Add scm_from_ptrdiff_t and scm_to_ptrdiff_t.
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4 @c 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Symbols:: Symbols.
49 * Keywords:: Self-quoting, customizable display keywords.
50 * Other Types:: "Functionality-centric" data types.
51 @end menu
52
53
54 @node Booleans
55 @subsection Booleans
56 @tpindex Booleans
57
58 The two boolean values are @code{#t} for true and @code{#f} for false.
59
60 Boolean values are returned by predicate procedures, such as the general
61 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
62 (@pxref{Equality}) and numerical and string comparison operators like
63 @code{string=?} (@pxref{String Comparison}) and @code{<=}
64 (@pxref{Comparison}).
65
66 @lisp
67 (<= 3 8)
68 @result{} #t
69
70 (<= 3 -3)
71 @result{} #f
72
73 (equal? "house" "houses")
74 @result{} #f
75
76 (eq? #f #f)
77 @result{}
78 #t
79 @end lisp
80
81 In test condition contexts like @code{if} and @code{cond}
82 (@pxref{Conditionals}), where a group of subexpressions will be
83 evaluated only if a @var{condition} expression evaluates to ``true'',
84 ``true'' means any value at all except @code{#f}.
85
86 @lisp
87 (if #t "yes" "no")
88 @result{} "yes"
89
90 (if 0 "yes" "no")
91 @result{} "yes"
92
93 (if #f "yes" "no")
94 @result{} "no"
95 @end lisp
96
97 A result of this asymmetry is that typical Scheme source code more often
98 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
99 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
100 not necessary to represent an @code{if} or @code{cond} true value.
101
102 It is important to note that @code{#f} is @strong{not} equivalent to any
103 other Scheme value. In particular, @code{#f} is not the same as the
104 number 0 (like in C and C++), and not the same as the ``empty list''
105 (like in some Lisp dialects).
106
107 In C, the two Scheme boolean values are available as the two constants
108 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
109 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
110 false when used in C conditionals. In order to test for it, use
111 @code{scm_is_false} or @code{scm_is_true}.
112
113 @rnindex not
114 @deffn {Scheme Procedure} not x
115 @deffnx {C Function} scm_not (x)
116 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
117 @end deffn
118
119 @rnindex boolean?
120 @deffn {Scheme Procedure} boolean? obj
121 @deffnx {C Function} scm_boolean_p (obj)
122 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
123 return @code{#f}.
124 @end deffn
125
126 @deftypevr {C Macro} SCM SCM_BOOL_T
127 The @code{SCM} representation of the Scheme object @code{#t}.
128 @end deftypevr
129
130 @deftypevr {C Macro} SCM SCM_BOOL_F
131 The @code{SCM} representation of the Scheme object @code{#f}.
132 @end deftypevr
133
134 @deftypefn {C Function} int scm_is_true (SCM obj)
135 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
136 @end deftypefn
137
138 @deftypefn {C Function} int scm_is_false (SCM obj)
139 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
140 @end deftypefn
141
142 @deftypefn {C Function} int scm_is_bool (SCM obj)
143 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
144 return @code{0}.
145 @end deftypefn
146
147 @deftypefn {C Function} SCM scm_from_bool (int val)
148 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
149 @end deftypefn
150
151 @deftypefn {C Function} int scm_to_bool (SCM val)
152 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
153 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
154
155 You should probably use @code{scm_is_true} instead of this function
156 when you just want to test a @code{SCM} value for trueness.
157 @end deftypefn
158
159 @node Numbers
160 @subsection Numerical data types
161 @tpindex Numbers
162
163 Guile supports a rich ``tower'' of numerical types --- integer,
164 rational, real and complex --- and provides an extensive set of
165 mathematical and scientific functions for operating on numerical
166 data. This section of the manual documents those types and functions.
167
168 You may also find it illuminating to read R5RS's presentation of numbers
169 in Scheme, which is particularly clear and accessible: see
170 @ref{Numbers,,,r5rs,R5RS}.
171
172 @menu
173 * Numerical Tower:: Scheme's numerical "tower".
174 * Integers:: Whole numbers.
175 * Reals and Rationals:: Real and rational numbers.
176 * Complex Numbers:: Complex numbers.
177 * Exactness:: Exactness and inexactness.
178 * Number Syntax:: Read syntax for numerical data.
179 * Integer Operations:: Operations on integer values.
180 * Comparison:: Comparison predicates.
181 * Conversion:: Converting numbers to and from strings.
182 * Complex:: Complex number operations.
183 * Arithmetic:: Arithmetic functions.
184 * Scientific:: Scientific functions.
185 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
186 * Random:: Random number generation.
187 @end menu
188
189
190 @node Numerical Tower
191 @subsubsection Scheme's Numerical ``Tower''
192 @rnindex number?
193
194 Scheme's numerical ``tower'' consists of the following categories of
195 numbers:
196
197 @table @dfn
198 @item integers
199 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
200
201 @item rationals
202 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
203 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
204 pi (an irrational number) doesn't. These include integers
205 (@math{@var{n}/1}).
206
207 @item real numbers
208 The set of numbers that describes all possible positions along a
209 one-dimensional line. This includes rationals as well as irrational
210 numbers.
211
212 @item complex numbers
213 The set of numbers that describes all possible positions in a two
214 dimensional space. This includes real as well as imaginary numbers
215 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
216 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
217 @minus{}1.)
218 @end table
219
220 It is called a tower because each category ``sits on'' the one that
221 follows it, in the sense that every integer is also a rational, every
222 rational is also real, and every real number is also a complex number
223 (but with zero imaginary part).
224
225 In addition to the classification into integers, rationals, reals and
226 complex numbers, Scheme also distinguishes between whether a number is
227 represented exactly or not. For example, the result of
228 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
229 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
230 Instead, it stores an inexact approximation, using the C type
231 @code{double}.
232
233 Guile can represent exact rationals of any magnitude, inexact
234 rationals that fit into a C @code{double}, and inexact complex numbers
235 with @code{double} real and imaginary parts.
236
237 The @code{number?} predicate may be applied to any Scheme value to
238 discover whether the value is any of the supported numerical types.
239
240 @deffn {Scheme Procedure} number? obj
241 @deffnx {C Function} scm_number_p (obj)
242 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
243 @end deffn
244
245 For example:
246
247 @lisp
248 (number? 3)
249 @result{} #t
250
251 (number? "hello there!")
252 @result{} #f
253
254 (define pi 3.141592654)
255 (number? pi)
256 @result{} #t
257 @end lisp
258
259 @deftypefn {C Function} int scm_is_number (SCM obj)
260 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
261 @end deftypefn
262
263 The next few subsections document each of Guile's numerical data types
264 in detail.
265
266 @node Integers
267 @subsubsection Integers
268
269 @tpindex Integer numbers
270
271 @rnindex integer?
272
273 Integers are whole numbers, that is numbers with no fractional part,
274 such as 2, 83, and @minus{}3789.
275
276 Integers in Guile can be arbitrarily big, as shown by the following
277 example.
278
279 @lisp
280 (define (factorial n)
281 (let loop ((n n) (product 1))
282 (if (= n 0)
283 product
284 (loop (- n 1) (* product n)))))
285
286 (factorial 3)
287 @result{} 6
288
289 (factorial 20)
290 @result{} 2432902008176640000
291
292 (- (factorial 45))
293 @result{} -119622220865480194561963161495657715064383733760000000000
294 @end lisp
295
296 Readers whose background is in programming languages where integers are
297 limited by the need to fit into just 4 or 8 bytes of memory may find
298 this surprising, or suspect that Guile's representation of integers is
299 inefficient. In fact, Guile achieves a near optimal balance of
300 convenience and efficiency by using the host computer's native
301 representation of integers where possible, and a more general
302 representation where the required number does not fit in the native
303 form. Conversion between these two representations is automatic and
304 completely invisible to the Scheme level programmer.
305
306 C has a host of different integer types, and Guile offers a host of
307 functions to convert between them and the @code{SCM} representation.
308 For example, a C @code{int} can be handled with @code{scm_to_int} and
309 @code{scm_from_int}. Guile also defines a few C integer types of its
310 own, to help with differences between systems.
311
312 C integer types that are not covered can be handled with the generic
313 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
314 signed types, or with @code{scm_to_unsigned_integer} and
315 @code{scm_from_unsigned_integer} for unsigned types.
316
317 Scheme integers can be exact and inexact. For example, a number
318 written as @code{3.0} with an explicit decimal-point is inexact, but
319 it is also an integer. The functions @code{integer?} and
320 @code{scm_is_integer} report true for such a number, but the functions
321 @code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
322 allow exact integers and thus report false. Likewise, the conversion
323 functions like @code{scm_to_signed_integer} only accept exact
324 integers.
325
326 The motivation for this behavior is that the inexactness of a number
327 should not be lost silently. If you want to allow inexact integers,
328 you can explicitly insert a call to @code{inexact->exact} or to its C
329 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
330 be converted by this call into exact integers; inexact non-integers
331 will become exact fractions.)
332
333 @deffn {Scheme Procedure} integer? x
334 @deffnx {C Function} scm_integer_p (x)
335 Return @code{#t} if @var{x} is an exact or inexact integer number, else
336 @code{#f}.
337
338 @lisp
339 (integer? 487)
340 @result{} #t
341
342 (integer? 3.0)
343 @result{} #t
344
345 (integer? -3.4)
346 @result{} #f
347
348 (integer? +inf.0)
349 @result{} #t
350 @end lisp
351 @end deffn
352
353 @deftypefn {C Function} int scm_is_integer (SCM x)
354 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
355 @end deftypefn
356
357 @defvr {C Type} scm_t_int8
358 @defvrx {C Type} scm_t_uint8
359 @defvrx {C Type} scm_t_int16
360 @defvrx {C Type} scm_t_uint16
361 @defvrx {C Type} scm_t_int32
362 @defvrx {C Type} scm_t_uint32
363 @defvrx {C Type} scm_t_int64
364 @defvrx {C Type} scm_t_uint64
365 @defvrx {C Type} scm_t_intmax
366 @defvrx {C Type} scm_t_uintmax
367 The C types are equivalent to the corresponding ISO C types but are
368 defined on all platforms, with the exception of @code{scm_t_int64} and
369 @code{scm_t_uint64}, which are only defined when a 64-bit type is
370 available. For example, @code{scm_t_int8} is equivalent to
371 @code{int8_t}.
372
373 You can regard these definitions as a stop-gap measure until all
374 platforms provide these types. If you know that all the platforms
375 that you are interested in already provide these types, it is better
376 to use them directly instead of the types provided by Guile.
377 @end defvr
378
379 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
380 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
381 Return @code{1} when @var{x} represents an exact integer that is
382 between @var{min} and @var{max}, inclusive.
383
384 These functions can be used to check whether a @code{SCM} value will
385 fit into a given range, such as the range of a given C integer type.
386 If you just want to convert a @code{SCM} value to a given C integer
387 type, use one of the conversion functions directly.
388 @end deftypefn
389
390 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
391 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
392 When @var{x} represents an exact integer that is between @var{min} and
393 @var{max} inclusive, return that integer. Else signal an error,
394 either a `wrong-type' error when @var{x} is not an exact integer, or
395 an `out-of-range' error when it doesn't fit the given range.
396 @end deftypefn
397
398 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
399 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
400 Return the @code{SCM} value that represents the integer @var{x}. This
401 function will always succeed and will always return an exact number.
402 @end deftypefn
403
404 @deftypefn {C Function} char scm_to_char (SCM x)
405 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
406 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
407 @deftypefnx {C Function} short scm_to_short (SCM x)
408 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
409 @deftypefnx {C Function} int scm_to_int (SCM x)
410 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
411 @deftypefnx {C Function} long scm_to_long (SCM x)
412 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
413 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
414 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
415 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
416 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
417 @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
418 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
419 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
420 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
421 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
422 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
423 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
424 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
425 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
426 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
427 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
428 When @var{x} represents an exact integer that fits into the indicated
429 C type, return that integer. Else signal an error, either a
430 `wrong-type' error when @var{x} is not an exact integer, or an
431 `out-of-range' error when it doesn't fit the given range.
432
433 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
434 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
435 the corresponding types are.
436 @end deftypefn
437
438 @deftypefn {C Function} SCM scm_from_char (char x)
439 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
440 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
441 @deftypefnx {C Function} SCM scm_from_short (short x)
442 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
443 @deftypefnx {C Function} SCM scm_from_int (int x)
444 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
445 @deftypefnx {C Function} SCM scm_from_long (long x)
446 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
447 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
448 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
449 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
450 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
451 @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
452 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
453 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
454 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
455 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
456 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
457 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
458 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
459 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
460 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
461 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
462 Return the @code{SCM} value that represents the integer @var{x}.
463 These functions will always succeed and will always return an exact
464 number.
465 @end deftypefn
466
467 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
468 Assign @var{val} to the multiple precision integer @var{rop}.
469 @var{val} must be an exact integer, otherwise an error will be
470 signalled. @var{rop} must have been initialized with @code{mpz_init}
471 before this function is called. When @var{rop} is no longer needed
472 the occupied space must be freed with @code{mpz_clear}.
473 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
474 @end deftypefn
475
476 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
477 Return the @code{SCM} value that represents @var{val}.
478 @end deftypefn
479
480 @node Reals and Rationals
481 @subsubsection Real and Rational Numbers
482 @tpindex Real numbers
483 @tpindex Rational numbers
484
485 @rnindex real?
486 @rnindex rational?
487
488 Mathematically, the real numbers are the set of numbers that describe
489 all possible points along a continuous, infinite, one-dimensional line.
490 The rational numbers are the set of all numbers that can be written as
491 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
492 All rational numbers are also real, but there are real numbers that
493 are not rational, for example @m{\sqrt{2}, the square root of 2}, and
494 @m{\pi,pi}.
495
496 Guile can represent both exact and inexact rational numbers, but it
497 cannot represent precise finite irrational numbers. Exact rationals are
498 represented by storing the numerator and denominator as two exact
499 integers. Inexact rationals are stored as floating point numbers using
500 the C type @code{double}.
501
502 Exact rationals are written as a fraction of integers. There must be
503 no whitespace around the slash:
504
505 @lisp
506 1/2
507 -22/7
508 @end lisp
509
510 Even though the actual encoding of inexact rationals is in binary, it
511 may be helpful to think of it as a decimal number with a limited
512 number of significant figures and a decimal point somewhere, since
513 this corresponds to the standard notation for non-whole numbers. For
514 example:
515
516 @lisp
517 0.34
518 -0.00000142857931198
519 -5648394822220000000000.0
520 4.0
521 @end lisp
522
523 The limited precision of Guile's encoding means that any finite ``real''
524 number in Guile can be written in a rational form, by multiplying and
525 then dividing by sufficient powers of 10 (or in fact, 2). For example,
526 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
527 by 100000000000000000. In Guile's current incarnation, therefore, the
528 @code{rational?} and @code{real?} predicates are equivalent for finite
529 numbers.
530
531
532 Dividing by an exact zero leads to a error message, as one might expect.
533 However, dividing by an inexact zero does not produce an error.
534 Instead, the result of the division is either plus or minus infinity,
535 depending on the sign of the divided number and the sign of the zero
536 divisor (some platforms support signed zeroes @samp{-0.0} and
537 @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
538
539 Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
540 value, although they are actually considered numbers by Scheme.
541 Attempts to compare a @acronym{NaN} value with any number (including
542 itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
543 always returns @code{#f}. Although a @acronym{NaN} value is not
544 @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
545 and other @acronym{NaN} values. However, the preferred way to test for
546 them is by using @code{nan?}.
547
548 The real @acronym{NaN} values and infinities are written @samp{+nan.0},
549 @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
550 @code{read} as an extension to the usual Scheme syntax. These special
551 values are considered by Scheme to be inexact real numbers but not
552 rational. Note that non-real complex numbers may also contain
553 infinities or @acronym{NaN} values in their real or imaginary parts. To
554 test a real number to see if it is infinite, a @acronym{NaN} value, or
555 neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
556 Every real number in Scheme belongs to precisely one of those three
557 classes.
558
559 On platforms that follow @acronym{IEEE} 754 for their floating point
560 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
561 are implemented using the corresponding @acronym{IEEE} 754 values.
562 They behave in arithmetic operations like @acronym{IEEE} 754 describes
563 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
564
565 @deffn {Scheme Procedure} real? obj
566 @deffnx {C Function} scm_real_p (obj)
567 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
568 that the sets of integer and rational values form subsets of the set
569 of real numbers, so the predicate will also be fulfilled if @var{obj}
570 is an integer number or a rational number.
571 @end deffn
572
573 @deffn {Scheme Procedure} rational? x
574 @deffnx {C Function} scm_rational_p (x)
575 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
576 Note that the set of integer values forms a subset of the set of
577 rational numbers, i.e.@: the predicate will also be fulfilled if
578 @var{x} is an integer number.
579 @end deffn
580
581 @deffn {Scheme Procedure} rationalize x eps
582 @deffnx {C Function} scm_rationalize (x, eps)
583 Returns the @emph{simplest} rational number differing
584 from @var{x} by no more than @var{eps}.
585
586 As required by @acronym{R5RS}, @code{rationalize} only returns an
587 exact result when both its arguments are exact. Thus, you might need
588 to use @code{inexact->exact} on the arguments.
589
590 @lisp
591 (rationalize (inexact->exact 1.2) 1/100)
592 @result{} 6/5
593 @end lisp
594
595 @end deffn
596
597 @deffn {Scheme Procedure} inf? x
598 @deffnx {C Function} scm_inf_p (x)
599 Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
600 @samp{-inf.0}. Otherwise return @code{#f}.
601 @end deffn
602
603 @deffn {Scheme Procedure} nan? x
604 @deffnx {C Function} scm_nan_p (x)
605 Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
606 @code{#f} otherwise.
607 @end deffn
608
609 @deffn {Scheme Procedure} finite? x
610 @deffnx {C Function} scm_finite_p (x)
611 Return @code{#t} if the real number @var{x} is neither infinite nor a
612 NaN, @code{#f} otherwise.
613 @end deffn
614
615 @deffn {Scheme Procedure} nan
616 @deffnx {C Function} scm_nan ()
617 Return @samp{+nan.0}, a @acronym{NaN} value.
618 @end deffn
619
620 @deffn {Scheme Procedure} inf
621 @deffnx {C Function} scm_inf ()
622 Return @samp{+inf.0}, positive infinity.
623 @end deffn
624
625 @deffn {Scheme Procedure} numerator x
626 @deffnx {C Function} scm_numerator (x)
627 Return the numerator of the rational number @var{x}.
628 @end deffn
629
630 @deffn {Scheme Procedure} denominator x
631 @deffnx {C Function} scm_denominator (x)
632 Return the denominator of the rational number @var{x}.
633 @end deffn
634
635 @deftypefn {C Function} int scm_is_real (SCM val)
636 @deftypefnx {C Function} int scm_is_rational (SCM val)
637 Equivalent to @code{scm_is_true (scm_real_p (val))} and
638 @code{scm_is_true (scm_rational_p (val))}, respectively.
639 @end deftypefn
640
641 @deftypefn {C Function} double scm_to_double (SCM val)
642 Returns the number closest to @var{val} that is representable as a
643 @code{double}. Returns infinity for a @var{val} that is too large in
644 magnitude. The argument @var{val} must be a real number.
645 @end deftypefn
646
647 @deftypefn {C Function} SCM scm_from_double (double val)
648 Return the @code{SCM} value that represents @var{val}. The returned
649 value is inexact according to the predicate @code{inexact?}, but it
650 will be exactly equal to @var{val}.
651 @end deftypefn
652
653 @node Complex Numbers
654 @subsubsection Complex Numbers
655 @tpindex Complex numbers
656
657 @rnindex complex?
658
659 Complex numbers are the set of numbers that describe all possible points
660 in a two-dimensional space. The two coordinates of a particular point
661 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
662 the complex number that describes that point.
663
664 In Guile, complex numbers are written in rectangular form as the sum of
665 their real and imaginary parts, using the symbol @code{i} to indicate
666 the imaginary part.
667
668 @lisp
669 3+4i
670 @result{}
671 3.0+4.0i
672
673 (* 3-8i 2.3+0.3i)
674 @result{}
675 9.3-17.5i
676 @end lisp
677
678 @cindex polar form
679 @noindent
680 Polar form can also be used, with an @samp{@@} between magnitude and
681 angle,
682
683 @lisp
684 1@@3.141592 @result{} -1.0 (approx)
685 -1@@1.57079 @result{} 0.0-1.0i (approx)
686 @end lisp
687
688 Guile represents a complex number as a pair of inexact reals, so the
689 real and imaginary parts of a complex number have the same properties of
690 inexactness and limited precision as single inexact real numbers.
691
692 Note that each part of a complex number may contain any inexact real
693 value, including the special values @samp{+nan.0}, @samp{+inf.0} and
694 @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
695 @samp{-0.0}.
696
697
698 @deffn {Scheme Procedure} complex? z
699 @deffnx {C Function} scm_complex_p (z)
700 Return @code{#t} if @var{z} is a complex number, @code{#f}
701 otherwise. Note that the sets of real, rational and integer
702 values form subsets of the set of complex numbers, i.e.@: the
703 predicate will also be fulfilled if @var{z} is a real,
704 rational or integer number.
705 @end deffn
706
707 @deftypefn {C Function} int scm_is_complex (SCM val)
708 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
709 @end deftypefn
710
711 @node Exactness
712 @subsubsection Exact and Inexact Numbers
713 @tpindex Exact numbers
714 @tpindex Inexact numbers
715
716 @rnindex exact?
717 @rnindex inexact?
718 @rnindex exact->inexact
719 @rnindex inexact->exact
720
721 R5RS requires that, with few exceptions, a calculation involving inexact
722 numbers always produces an inexact result. To meet this requirement,
723 Guile distinguishes between an exact integer value such as @samp{5} and
724 the corresponding inexact integer value which, to the limited precision
725 available, has no fractional part, and is printed as @samp{5.0}. Guile
726 will only convert the latter value to the former when forced to do so by
727 an invocation of the @code{inexact->exact} procedure.
728
729 The only exception to the above requirement is when the values of the
730 inexact numbers do not affect the result. For example @code{(expt n 0)}
731 is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
732 permitted to return an exact @samp{1}.
733
734 @deffn {Scheme Procedure} exact? z
735 @deffnx {C Function} scm_exact_p (z)
736 Return @code{#t} if the number @var{z} is exact, @code{#f}
737 otherwise.
738
739 @lisp
740 (exact? 2)
741 @result{} #t
742
743 (exact? 0.5)
744 @result{} #f
745
746 (exact? (/ 2))
747 @result{} #t
748 @end lisp
749
750 @end deffn
751
752 @deftypefn {C Function} int scm_is_exact (SCM z)
753 Return a @code{1} if the number @var{z} is exact, and @code{0}
754 otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
755
756 An alternate approch to testing the exactness of a number is to
757 use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
758 @end deftypefn
759
760 @deffn {Scheme Procedure} inexact? z
761 @deffnx {C Function} scm_inexact_p (z)
762 Return @code{#t} if the number @var{z} is inexact, @code{#f}
763 else.
764 @end deffn
765
766 @deftypefn {C Function} int scm_is_inexact (SCM z)
767 Return a @code{1} if the number @var{z} is inexact, and @code{0}
768 otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
769 @end deftypefn
770
771 @deffn {Scheme Procedure} inexact->exact z
772 @deffnx {C Function} scm_inexact_to_exact (z)
773 Return an exact number that is numerically closest to @var{z}, when
774 there is one. For inexact rationals, Guile returns the exact rational
775 that is numerically equal to the inexact rational. Inexact complex
776 numbers with a non-zero imaginary part can not be made exact.
777
778 @lisp
779 (inexact->exact 0.5)
780 @result{} 1/2
781 @end lisp
782
783 The following happens because 12/10 is not exactly representable as a
784 @code{double} (on most platforms). However, when reading a decimal
785 number that has been marked exact with the ``#e'' prefix, Guile is
786 able to represent it correctly.
