Simple value history support.
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4 ;;;;
5 ;;;; This program is free software; you can redistribute it and/or modify
6 ;;;; it under the terms of the GNU General Public License as published by
7 ;;;; the Free Software Foundation; either version 2, or (at your option)
8 ;;;; any later version.
9 ;;;;
10 ;;;; This program is distributed in the hope that it will be useful,
11 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ;;;; GNU General Public License for more details.
14 ;;;;
15 ;;;; You should have received a copy of the GNU General Public License
16 ;;;; along with this software; see the file COPYING. If not, write to
17 ;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18 ;;;; Boston, MA 02111-1307 USA
19 ;;;;
20 \f
21
22 ;;; This file is the first thing loaded into Guile. It adds many mundane
23 ;;; definitions and a few that are interesting.
24 ;;;
25 ;;; The module system (hence the hierarchical namespace) are defined in this
26 ;;; file.
27 ;;;
28
29 \f
30 ;;; {Features}
31 ;;
32
33 (define (provide sym)
34 (if (not (memq sym *features*))
35 (set! *features* (cons sym *features*))))
36
37 ;;; Return #t iff FEATURE is available to this Guile interpreter.
38 ;;; In SLIB, provided? also checks to see if the module is available.
39 ;;; We should do that too, but don't.
40 (define (provided? feature)
41 (and (memq feature *features*) #t))
42
43 ;;; presumably deprecated.
44 (define feature? provided?)
45
46 ;;; let format alias simple-format until the more complete version is loaded
47 (define format simple-format)
48
49 \f
50 ;;; {R4RS compliance}
51
52 (primitive-load-path "ice-9/r4rs.scm")
53
54 \f
55 ;;; {Simple Debugging Tools}
56 ;;
57
58
59 ;; peek takes any number of arguments, writes them to the
60 ;; current ouput port, and returns the last argument.
61 ;; It is handy to wrap around an expression to look at
62 ;; a value each time is evaluated, e.g.:
63 ;;
64 ;; (+ 10 (troublesome-fn))
65 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
66 ;;
67
68 (define (peek . stuff)
69 (newline)
70 (display ";;; ")
71 (write stuff)
72 (newline)
73 (car (last-pair stuff)))
74
75 (define pk peek)
76
77 (define (warn . stuff)
78 (with-output-to-port (current-error-port)
79 (lambda ()
80 (newline)
81 (display ";;; WARNING ")
82 (display stuff)
83 (newline)
84 (car (last-pair stuff)))))
85
86 \f
87 ;;; {Trivial Functions}
88 ;;;
89
90 (define (id x) x)
91 (define (1+ n) (+ n 1))
92 (define (-1+ n) (+ n -1))
93 (define 1- -1+)
94 (define return-it noop)
95 (define (and=> value procedure) (and value (procedure value)))
96 (define (make-hash-table k) (make-vector k '()))
97
98 ;;; apply-to-args is functionally redunant with apply and, worse,
99 ;;; is less general than apply since it only takes two arguments.
100 ;;;
101 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
102 ;;; perform binding in many circumstances when the "let" family of
103 ;;; of forms don't cut it. E.g.:
104 ;;;
105 ;;; (apply-to-args (return-3d-mouse-coords)
106 ;;; (lambda (x y z)
107 ;;; ...))
108 ;;;
109
110 (define (apply-to-args args fn) (apply fn args))
111
112 \f
113 ;;; {Integer Math}
114 ;;;
115
116 (define (ipow-by-squaring x k acc proc)
117 (cond ((zero? k) acc)
118 ((= 1 k) (proc acc x))
119 (else (ipow-by-squaring (proc x x)
120 (quotient k 2)
121 (if (even? k) acc (proc acc x))
122 proc))))
123
124 (define string-character-length string-length)
125
126
127
128 ;; A convenience function for combining flag bits. Like logior, but
129 ;; handles the cases of 0 and 1 arguments.
130 ;;
131 (define (flags . args)
132 (cond
133 ((null? args) 0)
134 ((null? (cdr args)) (car args))
135 (else (apply logior args))))
136
137 \f
138 ;;; {Symbol Properties}
139 ;;;
140
141 (define (symbol-property sym prop)
142 (let ((pair (assoc prop (symbol-pref sym))))
143 (and pair (cdr pair))))
144
145 (define (set-symbol-property! sym prop val)
146 (let ((pair (assoc prop (symbol-pref sym))))
147 (if pair
148 (set-cdr! pair val)
149 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
150
151 (define (symbol-property-remove! sym prop)
152 (let ((pair (assoc prop (symbol-pref sym))))
153 (if pair
154 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
155
156 ;;; {General Properties}
157
158 ;; This is a more modern interface to properties. It will replace all
159 ;; other property-like things eventually.
160
161 (define (make-object-property)
162 (let ((prop (primitive-make-property #f)))
163 (make-procedure-with-setter
164 (lambda (obj) (primitive-property-ref prop obj))
165 (lambda (obj val) (primitive-property-set! prop obj val)))))
166
167 \f
168
169 ;;; {Arrays}
170 ;;;
171
172 (if (provided? 'array)
173 (primitive-load-path "ice-9/arrays.scm"))
174
175 \f
176 ;;; {Keywords}
177 ;;;
178
179 (define (symbol->keyword symbol)
180 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
181
182 (define (keyword->symbol kw)
183 (let ((sym (symbol->string (keyword-dash-symbol kw))))
184 (string->symbol (substring sym 1 (string-length sym)))))
185
186 (define (kw-arg-ref args kw)
187 (let ((rem (member kw args)))
188 (and rem (pair? (cdr rem)) (cadr rem))))
189
190 \f
191
192 ;;; {Structs}
193
194 (define (struct-layout s)
195 (struct-ref (struct-vtable s) vtable-index-layout))
196
197 \f
198
199 ;;; Environments
200
201 (define the-environment
202 (procedure->syntax
203 (lambda (x e)
204 e)))
205
206 (define the-root-environment (the-environment))
207
208 (define (environment-module env)
209 (let ((closure (and (pair? env) (car (last-pair env)))))
210 (and closure (procedure-property closure 'module))))
211
212 \f
213 ;;; {Records}
214 ;;;
215
216 ;; Printing records: by default, records are printed as
217 ;;
218 ;; #<type-name field1: val1 field2: val2 ...>
219 ;;
220 ;; You can change that by giving a custom printing function to
221 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
222 ;; will be called like
223 ;;
224 ;; (<printer> object port)
225 ;;
226 ;; It should print OBJECT to PORT.
227
228 (define (inherit-print-state old-port new-port)
229 (if (get-print-state old-port)
230 (port-with-print-state new-port (get-print-state old-port))
231 new-port))
232
233 ;; 0: type-name, 1: fields
234 (define record-type-vtable
235 (make-vtable-vtable "prpr" 0
236 (lambda (s p)
237 (cond ((eq? s record-type-vtable)
238 (display "#<record-type-vtable>" p))
239 (else
240 (display "#<record-type " p)
241 (display (record-type-name s) p)
242 (display ">" p))))))
243
244 (define (record-type? obj)
245 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
246
247 (define (make-record-type type-name fields . opt)
248 (let ((printer-fn (and (pair? opt) (car opt))))
249 (let ((struct (make-struct record-type-vtable 0
250 (make-struct-layout
251 (apply string-append
252 (map (lambda (f) "pw") fields)))
253 (or printer-fn
254 (lambda (s p)
255 (display "#<" p)
256 (display type-name p)
257 (let loop ((fields fields)
258 (off 0))
259 (cond
260 ((not (null? fields))
261 (display " " p)
262 (display (car fields) p)
263 (display ": " p)
264 (display (struct-ref s off) p)
265 (loop (cdr fields) (+ 1 off)))))
266 (display ">" p)))
267 type-name
268 (copy-tree fields))))
269 ;; Temporary solution: Associate a name to the record type descriptor
270 ;; so that the object system can create a wrapper class for it.
271 (set-struct-vtable-name! struct (if (symbol? type-name)
272 type-name
273 (string->symbol type-name)))
274 struct)))
275
276 (define (record-type-name obj)
277 (if (record-type? obj)
278 (struct-ref obj vtable-offset-user)
279 (error 'not-a-record-type obj)))
280
281 (define (record-type-fields obj)
282 (if (record-type? obj)
283 (struct-ref obj (+ 1 vtable-offset-user))
284 (error 'not-a-record-type obj)))
285
286 (define (record-constructor rtd . opt)
287 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
288 (local-eval `(lambda ,field-names
289 (make-struct ',rtd 0 ,@(map (lambda (f)
290 (if (memq f field-names)
291 f
292 #f))
293 (record-type-fields rtd))))
294 the-root-environment)))
295
296 (define (record-predicate rtd)
297 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
298
299 (define (record-accessor rtd field-name)
300 (let* ((pos (list-index (record-type-fields rtd) field-name)))
301 (if (not pos)
302 (error 'no-such-field field-name))
303 (local-eval `(lambda (obj)
304 (and (eq? ',rtd (record-type-descriptor obj))
305 (struct-ref obj ,pos)))
306 the-root-environment)))
307
308 (define (record-modifier rtd field-name)
309 (let* ((pos (list-index (record-type-fields rtd) field-name)))
310 (if (not pos)
311 (error 'no-such-field field-name))
312 (local-eval `(lambda (obj val)
313 (and (eq? ',rtd (record-type-descriptor obj))
314 (struct-set! obj ,pos val)))
315 the-root-environment)))
316
317
318 (define (record? obj)
319 (and (struct? obj) (record-type? (struct-vtable obj))))
320
321 (define (record-type-descriptor obj)
322 (if (struct? obj)
323 (struct-vtable obj)
324 (error 'not-a-record obj)))
325
326 (provide 'record)
327
328 \f
329 ;;; {Booleans}
330 ;;;
331
332 (define (->bool x) (not (not x)))
333
334 \f
335 ;;; {Symbols}
336 ;;;
337
338 (define (symbol-append . args)
339 (string->symbol (apply string-append (map symbol->string args))))
340
341 (define (list->symbol . args)
342 (string->symbol (apply list->string args)))
343
344 (define (symbol . args)
345 (string->symbol (apply string args)))
346
347 \f
348 ;;; {Lists}
349 ;;;
350
351 (define (list-index l k)
352 (let loop ((n 0)
353 (l l))
354 (and (not (null? l))
355 (if (eq? (car l) k)
356 n
357 (loop (+ n 1) (cdr l))))))
358
359 (define (make-list n . init)
360 (if (pair? init) (set! init (car init)))
361 (let loop ((answer '())
362 (n n))
363 (if (<= n 0)
364 answer
365 (loop (cons init answer) (- n 1)))))
366
367 \f
368 ;;; {and-map and or-map}
369 ;;;
370 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
371 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
372 ;;;
373
374 ;; and-map f l
375 ;;
376 ;; Apply f to successive elements of l until exhaustion or f returns #f.
377 ;; If returning early, return #f. Otherwise, return the last value returned
378 ;; by f. If f has never been called because l is empty, return #t.
379 ;;
380 (define (and-map f lst)
381 (let loop ((result #t)
382 (l lst))
383 (and result
384 (or (and (null? l)
385 result)
386 (loop (f (car l)) (cdr l))))))
387
388 ;; or-map f l
389 ;;
390 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
391 ;; If returning early, return the return value of f.
392 ;;
393 (define (or-map f lst)
394 (let loop ((result #f)
395 (l lst))
396 (or result
397 (and (not (null? l))
398 (loop (f (car l)) (cdr l))))))
399
400 \f
401
402 (if (provided? 'posix)
403 (primitive-load-path "ice-9/posix.scm"))
404
405 (if (provided? 'socket)
406 (primitive-load-path "ice-9/networking.scm"))
407
408 (define file-exists?
