void
429 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
430 {
431 /* Empty. Protects any number of objects from garbage collection. */
432 }
433
434 /*
435 These crazy functions prevent garbage collection
436 of arguments after the first argument by
437 ensuring they remain live throughout the
438 function because they are used in the last
439 line of the code block.
440 It'd be better to have a nice compiler hint to
441 aid the conservative stack-scanning GC. --03/09/00 gjb */
442 SCM
443 scm_return_first (SCM elt, ...)
444 {
445 return elt;
446 }
447
448 int
449 scm_return_first_int (int i, ...)
450 {
451 return i;
452 }
453
454
455 SCM
456 scm_permanent_object (SCM obj)
457 {
458 return (scm_gc_protect_object (obj));
459 }
460
461
462 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
463 other references are dropped, until the object is unprotected by calling
464 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
465 i. e. it is possible to protect the same object several times, but it is
466 necessary to unprotect the object the same number of times to actually get
467 the object unprotected. It is an error to unprotect an object more often
468 than it has been protected before. The function scm_protect_object returns
469 OBJ.
470 */
471
472 /* Implementation note: For every object X, there is a counter which
473 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
474 */
475
476
477
478 SCM
479 scm_gc_protect_object (SCM obj)
480 {
481 SCM handle;
482
483 /* This critical section barrier will be replaced by a mutex. */
484 /* njrev: Indeed; if my comment above is correct, there is the same
485 critsec/mutex inconsistency here. */
486 SCM_CRITICAL_SECTION_START;
487
488 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
489 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
490
491 protected_obj_count ++;
492
493 SCM_CRITICAL_SECTION_END;
494
495 return obj;
496 }
497
498
499 /* Remove any protection for OBJ established by a prior call to
500 scm_protect_object. This function returns OBJ.
501
502 See scm_protect_object for more information. */
503 SCM
504 scm_gc_unprotect_object (SCM obj)
505 {
506 SCM handle;
507
508 /* This critical section barrier will be replaced by a mutex. */
509 /* njrev: and again. */
510 SCM_CRITICAL_SECTION_START;
511
512 if (scm_gc_running_p)
513 {
514 fprintf (stderr, "scm_unprotect_object called during GC.\n");
515 abort ();
516 }
517
518 handle = scm_hashq_get_handle (scm_protects, obj);
519
520 if (scm_is_false (handle))
521 {
522 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
523 abort ();
524 }
525 else
526 {
527 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
528 if (scm_is_eq (count, scm_from_int (0)))
529 scm_hashq_remove_x (scm_protects, obj);
530 else
531 SCM_SETCDR (handle, count);
532 }
533 protected_obj_count --;
534
535 SCM_CRITICAL_SECTION_END;
536
537 return obj;
538 }
539
540 void
541 scm_gc_register_root (SCM *p)
542 {
543 /* Nothing. */
544 }
545
546 void
547 scm_gc_unregister_root (SCM *p)
548 {
549 /* Nothing. */
550 }
551
552 void
553 scm_gc_register_roots (SCM *b, unsigned long n)
554 {
555 SCM *p = b;
556 for (; p < b + n; ++p)
557 scm_gc_register_root (p);
558 }
559
560 void
561 scm_gc_unregister_roots (SCM *b, unsigned long n)
562 {
563 SCM *p = b;
564 for (; p < b + n; ++p)
565 scm_gc_unregister_root (p);
566 }
567
568 \f
569
570
571 void
572 scm_storage_prehistory ()
573 {
574 GC_set_all_interior_pointers (0);
575
576 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
577 minimum_free_space_divisor = free_space_divisor;
578 target_free_space_divisor = free_space_divisor;
579 GC_set_free_space_divisor (free_space_divisor);
580 GC_set_finalize_on_demand (1);
581
582 GC_INIT ();
583
584 GC_expand_hp (DEFAULT_INITIAL_HEAP_SIZE);
585
586 /* We only need to register a displacement for those types for which the
587 higher bits of the type tag are used to store a pointer (that is, a
588 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
589 handled in `scm_alloc_struct ()'. */
590 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
591 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
592
593 /* Sanity check. */
594 if (!GC_is_visible (&scm_protects))
595 abort ();
596
597 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
598 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
599 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
600 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
601 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
602 }
603
604 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
605
606 void
607 scm_init_gc_protect_object ()
608 {
609 scm_protects = scm_c_make_hash_table (31);
610
611 #if 0
612 /* We can't have a cleanup handler since we have no thread to run it
613 in. */
614
615 #ifdef HAVE_ATEXIT
616 atexit (cleanup);
617 #else
618 #ifdef HAVE_ON_EXIT
619 on_exit (cleanup, 0);
620 #endif
621 #endif
622
623 #endif
624 }
625
626 \f
627
628 SCM scm_after_gc_hook;
629
630 static SCM after_gc_async_cell;
631
632 /* The function after_gc_async_thunk causes the execution of the
633 * after-gc-hook. It is run after the gc, as soon as the asynchronous
634 * events are handled by the evaluator.