787
788 @lisp
789 (inexact->exact 1.2)
790 @result{} 5404319552844595/4503599627370496
791
792 #e1.2
793 @result{} 6/5
794 @end lisp
795
796 @end deffn
797
798 @c begin (texi-doc-string "guile" "exact->inexact")
799 @deffn {Scheme Procedure} exact->inexact z
800 @deffnx {C Function} scm_exact_to_inexact (z)
801 Convert the number @var{z} to its inexact representation.
802 @end deffn
803
804
805 @node Number Syntax
806 @subsubsection Read Syntax for Numerical Data
807
808 The read syntax for integers is a string of digits, optionally
809 preceded by a minus or plus character, a code indicating the
810 base in which the integer is encoded, and a code indicating whether
811 the number is exact or inexact. The supported base codes are:
812
813 @table @code
814 @item #b
815 @itemx #B
816 the integer is written in binary (base 2)
817
818 @item #o
819 @itemx #O
820 the integer is written in octal (base 8)
821
822 @item #d
823 @itemx #D
824 the integer is written in decimal (base 10)
825
826 @item #x
827 @itemx #X
828 the integer is written in hexadecimal (base 16)
829 @end table
830
831 If the base code is omitted, the integer is assumed to be decimal. The
832 following examples show how these base codes are used.
833
834 @lisp
835 -13
836 @result{} -13
837
838 #d-13
839 @result{} -13
840
841 #x-13
842 @result{} -19
843
844 #b+1101
845 @result{} 13
846
847 #o377
848 @result{} 255
849 @end lisp
850
851 The codes for indicating exactness (which can, incidentally, be applied
852 to all numerical values) are:
853
854 @table @code
855 @item #e
856 @itemx #E
857 the number is exact
858
859 @item #i
860 @itemx #I
861 the number is inexact.
862 @end table
863
864 If the exactness indicator is omitted, the number is exact unless it
865 contains a radix point. Since Guile can not represent exact complex
866 numbers, an error is signalled when asking for them.
867
868 @lisp
869 (exact? 1.2)
870 @result{} #f
871
872 (exact? #e1.2)
873 @result{} #t
874
875 (exact? #e+1i)
876 ERROR: Wrong type argument
877 @end lisp
878
879 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
880 plus and minus infinity, respectively. The value must be written
881 exactly as shown, that is, they always must have a sign and exactly
882 one zero digit after the decimal point. It also understands
883 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
884 The sign is ignored for `not-a-number' and the value is always printed
885 as @samp{+nan.0}.
886
887 @node Integer Operations
888 @subsubsection Operations on Integer Values
889 @rnindex odd?
890 @rnindex even?
891 @rnindex quotient
892 @rnindex remainder
893 @rnindex modulo
894 @rnindex gcd
895 @rnindex lcm
896
897 @deffn {Scheme Procedure} odd? n
898 @deffnx {C Function} scm_odd_p (n)
899 Return @code{#t} if @var{n} is an odd number, @code{#f}
900 otherwise.
901 @end deffn
902
903 @deffn {Scheme Procedure} even? n
904 @deffnx {C Function} scm_even_p (n)
905 Return @code{#t} if @var{n} is an even number, @code{#f}
906 otherwise.
907 @end deffn
908
909 @c begin (texi-doc-string "guile" "quotient")
910 @c begin (texi-doc-string "guile" "remainder")
911 @deffn {Scheme Procedure} quotient n d
912 @deffnx {Scheme Procedure} remainder n d
913 @deffnx {C Function} scm_quotient (n, d)
914 @deffnx {C Function} scm_remainder (n, d)
915 Return the quotient or remainder from @var{n} divided by @var{d}. The
916 quotient is rounded towards zero, and the remainder will have the same
917 sign as @var{n}. In all cases quotient and remainder satisfy
918 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
919
920 @lisp
921 (remainder 13 4) @result{} 1
922 (remainder -13 4) @result{} -1
923 @end lisp
924
925 See also @code{truncate-quotient}, @code{truncate-remainder} and
926 related operations in @ref{Arithmetic}.
927 @end deffn
928
929 @c begin (texi-doc-string "guile" "modulo")
930 @deffn {Scheme Procedure} modulo n d
931 @deffnx {C Function} scm_modulo (n, d)
932 Return the remainder from @var{n} divided by @var{d}, with the same
933 sign as @var{d}.
934
935 @lisp
936 (modulo 13 4) @result{} 1
937 (modulo -13 4) @result{} 3
938 (modulo 13 -4) @result{} -3
939 (modulo -13 -4) @result{} -1
940 @end lisp
941
942 See also @code{floor-quotient}, @code{floor-remainder} and
943 related operations in @ref{Arithmetic}.
944 @end deffn
945
946 @c begin (texi-doc-string "guile" "gcd")
947 @deffn {Scheme Procedure} gcd x@dots{}
948 @deffnx {C Function} scm_gcd (x, y)
949 Return the greatest common divisor of all arguments.
950 If called without arguments, 0 is returned.
951
952 The C function @code{scm_gcd} always takes two arguments, while the
953 Scheme function can take an arbitrary number.
954 @end deffn
955
956 @c begin (texi-doc-string "guile" "lcm")
957 @deffn {Scheme Procedure} lcm x@dots{}
958 @deffnx {C Function} scm_lcm (x, y)
959 Return the least common multiple of the arguments.
960 If called without arguments, 1 is returned.
961
962 The C function @code{scm_lcm} always takes two arguments, while the
963 Scheme function can take an arbitrary number.
964 @end deffn
965
966 @deffn {Scheme Procedure} modulo-expt n k m
967 @deffnx {C Function} scm_modulo_expt (n, k, m)
968 Return @var{n} raised to the integer exponent
969 @var{k}, modulo @var{m}.
970
971 @lisp
972 (modulo-expt 2 3 5)
973 @result{} 3
974 @end lisp
975 @end deffn
976
977 @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
978 @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
979 Return two exact non-negative integers @var{s} and @var{r}
980 such that @math{@var{k} = @var{s}^2 + @var{r}} and
981 @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
982 An error is raised if @var{k} is not an exact non-negative integer.
983
984 @lisp
985 (exact-integer-sqrt 10) @result{} 3 and 1
986 @end lisp
987 @end deftypefn
988
989 @node Comparison
990 @subsubsection Comparison Predicates
991 @rnindex zero?
992 @rnindex positive?
993 @rnindex negative?
994
995 The C comparison functions below always takes two arguments, while the
996 Scheme functions can take an arbitrary number. Also keep in mind that
997 the C functions return one of the Scheme boolean values
998 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
999 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1000 y))} when testing the two Scheme numbers @code{x} and @code{y} for
1001 equality, for example.
1002
1003 @c begin (texi-doc-string "guile" "=")
1004 @deffn {Scheme Procedure} =
1005 @deffnx {C Function} scm_num_eq_p (x, y)
1006 Return @code{#t} if all parameters are numerically equal.
1007 @end deffn
1008
1009 @c begin (texi-doc-string "guile" "<")
1010 @deffn {Scheme Procedure} <
1011 @deffnx {C Function} scm_less_p (x, y)
1012 Return @code{#t} if the list of parameters is monotonically
1013 increasing.
1014 @end deffn
1015
1016 @c begin (texi-doc-string "guile" ">")
1017 @deffn {Scheme Procedure} >
1018 @deffnx {C Function} scm_gr_p (x, y)
1019 Return @code{#t} if the list of parameters is monotonically
1020 decreasing.
1021 @end deffn
1022
1023 @c begin (texi-doc-string "guile" "<=")
1024 @deffn {Scheme Procedure} <=
1025 @deffnx {C Function} scm_leq_p (x, y)
1026 Return @code{#t} if the list of parameters is monotonically
1027 non-decreasing.
1028 @end deffn
1029
1030 @c begin (texi-doc-string "guile" ">=")
1031 @deffn {Scheme Procedure} >=
1032 @deffnx {C Function} scm_geq_p (x, y)
1033 Return @code{#t} if the list of parameters is monotonically
1034 non-increasing.
1035 @end deffn
1036
1037 @c begin (texi-doc-string "guile" "zero?")
1038 @deffn {Scheme Procedure} zero? z
1039 @deffnx {C Function} scm_zero_p (z)
1040 Return @code{#t} if @var{z} is an exact or inexact number equal to
1041 zero.
1042 @end deffn
1043
1044 @c begin (texi-doc-string "guile" "positive?")
1045 @deffn {Scheme Procedure} positive? x
1046 @deffnx {C Function} scm_positive_p (x)
1047 Return @code{#t} if @var{x} is an exact or inexact number greater than
1048 zero.
1049 @end deffn
1050
1051 @c begin (texi-doc-string "guile" "negative?")
1052 @deffn {Scheme Procedure} negative? x
1053 @deffnx {C Function} scm_negative_p (x)
1054 Return @code{#t} if @var{x} is an exact or inexact number less than
1055 zero.
1056 @end deffn
1057
1058
1059 @node Conversion
1060 @subsubsection Converting Numbers To and From Strings
1061 @rnindex number->string
1062 @rnindex string->number
1063
1064 The following procedures read and write numbers according to their
1065 external representation as defined by R5RS (@pxref{Lexical structure,
1066 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1067 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1068 i18n)} module}, for locale-dependent number parsing.
1069
1070 @deffn {Scheme Procedure} number->string n [radix]
1071 @deffnx {C Function} scm_number_to_string (n, radix)
1072 Return a string holding the external representation of the
1073 number @var{n} in the given @var{radix}. If @var{n} is
1074 inexact, a radix of 10 will be used.
1075 @end deffn
1076
1077 @deffn {Scheme Procedure} string->number string [radix]
1078 @deffnx {C Function} scm_string_to_number (string, radix)
1079 Return a number of the maximally precise representation
1080 expressed by the given @var{string}. @var{radix} must be an
1081 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1082 is a default radix that may be overridden by an explicit radix
1083 prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
1084 supplied, then the default radix is 10. If string is not a
1085 syntactically valid notation for a number, then
1086 @code{string->number} returns @code{#f}.
1087 @end deffn
1088
1089 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1090 As per @code{string->number} above, but taking a C string, as pointer
1091 and length. The string characters should be in the current locale
1092 encoding (@code{locale} in the name refers only to that, there's no
1093 locale-dependent parsing).
1094 @end deftypefn
1095
1096
1097 @node Complex
1098 @subsubsection Complex Number Operations
1099 @rnindex make-rectangular
1100 @rnindex make-polar
1101 @rnindex real-part
1102 @rnindex imag-part
1103 @rnindex magnitude
1104 @rnindex angle
1105
1106 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1107 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1108 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1109 @end deffn
1110
1111 @deffn {Scheme Procedure} make-polar mag ang
1112 @deffnx {C Function} scm_make_polar (mag, ang)
1113 @cindex polar form
1114 Return the complex number @var{mag} * e^(i * @var{ang}).
1115 @end deffn
1116
1117 @c begin (texi-doc-string "guile" "real-part")
1118 @deffn {Scheme Procedure} real-part z
1119 @deffnx {C Function} scm_real_part (z)
1120 Return the real part of the number @var{z}.
1121 @end deffn
1122
1123 @c begin (texi-doc-string "guile" "imag-part")
1124 @deffn {Scheme Procedure} imag-part z
1125 @deffnx {C Function} scm_imag_part (z)
1126 Return the imaginary part of the number @var{z}.
1127 @end deffn
1128
1129 @c begin (texi-doc-string "guile" "magnitude")
1130 @deffn {Scheme Procedure} magnitude z
1131 @deffnx {C Function} scm_magnitude (z)
1132 Return the magnitude of the number @var{z}. This is the same as
1133 @code{abs} for real arguments, but also allows complex numbers.
1134 @end deffn
1135
1136 @c begin (texi-doc-string "guile" "angle")
1137 @deffn {Scheme Procedure} angle z
1138 @deffnx {C Function} scm_angle (z)
1139 Return the angle of the complex number @var{z}.
1140 @end deffn
1141
1142 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1143 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1144 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1145 respectively, but these functions take @code{double}s as their
1146 arguments.
1147 @end deftypefn
1148
1149 @deftypefn {C Function} double scm_c_real_part (z)
1150 @deftypefnx {C Function} double scm_c_imag_part (z)
1151 Returns the real or imaginary part of @var{z} as a @code{double}.
1152 @end deftypefn
1153
1154 @deftypefn {C Function} double scm_c_magnitude (z)
1155 @deftypefnx {C Function} double scm_c_angle (z)
1156 Returns the magnitude or angle of @var{z} as a @code{double}.
1157 @end deftypefn
1158
1159
1160 @node Arithmetic
1161 @subsubsection Arithmetic Functions
1162 @rnindex max
1163 @rnindex min
1164 @rnindex +
1165 @rnindex *
1166 @rnindex -
1167 @rnindex /
1168 @findex 1+
1169 @findex 1-
1170 @rnindex abs
1171 @rnindex floor
1172 @rnindex ceiling
1173 @rnindex truncate
1174 @rnindex round
1175 @rnindex euclidean/
1176 @rnindex euclidean-quotient
1177 @rnindex euclidean-remainder
1178 @rnindex floor/
1179 @rnindex floor-quotient
1180 @rnindex floor-remainder
1181 @rnindex ceiling/
1182 @rnindex ceiling-quotient
1183 @rnindex ceiling-remainder
1184 @rnindex truncate/
1185 @rnindex truncate-quotient
1186 @rnindex truncate-remainder
1187 @rnindex centered/
1188 @rnindex centered-quotient
1189 @rnindex centered-remainder
1190 @rnindex round/
1191 @rnindex round-quotient
1192 @rnindex round-remainder
1193
1194 The C arithmetic functions below always takes two arguments, while the
1195 Scheme functions can take an arbitrary number. When you need to
1196 invoke them with just one argument, for example to compute the
1197 equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1198 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1199
1200 @c begin (texi-doc-string "guile" "+")
1201 @deffn {Scheme Procedure} + z1 @dots{}
1202 @deffnx {C Function} scm_sum (z1, z2)
1203 Return the sum of all parameter values. Return 0 if called without any
1204 parameters.
1205 @end deffn
1206
1207 @c begin (texi-doc-string "guile" "-")
1208 @deffn {Scheme Procedure} - z1 z2 @dots{}
1209 @deffnx {C Function} scm_difference (z1, z2)
1210 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1211 the sum of all but the first argument are subtracted from the first
1212 argument.
1213 @end deffn
1214
1215 @c begin (texi-doc-string "guile" "*")
1216 @deffn {Scheme Procedure} * z1 @dots{}
1217 @deffnx {C Function} scm_product (z1, z2)
1218 Return the product of all arguments. If called without arguments, 1 is
1219 returned.
1220 @end deffn
1221
1222 @c begin (texi-doc-string "guile" "/")
1223 @deffn {Scheme Procedure} / z1 z2 @dots{}
1224 @deffnx {C Function} scm_divide (z1, z2)
1225 Divide the first argument by the product of the remaining arguments. If
1226 called with one argument @var{z1}, 1/@var{z1} is returned.
1227 @end deffn
1228
1229 @deffn {Scheme Procedure} 1+ z
1230 @deffnx {C Function} scm_oneplus (z)
1231 Return @math{@var{z} + 1}.
1232 @end deffn
1233
1234 @deffn {Scheme Procedure} 1- z
1235 @deffnx {C function} scm_oneminus (z)
1236 Return @math{@var{z} - 1}.
1237 @end deffn
1238
1239 @c begin (texi-doc-string "guile" "abs")
1240 @deffn {Scheme Procedure} abs x
1241 @deffnx {C Function} scm_abs (x)
1242 Return the absolute value of @var{x}.
1243
1244 @var{x} must be a number with zero imaginary part. To calculate the
1245 magnitude of a complex number, use @code{magnitude} instead.
1246 @end deffn
1247
1248 @c begin (texi-doc-string "guile" "max")
1249 @deffn {Scheme Procedure} max x1 x2 @dots{}
1250 @deffnx {C Function} scm_max (x1, x2)
1251 Return the maximum of all parameter values.
1252 @end deffn
1253
1254 @c begin (texi-doc-string "guile" "min")
1255 @deffn {Scheme Procedure} min x1 x2 @dots{}
1256 @deffnx {C Function} scm_min (x1, x2)
1257 Return the minimum of all parameter values.
1258 @end deffn
1259
1260 @c begin (texi-doc-string "guile" "truncate")
1261 @deffn {Scheme Procedure} truncate x
1262 @deffnx {C Function} scm_truncate_number (x)
1263 Round the inexact number @var{x} towards zero.
1264 @end deffn
1265
1266 @c begin (texi-doc-string "guile" "round")
1267 @deffn {Scheme Procedure} round x
1268 @deffnx {C Function} scm_round_number (x)
1269 Round the inexact number @var{x} to the nearest integer. When exactly
1270 halfway between two integers, round to the even one.
1271 @end deffn
1272
1273 @c begin (texi-doc-string "guile" "floor")
1274 @deffn {Scheme Procedure} floor x
1275 @deffnx {C Function} scm_floor (x)
1276 Round the number @var{x} towards minus infinity.
1277 @end deffn
1278
1279 @c begin (texi-doc-string "guile" "ceiling")
1280 @deffn {Scheme Procedure} ceiling x
1281 @deffnx {C Function} scm_ceiling (x)
1282 Round the number @var{x} towards infinity.
1283 @end deffn
1284
1285 @deftypefn {C Function} double scm_c_truncate (double x)
1286 @deftypefnx {C Function} double scm_c_round (double x)
1287 Like @code{scm_truncate_number} or @code{scm_round_number},
1288 respectively, but these functions take and return @code{double}
1289 values.
1290 @end deftypefn
1291
1292 @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1293 @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1294 @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1295 @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1296 @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1297 @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
1298 These procedures accept two real numbers @var{x} and @var{y}, where the
1299 divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1300 integer @var{q} and @code{euclidean-remainder} returns the real number
1301 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1302 @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
1303 @var{r}, and is more efficient than computing each separately. Note
1304 that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1305 @math{floor(@var{x}/@var{y})}, otherwise it returns
1306 @math{ceiling(@var{x}/@var{y})}.
1307
1308 Note that these operators are equivalent to the R6RS operators
1309 @code{div}, @code{mod}, and @code{div-and-mod}.
1310
1311 @lisp
1312 (euclidean-quotient 123 10) @result{} 12
1313 (euclidean-remainder 123 10) @result{} 3
1314 (euclidean/ 123 10) @result{} 12 and 3
1315 (euclidean/ 123 -10) @result{} -12 and 3
1316 (euclidean/ -123 10) @result{} -13 and 7
1317 (euclidean/ -123 -10) @result{} 13 and 7
1318 (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1319 (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1320 @end lisp
1321 @end deftypefn
1322
1323 @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1324 @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1325 @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1326 @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1327 @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1328 @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1329 These procedures accept two real numbers @var{x} and @var{y}, where the
1330 divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1331 integer @var{q} and @code{floor-remainder} returns the real number
1332 @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1333 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1334 both @var{q} and @var{r}, and is more efficient than computing each
1335 separately. Note that @var{r}, if non-zero, will have the same sign
1336 as @var{y}.
1337
1338 When @var{x} and @var{y} are integers, @code{floor-remainder} is
1339 equivalent to the R5RS integer-only operator @code{modulo}.
1340
1341 @lisp
1342 (floor-quotient 123 10) @result{} 12
1343 (floor-remainder 123 10) @result{} 3
1344 (floor/ 123 10) @result{} 12 and 3
1345 (floor/ 123 -10) @result{} -13 and -7
1346 (floor/ -123 10) @result{} -13 and 7
1347 (floor/ -123 -10) @result{} 12 and -3
1348 (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1349 (floor/ 16/3 -10/7) @result{} -4 and -8/21
1350 @end lisp
1351 @end deftypefn
1352
1353 @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1354 @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1355 @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1356 @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1357 @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1358 @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1359 These procedures accept two real numbers @var{x} and @var{y}, where the
1360 divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1361 integer @var{q} and @code{ceiling-remainder} returns the real number
1362 @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1363 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1364 both @var{q} and @var{r}, and is more efficient than computing each
1365 separately. Note that @var{r}, if non-zero, will have the opposite sign
1366 of @var{y}.
1367
1368 @lisp
1369 (ceiling-quotient 123 10) @result{} 13
1370 (ceiling-remainder 123 10) @result{} -7
1371 (ceiling/ 123 10) @result{} 13 and -7
1372 (ceiling/ 123 -10) @result{} -12 and 3
1373 (ceiling/ -123 10) @result{} -12 and -3
1374 (ceiling/ -123 -10) @result{} 13 and 7
1375 (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1376 (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1377 @end lisp
1378 @end deftypefn
1379
1380 @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1381 @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1382 @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1383 @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1384 @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1385 @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1386 These procedures accept two real numbers @var{x} and @var{y}, where the
1387 divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1388 integer @var{q} and @code{truncate-remainder} returns the real number
1389 @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1390 and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1391 both @var{q} and @var{r}, and is more efficient than computing each
1392 separately. Note that @var{r}, if non-zero, will have the same sign
1393 as @var{x}.
1394
1395 When @var{x} and @var{y} are integers, these operators are
1396 equivalent to the R5RS integer-only operators @code{quotient} and
1397 @code{remainder}.
1398
1399 @lisp
1400 (truncate-quotient 123 10) @result{} 12
1401 (truncate-remainder 123 10) @result{} 3
1402 (truncate/ 123 10) @result{} 12 and 3
1403 (truncate/ 123 -10) @result{} -12 and 3
1404 (truncate/ -123 10) @result{} -12 and -3
1405 (truncate/ -123 -10) @result{} 12 and -3
1406 (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1407 (truncate/ 16/3 -10/7) @result{} -3 and 22/21
1408 @end lisp
1409 @end deftypefn
1410
1411 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1412 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1413 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1414 @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1415 @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1416 @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
1417 These procedures accept two real numbers @var{x} and @var{y}, where the
1418 divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1419 integer @var{q} and @code{centered-remainder} returns the real number
1420 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1421 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
1422 returns both @var{q} and @var{r}, and is more efficient than computing
1423 each separately.
1424
1425 Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1426 rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1427 exactly half-way between two integers, the tie is broken according to
1428 the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1429 positive infinity, otherwise they are rounded toward negative infinity.
1430 This is a consequence of the requirement that
1431 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
1432
1433 Note that these operators are equivalent to the R6RS operators
1434 @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1435
1436 @lisp
1437 (centered-quotient 123 10) @result{} 12
1438 (centered-remainder 123 10) @result{} 3
1439 (centered/ 123 10) @result{} 12 and 3
1440 (centered/ 123 -10) @result{} -12 and 3
1441 (centered/ -123 10) @result{} -12 and -3
1442 (centered/ -123 -10) @result{} 12 and -3
1443 (centered/ 125 10) @result{} 13 and -5
1444 (centered/ 127 10) @result{} 13 and -3
1445 (centered/ 135 10) @result{} 14 and -5
1446 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1447 (centered/ 16/3 -10/7) @result{} -4 and -8/21
1448 @end lisp
1449 @end deftypefn
1450
1451 @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1452 @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1453 @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1454 @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1455 @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1456 @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1457 These procedures accept two real numbers @var{x} and @var{y}, where the
1458 divisor @var{y} must be non-zero. @code{round-quotient} returns the
1459 integer @var{q} and @code{round-remainder} returns the real number
1460 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1461 @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1462 with ties going to the nearest even integer. @code{round/}
1463 returns both @var{q} and @var{r}, and is more efficient than computing
1464 each separately.
1465
1466 Note that @code{round/} and @code{centered/} are almost equivalent, but
1467 their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1468 between two integers. In this case, @code{round/} chooses the nearest
1469 even integer, whereas @code{centered/} chooses in such a way to satisfy
1470 the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1471 is stronger than the corresponding constraint for @code{round/},
1472 @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1473 when @var{x} and @var{y} are integers, the number of possible remainders
1474 returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1475 possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1476 @var{y} is even.
1477
1478 @lisp
1479 (round-quotient 123 10) @result{} 12
1480 (round-remainder 123 10) @result{} 3
1481 (round/ 123 10) @result{} 12 and 3
1482 (round/ 123 -10) @result{} -12 and 3
1483 (round/ -123 10) @result{} -12 and -3
1484 (round/ -123 -10) @result{} 12 and -3
1485 (round/ 125 10) @result{} 12 and 5
1486 (round/ 127 10) @result{} 13 and -3
1487 (round/ 135 10) @result{} 14 and -5
1488 (round/ -123.2 -63.5) @result{} 2.0 and 3.8
1489 (round/ 16/3 -10/7) @result{} -4 and -8/21
1490 @end lisp
1491 @end deftypefn
1492
1493 @node Scientific
1494 @subsubsection Scientific Functions
1495
1496 The following procedures accept any kind of number as arguments,
1497 including complex numbers.