409 (if (provided? 'posix)
410 (lambda (str)
411 (access? str F_OK))
412 (lambda (str)
413 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
414 (lambda args #f))))
415 (if port (begin (close-port port) #t)
416 #f)))))
417
418 (define file-is-directory?
419 (if (provided? 'posix)
420 (lambda (str)
421 (eq? (stat:type (stat str)) 'directory))
422 (lambda (str)
423 (let ((port (catch 'system-error
424 (lambda () (open-file (string-append str "/.")
425 OPEN_READ))
426 (lambda args #f))))
427 (if port (begin (close-port port) #t)
428 #f)))))
429
430 (define (has-suffix? str suffix)
431 (let ((sufl (string-length suffix))
432 (sl (string-length str)))
433 (and (> sl sufl)
434 (string=? (substring str (- sl sufl) sl) suffix))))
435
436 \f
437 ;;; {Error Handling}
438 ;;;
439
440 (define (error . args)
441 (save-stack)
442 (if (null? args)
443 (scm-error 'misc-error #f "?" #f #f)
444 (let loop ((msg "~A")
445 (rest (cdr args)))
446 (if (not (null? rest))
447 (loop (string-append msg " ~S")
448 (cdr rest))
449 (scm-error 'misc-error #f msg args #f)))))
450
451 ;; bad-throw is the hook that is called upon a throw to a an unhandled
452 ;; key (unless the throw has four arguments, in which case
453 ;; it's usually interpreted as an error throw.)
454 ;; If the key has a default handler (a throw-handler-default property),
455 ;; it is applied to the throw.
456 ;;
457 (define (bad-throw key . args)
458 (let ((default (symbol-property key 'throw-handler-default)))
459 (or (and default (apply default key args))
460 (apply error "unhandled-exception:" key args))))
461
462 \f
463
464 (define (tm:sec obj) (vector-ref obj 0))
465 (define (tm:min obj) (vector-ref obj 1))
466 (define (tm:hour obj) (vector-ref obj 2))
467 (define (tm:mday obj) (vector-ref obj 3))
468 (define (tm:mon obj) (vector-ref obj 4))
469 (define (tm:year obj) (vector-ref obj 5))
470 (define (tm:wday obj) (vector-ref obj 6))
471 (define (tm:yday obj) (vector-ref obj 7))
472 (define (tm:isdst obj) (vector-ref obj 8))
473 (define (tm:gmtoff obj) (vector-ref obj 9))
474 (define (tm:zone obj) (vector-ref obj 10))
475
476 (define (set-tm:sec obj val) (vector-set! obj 0 val))
477 (define (set-tm:min obj val) (vector-set! obj 1 val))
478 (define (set-tm:hour obj val) (vector-set! obj 2 val))
479 (define (set-tm:mday obj val) (vector-set! obj 3 val))
480 (define (set-tm:mon obj val) (vector-set! obj 4 val))
481 (define (set-tm:year obj val) (vector-set! obj 5 val))
482 (define (set-tm:wday obj val) (vector-set! obj 6 val))
483 (define (set-tm:yday obj val) (vector-set! obj 7 val))
484 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
485 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
486 (define (set-tm:zone obj val) (vector-set! obj 10 val))
487
488 (define (tms:clock obj) (vector-ref obj 0))
489 (define (tms:utime obj) (vector-ref obj 1))
490 (define (tms:stime obj) (vector-ref obj 2))
491 (define (tms:cutime obj) (vector-ref obj 3))
492 (define (tms:cstime obj) (vector-ref obj 4))
493
494 (define (file-position . args) (apply ftell args))
495 (define (file-set-position . args) (apply fseek args))
496
497 (define (move->fdes fd/port fd)
498 (cond ((integer? fd/port)
499 (dup->fdes fd/port fd)
500 (close fd/port)
501 fd)
502 (else
503 (primitive-move->fdes fd/port fd)
504 (set-port-revealed! fd/port 1)
505 fd/port)))
506
507 (define (release-port-handle port)
508 (let ((revealed (port-revealed port)))
509 (if (> revealed 0)
510 (set-port-revealed! port (- revealed 1)))))
511
512 (define (dup->port port/fd mode . maybe-fd)
513 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
514 mode)))
515 (if (pair? maybe-fd)
516 (set-port-revealed! port 1))
517 port))
518
519 (define (dup->inport port/fd . maybe-fd)
520 (apply dup->port port/fd "r" maybe-fd))
521
522 (define (dup->outport port/fd . maybe-fd)
523 (apply dup->port port/fd "w" maybe-fd))
524
525 (define (dup port/fd . maybe-fd)
526 (if (integer? port/fd)
527 (apply dup->fdes port/fd maybe-fd)
528 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
529
530 (define (duplicate-port port modes)
531 (dup->port port modes))
532
533 (define (fdes->inport fdes)
534 (let loop ((rest-ports (fdes->ports fdes)))
535 (cond ((null? rest-ports)
536 (let ((result (fdopen fdes "r")))
537 (set-port-revealed! result 1)
538 result))
539 ((input-port? (car rest-ports))
540 (set-port-revealed! (car rest-ports)
541 (+ (port-revealed (car rest-ports)) 1))
542 (car rest-ports))
543 (else
544 (loop (cdr rest-ports))))))
545
546 (define (fdes->outport fdes)
547 (let loop ((rest-ports (fdes->ports fdes)))
548 (cond ((null? rest-ports)
549 (let ((result (fdopen fdes "w")))
550 (set-port-revealed! result 1)
551 result))
552 ((output-port? (car rest-ports))
553 (set-port-revealed! (car rest-ports)
554 (+ (port-revealed (car rest-ports)) 1))
555 (car rest-ports))
556 (else
557 (loop (cdr rest-ports))))))
558
559 (define (port->fdes port)
560 (set-port-revealed! port (+ (port-revealed port) 1))
561 (fileno port))
562
563 (define (setenv name value)
564 (if value
565 (putenv (string-append name "=" value))
566 (putenv name)))
567
568 \f
569 ;;; {Load Paths}
570 ;;;
571
572 ;;; Here for backward compatability
573 ;;
574 (define scheme-file-suffix (lambda () ".scm"))
575
576 (define (in-vicinity vicinity file)
577 (let ((tail (let ((len (string-length vicinity)))
578 (if (zero? len)
579 #f
580 (string-ref vicinity (- len 1))))))
581 (string-append vicinity
582 (if (or (not tail)
583 (eq? tail #\/))
584 ""
585 "/")
586 file)))
587
588 \f
589 ;;; {Help for scm_shell}
590 ;;; The argument-processing code used by Guile-based shells generates
591 ;;; Scheme code based on the argument list. This page contains help
592 ;;; functions for the code it generates.
593
594 (define (command-line) (program-arguments))
595
596 ;; This is mostly for the internal use of the code generated by
597 ;; scm_compile_shell_switches.
598 (define (load-user-init)
599 (let* ((home (or (getenv "HOME")
600 (false-if-exception (passwd:dir (getpwuid (getuid))))
601 "/")) ;; fallback for cygwin etc.
602 (init-file (in-vicinity home ".guile")))
603 (if (file-exists? init-file)
604 (primitive-load init-file))))
605
606 \f
607 ;;; {Loading by paths}
608
609 ;;; Load a Scheme source file named NAME, searching for it in the
610 ;;; directories listed in %load-path, and applying each of the file
611 ;;; name extensions listed in %load-extensions.
612 (define (load-from-path name)
613 (start-stack 'load-stack
614 (primitive-load-path name)))
615
616
617 \f
618 ;;; {Transcendental Functions}
619 ;;;
620 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
621 ;;; Written by Jerry D. Hedden, (C) FSF.
622 ;;; See the file `COPYING' for terms applying to this program.
623 ;;;
624
625 (define (exp z)
626 (if (real? z) ($exp z)
627 (make-polar ($exp (real-part z)) (imag-part z))))
628
629 (define (log z)
630 (if (and (real? z) (>= z 0))
631 ($log z)
632 (make-rectangular ($log (magnitude z)) (angle z))))
633
634 (define (sqrt z)
635 (if (real? z)
636 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
637 ($sqrt z))
638 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
639
640 (define expt
641 (let ((integer-expt integer-expt))
642 (lambda (z1 z2)
643 (cond ((integer? z2)
644 (if (>= z2 0)
645 (integer-expt z1 z2)
646 (/ 1 (integer-expt z1 (- z2)))))
647 ((and (real? z2) (real? z1) (>= z1 0))
648 ($expt z1 z2))
649 (else
650 (exp (* z2 (log z1))))))))
651
652 (define (sinh z)
653 (if (real? z) ($sinh z)
654 (let ((x (real-part z)) (y (imag-part z)))
655 (make-rectangular (* ($sinh x) ($cos y))
656 (* ($cosh x) ($sin y))))))
657 (define (cosh z)
658 (if (real? z) ($cosh z)
659 (let ((x (real-part z)) (y (imag-part z)))
660 (make-rectangular (* ($cosh x) ($cos y))
661 (* ($sinh x) ($sin y))))))
662 (define (tanh z)
663 (if (real? z) ($tanh z)
664 (let* ((x (* 2 (real-part z)))
665 (y (* 2 (imag-part z)))
666 (w (+ ($cosh x) ($cos y))))
667 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
668
669 (define (asinh z)
670 (if (real? z) ($asinh z)
671 (log (+ z (sqrt (+ (* z z) 1))))))
672
673 (define (acosh z)
674 (if (and (real? z) (>= z 1))
675 ($acosh z)
676 (log (+ z (sqrt (- (* z z) 1))))))
677
678 (define (atanh z)
679 (if (and (real? z) (> z -1) (< z 1))
680 ($atanh z)
681 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
682
683 (define (sin z)
684 (if (real? z) ($sin z)
685 (let ((x (real-part z)) (y (imag-part z)))
686 (make-rectangular (* ($sin x) ($cosh y))
687 (* ($cos x) ($sinh y))))))
688 (define (cos z)
689 (if (real? z) ($cos z)
690 (let ((x (real-part z)) (y (imag-part z)))
691 (make-rectangular (* ($cos x) ($cosh y))
692 (- (* ($sin x) ($sinh y)))))))
693 (define (tan z)
694 (if (real? z) ($tan z)
695 (let* ((x (* 2 (real-part z)))
696 (y (* 2 (imag-part z)))
697 (w (+ ($cos x) ($cosh y))))
698 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
699
700 (define (asin z)
701 (if (and (real? z) (>= z -1) (<= z 1))
702 ($asin z)
703 (* -i (asinh (* +i z)))))
704
705 (define (acos z)
706 (if (and (real? z) (>= z -1) (<= z 1))
707 ($acos z)
708 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
709
710 (define (atan z . y)
711 (if (null? y)
712 (if (real? z) ($atan z)
713 (/ (log (/ (- +i z) (+ +i z))) +2i))
714 ($atan2 z (car y))))
715
716 (define (log10 arg)
717 (/ (log arg) (log 10)))
718
719 \f
720
721 ;;; {Reader Extensions}
722 ;;;
723
724 ;;; Reader code for various "#c" forms.