635 */
636 static SCM
637 after_gc_async_thunk (void)
638 {
639 /* Fun, no? Hook-run *and* run-hook? */
640 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
641 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
642 return SCM_UNSPECIFIED;
643 }
644
645
646 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
647 * at the end of the garbage collection. The only purpose of this
648 * function is to mark the after_gc_async (which will eventually lead to
649 * the execution of the after_gc_async_thunk).
650 */
651 static void *
652 queue_after_gc_hook (void * hook_data SCM_UNUSED,
653 void *fn_data SCM_UNUSED,
654 void *data SCM_UNUSED)
655 {
656 /* If cell access debugging is enabled, the user may choose to perform
657 * additional garbage collections after an arbitrary number of cell
658 * accesses. We don't want the scheme level after-gc-hook to be performed
659 * for each of these garbage collections for the following reason: The
660 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
661 * after-gc-hook was performed with every gc, and if the gc was performed
662 * after a very small number of cell accesses, then the number of cell
663 * accesses during the execution of the after-gc-hook will suffice to cause
664 * the execution of the next gc. Then, guile would keep executing the
665 * after-gc-hook over and over again, and would never come to do other
666 * things.
667 *
668 * To overcome this problem, if cell access debugging with additional
669 * garbage collections is enabled, the after-gc-hook is never run by the
670 * garbage collecter. When running guile with cell access debugging and the
671 * execution of the after-gc-hook is desired, then it is necessary to run
672 * the hook explicitly from the user code. This has the effect, that from
673 * the scheme level point of view it seems that garbage collection is
674 * performed with a much lower frequency than it actually is. Obviously,
675 * this will not work for code that depends on a fixed one to one
676 * relationship between the execution counts of the C level garbage
677 * collection hooks and the execution count of the scheme level
678 * after-gc-hook.
679 */
680
681 #if (SCM_DEBUG_CELL_ACCESSES == 1)
682 if (scm_debug_cells_gc_interval == 0)
683 #endif
684 {
685 scm_i_thread *t = SCM_I_CURRENT_THREAD;
686
687 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
688 {
689 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
690 t->active_asyncs = after_gc_async_cell;
691 t->pending_asyncs = 1;
692 }
693 }
694
695 return NULL;
696 }
697
698 \f
699
700 static void *
701 start_gc_timer (void * hook_data SCM_UNUSED,
702 void *fn_data SCM_UNUSED,
703 void *data SCM_UNUSED)
704 {
705 if (!gc_start_time)
706 gc_start_time = scm_c_get_internal_run_time ();
707
708 return NULL;
709 }
710
711 static void *
712 accumulate_gc_timer (void * hook_data SCM_UNUSED,
713 void *fn_data SCM_UNUSED,
714 void *data SCM_UNUSED)
715 {
716 if (gc_start_time)
717 {
718 long now = scm_c_get_internal_run_time ();
719 gc_time_taken += now - gc_start_time;
720 gc_start_time = 0;
721 }
722
723 return NULL;
724 }
725
726 /* Return some idea of the memory footprint of a process, in bytes.