1498
1499 @rnindex sqrt
1500 @c begin (texi-doc-string "guile" "sqrt")
1501 @deffn {Scheme Procedure} sqrt z
1502 Return the square root of @var{z}. Of the two possible roots
1503 (positive and negative), the one with a positive real part is
1504 returned, or if that's zero then a positive imaginary part. Thus,
1505
1506 @example
1507 (sqrt 9.0) @result{} 3.0
1508 (sqrt -9.0) @result{} 0.0+3.0i
1509 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1510 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1511 @end example
1512 @end deffn
1513
1514 @rnindex expt
1515 @c begin (texi-doc-string "guile" "expt")
1516 @deffn {Scheme Procedure} expt z1 z2
1517 Return @var{z1} raised to the power of @var{z2}.
1518 @end deffn
1519
1520 @rnindex sin
1521 @c begin (texi-doc-string "guile" "sin")
1522 @deffn {Scheme Procedure} sin z
1523 Return the sine of @var{z}.
1524 @end deffn
1525
1526 @rnindex cos
1527 @c begin (texi-doc-string "guile" "cos")
1528 @deffn {Scheme Procedure} cos z
1529 Return the cosine of @var{z}.
1530 @end deffn
1531
1532 @rnindex tan
1533 @c begin (texi-doc-string "guile" "tan")
1534 @deffn {Scheme Procedure} tan z
1535 Return the tangent of @var{z}.
1536 @end deffn
1537
1538 @rnindex asin
1539 @c begin (texi-doc-string "guile" "asin")
1540 @deffn {Scheme Procedure} asin z
1541 Return the arcsine of @var{z}.
1542 @end deffn
1543
1544 @rnindex acos
1545 @c begin (texi-doc-string "guile" "acos")
1546 @deffn {Scheme Procedure} acos z
1547 Return the arccosine of @var{z}.
1548 @end deffn
1549
1550 @rnindex atan
1551 @c begin (texi-doc-string "guile" "atan")
1552 @deffn {Scheme Procedure} atan z
1553 @deffnx {Scheme Procedure} atan y x
1554 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1555 @end deffn
1556
1557 @rnindex exp
1558 @c begin (texi-doc-string "guile" "exp")
1559 @deffn {Scheme Procedure} exp z
1560 Return e to the power of @var{z}, where e is the base of natural
1561 logarithms (2.71828@dots{}).
1562 @end deffn
1563
1564 @rnindex log
1565 @c begin (texi-doc-string "guile" "log")
1566 @deffn {Scheme Procedure} log z
1567 Return the natural logarithm of @var{z}.
1568 @end deffn
1569
1570 @c begin (texi-doc-string "guile" "log10")
1571 @deffn {Scheme Procedure} log10 z
1572 Return the base 10 logarithm of @var{z}.
1573 @end deffn
1574
1575 @c begin (texi-doc-string "guile" "sinh")
1576 @deffn {Scheme Procedure} sinh z
1577 Return the hyperbolic sine of @var{z}.
1578 @end deffn
1579
1580 @c begin (texi-doc-string "guile" "cosh")
1581 @deffn {Scheme Procedure} cosh z
1582 Return the hyperbolic cosine of @var{z}.
1583 @end deffn
1584
1585 @c begin (texi-doc-string "guile" "tanh")
1586 @deffn {Scheme Procedure} tanh z
1587 Return the hyperbolic tangent of @var{z}.
1588 @end deffn
1589
1590 @c begin (texi-doc-string "guile" "asinh")
1591 @deffn {Scheme Procedure} asinh z
1592 Return the hyperbolic arcsine of @var{z}.
1593 @end deffn
1594
1595 @c begin (texi-doc-string "guile" "acosh")
1596 @deffn {Scheme Procedure} acosh z
1597 Return the hyperbolic arccosine of @var{z}.
1598 @end deffn
1599
1600 @c begin (texi-doc-string "guile" "atanh")
1601 @deffn {Scheme Procedure} atanh z
1602 Return the hyperbolic arctangent of @var{z}.
1603 @end deffn
1604
1605
1606 @node Bitwise Operations
1607 @subsubsection Bitwise Operations
1608
1609 For the following bitwise functions, negative numbers are treated as
1610 infinite precision twos-complements. For instance @math{-6} is bits
1611 @math{@dots{}111010}, with infinitely many ones on the left. It can
1612 be seen that adding 6 (binary 110) to such a bit pattern gives all
1613 zeros.
1614
1615 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1616 @deffnx {C Function} scm_logand (n1, n2)
1617 Return the bitwise @sc{and} of the integer arguments.
1618
1619 @lisp
1620 (logand) @result{} -1
1621 (logand 7) @result{} 7
1622 (logand #b111 #b011 #b001) @result{} 1
1623 @end lisp
1624 @end deffn
1625
1626 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1627 @deffnx {C Function} scm_logior (n1, n2)
1628 Return the bitwise @sc{or} of the integer arguments.
1629
1630 @lisp
1631 (logior) @result{} 0
1632 (logior 7) @result{} 7
1633 (logior #b000 #b001 #b011) @result{} 3
1634 @end lisp
1635 @end deffn
1636
1637 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1638 @deffnx {C Function} scm_loxor (n1, n2)
1639 Return the bitwise @sc{xor} of the integer arguments. A bit is
1640 set in the result if it is set in an odd number of arguments.
1641
1642 @lisp
1643 (logxor) @result{} 0
1644 (logxor 7) @result{} 7
1645 (logxor #b000 #b001 #b011) @result{} 2
1646 (logxor #b000 #b001 #b011 #b011) @result{} 1
1647 @end lisp
1648 @end deffn
1649
1650 @deffn {Scheme Procedure} lognot n
1651 @deffnx {C Function} scm_lognot (n)
1652 Return the integer which is the ones-complement of the integer
1653 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1654
1655 @lisp
1656 (number->string (lognot #b10000000) 2)
1657 @result{} "-10000001"
1658 (number->string (lognot #b0) 2)
1659 @result{} "-1"
1660 @end lisp
1661 @end deffn
1662
1663 @deffn {Scheme Procedure} logtest j k
1664 @deffnx {C Function} scm_logtest (j, k)
1665 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1666 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1667 calculating the @code{logand}, just testing for non-zero.
1668
1669 @lisp
1670 (logtest #b0100 #b1011) @result{} #f
1671 (logtest #b0100 #b0111) @result{} #t
1672 @end lisp
1673 @end deffn
1674
1675 @deffn {Scheme Procedure} logbit? index j
1676 @deffnx {C Function} scm_logbit_p (index, j)
1677 Test whether bit number @var{index} in @var{j} is set. @var{index}
1678 starts from 0 for the least significant bit.
1679
1680 @lisp
1681 (logbit? 0 #b1101) @result{} #t
1682 (logbit? 1 #b1101) @result{} #f
1683 (logbit? 2 #b1101) @result{} #t
1684 (logbit? 3 #b1101) @result{} #t
1685 (logbit? 4 #b1101) @result{} #f
1686 @end lisp
1687 @end deffn
1688
1689 @deffn {Scheme Procedure} ash n cnt
1690 @deffnx {C Function} scm_ash (n, cnt)
1691 Return @var{n} shifted left by @var{cnt} bits, or shifted right if
1692 @var{cnt} is negative. This is an ``arithmetic'' shift.
1693
1694 This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
1695 when @var{cnt} is negative it's a division, rounded towards negative
1696 infinity. (Note that this is not the same rounding as @code{quotient}
1697 does.)
1698
1699 With @var{n} viewed as an infinite precision twos complement,
1700 @code{ash} means a left shift introducing zero bits, or a right shift
1701 dropping bits.
1702
1703 @lisp
1704 (number->string (ash #b1 3) 2) @result{} "1000"
1705 (number->string (ash #b1010 -1) 2) @result{} "101"
1706
1707 ;; -23 is bits ...11101001, -6 is bits ...111010
1708 (ash -23 -2) @result{} -6
1709 @end lisp
1710 @end deffn
1711
1712 @deffn {Scheme Procedure} logcount n
1713 @deffnx {C Function} scm_logcount (n)
1714 Return the number of bits in integer @var{n}. If @var{n} is
1715 positive, the 1-bits in its binary representation are counted.
1716 If negative, the 0-bits in its two's-complement binary
1717 representation are counted. If zero, 0 is returned.
1718
1719 @lisp
1720 (logcount #b10101010)
1721 @result{} 4
1722 (logcount 0)
1723 @result{} 0
1724 (logcount -2)
1725 @result{} 1
1726 @end lisp
1727 @end deffn
1728
1729 @deffn {Scheme Procedure} integer-length n
1730 @deffnx {C Function} scm_integer_length (n)
1731 Return the number of bits necessary to represent @var{n}.
1732
1733 For positive @var{n} this is how many bits to the most significant one
1734 bit. For negative @var{n} it's how many bits to the most significant
1735 zero bit in twos complement form.
1736
1737 @lisp
1738 (integer-length #b10101010) @result{} 8
1739 (integer-length #b1111) @result{} 4
1740 (integer-length 0) @result{} 0
1741 (integer-length -1) @result{} 0
1742 (integer-length -256) @result{} 8
1743 (integer-length -257) @result{} 9
1744 @end lisp
1745 @end deffn
1746
1747 @deffn {Scheme Procedure} integer-expt n k
1748 @deffnx {C Function} scm_integer_expt (n, k)
1749 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1750 integer, @var{n} can be any number.
1751
1752 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1753 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1754 @math{0^0} is 1.
1755
1756 @lisp
1757 (integer-expt 2 5) @result{} 32
1758 (integer-expt -3 3) @result{} -27
1759 (integer-expt 5 -3) @result{} 1/125
1760 (integer-expt 0 0) @result{} 1
1761 @end lisp
1762 @end deffn
1763
1764 @deffn {Scheme Procedure} bit-extract n start end
1765 @deffnx {C Function} scm_bit_extract (n, start, end)
1766 Return the integer composed of the @var{start} (inclusive)
1767 through @var{end} (exclusive) bits of @var{n}. The
1768 @var{start}th bit becomes the 0-th bit in the result.
1769
1770 @lisp
1771 (number->string (bit-extract #b1101101010 0 4) 2)
1772 @result{} "1010"
1773 (number->string (bit-extract #b1101101010 4 9) 2)
1774 @result{} "10110"
1775 @end lisp
1776 @end deffn
1777
1778
1779 @node Random
1780 @subsubsection Random Number Generation
1781
1782 Pseudo-random numbers are generated from a random state object, which
1783 can be created with @code{seed->random-state} or
1784 @code{datum->random-state}. An external representation (i.e.@: one
1785 which can written with @code{write} and read with @code{read}) of a
1786 random state object can be obtained via
1787 @code{random-state->datum}. The @var{state} parameter to the
1788 various functions below is optional, it defaults to the state object
1789 in the @code{*random-state*} variable.
1790
1791 @deffn {Scheme Procedure} copy-random-state [state]
1792 @deffnx {C Function} scm_copy_random_state (state)
1793 Return a copy of the random state @var{state}.
1794 @end deffn
1795
1796 @deffn {Scheme Procedure} random n [state]
1797 @deffnx {C Function} scm_random (n, state)
1798 Return a number in [0, @var{n}).
1799
1800 Accepts a positive integer or real n and returns a
1801 number of the same type between zero (inclusive) and
1802 @var{n} (exclusive). The values returned have a uniform
1803 distribution.
1804 @end deffn
1805
1806 @deffn {Scheme Procedure} random:exp [state]
1807 @deffnx {C Function} scm_random_exp (state)
1808 Return an inexact real in an exponential distribution with mean
1809 1. For an exponential distribution with mean @var{u} use @code{(*
1810 @var{u} (random:exp))}.
1811 @end deffn
1812
1813 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1814 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1815 Fills @var{vect} with inexact real random numbers the sum of whose
1816 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1817 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1818 the coordinates are uniformly distributed over the surface of the unit
1819 n-sphere.
1820 @end deffn
1821
1822 @deffn {Scheme Procedure} random:normal [state]
1823 @deffnx {C Function} scm_random_normal (state)
1824 Return an inexact real in a normal distribution. The distribution
1825 used has mean 0 and standard deviation 1. For a normal distribution
1826 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1827 (* @var{d} (random:normal)))}.
1828 @end deffn
1829
1830 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1831 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1832 Fills @var{vect} with inexact real random numbers that are
1833 independent and standard normally distributed
1834 (i.e., with mean 0 and variance 1).
1835 @end deffn
1836
1837 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1838 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1839 Fills @var{vect} with inexact real random numbers the sum of whose
1840 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1841 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1842 the coordinates are uniformly distributed within the unit
1843 @var{n}-sphere.
1844 @c FIXME: What does this mean, particularly the n-sphere part?
1845 @end deffn
1846
1847 @deffn {Scheme Procedure} random:uniform [state]
1848 @deffnx {C Function} scm_random_uniform (state)
1849 Return a uniformly distributed inexact real random number in
1850 [0,1).
1851 @end deffn
1852
1853 @deffn {Scheme Procedure} seed->random-state seed
1854 @deffnx {C Function} scm_seed_to_random_state (seed)
1855 Return a new random state using @var{seed}.
1856 @end deffn
1857
1858 @deffn {Scheme Procedure} datum->random-state datum
1859 @deffnx {C Function} scm_datum_to_random_state (datum)
1860 Return a new random state from @var{datum}, which should have been
1861 obtained by @code{random-state->datum}.
1862 @end deffn
1863
1864 @deffn {Scheme Procedure} random-state->datum state
1865 @deffnx {C Function} scm_random_state_to_datum (state)
1866 Return a datum representation of @var{state} that may be written out and
1867 read back with the Scheme reader.
1868 @end deffn
1869
1870 @deffn {Scheme Procedure} random-state-from-platform
1871 @deffnx {C Function} scm_random_state_from_platform ()
1872 Construct a new random state seeded from a platform-specific source of
1873 entropy, appropriate for use in non-security-critical applications.
1874 Currently @file{/dev/urandom} is tried first, or else the seed is based
1875 on the time, date, process ID, an address from a freshly allocated heap
1876 cell, an address from the local stack frame, and a high-resolution timer
1877 if available.
1878 @end deffn
1879
1880 @defvar *random-state*
1881 The global random state used by the above functions when the
1882 @var{state} parameter is not given.
1883 @end defvar
1884
1885 Note that the initial value of @code{*random-state*} is the same every
1886 time Guile starts up. Therefore, if you don't pass a @var{state}
1887 parameter to the above procedures, and you don't set
1888 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1889 @code{your-seed} is something that @emph{isn't} the same every time,
1890 you'll get the same sequence of ``random'' numbers on every run.
1891
1892 For example, unless the relevant source code has changed, @code{(map
1893 random (cdr (iota 30)))}, if the first use of random numbers since
1894 Guile started up, will always give:
1895
1896 @lisp
1897 (map random (cdr (iota 19)))
1898 @result{}
1899 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1900 @end lisp
1901
1902 To seed the random state in a sensible way for non-security-critical
1903 applications, do this during initialization of your program:
1904
1905 @lisp
1906 (set! *random-state* (random-state-from-platform))
1907 @end lisp
1908
1909
1910 @node Characters
1911 @subsection Characters
1912 @tpindex Characters
1913
1914 In Scheme, there is a data type to describe a single character.
1915
1916 Defining what exactly a character @emph{is} can be more complicated
1917 than it seems. Guile follows the advice of R6RS and uses The Unicode
1918 Standard to help define what a character is. So, for Guile, a
1919 character is anything in the Unicode Character Database.
1920
1921 @cindex code point
1922 @cindex Unicode code point
1923
1924 The Unicode Character Database is basically a table of characters
1925 indexed using integers called 'code points'. Valid code points are in
1926 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1927 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1928
1929 @cindex designated code point
1930 @cindex code point, designated
1931
1932 Any code point that has been assigned to a character or that has
1933 otherwise been given a meaning by Unicode is called a 'designated code
1934 point'. Most of the designated code points, about 200,000 of them,
1935 indicate characters, accents or other combining marks that modify
1936 other characters, symbols, whitespace, and control characters. Some
1937 are not characters but indicators that suggest how to format or
1938 display neighboring characters.
1939
1940 @cindex reserved code point
1941 @cindex code point, reserved
1942
1943 If a code point is not a designated code point -- if it has not been
1944 assigned to a character by The Unicode Standard -- it is a 'reserved
1945 code point', meaning that they are reserved for future use. Most of
1946 the code points, about 800,000, are 'reserved code points'.
1947
1948 By convention, a Unicode code point is written as
1949 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1950 this convenient notation is not valid code. Guile does not interpret
1951 ``U+XXXX'' as a character.
1952
1953 In Scheme, a character literal is written as @code{#\@var{name}} where
1954 @var{name} is the name of the character that you want. Printable
1955 characters have their usual single character name; for example,
1956 @code{#\a} is a lower case @code{a}.
1957
1958 Some of the code points are 'combining characters' that are not meant
1959 to be printed by themselves but are instead meant to modify the
1960 appearance of the previous character. For combining characters, an
1961 alternate form of the character literal is @code{#\} followed by
1962 U+25CC (a small, dotted circle), followed by the combining character.
1963 This allows the combining character to be drawn on the circle, not on
1964 the backslash of @code{#\}.
1965
1966 Many of the non-printing characters, such as whitespace characters and
1967 control characters, also have names.
1968
1969 The most commonly used non-printing characters have long character
1970 names, described in the table below.
1971
1972 @multitable {@code{#\backspace}} {Preferred}
1973 @item Character Name @tab Codepoint
1974 @item @code{#\nul} @tab U+0000
1975 @item @code{#\alarm} @tab u+0007
1976 @item @code{#\backspace} @tab U+0008
1977 @item @code{#\tab} @tab U+0009
1978 @item @code{#\linefeed} @tab U+000A
1979 @item @code{#\newline} @tab U+000A
1980 @item @code{#\vtab} @tab U+000B
1981 @item @code{#\page} @tab U+000C
1982 @item @code{#\return} @tab U+000D
1983 @item @code{#\esc} @tab U+001B
1984 @item @code{#\space} @tab U+0020
1985 @item @code{#\delete} @tab U+007F
1986 @end multitable
1987
1988 There are also short names for all of the ``C0 control characters''
1989 (those with code points below 32). The following table lists the short
1990 name for each character.
1991
1992 @multitable @columnfractions .25 .25 .25 .25
1993 @item 0 = @code{#\nul}
1994 @tab 1 = @code{#\soh}
1995 @tab 2 = @code{#\stx}
1996 @tab 3 = @code{#\etx}
1997 @item 4 = @code{#\eot}
1998 @tab 5 = @code{#\enq}
1999 @tab 6 = @code{#\ack}
2000 @tab 7 = @code{#\bel}
2001 @item 8 = @code{#\bs}
2002 @tab 9 = @code{#\ht}
2003 @tab 10 = @code{#\lf}
2004 @tab 11 = @code{#\vt}
2005 @item 12 = @code{#\ff}
2006 @tab 13 = @code{#\cr}
2007 @tab 14 = @code{#\so}
2008 @tab 15 = @code{#\si}
2009 @item 16 = @code{#\dle}
2010 @tab 17 = @code{#\dc1}
2011 @tab 18 = @code{#\dc2}
2012 @tab 19 = @code{#\dc3}
2013 @item 20 = @code{#\dc4}
2014 @tab 21 = @code{#\nak}
2015 @tab 22 = @code{#\syn}
2016 @tab 23 = @code{#\etb}
2017 @item 24 = @code{#\can}
2018 @tab 25 = @code{#\em}
2019 @tab 26 = @code{#\sub}
2020 @tab 27 = @code{#\esc}
2021 @item 28 = @code{#\fs}
2022 @tab 29 = @code{#\gs}
2023 @tab 30 = @code{#\rs}
2024 @tab 31 = @code{#\us}
2025 @item 32 = @code{#\sp}
2026 @end multitable
2027
2028 The short name for the ``delete'' character (code point U+007F) is
2029 @code{#\del}.
2030
2031 There are also a few alternative names left over for compatibility with
2032 previous versions of Guile.
2033
2034 @multitable {@code{#\backspace}} {Preferred}
2035 @item Alternate @tab Standard
2036 @item @code{#\nl} @tab @code{#\newline}
2037 @item @code{#\np} @tab @code{#\page}
2038 @item @code{#\null} @tab @code{#\nul}
2039 @end multitable
2040
2041 Characters may also be written using their code point values. They can
2042 be written with as an octal number, such as @code{#\10} for
2043 @code{#\bs} or @code{#\177} for @code{#\del}.
2044
2045 If one prefers hex to octal, there is an additional syntax for character
2046 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2047 number of one to eight digits.
2048
2049 @rnindex char?
2050 @deffn {Scheme Procedure} char? x
2051 @deffnx {C Function} scm_char_p (x)
2052 Return @code{#t} iff @var{x} is a character, else @code{#f}.
2053 @end deffn
2054
2055 Fundamentally, the character comparison operations below are
2056 numeric comparisons of the character's code points.
2057
2058 @rnindex char=?
2059 @deffn {Scheme Procedure} char=? x y
2060 Return @code{#t} iff code point of @var{x} is equal to the code point
2061 of @var{y}, else @code{#f}.
2062 @end deffn
2063
2064 @rnindex char<?
2065 @deffn {Scheme Procedure} char<? x y
2066 Return @code{#t} iff the code point of @var{x} is less than the code
2067 point of @var{y}, else @code{#f}.
2068 @end deffn
2069
2070 @rnindex char<=?
2071 @deffn {Scheme Procedure} char<=? x y
2072 Return @code{#t} iff the code point of @var{x} is less than or equal
2073 to the code point of @var{y}, else @code{#f}.
2074 @end deffn
2075
2076 @rnindex char>?
2077 @deffn {Scheme Procedure} char>? x y
2078 Return @code{#t} iff the code point of @var{x} is greater than the
2079 code point of @var{y}, else @code{#f}.
2080 @end deffn
2081
2082 @rnindex char>=?
2083 @deffn {Scheme Procedure} char>=? x y
2084 Return @code{#t} iff the code point of @var{x} is greater than or
2085 equal to the code point of @var{y}, else @code{#f}.
2086 @end deffn
2087
2088 @cindex case folding
2089
2090 Case-insensitive character comparisons use @emph{Unicode case
2091 folding}. In case folding comparisons, if a character is lowercase
2092 and has an uppercase form that can be expressed as a single character,
2093 it is converted to uppercase before comparison. All other characters
2094 undergo no conversion before the comparison occurs. This includes the
2095 German sharp S (Eszett) which is not uppercased before conversion
2096 because its uppercase form has two characters. Unicode case folding
2097 is language independent: it uses rules that are generally true, but,
2098 it cannot cover all cases for all languages.
2099
2100 @rnindex char-ci=?
2101 @deffn {Scheme Procedure} char-ci=? x y
2102 Return @code{#t} iff the case-folded code point of @var{x} is the same
2103 as the case-folded code point of @var{y}, else @code{#f}.
2104 @end deffn
2105
2106 @rnindex char-ci<?
2107 @deffn {Scheme Procedure} char-ci<? x y
2108 Return @code{#t} iff the case-folded code point of @var{x} is less
2109 than the case-folded code point of @var{y}, else @code{#f}.
2110 @end deffn
2111
2112 @rnindex char-ci<=?
2113 @deffn {Scheme Procedure} char-ci<=? x y
2114 Return @code{#t} iff the case-folded code point of @var{x} is less
2115 than or equal to the case-folded code point of @var{y}, else
2116 @code{#f}.
2117 @end deffn
2118
2119 @rnindex char-ci>?
2120 @deffn {Scheme Procedure} char-ci>? x y
2121 Return @code{#t} iff the case-folded code point of @var{x} is greater
2122 than the case-folded code point of @var{y}, else @code{#f}.
2123 @end deffn
2124
2125 @rnindex char-ci>=?
2126 @deffn {Scheme Procedure} char-ci>=? x y
2127 Return @code{#t} iff the case-folded code point of @var{x} is greater
2128 than or equal to the case-folded code point of @var{y}, else
2129 @code{#f}.
2130 @end deffn
2131
2132 @rnindex char-alphabetic?
2133 @deffn {Scheme Procedure} char-alphabetic? chr
2134 @deffnx {C Function} scm_char_alphabetic_p (chr)
2135 Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
2136 @end deffn
2137
2138 @rnindex char-numeric?
2139 @deffn {Scheme Procedure} char-numeric? chr
2140 @deffnx {C Function} scm_char_numeric_p (chr)
2141 Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
2142 @end deffn
2143
2144 @rnindex char-whitespace?
2145 @deffn {Scheme Procedure} char-whitespace? chr
2146 @deffnx {C Function} scm_char_whitespace_p (chr)
2147 Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
2148 @end deffn
2149
2150 @rnindex char-upper-case?