725 ;;;
726
727 (read-hash-extend #\' (lambda (c port)
728 (read port)))
729 (read-hash-extend #\. (lambda (c port)
730 (eval (read port) (interaction-environment))))
731
732 \f
733 ;;; {Command Line Options}
734 ;;;
735
736 (define (get-option argv kw-opts kw-args return)
737 (cond
738 ((null? argv)
739 (return #f #f argv))
740
741 ((or (not (eq? #\- (string-ref (car argv) 0)))
742 (eq? (string-length (car argv)) 1))
743 (return 'normal-arg (car argv) (cdr argv)))
744
745 ((eq? #\- (string-ref (car argv) 1))
746 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
747 (string-length (car argv))))
748 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
749 (kw-opt? (member kw kw-opts))
750 (kw-arg? (member kw kw-args))
751 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
752 (substring (car argv)
753 (+ kw-arg-pos 1)
754 (string-length (car argv))))
755 (and kw-arg?
756 (begin (set! argv (cdr argv)) (car argv))))))
757 (if (or kw-opt? kw-arg?)
758 (return kw arg (cdr argv))
759 (return 'usage-error kw (cdr argv)))))
760
761 (else
762 (let* ((char (substring (car argv) 1 2))
763 (kw (symbol->keyword char)))
764 (cond
765
766 ((member kw kw-opts)
767 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
768 (new-argv (if (= 0 (string-length rest-car))
769 (cdr argv)
770 (cons (string-append "-" rest-car) (cdr argv)))))
771 (return kw #f new-argv)))
772
773 ((member kw kw-args)
774 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
775 (arg (if (= 0 (string-length rest-car))
776 (cadr argv)
777 rest-car))
778 (new-argv (if (= 0 (string-length rest-car))
779 (cddr argv)
780 (cdr argv))))
781 (return kw arg new-argv)))
782
783 (else (return 'usage-error kw argv)))))))
784
785 (define (for-next-option proc argv kw-opts kw-args)
786 (let loop ((argv argv))
787 (get-option argv kw-opts kw-args
788 (lambda (opt opt-arg argv)
789 (and opt (proc opt opt-arg argv loop))))))
790
791 (define (display-usage-report kw-desc)
792 (for-each
793 (lambda (kw)
794 (or (eq? (car kw) #t)
795 (eq? (car kw) 'else)
796 (let* ((opt-desc kw)
797 (help (cadr opt-desc))
798 (opts (car opt-desc))
799 (opts-proper (if (string? (car opts)) (cdr opts) opts))
800 (arg-name (if (string? (car opts))
801 (string-append "<" (car opts) ">")
802 ""))
803 (left-part (string-append
804 (with-output-to-string
805 (lambda ()
806 (map (lambda (x) (display (keyword-symbol x)) (display " "))
807 opts-proper)))
808 arg-name))
809 (middle-part (if (and (< (string-length left-part) 30)
810 (< (string-length help) 40))
811 (make-string (- 30 (string-length left-part)) #\ )
812 "\n\t")))
813 (display left-part)
814 (display middle-part)
815 (display help)
816 (newline))))
817 kw-desc))
818
819
820
821 (define (transform-usage-lambda cases)
822 (let* ((raw-usage (delq! 'else (map car cases)))
823 (usage-sans-specials (map (lambda (x)
824 (or (and (not (list? x)) x)
825 (and (symbol? (car x)) #t)
826 (and (boolean? (car x)) #t)
827 x))
828 raw-usage))
829 (usage-desc (delq! #t usage-sans-specials))
830 (kw-desc (map car usage-desc))
831 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
832 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
833 (transmogrified-cases (map (lambda (case)
834 (cons (let ((opts (car case)))
835 (if (or (boolean? opts) (eq? 'else opts))
836 opts
837 (cond
838 ((symbol? (car opts)) opts)
839 ((boolean? (car opts)) opts)
840 ((string? (caar opts)) (cdar opts))
841 (else (car opts)))))
842 (cdr case)))
843 cases)))
844 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
845 (lambda (%argv)
846 (let %next-arg ((%argv %argv))
847 (get-option %argv
848 ',kw-opts
849 ',kw-args
850 (lambda (%opt %arg %new-argv)
851 (case %opt
852 ,@ transmogrified-cases))))))))
853
854
855 \f
856
857 ;;; {Low Level Modules}
858 ;;;
859 ;;; These are the low level data structures for modules.
860 ;;;
861 ;;; !!! warning: The interface to lazy binder procedures is going
862 ;;; to be changed in an incompatible way to permit all the basic
863 ;;; module ops to be virtualized.
864 ;;;
865 ;;; (make-module size use-list lazy-binding-proc) => module
866 ;;; module-{obarray,uses,binder}[|-set!]
867 ;;; (module? obj) => [#t|#f]
868 ;;; (module-locally-bound? module symbol) => [#t|#f]
869 ;;; (module-bound? module symbol) => [#t|#f]
870 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
871 ;;; (module-symbol-interned? module symbol) => [#t|#f]
872 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
873 ;;; (module-variable module symbol) => [#<variable ...> | #f]
874 ;;; (module-symbol-binding module symbol opt-value)
875 ;;; => [ <obj> | opt-value | an error occurs ]
876 ;;; (module-make-local-var! module symbol) => #<variable...>
877 ;;; (module-add! module symbol var) => unspecified
878 ;;; (module-remove! module symbol) => unspecified
879 ;;; (module-for-each proc module) => unspecified
880 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
881 ;;; (set-current-module module) => unspecified
882 ;;; (current-module) => #<module...>
883 ;;;
884 ;;;
885
886 \f
887 ;;; {Printing Modules}
888 ;; This is how modules are printed. You can re-define it.
889 ;; (Redefining is actually more complicated than simply redefining
890 ;; %print-module because that would only change the binding and not
891 ;; the value stored in the vtable that determines how record are
892 ;; printed. Sigh.)
893
894 (define (%print-module mod port) ; unused args: depth length style table)
895 (display "#<" port)
896 (display (or (module-kind mod) "module") port)
897 (let ((name (module-name mod)))
898 (if name
899 (begin
900 (display " " port)
901 (display name port))))
902 (display " " port)
903 (display (number->string (object-address mod) 16) port)
904 (display ">" port))
905
906 ;; module-type
907 ;;
908 ;; A module is characterized by an obarray in which local symbols
909 ;; are interned, a list of modules, "uses", from which non-local
910 ;; bindings can be inherited, and an optional lazy-binder which
911 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
912 ;; bindings that would otherwise not be found locally in the module.
913 ;;
914 ;; NOTE: If you change here, you also need to change libguile/modules.h.
915 ;;
916 (define module-type
917 (make-record-type 'module
918 '(obarray uses binder eval-closure transformer name kind
919 observers weak-observers observer-id)
920 %print-module))
921
922 ;; make-module &opt size uses binder
923 ;;
924 ;; Create a new module, perhaps with a particular size of obarray,
925 ;; initial uses list, or binding procedure.
926 ;;
927 (define make-module
928 (lambda args
929
930 (define (parse-arg index default)
931 (if (> (length args) index)
932 (list-ref args index)
933 default))
934
935 (if (> (length args) 3)
936 (error "Too many args to make-module." args))
937
938 (let ((size (parse-arg 0 1021))
939 (uses (parse-arg 1 '()))
940 (binder (parse-arg 2 #f)))
941
942 (if (not (integer? size))
943 (error "Illegal size to make-module." size))
944 (if (not (and (list? uses)
945 (and-map module? uses)))
946 (error "Incorrect use list." uses))
947 (if (and binder (not (procedure? binder)))
948 (error
949 "Lazy-binder expected to be a procedure or #f." binder))
950
951 (let ((module (module-constructor (make-vector size '())
952 uses binder #f #f #f #f
953 '()
954 (make-weak-value-hash-table 31)
955 0)))
956
957 ;; We can't pass this as an argument to module-constructor,
958 ;; because we need it to close over a pointer to the module
959 ;; itself.
960 (set-module-eval-closure! module (standard-eval-closure module))
961
962 module))))
963
964 (define module-constructor (record-constructor module-type))
965 (define module-obarray (record-accessor module-type 'obarray))
966 (define set-module-obarray! (record-modifier module-type 'obarray))
967 (define module-uses (record-accessor module-type 'uses))
968 (define set-module-uses! (record-modifier module-type 'uses))
969 (define module-binder (record-accessor module-type 'binder))
970 (define set-module-binder! (record-modifier module-type 'binder))
971
972 ;; NOTE: This binding is used in libguile/modules.c.
973 (define module-eval-closure (record-accessor module-type 'eval-closure))
974
975 (define module-transformer (record-accessor module-type 'transformer))
976 (define set-module-transformer! (record-modifier module-type 'transformer))
977 (define module-name (record-accessor module-type 'name))
978 (define set-module-name! (record-modifier module-type 'name))
979 (define module-kind (record-accessor module-type 'kind))
980 (define set-module-kind! (record-modifier module-type 'kind))
981 (define module-observers (record-accessor module-type 'observers))
982 (define set-module-observers! (record-modifier module-type 'observers))
983 (define module-weak-observers (record-accessor module-type 'weak-observers))
984 (define module-observer-id (record-accessor module-type 'observer-id))
985 (define set-module-observer-id! (record-modifier module-type 'observer-id))
986 (define module? (record-predicate module-type))
987
988 (define set-module-eval-closure!
989 (let ((setter (record-modifier module-type 'eval-closure)))
990 (lambda (module closure)
991 (setter module closure)
992 ;; Make it possible to lookup the module from the environment.
993 ;; This implementation is correct since an eval closure can belong
994 ;; to maximally one module.
995 (set-procedure-property! closure 'module module))))
996
997 ;;; This procedure is depreated
998 ;;;
999 (define eval-in-module eval)
1000
1001 \f
1002 ;;; {Observer protocol}
1003 ;;;
1004
1005 (define (module-observe module proc)
1006 (set-module-observers! module (cons proc (module-observers module)))
1007 (cons module proc))
1008
1009 (define (module-observe-weak module proc)
1010 (let ((id (module-observer-id module)))
1011 (hash-set! (module-weak-observers module) id proc)
1012 (set-module-observer-id! module (+ 1 id))
1013 (cons module id)))
1014
1015 (define (module-unobserve token)
1016 (let ((module (car token))
1017 (id (cdr token)))
1018 (if (integer? id)
1019 (hash-remove! (module-weak-observers module) id)
1020 (set-module-observers! module (delq1! id (module-observers module)))))
1021 *unspecified*)
1022
1023 (define (module-modified m)
1024 (for-each (lambda (proc) (proc m)) (module-observers m))
1025 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1026
1027 \f
1028 ;;; {Module Searching in General}
1029 ;;;
1030 ;;; We sometimes want to look for properties of a symbol
1031 ;;; just within the obarray of one module. If the property
1032 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1033 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1034 ;;;
1035 ;;;
1036 ;;; Other times, we want to test for a symbol property in the obarray
1037 ;;; of M and, if it is not found there, try each of the modules in the
1038 ;;; uses list of M. This is the normal way of testing for some
1039 ;;; property, so we state these properties without qualification as
1040 ;;; in: ``The symbol 'fnord is interned in module M because it is
1041 ;;; interned locally in module M2 which is a member of the uses list
1042 ;;; of M.''
1043 ;;;
1044
1045 ;; module-search fn m
1046 ;;
1047 ;; return the first non-#f result of FN applied to M and then to
1048 ;; the modules in the uses of m, and so on recursively. If all applications
1049 ;; return #f, then so does this function.
1050 ;;
1051 (define (module-search fn m v)
1052 (define (loop pos)
1053 (and (pair? pos)
1054 (or (module-search fn (car pos) v)
1055 (loop (cdr pos)))))
1056 (or (fn m v)
1057 (loop (module-uses m))))
1058
1059
1060 ;;; {Is a symbol bound in a module?}
1061 ;;;
1062 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1063 ;;; of S in M has been set to some well-defined value.