727 Currently only works on Linux systems. */
728 static size_t
729 get_image_size (void)
730 {
731 unsigned long size, resident, share;
732 size_t ret = 0;
733
734 FILE *fp = fopen ("/proc/self/statm", "r");
735
736 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
737 ret = resident * 4096;
738
739 if (fp)
740 fclose (fp);
741
742 return ret;
743 }
744
745 /* These are discussed later. */
746 static size_t bytes_until_gc;
747 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
748
749 /* Make GC run more frequently when the process image size is growing,
750 measured against the number of bytes allocated through the GC.
751
752 If Guile is allocating at a GC-managed heap size H, libgc will tend
753 to limit the process image size to H*N. But if at the same time the
754 user program is mallocating at a rate M bytes per GC-allocated byte,
755 then the process stabilizes at H*N*M -- assuming that collecting data
756 will result in malloc'd data being freed. It doesn't take a very
757 large M for this to be a bad situation. To limit the image size,
758 Guile should GC more often -- the bigger the M, the more often.
759
760 Numeric functions that produce bigger and bigger integers are
761 pessimal, because M is an increasing function of time. Here is an
762 example of such a function:
763
764 (define (factorial n)
765 (define (fac n acc)
766 (if (<= n 1)
767 acc
768 (fac (1- n) (* n acc))))
769 (fac n 1))
770
771 It is possible for a process to grow for reasons that will not be
772 solved by faster GC. In that case M will be estimated as
773 artificially high for a while, and so GC will happen more often on
774 the Guile side. But when it stabilizes, Guile can ease back the GC
775 frequency.
776
777 The key is to measure process image growth, not mallocation rate.
778 For maximum effectiveness, Guile reacts quickly to process growth,
779 and exponentially backs down when the process stops growing.
780
781 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
782 for further discussion.
783 */
784 static void *
785 adjust_gc_frequency (void * hook_data SCM_UNUSED,
786 void *fn_data SCM_UNUSED,
787 void *data SCM_UNUSED)
788 {
789 static size_t prev_image_size = 0;
790 static size_t prev_bytes_alloced = 0;
791 size_t image_size;
792 size_t bytes_alloced;
793
794 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
795 bytes_until_gc = GC_get_heap_size ();
796 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
797
798 image_size = get_image_size ();
799 bytes_alloced = GC_get_total_bytes ();
800
801 #define HEURISTICS_DEBUG 0
802
803 #if HEURISTICS_DEBUG
804 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
805 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
806 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
807 #endif
808
809 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
810 {
811 double growth_rate, new_target_free_space_divisor;
812 double decay_factor = 0.5;
813 double hysteresis = 0.1;
814
815 growth_rate = ((double) image_size - prev_image_size)
816 / ((double)bytes_alloced - prev_bytes_alloced);
817
818 #if HEURISTICS_DEBUG
819 fprintf (stderr, "growth rate %f\n", growth_rate);
820 #endif
821
822 new_target_free_space_divisor = minimum_free_space_divisor;
823
824 if (growth_rate > 0)
825 new_target_free_space_divisor *= 1.0 + growth_rate;
826
827 #if HEURISTICS_DEBUG
828 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
829 #endif
830
831 if (new_target_free_space_divisor < target_free_space_divisor)
832 /* Decay down. */
833 target_free_space_divisor =
834 (decay_factor * target_free_space_divisor
835 + (1.0 - decay_factor) * new_target_free_space_divisor);
836 else
837 /* Jump up. */
838 target_free_space_divisor = new_target_free_space_divisor;
839
840 #if HEURISTICS_DEBUG
841 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
842 #endif
843
844 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
845 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
846 {
847 free_space_divisor = lround (target_free_space_divisor);
848 #if HEURISTICS_DEBUG
849 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
850 #endif
851 GC_set_free_space_divisor (free_space_divisor);
852 }
853 }
854
855 prev_image_size = image_size;
856 prev_bytes_alloced = bytes_alloced;
857
858 return NULL;
859 }
860
861 /* The adjust_gc_frequency routine handles transients in the process
862 image size. It can't handle instense non-GC-managed steady-state
863 allocation though, as it decays the FSD at steady-state down to its
864 minimum value.