2151 @deffn {Scheme Procedure} char-upper-case? chr
2152 @deffnx {C Function} scm_char_upper_case_p (chr)
2153 Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
2154 @end deffn
2155
2156 @rnindex char-lower-case?
2157 @deffn {Scheme Procedure} char-lower-case? chr
2158 @deffnx {C Function} scm_char_lower_case_p (chr)
2159 Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
2160 @end deffn
2161
2162 @deffn {Scheme Procedure} char-is-both? chr
2163 @deffnx {C Function} scm_char_is_both_p (chr)
2164 Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
2165 @code{#f}.
2166 @end deffn
2167
2168 @deffn {Scheme Procedure} char-general-category chr
2169 @deffnx {C Function} scm_char_general_category (chr)
2170 Return a symbol giving the two-letter name of the Unicode general
2171 category assigned to @var{chr} or @code{#f} if no named category is
2172 assigned. The following table provides a list of category names along
2173 with their meanings.
2174
2175 @multitable @columnfractions .1 .4 .1 .4
2176 @item Lu
2177 @tab Uppercase letter
2178 @tab Pf
2179 @tab Final quote punctuation
2180 @item Ll
2181 @tab Lowercase letter
2182 @tab Po
2183 @tab Other punctuation
2184 @item Lt
2185 @tab Titlecase letter
2186 @tab Sm
2187 @tab Math symbol
2188 @item Lm
2189 @tab Modifier letter
2190 @tab Sc
2191 @tab Currency symbol
2192 @item Lo
2193 @tab Other letter
2194 @tab Sk
2195 @tab Modifier symbol
2196 @item Mn
2197 @tab Non-spacing mark
2198 @tab So
2199 @tab Other symbol
2200 @item Mc
2201 @tab Combining spacing mark
2202 @tab Zs
2203 @tab Space separator
2204 @item Me
2205 @tab Enclosing mark
2206 @tab Zl
2207 @tab Line separator
2208 @item Nd
2209 @tab Decimal digit number
2210 @tab Zp
2211 @tab Paragraph separator
2212 @item Nl
2213 @tab Letter number
2214 @tab Cc
2215 @tab Control
2216 @item No
2217 @tab Other number
2218 @tab Cf
2219 @tab Format
2220 @item Pc
2221 @tab Connector punctuation
2222 @tab Cs
2223 @tab Surrogate
2224 @item Pd
2225 @tab Dash punctuation
2226 @tab Co
2227 @tab Private use
2228 @item Ps
2229 @tab Open punctuation
2230 @tab Cn
2231 @tab Unassigned
2232 @item Pe
2233 @tab Close punctuation
2234 @tab
2235 @tab
2236 @item Pi
2237 @tab Initial quote punctuation
2238 @tab
2239 @tab
2240 @end multitable
2241 @end deffn
2242
2243 @rnindex char->integer
2244 @deffn {Scheme Procedure} char->integer chr
2245 @deffnx {C Function} scm_char_to_integer (chr)
2246 Return the code point of @var{chr}.
2247 @end deffn
2248
2249 @rnindex integer->char
2250 @deffn {Scheme Procedure} integer->char n
2251 @deffnx {C Function} scm_integer_to_char (n)
2252 Return the character that has code point @var{n}. The integer @var{n}
2253 must be a valid code point. Valid code points are in the ranges 0 to
2254 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
2255 @end deffn
2256
2257 @rnindex char-upcase
2258 @deffn {Scheme Procedure} char-upcase chr
2259 @deffnx {C Function} scm_char_upcase (chr)
2260 Return the uppercase character version of @var{chr}.
2261 @end deffn
2262
2263 @rnindex char-downcase
2264 @deffn {Scheme Procedure} char-downcase chr
2265 @deffnx {C Function} scm_char_downcase (chr)
2266 Return the lowercase character version of @var{chr}.
2267 @end deffn
2268
2269 @rnindex char-titlecase
2270 @deffn {Scheme Procedure} char-titlecase chr
2271 @deffnx {C Function} scm_char_titlecase (chr)
2272 Return the titlecase character version of @var{chr} if one exists;
2273 otherwise return the uppercase version.
2274
2275 For most characters these will be the same, but the Unicode Standard
2276 includes certain digraph compatibility characters, such as @code{U+01F3}
2277 ``dz'', for which the uppercase and titlecase characters are different
2278 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2279 respectively).
2280 @end deffn
2281
2282 @tindex scm_t_wchar
2283 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2284 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2285 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2286
2287 These C functions take an integer representation of a Unicode
2288 codepoint and return the codepoint corresponding to its uppercase,
2289 lowercase, and titlecase forms respectively. The type
2290 @code{scm_t_wchar} is a signed, 32-bit integer.
2291 @end deftypefn
2292
2293 @node Character Sets
2294 @subsection Character Sets
2295
2296 The features described in this section correspond directly to SRFI-14.
2297
2298 The data type @dfn{charset} implements sets of characters
2299 (@pxref{Characters}). Because the internal representation of
2300 character sets is not visible to the user, a lot of procedures for
2301 handling them are provided.
2302
2303 Character sets can be created, extended, tested for the membership of a
2304 characters and be compared to other character sets.
2305
2306 @menu
2307 * Character Set Predicates/Comparison::
2308 * Iterating Over Character Sets:: Enumerate charset elements.
2309 * Creating Character Sets:: Making new charsets.
2310 * Querying Character Sets:: Test charsets for membership etc.
2311 * Character-Set Algebra:: Calculating new charsets.
2312 * Standard Character Sets:: Variables containing predefined charsets.
2313 @end menu
2314
2315 @node Character Set Predicates/Comparison
2316 @subsubsection Character Set Predicates/Comparison
2317
2318 Use these procedures for testing whether an object is a character set,
2319 or whether several character sets are equal or subsets of each other.
2320 @code{char-set-hash} can be used for calculating a hash value, maybe for
2321 usage in fast lookup procedures.
2322
2323 @deffn {Scheme Procedure} char-set? obj
2324 @deffnx {C Function} scm_char_set_p (obj)
2325 Return @code{#t} if @var{obj} is a character set, @code{#f}
2326 otherwise.
2327 @end deffn
2328
2329 @deffn {Scheme Procedure} char-set= char_set @dots{}
2330 @deffnx {C Function} scm_char_set_eq (char_sets)
2331 Return @code{#t} if all given character sets are equal.
2332 @end deffn
2333
2334 @deffn {Scheme Procedure} char-set<= char_set @dots{}
2335 @deffnx {C Function} scm_char_set_leq (char_sets)
2336 Return @code{#t} if every character set @var{char_set}i is a subset
2337 of character set @var{char_set}i+1.
2338 @end deffn
2339
2340 @deffn {Scheme Procedure} char-set-hash cs [bound]
2341 @deffnx {C Function} scm_char_set_hash (cs, bound)
2342 Compute a hash value for the character set @var{cs}. If
2343 @var{bound} is given and non-zero, it restricts the
2344 returned value to the range 0 @dots{} @var{bound} - 1.
2345 @end deffn
2346
2347 @c ===================================================================
2348
2349 @node Iterating Over Character Sets
2350 @subsubsection Iterating Over Character Sets
2351
2352 Character set cursors are a means for iterating over the members of a
2353 character sets. After creating a character set cursor with
2354 @code{char-set-cursor}, a cursor can be dereferenced with
2355 @code{char-set-ref}, advanced to the next member with
2356 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2357 element of the set can be checked with @code{end-of-char-set?}.
2358
2359 Additionally, mapping and (un-)folding procedures for character sets are
2360 provided.
2361
2362 @deffn {Scheme Procedure} char-set-cursor cs
2363 @deffnx {C Function} scm_char_set_cursor (cs)
2364 Return a cursor into the character set @var{cs}.
2365 @end deffn
2366
2367 @deffn {Scheme Procedure} char-set-ref cs cursor
2368 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2369 Return the character at the current cursor position
2370 @var{cursor} in the character set @var{cs}. It is an error to
2371 pass a cursor for which @code{end-of-char-set?} returns true.
2372 @end deffn
2373
2374 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2375 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2376 Advance the character set cursor @var{cursor} to the next
2377 character in the character set @var{cs}. It is an error if the
2378 cursor given satisfies @code{end-of-char-set?}.
2379 @end deffn
2380
2381 @deffn {Scheme Procedure} end-of-char-set? cursor
2382 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2383 Return @code{#t} if @var{cursor} has reached the end of a
2384 character set, @code{#f} otherwise.
2385 @end deffn
2386
2387 @deffn {Scheme Procedure} char-set-fold kons knil cs
2388 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2389 Fold the procedure @var{kons} over the character set @var{cs},
2390 initializing it with @var{knil}.
2391 @end deffn
2392
2393 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2394 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2395 This is a fundamental constructor for character sets.
2396 @itemize @bullet
2397 @item @var{g} is used to generate a series of ``seed'' values
2398 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2399 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2400 @item @var{p} tells us when to stop -- when it returns true
2401 when applied to one of the seed values.
2402 @item @var{f} maps each seed value to a character. These
2403 characters are added to the base character set @var{base_cs} to
2404 form the result; @var{base_cs} defaults to the empty set.
2405 @end itemize
2406 @end deffn
2407
2408 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2409 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2410 This is a fundamental constructor for character sets.
2411 @itemize @bullet
2412 @item @var{g} is used to generate a series of ``seed'' values
2413 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2414 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2415 @item @var{p} tells us when to stop -- when it returns true
2416 when applied to one of the seed values.
2417 @item @var{f} maps each seed value to a character. These
2418 characters are added to the base character set @var{base_cs} to
2419 form the result; @var{base_cs} defaults to the empty set.
2420 @end itemize
2421 @end deffn
2422
2423 @deffn {Scheme Procedure} char-set-for-each proc cs
2424 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2425 Apply @var{proc} to every character in the character set
2426 @var{cs}. The return value is not specified.
2427 @end deffn
2428
2429 @deffn {Scheme Procedure} char-set-map proc cs
2430 @deffnx {C Function} scm_char_set_map (proc, cs)
2431 Map the procedure @var{proc} over every character in @var{cs}.
2432 @var{proc} must be a character -> character procedure.
2433 @end deffn
2434
2435 @c ===================================================================
2436
2437 @node Creating Character Sets
2438 @subsubsection Creating Character Sets
2439
2440 New character sets are produced with these procedures.
2441
2442 @deffn {Scheme Procedure} char-set-copy cs
2443 @deffnx {C Function} scm_char_set_copy (cs)
2444 Return a newly allocated character set containing all
2445 characters in @var{cs}.
2446 @end deffn
2447
2448 @deffn {Scheme Procedure} char-set chr @dots{}
2449 @deffnx {C Function} scm_char_set (chrs)
2450 Return a character set containing all given characters.
2451 @end deffn
2452
2453 @deffn {Scheme Procedure} list->char-set list [base_cs]
2454 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2455 Convert the character list @var{list} to a character set. If
2456 the character set @var{base_cs} is given, the character in this
2457 set are also included in the result.
2458 @end deffn
2459
2460 @deffn {Scheme Procedure} list->char-set! list base_cs
2461 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2462 Convert the character list @var{list} to a character set. The
2463 characters are added to @var{base_cs} and @var{base_cs} is
2464 returned.
2465 @end deffn
2466
2467 @deffn {Scheme Procedure} string->char-set str [base_cs]
2468 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2469 Convert the string @var{str} to a character set. If the
2470 character set @var{base_cs} is given, the characters in this
2471 set are also included in the result.
2472 @end deffn
2473
2474 @deffn {Scheme Procedure} string->char-set! str base_cs
2475 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2476 Convert the string @var{str} to a character set. The
2477 characters from the string are added to @var{base_cs}, and
2478 @var{base_cs} is returned.
2479 @end deffn
2480
2481 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2482 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2483 Return a character set containing every character from @var{cs}
2484 so that it satisfies @var{pred}. If provided, the characters
2485 from @var{base_cs} are added to the result.
2486 @end deffn
2487
2488 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2489 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2490 Return a character set containing every character from @var{cs}
2491 so that it satisfies @var{pred}. The characters are added to
2492 @var{base_cs} and @var{base_cs} is returned.
2493 @end deffn
2494
2495 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2496 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2497 Return a character set containing all characters whose
2498 character codes lie in the half-open range
2499 [@var{lower},@var{upper}).
2500
2501 If @var{error} is a true value, an error is signalled if the
2502 specified range contains characters which are not contained in
2503 the implemented character range. If @var{error} is @code{#f},
2504 these characters are silently left out of the resulting
2505 character set.
2506
2507 The characters in @var{base_cs} are added to the result, if
2508 given.
2509 @end deffn
2510
2511 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2512 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2513 Return a character set containing all characters whose
2514 character codes lie in the half-open range
2515 [@var{lower},@var{upper}).
2516
2517 If @var{error} is a true value, an error is signalled if the
2518 specified range contains characters which are not contained in
2519 the implemented character range. If @var{error} is @code{#f},
2520 these characters are silently left out of the resulting
2521 character set.
2522
2523 The characters are added to @var{base_cs} and @var{base_cs} is
2524 returned.
2525 @end deffn
2526
2527 @deffn {Scheme Procedure} ->char-set x
2528 @deffnx {C Function} scm_to_char_set (x)
2529 Coerces x into a char-set. @var{x} may be a string, character or
2530 char-set. A string is converted to the set of its constituent
2531 characters; a character is converted to a singleton set; a char-set is
2532 returned as-is.
2533 @end deffn
2534
2535 @c ===================================================================
2536
2537 @node Querying Character Sets
2538 @subsubsection Querying Character Sets
2539
2540 Access the elements and other information of a character set with these
2541 procedures.
2542
2543 @deffn {Scheme Procedure} %char-set-dump cs
2544 Returns an association list containing debugging information
2545 for @var{cs}. The association list has the following entries.
2546 @table @code
2547 @item char-set
2548 The char-set itself
2549 @item len
2550 The number of groups of contiguous code points the char-set
2551 contains
2552 @item ranges
2553 A list of lists where each sublist is a range of code points
2554 and their associated characters
2555 @end table
2556 The return value of this function cannot be relied upon to be
2557 consistent between versions of Guile and should not be used in code.
2558 @end deffn
2559
2560 @deffn {Scheme Procedure} char-set-size cs
2561 @deffnx {C Function} scm_char_set_size (cs)
2562 Return the number of elements in character set @var{cs}.
2563 @end deffn
2564
2565 @deffn {Scheme Procedure} char-set-count pred cs
2566 @deffnx {C Function} scm_char_set_count (pred, cs)
2567 Return the number of the elements int the character set
2568 @var{cs} which satisfy the predicate @var{pred}.
2569 @end deffn
2570
2571 @deffn {Scheme Procedure} char-set->list cs
2572 @deffnx {C Function} scm_char_set_to_list (cs)
2573 Return a list containing the elements of the character set
2574 @var{cs}.
2575 @end deffn
2576
2577 @deffn {Scheme Procedure} char-set->string cs
2578 @deffnx {C Function} scm_char_set_to_string (cs)
2579 Return a string containing the elements of the character set
2580 @var{cs}. The order in which the characters are placed in the
2581 string is not defined.
2582 @end deffn
2583
2584 @deffn {Scheme Procedure} char-set-contains? cs ch
2585 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2586 Return @code{#t} iff the character @var{ch} is contained in the
2587 character set @var{cs}.
2588 @end deffn
2589
2590 @deffn {Scheme Procedure} char-set-every pred cs
2591 @deffnx {C Function} scm_char_set_every (pred, cs)
2592 Return a true value if every character in the character set
2593 @var{cs} satisfies the predicate @var{pred}.
2594 @end deffn
2595
2596 @deffn {Scheme Procedure} char-set-any pred cs
2597 @deffnx {C Function} scm_char_set_any (pred, cs)
2598 Return a true value if any character in the character set
2599 @var{cs} satisfies the predicate @var{pred}.
2600 @end deffn
2601
2602 @c ===================================================================
2603
2604 @node Character-Set Algebra
2605 @subsubsection Character-Set Algebra
2606
2607 Character sets can be manipulated with the common set algebra operation,
2608 such as union, complement, intersection etc. All of these procedures
2609 provide side-effecting variants, which modify their character set
2610 argument(s).
2611
2612 @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2613 @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
2614 Add all character arguments to the first argument, which must
2615 be a character set.
2616 @end deffn
2617
2618 @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2619 @deffnx {C Function} scm_char_set_delete (cs, chrs)
2620 Delete all character arguments from the first argument, which
2621 must be a character set.
2622 @end deffn
2623
2624 @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2625 @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
2626 Add all character arguments to the first argument, which must
2627 be a character set.
2628 @end deffn
2629
2630 @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2631 @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
2632 Delete all character arguments from the first argument, which
2633 must be a character set.
2634 @end deffn
2635
2636 @deffn {Scheme Procedure} char-set-complement cs
2637 @deffnx {C Function} scm_char_set_complement (cs)
2638 Return the complement of the character set @var{cs}.
2639 @end deffn
2640
2641 Note that the complement of a character set is likely to contain many
2642 reserved code points (code points that are not associated with
2643 characters). It may be helpful to modify the output of
2644 @code{char-set-complement} by computing its intersection with the set
2645 of designated code points, @code{char-set:designated}.
2646
2647 @deffn {Scheme Procedure} char-set-union cs @dots{}
2648 @deffnx {C Function} scm_char_set_union (char_sets)
2649 Return the union of all argument character sets.
2650 @end deffn
2651
2652 @deffn {Scheme Procedure} char-set-intersection cs @dots{}
2653 @deffnx {C Function} scm_char_set_intersection (char_sets)
2654 Return the intersection of all argument character sets.
2655 @end deffn
2656
2657 @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2658 @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
2659 Return the difference of all argument character sets.
2660 @end deffn
2661
2662 @deffn {Scheme Procedure} char-set-xor cs @dots{}
2663 @deffnx {C Function} scm_char_set_xor (char_sets)
2664 Return the exclusive-or of all argument character sets.
2665 @end deffn
2666
2667 @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2668 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
2669 Return the difference and the intersection of all argument
2670 character sets.
2671 @end deffn
2672
2673 @deffn {Scheme Procedure} char-set-complement! cs
2674 @deffnx {C Function} scm_char_set_complement_x (cs)
2675 Return the complement of the character set @var{cs}.
2676 @end deffn
2677
2678 @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2679 @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
2680 Return the union of all argument character sets.
2681 @end deffn
2682
2683 @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2684 @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
2685 Return the intersection of all argument character sets.
2686 @end deffn
2687
2688 @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2689 @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
2690 Return the difference of all argument character sets.
2691 @end deffn
2692
2693 @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2694 @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
2695 Return the exclusive-or of all argument character sets.
2696 @end deffn
2697
2698 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2699 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
2700 Return the difference and the intersection of all argument
2701 character sets.
2702 @end deffn
2703
2704 @c ===================================================================
2705
2706 @node Standard Character Sets
2707 @subsubsection Standard Character Sets
2708
2709 In order to make the use of the character set data type and procedures
2710 useful, several predefined character set variables exist.
2711
2712 @cindex codeset
2713 @cindex charset
2714 @cindex locale
2715
2716 These character sets are locale independent and are not recomputed
2717 upon a @code{setlocale} call. They contain characters from the whole
2718 range of Unicode code points. For instance, @code{char-set:letter}
2719 contains about 100,000 characters.
2720
2721 @defvr {Scheme Variable} char-set:lower-case
2722 @defvrx {C Variable} scm_char_set_lower_case
2723 All lower-case characters.
2724 @end defvr
2725
2726 @defvr {Scheme Variable} char-set:upper-case
2727 @defvrx {C Variable} scm_char_set_upper_case
2728 All upper-case characters.
2729 @end defvr
2730
2731 @defvr {Scheme Variable} char-set:title-case
2732 @defvrx {C Variable} scm_char_set_title_case
2733 All single characters that function as if they were an upper-case
2734 letter followed by a lower-case letter.
2735 @end defvr
2736
2737 @defvr {Scheme Variable} char-set:letter
2738 @defvrx {C Variable} scm_char_set_letter
2739 All letters. This includes @code{char-set:lower-case},
2740 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2741 letters that have no case at all. For example, Chinese and Japanese
2742 characters typically have no concept of case.
2743 @end defvr
2744
2745 @defvr {Scheme Variable} char-set:digit
2746 @defvrx {C Variable} scm_char_set_digit
2747 All digits.
2748 @end defvr
2749
2750 @defvr {Scheme Variable} char-set:letter+digit
2751 @defvrx {C Variable} scm_char_set_letter_and_digit
2752 The union of @code{char-set:letter} and @code{char-set:digit}.
2753 @end defvr
2754
2755 @defvr {Scheme Variable} char-set:graphic
2756 @defvrx {C Variable} scm_char_set_graphic
2757 All characters which would put ink on the paper.
2758 @end defvr
2759
2760 @defvr {Scheme Variable} char-set:printing
2761 @defvrx {C Variable} scm_char_set_printing
2762 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2763 @end defvr
2764
2765 @defvr {Scheme Variable} char-set:whitespace
2766 @defvrx {C Variable} scm_char_set_whitespace
2767 All whitespace characters.
2768 @end defvr
2769
2770 @defvr {Scheme Variable} char-set:blank
2771 @defvrx {C Variable} scm_char_set_blank
2772 All horizontal whitespace characters, which notably includes
2773 @code{#\space} and @code{#\tab}.
2774 @end defvr
2775
2776 @defvr {Scheme Variable} char-set:iso-control
2777 @defvrx {C Variable} scm_char_set_iso_control
2778 The ISO control characters are the C0 control characters (U+0000 to
2779 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2780 U+009F).
2781 @end defvr
2782
2783 @defvr {Scheme Variable} char-set:punctuation
2784 @defvrx {C Variable} scm_char_set_punctuation
2785 All punctuation characters, such as the characters
2786 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2787 @end defvr
2788
2789 @defvr {Scheme Variable} char-set:symbol
2790 @defvrx {C Variable} scm_char_set_symbol
2791 All symbol characters, such as the characters @code{$+<=>^`|~}.
2792 @end defvr
2793
2794 @defvr {Scheme Variable} char-set:hex-digit
2795 @defvrx {C Variable} scm_char_set_hex_digit
2796 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2797 @end defvr
2798
2799 @defvr {Scheme Variable} char-set:ascii
2800 @defvrx {C Variable} scm_char_set_ascii
2801 All ASCII characters.
2802 @end defvr
2803
2804 @defvr {Scheme Variable} char-set:empty
2805 @defvrx {C Variable} scm_char_set_empty
2806 The empty character set.
2807 @end defvr
2808
2809 @defvr {Scheme Variable} char-set:designated
2810 @defvrx {C Variable} scm_char_set_designated
2811 This character set contains all designated code points. This includes
2812 all the code points to which Unicode has assigned a character or other
2813 meaning.
2814 @end defvr
2815
2816 @defvr {Scheme Variable} char-set:full
2817 @defvrx {C Variable} scm_char_set_full
2818 This character set contains all possible code points. This includes
2819 both designated and reserved code points.
2820 @end defvr
2821
2822 @node Strings
2823 @subsection Strings
2824 @tpindex Strings
2825
2826 Strings are fixed-length sequences of characters. They can be created
2827 by calling constructor procedures, but they can also literally get
2828 entered at the @acronym{REPL} or in Scheme source files.
2829
2830 @c Guile provides a rich set of string processing procedures, because text
2831 @c handling is very important when Guile is used as a scripting language.
2832
2833 Strings always carry the information about how many characters they are
2834 composed of with them, so there is no special end-of-string character,
2835 like in C. That means that Scheme strings can contain any character,
2836 even the @samp{#\nul} character @samp{\0}.
2837
2838 To use strings efficiently, you need to know a bit about how Guile
2839 implements them. In Guile, a string consists of two parts, a head and
2840 the actual memory where the characters are stored. When a string (or
2841 a substring of it) is copied, only a new head gets created, the memory
2842 is usually not copied. The two heads start out pointing to the same
2843 memory.
2844
2845 When one of these two strings is modified, as with @code{string-set!},
2846 their common memory does get copied so that each string has its own
2847 memory and modifying one does not accidentally modify the other as well.
2848 Thus, Guile's strings are `copy on write'; the actual copying of their
2849 memory is delayed until one string is written to.
2850
2851 This implementation makes functions like @code{substring} very
2852 efficient in the common case that no modifications are done to the
2853 involved strings.