1064 ;;;
1065
1066 ;; module-locally-bound? module symbol
1067 ;;
1068 ;; Is a symbol bound (interned and defined) locally in a given module?
1069 ;;
1070 (define (module-locally-bound? m v)
1071 (let ((var (module-local-variable m v)))
1072 (and var
1073 (variable-bound? var))))
1074
1075 ;; module-bound? module symbol
1076 ;;
1077 ;; Is a symbol bound (interned and defined) anywhere in a given module
1078 ;; or its uses?
1079 ;;
1080 (define (module-bound? m v)
1081 (module-search module-locally-bound? m v))
1082
1083 ;;; {Is a symbol interned in a module?}
1084 ;;;
1085 ;;; Symbol S in Module M is interned if S occurs in
1086 ;;; of S in M has been set to some well-defined value.
1087 ;;;
1088 ;;; It is possible to intern a symbol in a module without providing
1089 ;;; an initial binding for the corresponding variable. This is done
1090 ;;; with:
1091 ;;; (module-add! module symbol (make-undefined-variable))
1092 ;;;
1093 ;;; In that case, the symbol is interned in the module, but not
1094 ;;; bound there. The unbound symbol shadows any binding for that
1095 ;;; symbol that might otherwise be inherited from a member of the uses list.
1096 ;;;
1097
1098 (define (module-obarray-get-handle ob key)
1099 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1100
1101 (define (module-obarray-ref ob key)
1102 ((if (symbol? key) hashq-ref hash-ref) ob key))
1103
1104 (define (module-obarray-set! ob key val)
1105 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1106
1107 (define (module-obarray-remove! ob key)
1108 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1109
1110 ;; module-symbol-locally-interned? module symbol
1111 ;;
1112 ;; is a symbol interned (not neccessarily defined) locally in a given module
1113 ;; or its uses? Interned symbols shadow inherited bindings even if
1114 ;; they are not themselves bound to a defined value.
1115 ;;
1116 (define (module-symbol-locally-interned? m v)
1117 (not (not (module-obarray-get-handle (module-obarray m) v))))
1118
1119 ;; module-symbol-interned? module symbol
1120 ;;
1121 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1122 ;; or its uses? Interned symbols shadow inherited bindings even if
1123 ;; they are not themselves bound to a defined value.
1124 ;;
1125 (define (module-symbol-interned? m v)
1126 (module-search module-symbol-locally-interned? m v))
1127
1128
1129 ;;; {Mapping modules x symbols --> variables}
1130 ;;;
1131
1132 ;; module-local-variable module symbol
1133 ;; return the local variable associated with a MODULE and SYMBOL.
1134 ;;
1135 ;;; This function is very important. It is the only function that can
1136 ;;; return a variable from a module other than the mutators that store
1137 ;;; new variables in modules. Therefore, this function is the location
1138 ;;; of the "lazy binder" hack.
1139 ;;;
1140 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1141 ;;; to a variable, return that variable object.
1142 ;;;
1143 ;;; If the symbols is not found at first, but the module has a lazy binder,
1144 ;;; then try the binder.
1145 ;;;
1146 ;;; If the symbol is not found at all, return #f.
1147 ;;;
1148 (define (module-local-variable m v)
1149 ; (caddr
1150 ; (list m v
1151 (let ((b (module-obarray-ref (module-obarray m) v)))
1152 (or (and (variable? b) b)
1153 (and (module-binder m)
1154 ((module-binder m) m v #f)))))
1155 ;))
1156
1157 ;; module-variable module symbol
1158 ;;
1159 ;; like module-local-variable, except search the uses in the
1160 ;; case V is not found in M.
1161 ;;
1162 ;; NOTE: This function is superseded with C code (see modules.c)
1163 ;;; when using the standard eval closure.
1164 ;;
1165 (define (module-variable m v)
1166 (module-search module-local-variable m v))
1167
1168
1169 ;;; {Mapping modules x symbols --> bindings}
1170 ;;;
1171 ;;; These are similar to the mapping to variables, except that the
1172 ;;; variable is dereferenced.
1173 ;;;
1174
1175 ;; module-symbol-binding module symbol opt-value
1176 ;;
1177 ;; return the binding of a variable specified by name within
1178 ;; a given module, signalling an error if the variable is unbound.
1179 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1180 ;; return OPT-VALUE.
1181 ;;
1182 (define (module-symbol-local-binding m v . opt-val)
1183 (let ((var (module-local-variable m v)))
1184 (if var
1185 (variable-ref var)
1186 (if (not (null? opt-val))
1187 (car opt-val)
1188 (error "Locally unbound variable." v)))))
1189
1190 ;; module-symbol-binding module symbol opt-value
1191 ;;
1192 ;; return the binding of a variable specified by name within
1193 ;; a given module, signalling an error if the variable is unbound.
1194 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1195 ;; return OPT-VALUE.
1196 ;;
1197 (define (module-symbol-binding m v . opt-val)
1198 (let ((var (module-variable m v)))
1199 (if var
1200 (variable-ref var)
1201 (if (not (null? opt-val))
1202 (car opt-val)
1203 (error "Unbound variable." v)))))
1204
1205
1206 \f
1207 ;;; {Adding Variables to Modules}
1208 ;;;
1209 ;;;
1210
1211
1212 ;; module-make-local-var! module symbol
1213 ;;
1214 ;; ensure a variable for V in the local namespace of M.
1215 ;; If no variable was already there, then create a new and uninitialzied
1216 ;; variable.
1217 ;;
1218 (define (module-make-local-var! m v)
1219 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1220 (and (variable? b)
1221 (begin
1222 (module-modified m)
1223 b)))
1224 (and (module-binder m)
1225 ((module-binder m) m v #t))
1226 (begin
1227 (let ((answer (make-undefined-variable v)))
1228 (module-obarray-set! (module-obarray m) v answer)
1229 (module-modified m)
1230 answer))))
1231
1232 ;; module-add! module symbol var
1233 ;;
1234 ;; ensure a particular variable for V in the local namespace of M.
1235 ;;
1236 (define (module-add! m v var)
1237 (if (not (variable? var))
1238 (error "Bad variable to module-add!" var))
1239 (module-obarray-set! (module-obarray m) v var)
1240 (module-modified m))
1241
1242 ;; module-remove!
1243 ;;
1244 ;; make sure that a symbol is undefined in the local namespace of M.
1245 ;;
1246 (define (module-remove! m v)
1247 (module-obarray-remove! (module-obarray m) v)
1248 (module-modified m))
1249
1250 (define (module-clear! m)
1251 (vector-fill! (module-obarray m) '())
1252 (module-modified m))
1253
1254 ;; MODULE-FOR-EACH -- exported
1255 ;;
1256 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1257 ;;
1258 (define (module-for-each proc module)
1259 (let ((obarray (module-obarray module)))
1260 (do ((index 0 (+ index 1))
1261 (end (vector-length obarray)))
1262 ((= index end))
1263 (for-each
1264 (lambda (bucket)
1265 (proc (car bucket) (cdr bucket)))
1266 (vector-ref obarray index)))))
1267
1268
1269 (define (module-map proc module)
1270 (let* ((obarray (module-obarray module))
1271 (end (vector-length obarray)))
1272
1273 (let loop ((i 0)
1274 (answer '()))
1275 (if (= i end)
1276 answer
1277 (loop (+ 1 i)
1278 (append!
1279 (map (lambda (bucket)
1280 (proc (car bucket) (cdr bucket)))
1281 (vector-ref obarray i))
1282 answer))))))
1283 \f
1284
1285 ;;; {Low Level Bootstrapping}
1286 ;;;
1287
1288 ;; make-root-module
1289
1290 ;; A root module uses the symhash table (the system's privileged
1291 ;; obarray). Being inside a root module is like using SCM without
1292 ;; any module system.
1293 ;;
1294
1295
1296 (define (root-module-closure m s define?)
1297 (let ((bi (builtin-variable s)))
1298 (and bi
1299 (or define? (variable-bound? bi))
1300 (begin
1301 (module-add! m s bi)
1302 bi))))
1303
1304 (define (make-root-module)
1305 (make-module 1019 '() root-module-closure))
1306
1307
1308 ;; make-scm-module
1309
1310 ;; An scm module is a module into which the lazy binder copies
1311 ;; variable bindings from the system symhash table. The mapping is
1312 ;; one way only; newly introduced bindings in an scm module are not
1313 ;; copied back into the system symhash table (and can be used to override
1314 ;; bindings from the symhash table).
1315 ;;
1316
1317 (define (scm-module-closure m s define?)
1318 (let ((bi (builtin-variable s)))
1319 (and bi
1320 (variable-bound? bi)
1321 (begin
1322 (module-add! m s bi)
1323 bi))))
1324
1325 (define (make-scm-module)
1326 (make-module 1019 '() scm-module-closure))
1327
1328
1329
1330 ;; the-module
1331 ;;
1332 ;; NOTE: This binding is used in libguile/modules.c.
1333 ;;
1334 (define the-module (make-fluid))
1335
1336 ;; scm:eval-transformer
1337 ;;
1338 ;;(define scm:eval-transformer (make-fluid)) ; initialized in eval.c.
1339
1340 ;; set-current-module module
1341 ;;
1342 ;; set the current module as viewed by the normalizer.
1343 ;;
1344 ;; NOTE: This binding is used in libguile/modules.c.
1345 ;;
1346 (define (set-current-module m)
1347 (fluid-set! the-module m)
1348 (if m
1349 (begin
1350 ;; *top-level-lookup-closure* is now deprecated
1351 (fluid-set! *top-level-lookup-closure*
1352 (module-eval-closure (fluid-ref the-module)))
1353 (fluid-set! scm:eval-transformer (module-transformer (fluid-ref the-module))))
1354 (fluid-set! *top-level-lookup-closure* #f)))
1355
1356
1357 ;; current-module
1358 ;;
1359 ;; return the current module as viewed by the normalizer.
1360 ;;
1361 (define (current-module) (fluid-ref the-module))
1362 \f
1363 ;;; {Module-based Loading}
1364 ;;;
1365
1366 (define (save-module-excursion thunk)
1367 (let ((inner-module (current-module))
1368 (outer-module #f))
1369 (dynamic-wind (lambda ()
1370 (set! outer-module (current-module))
1371 (set-current-module inner-module)
1372 (set! inner-module #f))
1373 thunk
1374 (lambda ()
1375 (set! inner-module (current-module))
1376 (set-current-module outer-module)
1377 (set! outer-module #f)))))
1378
1379 (define basic-load load)
1380
1381 (define (load-module filename)
1382 (save-module-excursion
1383 (lambda ()
1384 (let ((oldname (and (current-load-port)
1385 (port-filename (current-load-port)))))
1386 (basic-load (if (and oldname
1387 (> (string-length filename) 0)
1388 (not (char=? (string-ref filename 0) #\/))
1389 (not (string=? (dirname oldname) ".")))
1390 (string-append (dirname oldname) "/" filename)
1391 filename))))))
1392
1393
1394 \f
1395 ;;; {MODULE-REF -- exported}
1396 ;;
1397 ;; Returns the value of a variable called NAME in MODULE or any of its
1398 ;; used modules. If there is no such variable, then if the optional third
1399 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1400 ;;
1401 (define (module-ref module name . rest)
1402 (let ((variable (module-variable module name)))
1403 (if (and variable (variable-bound? variable))
1404 (variable-ref variable)
1405 (if (null? rest)
1406 (error "No variable named" name 'in module)
1407 (car rest) ; default value
1408 ))))
1409
1410 ;; MODULE-SET! -- exported
1411 ;;
1412 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1413 ;; to VALUE; if there is no such variable, an error is signaled.
1414 ;;
1415 (define (module-set! module name value)
1416 (let ((variable (module-variable module name)))
1417 (if variable
1418 (variable-set! variable value)
1419 (error "No variable named" name 'in module))))
1420
1421 ;; MODULE-DEFINE! -- exported
1422 ;;
1423 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1424 ;; variable, it is added first.
1425 ;;
1426 (define (module-define! module name value)
1427 (let ((variable (module-local-variable module name)))
1428 (if variable
1429 (begin
1430 (variable-set! variable value)
1431 (module-modified module))
1432 (module-add! module name (make-variable value name)))))
1433
1434 ;; MODULE-DEFINED? -- exported
1435 ;;
1436 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1437 ;; uses)
1438 ;;
1439 (define (module-defined? module name)
1440 (let ((variable (module-variable module name)))
1441 (and variable (variable-bound? variable))))
1442
1443 ;; MODULE-USE! module interface
1444 ;;
1445 ;; Add INTERFACE to the list of interfaces used by MODULE.
1446 ;;
1447 (define (module-use! module interface)
1448 (set-module-uses! module
1449 (cons interface (delq! interface (module-uses module))))
1450 (module-modified module))
1451
1452 \f
1453 ;;; {Recursive Namespaces}
1454 ;;;
1455 ;;;
1456 ;;; A hierarchical namespace emerges if we consider some module to be
1457 ;;; root, and variables bound to modules as nested namespaces.
1458 ;;;
1459 ;;; The routines in this file manage variable names in hierarchical namespace.
1460 ;;; Each variable name is a list of elements, looked up in successively nested
1461 ;;; modules.
1462 ;;;
1463 ;;; (nested-ref some-root-module '(foo bar baz))
1464 ;;; => <value of a variable named baz in the module bound to bar in
1465 ;;; the module bound to foo in some-root-module>
1466 ;;;
1467 ;;;
1468 ;;; There are:
1469 ;;;
1470 ;;; ;; a-root is a module
1471 ;;; ;; name is a list of symbols
1472 ;;;
1473 ;;; nested-ref a-root name
1474 ;;; nested-set! a-root name val
1475 ;;; nested-define! a-root name val
1476 ;;; nested-remove! a-root name
1477 ;;;
1478 ;;;
1479 ;;; (current-module) is a natural choice for a-root so for convenience there are
1480 ;;; also:
1481 ;;;
1482 ;;; local-ref name == nested-ref (current-module) name
1483 ;;; local-set! name val == nested-set! (current-module) name val
1484 ;;; local-define! name val == nested-define! (current-module) name val
1485 ;;; local-remove! name == nested-remove! (current-module) name
1486 ;;;
1487
1488
1489 (define (nested-ref root names)
1490 (let loop ((cur root)
1491 (elts names))
1492 (cond
1493 ((null? elts) cur)
1494 ((not (module? cur)) #f)
1495 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1496
1497 (define (nested-set! root names val)
1498 (let loop ((cur root)
1499 (elts names))
1500 (if (null? (cdr elts))
1501 (module-set! cur (car elts) val)
1502 (loop (module-ref cur (car elts)) (cdr elts)))))
1503
1504 (define (nested-define! root names val)
1505 (let loop ((cur root)
1506 (elts names))
1507 (if (null? (cdr elts))
1508 (module-define! cur (car elts) val)
1509 (loop (module-ref cur (car elts)) (cdr elts)))))
1510
1511 (define (nested-remove! root names)
1512 (let loop ((cur root)
1513 (elts names))
1514 (if (null? (cdr elts))
1515 (module-remove! cur (car elts))
1516 (loop (module-ref cur (car elts)) (cdr elts)))))
1517
1518 (define (local-ref names) (nested-ref (current-module) names))
1519 (define (local-set! names val) (nested-set! (current-module) names val))
1520 (define (local-define names val) (nested-define! (current-module) names val))
1521 (define (local-remove names) (nested-remove! (current-module) names))
1522
1523
1524 \f
1525 ;;; {The (app) module}
1526 ;;;
1527 ;;; The root of conventionally named objects not directly in the top level.
1528 ;;;
1529 ;;; (app modules)
1530 ;;; (app modules guile)
1531 ;;;
1532 ;;; The directory of all modules and the standard root module.
1533 ;;;
1534
1535 (define (module-public-interface m)
1536 (module-ref m '%module-public-interface #f))
1537 (define (set-module-public-interface! m i)
1538 (module-define! m '%module-public-interface i))
1539 (define (set-system-module! m s)
1540 (set-procedure-property! (module-eval-closure m) 'system-module s))
1541 (define the-root-module (make-root-module))
1542 (define the-scm-module (make-scm-module))
1543 (set-module-public-interface! the-root-module the-scm-module)
1544 (set-module-name! the-root-module '(guile))
1545 (set-module-name! the-scm-module '(guile))
1546 (set-module-kind! the-scm-module 'interface)
1547 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1548
1549 (set-current-module the-root-module)
1550
1551 (define app (make-module 31))
1552 (local-define '(app modules) (make-module 31))
1553 (local-define '(app modules guile) the-root-module)
1554
1555 ;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1556
1557 (define (try-load-module name)
1558 (or (try-module-linked name)
1559 (try-module-autoload name)
1560 (try-module-dynamic-link name)))
1561
1562 ;; NOTE: This binding is used in libguile/modules.c.
1563 ;;
1564 (define (resolve-module name . maybe-autoload)
1565 (let ((full-name (append '(app modules) name)))
1566 (let ((already (local-ref full-name)))
1567 (if already
1568 ;; The module already exists...
1569 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1570 (not (module-ref already '%module-public-interface #f)))
1571 ;; ...but we are told to load and it doesn't contain source, so
1572 (begin
1573 (try-load-module name)
1574 already)
1575 ;; simply return it.
1576 already)
1577 (begin
1578 ;; Try to autoload it if we are told so
1579 (if (or (null? maybe-autoload) (car maybe-autoload))
1580 (try-load-module name))
1581 ;; Get/create it.
1582 (make-modules-in (current-module) full-name))))))
1583
1584 (define (beautify-user-module! module)
1585 (let ((interface (module-public-interface module)))
1586 (if (or (not interface)
1587 (eq? interface module))
1588 (let ((interface (make-module 31)))
1589 (set-module-name! interface (module-name module))
1590 (set-module-kind! interface 'interface)
1591 (set-module-public-interface! module interface))))
1592 (if (and (not (memq the-scm-module (module-uses module)))
1593 (not (eq? module the-root-module)))
1594 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1595
1596 (define (purify-module! module)
1597 "Removes bindings in MODULE which are inherited from the (guile) module."
1598 (let ((use-list (module-uses module)))
1599 (if (and (pair? use-list)
1600 (eq? (car (last-pair use-list)) the-scm-module))
1601 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1602
1603 ;; NOTE: This binding is used in libguile/modules.c.
1604 ;;
1605 (define (make-modules-in module name)
1606 (if (null? name)
1607 module
1608 (cond
1609 ((module-ref module (car name) #f)
1610 => (lambda (m) (make-modules-in m (cdr name))))
1611 (else (let ((m (make-module 31)))
1612 (set-module-kind! m 'directory)
1613 (set-module-name! m (append (or (module-name module)
1614 '())
1615 (list (car name))))
1616 (module-define! module (car name) m)
1617 (make-modules-in m (cdr name)))))))
1618
1619 (define (resolve-interface name)
1620 (let ((module (resolve-module name)))
1621 (and module (module-public-interface module))))
1622
1623
1624 (define %autoloader-developer-mode #t)
1625
1626 (define (process-define-module args)
1627 (let* ((module-id (car args))
1628 (module (resolve-module module-id #f))
1629 (kws (cdr args)))
1630 (beautify-user-module! module)
1631 (let loop ((kws kws)
1632 (reversed-interfaces '())
1633 (exports '()))
1634 (if (null? kws)
1635 (begin
1636 (for-each (lambda (interface)
1637 (module-use! module interface))
1638 reversed-interfaces)
1639 (module-export! module exports))
1640 (let ((keyword (if (keyword? (car kws))
1641 (keyword->symbol (car kws))
1642 (and (symbol? (car kws))
1643 (let ((s (symbol->string (car kws))))
1644 (and (eq? (string-ref s 0) #\:)
1645 (string->symbol (substring s 1))))))))
1646 (case keyword
1647 ((use-module use-syntax)
1648 (if (not (pair? (cdr kws)))
1649 (error "unrecognized defmodule argument" kws))
1650 (let* ((used-name (cadr kws))
1651 (used-module (resolve-module used-name)))
1652 (if (not (module-ref used-module
1653 '%module-public-interface
1654 #f))
1655 (begin
1656 ((if %autoloader-developer-mode warn error)
1657 "no code for module" (module-name used-module))
1658 (beautify-user-module! used-module)))
1659 (let ((interface (module-public-interface used-module)))
1660 (if (not interface)
1661 (error "missing interface for use-module"
1662 used-module))
1663 (if (eq? keyword 'use-syntax)
1664 (set-module-transformer!
1665 module
1666 (module-ref interface (car (last-pair used-name))
1667 #f)))
1668 (loop (cddr kws)
1669 (cons interface reversed-interfaces)
1670 exports))))
1671 ((autoload)
1672 (if (not (and (pair? (cdr kws)) (pair? (cddr kws))))
1673 (error "unrecognized defmodule argument" kws))
1674 (loop (cdddr kws)
1675 (cons (make-autoload-interface module
1676 (cadr kws)
1677 (caddr kws))
1678 reversed-interfaces)
1679 exports))
1680 ((no-backtrace)
1681 (set-system-module! module #t)
1682 (loop (cdr kws) reversed-interfaces exports))
1683 ((pure)
1684 (purify-module! module)
1685 (loop (cdr kws) reversed-interfaces exports))
1686 ((export)
1687 (if (not (pair? (cdr kws)))
1688 (error "unrecognized defmodule argument" kws))
1689 (loop (cddr kws)
1690 reversed-interfaces
1691 (append (cadr kws) exports)))
1692 (else
1693 (error "unrecognized defmodule argument" kws))))))
1694 (set-current-module module)
1695 module))
1696
1697 ;;; {Autoload}
1698
1699 (define (make-autoload-interface module name bindings)
1700 (let ((b (lambda (a sym definep)
1701 (and (memq sym bindings)
1702 (let ((i (module-public-interface (resolve-module name))))
1703 (if (not i)
1704 (error "missing interface for module" name))
1705 ;; Replace autoload-interface with interface
1706 (set-car! (memq a (module-uses module)) i)
1707 (module-local-variable i sym))))))
1708 (module-constructor #() '() b #f #f name 'autoload
1709 '() (make-weak-value-hash-table 31) 0)))
1710
1711 \f
1712 ;;; {Autoloading modules}
1713
1714 (define autoloads-in-progress '())
1715
1716 (define (try-module-autoload module-name)
1717 (let* ((reverse-name (reverse module-name))
1718 (name (symbol->string (car reverse-name)))
1719 (dir-hint-module-name (reverse (cdr reverse-name)))
1720 (dir-hint (apply string-append
1721 (map (lambda (elt)
1722 (string-append (symbol->string elt) "/"))
1723 dir-hint-module-name))))
1724 (resolve-module dir-hint-module-name #f)
1725 (and (not (autoload-done-or-in-progress? dir-hint name))
1726 (let ((didit #f))
1727 (dynamic-wind
1728 (lambda () (autoload-in-progress! dir-hint name))
1729 (lambda ()
1730 (let ((full (%search-load-path (in-vicinity dir-hint name))))
1731 (if full
1732 (begin
1733 (save-module-excursion (lambda () (primitive-load full)))
1734 (set! didit #t)))))
1735 (lambda () (set-autoloaded! dir-hint name didit)))
1736 didit))))
1737
1738 \f
1739 ;;; Dynamic linking of modules
1740
1741 ;; Initializing a module that is written in C is a two step process.
1742 ;; First the module's `module init' function is called. This function
1743 ;; is expected to call `scm_register_module_xxx' to register the `real
1744 ;; init' function. Later, when the module is referenced for the first
1745 ;; time, this real init function is called in the right context. See
1746 ;; gtcltk-lib/gtcltk-module.c for an example.
1747 ;;
1748 ;; The code for the module can be in a regular shared library (so that
1749 ;; the `module init' function will be called when libguile is
1750 ;; initialized). Or it can be dynamically linked.
1751 ;;
1752 ;; You can safely call `scm_register_module_xxx' before libguile
1753 ;; itself is initialized. You could call it from an C++ constructor
1754 ;; of a static object, for example.
1755 ;;
1756 ;; To make your Guile extension into a dynamic linkable module, follow
1757 ;; these easy steps:
1758 ;;
1759 ;; - Find a name for your module, like (ice-9 gtcltk)
1760 ;; - Write a function with a name like
1761 ;;
1762 ;; scm_init_ice_9_gtcltk_module
1763 ;;
1764 ;; This is your `module init' function. It should call
1765 ;;
1766 ;; scm_register_module_xxx ("ice-9 gtcltk", scm_init_gtcltk);
1767 ;;
1768 ;; "ice-9 gtcltk" is the C version of the module name. Slashes are
1769 ;; replaced by spaces, the rest is untouched. `scm_init_gtcltk' is
1770 ;; the real init function that executes the usual initializations
1771 ;; like making new smobs, etc.
1772 ;;
1773 ;; - Make a shared library with your code and a name like
1774 ;;
1775 ;; ice-9/libgtcltk.so
1776 ;;
1777 ;; and put it somewhere in %load-path.
1778 ;;
1779 ;; - Then you can simply write `:use-module (ice-9 gtcltk)' and it
1780 ;; will be linked automatically.
1781 ;;
1782 ;; This is all very experimental.
1783
1784 (define (split-c-module-name str)
1785 (let loop ((rev '())
1786 (start 0)
1787 (pos 0)
1788 (end (string-length str)))
1789 (cond
1790 ((= pos end)
1791 (reverse (cons (string->symbol (substring str start pos)) rev)))
1792 ((eq? (string-ref str pos) #\space)
1793 (loop (cons (string->symbol (substring str start pos)) rev)
1794 (+ pos 1)
1795 (+ pos 1)
1796 end))
1797 (else
1798 (loop rev start (+ pos 1) end)))))
1799
1800 (define (convert-c-registered-modules dynobj)
1801 (let ((res (map (lambda (c)
1802 (list (split-c-module-name (car c)) (cdr c) dynobj))
1803 (c-registered-modules))))
1804 (c-clear-registered-modules)
1805 res))
1806
1807 (define registered-modules '())
1808
1809 (define (register-modules dynobj)
1810 (set! registered-modules
1811 (append! (convert-c-registered-modules dynobj)
1812 registered-modules)))
1813
1814 (define (init-dynamic-module modname)
1815 ;; Register any linked modules which has been registered on the C level
1816 (register-modules #f)
1817 (or-map (lambda (modinfo)
1818 (if (equal? (car modinfo) modname)
1819 (begin
1820 (set! registered-modules (delq! modinfo registered-modules))
1821 (let ((mod (resolve-module modname #f)))
1822 (save-module-excursion
1823 (lambda ()
1824 (set-current-module mod)
1825 (set-module-public-interface! mod mod)
1826 (dynamic-call (cadr modinfo) (caddr modinfo))
1827 ))
1828 #t))
1829 #f))
1830 registered-modules))
1831
1832 (define (dynamic-maybe-call name dynobj)
1833 (catch #t ; could use false-if-exception here
1834 (lambda ()
1835 (dynamic-call name dynobj))
1836 (lambda args
1837 #f)))
1838
1839 (define (dynamic-maybe-link filename)
1840 (catch #t ; could use false-if-exception here
1841 (lambda ()
1842 (dynamic-link filename))
1843 (lambda args
1844 #f)))
1845
1846 (define (find-and-link-dynamic-module module-name)
1847 (define (make-init-name mod-name)
1848 (string-append "scm_init"
1849 (list->string (map (lambda (c)
1850 (if (or (char-alphabetic? c)
1851 (char-numeric? c))
1852 c
1853 #\_))
1854 (string->list mod-name)))
1855 "_module"))
1856
1857 ;; Put the subdirectory for this module in the car of SUBDIR-AND-LIBNAME,
1858 ;; and the `libname' (the name of the module prepended by `lib') in the cdr
1859 ;; field. For example, if MODULE-NAME is the list (inet tcp-ip udp), then
1860 ;; SUBDIR-AND-LIBNAME will be the pair ("inet/tcp-ip" . "libudp").
1861 (let ((subdir-and-libname
1862 (let loop ((dirs "")
1863 (syms module-name))
1864 (if (null? (cdr syms))
1865 (cons dirs (string-append "lib" (symbol->string (car syms))))
1866 (loop (string-append dirs (symbol->string (car syms)) "/")
1867 (cdr syms)))))
1868 (init (make-init-name (apply string-append
1869 (map (lambda (s)
1870 (string-append "_"
1871 (symbol->string s)))
1872 module-name)))))
1873 (let ((subdir (car subdir-and-libname))
1874 (libname (cdr subdir-and-libname)))
1875
1876 ;; Now look in each dir in %LOAD-PATH for `subdir/libfoo.la'. If that
1877 ;; file exists, fetch the dlname from that file and attempt to link
1878 ;; against it. If `subdir/libfoo.la' does not exist, or does not seem
1879 ;; to name any shared library, look for `subdir/libfoo.so' instead and
1880 ;; link against that.
1881 (let check-dirs ((dir-list %load-path))
1882 (if (null? dir-list)
1883 #f
1884 (let* ((dir (in-vicinity (car dir-list) subdir))
1885 (sharlib-full
1886 (or (try-using-libtool-name dir libname)
1887 (try-using-sharlib-name dir libname))))
1888 (if (and sharlib-full (file-exists? sharlib-full))
1889 (link-dynamic-module sharlib-full init)
1890 (check-dirs (cdr dir-list)))))))))
1891
1892 (define (try-using-libtool-name libdir libname)
1893 (let ((libtool-filename (in-vicinity libdir
1894 (string-append libname ".la"))))
1895 (and (file-exists? libtool-filename)
1896 libtool-filename)))
1897
1898 (define (try-using-sharlib-name libdir libname)
1899 (in-vicinity libdir (string-append libname ".so")))
1900
1901 (define (link-dynamic-module filename initname)
1902 ;; Register any linked modules which has been registered on the C level
1903 (register-modules #f)
1904 (let ((dynobj (dynamic-link filename)))
1905 (dynamic-call initname dynobj)
1906 (register-modules dynobj)))
1907
1908 (define (try-module-linked module-name)
1909 (init-dynamic-module module-name))
1910
1911 (define (try-module-dynamic-link module-name)
1912 (and (find-and-link-dynamic-module module-name)
1913 (init-dynamic-module module-name)))
1914
1915
1916
1917 (define autoloads-done '((guile . guile)))
1918
1919 (define (autoload-done-or-in-progress? p m)
1920 (let ((n (cons p m)))
1921 (->bool (or (member n autoloads-done)
1922 (member n autoloads-in-progress)))))
1923
1924 (define (autoload-done! p m)
1925 (let ((n (cons p m)))
1926 (set! autoloads-in-progress
1927 (delete! n autoloads-in-progress))
1928 (or (member n autoloads-done)
1929 (set! autoloads-done (cons n autoloads-done)))))
1930
1931 (define (autoload-in-progress! p m)
1932 (let ((n (cons p m)))
1933 (set! autoloads-done
1934 (delete! n autoloads-done))
1935 (set! autoloads-in-progress (cons n autoloads-in-progress))))
1936
1937 (define (set-autoloaded! p m done?)
1938 (if done?
1939 (autoload-done! p m)
1940 (let ((n (cons p m)))
1941 (set! autoloads-done (delete! n autoloads-done))
1942 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
1943
1944
1945
1946
1947 \f
1948 ;;; {Macros}
1949 ;;;
1950
1951 (define (primitive-macro? m)
1952 (and (macro? m)
1953 (not (macro-transformer m))))
1954
1955 ;;; {Defmacros}
1956 ;;;
1957 (define macro-table (make-weak-key-hash-table 523))
1958 (define xformer-table (make-weak-key-hash-table 523))
1959
1960 (define (defmacro? m) (hashq-ref macro-table m))
1961 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
1962 (define (defmacro-transformer m) (hashq-ref xformer-table m))
1963 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
1964
1965 (define defmacro:transformer
1966 (lambda (f)
1967 (let* ((xform (lambda (exp env)
1968 (copy-tree (apply f (cdr exp)))))
1969 (a (procedure->memoizing-macro xform)))
1970 (assert-defmacro?! a)
1971 (set-defmacro-transformer! a f)
1972 a)))
1973
1974
1975 (define defmacro
1976 (let ((defmacro-transformer
1977 (lambda (name parms . body)
1978 (let ((transformer `(lambda ,parms ,@body)))
1979 `(define ,name
1980 (,(lambda (transformer)
1981 (defmacro:transformer transformer))
1982 ,transformer))))))
1983 (defmacro:transformer defmacro-transformer)))
1984
1985 (define defmacro:syntax-transformer
1986 (lambda (f)
1987 (procedure->syntax
1988 (lambda (exp env)
1989 (copy-tree (apply f (cdr exp)))))))
1990
1991
1992 ;; XXX - should the definition of the car really be looked up in the
1993 ;; current module?
1994
1995 (define (macroexpand-1 e)
1996 (cond
1997 ((pair? e) (let* ((a (car e))
1998 (val (and (symbol? a) (local-ref (list a)))))
1999 (if (defmacro? val)
2000 (apply (defmacro-transformer val) (cdr e))
2001 e)))
2002 (#t e)))
2003
2004 (define (macroexpand e)
2005 (cond
2006 ((pair? e) (let* ((a (car e))
2007 (val (and (symbol? a) (local-ref (list a)))))
2008 (if (defmacro? val)
2009 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2010 e)))
2011 (#t e)))
2012
2013 (provide 'defmacro)
2014
2015 \f
2016
2017 ;;; {Run-time options}
2018
2019 (define define-option-interface
2020 (let* ((option-name car)
2021 (option-value cadr)
2022 (option-documentation caddr)
2023
2024 (print-option (lambda (option)
2025 (display (option-name option))
2026 (if (< (string-length
2027 (symbol->string (option-name option)))
2028 8)
2029 (display #\tab))
2030 (display #\tab)
2031 (display (option-value option))
2032 (display #\tab)
2033 (display (option-documentation option))
2034 (newline)))
2035
2036 ;; Below follow the macros defining the run-time option interfaces.
2037
2038 (make-options (lambda (interface)
2039 `(lambda args
2040 (cond ((null? args) (,interface))
2041 ((list? (car args))
2042 (,interface (car args)) (,interface))
2043 (else (for-each ,print-option
2044 (,interface #t)))))))
2045
2046 (make-enable (lambda (interface)
2047 `(lambda flags
2048 (,interface (append flags (,interface)))
2049 (,interface))))
2050
2051 (make-disable (lambda (interface)
2052 `(lambda flags
2053 (let ((options (,interface)))
2054 (for-each (lambda (flag)
2055 (set! options (delq! flag options)))
2056 flags)
2057 (,interface options)
2058 (,interface)))))
2059
2060 (make-set! (lambda (interface)
2061 `((name exp)
2062 (,'quasiquote
2063 (begin (,interface (append (,interface)
2064 (list '(,'unquote name)
2065 (,'unquote exp))))
2066 (,interface)))))))
2067 (procedure->macro
2068 (lambda (exp env)
2069 (cons 'begin
2070 (let* ((option-group (cadr exp))
2071 (interface (car option-group)))
2072 (append (map (lambda (name constructor)
2073 `(define ,name
2074 ,(constructor interface)))
2075 (cadr option-group)
2076 (list make-options
2077 make-enable
2078 make-disable))
2079 (map (lambda (name constructor)
2080 `(defmacro ,name
2081 ,@(constructor interface)))
2082 (caddr option-group)
2083 (list make-set!)))))))))
2084
2085 (define-option-interface
2086 (eval-options-interface
2087 (eval-options eval-enable eval-disable)
2088 (eval-set!)))
2089
2090 (define-option-interface
2091 (debug-options-interface
2092 (debug-options debug-enable debug-disable)
2093 (debug-set!)))
2094
2095 (define-option-interface
2096 (evaluator-traps-interface
2097 (traps trap-enable trap-disable)
2098 (trap-set!)))
2099
2100 (define-option-interface
2101 (read-options-interface
2102 (read-options read-enable read-disable)
2103 (read-set!)))
2104
2105 (define-option-interface
2106 (print-options-interface
2107 (print-options print-enable print-disable)
2108 (print-set!)))
2109
2110 \f
2111
2112 ;;; {Running Repls}
2113 ;;;
2114
2115 (define (repl read evaler print)
2116 (let loop ((source (read (current-input-port))))
2117 (print (evaler source))
2118 (loop (read (current-input-port)))))
2119
2120 ;; A provisional repl that acts like the SCM repl:
2121 ;;
2122 (define scm-repl-silent #f)
2123 (define (assert-repl-silence v) (set! scm-repl-silent v))
2124
2125 (define *unspecified* (if #f #f))
2126 (define (unspecified? v) (eq? v *unspecified*))
2127
2128 (define scm-repl-print-unspecified #f)
2129 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2130
2131 (define scm-repl-verbose #f)
2132 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2133
2134 (define scm-repl-prompt "guile> ")
2135
2136 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2137
2138 (define (default-lazy-handler key . args)
2139 (save-stack lazy-handler-dispatch)
2140 (apply throw key args))
2141
2142 (define enter-frame-handler default-lazy-handler)
2143 (define apply-frame-handler default-lazy-handler)
2144 (define exit-frame-handler default-lazy-handler)
2145
2146 (define (lazy-handler-dispatch key . args)
2147 (case key
2148 ((apply-frame)
2149 (apply apply-frame-handler key args))
2150 ((exit-frame)
2151 (apply exit-frame-handler key args))
2152 ((enter-frame)
2153 (apply enter-frame-handler key args))
2154 (else
2155 (apply default-lazy-handler key args))))
2156
2157 (define abort-hook (make-hook))
2158
2159 ;; these definitions are used if running a script.
2160 ;; otherwise redefined in error-catching-loop.
2161 (define (set-batch-mode?! arg) #t)
2162 (define (batch-mode?) #t)
2163
2164 (define (error-catching-loop thunk)
2165 (let ((status #f)
2166 (interactive #t))
2167 (define (loop first)
2168 (let ((next
2169 (catch #t
2170
2171 (lambda ()
2172 (lazy-catch #t
2173 (lambda ()
2174 (dynamic-wind
2175 (lambda () (unmask-signals))
2176 (lambda ()
2177 (with-traps
2178 (lambda ()
2179 (first)
2180
2181 ;; This line is needed because mark
2182 ;; doesn't do closures quite right.
2183 ;; Unreferenced locals should be
2184 ;; collected.
2185 ;;
2186 (set! first #f)
2187 (let loop ((v (thunk)))
2188 (loop (thunk)))
2189 #f)))
2190 (lambda () (mask-signals))))
2191
2192 lazy-handler-dispatch))
2193
2194 (lambda (key . args)
2195 (case key
2196 ((quit)
2197 (set! status args)
2198 #f)
2199
2200 ((switch-repl)
2201 (apply throw 'switch-repl args))
2202
2203 ((abort)
2204 ;; This is one of the closures that require
2205 ;; (set! first #f) above
2206 ;;
2207 (lambda ()
2208 (run-hook abort-hook)
2209 (force-output (current-output-port))
2210 (display "ABORT: " (current-error-port))
2211 (write args (current-error-port))
2212 (newline (current-error-port))
2213 (if interactive
2214 (begin
2215 (if (and
2216 (not has-shown-debugger-hint?)
2217 (not (memq 'backtrace
2218 (debug-options-interface)))
2219 (stack? (fluid-ref the-last-stack)))
2220 (begin
2221 (newline (current-error-port))
2222 (display
2223 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2224 (current-error-port))
2225 (set! has-shown-debugger-hint? #t)))
2226 (force-output (current-error-port)))
2227 (begin
2228 (primitive-exit 1)))
2229 (set! stack-saved? #f)))
2230
2231 (else
2232 ;; This is the other cons-leak closure...
2233 (lambda ()
2234 (cond ((= (length args) 4)
2235 (apply handle-system-error key args))
2236 (else
2237 (apply bad-throw key args))))))))))
2238 (if next (loop next) status)))
2239 (set! set-batch-mode?! (lambda (arg)
2240 (cond (arg
2241 (set! interactive #f)
2242 (restore-signals))
2243 (#t
2244 (error "sorry, not implemented")))))
2245 (set! batch-mode? (lambda () (not interactive)))
2246 (loop (lambda () #t))))
2247
2248 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2249 (define before-signal-stack (make-fluid))
2250 (define stack-saved? #f)
2251
2252 (define (save-stack . narrowing)
2253 (or stack-saved?
2254 (cond ((not (memq 'debug (debug-options-interface)))
2255 (fluid-set! the-last-stack #f)
2256 (set! stack-saved? #t))
2257 (else
2258 (fluid-set!
2259 the-last-stack
2260 (case (stack-id #t)
2261 ((repl-stack)
2262 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2263 ((load-stack)
2264 (apply make-stack #t save-stack 0 #t 0 narrowing))
2265 ((tk-stack)
2266 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2267 ((#t)
2268 (apply make-stack #t save-stack 0 1 narrowing))
2269 (else
2270 (let ((id (stack-id #t)))
2271 (and (procedure? id)
2272 (apply make-stack #t save-stack id #t 0 narrowing))))))
2273 (set! stack-saved? #t)))))
2274
2275 (define before-error-hook (make-hook))
2276 (define after-error-hook (make-hook))
2277 (define before-backtrace-hook (make-hook))
2278 (define after-backtrace-hook (make-hook))
2279
2280 (define has-shown-debugger-hint? #f)
2281
2282 (define (handle-system-error key . args)
2283 (let ((cep (current-error-port)))
2284 (cond ((not (stack? (fluid-ref the-last-stack))))
2285 ((memq 'backtrace (debug-options-interface))
2286 (run-hook before-backtrace-hook)
2287 (newline cep)
2288 (display "Backtrace:\n")
2289 (display-backtrace (fluid-ref the-last-stack) cep)
2290 (newline cep)
2291 (run-hook after-backtrace-hook)))
2292 (run-hook before-error-hook)
2293 (apply display-error (fluid-ref the-last-stack) cep args)
2294 (run-hook after-error-hook)
2295 (force-output cep)
2296 (throw 'abort key)))
2297
2298 (define (quit . args)
2299 (apply throw 'quit args))
2300
2301 (define exit quit)
2302
2303 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2304
2305 ;; Replaced by C code:
2306 ;;(define (backtrace)
2307 ;; (if (fluid-ref the-last-stack)
2308 ;; (begin
2309 ;; (newline)
2310 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2311 ;; (newline)
2312 ;; (if (and (not has-shown-backtrace-hint?)
2313 ;; (not (memq 'backtrace (debug-options-interface))))
2314 ;; (begin
2315 ;; (display
2316 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2317 ;;automatically if an error occurs in the future.\n")
2318 ;; (set! has-shown-backtrace-hint? #t))))
2319 ;; (display "No backtrace available.\n")))
2320
2321 (define (error-catching-repl r e p)
2322 (error-catching-loop (lambda () (p (e (r))))))
2323
2324 (define (gc-run-time)
2325 (cdr (assq 'gc-time-taken (gc-stats))))
2326
2327 (define before-read-hook (make-hook))
2328 (define after-read-hook (make-hook))
2329 (define before-eval-hook (make-hook 1))
2330 (define after-eval-hook (make-hook 1))
2331 (define before-print-hook (make-hook 1))
2332 (define after-print-hook (make-hook 1))
2333
2334 ;;; The default repl-reader function. We may override this if we've
2335 ;;; the readline library.
2336 (define repl-reader
2337 (lambda (prompt)
2338 (display prompt)
2339 (force-output)
2340 (run-hook before-read-hook)
2341 (read (current-input-port))))
2342
2343 (define (scm-style-repl)
2344
2345 (letrec (
2346 (start-gc-rt #f)
2347 (start-rt #f)
2348 (repl-report-start-timing (lambda ()
2349 (set! start-gc-rt (gc-run-time))
2350 (set! start-rt (get-internal-run-time))))
2351 (repl-report (lambda ()
2352 (display ";;; ")
2353 (display (inexact->exact
2354 (* 1000 (/ (- (get-internal-run-time) start-rt)
2355 internal-time-units-per-second))))
2356 (display " msec (")
2357 (display (inexact->exact
2358 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2359 internal-time-units-per-second))))
2360 (display " msec in gc)\n")))
2361
2362 (consume-trailing-whitespace
2363 (lambda ()
2364 (let ((ch (peek-char)))
2365 (cond
2366 ((eof-object? ch))
2367 ((or (char=? ch #\space) (char=? ch #\tab))
2368 (read-char)
2369 (consume-trailing-whitespace))
2370 ((char=? ch #\newline)
2371 (read-char))))))
2372 (-read (lambda ()
2373 (let ((val
2374 (let ((prompt (cond ((string? scm-repl-prompt)
2375 scm-repl-prompt)
2376 ((thunk? scm-repl-prompt)
2377 (scm-repl-prompt))
2378 (scm-repl-prompt "> ")
2379 (else ""))))
2380 (repl-reader prompt))))
2381
2382 ;; As described in R4RS, the READ procedure updates the
2383 ;; port to point to the first character past the end of
2384 ;; the external representation of the object. This
2385 ;; means that it doesn't consume the newline typically
2386 ;; found after an expression. This means that, when
2387 ;; debugging Guile with GDB, GDB gets the newline, which
2388 ;; it often interprets as a "continue" command, making
2389 ;; breakpoints kind of useless. So, consume any
2390 ;; trailing newline here, as well as any whitespace
2391 ;; before it.
2392 ;; But not if EOF, for control-D.