865
866 The only real way to handle continuous, high non-GC allocation is to
867 let the GC know about it. This routine can handle non-GC allocation
868 rates that are similar in size to the GC-managed heap size.
869 */
870
871 void
872 scm_gc_register_allocation (size_t size)
873 {
874 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
875 if (bytes_until_gc - size > bytes_until_gc)
876 {
877 bytes_until_gc = GC_get_heap_size ();
878 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
879 GC_gcollect ();
880 }
881 else
882 {
883 bytes_until_gc -= size;
884 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
885 }
886 }
887
888
889 \f
890
891 static char const *
892 scm_i_tag_name (scm_t_bits tag)
893 {
894 switch (tag & 0x7f) /* 7 bits */
895 {
896 case scm_tcs_struct:
897 return "struct";
898 case scm_tcs_cons_imcar:
899 return "cons (immediate car)";
900 case scm_tcs_cons_nimcar:
901 return "cons (non-immediate car)";
902 case scm_tc7_pointer:
903 return "foreign";
904 case scm_tc7_hashtable:
905 return "hashtable";
906 case scm_tc7_weak_set:
907 return "weak-set";
908 case scm_tc7_weak_table:
909 return "weak-table";
910 case scm_tc7_fluid:
911 return "fluid";
912 case scm_tc7_dynamic_state:
913 return "dynamic state";
914 case scm_tc7_frame:
915 return "frame";
916 case scm_tc7_vm_cont:
917 return "vm continuation";
918 case scm_tc7_wvect:
919 return "weak vector";
920 case scm_tc7_vector:
921 return "vector";
922 case scm_tc7_number:
923 switch (tag)
924 {
925 case scm_tc16_real:
926 return "real";
927 break;
928 case scm_tc16_big:
929 return "bignum";
930 break;
931 case scm_tc16_complex:
932 return "complex number";
933 break;
934 case scm_tc16_fraction:
935 return "fraction";
936 break;
937 }
938 break;
939 case scm_tc7_string:
940 return "string";
941 break;
942 case scm_tc7_stringbuf:
943 return "string buffer";
944 break;
945 case scm_tc7_symbol:
946 return "symbol";
947 break;
948 case scm_tc7_variable:
949 return "variable";
950 break;
951 case scm_tc7_port:
952 return "port";
953 break;
954 case scm_tc7_smob:
955 {
956 int k = 0xff & (tag >> 8);
957 return (scm_smobs[k].name);
958 }
959 break;
960 }
961
962 return NULL;
963 }
964
965
966
967 \f
968 void
969 scm_init_gc ()
970 {
971 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
972
973 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
974 scm_c_define ("after-gc-hook", scm_after_gc_hook);
975
976 /* When the async is to run, the cdr of the gc_async pair gets set to
977 the asyncs queue of the current thread. */
978 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
979 after_gc_async_thunk),
980 SCM_BOOL_F);
981
982 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
983 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
984 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
985
986 /* GC_get_heap_usage does not take a lock, and so can run in the GC
987 start hook. */
988 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
989
990 GC_set_start_callback (run_before_gc_c_hook);
991
992 #include "libguile/gc.x"
993 }
994
995
996 void
997 scm_gc_sweep (void)
998 #define FUNC_NAME "scm_gc_sweep"
999 {
1000 /* FIXME */
1001 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1002 }
1003 #undef FUNC_NAME
1004
1005 /*
1006 Local Variables:
1007 c-file-style: "gnu"
1008 End:
1009 */