2854
2855 If you do know that your strings are getting modified right away, you
2856 can use @code{substring/copy} instead of @code{substring}. This
2857 function performs the copy immediately at the time of creation. This
2858 is more efficient, especially in a multi-threaded program. Also,
2859 @code{substring/copy} can avoid the problem that a short substring
2860 holds on to the memory of a very large original string that could
2861 otherwise be recycled.
2862
2863 If you want to avoid the copy altogether, so that modifications of one
2864 string show up in the other, you can use @code{substring/shared}. The
2865 strings created by this procedure are called @dfn{mutation sharing
2866 substrings} since the substring and the original string share
2867 modifications to each other.
2868
2869 If you want to prevent modifications, use @code{substring/read-only}.
2870
2871 Guile provides all procedures of SRFI-13 and a few more.
2872
2873 @menu
2874 * String Syntax:: Read syntax for strings.
2875 * String Predicates:: Testing strings for certain properties.
2876 * String Constructors:: Creating new string objects.
2877 * List/String Conversion:: Converting from/to lists of characters.
2878 * String Selection:: Select portions from strings.
2879 * String Modification:: Modify parts or whole strings.
2880 * String Comparison:: Lexicographic ordering predicates.
2881 * String Searching:: Searching in strings.
2882 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2883 * Reversing and Appending Strings:: Appending strings to form a new string.
2884 * Mapping Folding and Unfolding:: Iterating over strings.
2885 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2886 * Representing Strings as Bytes:: Encoding and decoding strings.
2887 * Conversion to/from C::
2888 * String Internals:: The storage strategy for strings.
2889 @end menu
2890
2891 @node String Syntax
2892 @subsubsection String Read Syntax
2893
2894 @c In the following @code is used to get a good font in TeX etc, but
2895 @c is omitted for Info format, so as not to risk any confusion over
2896 @c whether surrounding ` ' quotes are part of the escape or are
2897 @c special in a string (they're not).
2898
2899 The read syntax for strings is an arbitrarily long sequence of
2900 characters enclosed in double quotes (@nicode{"}).
2901
2902 Backslash is an escape character and can be used to insert the following
2903 special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2904 next seven are R6RS standard --- notice they follow C syntax --- and the
2905 remaining four are Guile extensions.
2906
2907 @table @asis
2908 @item @nicode{\\}
2909 Backslash character.
2910
2911 @item @nicode{\"}
2912 Double quote character (an unescaped @nicode{"} is otherwise the end
2913 of the string).
2914
2915 @item @nicode{\a}
2916 Bell character (ASCII 7).
2917
2918 @item @nicode{\f}
2919 Formfeed character (ASCII 12).
2920
2921 @item @nicode{\n}
2922 Newline character (ASCII 10).
2923
2924 @item @nicode{\r}
2925 Carriage return character (ASCII 13).
2926
2927 @item @nicode{\t}
2928 Tab character (ASCII 9).
2929
2930 @item @nicode{\v}
2931 Vertical tab character (ASCII 11).
2932
2933 @item @nicode{\b}
2934 Backspace character (ASCII 8).
2935
2936 @item @nicode{\0}
2937 NUL character (ASCII 0).
2938
2939 @item @nicode{\} followed by newline (ASCII 10)
2940 Nothing. This way if @nicode{\} is the last character in a line, the
2941 string will continue with the first character from the next line,
2942 without a line break.
2943
2944 If the @code{hungry-eol-escapes} reader option is enabled, which is not
2945 the case by default, leading whitespace on the next line is discarded.
2946
2947 @lisp
2948 "foo\
2949 bar"
2950 @result{} "foo bar"
2951 (read-enable 'hungry-eol-escapes)
2952 "foo\
2953 bar"
2954 @result{} "foobar"
2955 @end lisp
2956 @item @nicode{\xHH}
2957 Character code given by two hexadecimal digits. For example
2958 @nicode{\x7f} for an ASCII DEL (127).
2959
2960 @item @nicode{\uHHHH}
2961 Character code given by four hexadecimal digits. For example
2962 @nicode{\u0100} for a capital A with macron (U+0100).
2963
2964 @item @nicode{\UHHHHHH}
2965 Character code given by six hexadecimal digits. For example
2966 @nicode{\U010402}.
2967 @end table
2968
2969 @noindent
2970 The following are examples of string literals:
2971
2972 @lisp
2973 "foo"
2974 "bar plonk"
2975 "Hello World"
2976 "\"Hi\", he said."
2977 @end lisp
2978
2979 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
2980 chosen to not break compatibility with code written for previous versions of
2981 Guile. The R6RS specification suggests a different, incompatible syntax for hex
2982 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
2983 digits terminated with a semicolon. If this escape format is desired instead,
2984 it can be enabled with the reader option @code{r6rs-hex-escapes}.
2985
2986 @lisp
2987 (read-enable 'r6rs-hex-escapes)
2988 @end lisp
2989
2990 For more on reader options, @xref{Scheme Read}.
2991
2992 @node String Predicates
2993 @subsubsection String Predicates
2994
2995 The following procedures can be used to check whether a given string
2996 fulfills some specified property.
2997
2998 @rnindex string?
2999 @deffn {Scheme Procedure} string? obj
3000 @deffnx {C Function} scm_string_p (obj)
3001 Return @code{#t} if @var{obj} is a string, else @code{#f}.
3002 @end deffn
3003
3004 @deftypefn {C Function} int scm_is_string (SCM obj)
3005 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3006 @end deftypefn
3007
3008 @deffn {Scheme Procedure} string-null? str
3009 @deffnx {C Function} scm_string_null_p (str)
3010 Return @code{#t} if @var{str}'s length is zero, and
3011 @code{#f} otherwise.
3012 @lisp
3013 (string-null? "") @result{} #t
3014 y @result{} "foo"
3015 (string-null? y) @result{} #f
3016 @end lisp
3017 @end deffn
3018
3019 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
3020 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
3021 Check if @var{char_pred} is true for any character in string @var{s}.
3022
3023 @var{char_pred} can be a character to check for any equal to that, or
3024 a character set (@pxref{Character Sets}) to check for any in that set,
3025 or a predicate procedure to call.
3026
3027 For a procedure, calls @code{(@var{char_pred} c)} are made
3028 successively on the characters from @var{start} to @var{end}. If
3029 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3030 stops and that return value is the return from @code{string-any}. The
3031 call on the last character (ie.@: at @math{@var{end}-1}), if that
3032 point is reached, is a tail call.
3033
3034 If there are no characters in @var{s} (ie.@: @var{start} equals
3035 @var{end}) then the return is @code{#f}.
3036 @end deffn
3037
3038 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
3039 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
3040 Check if @var{char_pred} is true for every character in string
3041 @var{s}.
3042
3043 @var{char_pred} can be a character to check for every character equal
3044 to that, or a character set (@pxref{Character Sets}) to check for
3045 every character being in that set, or a predicate procedure to call.
3046
3047 For a procedure, calls @code{(@var{char_pred} c)} are made
3048 successively on the characters from @var{start} to @var{end}. If
3049 @var{char_pred} returns @code{#f}, @code{string-every} stops and
3050 returns @code{#f}. The call on the last character (ie.@: at
3051 @math{@var{end}-1}), if that point is reached, is a tail call and the
3052 return from that call is the return from @code{string-every}.
3053
3054 If there are no characters in @var{s} (ie.@: @var{start} equals
3055 @var{end}) then the return is @code{#t}.
3056 @end deffn
3057
3058 @node String Constructors
3059 @subsubsection String Constructors
3060
3061 The string constructor procedures create new string objects, possibly
3062 initializing them with some specified character data. See also
3063 @xref{String Selection}, for ways to create strings from existing
3064 strings.
3065
3066 @c FIXME::martin: list->string belongs into `List/String Conversion'
3067
3068 @deffn {Scheme Procedure} string char@dots{}
3069 @rnindex string
3070 Return a newly allocated string made from the given character
3071 arguments.
3072
3073 @example
3074 (string #\x #\y #\z) @result{} "xyz"
3075 (string) @result{} ""
3076 @end example
3077 @end deffn
3078
3079 @deffn {Scheme Procedure} list->string lst
3080 @deffnx {C Function} scm_string (lst)
3081 @rnindex list->string
3082 Return a newly allocated string made from a list of characters.
3083
3084 @example
3085 (list->string '(#\a #\b #\c)) @result{} "abc"
3086 @end example
3087 @end deffn
3088
3089 @deffn {Scheme Procedure} reverse-list->string lst
3090 @deffnx {C Function} scm_reverse_list_to_string (lst)
3091 Return a newly allocated string made from a list of characters, in
3092 reverse order.
3093
3094 @example
3095 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3096 @end example
3097 @end deffn
3098
3099 @rnindex make-string
3100 @deffn {Scheme Procedure} make-string k [chr]
3101 @deffnx {C Function} scm_make_string (k, chr)
3102 Return a newly allocated string of
3103 length @var{k}. If @var{chr} is given, then all elements of
3104 the string are initialized to @var{chr}, otherwise the contents
3105 of the string are unspecified.
3106 @end deffn
3107
3108 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3109 Like @code{scm_make_string}, but expects the length as a
3110 @code{size_t}.
3111 @end deftypefn
3112
3113 @deffn {Scheme Procedure} string-tabulate proc len
3114 @deffnx {C Function} scm_string_tabulate (proc, len)
3115 @var{proc} is an integer->char procedure. Construct a string
3116 of size @var{len} by applying @var{proc} to each index to
3117 produce the corresponding string element. The order in which
3118 @var{proc} is applied to the indices is not specified.
3119 @end deffn
3120
3121 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3122 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3123 Append the string in the string list @var{ls}, using the string
3124 @var{delimiter} as a delimiter between the elements of @var{ls}.
3125 @var{grammar} is a symbol which specifies how the delimiter is
3126 placed between the strings, and defaults to the symbol
3127 @code{infix}.
3128
3129 @table @code
3130 @item infix
3131 Insert the separator between list elements. An empty string
3132 will produce an empty list.
3133 @item string-infix
3134 Like @code{infix}, but will raise an error if given the empty
3135 list.
3136 @item suffix
3137 Insert the separator after every list element.
3138 @item prefix
3139 Insert the separator before each list element.
3140 @end table
3141 @end deffn
3142
3143 @node List/String Conversion
3144 @subsubsection List/String conversion
3145
3146 When processing strings, it is often convenient to first convert them
3147 into a list representation by using the procedure @code{string->list},
3148 work with the resulting list, and then convert it back into a string.
3149 These procedures are useful for similar tasks.
3150
3151 @rnindex string->list
3152 @deffn {Scheme Procedure} string->list str [start [end]]
3153 @deffnx {C Function} scm_substring_to_list (str, start, end)
3154 @deffnx {C Function} scm_string_to_list (str)
3155 Convert the string @var{str} into a list of characters.
3156 @end deffn
3157
3158 @deffn {Scheme Procedure} string-split str char_pred
3159 @deffnx {C Function} scm_string_split (str, char_pred)
3160 Split the string @var{str} into a list of substrings delimited
3161 by appearances of characters that
3162
3163 @itemize @bullet
3164 @item
3165 equal @var{char_pred}, if it is a character,
3166
3167 @item
3168 satisfy the predicate @var{char_pred}, if it is a procedure,
3169
3170 @item
3171 are in the set @var{char_pred}, if it is a character set.
3172 @end itemize
3173
3174 Note that an empty substring between separator characters will result in
3175 an empty string in the result list.
3176
3177 @lisp
3178 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3179 @result{}
3180 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
3181
3182 (string-split "::" #\:)
3183 @result{}
3184 ("" "" "")
3185
3186 (string-split "" #\:)
3187 @result{}
3188 ("")
3189 @end lisp
3190 @end deffn
3191
3192
3193 @node String Selection
3194 @subsubsection String Selection
3195
3196 Portions of strings can be extracted by these procedures.
3197 @code{string-ref} delivers individual characters whereas
3198 @code{substring} can be used to extract substrings from longer strings.
3199
3200 @rnindex string-length
3201 @deffn {Scheme Procedure} string-length string
3202 @deffnx {C Function} scm_string_length (string)
3203 Return the number of characters in @var{string}.
3204 @end deffn
3205
3206 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
3207 Return the number of characters in @var{str} as a @code{size_t}.
3208 @end deftypefn
3209
3210 @rnindex string-ref
3211 @deffn {Scheme Procedure} string-ref str k
3212 @deffnx {C Function} scm_string_ref (str, k)
3213 Return character @var{k} of @var{str} using zero-origin
3214 indexing. @var{k} must be a valid index of @var{str}.
3215 @end deffn
3216
3217 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3218 Return character @var{k} of @var{str} using zero-origin
3219 indexing. @var{k} must be a valid index of @var{str}.
3220 @end deftypefn
3221
3222 @rnindex string-copy
3223 @deffn {Scheme Procedure} string-copy str [start [end]]
3224 @deffnx {C Function} scm_substring_copy (str, start, end)
3225 @deffnx {C Function} scm_string_copy (str)
3226 Return a copy of the given string @var{str}.
3227
3228 The returned string shares storage with @var{str} initially, but it is
3229 copied as soon as one of the two strings is modified.
3230 @end deffn
3231
3232 @rnindex substring
3233 @deffn {Scheme Procedure} substring str start [end]
3234 @deffnx {C Function} scm_substring (str, start, end)
3235 Return a new string formed from the characters
3236 of @var{str} beginning with index @var{start} (inclusive) and
3237 ending with index @var{end} (exclusive).
3238 @var{str} must be a string, @var{start} and @var{end} must be
3239 exact integers satisfying:
3240
3241 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
3242
3243 The returned string shares storage with @var{str} initially, but it is
3244 copied as soon as one of the two strings is modified.
3245 @end deffn
3246
3247 @deffn {Scheme Procedure} substring/shared str start [end]
3248 @deffnx {C Function} scm_substring_shared (str, start, end)
3249 Like @code{substring}, but the strings continue to share their storage
3250 even if they are modified. Thus, modifications to @var{str} show up
3251 in the new string, and vice versa.
3252 @end deffn
3253
3254 @deffn {Scheme Procedure} substring/copy str start [end]
3255 @deffnx {C Function} scm_substring_copy (str, start, end)
3256 Like @code{substring}, but the storage for the new string is copied
3257 immediately.
3258 @end deffn
3259
3260 @deffn {Scheme Procedure} substring/read-only str start [end]
3261 @deffnx {C Function} scm_substring_read_only (str, start, end)
3262 Like @code{substring}, but the resulting string can not be modified.
3263 @end deffn
3264
3265 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3266 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3267 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
3268 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
3269 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3270 @end deftypefn
3271
3272 @deffn {Scheme Procedure} string-take s n
3273 @deffnx {C Function} scm_string_take (s, n)
3274 Return the @var{n} first characters of @var{s}.
3275 @end deffn
3276
3277 @deffn {Scheme Procedure} string-drop s n
3278 @deffnx {C Function} scm_string_drop (s, n)
3279 Return all but the first @var{n} characters of @var{s}.
3280 @end deffn
3281
3282 @deffn {Scheme Procedure} string-take-right s n
3283 @deffnx {C Function} scm_string_take_right (s, n)
3284 Return the @var{n} last characters of @var{s}.
3285 @end deffn
3286
3287 @deffn {Scheme Procedure} string-drop-right s n
3288 @deffnx {C Function} scm_string_drop_right (s, n)
3289 Return all but the last @var{n} characters of @var{s}.
3290 @end deffn
3291
3292 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3293 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3294 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3295 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3296 Take characters @var{start} to @var{end} from the string @var{s} and
3297 either pad with @var{chr} or truncate them to give @var{len}
3298 characters.
3299
3300 @code{string-pad} pads or truncates on the left, so for example
3301
3302 @example
3303 (string-pad "x" 3) @result{} " x"
3304 (string-pad "abcde" 3) @result{} "cde"
3305 @end example
3306
3307 @code{string-pad-right} pads or truncates on the right, so for example
3308
3309 @example
3310 (string-pad-right "x" 3) @result{} "x "
3311 (string-pad-right "abcde" 3) @result{} "abc"
3312 @end example
3313 @end deffn
3314
3315 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3316 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3317 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3318 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3319 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3320 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3321 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3322
3323 @code{string-trim} trims @var{char_pred} characters from the left
3324 (start) of the string, @code{string-trim-right} trims them from the
3325 right (end) of the string, @code{string-trim-both} trims from both
3326 ends.
3327
3328 @var{char_pred} can be a character, a character set, or a predicate
3329 procedure to call on each character. If @var{char_pred} is not given
3330 the default is whitespace as per @code{char-set:whitespace}
3331 (@pxref{Standard Character Sets}).
3332
3333 @example
3334 (string-trim " x ") @result{} "x "
3335 (string-trim-right "banana" #\a) @result{} "banan"
3336 (string-trim-both ".,xy:;" char-set:punctuation)
3337 @result{} "xy"
3338 (string-trim-both "xyzzy" (lambda (c)
3339 (or (eqv? c #\x)
3340 (eqv? c #\y))))
3341 @result{} "zz"
3342 @end example
3343 @end deffn
3344
3345 @node String Modification
3346 @subsubsection String Modification
3347
3348 These procedures are for modifying strings in-place. This means that the
3349 result of the operation is not a new string; instead, the original string's
3350 memory representation is modified.
3351
3352 @rnindex string-set!
3353 @deffn {Scheme Procedure} string-set! str k chr
3354 @deffnx {C Function} scm_string_set_x (str, k, chr)
3355 Store @var{chr} in element @var{k} of @var{str} and return
3356 an unspecified value. @var{k} must be a valid index of
3357 @var{str}.
3358 @end deffn
3359
3360 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3361 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3362 @end deftypefn
3363
3364 @rnindex string-fill!
3365 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3366 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3367 @deffnx {C Function} scm_string_fill_x (str, chr)
3368 Stores @var{chr} in every element of the given @var{str} and
3369 returns an unspecified value.
3370 @end deffn
3371
3372 @deffn {Scheme Procedure} substring-fill! str start end fill
3373 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3374 Change every character in @var{str} between @var{start} and
3375 @var{end} to @var{fill}.
3376
3377 @lisp
3378 (define y (string-copy "abcdefg"))
3379 (substring-fill! y 1 3 #\r)
3380 y
3381 @result{} "arrdefg"
3382 @end lisp
3383 @end deffn
3384
3385 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3386 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3387 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3388 into @var{str2} beginning at position @var{start2}.
3389 @var{str1} and @var{str2} can be the same string.
3390 @end deffn
3391
3392 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3393 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3394 Copy the sequence of characters from index range [@var{start},
3395 @var{end}) in string @var{s} to string @var{target}, beginning
3396 at index @var{tstart}. The characters are copied left-to-right
3397 or right-to-left as needed -- the copy is guaranteed to work,
3398 even if @var{target} and @var{s} are the same string. It is an
3399 error if the copy operation runs off the end of the target
3400 string.
3401 @end deffn
3402
3403
3404 @node String Comparison
3405 @subsubsection String Comparison
3406
3407 The procedures in this section are similar to the character ordering
3408 predicates (@pxref{Characters}), but are defined on character sequences.
3409
3410 The first set is specified in R5RS and has names that end in @code{?}.
3411 The second set is specified in SRFI-13 and the names have not ending
3412 @code{?}.
3413
3414 The predicates ending in @code{-ci} ignore the character case
3415 when comparing strings. For now, case-insensitive comparison is done
3416 using the R5RS rules, where every lower-case character that has a
3417 single character upper-case form is converted to uppercase before
3418 comparison. See @xref{Text Collation, the @code{(ice-9
3419 i18n)} module}, for locale-dependent string comparison.
3420
3421 @rnindex string=?
3422 @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
3423 Lexicographic equality predicate; return @code{#t} if all strings are
3424 the same length and contain the same characters in the same positions,
3425 otherwise return @code{#f}.
3426
3427 The procedure @code{string-ci=?} treats upper and lower case
3428 letters as though they were the same character, but
3429 @code{string=?} treats upper and lower case as distinct
3430 characters.
3431 @end deffn
3432
3433 @rnindex string<?
3434 @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
3435 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3436 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3437 lexicographically less than @var{str_i+1}.
3438 @end deffn
3439
3440 @rnindex string<=?
3441 @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
3442 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3443 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3444 lexicographically less than or equal to @var{str_i+1}.
3445 @end deffn
3446
3447 @rnindex string>?
3448 @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
3449 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3450 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3451 lexicographically greater than @var{str_i+1}.
3452 @end deffn
3453
3454 @rnindex string>=?
3455 @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
3456 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3457 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3458 lexicographically greater than or equal to @var{str_i+1}.
3459 @end deffn
3460
3461 @rnindex string-ci=?
3462 @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
3463 Case-insensitive string equality predicate; return @code{#t} if
3464 all strings are the same length and their component
3465 characters match (ignoring case) at each position; otherwise
3466 return @code{#f}.
3467 @end deffn
3468
3469 @rnindex string-ci<?
3470 @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
3471 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3472 for every pair of consecutive string arguments @var{str_i} and
3473 @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
3474 regardless of case.
3475 @end deffn
3476
3477 @rnindex string<=?
3478 @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
3479 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3480 for every pair of consecutive string arguments @var{str_i} and
3481 @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3482 @var{str_i+1} regardless of case.
3483 @end deffn
3484
3485 @rnindex string-ci>?
3486 @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
3487 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3488 for every pair of consecutive string arguments @var{str_i} and
3489 @var{str_i+1}, @var{str_i} is lexicographically greater than
3490 @var{str_i+1} regardless of case.
3491 @end deffn
3492
3493 @rnindex string-ci>=?
3494 @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
3495 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3496 for every pair of consecutive string arguments @var{str_i} and
3497 @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3498 @var{str_i+1} regardless of case.
3499 @end deffn
3500
3501 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3502 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3503 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3504 mismatch index, depending upon whether @var{s1} is less than,
3505 equal to, or greater than @var{s2}. The mismatch index is the
3506 largest index @var{i} such that for every 0 <= @var{j} <
3507 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3508 @var{i} is the first position that does not match.
3509 @end deffn
3510
3511 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3512 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3513 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3514 mismatch index, depending upon whether @var{s1} is less than,
3515 equal to, or greater than @var{s2}. The mismatch index is the
3516 largest index @var{i} such that for every 0 <= @var{j} <
3517 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3518 @var{i} is the first position where the lowercased letters
3519 do not match.
3520
3521 @end deffn
3522
3523 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3524 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3525 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3526 value otherwise.
3527 @end deffn
3528
3529 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3530 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3531 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3532 value otherwise.
3533 @end deffn
3534
3535 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3536 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3537 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3538 true value otherwise.
3539 @end deffn
3540
3541 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3542 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3543 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3544 true value otherwise.
3545 @end deffn
3546
3547 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3548 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3549 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3550 value otherwise.
3551 @end deffn
3552
3553 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3554 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3555 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3556 otherwise.
3557 @end deffn
3558
3559 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3560 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3561 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3562 value otherwise. The character comparison is done
3563 case-insensitively.
3564 @end deffn
3565
3566 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3567 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3568 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3569 value otherwise. The character comparison is done
3570 case-insensitively.
3571 @end deffn
3572
3573 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3574 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3575 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3576 true value otherwise. The character comparison is done
3577 case-insensitively.
3578 @end deffn
3579
3580 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3581 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3582 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3583 true value otherwise. The character comparison is done
3584 case-insensitively.
3585 @end deffn
3586
3587 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3588 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3589 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3590 value otherwise. The character comparison is done
3591 case-insensitively.
3592 @end deffn
3593
3594 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3595 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3596 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3597 otherwise. The character comparison is done
3598 case-insensitively.
3599 @end deffn
3600
3601 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3602 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3603 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3604 @end deffn
3605
3606 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3607 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3608 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3609 @end deffn
3610
3611 Because the same visual appearance of an abstract Unicode character can
3612 be obtained via multiple sequences of Unicode characters, even the
3613 case-insensitive string comparison functions described above may return
3614 @code{#f} when presented with strings containing different
3615 representations of the same character. For example, the Unicode
3616 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3617 represented with a single character (U+1E69) or by the character ``LATIN
3618 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3619 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3620
3621 For this reason, it is often desirable to ensure that the strings
3622 to be compared are using a mutually consistent representation for every
3623 character. The Unicode standard defines two methods of normalizing the
3624 contents of strings: Decomposition, which breaks composite characters
3625 into a set of constituent characters with an ordering defined by the
3626 Unicode Standard; and composition, which performs the converse.
3627
3628 There are two decomposition operations. ``Canonical decomposition''
3629 produces character sequences that share the same visual appearance as
3630 the original characters, while ``compatibility decomposition'' produces
3631 ones whose visual appearances may differ from the originals but which
3632 represent the same abstract character.