2393 (if (not (eof-object? val))
2394 (consume-trailing-whitespace))
2395 (run-hook after-read-hook)
2396 (if (eof-object? val)
2397 (begin
2398 (repl-report-start-timing)
2399 (if scm-repl-verbose
2400 (begin
2401 (newline)
2402 (display ";;; EOF -- quitting")
2403 (newline)))
2404 (quit 0)))
2405 val)))
2406
2407 (-eval (lambda (sourc)
2408 (repl-report-start-timing)
2409 (run-hook before-eval-hook sourc)
2410 (let ((val (start-stack 'repl-stack
2411 ;; If you change this procedure
2412 ;; (primitive-eval), please also
2413 ;; modify the repl-stack case in
2414 ;; save-stack so that stack cutting
2415 ;; continues to work.
2416 (primitive-eval sourc))))
2417 (run-hook after-eval-hook sourc)
2418 val)))
2419
2420
2421 (-print (let ((maybe-print (lambda (result)
2422 (if (or scm-repl-print-unspecified
2423 (not (unspecified? result)))
2424 (begin
2425 (write result)
2426 (newline))))))
2427 (lambda (result)
2428 (if (not scm-repl-silent)
2429 (begin
2430 (run-hook before-print-hook result)
2431 (maybe-print result)
2432 (run-hook after-print-hook result)
2433 (if scm-repl-verbose
2434 (repl-report))
2435 (force-output))))))
2436
2437 (-quit (lambda (args)
2438 (if scm-repl-verbose
2439 (begin
2440 (display ";;; QUIT executed, repl exitting")
2441 (newline)
2442 (repl-report)))
2443 args))
2444
2445 (-abort (lambda ()
2446 (if scm-repl-verbose
2447 (begin
2448 (display ";;; ABORT executed.")
2449 (newline)
2450 (repl-report)))
2451 (repl -read -eval -print))))
2452
2453 (let ((status (error-catching-repl -read
2454 -eval
2455 -print)))
2456 (-quit status))))
2457
2458
2459 \f
2460 ;;; {IOTA functions: generating lists of numbers}
2461
2462 (define (iota n)
2463 (let loop ((count (1- n)) (result '()))
2464 (if (< count 0) result
2465 (loop (1- count) (cons count result)))))
2466
2467 \f
2468 ;;; {While}
2469 ;;;
2470 ;;; with `continue' and `break'.
2471 ;;;
2472
2473 (defmacro while (cond . body)
2474 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2475 (break (lambda val (apply throw 'break val))))
2476 (catch 'break
2477 (lambda () (continue))
2478 (lambda v (cadr v)))))
2479
2480 ;;; {collect}
2481 ;;;
2482 ;;; Similar to `begin' but returns a list of the results of all constituent
2483 ;;; forms instead of the result of the last form.
2484 ;;; (The definition relies on the current left-to-right
2485 ;;; order of evaluation of operands in applications.)
2486
2487 (defmacro collect forms
2488 (cons 'list forms))
2489
2490 ;;; {with-fluids}
2491
2492 ;; with-fluids is a convenience wrapper for the builtin procedure
2493 ;; `with-fluids*'. The syntax is just like `let':
2494 ;;
2495 ;; (with-fluids ((fluid val)
2496 ;; ...)
2497 ;; body)
2498
2499 (defmacro with-fluids (bindings . body)
2500 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2501 (lambda () ,@body)))
2502
2503 \f
2504
2505 ;;; {Macros}
2506 ;;;
2507
2508 ;; actually....hobbit might be able to hack these with a little
2509 ;; coaxing
2510 ;;
2511
2512 (defmacro define-macro (first . rest)
2513 (let ((name (if (symbol? first) first (car first)))
2514 (transformer
2515 (if (symbol? first)
2516 (car rest)
2517 `(lambda ,(cdr first) ,@rest))))
2518 `(define ,name (defmacro:transformer ,transformer))))
2519
2520
2521 (defmacro define-syntax-macro (first . rest)
2522 (let ((name (if (symbol? first) first (car first)))
2523 (transformer
2524 (if (symbol? first)
2525 (car rest)
2526 `(lambda ,(cdr first) ,@rest))))
2527 `(define ,name (defmacro:syntax-transformer ,transformer))))
2528
2529 ;; EVAL-CASE
2530 ;;
2531 ;; (eval-case ((situation*) forms)* (else forms)?)
2532 ;;
2533 ;; Evaluate certain code based on the situation that eval-case is used
2534 ;; in. The only defined situation right now is `load-toplevel' which
2535 ;; triggers for code evaluated at the top-level, for example from the
2536 ;; REPL or when loading a file.
2537
2538 (define eval-case
2539 (procedure->memoizing-macro
2540 (lambda (exp env)
2541 (define (toplevel-env? env)
2542 (or (not (pair? env)) (not (pair? (car env)))))
2543 (define (syntax)
2544 (error "syntax error in eval-case"))
2545 (let loop ((clauses (cdr exp)))
2546 (cond
2547 ((null? clauses)
2548 #f)
2549 ((not (list? (car clauses)))
2550 (syntax))
2551 ((eq? 'else (caar clauses))
2552 (or (null? (cdr clauses))
2553 (syntax))
2554 (cons 'begin (cdar clauses)))
2555 ((not (list? (caar clauses)))
2556 (syntax))
2557 ((and (toplevel-env? env)
2558 (memq 'load-toplevel (caar clauses)))
2559 (cons 'begin (cdar clauses)))
2560 (else
2561 (loop (cdr clauses))))))))
2562
2563 \f
2564 ;;; {Module System Macros}
2565 ;;;
2566
2567 (defmacro define-module args
2568 `(eval-case
2569 ((load-toplevel)
2570 (process-define-module ',args))
2571 (else
2572 (error "define-module can only be used at the top level"))))
2573
2574 ;; the guts of the use-modules macro. add the interfaces of the named
2575 ;; modules to the use-list of the current module, in order
2576 (define (process-use-modules module-names)
2577 (for-each (lambda (module-name)
2578 (let ((mod-iface (resolve-interface module-name)))
2579 (or mod-iface
2580 (error "no such module" module-name))
2581 (module-use! (current-module) mod-iface)))
2582 (reverse module-names)))
2583
2584 (defmacro use-modules modules
2585 `(eval-case
2586 ((load-toplevel)
2587 (process-use-modules ',modules))
2588 (else
2589 (error "use-modules can only be used at the top level"))))
2590
2591 (defmacro use-syntax (spec)
2592 `(eval-case
2593 ((load-toplevel)
2594 ,@(if (pair? spec)
2595 `((process-use-modules ',(list spec))
2596 (set-module-transformer! (current-module)
2597 ,(car (last-pair spec))))
2598 `((set-module-transformer! (current-module) ,spec)))
2599 (fluid-set! scm:eval-transformer (module-transformer (current-module))))
2600 (else
2601 (error "use-modules can only be used at the top level"))))
2602
2603 (define define-private define)
2604
2605 (defmacro define-public args
2606 (define (syntax)
2607 (error "bad syntax" (list 'define-public args)))
2608 (define (defined-name n)
2609 (cond
2610 ((symbol? n) n)
2611 ((pair? n) (defined-name (car n)))
2612 (else (syntax))))
2613 (cond
2614 ((null? args)
2615 (syntax))
2616 (#t
2617 (let ((name (defined-name (car args))))
2618 `(begin
2619 (eval-case ((load-toplevel) (export ,name)))
2620 (define-private ,@args))))))
2621
2622 (defmacro defmacro-public args
2623 (define (syntax)
2624 (error "bad syntax" (list 'defmacro-public args)))
2625 (define (defined-name n)
2626 (cond
2627 ((symbol? n) n)
2628 (else (syntax))))
2629 (cond
2630 ((null? args)
2631 (syntax))
2632 (#t
2633 (let ((name (defined-name (car args))))
2634 `(begin
2635 (eval-case ((load-toplevel) (export ,name)))
2636 (defmacro ,@args))))))
2637
2638 (define (module-export! m names)
2639 (let ((public-i (module-public-interface m)))
2640 (for-each (lambda (name)
2641 ;; Make sure there is a local variable:
2642 (module-define! m name (module-ref m name #f))
2643 ;; Make sure that local is exported:
2644 (module-add! public-i name (module-variable m name)))
2645 names)))
2646
2647 (defmacro export names
2648 `(eval-case
2649 ((load-toplevel)
2650 (module-export! (current-module) ',names))
2651 (else
2652 (error "export can only be used at the top level"))))
2653
2654 (define export-syntax export)
2655
2656
2657 (define load load-module)
2658
2659
2660 \f
2661
2662 ;;; {Load emacs interface support if emacs option is given.}
2663
2664 (define (named-module-use! user usee)
2665 (module-use! (resolve-module user) (resolve-module usee)))
2666
2667 (define (load-emacs-interface)
2668 (if (memq 'debug-extensions *features*)
2669 (debug-enable 'backtrace))
2670 (named-module-use! '(guile-user) '(ice-9 emacs)))
2671
2672 \f
2673
2674 (define using-readline?
2675 (let ((using-readline? (make-fluid)))
2676 (make-procedure-with-setter
2677 (lambda () (fluid-ref using-readline?))
2678 (lambda (v) (fluid-set! using-readline? v)))))
2679
2680 (define (top-repl)
2681
2682 ;; Load emacs interface support if emacs option is given.
2683 (if (and (module-defined? the-root-module 'use-emacs-interface)
2684 (module-ref the-root-module 'use-emacs-interface))
2685 (load-emacs-interface))
2686
2687 ;; Place the user in the guile-user module.
2688 (process-define-module
2689 '((guile-user)
2690 :use-module (guile) ;so that bindings will be checked here first
2691 :use-module (ice-9 session)
2692 :use-module (ice-9 debug)
2693 :autoload (ice-9 debugger) (debug))) ;load debugger on demand
2694 (if (memq 'threads *features*)
2695 (named-module-use! '(guile-user) '(ice-9 threads)))
2696 (if (memq 'regex *features*)
2697 (named-module-use! '(guile-user) '(ice-9 regex)))
2698
2699 (let ((old-handlers #f)
2700 (signals (if (provided? 'posix)
2701 `((,SIGINT . "User interrupt")
2702 (,SIGFPE . "Arithmetic error")
2703 (,SIGBUS . "Bad memory access (bus error)")
2704 (,SIGSEGV .
2705 "Bad memory access (Segmentation violation)"))
2706 '())))
2707
2708 (dynamic-wind
2709
2710 ;; call at entry
2711 (lambda ()
2712 (let ((make-handler (lambda (msg)
2713 (lambda (sig)
2714 ;; Make a backup copy of the stack
2715 (fluid-set! before-signal-stack
2716 (fluid-ref the-last-stack))
2717 (save-stack %deliver-signals)
2718 (scm-error 'signal
2719 #f
2720 msg
2721 #f
2722 (list sig))))))
2723 (set! old-handlers
2724 (map (lambda (sig-msg)
2725 (sigaction (car sig-msg)
2726 (make-handler (cdr sig-msg))))
2727 signals))))
2728
2729 ;; the protected thunk.
2730 (lambda ()
2731 (let ((status (scm-style-repl)))
2732 (run-hook exit-hook)
2733 status))
2734
2735 ;; call at exit.
2736 (lambda ()
2737 (map (lambda (sig-msg old-handler)
2738 (if (not (car old-handler))
2739 ;; restore original C handler.
2740 (sigaction (car sig-msg) #f)
2741 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
2742 (sigaction (car sig-msg)
2743 (car old-handler)
2744 (cdr old-handler))))
2745 signals old-handlers)))))
2746
2747 (defmacro false-if-exception (expr)
2748 `(catch #t (lambda () ,expr)
2749 (lambda args #f)))
2750
2751 ;;; This hook is run at the very end of an interactive session.
2752 ;;;
2753 (define exit-hook (make-hook))
2754
2755 \f
2756 (define-module (guile))
2757
2758 (append! %load-path (cons "." '()))
2759