3633
3634 These operations are encapsulated in the following set of normalization
3635 forms:
3636
3637 @table @dfn
3638 @item NFD
3639 Characters are decomposed to their canonical forms.
3640
3641 @item NFKD
3642 Characters are decomposed to their compatibility forms.
3643
3644 @item NFC
3645 Characters are decomposed to their canonical forms, then composed.
3646
3647 @item NFKC
3648 Characters are decomposed to their compatibility forms, then composed.
3649
3650 @end table
3651
3652 The functions below put their arguments into one of the forms described
3653 above.
3654
3655 @deffn {Scheme Procedure} string-normalize-nfd s
3656 @deffnx {C Function} scm_string_normalize_nfd (s)
3657 Return the @code{NFD} normalized form of @var{s}.
3658 @end deffn
3659
3660 @deffn {Scheme Procedure} string-normalize-nfkd s
3661 @deffnx {C Function} scm_string_normalize_nfkd (s)
3662 Return the @code{NFKD} normalized form of @var{s}.
3663 @end deffn
3664
3665 @deffn {Scheme Procedure} string-normalize-nfc s
3666 @deffnx {C Function} scm_string_normalize_nfc (s)
3667 Return the @code{NFC} normalized form of @var{s}.
3668 @end deffn
3669
3670 @deffn {Scheme Procedure} string-normalize-nfkc s
3671 @deffnx {C Function} scm_string_normalize_nfkc (s)
3672 Return the @code{NFKC} normalized form of @var{s}.
3673 @end deffn
3674
3675 @node String Searching
3676 @subsubsection String Searching
3677
3678 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3679 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3680 Search through the string @var{s} from left to right, returning
3681 the index of the first occurrence of a character which
3682
3683 @itemize @bullet
3684 @item
3685 equals @var{char_pred}, if it is character,
3686
3687 @item
3688 satisfies the predicate @var{char_pred}, if it is a procedure,
3689
3690 @item
3691 is in the set @var{char_pred}, if it is a character set.
3692 @end itemize
3693
3694 Return @code{#f} if no match is found.
3695 @end deffn
3696
3697 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3698 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3699 Search through the string @var{s} from right to left, returning
3700 the index of the last occurrence of a character which
3701
3702 @itemize @bullet
3703 @item
3704 equals @var{char_pred}, if it is character,
3705
3706 @item
3707 satisfies the predicate @var{char_pred}, if it is a procedure,
3708
3709 @item
3710 is in the set if @var{char_pred} is a character set.
3711 @end itemize
3712
3713 Return @code{#f} if no match is found.
3714 @end deffn
3715
3716 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3717 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3718 Return the length of the longest common prefix of the two
3719 strings.
3720 @end deffn
3721
3722 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3723 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3724 Return the length of the longest common prefix of the two
3725 strings, ignoring character case.
3726 @end deffn
3727
3728 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3729 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3730 Return the length of the longest common suffix of the two
3731 strings.
3732 @end deffn
3733
3734 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3735 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3736 Return the length of the longest common suffix of the two
3737 strings, ignoring character case.
3738 @end deffn
3739
3740 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3741 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3742 Is @var{s1} a prefix of @var{s2}?
3743 @end deffn
3744
3745 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3746 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3747 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3748 @end deffn
3749
3750 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3751 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3752 Is @var{s1} a suffix of @var{s2}?
3753 @end deffn
3754
3755 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3756 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3757 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3758 @end deffn
3759
3760 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3761 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3762 Search through the string @var{s} from right to left, returning
3763 the index of the last occurrence of a character which
3764
3765 @itemize @bullet
3766 @item
3767 equals @var{char_pred}, if it is character,
3768
3769 @item
3770 satisfies the predicate @var{char_pred}, if it is a procedure,
3771
3772 @item
3773 is in the set if @var{char_pred} is a character set.
3774 @end itemize
3775
3776 Return @code{#f} if no match is found.
3777 @end deffn
3778
3779 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3780 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3781 Search through the string @var{s} from left to right, returning
3782 the index of the first occurrence of a character which
3783
3784 @itemize @bullet
3785 @item
3786 does not equal @var{char_pred}, if it is character,
3787
3788 @item
3789 does not satisfy the predicate @var{char_pred}, if it is a
3790 procedure,
3791
3792 @item
3793 is not in the set if @var{char_pred} is a character set.
3794 @end itemize
3795 @end deffn
3796
3797 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3798 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3799 Search through the string @var{s} from right to left, returning
3800 the index of the last occurrence of a character which
3801
3802 @itemize @bullet
3803 @item
3804 does not equal @var{char_pred}, if it is character,
3805
3806 @item
3807 does not satisfy the predicate @var{char_pred}, if it is a
3808 procedure,
3809
3810 @item
3811 is not in the set if @var{char_pred} is a character set.
3812 @end itemize
3813 @end deffn
3814
3815 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3816 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3817 Return the count of the number of characters in the string
3818 @var{s} which
3819
3820 @itemize @bullet
3821 @item
3822 equals @var{char_pred}, if it is character,
3823
3824 @item
3825 satisfies the predicate @var{char_pred}, if it is a procedure.
3826
3827 @item
3828 is in the set @var{char_pred}, if it is a character set.
3829 @end itemize
3830 @end deffn
3831
3832 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3833 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3834 Does string @var{s1} contain string @var{s2}? Return the index
3835 in @var{s1} where @var{s2} occurs as a substring, or false.
3836 The optional start/end indices restrict the operation to the
3837 indicated substrings.
3838 @end deffn
3839
3840 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3841 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3842 Does string @var{s1} contain string @var{s2}? Return the index
3843 in @var{s1} where @var{s2} occurs as a substring, or false.
3844 The optional start/end indices restrict the operation to the
3845 indicated substrings. Character comparison is done
3846 case-insensitively.
3847 @end deffn
3848
3849 @node Alphabetic Case Mapping
3850 @subsubsection Alphabetic Case Mapping
3851
3852 These are procedures for mapping strings to their upper- or lower-case
3853 equivalents, respectively, or for capitalizing strings.
3854
3855 They use the basic case mapping rules for Unicode characters. No
3856 special language or context rules are considered. The resulting strings
3857 are guaranteed to be the same length as the input strings.
3858
3859 @xref{Character Case Mapping, the @code{(ice-9
3860 i18n)} module}, for locale-dependent case conversions.
3861
3862 @deffn {Scheme Procedure} string-upcase str [start [end]]
3863 @deffnx {C Function} scm_substring_upcase (str, start, end)
3864 @deffnx {C Function} scm_string_upcase (str)
3865 Upcase every character in @code{str}.
3866 @end deffn
3867
3868 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3869 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3870 @deffnx {C Function} scm_string_upcase_x (str)
3871 Destructively upcase every character in @code{str}.
3872
3873 @lisp
3874 (string-upcase! y)
3875 @result{} "ARRDEFG"
3876 y
3877 @result{} "ARRDEFG"
3878 @end lisp
3879 @end deffn
3880
3881 @deffn {Scheme Procedure} string-downcase str [start [end]]
3882 @deffnx {C Function} scm_substring_downcase (str, start, end)
3883 @deffnx {C Function} scm_string_downcase (str)
3884 Downcase every character in @var{str}.
3885 @end deffn
3886
3887 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3888 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3889 @deffnx {C Function} scm_string_downcase_x (str)
3890 Destructively downcase every character in @var{str}.
3891
3892 @lisp
3893 y
3894 @result{} "ARRDEFG"
3895 (string-downcase! y)
3896 @result{} "arrdefg"
3897 y
3898 @result{} "arrdefg"
3899 @end lisp
3900 @end deffn
3901
3902 @deffn {Scheme Procedure} string-capitalize str
3903 @deffnx {C Function} scm_string_capitalize (str)
3904 Return a freshly allocated string with the characters in
3905 @var{str}, where the first character of every word is
3906 capitalized.
3907 @end deffn
3908
3909 @deffn {Scheme Procedure} string-capitalize! str
3910 @deffnx {C Function} scm_string_capitalize_x (str)
3911 Upcase the first character of every word in @var{str}
3912 destructively and return @var{str}.
3913
3914 @lisp
3915 y @result{} "hello world"
3916 (string-capitalize! y) @result{} "Hello World"
3917 y @result{} "Hello World"
3918 @end lisp
3919 @end deffn
3920
3921 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3922 @deffnx {C Function} scm_string_titlecase (str, start, end)
3923 Titlecase every first character in a word in @var{str}.
3924 @end deffn
3925
3926 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3927 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3928 Destructively titlecase every first character in a word in
3929 @var{str}.
3930 @end deffn
3931
3932 @node Reversing and Appending Strings
3933 @subsubsection Reversing and Appending Strings
3934
3935 @deffn {Scheme Procedure} string-reverse str [start [end]]
3936 @deffnx {C Function} scm_string_reverse (str, start, end)
3937 Reverse the string @var{str}. The optional arguments
3938 @var{start} and @var{end} delimit the region of @var{str} to
3939 operate on.
3940 @end deffn
3941
3942 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3943 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3944 Reverse the string @var{str} in-place. The optional arguments
3945 @var{start} and @var{end} delimit the region of @var{str} to
3946 operate on. The return value is unspecified.
3947 @end deffn
3948
3949 @rnindex string-append
3950 @deffn {Scheme Procedure} string-append arg @dots{}
3951 @deffnx {C Function} scm_string_append (args)
3952 Return a newly allocated string whose characters form the
3953 concatenation of the given strings, @var{arg} @enddots{}.
3954
3955 @example
3956 (let ((h "hello "))
3957 (string-append h "world"))
3958 @result{} "hello world"
3959 @end example
3960 @end deffn
3961
3962 @deffn {Scheme Procedure} string-append/shared arg @dots{}
3963 @deffnx {C Function} scm_string_append_shared (args)
3964 Like @code{string-append}, but the result may share memory
3965 with the argument strings.
3966 @end deffn
3967
3968 @deffn {Scheme Procedure} string-concatenate ls
3969 @deffnx {C Function} scm_string_concatenate (ls)
3970 Append the elements (which must be strings) of @var{ls} together into a
3971 single string. Guaranteed to return a freshly allocated string.
3972 @end deffn
3973
3974 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
3975 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
3976 Without optional arguments, this procedure is equivalent to
3977
3978 @lisp
3979 (string-concatenate (reverse ls))
3980 @end lisp
3981
3982 If the optional argument @var{final_string} is specified, it is
3983 consed onto the beginning to @var{ls} before performing the
3984 list-reverse and string-concatenate operations. If @var{end}
3985 is given, only the characters of @var{final_string} up to index
3986 @var{end} are used.
3987
3988 Guaranteed to return a freshly allocated string.
3989 @end deffn
3990
3991 @deffn {Scheme Procedure} string-concatenate/shared ls
3992 @deffnx {C Function} scm_string_concatenate_shared (ls)
3993 Like @code{string-concatenate}, but the result may share memory
3994 with the strings in the list @var{ls}.
3995 @end deffn
3996
3997 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
3998 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
3999 Like @code{string-concatenate-reverse}, but the result may
4000 share memory with the strings in the @var{ls} arguments.
4001 @end deffn
4002
4003 @node Mapping Folding and Unfolding
4004 @subsubsection Mapping, Folding, and Unfolding
4005
4006 @deffn {Scheme Procedure} string-map proc s [start [end]]
4007 @deffnx {C Function} scm_string_map (proc, s, start, end)
4008 @var{proc} is a char->char procedure, it is mapped over
4009 @var{s}. The order in which the procedure is applied to the
4010 string elements is not specified.
4011 @end deffn
4012
4013 @deffn {Scheme Procedure} string-map! proc s [start [end]]
4014 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
4015 @var{proc} is a char->char procedure, it is mapped over
4016 @var{s}. The order in which the procedure is applied to the
4017 string elements is not specified. The string @var{s} is
4018 modified in-place, the return value is not specified.
4019 @end deffn
4020
4021 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
4022 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
4023 @var{proc} is mapped over @var{s} in left-to-right order. The
4024 return value is not specified.
4025 @end deffn
4026
4027 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4028 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
4029 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4030 right.
4031
4032 For example, to change characters to alternately upper and lower case,
4033
4034 @example
4035 (define str (string-copy "studly"))
4036 (string-for-each-index
4037 (lambda (i)
4038 (string-set! str i
4039 ((if (even? i) char-upcase char-downcase)
4040 (string-ref str i))))
4041 str)
4042 str @result{} "StUdLy"
4043 @end example
4044 @end deffn
4045
4046 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4047 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4048 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4049 as the terminating element, from left to right. @var{kons}
4050 must expect two arguments: The actual character and the last
4051 result of @var{kons}' application.
4052 @end deffn
4053
4054 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4055 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4056 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4057 as the terminating element, from right to left. @var{kons}
4058 must expect two arguments: The actual character and the last
4059 result of @var{kons}' application.
4060 @end deffn
4061
4062 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4063 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4064 @itemize @bullet
4065 @item @var{g} is used to generate a series of @emph{seed}
4066 values from the initial @var{seed}: @var{seed}, (@var{g}
4067 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4068 @dots{}
4069 @item @var{p} tells us when to stop -- when it returns true
4070 when applied to one of these seed values.
4071 @item @var{f} maps each seed value to the corresponding
4072 character in the result string. These chars are assembled
4073 into the string in a left-to-right order.
4074 @item @var{base} is the optional initial/leftmost portion
4075 of the constructed string; it default to the empty
4076 string.
4077 @item @var{make_final} is applied to the terminal seed
4078 value (on which @var{p} returns true) to produce
4079 the final/rightmost portion of the constructed string.
4080 The default is nothing extra.
4081 @end itemize
4082 @end deffn
4083
4084 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4085 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4086 @itemize @bullet
4087 @item @var{g} is used to generate a series of @emph{seed}
4088 values from the initial @var{seed}: @var{seed}, (@var{g}
4089 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4090 @dots{}
4091 @item @var{p} tells us when to stop -- when it returns true
4092 when applied to one of these seed values.
4093 @item @var{f} maps each seed value to the corresponding
4094 character in the result string. These chars are assembled
4095 into the string in a right-to-left order.
4096 @item @var{base} is the optional initial/rightmost portion
4097 of the constructed string; it default to the empty
4098 string.
4099 @item @var{make_final} is applied to the terminal seed
4100 value (on which @var{p} returns true) to produce
4101 the final/leftmost portion of the constructed string.
4102 It defaults to @code{(lambda (x) )}.
4103 @end itemize
4104 @end deffn
4105
4106 @node Miscellaneous String Operations
4107 @subsubsection Miscellaneous String Operations
4108
4109 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4110 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4111 This is the @emph{extended substring} procedure that implements
4112 replicated copying of a substring of some string.
4113
4114 @var{s} is a string, @var{start} and @var{end} are optional
4115 arguments that demarcate a substring of @var{s}, defaulting to
4116 0 and the length of @var{s}. Replicate this substring up and
4117 down index space, in both the positive and negative directions.
4118 @code{xsubstring} returns the substring of this string
4119 beginning at index @var{from}, and ending at @var{to}, which
4120 defaults to @var{from} + (@var{end} - @var{start}).
4121 @end deffn
4122
4123 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4124 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4125 Exactly the same as @code{xsubstring}, but the extracted text
4126 is written into the string @var{target} starting at index
4127 @var{tstart}. The operation is not defined if @code{(eq?
4128 @var{target} @var{s})} or these arguments share storage -- you
4129 cannot copy a string on top of itself.
4130 @end deffn
4131
4132 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4133 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4134 Return the string @var{s1}, but with the characters
4135 @var{start1} @dots{} @var{end1} replaced by the characters
4136 @var{start2} @dots{} @var{end2} from @var{s2}.
4137 @end deffn
4138
4139 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4140 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4141 Split the string @var{s} into a list of substrings, where each
4142 substring is a maximal non-empty contiguous sequence of
4143 characters from the character set @var{token_set}, which
4144 defaults to @code{char-set:graphic}.
4145 If @var{start} or @var{end} indices are provided, they restrict
4146 @code{string-tokenize} to operating on the indicated substring
4147 of @var{s}.
4148 @end deffn
4149
4150 @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4151 @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
4152 Filter the string @var{s}, retaining only those characters which
4153 satisfy @var{char_pred}.
4154
4155 If @var{char_pred} is a procedure, it is applied to each character as
4156 a predicate, if it is a character, it is tested for equality and if it
4157 is a character set, it is tested for membership.
4158 @end deffn
4159
4160 @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4161 @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
4162 Delete characters satisfying @var{char_pred} from @var{s}.
4163
4164 If @var{char_pred} is a procedure, it is applied to each character as
4165 a predicate, if it is a character, it is tested for equality and if it
4166 is a character set, it is tested for membership.
4167 @end deffn
4168
4169 @node Representing Strings as Bytes
4170 @subsubsection Representing Strings as Bytes
4171
4172 Out in the cold world outside of Guile, not all strings are treated in
4173 the same way. Out there there are only bytes, and there are many ways
4174 of representing a strings (sequences of characters) as binary data
4175 (sequences of bytes).
4176
4177 As a user, usually you don't have to think about this very much. When
4178 you type on your keyboard, your system encodes your keystrokes as bytes
4179 according to the locale that you have configured on your computer.
4180 Guile uses the locale to decode those bytes back into characters --
4181 hopefully the same characters that you typed in.
4182
4183 All is not so clear when dealing with a system with multiple users, such
4184 as a web server. Your web server might get a request from one user for
4185 data encoded in the ISO-8859-1 character set, and then another request
4186 from a different user for UTF-8 data.
4187
4188 @cindex iconv
4189 @cindex character encoding
4190 Guile provides an @dfn{iconv} module for converting between strings and
4191 sequences of bytes. @xref{Bytevectors}, for more on how Guile
4192 represents raw byte sequences. This module gets its name from the
4193 common @sc{unix} command of the same name.
4194
4195 Note that often it is sufficient to just read and write strings from
4196 ports instead of using these functions. To do this, specify the port
4197 encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4198 ports and character encodings.
4199
4200 Unlike the rest of the procedures in this section, you have to load the
4201 @code{iconv} module before having access to these procedures:
4202
4203 @example
4204 (use-modules (ice-9 iconv))
4205 @end example
4206
4207 @deffn string->bytevector string encoding [conversion-strategy]
4208 Encode @var{string} as a sequence of bytes.
4209
4210 The string will be encoded in the character set specified by the
4211 @var{encoding} string. If the string has characters that cannot be
4212 represented in the encoding, by default this procedure raises an
4213 @code{encoding-error}. Pass a @var{conversion-strategy} argument to
4214 specify other behaviors.
4215
4216 The return value is a bytevector. @xref{Bytevectors}, for more on
4217 bytevectors. @xref{Ports}, for more on character encodings and
4218 conversion strategies.
4219 @end deffn
4220
4221 @deffn bytevector->string bytevector encoding [conversion-strategy]
4222 Decode @var{bytevector} into a string.
4223
4224 The bytes will be decoded from the character set by the @var{encoding}
4225 string. If the bytes do not form a valid encoding, by default this
4226 procedure raises an @code{decoding-error}. As with
4227 @code{string->bytevector}, pass the optional @var{conversion-strategy}
4228 argument to modify this behavior. @xref{Ports}, for more on character
4229 encodings and conversion strategies.
4230 @end deffn
4231
4232 @deffn call-with-output-encoded-string encoding proc [conversion-strategy]
4233 Like @code{call-with-output-string}, but instead of returning a string,
4234 returns a encoding of the string according to @var{encoding}, as a
4235 bytevector. This procedure can be more efficient than collecting a
4236 string and then converting it via @code{string->bytevector}.
4237 @end deffn
4238
4239 @node Conversion to/from C
4240 @subsubsection Conversion to/from C
4241
4242 When creating a Scheme string from a C string or when converting a
4243 Scheme string to a C string, the concept of character encoding becomes
4244 important.
4245
4246 In C, a string is just a sequence of bytes, and the character encoding
4247 describes the relation between these bytes and the actual characters
4248 that make up the string. For Scheme strings, character encoding is not
4249 an issue (most of the time), since in Scheme you usually treat strings
4250 as character sequences, not byte sequences.
4251
4252 Converting to C and converting from C each have their own challenges.
4253
4254 When converting from C to Scheme, it is important that the sequence of
4255 bytes in the C string be valid with respect to its encoding. ASCII
4256 strings, for example, can't have any bytes greater than 127. An ASCII
4257 byte greater than 127 is considered @emph{ill-formed} and cannot be
4258 converted into a Scheme character.
4259
4260 Problems can occur in the reverse operation as well. Not all character
4261 encodings can hold all possible Scheme characters. Some encodings, like
4262 ASCII for example, can only describe a small subset of all possible
4263 characters. So, when converting to C, one must first decide what to do
4264 with Scheme characters that can't be represented in the C string.
4265
4266 Converting a Scheme string to a C string will often allocate fresh
4267 memory to hold the result. You must take care that this memory is
4268 properly freed eventually. In many cases, this can be achieved by
4269 using @code{scm_dynwind_free} inside an appropriate dynwind context,
4270 @xref{Dynamic Wind}.
4271
4272 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4273 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
4274 Creates a new Scheme string that has the same contents as @var{str} when
4275 interpreted in the character encoding of the current locale.
4276
4277 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4278
4279 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4280 @var{str} in bytes, and @var{str} does not need to be null-terminated.
4281 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4282 null-terminated and the real length will be found with @code{strlen}.
4283
4284 If the C string is ill-formed, an error will be raised.
4285
4286 Note that these functions should @emph{not} be used to convert C string
4287 constants, because there is no guarantee that the current locale will
4288 match that of the source code. To convert C string constants, use
4289 @code{scm_from_latin1_string}, @code{scm_from_utf8_string} or
4290 @code{scm_from_utf32_string}.
4291 @end deftypefn
4292
4293 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
4294 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4295 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4296 respectively, but also frees @var{str} with @code{free} eventually.
4297 Thus, you can use this function when you would free @var{str} anyway
4298 immediately after creating the Scheme string. In certain cases, Guile
4299 can then use @var{str} directly as its internal representation.
4300 @end deftypefn
4301
4302 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4303 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
4304 Returns a C string with the same contents as @var{str} in the character
4305 encoding of the current locale. The C string must be freed with
4306 @code{free} eventually, maybe by using @code{scm_dynwind_free},
4307 @xref{Dynamic Wind}.
4308
4309 For @code{scm_to_locale_string}, the returned string is
4310 null-terminated and an error is signalled when @var{str} contains
4311 @code{#\nul} characters.
4312
4313 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4314 @var{str} might contain @code{#\nul} characters and the length of the
4315 returned string in bytes is stored in @code{*@var{lenp}}. The
4316 returned string will not be null-terminated in this case. If
4317 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4318 @code{scm_to_locale_string}.
4319
4320 If a character in @var{str} cannot be represented in the character
4321 encoding of the current locale, the default port conversion strategy is
4322 used. @xref{Ports}, for more on conversion strategies.
4323
4324 If the conversion strategy is @code{error}, an error will be raised. If
4325 it is @code{substitute}, a replacement character, such as a question
4326 mark, will be inserted in its place. If it is @code{escape}, a hex
4327 escape will be inserted in its place.
4328 @end deftypefn
4329
4330 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4331 Puts @var{str} as a C string in the current locale encoding into the
4332 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4333 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4334 more than that. No terminating @code{'\0'} will be stored.
4335
4336 The return value of @code{scm_to_locale_stringbuf} is the number of
4337 bytes that are needed for all of @var{str}, regardless of whether
4338 @var{buf} was large enough to hold them. Thus, when the return value
4339 is larger than @var{max_len}, only @var{max_len} bytes have been
4340 stored and you probably need to try again with a larger buffer.
4341 @end deftypefn
4342
4343 For most situations, string conversion should occur using the current
4344 locale, such as with the functions above. But there may be cases where
4345 one wants to convert strings from a character encoding other than the
4346 locale's character encoding. For these cases, the lower-level functions
4347 @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4348 functions should seldom be necessary if one is properly using locales.
4349
4350 @deftp {C Type} scm_t_string_failed_conversion_handler
4351 This is an enumerated type that can take one of three values:
4352 @code{SCM_FAILED_CONVERSION_ERROR},
4353 @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4354 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4355 a strategy for handling characters that cannot be converted to or from a
4356 given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4357 that a conversion should throw an error if some characters cannot be
4358 converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4359 conversion should replace unconvertable characters with the question
4360 mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4361 requests that a conversion should replace an unconvertable character
4362 with an escape sequence.
4363
4364 While all three strategies apply when converting Scheme strings to C,
4365 only @code{SCM_FAILED_CONVERSION_ERROR} and
4366 @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4367 strings to Scheme.
4368 @end deftp
4369
4370 @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4371 This function returns a newly allocated C string from the Guile string
4372 @var{str}. The length of the returned string in bytes will be returned in
4373 @var{lenp}. The character encoding of the C string is passed as the ASCII,
4374 null-terminated C string @var{encoding}. The @var{handler} parameter
4375 gives a strategy for dealing with characters that cannot be converted
4376 into @var{encoding}.
4377
4378 If @var{lenp} is @code{NULL}, this function will return a null-terminated C
4379 string. It will throw an error if the string contains a null
4380 character.
4381
4382 The Scheme interface to this function is @code{string->bytevector}, from the
4383 @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
4384 @end deftypefn
4385
4386 @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4387 This function returns a scheme string from the C string @var{str}. The
4388 length in bytes of the C string is input as @var{len}. The encoding of the C
4389 string is passed as the ASCII, null-terminated C string @code{encoding}.
4390 The @var{handler} parameters suggests a strategy for dealing with
4391 unconvertable characters.
4392
4393 The Scheme interface to this function is @code{bytevector->string}.
4394 @xref{Representing Strings as Bytes}.
4395 @end deftypefn
4396
4397 The following conversion functions are provided as a convenience for the
4398 most commonly used encodings.
4399
4400 @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4401 @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4402 @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4403 Return a scheme string from the null-terminated C string @var{str},
4404 which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4405 be used to convert hard-coded C string constants into Scheme strings.
4406 @end deftypefn
4407
4408 @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4409 @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4410 @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4411 Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4412 UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4413 of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4414 @code{scm_from_utf8_stringn}; it is the number of elements (code points)
4415 in @var{str} in the case of @code{scm_from_utf32_stringn}.
4416 @end deftypefn
4417
4418 @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4419 @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4420 @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4421 Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4422 from Scheme string @var{str}. An error is thrown when @var{str}
4423 cannot be converted to the specified encoding. If @var{lenp} is
4424 @code{NULL}, the returned C string will be null terminated, and an error
4425 will be thrown if the C string would otherwise contain null
4426 characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4427 and the length of the returned string is returned in @var{lenp}. The length
4428 returned is the number of bytes for @code{scm_to_latin1_stringn} and
4429 @code{scm_to_utf8_stringn}; it is the number of elements (code points)
4430 for @code{scm_to_utf32_stringn}.
4431 @end deftypefn
4432
4433 @node String Internals
4434 @subsubsection String Internals
4435
4436 Guile stores each string in memory as a contiguous array of Unicode code
4437 points along with an associated set of attributes. If all of the code
4438 points of a string have an integer range between 0 and 255 inclusive,
4439 the code point array is stored as one byte per code point: it is stored
4440 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4441 string has an integer value greater that 255, the code point array is
4442 stored as four bytes per code point: it is stored as a UTF-32 string.
4443
4444 Conversion between the one-byte-per-code-point and
4445 four-bytes-per-code-point representations happens automatically as
4446 necessary.
4447
4448 No API is provided to set the internal representation of strings;
4449 however, there are pair of procedures available to query it. These are
4450 debugging procedures. Using them in production code is discouraged,
4451 since the details of Guile's internal representation of strings may
4452 change from release to release.
4453
4454 @deffn {Scheme Procedure} string-bytes-per-char str
4455 @deffnx {C Function} scm_string_bytes_per_char (str)
4456 Return the number of bytes used to encode a Unicode code point in string
4457 @var{str}. The result is one or four.
4458 @end deffn
4459
4460 @deffn {Scheme Procedure} %string-dump str
4461 @deffnx {C Function} scm_sys_string_dump (str)
4462 Returns an association list containing debugging information for
4463 @var{str}. The association list has the following entries.
4464 @table @code
4465
4466 @item string
4467 The string itself.
4468
4469 @item start
4470 The start index of the string into its stringbuf
4471
4472 @item length
4473 The length of the string
4474
4475 @item shared
4476 If this string is a substring, it returns its
4477 parent string. Otherwise, it returns @code{#f}
4478
4479 @item read-only
4480 @code{#t} if the string is read-only
4481
4482 @item stringbuf-chars
4483 A new string containing this string's stringbuf's characters
4484
4485 @item stringbuf-length
4486 The number of characters in this stringbuf
4487
4488 @item stringbuf-shared
4489 @code{#t} if this stringbuf is shared
4490
4491 @item stringbuf-wide
4492 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4493 or @code{#f} if they are stored in an 8-bit buffer
4494 @end table
4495 @end deffn
4496
4497
4498 @node Bytevectors
4499 @subsection Bytevectors
4500
4501 @cindex bytevector
4502 @cindex R6RS
4503
4504 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4505 module provides the programming interface specified by the
4506 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4507 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4508 interpret their contents in a number of ways: bytevector contents can be
4509 accessed as signed or unsigned integer of various sizes and endianness,
4510 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4511 to encode and decode binary data.
4512
4513 The R6RS (Section 4.3.4) specifies an external representation for
4514 bytevectors, whereby the octets (integers in the range 0--255) contained
4515 in the bytevector are represented as a list prefixed by @code{#vu8}:
4516
4517 @lisp
4518 #vu8(1 53 204)
4519 @end lisp
4520
4521 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4522 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4523 they do not need to be quoted:
4524
4525 @lisp
4526 #vu8(1 53 204)
4527 @result{} #vu8(1 53 204)
4528 @end lisp
4529
4530 Bytevectors can be used with the binary input/output primitives of the
4531 R6RS (@pxref{R6RS I/O Ports}).
4532
4533 @menu
4534 * Bytevector Endianness:: Dealing with byte order.
4535 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4536 * Bytevectors as Integers:: Interpreting bytes as integers.
4537 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4538 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4539 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4540 * Bytevectors as Generalized Vectors:: Guile extension to the bytevector API.
4541 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4542 @end menu
4543
4544 @node Bytevector Endianness
4545 @subsubsection Endianness
4546
4547 @cindex endianness
4548 @cindex byte order
4549 @cindex word order
4550
4551 Some of the following procedures take an @var{endianness} parameter.
4552 The @dfn{endianness} is defined as the order of bytes in multi-byte
4553 numbers: numbers encoded in @dfn{big endian} have their most
4554 significant bytes written first, whereas numbers encoded in
4555 @dfn{little endian} have their least significant bytes
4556 first@footnote{Big-endian and little-endian are the most common
4557 ``endiannesses'', but others do exist. For instance, the GNU MP
4558 library allows @dfn{word order} to be specified independently of
4559 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4560 Multiple Precision Arithmetic Library Manual}).}.
4561
4562 Little-endian is the native endianness of the IA32 architecture and
4563 its derivatives, while big-endian is native to SPARC and PowerPC,
4564 among others. The @code{native-endianness} procedure returns the
4565 native endianness of the machine it runs on.
4566
4567 @deffn {Scheme Procedure} native-endianness
4568 @deffnx {C Function} scm_native_endianness ()
4569 Return a value denoting the native endianness of the host machine.
4570 @end deffn
4571
4572 @deffn {Scheme Macro} endianness symbol
4573 Return an object denoting the endianness specified by @var{symbol}. If
4574 @var{symbol} is neither @code{big} nor @code{little} then an error is
4575 raised at expand-time.
4576 @end deffn
4577
4578 @defvr {C Variable} scm_endianness_big
4579 @defvrx {C Variable} scm_endianness_little
4580 The objects denoting big- and little-endianness, respectively.
4581 @end defvr
4582
4583
4584 @node Bytevector Manipulation
4585 @subsubsection Manipulating Bytevectors
4586
4587 Bytevectors can be created, copied, and analyzed with the following
4588 procedures and C functions.
4589
4590 @deffn {Scheme Procedure} make-bytevector len [fill]
4591 @deffnx {C Function} scm_make_bytevector (len, fill)
4592 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4593 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4594 is given, fill it with @var{fill}; @var{fill} must be in the range
4595 [-128,255].
4596 @end deffn
4597
4598 @deffn {Scheme Procedure} bytevector? obj
4599 @deffnx {C Function} scm_bytevector_p (obj)
4600 Return true if @var{obj} is a bytevector.
4601 @end deffn
4602
4603 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4604 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4605 @end deftypefn
4606
4607 @deffn {Scheme Procedure} bytevector-length bv
4608 @deffnx {C Function} scm_bytevector_length (bv)
4609 Return the length in bytes of bytevector @var{bv}.
4610 @end deffn
4611
4612 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4613 Likewise, return the length in bytes of bytevector @var{bv}.
4614 @end deftypefn
4615
4616 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4617 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4618 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4619 length and contents.
4620 @end deffn
4621
4622 @deffn {Scheme Procedure} bytevector-fill! bv fill
4623 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4624 Fill bytevector @var{bv} with @var{fill}, a byte.
4625 @end deffn
4626
4627 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4628 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4629 Copy @var{len} bytes from @var{source} into @var{target}, starting
4630 reading from @var{source-start} (a positive index within @var{source})
4631 and start writing at @var{target-start}. It is permitted for the
4632 @var{source} and @var{target} regions to overlap.
4633 @end deffn
4634
4635 @deffn {Scheme Procedure} bytevector-copy bv
4636 @deffnx {C Function} scm_bytevector_copy (bv)
4637 Return a newly allocated copy of @var{bv}.
4638 @end deffn
4639
4640 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4641 Return the byte at @var{index} in bytevector @var{bv}.
4642 @end deftypefn
4643
4644 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4645 Set the byte at @var{index} in @var{bv} to @var{value}.
4646 @end deftypefn
4647
4648 Low-level C macros are available. They do not perform any
4649 type-checking; as such they should be used with care.
4650
4651 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4652 Return the length in bytes of bytevector @var{bv}.
4653 @end deftypefn
4654
4655 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4656 Return a pointer to the contents of bytevector @var{bv}.
4657 @end deftypefn
4658
4659
4660 @node Bytevectors as Integers
4661 @subsubsection Interpreting Bytevector Contents as Integers
4662
4663 The contents of a bytevector can be interpreted as a sequence of
4664 integers of any given size, sign, and endianness.
4665
4666 @lisp
4667 (let ((bv (make-bytevector 4)))
4668 (bytevector-u8-set! bv 0 #x12)
4669 (bytevector-u8-set! bv 1 #x34)
4670 (bytevector-u8-set! bv 2 #x56)
4671 (bytevector-u8-set! bv 3 #x78)
4672
4673 (map (lambda (number)
4674 (number->string number 16))
4675 (list (bytevector-u8-ref bv 0)
4676 (bytevector-u16-ref bv 0 (endianness big))
4677 (bytevector-u32-ref bv 0 (endianness little)))))
4678
4679 @result{} ("12" "1234" "78563412")
4680 @end lisp
4681
4682 The most generic procedures to interpret bytevector contents as integers
4683 are described below.
4684
4685 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4686 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4687 Return the @var{size}-byte long unsigned integer at index @var{index} in
4688 @var{bv}, decoded according to @var{endianness}.
4689 @end deffn
4690
4691 @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
4692 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4693 Return the @var{size}-byte long signed integer at index @var{index} in
4694 @var{bv}, decoded according to @var{endianness}.
4695 @end deffn
4696
4697 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4698 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4699 Set the @var{size}-byte long unsigned integer at @var{index} to
4700 @var{value}, encoded according to @var{endianness}.
4701 @end deffn
4702
4703 @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4704 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4705 Set the @var{size}-byte long signed integer at @var{index} to
4706 @var{value}, encoded according to @var{endianness}.
4707 @end deffn
4708
4709 The following procedures are similar to the ones above, but specialized
4710 to a given integer size:
4711
4712 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4713 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4714 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4715 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4716 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4717 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4718 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4719 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4720 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4721 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4722 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4723 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4724 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4725 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4726 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4727 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4728 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4729 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4730 @var{endianness}.
4731 @end deffn
4732
4733 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4734 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4735 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4736 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4737 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4738 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4739 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4740 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4741 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4742 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4743 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4744 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4745 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4746 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4747 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4748 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4749 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4750 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4751 @var{endianness}.
4752 @end deffn
4753
4754 Finally, a variant specialized for the host's endianness is available
4755 for each of these functions (with the exception of the @code{u8}
4756 accessors, for obvious reasons):
4757
4758 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4759 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4760 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4761 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4762 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4763 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4764 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4765 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4766 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4767 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4768 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4769 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4770 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4771 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4772 host's native endianness.
4773 @end deffn
4774
4775 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4776 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4777 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4778 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4779 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4780 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4781 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4782 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4783 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4784 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4785 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4786 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4787 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4788 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4789 host's native endianness.
4790 @end deffn
4791
4792
4793 @node Bytevectors and Integer Lists
4794 @subsubsection Converting Bytevectors to/from Integer Lists
4795
4796 Bytevector contents can readily be converted to/from lists of signed or
4797 unsigned integers:
4798
4799 @lisp
4800 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4801 (endianness little) 2)
4802 @result{} (-1 -1)
4803 @end lisp
4804
4805 @deffn {Scheme Procedure} bytevector->u8-list bv
4806 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4807 Return a newly allocated list of unsigned 8-bit integers from the
4808 contents of @var{bv}.
4809 @end deffn
4810
4811 @deffn {Scheme Procedure} u8-list->bytevector lst
4812 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4813 Return a newly allocated bytevector consisting of the unsigned 8-bit
4814 integers listed in @var{lst}.
4815 @end deffn
4816
4817 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4818 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4819 Return a list of unsigned integers of @var{size} bytes representing the
4820 contents of @var{bv}, decoded according to @var{endianness}.
4821 @end deffn
4822
4823 @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
4824 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4825 Return a list of signed integers of @var{size} bytes representing the
4826 contents of @var{bv}, decoded according to @var{endianness}.
4827 @end deffn
4828
4829 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4830 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4831 Return a new bytevector containing the unsigned integers listed in
4832 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4833 @end deffn
4834
4835 @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
4836 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4837 Return a new bytevector containing the signed integers listed in
4838 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4839 @end deffn
4840
4841 @node Bytevectors as Floats
4842 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4843
4844 @cindex IEEE-754 floating point numbers
4845
4846 Bytevector contents can also be accessed as IEEE-754 single- or
4847 double-precision floating point numbers (respectively 32 and 64-bit
4848 long) using the procedures described here.
4849
4850 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4851 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4852 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4853 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4854 Return the IEEE-754 single-precision floating point number from @var{bv}
4855 at @var{index} according to @var{endianness}.
4856 @end deffn
4857
4858 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4859 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4860 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4861 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4862 Store real number @var{value} in @var{bv} at @var{index} according to
4863 @var{endianness}.
4864 @end deffn
4865
4866 Specialized procedures are also available:
4867
4868 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4869 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4870 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4871 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4872 Return the IEEE-754 single-precision floating point number from @var{bv}
4873 at @var{index} according to the host's native endianness.
4874 @end deffn
4875
4876 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4877 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4878 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4879 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4880 Store real number @var{value} in @var{bv} at @var{index} according to
4881 the host's native endianness.
4882 @end deffn
4883
4884
4885 @node Bytevectors as Strings
4886 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4887
4888 @cindex Unicode string encoding
4889
4890 Bytevector contents can also be interpreted as Unicode strings encoded
4891 in one of the most commonly available encoding formats.
4892 @xref{Representing Strings as Bytes}, for a more generic interface.
4893
4894 @lisp
4895 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4896 @result{} "cafe"
4897
4898 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4899 @result{} #vu8(99 97 102 195 169)
4900 @end lisp
4901
4902 @deffn {Scheme Procedure} string->utf8 str
4903 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4904 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4905 @deffnx {C Function} scm_string_to_utf8 (str)
4906 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4907 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4908 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4909 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4910 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4911 it defaults to big endian.
4912 @end deffn
4913
4914 @deffn {Scheme Procedure} utf8->string utf
4915 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4916 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4917 @deffnx {C Function} scm_utf8_to_string (utf)
4918 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4919 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4920 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4921 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4922 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4923 it defaults to big endian.
4924 @end deffn
4925
4926 @node Bytevectors as Generalized Vectors
4927 @subsubsection Accessing Bytevectors with the Generalized Vector API
4928
4929 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4930 with the @dfn{generalized vector} procedures (@pxref{Generalized
4931 Vectors}). This also allows bytevectors to be accessed using the
4932 generic @dfn{array} procedures (@pxref{Array Procedures}). When using
4933 these APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4934
4935 @example
4936 (define bv #vu8(0 1 2 3))
4937
4938 (generalized-vector? bv)
4939 @result{} #t
4940
4941 (generalized-vector-ref bv 2)
4942 @result{} 2
4943
4944 (generalized-vector-set! bv 2 77)
4945 (array-ref bv 2)
4946 @result{} 77
4947
4948 (array-type bv)
4949 @result{} vu8
4950 @end example
4951
4952
4953 @node Bytevectors as Uniform Vectors
4954 @subsubsection Accessing Bytevectors with the SRFI-4 API
4955
4956 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4957 Bytevectors}, for more information.
4958
4959
4960 @node Symbols
4961 @subsection Symbols
4962 @tpindex Symbols
4963
4964 Symbols in Scheme are widely used in three ways: as items of discrete
4965 data, as lookup keys for alists and hash tables, and to denote variable
4966 references.
4967
4968 A @dfn{symbol} is similar to a string in that it is defined by a
4969 sequence of characters. The sequence of characters is known as the
4970 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
4971 name doesn't include any characters that could be confused with other
4972 elements of Scheme syntax --- a symbol is written in a Scheme program by
4973 writing the sequence of characters that make up the name, @emph{without}
4974 any quotation marks or other special syntax. For example, the symbol
4975 whose name is ``multiply-by-2'' is written, simply:
4976
4977 @lisp
4978 multiply-by-2
4979 @end lisp
4980
4981 Notice how this differs from a @emph{string} with contents
4982 ``multiply-by-2'', which is written with double quotation marks, like
4983 this:
4984
4985 @lisp
4986 "multiply-by-2"
4987 @end lisp
4988
4989 Looking beyond how they are written, symbols are different from strings
4990 in two important respects.
4991
4992 The first important difference is uniqueness. If the same-looking
4993 string is read twice from two different places in a program, the result
4994 is two @emph{different} string objects whose contents just happen to be
4995 the same. If, on the other hand, the same-looking symbol is read twice
4996 from two different places in a program, the result is the @emph{same}
4997 symbol object both times.
4998
4999 Given two read symbols, you can use @code{eq?} to test whether they are
5000 the same (that is, have the same name). @code{eq?} is the most
5001 efficient comparison operator in Scheme, and comparing two symbols like
5002 this is as fast as comparing, for example, two numbers. Given two
5003 strings, on the other hand, you must use @code{equal?} or
5004 @code{string=?}, which are much slower comparison operators, to
5005 determine whether the strings have the same contents.
5006
5007 @lisp
5008 (define sym1 (quote hello))
5009 (define sym2 (quote hello))
5010 (eq? sym1 sym2) @result{} #t
5011
5012 (define str1 "hello")
5013 (define str2 "hello")
5014 (eq? str1 str2) @result{} #f
5015 (equal? str1 str2) @result{} #t
5016 @end lisp
5017
5018 The second important difference is that symbols, unlike strings, are not
5019 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5020 example above: @code{(quote hello)} evaluates to the symbol named
5021 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5022 symbol named "hello" and evaluated as a variable reference @dots{} about
5023 which more below (@pxref{Symbol Variables}).
5024
5025 @menu
5026 * Symbol Data:: Symbols as discrete data.
5027 * Symbol Keys:: Symbols as lookup keys.
5028 * Symbol Variables:: Symbols as denoting variables.
5029 * Symbol Primitives:: Operations related to symbols.
5030 * Symbol Props:: Function slots and property lists.
5031 * Symbol Read Syntax:: Extended read syntax for symbols.
5032 * Symbol Uninterned:: Uninterned symbols.
5033 @end menu
5034
5035
5036 @node Symbol Data
5037 @subsubsection Symbols as Discrete Data
5038
5039 Numbers and symbols are similar to the extent that they both lend
5040 themselves to @code{eq?} comparison. But symbols are more descriptive
5041 than numbers, because a symbol's name can be used directly to describe
5042 the concept for which that symbol stands.
5043
5044 For example, imagine that you need to represent some colours in a
5045 computer program. Using numbers, you would have to choose arbitrarily
5046 some mapping between numbers and colours, and then take care to use that
5047 mapping consistently:
5048
5049 @lisp
5050 ;; 1=red, 2=green, 3=purple
5051
5052 (if (eq? (colour-of car) 1)
5053 ...)
5054 @end lisp
5055
5056 @noindent
5057 You can make the mapping more explicit and the code more readable by
5058 defining constants:
5059
5060 @lisp
5061 (define red 1)
5062 (define green 2)
5063 (define purple 3)
5064
5065 (if (eq? (colour-of car) red)
5066 ...)
5067 @end lisp
5068
5069 @noindent
5070 But the simplest and clearest approach is not to use numbers at all, but
5071 symbols whose names specify the colours that they refer to:
5072
5073 @lisp
5074 (if (eq? (colour-of car) 'red)
5075 ...)
5076 @end lisp
5077
5078 The descriptive advantages of symbols over numbers increase as the set
5079 of concepts that you want to describe grows. Suppose that a car object
5080 can have other properties as well, such as whether it has or uses:
5081
5082 @itemize @bullet
5083 @item
5084 automatic or manual transmission
5085 @item
5086 leaded or unleaded fuel
5087 @item
5088 power steering (or not).
5089 @end itemize
5090
5091 @noindent
5092 Then a car's combined property set could be naturally represented and
5093 manipulated as a list of symbols:
5094
5095 @lisp
5096 (properties-of car1)
5097 @result{}
5098 (red manual unleaded power-steering)
5099
5100 (if (memq 'power-steering (properties-of car1))
5101 (display "Unfit people can drive this car.\n")
5102 (display "You'll need strong arms to drive this car!\n"))
5103 @print{}
5104 Unfit people can drive this car.
5105 @end lisp
5106
5107 Remember, the fundamental property of symbols that we are relying on
5108 here is that an occurrence of @code{'red} in one part of a program is an
5109 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5110 another part of a program; this means that symbols can usefully be
5111 compared using @code{eq?}. At the same time, symbols have naturally
5112 descriptive names. This combination of efficiency and descriptive power
5113 makes them ideal for use as discrete data.
5114
5115
5116 @node Symbol Keys
5117 @subsubsection Symbols as Lookup Keys
5118
5119 Given their efficiency and descriptive power, it is natural to use
5120 symbols as the keys in an association list or hash table.
5121
5122 To illustrate this, consider a more structured representation of the car
5123 properties example from the preceding subsection. Rather than
5124 mixing all the properties up together in a flat list, we could use an
5125 association list like this:
5126
5127 @lisp
5128 (define car1-properties '((colour . red)
5129 (transmission . manual)
5130 (fuel . unleaded)
5131 (steering . power-assisted)))
5132 @end lisp
5133
5134 Notice how this structure is more explicit and extensible than the flat
5135 list. For example it makes clear that @code{manual} refers to the
5136 transmission rather than, say, the windows or the locking of the car.
5137 It also allows further properties to use the same symbols among their
5138 possible values without becoming ambiguous:
5139
5140 @lisp
5141 (define car1-properties '((colour . red)
5142 (transmission . manual)
5143 (fuel . unleaded)
5144 (steering . power-assisted)
5145 (seat-colour . red)
5146 (locking . manual)))
5147 @end lisp
5148
5149 With a representation like this, it is easy to use the efficient
5150 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5151 extract or change individual pieces of information:
5152
5153 @lisp
5154 (assq-ref car1-properties 'fuel) @result{} unleaded
5155 (assq-ref car1-properties 'transmission) @result{} manual
5156
5157 (assq-set! car1-properties 'seat-colour 'black)
5158 @result{}
5159 ((colour . red)
5160 (transmission . manual)
5161 (fuel . unleaded)
5162 (steering . power-assisted)
5163 (seat-colour . black)
5164 (locking . manual)))
5165 @end lisp
5166
5167 Hash tables also have keys, and exactly the same arguments apply to the
5168 use of symbols in hash tables as in association lists. The hash value
5169 that Guile uses to decide where to add a symbol-keyed entry to a hash
5170 table can be obtained by calling the @code{symbol-hash} procedure:
5171
5172 @deffn {Scheme Procedure} symbol-hash symbol
5173 @deffnx {C Function} scm_symbol_hash (symbol)
5174 Return a hash value for @var{symbol}.
5175 @end deffn
5176
5177 See @ref{Hash Tables} for information about hash tables in general, and
5178 for why you might choose to use a hash table rather than an association
5179 list.
5180
5181
5182 @node Symbol Variables
5183 @subsubsection Symbols as Denoting Variables
5184
5185 When an unquoted symbol in a Scheme program is evaluated, it is
5186 interpreted as a variable reference, and the result of the evaluation is
5187 the appropriate variable's value.
5188
5189 For example, when the expression @code{(string-length "abcd")} is read
5190 and evaluated, the sequence of characters @code{string-length} is read
5191 as the symbol whose name is "string-length". This symbol is associated
5192 with a variable whose value is the procedure that implements string
5193 length calculation. Therefore evaluation of the @code{string-length}
5194 symbol results in that procedure.
5195
5196 The details of the connection between an unquoted symbol and the
5197 variable to which it refers are explained elsewhere. See @ref{Binding
5198 Constructs}, for how associations between symbols and variables are
5199 created, and @ref{Modules}, for how those associations are affected by
5200 Guile's module system.
5201
5202
5203 @node Symbol Primitives
5204 @subsubsection Operations Related to Symbols
5205
5206 Given any Scheme value, you can determine whether it is a symbol using
5207 the @code{symbol?} primitive:
5208
5209 @rnindex symbol?
5210 @deffn {Scheme Procedure} symbol? obj
5211 @deffnx {C Function} scm_symbol_p (obj)
5212 Return @code{#t} if @var{obj} is a symbol, otherwise return
5213 @code{#f}.
5214 @end deffn
5215
5216 @deftypefn {C Function} int scm_is_symbol (SCM val)
5217 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5218 @end deftypefn
5219
5220 Once you know that you have a symbol, you can obtain its name as a
5221 string by calling @code{symbol->string}. Note that Guile differs by
5222 default from R5RS on the details of @code{symbol->string} as regards
5223 case-sensitivity:
5224
5225 @rnindex symbol->string
5226 @deffn {Scheme Procedure} symbol->string s
5227 @deffnx {C Function} scm_symbol_to_string (s)
5228 Return the name of symbol @var{s} as a string. By default, Guile reads
5229 symbols case-sensitively, so the string returned will have the same case
5230 variation as the sequence of characters that caused @var{s} to be
5231 created.
5232
5233 If Guile is set to read symbols case-insensitively (as specified by
5234 R5RS), and @var{s} comes into being as part of a literal expression
5235 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5236 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5237 Guile converts any alphabetic characters in the symbol's name to
5238 lower case before creating the symbol object, so the string returned
5239 here will be in lower case.
5240
5241 If @var{s} was created by @code{string->symbol}, the case of characters
5242 in the string returned will be the same as that in the string that was
5243 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5244 setting at the time @var{s} was created.
5245
5246 It is an error to apply mutation procedures like @code{string-set!} to
5247 strings returned by this procedure.
5248 @end deffn
5249
5250 Most symbols are created by writing them literally in code. However it
5251 is also possible to create symbols programmatically using the following
5252 procedures:
5253
5254 @deffn {Scheme Procedure} symbol char@dots{}
5255 @rnindex symbol
5256 Return a newly allocated symbol made from the given character arguments.
5257
5258 @example
5259 (symbol #\x #\y #\z) @result{} xyz
5260 @end example
5261 @end deffn
5262
5263 @deffn {Scheme Procedure} list->symbol lst
5264 @rnindex list->symbol
5265 Return a newly allocated symbol made from a list of characters.
5266
5267 @example
5268 (list->symbol '(#\a #\b #\c)) @result{} abc
5269 @end example
5270 @end deffn
5271
5272 @rnindex symbol-append
5273 @deffn {Scheme Procedure} symbol-append arg @dots{}
5274 Return a newly allocated symbol whose characters form the
5275 concatenation of the given symbols, @var{arg} @enddots{}.
5276
5277 @example
5278 (let ((h 'hello))
5279 (symbol-append h 'world))
5280 @result{} helloworld
5281 @end example
5282 @end deffn
5283
5284 @rnindex string->symbol
5285 @deffn {Scheme Procedure} string->symbol string
5286 @deffnx {C Function} scm_string_to_symbol (string)
5287 Return the symbol whose name is @var{string}. This procedure can create
5288 symbols with names containing special characters or letters in the
5289 non-standard case, but it is usually a bad idea to create such symbols
5290 because in some implementations of Scheme they cannot be read as
5291 themselves.
5292 @end deffn
5293
5294 @deffn {Scheme Procedure} string-ci->symbol str
5295 @deffnx {C Function} scm_string_ci_to_symbol (str)
5296 Return the symbol whose name is @var{str}. If Guile is currently
5297 reading symbols case-insensitively, @var{str} is converted to lowercase
5298 before the returned symbol is looked up or created.
5299 @end deffn
5300
5301 The following examples illustrate Guile's detailed behaviour as regards
5302 the case-sensitivity of symbols:
5303
5304 @lisp
5305 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5306
5307 (symbol->string 'flying-fish) @result{} "flying-fish"
5308 (symbol->string 'Martin) @result{} "martin"
5309 (symbol->string
5310 (string->symbol "Malvina")) @result{} "Malvina"
5311
5312 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5313 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5314 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5315 (eq? 'LolliPop
5316 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5317 (string=? "K. Harper, M.D."
5318 (symbol->string
5319 (string->symbol "K. Harper, M.D."))) @result{} #t
5320
5321 (read-disable 'case-insensitive) ; Guile default behaviour
5322
5323 (symbol->string 'flying-fish) @result{} "flying-fish"
5324 (symbol->string 'Martin) @result{} "Martin"
5325 (symbol->string
5326 (string->symbol "Malvina")) @result{} "Malvina"
5327
5328 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5329 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5330 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5331 (eq? 'LolliPop
5332 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5333 (string=? "K. Harper, M.D."
5334 (symbol->string
5335 (string->symbol "K. Harper, M.D."))) @result{} #t
5336 @end lisp
5337
5338 From C, there are lower level functions that construct a Scheme symbol
5339 from a C string in the current locale encoding.
5340
5341 When you want to do more from C, you should convert between symbols
5342 and strings using @code{scm_symbol_to_string} and
5343 @code{scm_string_to_symbol} and work with the strings.
5344
5345 @deftypefn {C Function} scm_from_latin1_symbol (const char *name)
5346 @deftypefnx {C Function} scm_from_utf8_symbol (const char *name)
5347 Construct and return a Scheme symbol whose name is specified by the
5348 null-terminated C string @var{name}. These are appropriate when
5349 the C string is hard-coded in the source code.
5350 @end deftypefn
5351
5352 @deftypefn {C Function} scm_from_locale_symbol (const char *name)
5353 @deftypefnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
5354 Construct and return a Scheme symbol whose name is specified by
5355 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5356 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5357 specified explicitly by @var{len}.
5358
5359 Note that these functions should @emph{not} be used when @var{name} is a
5360 C string constant, because there is no guarantee that the current locale
5361 will match that of the source code. In such cases, use
5362 @code{scm_from_latin1_symbol} or @code{scm_from_utf8_symbol}.
5363 @end deftypefn
5364
5365 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5366 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5367 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5368 respectively, but also frees @var{str} with @code{free} eventually.
5369 Thus, you can use this function when you would free @var{str} anyway
5370 immediately after creating the Scheme string. In certain cases, Guile
5371 can then use @var{str} directly as its internal representation.
5372 @end deftypefn
5373
5374 The size of a symbol can also be obtained from C:
5375
5376 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5377 Return the number of characters in @var{sym}.
5378 @end deftypefn
5379
5380 Finally, some applications, especially those that generate new Scheme
5381 code dynamically, need to generate symbols for use in the generated
5382 code. The @code{gensym} primitive meets this need:
5383
5384 @deffn {Scheme Procedure} gensym [prefix]
5385 @deffnx {C Function} scm_gensym (prefix)
5386 Create a new symbol with a name constructed from a prefix and a counter
5387 value. The string @var{prefix} can be specified as an optional
5388 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5389 at each call. There is no provision for resetting the counter.
5390 @end deffn
5391
5392 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5393 since their names begin with a space and it is only otherwise possible
5394 to generate such symbols if a programmer goes out of their way to do
5395 so. Uniqueness can be guaranteed by instead using uninterned symbols
5396 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5397 and read back in.
5398
5399
5400 @node Symbol Props
5401 @subsubsection Function Slots and Property Lists
5402
5403 In traditional Lisp dialects, symbols are often understood as having
5404 three kinds of value at once:
5405
5406 @itemize @bullet
5407 @item
5408 a @dfn{variable} value, which is used when the symbol appears in
5409 code in a variable reference context
5410
5411 @item
5412 a @dfn{function} value, which is used when the symbol appears in
5413 code in a function name position (i.e.@: as the first element in an
5414 unquoted list)
5415
5416 @item
5417 a @dfn{property list} value, which is used when the symbol is given as
5418 the first argument to Lisp's @code{put} or @code{get} functions.
5419 @end itemize
5420
5421 Although Scheme (as one of its simplifications with respect to Lisp)
5422 does away with the distinction between variable and function namespaces,
5423 Guile currently retains some elements of the traditional structure in
5424 case they turn out to be useful when implementing translators for other
5425 languages, in particular Emacs Lisp.
5426
5427 Specifically, Guile symbols have two extra slots, one for a symbol's
5428 property list, and one for its ``function value.'' The following procedures
5429 are provided to access these slots.
5430
5431 @deffn {Scheme Procedure} symbol-fref symbol
5432 @deffnx {C Function} scm_symbol_fref (symbol)
5433 Return the contents of @var{symbol}'s @dfn{function slot}.
5434 @end deffn
5435
5436 @deffn {Scheme Procedure} symbol-fset! symbol value
5437 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5438 Set the contents of @var{symbol}'s function slot to @var{value}.
5439 @end deffn
5440
5441 @deffn {Scheme Procedure} symbol-pref symbol
5442 @deffnx {C Function} scm_symbol_pref (symbol)
5443 Return the @dfn{property list} currently associated with @var{symbol}.
5444 @end deffn
5445
5446 @deffn {Scheme Procedure} symbol-pset! symbol value
5447 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5448 Set @var{symbol}'s property list to @var{value}.
5449 @end deffn
5450
5451 @deffn {Scheme Procedure} symbol-property sym prop
5452 From @var{sym}'s property list, return the value for property
5453 @var{prop}. The assumption is that @var{sym}'s property list is an
5454 association list whose keys are distinguished from each other using
5455 @code{equal?}; @var{prop} should be one of the keys in that list. If
5456 the property list has no entry for @var{prop}, @code{symbol-property}
5457 returns @code{#f}.
5458 @end deffn
5459
5460 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5461 In @var{sym}'s property list, set the value for property @var{prop} to
5462 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5463 none already exists. For the structure of the property list, see
5464 @code{symbol-property}.
5465 @end deffn
5466
5467 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5468 From @var{sym}'s property list, remove the entry for property
5469 @var{prop}, if there is one. For the structure of the property list,
5470 see @code{symbol-property}.
5471 @end deffn
5472
5473 Support for these extra slots may be removed in a future release, and it
5474 is probably better to avoid using them. For a more modern and Schemely
5475 approach to properties, see @ref{Object Properties}.
5476
5477
5478 @node Symbol Read Syntax
5479 @subsubsection Extended Read Syntax for Symbols
5480
5481 The read syntax for a symbol is a sequence of letters, digits, and
5482 @dfn{extended alphabetic characters}, beginning with a character that
5483 cannot begin a number. In addition, the special cases of @code{+},
5484 @code{-}, and @code{...} are read as symbols even though numbers can
5485 begin with @code{+}, @code{-} or @code{.}.
5486
5487 Extended alphabetic characters may be used within identifiers as if
5488 they were letters. The set of extended alphabetic characters is:
5489
5490 @example
5491 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5492 @end example
5493
5494 In addition to the standard read syntax defined above (which is taken
5495 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5496 Scheme})), Guile provides an extended symbol read syntax that allows the
5497 inclusion of unusual characters such as space characters, newlines and
5498 parentheses. If (for whatever reason) you need to write a symbol
5499 containing characters not mentioned above, you can do so as follows.
5500
5501 @itemize @bullet
5502 @item
5503 Begin the symbol with the characters @code{#@{},
5504
5505 @item
5506 write the characters of the symbol and
5507
5508 @item
5509 finish the symbol with the characters @code{@}#}.
5510 @end itemize
5511
5512 Here are a few examples of this form of read syntax. The first symbol
5513 needs to use extended syntax because it contains a space character, the
5514 second because it contains a line break, and the last because it looks
5515 like a number.
5516
5517 @lisp
5518 #@{foo bar@}#
5519
5520 #@{what
5521 ever@}#
5522
5523 #@{4242@}#
5524 @end lisp
5525
5526 Although Guile provides this extended read syntax for symbols,
5527 widespread usage of it is discouraged because it is not portable and not
5528 very readable.
5529
5530
5531 @node Symbol Uninterned
5532 @subsubsection Uninterned Symbols
5533
5534 What makes symbols useful is that they are automatically kept unique.
5535 There are no two symbols that are distinct objects but have the same
5536 name. But of course, there is no rule without exception. In addition
5537 to the normal symbols that have been discussed up to now, you can also
5538 create special @dfn{uninterned} symbols that behave slightly
5539 differently.
5540
5541 To understand what is different about them and why they might be useful,
5542 we look at how normal symbols are actually kept unique.
5543
5544 Whenever Guile wants to find the symbol with a specific name, for
5545 example during @code{read} or when executing @code{string->symbol}, it
5546 first looks into a table of all existing symbols to find out whether a
5547 symbol with the given name already exists. When this is the case, Guile
5548 just returns that symbol. When not, a new symbol with the name is
5549 created and entered into the table so that it can be found later.
5550
5551 Sometimes you might want to create a symbol that is guaranteed `fresh',
5552 i.e.@: a symbol that did not exist previously. You might also want to
5553 somehow guarantee that no one else will ever unintentionally stumble
5554 across your symbol in the future. These properties of a symbol are
5555 often needed when generating code during macro expansion. When
5556 introducing new temporary variables, you want to guarantee that they
5557 don't conflict with variables in other people's code.
5558
5559 The simplest way to arrange for this is to create a new symbol but
5560 not enter it into the global table of all symbols. That way, no one
5561 will ever get access to your symbol by chance. Symbols that are not in
5562 the table are called @dfn{uninterned}. Of course, symbols that
5563 @emph{are} in the table are called @dfn{interned}.
5564
5565 You create new uninterned symbols with the function @code{make-symbol}.
5566 You can test whether a symbol is interned or not with
5567 @code{symbol-interned?}.
5568
5569 Uninterned symbols break the rule that the name of a symbol uniquely
5570 identifies the symbol object. Because of this, they can not be written
5571 out and read back in like interned symbols. Currently, Guile has no
5572 support for reading uninterned symbols. Note that the function
5573 @code{gensym} does not return uninterned symbols for this reason.
5574
5575 @deffn {Scheme Procedure} make-symbol name
5576 @deffnx {C Function} scm_make_symbol (name)
5577 Return a new uninterned symbol with the name @var{name}. The returned
5578 symbol is guaranteed to be unique and future calls to
5579 @code{string->symbol} will not return it.
5580 @end deffn
5581
5582 @deffn {Scheme Procedure} symbol-interned? symbol
5583 @deffnx {C Function} scm_symbol_interned_p (symbol)
5584 Return @code{#t} if @var{symbol} is interned, otherwise return
5585 @code{#f}.
5586 @end deffn
5587
5588 For example:
5589
5590 @lisp
5591 (define foo-1 (string->symbol "foo"))
5592 (define foo-2 (string->symbol "foo"))
5593 (define foo-3 (make-symbol "foo"))
5594 (define foo-4 (make-symbol "foo"))
5595
5596 (eq? foo-1 foo-2)
5597 @result{} #t
5598 ; Two interned symbols with the same name are the same object,
5599
5600 (eq? foo-1 foo-3)
5601 @result{} #f
5602 ; but a call to make-symbol with the same name returns a
5603 ; distinct object.
5604
5605 (eq? foo-3 foo-4)
5606 @result{} #f
5607 ; A call to make-symbol always returns a new object, even for
5608 ; the same name.
5609
5610 foo-3
5611 @result{} #<uninterned-symbol foo 8085290>
5612 ; Uninterned symbols print differently from interned symbols,
5613
5614 (symbol? foo-3)
5615 @result{} #t
5616 ; but they are still symbols,
5617
5618 (symbol-interned? foo-3)
5619 @result{} #f
5620 ; just not interned.
5621 @end lisp
5622
5623
5624 @node Keywords
5625 @subsection Keywords
5626 @tpindex Keywords
5627
5628 Keywords are self-evaluating objects with a convenient read syntax that
5629 makes them easy to type.
5630
5631 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5632 syntax extension to permit keywords to begin with @code{:} as well as
5633 @code{#:}, or to end with @code{:}.
5634
5635 @menu
5636 * Why Use Keywords?:: Motivation for keyword usage.
5637 * Coding With Keywords:: How to use keywords.
5638 * Keyword Read Syntax:: Read syntax for keywords.
5639 * Keyword Procedures:: Procedures for dealing with keywords.
5640 @end menu
5641
5642 @node Why Use Keywords?
5643 @subsubsection Why Use Keywords?
5644
5645 Keywords are useful in contexts where a program or procedure wants to be
5646 able to accept a large number of optional arguments without making its
5647 interface unmanageable.
5648
5649 To illustrate this, consider a hypothetical @code{make-window}
5650 procedure, which creates a new window on the screen for drawing into
5651 using some graphical toolkit. There are many parameters that the caller
5652 might like to specify, but which could also be sensibly defaulted, for
5653 example:
5654
5655 @itemize @bullet
5656 @item
5657 color depth -- Default: the color depth for the screen
5658
5659 @item
5660 background color -- Default: white
5661
5662 @item
5663 width -- Default: 600
5664
5665 @item
5666 height -- Default: 400
5667 @end itemize
5668
5669 If @code{make-window} did not use keywords, the caller would have to
5670 pass in a value for each possible argument, remembering the correct
5671 argument order and using a special value to indicate the default value
5672 for that argument:
5673
5674 @lisp
5675 (make-window 'default ;; Color depth
5676 'default ;; Background color
5677 800 ;; Width
5678 100 ;; Height
5679 @dots{}) ;; More make-window arguments
5680 @end lisp
5681
5682 With keywords, on the other hand, defaulted arguments are omitted, and
5683 non-default arguments are clearly tagged by the appropriate keyword. As
5684 a result, the invocation becomes much clearer:
5685
5686 @lisp
5687 (make-window #:width 800 #:height 100)
5688 @end lisp
5689
5690 On the other hand, for a simpler procedure with few arguments, the use
5691 of keywords would be a hindrance rather than a help. The primitive
5692 procedure @code{cons}, for example, would not be improved if it had to
5693 be invoked as
5694
5695 @lisp
5696 (cons #:car x #:cdr y)
5697 @end lisp
5698
5699 So the decision whether to use keywords or not is purely pragmatic: use
5700 them if they will clarify the procedure invocation at point of call.
5701
5702 @node Coding With Keywords
5703 @subsubsection Coding With Keywords
5704
5705 If a procedure wants to support keywords, it should take a rest argument
5706 and then use whatever means is convenient to extract keywords and their
5707 corresponding arguments from the contents of that rest argument.
5708
5709 The following example illustrates the principle: the code for
5710 @code{make-window} uses a helper procedure called
5711 @code{get-keyword-value} to extract individual keyword arguments from
5712 the rest argument.
5713
5714 @lisp
5715 (define (get-keyword-value args keyword default)
5716 (let ((kv (memq keyword args)))
5717 (if (and kv (>= (length kv) 2))
5718 (cadr kv)
5719 default)))
5720
5721 (define (make-window . args)
5722 (let ((depth (get-keyword-value args #:depth screen-depth))
5723 (bg (get-keyword-value args #:bg "white"))
5724 (width (get-keyword-value args #:width 800))
5725 (height (get-keyword-value args #:height 100))
5726 @dots{})
5727 @dots{}))
5728 @end lisp
5729
5730 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5731 optargs)} module provides a set of powerful macros that you can use to
5732 implement keyword-supporting procedures like this:
5733
5734 @lisp
5735 (use-modules (ice-9 optargs))
5736
5737 (define (make-window . args)
5738 (let-keywords args #f ((depth screen-depth)
5739 (bg "white")
5740 (width 800)
5741 (height 100))
5742 ...))
5743 @end lisp
5744
5745 @noindent
5746 Or, even more economically, like this:
5747
5748 @lisp
5749 (use-modules (ice-9 optargs))
5750
5751 (define* (make-window #:key (depth screen-depth)
5752 (bg "white")
5753 (width 800)
5754 (height 100))
5755 ...)
5756 @end lisp
5757
5758 For further details on @code{let-keywords}, @code{define*} and other
5759 facilities provided by the @code{(ice-9 optargs)} module, see
5760 @ref{Optional Arguments}.
5761
5762
5763 @node Keyword Read Syntax
5764 @subsubsection Keyword Read Syntax
5765
5766 Guile, by default, only recognizes a keyword syntax that is compatible
5767 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5768 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5769 external representation of the keyword named @code{NAME}. Keyword
5770 objects print using this syntax as well, so values containing keyword
5771 objects can be read back into Guile. When used in an expression,
5772 keywords are self-quoting objects.
5773
5774 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5775 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5776 of the form @code{:NAME} are read as symbols, as required by R5RS.
5777
5778 @cindex SRFI-88 keyword syntax
5779
5780 If the @code{keyword} read option is set to @code{'postfix}, Guile
5781 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5782 Otherwise, tokens of this form are read as symbols.
5783
5784 To enable and disable the alternative non-R5RS keyword syntax, you use
5785 the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5786 the @code{prefix} and @code{postfix} syntax are mutually exclusive.
5787
5788 @lisp
5789 (read-set! keywords 'prefix)
5790
5791 #:type
5792 @result{}
5793 #:type
5794
5795 :type
5796 @result{}
5797 #:type
5798
5799 (read-set! keywords 'postfix)
5800
5801 type:
5802 @result{}
5803 #:type
5804
5805 :type
5806 @result{}
5807 :type
5808
5809 (read-set! keywords #f)
5810
5811 #:type
5812 @result{}
5813 #:type
5814
5815 :type
5816 @print{}
5817 ERROR: In expression :type:
5818 ERROR: Unbound variable: :type
5819 ABORT: (unbound-variable)
5820 @end lisp
5821
5822 @node Keyword Procedures
5823 @subsubsection Keyword Procedures
5824
5825 @deffn {Scheme Procedure} keyword? obj
5826 @deffnx {C Function} scm_keyword_p (obj)
5827 Return @code{#t} if the argument @var{obj} is a keyword, else
5828 @code{#f}.
5829 @end deffn
5830
5831 @deffn {Scheme Procedure} keyword->symbol keyword
5832 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5833 Return the symbol with the same name as @var{keyword}.
5834 @end deffn
5835
5836 @deffn {Scheme Procedure} symbol->keyword symbol
5837 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5838 Return the keyword with the same name as @var{symbol}.
5839 @end deffn
5840
5841 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5842 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5843 @end deftypefn
5844
5845 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5846 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
5847 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5848 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5849 (@var{name}, @var{len}))}, respectively.
5850
5851 Note that these functions should @emph{not} be used when @var{name} is a
5852 C string constant, because there is no guarantee that the current locale
5853 will match that of the source code. In such cases, use
5854 @code{scm_from_latin1_keyword} or @code{scm_from_utf8_keyword}.
5855 @end deftypefn
5856
5857 @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5858 @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5859 Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5860 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5861 (@var{name}))}, respectively.
5862 @end deftypefn
5863
5864 @node Other Types
5865 @subsection ``Functionality-Centric'' Data Types
5866
5867 Procedures and macros are documented in their own sections: see
5868 @ref{Procedures} and @ref{Macros}.
5869
5870 Variable objects are documented as part of the description of Guile's
5871 module system: see @ref{Variables}.
5872
5873 Asyncs, dynamic roots and fluids are described in the section on
5874 scheduling: see @ref{Scheduling}.
5875
5876 Hooks are documented in the section on general utility functions: see
5877 @ref{Hooks}.
5878
5879 Ports are described in the section on I/O: see @ref{Input and Output}.
5880
5881 Regular expressions are described in their own section: see @ref{Regular
5882 Expressions}.
5883
5884 @c Local Variables:
5885 @c TeX-master: "guile.texi"
5886 @c End: