read: Support R7RS '#true' and '#false' syntax for booleans.
[bpt/guile.git] / doc / ref / api-data.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007,
4 @c 2008, 2009, 2010, 2011, 2012, 2013, 2014 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Simple Data Types
8 @section Simple Generic Data Types
9
10 This chapter describes those of Guile's simple data types which are
11 primarily used for their role as items of generic data. By
12 @dfn{simple} we mean data types that are not primarily used as
13 containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
14 For the documentation of such @dfn{compound} data types, see
15 @ref{Compound Data Types}.
16
17 @c One of the great strengths of Scheme is that there is no straightforward
18 @c distinction between ``data'' and ``functionality''. For example,
19 @c Guile's support for dynamic linking could be described:
20
21 @c @itemize @bullet
22 @c @item
23 @c either in a ``data-centric'' way, as the behaviour and properties of the
24 @c ``dynamically linked object'' data type, and the operations that may be
25 @c applied to instances of this type
26
27 @c @item
28 @c or in a ``functionality-centric'' way, as the set of procedures that
29 @c constitute Guile's support for dynamic linking, in the context of the
30 @c module system.
31 @c @end itemize
32
33 @c The contents of this chapter are, therefore, a matter of judgment. By
34 @c @dfn{generic}, we mean to select those data types whose typical use as
35 @c @emph{data} in a wide variety of programming contexts is more important
36 @c than their use in the implementation of a particular piece of
37 @c @emph{functionality}. The last section of this chapter provides
38 @c references for all the data types that are documented not here but in a
39 @c ``functionality-centric'' way elsewhere in the manual.
40
41 @menu
42 * Booleans:: True/false values.
43 * Numbers:: Numerical data types.
44 * Characters:: Single characters.
45 * Character Sets:: Sets of characters.
46 * Strings:: Sequences of characters.
47 * Bytevectors:: Sequences of bytes.
48 * Symbols:: Symbols.
49 * Keywords:: Self-quoting, customizable display keywords.
50 * Other Types:: "Functionality-centric" data types.
51 @end menu
52
53
54 @node Booleans
55 @subsection Booleans
56 @tpindex Booleans
57
58 The two boolean values are @code{#t} for true and @code{#f} for false.
59 They can also be written as @code{#true} and @code{#false}, as per R7RS.
60
61 Boolean values are returned by predicate procedures, such as the general
62 equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
63 (@pxref{Equality}) and numerical and string comparison operators like
64 @code{string=?} (@pxref{String Comparison}) and @code{<=}
65 (@pxref{Comparison}).
66
67 @lisp
68 (<= 3 8)
69 @result{} #t
70
71 (<= 3 -3)
72 @result{} #f
73
74 (equal? "house" "houses")
75 @result{} #f
76
77 (eq? #f #f)
78 @result{}
79 #t
80 @end lisp
81
82 In test condition contexts like @code{if} and @code{cond}
83 (@pxref{Conditionals}), where a group of subexpressions will be
84 evaluated only if a @var{condition} expression evaluates to ``true'',
85 ``true'' means any value at all except @code{#f}.
86
87 @lisp
88 (if #t "yes" "no")
89 @result{} "yes"
90
91 (if 0 "yes" "no")
92 @result{} "yes"
93
94 (if #f "yes" "no")
95 @result{} "no"
96 @end lisp
97
98 A result of this asymmetry is that typical Scheme source code more often
99 uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
100 represent an @code{if} or @code{cond} false value, whereas @code{#t} is
101 not necessary to represent an @code{if} or @code{cond} true value.
102
103 It is important to note that @code{#f} is @strong{not} equivalent to any
104 other Scheme value. In particular, @code{#f} is not the same as the
105 number 0 (like in C and C++), and not the same as the ``empty list''
106 (like in some Lisp dialects).
107
108 In C, the two Scheme boolean values are available as the two constants
109 @code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
110 Care must be taken with the false value @code{SCM_BOOL_F}: it is not
111 false when used in C conditionals. In order to test for it, use
112 @code{scm_is_false} or @code{scm_is_true}.
113
114 @rnindex not
115 @deffn {Scheme Procedure} not x
116 @deffnx {C Function} scm_not (x)
117 Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
118 @end deffn
119
120 @rnindex boolean?
121 @deffn {Scheme Procedure} boolean? obj
122 @deffnx {C Function} scm_boolean_p (obj)
123 Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
124 return @code{#f}.
125 @end deffn
126
127 @deftypevr {C Macro} SCM SCM_BOOL_T
128 The @code{SCM} representation of the Scheme object @code{#t}.
129 @end deftypevr
130
131 @deftypevr {C Macro} SCM SCM_BOOL_F
132 The @code{SCM} representation of the Scheme object @code{#f}.
133 @end deftypevr
134
135 @deftypefn {C Function} int scm_is_true (SCM obj)
136 Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
137 @end deftypefn
138
139 @deftypefn {C Function} int scm_is_false (SCM obj)
140 Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
141 @end deftypefn
142
143 @deftypefn {C Function} int scm_is_bool (SCM obj)
144 Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
145 return @code{0}.
146 @end deftypefn
147
148 @deftypefn {C Function} SCM scm_from_bool (int val)
149 Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
150 @end deftypefn
151
152 @deftypefn {C Function} int scm_to_bool (SCM val)
153 Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
154 when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.
155
156 You should probably use @code{scm_is_true} instead of this function
157 when you just want to test a @code{SCM} value for trueness.
158 @end deftypefn
159
160 @node Numbers
161 @subsection Numerical data types
162 @tpindex Numbers
163
164 Guile supports a rich ``tower'' of numerical types --- integer,
165 rational, real and complex --- and provides an extensive set of
166 mathematical and scientific functions for operating on numerical
167 data. This section of the manual documents those types and functions.
168
169 You may also find it illuminating to read R5RS's presentation of numbers
170 in Scheme, which is particularly clear and accessible: see
171 @ref{Numbers,,,r5rs,R5RS}.
172
173 @menu
174 * Numerical Tower:: Scheme's numerical "tower".
175 * Integers:: Whole numbers.
176 * Reals and Rationals:: Real and rational numbers.
177 * Complex Numbers:: Complex numbers.
178 * Exactness:: Exactness and inexactness.
179 * Number Syntax:: Read syntax for numerical data.
180 * Integer Operations:: Operations on integer values.
181 * Comparison:: Comparison predicates.
182 * Conversion:: Converting numbers to and from strings.
183 * Complex:: Complex number operations.
184 * Arithmetic:: Arithmetic functions.
185 * Scientific:: Scientific functions.
186 * Bitwise Operations:: Logical AND, OR, NOT, and so on.
187 * Random:: Random number generation.
188 @end menu
189
190
191 @node Numerical Tower
192 @subsubsection Scheme's Numerical ``Tower''
193 @rnindex number?
194
195 Scheme's numerical ``tower'' consists of the following categories of
196 numbers:
197
198 @table @dfn
199 @item integers
200 Whole numbers, positive or negative; e.g.@: --5, 0, 18.
201
202 @item rationals
203 The set of numbers that can be expressed as @math{@var{p}/@var{q}}
204 where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
205 pi (an irrational number) doesn't. These include integers
206 (@math{@var{n}/1}).
207
208 @item real numbers
209 The set of numbers that describes all possible positions along a
210 one-dimensional line. This includes rationals as well as irrational
211 numbers.
212
213 @item complex numbers
214 The set of numbers that describes all possible positions in a two
215 dimensional space. This includes real as well as imaginary numbers
216 (@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
217 @var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
218 @minus{}1.)
219 @end table
220
221 It is called a tower because each category ``sits on'' the one that
222 follows it, in the sense that every integer is also a rational, every
223 rational is also real, and every real number is also a complex number
224 (but with zero imaginary part).
225
226 In addition to the classification into integers, rationals, reals and
227 complex numbers, Scheme also distinguishes between whether a number is
228 represented exactly or not. For example, the result of
229 @m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
230 can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
231 Instead, it stores an inexact approximation, using the C type
232 @code{double}.
233
234 Guile can represent exact rationals of any magnitude, inexact
235 rationals that fit into a C @code{double}, and inexact complex numbers
236 with @code{double} real and imaginary parts.
237
238 The @code{number?} predicate may be applied to any Scheme value to
239 discover whether the value is any of the supported numerical types.
240
241 @deffn {Scheme Procedure} number? obj
242 @deffnx {C Function} scm_number_p (obj)
243 Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
244 @end deffn
245
246 For example:
247
248 @lisp
249 (number? 3)
250 @result{} #t
251
252 (number? "hello there!")
253 @result{} #f
254
255 (define pi 3.141592654)
256 (number? pi)
257 @result{} #t
258 @end lisp
259
260 @deftypefn {C Function} int scm_is_number (SCM obj)
261 This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
262 @end deftypefn
263
264 The next few subsections document each of Guile's numerical data types
265 in detail.
266
267 @node Integers
268 @subsubsection Integers
269
270 @tpindex Integer numbers
271
272 @rnindex integer?
273
274 Integers are whole numbers, that is numbers with no fractional part,
275 such as 2, 83, and @minus{}3789.
276
277 Integers in Guile can be arbitrarily big, as shown by the following
278 example.
279
280 @lisp
281 (define (factorial n)
282 (let loop ((n n) (product 1))
283 (if (= n 0)
284 product
285 (loop (- n 1) (* product n)))))
286
287 (factorial 3)
288 @result{} 6
289
290 (factorial 20)
291 @result{} 2432902008176640000
292
293 (- (factorial 45))
294 @result{} -119622220865480194561963161495657715064383733760000000000
295 @end lisp
296
297 Readers whose background is in programming languages where integers are
298 limited by the need to fit into just 4 or 8 bytes of memory may find
299 this surprising, or suspect that Guile's representation of integers is
300 inefficient. In fact, Guile achieves a near optimal balance of
301 convenience and efficiency by using the host computer's native
302 representation of integers where possible, and a more general
303 representation where the required number does not fit in the native
304 form. Conversion between these two representations is automatic and
305 completely invisible to the Scheme level programmer.
306
307 C has a host of different integer types, and Guile offers a host of
308 functions to convert between them and the @code{SCM} representation.
309 For example, a C @code{int} can be handled with @code{scm_to_int} and
310 @code{scm_from_int}. Guile also defines a few C integer types of its
311 own, to help with differences between systems.
312
313 C integer types that are not covered can be handled with the generic
314 @code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
315 signed types, or with @code{scm_to_unsigned_integer} and
316 @code{scm_from_unsigned_integer} for unsigned types.
317
318 Scheme integers can be exact and inexact. For example, a number
319 written as @code{3.0} with an explicit decimal-point is inexact, but
320 it is also an integer. The functions @code{integer?} and
321 @code{scm_is_integer} report true for such a number, but the functions
322 @code{exact-integer?}, @code{scm_is_exact_integer},
323 @code{scm_is_signed_integer}, and @code{scm_is_unsigned_integer} only
324 allow exact integers and thus report false. Likewise, the conversion
325 functions like @code{scm_to_signed_integer} only accept exact
326 integers.
327
328 The motivation for this behavior is that the inexactness of a number
329 should not be lost silently. If you want to allow inexact integers,
330 you can explicitly insert a call to @code{inexact->exact} or to its C
331 equivalent @code{scm_inexact_to_exact}. (Only inexact integers will
332 be converted by this call into exact integers; inexact non-integers
333 will become exact fractions.)
334
335 @deffn {Scheme Procedure} integer? x
336 @deffnx {C Function} scm_integer_p (x)
337 Return @code{#t} if @var{x} is an exact or inexact integer number, else
338 return @code{#f}.
339
340 @lisp
341 (integer? 487)
342 @result{} #t
343
344 (integer? 3.0)
345 @result{} #t
346
347 (integer? -3.4)
348 @result{} #f
349
350 (integer? +inf.0)
351 @result{} #f
352 @end lisp
353 @end deffn
354
355 @deftypefn {C Function} int scm_is_integer (SCM x)
356 This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
357 @end deftypefn
358
359 @deffn {Scheme Procedure} exact-integer? x
360 @deffnx {C Function} scm_exact_integer_p (x)
361 Return @code{#t} if @var{x} is an exact integer number, else
362 return @code{#f}.
363
364 @lisp
365 (exact-integer? 37)
366 @result{} #t
367
368 (exact-integer? 3.0)
369 @result{} #f
370 @end lisp
371 @end deffn
372
373 @deftypefn {C Function} int scm_is_exact_integer (SCM x)
374 This is equivalent to @code{scm_is_true (scm_exact_integer_p (x))}.
375 @end deftypefn
376
377 @defvr {C Type} scm_t_int8
378 @defvrx {C Type} scm_t_uint8
379 @defvrx {C Type} scm_t_int16
380 @defvrx {C Type} scm_t_uint16
381 @defvrx {C Type} scm_t_int32
382 @defvrx {C Type} scm_t_uint32
383 @defvrx {C Type} scm_t_int64
384 @defvrx {C Type} scm_t_uint64
385 @defvrx {C Type} scm_t_intmax
386 @defvrx {C Type} scm_t_uintmax
387 The C types are equivalent to the corresponding ISO C types but are
388 defined on all platforms, with the exception of @code{scm_t_int64} and
389 @code{scm_t_uint64}, which are only defined when a 64-bit type is
390 available. For example, @code{scm_t_int8} is equivalent to
391 @code{int8_t}.
392
393 You can regard these definitions as a stop-gap measure until all
394 platforms provide these types. If you know that all the platforms
395 that you are interested in already provide these types, it is better
396 to use them directly instead of the types provided by Guile.
397 @end defvr
398
399 @deftypefn {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
400 @deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
401 Return @code{1} when @var{x} represents an exact integer that is
402 between @var{min} and @var{max}, inclusive.
403
404 These functions can be used to check whether a @code{SCM} value will
405 fit into a given range, such as the range of a given C integer type.
406 If you just want to convert a @code{SCM} value to a given C integer
407 type, use one of the conversion functions directly.
408 @end deftypefn
409
410 @deftypefn {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
411 @deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
412 When @var{x} represents an exact integer that is between @var{min} and
413 @var{max} inclusive, return that integer. Else signal an error,
414 either a `wrong-type' error when @var{x} is not an exact integer, or
415 an `out-of-range' error when it doesn't fit the given range.
416 @end deftypefn
417
418 @deftypefn {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
419 @deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
420 Return the @code{SCM} value that represents the integer @var{x}. This
421 function will always succeed and will always return an exact number.
422 @end deftypefn
423
424 @deftypefn {C Function} char scm_to_char (SCM x)
425 @deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
426 @deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
427 @deftypefnx {C Function} short scm_to_short (SCM x)
428 @deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
429 @deftypefnx {C Function} int scm_to_int (SCM x)
430 @deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
431 @deftypefnx {C Function} long scm_to_long (SCM x)
432 @deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
433 @deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
434 @deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
435 @deftypefnx {C Function} size_t scm_to_size_t (SCM x)
436 @deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
437 @deftypefnx {C Function} scm_t_ptrdiff scm_to_ptrdiff_t (SCM x)
438 @deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
439 @deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
440 @deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
441 @deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
442 @deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
443 @deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
444 @deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
445 @deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
446 @deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
447 @deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
448 When @var{x} represents an exact integer that fits into the indicated
449 C type, return that integer. Else signal an error, either a
450 `wrong-type' error when @var{x} is not an exact integer, or an
451 `out-of-range' error when it doesn't fit the given range.
452
453 The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
454 @code{scm_to_int64}, and @code{scm_to_uint64} are only available when
455 the corresponding types are.
456 @end deftypefn
457
458 @deftypefn {C Function} SCM scm_from_char (char x)
459 @deftypefnx {C Function} SCM scm_from_schar (signed char x)
460 @deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
461 @deftypefnx {C Function} SCM scm_from_short (short x)
462 @deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
463 @deftypefnx {C Function} SCM scm_from_int (int x)
464 @deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
465 @deftypefnx {C Function} SCM scm_from_long (long x)
466 @deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
467 @deftypefnx {C Function} SCM scm_from_long_long (long long x)
468 @deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
469 @deftypefnx {C Function} SCM scm_from_size_t (size_t x)
470 @deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
471 @deftypefnx {C Function} SCM scm_from_ptrdiff_t (scm_t_ptrdiff x)
472 @deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
473 @deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
474 @deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
475 @deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
476 @deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
477 @deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
478 @deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
479 @deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
480 @deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
481 @deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
482 Return the @code{SCM} value that represents the integer @var{x}.
483 These functions will always succeed and will always return an exact
484 number.
485 @end deftypefn
486
487 @deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
488 Assign @var{val} to the multiple precision integer @var{rop}.
489 @var{val} must be an exact integer, otherwise an error will be
490 signalled. @var{rop} must have been initialized with @code{mpz_init}
491 before this function is called. When @var{rop} is no longer needed
492 the occupied space must be freed with @code{mpz_clear}.
493 @xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
494 @end deftypefn
495
496 @deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
497 Return the @code{SCM} value that represents @var{val}.
498 @end deftypefn
499
500 @node Reals and Rationals
501 @subsubsection Real and Rational Numbers
502 @tpindex Real numbers
503 @tpindex Rational numbers
504
505 @rnindex real?
506 @rnindex rational?
507
508 Mathematically, the real numbers are the set of numbers that describe
509 all possible points along a continuous, infinite, one-dimensional line.
510 The rational numbers are the set of all numbers that can be written as
511 fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
512 All rational numbers are also real, but there are real numbers that
513 are not rational, for example @m{\sqrt{2}, the square root of 2}, and
514 @m{\pi,pi}.
515
516 Guile can represent both exact and inexact rational numbers, but it
517 cannot represent precise finite irrational numbers. Exact rationals are
518 represented by storing the numerator and denominator as two exact
519 integers. Inexact rationals are stored as floating point numbers using
520 the C type @code{double}.
521
522 Exact rationals are written as a fraction of integers. There must be
523 no whitespace around the slash:
524
525 @lisp
526 1/2
527 -22/7
528 @end lisp
529
530 Even though the actual encoding of inexact rationals is in binary, it
531 may be helpful to think of it as a decimal number with a limited
532 number of significant figures and a decimal point somewhere, since
533 this corresponds to the standard notation for non-whole numbers. For
534 example:
535
536 @lisp
537 0.34
538 -0.00000142857931198
539 -5648394822220000000000.0
540 4.0
541 @end lisp
542
543 The limited precision of Guile's encoding means that any finite ``real''
544 number in Guile can be written in a rational form, by multiplying and
545 then dividing by sufficient powers of 10 (or in fact, 2). For example,
546 @samp{-0.00000142857931198} is the same as @minus{}142857931198 divided
547 by 100000000000000000. In Guile's current incarnation, therefore, the
548 @code{rational?} and @code{real?} predicates are equivalent for finite
549 numbers.
550
551
552 Dividing by an exact zero leads to a error message, as one might expect.
553 However, dividing by an inexact zero does not produce an error.
554 Instead, the result of the division is either plus or minus infinity,
555 depending on the sign of the divided number and the sign of the zero
556 divisor (some platforms support signed zeroes @samp{-0.0} and
557 @samp{+0.0}; @samp{0.0} is the same as @samp{+0.0}).
558
559 Dividing zero by an inexact zero yields a @acronym{NaN} (`not a number')
560 value, although they are actually considered numbers by Scheme.
561 Attempts to compare a @acronym{NaN} value with any number (including
562 itself) using @code{=}, @code{<}, @code{>}, @code{<=} or @code{>=}
563 always returns @code{#f}. Although a @acronym{NaN} value is not
564 @code{=} to itself, it is both @code{eqv?} and @code{equal?} to itself
565 and other @acronym{NaN} values. However, the preferred way to test for
566 them is by using @code{nan?}.
567
568 The real @acronym{NaN} values and infinities are written @samp{+nan.0},
569 @samp{+inf.0} and @samp{-inf.0}. This syntax is also recognized by
570 @code{read} as an extension to the usual Scheme syntax. These special
571 values are considered by Scheme to be inexact real numbers but not
572 rational. Note that non-real complex numbers may also contain
573 infinities or @acronym{NaN} values in their real or imaginary parts. To
574 test a real number to see if it is infinite, a @acronym{NaN} value, or
575 neither, use @code{inf?}, @code{nan?}, or @code{finite?}, respectively.
576 Every real number in Scheme belongs to precisely one of those three
577 classes.
578
579 On platforms that follow @acronym{IEEE} 754 for their floating point
580 arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
581 are implemented using the corresponding @acronym{IEEE} 754 values.
582 They behave in arithmetic operations like @acronym{IEEE} 754 describes
583 it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.
584
585 @deffn {Scheme Procedure} real? obj
586 @deffnx {C Function} scm_real_p (obj)
587 Return @code{#t} if @var{obj} is a real number, else @code{#f}. Note
588 that the sets of integer and rational values form subsets of the set
589 of real numbers, so the predicate will also be fulfilled if @var{obj}
590 is an integer number or a rational number.
591 @end deffn
592
593 @deffn {Scheme Procedure} rational? x
594 @deffnx {C Function} scm_rational_p (x)
595 Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
596 Note that the set of integer values forms a subset of the set of
597 rational numbers, i.e.@: the predicate will also be fulfilled if
598 @var{x} is an integer number.
599 @end deffn
600
601 @deffn {Scheme Procedure} rationalize x eps
602 @deffnx {C Function} scm_rationalize (x, eps)
603 Returns the @emph{simplest} rational number differing
604 from @var{x} by no more than @var{eps}.
605
606 As required by @acronym{R5RS}, @code{rationalize} only returns an
607 exact result when both its arguments are exact. Thus, you might need
608 to use @code{inexact->exact} on the arguments.
609
610 @lisp
611 (rationalize (inexact->exact 1.2) 1/100)
612 @result{} 6/5
613 @end lisp
614
615 @end deffn
616
617 @deffn {Scheme Procedure} inf? x
618 @deffnx {C Function} scm_inf_p (x)
619 Return @code{#t} if the real number @var{x} is @samp{+inf.0} or
620 @samp{-inf.0}. Otherwise return @code{#f}.
621 @end deffn
622
623 @deffn {Scheme Procedure} nan? x
624 @deffnx {C Function} scm_nan_p (x)
625 Return @code{#t} if the real number @var{x} is @samp{+nan.0}, or
626 @code{#f} otherwise.
627 @end deffn
628
629 @deffn {Scheme Procedure} finite? x
630 @deffnx {C Function} scm_finite_p (x)
631 Return @code{#t} if the real number @var{x} is neither infinite nor a
632 NaN, @code{#f} otherwise.
633 @end deffn
634
635 @deffn {Scheme Procedure} nan
636 @deffnx {C Function} scm_nan ()
637 Return @samp{+nan.0}, a @acronym{NaN} value.
638 @end deffn
639
640 @deffn {Scheme Procedure} inf
641 @deffnx {C Function} scm_inf ()
642 Return @samp{+inf.0}, positive infinity.
643 @end deffn
644
645 @deffn {Scheme Procedure} numerator x
646 @deffnx {C Function} scm_numerator (x)
647 Return the numerator of the rational number @var{x}.
648 @end deffn
649
650 @deffn {Scheme Procedure} denominator x
651 @deffnx {C Function} scm_denominator (x)
652 Return the denominator of the rational number @var{x}.
653 @end deffn
654
655 @deftypefn {C Function} int scm_is_real (SCM val)
656 @deftypefnx {C Function} int scm_is_rational (SCM val)
657 Equivalent to @code{scm_is_true (scm_real_p (val))} and
658 @code{scm_is_true (scm_rational_p (val))}, respectively.
659 @end deftypefn
660
661 @deftypefn {C Function} double scm_to_double (SCM val)
662 Returns the number closest to @var{val} that is representable as a
663 @code{double}. Returns infinity for a @var{val} that is too large in
664 magnitude. The argument @var{val} must be a real number.
665 @end deftypefn
666
667 @deftypefn {C Function} SCM scm_from_double (double val)
668 Return the @code{SCM} value that represents @var{val}. The returned
669 value is inexact according to the predicate @code{inexact?}, but it
670 will be exactly equal to @var{val}.
671 @end deftypefn
672
673 @node Complex Numbers
674 @subsubsection Complex Numbers
675 @tpindex Complex numbers
676
677 @rnindex complex?
678
679 Complex numbers are the set of numbers that describe all possible points
680 in a two-dimensional space. The two coordinates of a particular point
681 in this space are known as the @dfn{real} and @dfn{imaginary} parts of
682 the complex number that describes that point.
683
684 In Guile, complex numbers are written in rectangular form as the sum of
685 their real and imaginary parts, using the symbol @code{i} to indicate
686 the imaginary part.
687
688 @lisp
689 3+4i
690 @result{}
691 3.0+4.0i
692
693 (* 3-8i 2.3+0.3i)
694 @result{}
695 9.3-17.5i
696 @end lisp
697
698 @cindex polar form
699 @noindent
700 Polar form can also be used, with an @samp{@@} between magnitude and
701 angle,
702
703 @lisp
704 1@@3.141592 @result{} -1.0 (approx)
705 -1@@1.57079 @result{} 0.0-1.0i (approx)
706 @end lisp
707
708 Guile represents a complex number as a pair of inexact reals, so the
709 real and imaginary parts of a complex number have the same properties of
710 inexactness and limited precision as single inexact real numbers.
711
712 Note that each part of a complex number may contain any inexact real
713 value, including the special values @samp{+nan.0}, @samp{+inf.0} and
714 @samp{-inf.0}, as well as either of the signed zeroes @samp{0.0} or
715 @samp{-0.0}.
716
717
718 @deffn {Scheme Procedure} complex? z
719 @deffnx {C Function} scm_complex_p (z)
720 Return @code{#t} if @var{z} is a complex number, @code{#f}
721 otherwise. Note that the sets of real, rational and integer
722 values form subsets of the set of complex numbers, i.e.@: the
723 predicate will also be fulfilled if @var{z} is a real,
724 rational or integer number.
725 @end deffn
726
727 @deftypefn {C Function} int scm_is_complex (SCM val)
728 Equivalent to @code{scm_is_true (scm_complex_p (val))}.
729 @end deftypefn
730
731 @node Exactness
732 @subsubsection Exact and Inexact Numbers
733 @tpindex Exact numbers
734 @tpindex Inexact numbers
735
736 @rnindex exact?
737 @rnindex inexact?
738 @rnindex exact->inexact
739 @rnindex inexact->exact
740
741 R5RS requires that, with few exceptions, a calculation involving inexact
742 numbers always produces an inexact result. To meet this requirement,
743 Guile distinguishes between an exact integer value such as @samp{5} and
744 the corresponding inexact integer value which, to the limited precision
745 available, has no fractional part, and is printed as @samp{5.0}. Guile
746 will only convert the latter value to the former when forced to do so by
747 an invocation of the @code{inexact->exact} procedure.
748
749 The only exception to the above requirement is when the values of the
750 inexact numbers do not affect the result. For example @code{(expt n 0)}
751 is @samp{1} for any value of @code{n}, therefore @code{(expt 5.0 0)} is
752 permitted to return an exact @samp{1}.
753
754 @deffn {Scheme Procedure} exact? z
755 @deffnx {C Function} scm_exact_p (z)
756 Return @code{#t} if the number @var{z} is exact, @code{#f}
757 otherwise.
758
759 @lisp
760 (exact? 2)
761 @result{} #t
762
763 (exact? 0.5)
764 @result{} #f
765
766 (exact? (/ 2))
767 @result{} #t
768 @end lisp
769
770 @end deffn
771
772 @deftypefn {C Function} int scm_is_exact (SCM z)
773 Return a @code{1} if the number @var{z} is exact, and @code{0}
774 otherwise. This is equivalent to @code{scm_is_true (scm_exact_p (z))}.
775
776 An alternate approch to testing the exactness of a number is to
777 use @code{scm_is_signed_integer} or @code{scm_is_unsigned_integer}.
778 @end deftypefn
779
780 @deffn {Scheme Procedure} inexact? z
781 @deffnx {C Function} scm_inexact_p (z)
782 Return @code{#t} if the number @var{z} is inexact, @code{#f}
783 else.
784 @end deffn
785
786 @deftypefn {C Function} int scm_is_inexact (SCM z)
787 Return a @code{1} if the number @var{z} is inexact, and @code{0}
788 otherwise. This is equivalent to @code{scm_is_true (scm_inexact_p (z))}.
789 @end deftypefn
790
791 @deffn {Scheme Procedure} inexact->exact z
792 @deffnx {C Function} scm_inexact_to_exact (z)
793 Return an exact number that is numerically closest to @var{z}, when
794 there is one. For inexact rationals, Guile returns the exact rational
795 that is numerically equal to the inexact rational. Inexact complex
796 numbers with a non-zero imaginary part can not be made exact.
797
798 @lisp
799 (inexact->exact 0.5)
800 @result{} 1/2
801 @end lisp
802
803 The following happens because 12/10 is not exactly representable as a
804 @code{double} (on most platforms). However, when reading a decimal
805 number that has been marked exact with the ``#e'' prefix, Guile is
806 able to represent it correctly.
807
808 @lisp
809 (inexact->exact 1.2)
810 @result{} 5404319552844595/4503599627370496
811
812 #e1.2
813 @result{} 6/5
814 @end lisp
815
816 @end deffn
817
818 @c begin (texi-doc-string "guile" "exact->inexact")
819 @deffn {Scheme Procedure} exact->inexact z
820 @deffnx {C Function} scm_exact_to_inexact (z)
821 Convert the number @var{z} to its inexact representation.
822 @end deffn
823
824
825 @node Number Syntax
826 @subsubsection Read Syntax for Numerical Data
827
828 The read syntax for integers is a string of digits, optionally
829 preceded by a minus or plus character, a code indicating the
830 base in which the integer is encoded, and a code indicating whether
831 the number is exact or inexact. The supported base codes are:
832
833 @table @code
834 @item #b
835 @itemx #B
836 the integer is written in binary (base 2)
837
838 @item #o
839 @itemx #O
840 the integer is written in octal (base 8)
841
842 @item #d
843 @itemx #D
844 the integer is written in decimal (base 10)
845
846 @item #x
847 @itemx #X
848 the integer is written in hexadecimal (base 16)
849 @end table
850
851 If the base code is omitted, the integer is assumed to be decimal. The
852 following examples show how these base codes are used.
853
854 @lisp
855 -13
856 @result{} -13
857
858 #d-13
859 @result{} -13
860
861 #x-13
862 @result{} -19
863
864 #b+1101
865 @result{} 13
866
867 #o377
868 @result{} 255
869 @end lisp
870
871 The codes for indicating exactness (which can, incidentally, be applied
872 to all numerical values) are:
873
874 @table @code
875 @item #e
876 @itemx #E
877 the number is exact
878
879 @item #i
880 @itemx #I
881 the number is inexact.
882 @end table
883
884 If the exactness indicator is omitted, the number is exact unless it
885 contains a radix point. Since Guile can not represent exact complex
886 numbers, an error is signalled when asking for them.
887
888 @lisp
889 (exact? 1.2)
890 @result{} #f
891
892 (exact? #e1.2)
893 @result{} #t
894
895 (exact? #e+1i)
896 ERROR: Wrong type argument
897 @end lisp
898
899 Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
900 plus and minus infinity, respectively. The value must be written
901 exactly as shown, that is, they always must have a sign and exactly
902 one zero digit after the decimal point. It also understands
903 @samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
904 The sign is ignored for `not-a-number' and the value is always printed
905 as @samp{+nan.0}.
906
907 @node Integer Operations
908 @subsubsection Operations on Integer Values
909 @rnindex odd?
910 @rnindex even?
911 @rnindex quotient
912 @rnindex remainder
913 @rnindex modulo
914 @rnindex gcd
915 @rnindex lcm
916
917 @deffn {Scheme Procedure} odd? n
918 @deffnx {C Function} scm_odd_p (n)
919 Return @code{#t} if @var{n} is an odd number, @code{#f}
920 otherwise.
921 @end deffn
922
923 @deffn {Scheme Procedure} even? n
924 @deffnx {C Function} scm_even_p (n)
925 Return @code{#t} if @var{n} is an even number, @code{#f}
926 otherwise.
927 @end deffn
928
929 @c begin (texi-doc-string "guile" "quotient")
930 @c begin (texi-doc-string "guile" "remainder")
931 @deffn {Scheme Procedure} quotient n d
932 @deffnx {Scheme Procedure} remainder n d
933 @deffnx {C Function} scm_quotient (n, d)
934 @deffnx {C Function} scm_remainder (n, d)
935 Return the quotient or remainder from @var{n} divided by @var{d}. The
936 quotient is rounded towards zero, and the remainder will have the same
937 sign as @var{n}. In all cases quotient and remainder satisfy
938 @math{@var{n} = @var{q}*@var{d} + @var{r}}.
939
940 @lisp
941 (remainder 13 4) @result{} 1
942 (remainder -13 4) @result{} -1
943 @end lisp
944
945 See also @code{truncate-quotient}, @code{truncate-remainder} and
946 related operations in @ref{Arithmetic}.
947 @end deffn
948
949 @c begin (texi-doc-string "guile" "modulo")
950 @deffn {Scheme Procedure} modulo n d
951 @deffnx {C Function} scm_modulo (n, d)
952 Return the remainder from @var{n} divided by @var{d}, with the same
953 sign as @var{d}.
954
955 @lisp
956 (modulo 13 4) @result{} 1
957 (modulo -13 4) @result{} 3
958 (modulo 13 -4) @result{} -3
959 (modulo -13 -4) @result{} -1
960 @end lisp
961
962 See also @code{floor-quotient}, @code{floor-remainder} and
963 related operations in @ref{Arithmetic}.
964 @end deffn
965
966 @c begin (texi-doc-string "guile" "gcd")
967 @deffn {Scheme Procedure} gcd x@dots{}
968 @deffnx {C Function} scm_gcd (x, y)
969 Return the greatest common divisor of all arguments.
970 If called without arguments, 0 is returned.
971
972 The C function @code{scm_gcd} always takes two arguments, while the
973 Scheme function can take an arbitrary number.
974 @end deffn
975
976 @c begin (texi-doc-string "guile" "lcm")
977 @deffn {Scheme Procedure} lcm x@dots{}
978 @deffnx {C Function} scm_lcm (x, y)
979 Return the least common multiple of the arguments.
980 If called without arguments, 1 is returned.
981
982 The C function @code{scm_lcm} always takes two arguments, while the
983 Scheme function can take an arbitrary number.
984 @end deffn
985
986 @deffn {Scheme Procedure} modulo-expt n k m
987 @deffnx {C Function} scm_modulo_expt (n, k, m)
988 Return @var{n} raised to the integer exponent
989 @var{k}, modulo @var{m}.
990
991 @lisp
992 (modulo-expt 2 3 5)
993 @result{} 3
994 @end lisp
995 @end deffn
996
997 @deftypefn {Scheme Procedure} {} exact-integer-sqrt @var{k}
998 @deftypefnx {C Function} void scm_exact_integer_sqrt (SCM @var{k}, SCM *@var{s}, SCM *@var{r})
999 Return two exact non-negative integers @var{s} and @var{r}
1000 such that @math{@var{k} = @var{s}^2 + @var{r}} and
1001 @math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.
1002 An error is raised if @var{k} is not an exact non-negative integer.
1003
1004 @lisp
1005 (exact-integer-sqrt 10) @result{} 3 and 1
1006 @end lisp
1007 @end deftypefn
1008
1009 @node Comparison
1010 @subsubsection Comparison Predicates
1011 @rnindex zero?
1012 @rnindex positive?
1013 @rnindex negative?
1014
1015 The C comparison functions below always takes two arguments, while the
1016 Scheme functions can take an arbitrary number. Also keep in mind that
1017 the C functions return one of the Scheme boolean values
1018 @code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
1019 is concerned. Thus, always write @code{scm_is_true (scm_num_eq_p (x,
1020 y))} when testing the two Scheme numbers @code{x} and @code{y} for
1021 equality, for example.
1022
1023 @c begin (texi-doc-string "guile" "=")
1024 @deffn {Scheme Procedure} =
1025 @deffnx {C Function} scm_num_eq_p (x, y)
1026 Return @code{#t} if all parameters are numerically equal.
1027 @end deffn
1028
1029 @c begin (texi-doc-string "guile" "<")
1030 @deffn {Scheme Procedure} <
1031 @deffnx {C Function} scm_less_p (x, y)
1032 Return @code{#t} if the list of parameters is monotonically
1033 increasing.
1034 @end deffn
1035
1036 @c begin (texi-doc-string "guile" ">")
1037 @deffn {Scheme Procedure} >
1038 @deffnx {C Function} scm_gr_p (x, y)
1039 Return @code{#t} if the list of parameters is monotonically
1040 decreasing.
1041 @end deffn
1042
1043 @c begin (texi-doc-string "guile" "<=")
1044 @deffn {Scheme Procedure} <=
1045 @deffnx {C Function} scm_leq_p (x, y)
1046 Return @code{#t} if the list of parameters is monotonically
1047 non-decreasing.
1048 @end deffn
1049
1050 @c begin (texi-doc-string "guile" ">=")
1051 @deffn {Scheme Procedure} >=
1052 @deffnx {C Function} scm_geq_p (x, y)
1053 Return @code{#t} if the list of parameters is monotonically
1054 non-increasing.
1055 @end deffn
1056
1057 @c begin (texi-doc-string "guile" "zero?")
1058 @deffn {Scheme Procedure} zero? z
1059 @deffnx {C Function} scm_zero_p (z)
1060 Return @code{#t} if @var{z} is an exact or inexact number equal to
1061 zero.
1062 @end deffn
1063
1064 @c begin (texi-doc-string "guile" "positive?")
1065 @deffn {Scheme Procedure} positive? x
1066 @deffnx {C Function} scm_positive_p (x)
1067 Return @code{#t} if @var{x} is an exact or inexact number greater than
1068 zero.
1069 @end deffn
1070
1071 @c begin (texi-doc-string "guile" "negative?")
1072 @deffn {Scheme Procedure} negative? x
1073 @deffnx {C Function} scm_negative_p (x)
1074 Return @code{#t} if @var{x} is an exact or inexact number less than
1075 zero.
1076 @end deffn
1077
1078
1079 @node Conversion
1080 @subsubsection Converting Numbers To and From Strings
1081 @rnindex number->string
1082 @rnindex string->number
1083
1084 The following procedures read and write numbers according to their
1085 external representation as defined by R5RS (@pxref{Lexical structure,
1086 R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
1087 Language Scheme}). @xref{Number Input and Output, the @code{(ice-9
1088 i18n)} module}, for locale-dependent number parsing.
1089
1090 @deffn {Scheme Procedure} number->string n [radix]
1091 @deffnx {C Function} scm_number_to_string (n, radix)
1092 Return a string holding the external representation of the
1093 number @var{n} in the given @var{radix}. If @var{n} is
1094 inexact, a radix of 10 will be used.
1095 @end deffn
1096
1097 @deffn {Scheme Procedure} string->number string [radix]
1098 @deffnx {C Function} scm_string_to_number (string, radix)
1099 Return a number of the maximally precise representation
1100 expressed by the given @var{string}. @var{radix} must be an
1101 exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
1102 is a default radix that may be overridden by an explicit radix
1103 prefix in @var{string} (e.g.@: "#o177"). If @var{radix} is not
1104 supplied, then the default radix is 10. If string is not a
1105 syntactically valid notation for a number, then
1106 @code{string->number} returns @code{#f}.
1107 @end deffn
1108
1109 @deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
1110 As per @code{string->number} above, but taking a C string, as pointer
1111 and length. The string characters should be in the current locale
1112 encoding (@code{locale} in the name refers only to that, there's no
1113 locale-dependent parsing).
1114 @end deftypefn
1115
1116
1117 @node Complex
1118 @subsubsection Complex Number Operations
1119 @rnindex make-rectangular
1120 @rnindex make-polar
1121 @rnindex real-part
1122 @rnindex imag-part
1123 @rnindex magnitude
1124 @rnindex angle
1125
1126 @deffn {Scheme Procedure} make-rectangular real_part imaginary_part
1127 @deffnx {C Function} scm_make_rectangular (real_part, imaginary_part)
1128 Return a complex number constructed of the given @var{real-part} and @var{imaginary-part} parts.
1129 @end deffn
1130
1131 @deffn {Scheme Procedure} make-polar mag ang
1132 @deffnx {C Function} scm_make_polar (mag, ang)
1133 @cindex polar form
1134 Return the complex number @var{mag} * e^(i * @var{ang}).
1135 @end deffn
1136
1137 @c begin (texi-doc-string "guile" "real-part")
1138 @deffn {Scheme Procedure} real-part z
1139 @deffnx {C Function} scm_real_part (z)
1140 Return the real part of the number @var{z}.
1141 @end deffn
1142
1143 @c begin (texi-doc-string "guile" "imag-part")
1144 @deffn {Scheme Procedure} imag-part z
1145 @deffnx {C Function} scm_imag_part (z)
1146 Return the imaginary part of the number @var{z}.
1147 @end deffn
1148
1149 @c begin (texi-doc-string "guile" "magnitude")
1150 @deffn {Scheme Procedure} magnitude z
1151 @deffnx {C Function} scm_magnitude (z)
1152 Return the magnitude of the number @var{z}. This is the same as
1153 @code{abs} for real arguments, but also allows complex numbers.
1154 @end deffn
1155
1156 @c begin (texi-doc-string "guile" "angle")
1157 @deffn {Scheme Procedure} angle z
1158 @deffnx {C Function} scm_angle (z)
1159 Return the angle of the complex number @var{z}.
1160 @end deffn
1161
1162 @deftypefn {C Function} SCM scm_c_make_rectangular (double re, double im)
1163 @deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
1164 Like @code{scm_make_rectangular} or @code{scm_make_polar},
1165 respectively, but these functions take @code{double}s as their
1166 arguments.
1167 @end deftypefn
1168
1169 @deftypefn {C Function} double scm_c_real_part (z)
1170 @deftypefnx {C Function} double scm_c_imag_part (z)
1171 Returns the real or imaginary part of @var{z} as a @code{double}.
1172 @end deftypefn
1173
1174 @deftypefn {C Function} double scm_c_magnitude (z)
1175 @deftypefnx {C Function} double scm_c_angle (z)
1176 Returns the magnitude or angle of @var{z} as a @code{double}.
1177 @end deftypefn
1178
1179
1180 @node Arithmetic
1181 @subsubsection Arithmetic Functions
1182 @rnindex max
1183 @rnindex min
1184 @rnindex +
1185 @rnindex *
1186 @rnindex -
1187 @rnindex /
1188 @findex 1+
1189 @findex 1-
1190 @rnindex abs
1191 @rnindex floor
1192 @rnindex ceiling
1193 @rnindex truncate
1194 @rnindex round
1195 @rnindex euclidean/
1196 @rnindex euclidean-quotient
1197 @rnindex euclidean-remainder
1198 @rnindex floor/
1199 @rnindex floor-quotient
1200 @rnindex floor-remainder
1201 @rnindex ceiling/
1202 @rnindex ceiling-quotient
1203 @rnindex ceiling-remainder
1204 @rnindex truncate/
1205 @rnindex truncate-quotient
1206 @rnindex truncate-remainder
1207 @rnindex centered/
1208 @rnindex centered-quotient
1209 @rnindex centered-remainder
1210 @rnindex round/
1211 @rnindex round-quotient
1212 @rnindex round-remainder
1213
1214 The C arithmetic functions below always takes two arguments, while the
1215 Scheme functions can take an arbitrary number. When you need to
1216 invoke them with just one argument, for example to compute the
1217 equivalent of @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
1218 one: @code{scm_difference (x, SCM_UNDEFINED)}.
1219
1220 @c begin (texi-doc-string "guile" "+")
1221 @deffn {Scheme Procedure} + z1 @dots{}
1222 @deffnx {C Function} scm_sum (z1, z2)
1223 Return the sum of all parameter values. Return 0 if called without any
1224 parameters.
1225 @end deffn
1226
1227 @c begin (texi-doc-string "guile" "-")
1228 @deffn {Scheme Procedure} - z1 z2 @dots{}
1229 @deffnx {C Function} scm_difference (z1, z2)
1230 If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
1231 the sum of all but the first argument are subtracted from the first
1232 argument.
1233 @end deffn
1234
1235 @c begin (texi-doc-string "guile" "*")
1236 @deffn {Scheme Procedure} * z1 @dots{}
1237 @deffnx {C Function} scm_product (z1, z2)
1238 Return the product of all arguments. If called without arguments, 1 is
1239 returned.
1240 @end deffn
1241
1242 @c begin (texi-doc-string "guile" "/")
1243 @deffn {Scheme Procedure} / z1 z2 @dots{}
1244 @deffnx {C Function} scm_divide (z1, z2)
1245 Divide the first argument by the product of the remaining arguments. If
1246 called with one argument @var{z1}, 1/@var{z1} is returned.
1247 @end deffn
1248
1249 @deffn {Scheme Procedure} 1+ z
1250 @deffnx {C Function} scm_oneplus (z)
1251 Return @math{@var{z} + 1}.
1252 @end deffn
1253
1254 @deffn {Scheme Procedure} 1- z
1255 @deffnx {C function} scm_oneminus (z)
1256 Return @math{@var{z} - 1}.
1257 @end deffn
1258
1259 @c begin (texi-doc-string "guile" "abs")
1260 @deffn {Scheme Procedure} abs x
1261 @deffnx {C Function} scm_abs (x)
1262 Return the absolute value of @var{x}.
1263
1264 @var{x} must be a number with zero imaginary part. To calculate the
1265 magnitude of a complex number, use @code{magnitude} instead.
1266 @end deffn
1267
1268 @c begin (texi-doc-string "guile" "max")
1269 @deffn {Scheme Procedure} max x1 x2 @dots{}
1270 @deffnx {C Function} scm_max (x1, x2)
1271 Return the maximum of all parameter values.
1272 @end deffn
1273
1274 @c begin (texi-doc-string "guile" "min")
1275 @deffn {Scheme Procedure} min x1 x2 @dots{}
1276 @deffnx {C Function} scm_min (x1, x2)
1277 Return the minimum of all parameter values.
1278 @end deffn
1279
1280 @c begin (texi-doc-string "guile" "truncate")
1281 @deffn {Scheme Procedure} truncate x
1282 @deffnx {C Function} scm_truncate_number (x)
1283 Round the inexact number @var{x} towards zero.
1284 @end deffn
1285
1286 @c begin (texi-doc-string "guile" "round")
1287 @deffn {Scheme Procedure} round x
1288 @deffnx {C Function} scm_round_number (x)
1289 Round the inexact number @var{x} to the nearest integer. When exactly
1290 halfway between two integers, round to the even one.
1291 @end deffn
1292
1293 @c begin (texi-doc-string "guile" "floor")
1294 @deffn {Scheme Procedure} floor x
1295 @deffnx {C Function} scm_floor (x)
1296 Round the number @var{x} towards minus infinity.
1297 @end deffn
1298
1299 @c begin (texi-doc-string "guile" "ceiling")
1300 @deffn {Scheme Procedure} ceiling x
1301 @deffnx {C Function} scm_ceiling (x)
1302 Round the number @var{x} towards infinity.
1303 @end deffn
1304
1305 @deftypefn {C Function} double scm_c_truncate (double x)
1306 @deftypefnx {C Function} double scm_c_round (double x)
1307 Like @code{scm_truncate_number} or @code{scm_round_number},
1308 respectively, but these functions take and return @code{double}
1309 values.
1310 @end deftypefn
1311
1312 @deftypefn {Scheme Procedure} {} euclidean/ @var{x} @var{y}
1313 @deftypefnx {Scheme Procedure} {} euclidean-quotient @var{x} @var{y}
1314 @deftypefnx {Scheme Procedure} {} euclidean-remainder @var{x} @var{y}
1315 @deftypefnx {C Function} void scm_euclidean_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1316 @deftypefnx {C Function} SCM scm_euclidean_quotient (SCM @var{x}, SCM @var{y})
1317 @deftypefnx {C Function} SCM scm_euclidean_remainder (SCM @var{x}, SCM @var{y})
1318 These procedures accept two real numbers @var{x} and @var{y}, where the
1319 divisor @var{y} must be non-zero. @code{euclidean-quotient} returns the
1320 integer @var{q} and @code{euclidean-remainder} returns the real number
1321 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1322 @math{0 <= @var{r} < |@var{y}|}. @code{euclidean/} returns both @var{q} and
1323 @var{r}, and is more efficient than computing each separately. Note
1324 that when @math{@var{y} > 0}, @code{euclidean-quotient} returns
1325 @math{floor(@var{x}/@var{y})}, otherwise it returns
1326 @math{ceiling(@var{x}/@var{y})}.
1327
1328 Note that these operators are equivalent to the R6RS operators
1329 @code{div}, @code{mod}, and @code{div-and-mod}.
1330
1331 @lisp
1332 (euclidean-quotient 123 10) @result{} 12
1333 (euclidean-remainder 123 10) @result{} 3
1334 (euclidean/ 123 10) @result{} 12 and 3
1335 (euclidean/ 123 -10) @result{} -12 and 3
1336 (euclidean/ -123 10) @result{} -13 and 7
1337 (euclidean/ -123 -10) @result{} 13 and 7
1338 (euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8
1339 (euclidean/ 16/3 -10/7) @result{} -3 and 22/21
1340 @end lisp
1341 @end deftypefn
1342
1343 @deftypefn {Scheme Procedure} {} floor/ @var{x} @var{y}
1344 @deftypefnx {Scheme Procedure} {} floor-quotient @var{x} @var{y}
1345 @deftypefnx {Scheme Procedure} {} floor-remainder @var{x} @var{y}
1346 @deftypefnx {C Function} void scm_floor_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1347 @deftypefnx {C Function} SCM scm_floor_quotient (@var{x}, @var{y})
1348 @deftypefnx {C Function} SCM scm_floor_remainder (@var{x}, @var{y})
1349 These procedures accept two real numbers @var{x} and @var{y}, where the
1350 divisor @var{y} must be non-zero. @code{floor-quotient} returns the
1351 integer @var{q} and @code{floor-remainder} returns the real number
1352 @var{r} such that @math{@var{q} = floor(@var{x}/@var{y})} and
1353 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{floor/} returns
1354 both @var{q} and @var{r}, and is more efficient than computing each
1355 separately. Note that @var{r}, if non-zero, will have the same sign
1356 as @var{y}.
1357
1358 When @var{x} and @var{y} are integers, @code{floor-remainder} is
1359 equivalent to the R5RS integer-only operator @code{modulo}.
1360
1361 @lisp
1362 (floor-quotient 123 10) @result{} 12
1363 (floor-remainder 123 10) @result{} 3
1364 (floor/ 123 10) @result{} 12 and 3
1365 (floor/ 123 -10) @result{} -13 and -7
1366 (floor/ -123 10) @result{} -13 and 7
1367 (floor/ -123 -10) @result{} 12 and -3
1368 (floor/ -123.2 -63.5) @result{} 1.0 and -59.7
1369 (floor/ 16/3 -10/7) @result{} -4 and -8/21
1370 @end lisp
1371 @end deftypefn
1372
1373 @deftypefn {Scheme Procedure} {} ceiling/ @var{x} @var{y}
1374 @deftypefnx {Scheme Procedure} {} ceiling-quotient @var{x} @var{y}
1375 @deftypefnx {Scheme Procedure} {} ceiling-remainder @var{x} @var{y}
1376 @deftypefnx {C Function} void scm_ceiling_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1377 @deftypefnx {C Function} SCM scm_ceiling_quotient (@var{x}, @var{y})
1378 @deftypefnx {C Function} SCM scm_ceiling_remainder (@var{x}, @var{y})
1379 These procedures accept two real numbers @var{x} and @var{y}, where the
1380 divisor @var{y} must be non-zero. @code{ceiling-quotient} returns the
1381 integer @var{q} and @code{ceiling-remainder} returns the real number
1382 @var{r} such that @math{@var{q} = ceiling(@var{x}/@var{y})} and
1383 @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{ceiling/} returns
1384 both @var{q} and @var{r}, and is more efficient than computing each
1385 separately. Note that @var{r}, if non-zero, will have the opposite sign
1386 of @var{y}.
1387
1388 @lisp
1389 (ceiling-quotient 123 10) @result{} 13
1390 (ceiling-remainder 123 10) @result{} -7
1391 (ceiling/ 123 10) @result{} 13 and -7
1392 (ceiling/ 123 -10) @result{} -12 and 3
1393 (ceiling/ -123 10) @result{} -12 and -3
1394 (ceiling/ -123 -10) @result{} 13 and 7
1395 (ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8
1396 (ceiling/ 16/3 -10/7) @result{} -3 and 22/21
1397 @end lisp
1398 @end deftypefn
1399
1400 @deftypefn {Scheme Procedure} {} truncate/ @var{x} @var{y}
1401 @deftypefnx {Scheme Procedure} {} truncate-quotient @var{x} @var{y}
1402 @deftypefnx {Scheme Procedure} {} truncate-remainder @var{x} @var{y}
1403 @deftypefnx {C Function} void scm_truncate_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1404 @deftypefnx {C Function} SCM scm_truncate_quotient (@var{x}, @var{y})
1405 @deftypefnx {C Function} SCM scm_truncate_remainder (@var{x}, @var{y})
1406 These procedures accept two real numbers @var{x} and @var{y}, where the
1407 divisor @var{y} must be non-zero. @code{truncate-quotient} returns the
1408 integer @var{q} and @code{truncate-remainder} returns the real number
1409 @var{r} such that @var{q} is @math{@var{x}/@var{y}} rounded toward zero,
1410 and @math{@var{x} = @var{q}*@var{y} + @var{r}}. @code{truncate/} returns
1411 both @var{q} and @var{r}, and is more efficient than computing each
1412 separately. Note that @var{r}, if non-zero, will have the same sign
1413 as @var{x}.
1414
1415 When @var{x} and @var{y} are integers, these operators are
1416 equivalent to the R5RS integer-only operators @code{quotient} and
1417 @code{remainder}.
1418
1419 @lisp
1420 (truncate-quotient 123 10) @result{} 12
1421 (truncate-remainder 123 10) @result{} 3
1422 (truncate/ 123 10) @result{} 12 and 3
1423 (truncate/ 123 -10) @result{} -12 and 3
1424 (truncate/ -123 10) @result{} -12 and -3
1425 (truncate/ -123 -10) @result{} 12 and -3
1426 (truncate/ -123.2 -63.5) @result{} 1.0 and -59.7
1427 (truncate/ 16/3 -10/7) @result{} -3 and 22/21
1428 @end lisp
1429 @end deftypefn
1430
1431 @deftypefn {Scheme Procedure} {} centered/ @var{x} @var{y}
1432 @deftypefnx {Scheme Procedure} {} centered-quotient @var{x} @var{y}
1433 @deftypefnx {Scheme Procedure} {} centered-remainder @var{x} @var{y}
1434 @deftypefnx {C Function} void scm_centered_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1435 @deftypefnx {C Function} SCM scm_centered_quotient (SCM @var{x}, SCM @var{y})
1436 @deftypefnx {C Function} SCM scm_centered_remainder (SCM @var{x}, SCM @var{y})
1437 These procedures accept two real numbers @var{x} and @var{y}, where the
1438 divisor @var{y} must be non-zero. @code{centered-quotient} returns the
1439 integer @var{q} and @code{centered-remainder} returns the real number
1440 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1441 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}. @code{centered/}
1442 returns both @var{q} and @var{r}, and is more efficient than computing
1443 each separately.
1444
1445 Note that @code{centered-quotient} returns @math{@var{x}/@var{y}}
1446 rounded to the nearest integer. When @math{@var{x}/@var{y}} lies
1447 exactly half-way between two integers, the tie is broken according to
1448 the sign of @var{y}. If @math{@var{y} > 0}, ties are rounded toward
1449 positive infinity, otherwise they are rounded toward negative infinity.
1450 This is a consequence of the requirement that
1451 @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}.
1452
1453 Note that these operators are equivalent to the R6RS operators
1454 @code{div0}, @code{mod0}, and @code{div0-and-mod0}.
1455
1456 @lisp
1457 (centered-quotient 123 10) @result{} 12
1458 (centered-remainder 123 10) @result{} 3
1459 (centered/ 123 10) @result{} 12 and 3
1460 (centered/ 123 -10) @result{} -12 and 3
1461 (centered/ -123 10) @result{} -12 and -3
1462 (centered/ -123 -10) @result{} 12 and -3
1463 (centered/ 125 10) @result{} 13 and -5
1464 (centered/ 127 10) @result{} 13 and -3
1465 (centered/ 135 10) @result{} 14 and -5
1466 (centered/ -123.2 -63.5) @result{} 2.0 and 3.8
1467 (centered/ 16/3 -10/7) @result{} -4 and -8/21
1468 @end lisp
1469 @end deftypefn
1470
1471 @deftypefn {Scheme Procedure} {} round/ @var{x} @var{y}
1472 @deftypefnx {Scheme Procedure} {} round-quotient @var{x} @var{y}
1473 @deftypefnx {Scheme Procedure} {} round-remainder @var{x} @var{y}
1474 @deftypefnx {C Function} void scm_round_divide (SCM @var{x}, SCM @var{y}, SCM *@var{q}, SCM *@var{r})
1475 @deftypefnx {C Function} SCM scm_round_quotient (@var{x}, @var{y})
1476 @deftypefnx {C Function} SCM scm_round_remainder (@var{x}, @var{y})
1477 These procedures accept two real numbers @var{x} and @var{y}, where the
1478 divisor @var{y} must be non-zero. @code{round-quotient} returns the
1479 integer @var{q} and @code{round-remainder} returns the real number
1480 @var{r} such that @math{@var{x} = @var{q}*@var{y} + @var{r}} and
1481 @var{q} is @math{@var{x}/@var{y}} rounded to the nearest integer,
1482 with ties going to the nearest even integer. @code{round/}
1483 returns both @var{q} and @var{r}, and is more efficient than computing
1484 each separately.
1485
1486 Note that @code{round/} and @code{centered/} are almost equivalent, but
1487 their behavior differs when @math{@var{x}/@var{y}} lies exactly half-way
1488 between two integers. In this case, @code{round/} chooses the nearest
1489 even integer, whereas @code{centered/} chooses in such a way to satisfy
1490 the constraint @math{-|@var{y}/2| <= @var{r} < |@var{y}/2|}, which
1491 is stronger than the corresponding constraint for @code{round/},
1492 @math{-|@var{y}/2| <= @var{r} <= |@var{y}/2|}. In particular,
1493 when @var{x} and @var{y} are integers, the number of possible remainders
1494 returned by @code{centered/} is @math{|@var{y}|}, whereas the number of
1495 possible remainders returned by @code{round/} is @math{|@var{y}|+1} when
1496 @var{y} is even.
1497
1498 @lisp
1499 (round-quotient 123 10) @result{} 12
1500 (round-remainder 123 10) @result{} 3
1501 (round/ 123 10) @result{} 12 and 3
1502 (round/ 123 -10) @result{} -12 and 3
1503 (round/ -123 10) @result{} -12 and -3
1504 (round/ -123 -10) @result{} 12 and -3
1505 (round/ 125 10) @result{} 12 and 5
1506 (round/ 127 10) @result{} 13 and -3
1507 (round/ 135 10) @result{} 14 and -5
1508 (round/ -123.2 -63.5) @result{} 2.0 and 3.8
1509 (round/ 16/3 -10/7) @result{} -4 and -8/21
1510 @end lisp
1511 @end deftypefn
1512
1513 @node Scientific
1514 @subsubsection Scientific Functions
1515
1516 The following procedures accept any kind of number as arguments,
1517 including complex numbers.
1518
1519 @rnindex sqrt
1520 @c begin (texi-doc-string "guile" "sqrt")
1521 @deffn {Scheme Procedure} sqrt z
1522 Return the square root of @var{z}. Of the two possible roots
1523 (positive and negative), the one with a positive real part is
1524 returned, or if that's zero then a positive imaginary part. Thus,
1525
1526 @example
1527 (sqrt 9.0) @result{} 3.0
1528 (sqrt -9.0) @result{} 0.0+3.0i
1529 (sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i
1530 (sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
1531 @end example
1532 @end deffn
1533
1534 @rnindex expt
1535 @c begin (texi-doc-string "guile" "expt")
1536 @deffn {Scheme Procedure} expt z1 z2
1537 Return @var{z1} raised to the power of @var{z2}.
1538 @end deffn
1539
1540 @rnindex sin
1541 @c begin (texi-doc-string "guile" "sin")
1542 @deffn {Scheme Procedure} sin z
1543 Return the sine of @var{z}.
1544 @end deffn
1545
1546 @rnindex cos
1547 @c begin (texi-doc-string "guile" "cos")
1548 @deffn {Scheme Procedure} cos z
1549 Return the cosine of @var{z}.
1550 @end deffn
1551
1552 @rnindex tan
1553 @c begin (texi-doc-string "guile" "tan")
1554 @deffn {Scheme Procedure} tan z
1555 Return the tangent of @var{z}.
1556 @end deffn
1557
1558 @rnindex asin
1559 @c begin (texi-doc-string "guile" "asin")
1560 @deffn {Scheme Procedure} asin z
1561 Return the arcsine of @var{z}.
1562 @end deffn
1563
1564 @rnindex acos
1565 @c begin (texi-doc-string "guile" "acos")
1566 @deffn {Scheme Procedure} acos z
1567 Return the arccosine of @var{z}.
1568 @end deffn
1569
1570 @rnindex atan
1571 @c begin (texi-doc-string "guile" "atan")
1572 @deffn {Scheme Procedure} atan z
1573 @deffnx {Scheme Procedure} atan y x
1574 Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
1575 @end deffn
1576
1577 @rnindex exp
1578 @c begin (texi-doc-string "guile" "exp")
1579 @deffn {Scheme Procedure} exp z
1580 Return e to the power of @var{z}, where e is the base of natural
1581 logarithms (2.71828@dots{}).
1582 @end deffn
1583
1584 @rnindex log
1585 @c begin (texi-doc-string "guile" "log")
1586 @deffn {Scheme Procedure} log z
1587 Return the natural logarithm of @var{z}.
1588 @end deffn
1589
1590 @c begin (texi-doc-string "guile" "log10")
1591 @deffn {Scheme Procedure} log10 z
1592 Return the base 10 logarithm of @var{z}.
1593 @end deffn
1594
1595 @c begin (texi-doc-string "guile" "sinh")
1596 @deffn {Scheme Procedure} sinh z
1597 Return the hyperbolic sine of @var{z}.
1598 @end deffn
1599
1600 @c begin (texi-doc-string "guile" "cosh")
1601 @deffn {Scheme Procedure} cosh z
1602 Return the hyperbolic cosine of @var{z}.
1603 @end deffn
1604
1605 @c begin (texi-doc-string "guile" "tanh")
1606 @deffn {Scheme Procedure} tanh z
1607 Return the hyperbolic tangent of @var{z}.
1608 @end deffn
1609
1610 @c begin (texi-doc-string "guile" "asinh")
1611 @deffn {Scheme Procedure} asinh z
1612 Return the hyperbolic arcsine of @var{z}.
1613 @end deffn
1614
1615 @c begin (texi-doc-string "guile" "acosh")
1616 @deffn {Scheme Procedure} acosh z
1617 Return the hyperbolic arccosine of @var{z}.
1618 @end deffn
1619
1620 @c begin (texi-doc-string "guile" "atanh")
1621 @deffn {Scheme Procedure} atanh z
1622 Return the hyperbolic arctangent of @var{z}.
1623 @end deffn
1624
1625
1626 @node Bitwise Operations
1627 @subsubsection Bitwise Operations
1628
1629 For the following bitwise functions, negative numbers are treated as
1630 infinite precision twos-complements. For instance @math{-6} is bits
1631 @math{@dots{}111010}, with infinitely many ones on the left. It can
1632 be seen that adding 6 (binary 110) to such a bit pattern gives all
1633 zeros.
1634
1635 @deffn {Scheme Procedure} logand n1 n2 @dots{}
1636 @deffnx {C Function} scm_logand (n1, n2)
1637 Return the bitwise @sc{and} of the integer arguments.
1638
1639 @lisp
1640 (logand) @result{} -1
1641 (logand 7) @result{} 7
1642 (logand #b111 #b011 #b001) @result{} 1
1643 @end lisp
1644 @end deffn
1645
1646 @deffn {Scheme Procedure} logior n1 n2 @dots{}
1647 @deffnx {C Function} scm_logior (n1, n2)
1648 Return the bitwise @sc{or} of the integer arguments.
1649
1650 @lisp
1651 (logior) @result{} 0
1652 (logior 7) @result{} 7
1653 (logior #b000 #b001 #b011) @result{} 3
1654 @end lisp
1655 @end deffn
1656
1657 @deffn {Scheme Procedure} logxor n1 n2 @dots{}
1658 @deffnx {C Function} scm_loxor (n1, n2)
1659 Return the bitwise @sc{xor} of the integer arguments. A bit is
1660 set in the result if it is set in an odd number of arguments.
1661
1662 @lisp
1663 (logxor) @result{} 0
1664 (logxor 7) @result{} 7
1665 (logxor #b000 #b001 #b011) @result{} 2
1666 (logxor #b000 #b001 #b011 #b011) @result{} 1
1667 @end lisp
1668 @end deffn
1669
1670 @deffn {Scheme Procedure} lognot n
1671 @deffnx {C Function} scm_lognot (n)
1672 Return the integer which is the ones-complement of the integer
1673 argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.
1674
1675 @lisp
1676 (number->string (lognot #b10000000) 2)
1677 @result{} "-10000001"
1678 (number->string (lognot #b0) 2)
1679 @result{} "-1"
1680 @end lisp
1681 @end deffn
1682
1683 @deffn {Scheme Procedure} logtest j k
1684 @deffnx {C Function} scm_logtest (j, k)
1685 Test whether @var{j} and @var{k} have any 1 bits in common. This is
1686 equivalent to @code{(not (zero? (logand j k)))}, but without actually
1687 calculating the @code{logand}, just testing for non-zero.
1688
1689 @lisp
1690 (logtest #b0100 #b1011) @result{} #f
1691 (logtest #b0100 #b0111) @result{} #t
1692 @end lisp
1693 @end deffn
1694
1695 @deffn {Scheme Procedure} logbit? index j
1696 @deffnx {C Function} scm_logbit_p (index, j)
1697 Test whether bit number @var{index} in @var{j} is set. @var{index}
1698 starts from 0 for the least significant bit.
1699
1700 @lisp
1701 (logbit? 0 #b1101) @result{} #t
1702 (logbit? 1 #b1101) @result{} #f
1703 (logbit? 2 #b1101) @result{} #t
1704 (logbit? 3 #b1101) @result{} #t
1705 (logbit? 4 #b1101) @result{} #f
1706 @end lisp
1707 @end deffn
1708
1709 @deffn {Scheme Procedure} ash n count
1710 @deffnx {C Function} scm_ash (n, count)
1711 Return @math{floor(n * 2^count)}.
1712 @var{n} and @var{count} must be exact integers.
1713
1714 With @var{n} viewed as an infinite-precision twos-complement
1715 integer, @code{ash} means a left shift introducing zero bits
1716 when @var{count} is positive, or a right shift dropping bits
1717 when @var{count} is negative. This is an ``arithmetic'' shift.
1718
1719 @lisp
1720 (number->string (ash #b1 3) 2) @result{} "1000"
1721 (number->string (ash #b1010 -1) 2) @result{} "101"
1722
1723 ;; -23 is bits ...11101001, -6 is bits ...111010
1724 (ash -23 -2) @result{} -6
1725 @end lisp
1726 @end deffn
1727
1728 @deffn {Scheme Procedure} round-ash n count
1729 @deffnx {C Function} scm_round_ash (n, count)
1730 Return @math{round(n * 2^count)}.
1731 @var{n} and @var{count} must be exact integers.
1732
1733 With @var{n} viewed as an infinite-precision twos-complement
1734 integer, @code{round-ash} means a left shift introducing zero
1735 bits when @var{count} is positive, or a right shift rounding
1736 to the nearest integer (with ties going to the nearest even
1737 integer) when @var{count} is negative. This is a rounded
1738 ``arithmetic'' shift.
1739
1740 @lisp
1741 (number->string (round-ash #b1 3) 2) @result{} \"1000\"
1742 (number->string (round-ash #b1010 -1) 2) @result{} \"101\"
1743 (number->string (round-ash #b1010 -2) 2) @result{} \"10\"
1744 (number->string (round-ash #b1011 -2) 2) @result{} \"11\"
1745 (number->string (round-ash #b1101 -2) 2) @result{} \"11\"
1746 (number->string (round-ash #b1110 -2) 2) @result{} \"100\"
1747 @end lisp
1748 @end deffn
1749
1750 @deffn {Scheme Procedure} logcount n
1751 @deffnx {C Function} scm_logcount (n)
1752 Return the number of bits in integer @var{n}. If @var{n} is
1753 positive, the 1-bits in its binary representation are counted.
1754 If negative, the 0-bits in its two's-complement binary
1755 representation are counted. If zero, 0 is returned.
1756
1757 @lisp
1758 (logcount #b10101010)
1759 @result{} 4
1760 (logcount 0)
1761 @result{} 0
1762 (logcount -2)
1763 @result{} 1
1764 @end lisp
1765 @end deffn
1766
1767 @deffn {Scheme Procedure} integer-length n
1768 @deffnx {C Function} scm_integer_length (n)
1769 Return the number of bits necessary to represent @var{n}.
1770
1771 For positive @var{n} this is how many bits to the most significant one
1772 bit. For negative @var{n} it's how many bits to the most significant
1773 zero bit in twos complement form.
1774
1775 @lisp
1776 (integer-length #b10101010) @result{} 8
1777 (integer-length #b1111) @result{} 4
1778 (integer-length 0) @result{} 0
1779 (integer-length -1) @result{} 0
1780 (integer-length -256) @result{} 8
1781 (integer-length -257) @result{} 9
1782 @end lisp
1783 @end deffn
1784
1785 @deffn {Scheme Procedure} integer-expt n k
1786 @deffnx {C Function} scm_integer_expt (n, k)
1787 Return @var{n} raised to the power @var{k}. @var{k} must be an exact
1788 integer, @var{n} can be any number.
1789
1790 Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
1791 in the usual way. @math{@var{n}^0} is 1, as usual, and that includes
1792 @math{0^0} is 1.
1793
1794 @lisp
1795 (integer-expt 2 5) @result{} 32
1796 (integer-expt -3 3) @result{} -27
1797 (integer-expt 5 -3) @result{} 1/125
1798 (integer-expt 0 0) @result{} 1
1799 @end lisp
1800 @end deffn
1801
1802 @deffn {Scheme Procedure} bit-extract n start end
1803 @deffnx {C Function} scm_bit_extract (n, start, end)
1804 Return the integer composed of the @var{start} (inclusive)
1805 through @var{end} (exclusive) bits of @var{n}. The
1806 @var{start}th bit becomes the 0-th bit in the result.
1807
1808 @lisp
1809 (number->string (bit-extract #b1101101010 0 4) 2)
1810 @result{} "1010"
1811 (number->string (bit-extract #b1101101010 4 9) 2)
1812 @result{} "10110"
1813 @end lisp
1814 @end deffn
1815
1816
1817 @node Random
1818 @subsubsection Random Number Generation
1819
1820 Pseudo-random numbers are generated from a random state object, which
1821 can be created with @code{seed->random-state} or
1822 @code{datum->random-state}. An external representation (i.e.@: one
1823 which can written with @code{write} and read with @code{read}) of a
1824 random state object can be obtained via
1825 @code{random-state->datum}. The @var{state} parameter to the
1826 various functions below is optional, it defaults to the state object
1827 in the @code{*random-state*} variable.
1828
1829 @deffn {Scheme Procedure} copy-random-state [state]
1830 @deffnx {C Function} scm_copy_random_state (state)
1831 Return a copy of the random state @var{state}.
1832 @end deffn
1833
1834 @deffn {Scheme Procedure} random n [state]
1835 @deffnx {C Function} scm_random (n, state)
1836 Return a number in [0, @var{n}).
1837
1838 Accepts a positive integer or real n and returns a
1839 number of the same type between zero (inclusive) and
1840 @var{n} (exclusive). The values returned have a uniform
1841 distribution.
1842 @end deffn
1843
1844 @deffn {Scheme Procedure} random:exp [state]
1845 @deffnx {C Function} scm_random_exp (state)
1846 Return an inexact real in an exponential distribution with mean
1847 1. For an exponential distribution with mean @var{u} use @code{(*
1848 @var{u} (random:exp))}.
1849 @end deffn
1850
1851 @deffn {Scheme Procedure} random:hollow-sphere! vect [state]
1852 @deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
1853 Fills @var{vect} with inexact real random numbers the sum of whose
1854 squares is equal to 1.0. Thinking of @var{vect} as coordinates in
1855 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1856 the coordinates are uniformly distributed over the surface of the unit
1857 n-sphere.
1858 @end deffn
1859
1860 @deffn {Scheme Procedure} random:normal [state]
1861 @deffnx {C Function} scm_random_normal (state)
1862 Return an inexact real in a normal distribution. The distribution
1863 used has mean 0 and standard deviation 1. For a normal distribution
1864 with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
1865 (* @var{d} (random:normal)))}.
1866 @end deffn
1867
1868 @deffn {Scheme Procedure} random:normal-vector! vect [state]
1869 @deffnx {C Function} scm_random_normal_vector_x (vect, state)
1870 Fills @var{vect} with inexact real random numbers that are
1871 independent and standard normally distributed
1872 (i.e., with mean 0 and variance 1).
1873 @end deffn
1874
1875 @deffn {Scheme Procedure} random:solid-sphere! vect [state]
1876 @deffnx {C Function} scm_random_solid_sphere_x (vect, state)
1877 Fills @var{vect} with inexact real random numbers the sum of whose
1878 squares is less than 1.0. Thinking of @var{vect} as coordinates in
1879 space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
1880 the coordinates are uniformly distributed within the unit
1881 @var{n}-sphere.
1882 @c FIXME: What does this mean, particularly the n-sphere part?
1883 @end deffn
1884
1885 @deffn {Scheme Procedure} random:uniform [state]
1886 @deffnx {C Function} scm_random_uniform (state)
1887 Return a uniformly distributed inexact real random number in
1888 [0,1).
1889 @end deffn
1890
1891 @deffn {Scheme Procedure} seed->random-state seed
1892 @deffnx {C Function} scm_seed_to_random_state (seed)
1893 Return a new random state using @var{seed}.
1894 @end deffn
1895
1896 @deffn {Scheme Procedure} datum->random-state datum
1897 @deffnx {C Function} scm_datum_to_random_state (datum)
1898 Return a new random state from @var{datum}, which should have been
1899 obtained by @code{random-state->datum}.
1900 @end deffn
1901
1902 @deffn {Scheme Procedure} random-state->datum state
1903 @deffnx {C Function} scm_random_state_to_datum (state)
1904 Return a datum representation of @var{state} that may be written out and
1905 read back with the Scheme reader.
1906 @end deffn
1907
1908 @deffn {Scheme Procedure} random-state-from-platform
1909 @deffnx {C Function} scm_random_state_from_platform ()
1910 Construct a new random state seeded from a platform-specific source of
1911 entropy, appropriate for use in non-security-critical applications.
1912 Currently @file{/dev/urandom} is tried first, or else the seed is based
1913 on the time, date, process ID, an address from a freshly allocated heap
1914 cell, an address from the local stack frame, and a high-resolution timer
1915 if available.
1916 @end deffn
1917
1918 @defvar *random-state*
1919 The global random state used by the above functions when the
1920 @var{state} parameter is not given.
1921 @end defvar
1922
1923 Note that the initial value of @code{*random-state*} is the same every
1924 time Guile starts up. Therefore, if you don't pass a @var{state}
1925 parameter to the above procedures, and you don't set
1926 @code{*random-state*} to @code{(seed->random-state your-seed)}, where
1927 @code{your-seed} is something that @emph{isn't} the same every time,
1928 you'll get the same sequence of ``random'' numbers on every run.
1929
1930 For example, unless the relevant source code has changed, @code{(map
1931 random (cdr (iota 30)))}, if the first use of random numbers since
1932 Guile started up, will always give:
1933
1934 @lisp
1935 (map random (cdr (iota 19)))
1936 @result{}
1937 (0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
1938 @end lisp
1939
1940 To seed the random state in a sensible way for non-security-critical
1941 applications, do this during initialization of your program:
1942
1943 @lisp
1944 (set! *random-state* (random-state-from-platform))
1945 @end lisp
1946
1947
1948 @node Characters
1949 @subsection Characters
1950 @tpindex Characters
1951
1952 In Scheme, there is a data type to describe a single character.
1953
1954 Defining what exactly a character @emph{is} can be more complicated
1955 than it seems. Guile follows the advice of R6RS and uses The Unicode
1956 Standard to help define what a character is. So, for Guile, a
1957 character is anything in the Unicode Character Database.
1958
1959 @cindex code point
1960 @cindex Unicode code point
1961
1962 The Unicode Character Database is basically a table of characters
1963 indexed using integers called 'code points'. Valid code points are in
1964 the ranges 0 to @code{#xD7FF} inclusive or @code{#xE000} to
1965 @code{#x10FFFF} inclusive, which is about 1.1 million code points.
1966
1967 @cindex designated code point
1968 @cindex code point, designated
1969
1970 Any code point that has been assigned to a character or that has
1971 otherwise been given a meaning by Unicode is called a 'designated code
1972 point'. Most of the designated code points, about 200,000 of them,
1973 indicate characters, accents or other combining marks that modify
1974 other characters, symbols, whitespace, and control characters. Some
1975 are not characters but indicators that suggest how to format or
1976 display neighboring characters.
1977
1978 @cindex reserved code point
1979 @cindex code point, reserved
1980
1981 If a code point is not a designated code point -- if it has not been
1982 assigned to a character by The Unicode Standard -- it is a 'reserved
1983 code point', meaning that they are reserved for future use. Most of
1984 the code points, about 800,000, are 'reserved code points'.
1985
1986 By convention, a Unicode code point is written as
1987 ``U+XXXX'' where ``XXXX'' is a hexadecimal number. Please note that
1988 this convenient notation is not valid code. Guile does not interpret
1989 ``U+XXXX'' as a character.
1990
1991 In Scheme, a character literal is written as @code{#\@var{name}} where
1992 @var{name} is the name of the character that you want. Printable
1993 characters have their usual single character name; for example,
1994 @code{#\a} is a lower case @code{a}.
1995
1996 Some of the code points are 'combining characters' that are not meant
1997 to be printed by themselves but are instead meant to modify the
1998 appearance of the previous character. For combining characters, an
1999 alternate form of the character literal is @code{#\} followed by
2000 U+25CC (a small, dotted circle), followed by the combining character.
2001 This allows the combining character to be drawn on the circle, not on
2002 the backslash of @code{#\}.
2003
2004 Many of the non-printing characters, such as whitespace characters and
2005 control characters, also have names.
2006
2007 The most commonly used non-printing characters have long character
2008 names, described in the table below.
2009
2010 @multitable {@code{#\backspace}} {Preferred}
2011 @item Character Name @tab Codepoint
2012 @item @code{#\nul} @tab U+0000
2013 @item @code{#\alarm} @tab u+0007
2014 @item @code{#\backspace} @tab U+0008
2015 @item @code{#\tab} @tab U+0009
2016 @item @code{#\linefeed} @tab U+000A
2017 @item @code{#\newline} @tab U+000A
2018 @item @code{#\vtab} @tab U+000B
2019 @item @code{#\page} @tab U+000C
2020 @item @code{#\return} @tab U+000D
2021 @item @code{#\esc} @tab U+001B
2022 @item @code{#\space} @tab U+0020
2023 @item @code{#\delete} @tab U+007F
2024 @end multitable
2025
2026 There are also short names for all of the ``C0 control characters''
2027 (those with code points below 32). The following table lists the short
2028 name for each character.
2029
2030 @multitable @columnfractions .25 .25 .25 .25
2031 @item 0 = @code{#\nul}
2032 @tab 1 = @code{#\soh}
2033 @tab 2 = @code{#\stx}
2034 @tab 3 = @code{#\etx}
2035 @item 4 = @code{#\eot}
2036 @tab 5 = @code{#\enq}
2037 @tab 6 = @code{#\ack}
2038 @tab 7 = @code{#\bel}
2039 @item 8 = @code{#\bs}
2040 @tab 9 = @code{#\ht}
2041 @tab 10 = @code{#\lf}
2042 @tab 11 = @code{#\vt}
2043 @item 12 = @code{#\ff}
2044 @tab 13 = @code{#\cr}
2045 @tab 14 = @code{#\so}
2046 @tab 15 = @code{#\si}
2047 @item 16 = @code{#\dle}
2048 @tab 17 = @code{#\dc1}
2049 @tab 18 = @code{#\dc2}
2050 @tab 19 = @code{#\dc3}
2051 @item 20 = @code{#\dc4}
2052 @tab 21 = @code{#\nak}
2053 @tab 22 = @code{#\syn}
2054 @tab 23 = @code{#\etb}
2055 @item 24 = @code{#\can}
2056 @tab 25 = @code{#\em}
2057 @tab 26 = @code{#\sub}
2058 @tab 27 = @code{#\esc}
2059 @item 28 = @code{#\fs}
2060 @tab 29 = @code{#\gs}
2061 @tab 30 = @code{#\rs}
2062 @tab 31 = @code{#\us}
2063 @item 32 = @code{#\sp}
2064 @end multitable
2065
2066 The short name for the ``delete'' character (code point U+007F) is
2067 @code{#\del}.
2068
2069 There are also a few alternative names left over for compatibility with
2070 previous versions of Guile.
2071
2072 @multitable {@code{#\backspace}} {Preferred}
2073 @item Alternate @tab Standard
2074 @item @code{#\nl} @tab @code{#\newline}
2075 @item @code{#\np} @tab @code{#\page}
2076 @item @code{#\null} @tab @code{#\nul}
2077 @end multitable
2078
2079 Characters may also be written using their code point values. They can
2080 be written with as an octal number, such as @code{#\10} for
2081 @code{#\bs} or @code{#\177} for @code{#\del}.
2082
2083 If one prefers hex to octal, there is an additional syntax for character
2084 escapes: @code{#\xHHHH} -- the letter 'x' followed by a hexadecimal
2085 number of one to eight digits.
2086
2087 @rnindex char?
2088 @deffn {Scheme Procedure} char? x
2089 @deffnx {C Function} scm_char_p (x)
2090 Return @code{#t} if @var{x} is a character, else @code{#f}.
2091 @end deffn
2092
2093 Fundamentally, the character comparison operations below are
2094 numeric comparisons of the character's code points.
2095
2096 @rnindex char=?
2097 @deffn {Scheme Procedure} char=? x y
2098 Return @code{#t} if code point of @var{x} is equal to the code point
2099 of @var{y}, else @code{#f}.
2100 @end deffn
2101
2102 @rnindex char<?
2103 @deffn {Scheme Procedure} char<? x y
2104 Return @code{#t} if the code point of @var{x} is less than the code
2105 point of @var{y}, else @code{#f}.
2106 @end deffn
2107
2108 @rnindex char<=?
2109 @deffn {Scheme Procedure} char<=? x y
2110 Return @code{#t} if the code point of @var{x} is less than or equal
2111 to the code point of @var{y}, else @code{#f}.
2112 @end deffn
2113
2114 @rnindex char>?
2115 @deffn {Scheme Procedure} char>? x y
2116 Return @code{#t} if the code point of @var{x} is greater than the
2117 code point of @var{y}, else @code{#f}.
2118 @end deffn
2119
2120 @rnindex char>=?
2121 @deffn {Scheme Procedure} char>=? x y
2122 Return @code{#t} if the code point of @var{x} is greater than or
2123 equal to the code point of @var{y}, else @code{#f}.
2124 @end deffn
2125
2126 @cindex case folding
2127
2128 Case-insensitive character comparisons use @emph{Unicode case
2129 folding}. In case folding comparisons, if a character is lowercase
2130 and has an uppercase form that can be expressed as a single character,
2131 it is converted to uppercase before comparison. All other characters
2132 undergo no conversion before the comparison occurs. This includes the
2133 German sharp S (Eszett) which is not uppercased before conversion
2134 because its uppercase form has two characters. Unicode case folding
2135 is language independent: it uses rules that are generally true, but,
2136 it cannot cover all cases for all languages.
2137
2138 @rnindex char-ci=?
2139 @deffn {Scheme Procedure} char-ci=? x y
2140 Return @code{#t} if the case-folded code point of @var{x} is the same
2141 as the case-folded code point of @var{y}, else @code{#f}.
2142 @end deffn
2143
2144 @rnindex char-ci<?
2145 @deffn {Scheme Procedure} char-ci<? x y
2146 Return @code{#t} if the case-folded code point of @var{x} is less
2147 than the case-folded code point of @var{y}, else @code{#f}.
2148 @end deffn
2149
2150 @rnindex char-ci<=?
2151 @deffn {Scheme Procedure} char-ci<=? x y
2152 Return @code{#t} if the case-folded code point of @var{x} is less
2153 than or equal to the case-folded code point of @var{y}, else
2154 @code{#f}.
2155 @end deffn
2156
2157 @rnindex char-ci>?
2158 @deffn {Scheme Procedure} char-ci>? x y
2159 Return @code{#t} if the case-folded code point of @var{x} is greater
2160 than the case-folded code point of @var{y}, else @code{#f}.
2161 @end deffn
2162
2163 @rnindex char-ci>=?
2164 @deffn {Scheme Procedure} char-ci>=? x y
2165 Return @code{#t} if the case-folded code point of @var{x} is greater
2166 than or equal to the case-folded code point of @var{y}, else
2167 @code{#f}.
2168 @end deffn
2169
2170 @rnindex char-alphabetic?
2171 @deffn {Scheme Procedure} char-alphabetic? chr
2172 @deffnx {C Function} scm_char_alphabetic_p (chr)
2173 Return @code{#t} if @var{chr} is alphabetic, else @code{#f}.
2174 @end deffn
2175
2176 @rnindex char-numeric?
2177 @deffn {Scheme Procedure} char-numeric? chr
2178 @deffnx {C Function} scm_char_numeric_p (chr)
2179 Return @code{#t} if @var{chr} is numeric, else @code{#f}.
2180 @end deffn
2181
2182 @rnindex char-whitespace?
2183 @deffn {Scheme Procedure} char-whitespace? chr
2184 @deffnx {C Function} scm_char_whitespace_p (chr)
2185 Return @code{#t} if @var{chr} is whitespace, else @code{#f}.
2186 @end deffn
2187
2188 @rnindex char-upper-case?
2189 @deffn {Scheme Procedure} char-upper-case? chr
2190 @deffnx {C Function} scm_char_upper_case_p (chr)
2191 Return @code{#t} if @var{chr} is uppercase, else @code{#f}.
2192 @end deffn
2193
2194 @rnindex char-lower-case?
2195 @deffn {Scheme Procedure} char-lower-case? chr
2196 @deffnx {C Function} scm_char_lower_case_p (chr)
2197 Return @code{#t} if @var{chr} is lowercase, else @code{#f}.
2198 @end deffn
2199
2200 @deffn {Scheme Procedure} char-is-both? chr
2201 @deffnx {C Function} scm_char_is_both_p (chr)
2202 Return @code{#t} if @var{chr} is either uppercase or lowercase, else
2203 @code{#f}.
2204 @end deffn
2205
2206 @deffn {Scheme Procedure} char-general-category chr
2207 @deffnx {C Function} scm_char_general_category (chr)
2208 Return a symbol giving the two-letter name of the Unicode general
2209 category assigned to @var{chr} or @code{#f} if no named category is
2210 assigned. The following table provides a list of category names along
2211 with their meanings.
2212
2213 @multitable @columnfractions .1 .4 .1 .4
2214 @item Lu
2215 @tab Uppercase letter
2216 @tab Pf
2217 @tab Final quote punctuation
2218 @item Ll
2219 @tab Lowercase letter
2220 @tab Po
2221 @tab Other punctuation
2222 @item Lt
2223 @tab Titlecase letter
2224 @tab Sm
2225 @tab Math symbol
2226 @item Lm
2227 @tab Modifier letter
2228 @tab Sc
2229 @tab Currency symbol
2230 @item Lo
2231 @tab Other letter
2232 @tab Sk
2233 @tab Modifier symbol
2234 @item Mn
2235 @tab Non-spacing mark
2236 @tab So
2237 @tab Other symbol
2238 @item Mc
2239 @tab Combining spacing mark
2240 @tab Zs
2241 @tab Space separator
2242 @item Me
2243 @tab Enclosing mark
2244 @tab Zl
2245 @tab Line separator
2246 @item Nd
2247 @tab Decimal digit number
2248 @tab Zp
2249 @tab Paragraph separator
2250 @item Nl
2251 @tab Letter number
2252 @tab Cc
2253 @tab Control
2254 @item No
2255 @tab Other number
2256 @tab Cf
2257 @tab Format
2258 @item Pc
2259 @tab Connector punctuation
2260 @tab Cs
2261 @tab Surrogate
2262 @item Pd
2263 @tab Dash punctuation
2264 @tab Co
2265 @tab Private use
2266 @item Ps
2267 @tab Open punctuation
2268 @tab Cn
2269 @tab Unassigned
2270 @item Pe
2271 @tab Close punctuation
2272 @tab
2273 @tab
2274 @item Pi
2275 @tab Initial quote punctuation
2276 @tab
2277 @tab
2278 @end multitable
2279 @end deffn
2280
2281 @rnindex char->integer
2282 @deffn {Scheme Procedure} char->integer chr
2283 @deffnx {C Function} scm_char_to_integer (chr)
2284 Return the code point of @var{chr}.
2285 @end deffn
2286
2287 @rnindex integer->char
2288 @deffn {Scheme Procedure} integer->char n
2289 @deffnx {C Function} scm_integer_to_char (n)
2290 Return the character that has code point @var{n}. The integer @var{n}
2291 must be a valid code point. Valid code points are in the ranges 0 to
2292 @code{#xD7FF} inclusive or @code{#xE000} to @code{#x10FFFF} inclusive.
2293 @end deffn
2294
2295 @rnindex char-upcase
2296 @deffn {Scheme Procedure} char-upcase chr
2297 @deffnx {C Function} scm_char_upcase (chr)
2298 Return the uppercase character version of @var{chr}.
2299 @end deffn
2300
2301 @rnindex char-downcase
2302 @deffn {Scheme Procedure} char-downcase chr
2303 @deffnx {C Function} scm_char_downcase (chr)
2304 Return the lowercase character version of @var{chr}.
2305 @end deffn
2306
2307 @rnindex char-titlecase
2308 @deffn {Scheme Procedure} char-titlecase chr
2309 @deffnx {C Function} scm_char_titlecase (chr)
2310 Return the titlecase character version of @var{chr} if one exists;
2311 otherwise return the uppercase version.
2312
2313 For most characters these will be the same, but the Unicode Standard
2314 includes certain digraph compatibility characters, such as @code{U+01F3}
2315 ``dz'', for which the uppercase and titlecase characters are different
2316 (@code{U+01F1} ``DZ'' and @code{U+01F2} ``Dz'' in this case,
2317 respectively).
2318 @end deffn
2319
2320 @tindex scm_t_wchar
2321 @deftypefn {C Function} scm_t_wchar scm_c_upcase (scm_t_wchar @var{c})
2322 @deftypefnx {C Function} scm_t_wchar scm_c_downcase (scm_t_wchar @var{c})
2323 @deftypefnx {C Function} scm_t_wchar scm_c_titlecase (scm_t_wchar @var{c})
2324
2325 These C functions take an integer representation of a Unicode
2326 codepoint and return the codepoint corresponding to its uppercase,
2327 lowercase, and titlecase forms respectively. The type
2328 @code{scm_t_wchar} is a signed, 32-bit integer.
2329 @end deftypefn
2330
2331 @node Character Sets
2332 @subsection Character Sets
2333
2334 The features described in this section correspond directly to SRFI-14.
2335
2336 The data type @dfn{charset} implements sets of characters
2337 (@pxref{Characters}). Because the internal representation of
2338 character sets is not visible to the user, a lot of procedures for
2339 handling them are provided.
2340
2341 Character sets can be created, extended, tested for the membership of a
2342 characters and be compared to other character sets.
2343
2344 @menu
2345 * Character Set Predicates/Comparison::
2346 * Iterating Over Character Sets:: Enumerate charset elements.
2347 * Creating Character Sets:: Making new charsets.
2348 * Querying Character Sets:: Test charsets for membership etc.
2349 * Character-Set Algebra:: Calculating new charsets.
2350 * Standard Character Sets:: Variables containing predefined charsets.
2351 @end menu
2352
2353 @node Character Set Predicates/Comparison
2354 @subsubsection Character Set Predicates/Comparison
2355
2356 Use these procedures for testing whether an object is a character set,
2357 or whether several character sets are equal or subsets of each other.
2358 @code{char-set-hash} can be used for calculating a hash value, maybe for
2359 usage in fast lookup procedures.
2360
2361 @deffn {Scheme Procedure} char-set? obj
2362 @deffnx {C Function} scm_char_set_p (obj)
2363 Return @code{#t} if @var{obj} is a character set, @code{#f}
2364 otherwise.
2365 @end deffn
2366
2367 @deffn {Scheme Procedure} char-set= char_set @dots{}
2368 @deffnx {C Function} scm_char_set_eq (char_sets)
2369 Return @code{#t} if all given character sets are equal.
2370 @end deffn
2371
2372 @deffn {Scheme Procedure} char-set<= char_set @dots{}
2373 @deffnx {C Function} scm_char_set_leq (char_sets)
2374 Return @code{#t} if every character set @var{char_set}i is a subset
2375 of character set @var{char_set}i+1.
2376 @end deffn
2377
2378 @deffn {Scheme Procedure} char-set-hash cs [bound]
2379 @deffnx {C Function} scm_char_set_hash (cs, bound)
2380 Compute a hash value for the character set @var{cs}. If
2381 @var{bound} is given and non-zero, it restricts the
2382 returned value to the range 0 @dots{} @var{bound} - 1.
2383 @end deffn
2384
2385 @c ===================================================================
2386
2387 @node Iterating Over Character Sets
2388 @subsubsection Iterating Over Character Sets
2389
2390 Character set cursors are a means for iterating over the members of a
2391 character sets. After creating a character set cursor with
2392 @code{char-set-cursor}, a cursor can be dereferenced with
2393 @code{char-set-ref}, advanced to the next member with
2394 @code{char-set-cursor-next}. Whether a cursor has passed past the last
2395 element of the set can be checked with @code{end-of-char-set?}.
2396
2397 Additionally, mapping and (un-)folding procedures for character sets are
2398 provided.
2399
2400 @deffn {Scheme Procedure} char-set-cursor cs
2401 @deffnx {C Function} scm_char_set_cursor (cs)
2402 Return a cursor into the character set @var{cs}.
2403 @end deffn
2404
2405 @deffn {Scheme Procedure} char-set-ref cs cursor
2406 @deffnx {C Function} scm_char_set_ref (cs, cursor)
2407 Return the character at the current cursor position
2408 @var{cursor} in the character set @var{cs}. It is an error to
2409 pass a cursor for which @code{end-of-char-set?} returns true.
2410 @end deffn
2411
2412 @deffn {Scheme Procedure} char-set-cursor-next cs cursor
2413 @deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
2414 Advance the character set cursor @var{cursor} to the next
2415 character in the character set @var{cs}. It is an error if the
2416 cursor given satisfies @code{end-of-char-set?}.
2417 @end deffn
2418
2419 @deffn {Scheme Procedure} end-of-char-set? cursor
2420 @deffnx {C Function} scm_end_of_char_set_p (cursor)
2421 Return @code{#t} if @var{cursor} has reached the end of a
2422 character set, @code{#f} otherwise.
2423 @end deffn
2424
2425 @deffn {Scheme Procedure} char-set-fold kons knil cs
2426 @deffnx {C Function} scm_char_set_fold (kons, knil, cs)
2427 Fold the procedure @var{kons} over the character set @var{cs},
2428 initializing it with @var{knil}.
2429 @end deffn
2430
2431 @deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
2432 @deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
2433 This is a fundamental constructor for character sets.
2434 @itemize @bullet
2435 @item @var{g} is used to generate a series of ``seed'' values
2436 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2437 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2438 @item @var{p} tells us when to stop -- when it returns true
2439 when applied to one of the seed values.
2440 @item @var{f} maps each seed value to a character. These
2441 characters are added to the base character set @var{base_cs} to
2442 form the result; @var{base_cs} defaults to the empty set.
2443 @end itemize
2444 @end deffn
2445
2446 @deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
2447 @deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
2448 This is a fundamental constructor for character sets.
2449 @itemize @bullet
2450 @item @var{g} is used to generate a series of ``seed'' values
2451 from the initial seed: @var{seed}, (@var{g} @var{seed}),
2452 (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
2453 @item @var{p} tells us when to stop -- when it returns true
2454 when applied to one of the seed values.
2455 @item @var{f} maps each seed value to a character. These
2456 characters are added to the base character set @var{base_cs} to
2457 form the result; @var{base_cs} defaults to the empty set.
2458 @end itemize
2459 @end deffn
2460
2461 @deffn {Scheme Procedure} char-set-for-each proc cs
2462 @deffnx {C Function} scm_char_set_for_each (proc, cs)
2463 Apply @var{proc} to every character in the character set
2464 @var{cs}. The return value is not specified.
2465 @end deffn
2466
2467 @deffn {Scheme Procedure} char-set-map proc cs
2468 @deffnx {C Function} scm_char_set_map (proc, cs)
2469 Map the procedure @var{proc} over every character in @var{cs}.
2470 @var{proc} must be a character -> character procedure.
2471 @end deffn
2472
2473 @c ===================================================================
2474
2475 @node Creating Character Sets
2476 @subsubsection Creating Character Sets
2477
2478 New character sets are produced with these procedures.
2479
2480 @deffn {Scheme Procedure} char-set-copy cs
2481 @deffnx {C Function} scm_char_set_copy (cs)
2482 Return a newly allocated character set containing all
2483 characters in @var{cs}.
2484 @end deffn
2485
2486 @deffn {Scheme Procedure} char-set chr @dots{}
2487 @deffnx {C Function} scm_char_set (chrs)
2488 Return a character set containing all given characters.
2489 @end deffn
2490
2491 @deffn {Scheme Procedure} list->char-set list [base_cs]
2492 @deffnx {C Function} scm_list_to_char_set (list, base_cs)
2493 Convert the character list @var{list} to a character set. If
2494 the character set @var{base_cs} is given, the character in this
2495 set are also included in the result.
2496 @end deffn
2497
2498 @deffn {Scheme Procedure} list->char-set! list base_cs
2499 @deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
2500 Convert the character list @var{list} to a character set. The
2501 characters are added to @var{base_cs} and @var{base_cs} is
2502 returned.
2503 @end deffn
2504
2505 @deffn {Scheme Procedure} string->char-set str [base_cs]
2506 @deffnx {C Function} scm_string_to_char_set (str, base_cs)
2507 Convert the string @var{str} to a character set. If the
2508 character set @var{base_cs} is given, the characters in this
2509 set are also included in the result.
2510 @end deffn
2511
2512 @deffn {Scheme Procedure} string->char-set! str base_cs
2513 @deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
2514 Convert the string @var{str} to a character set. The
2515 characters from the string are added to @var{base_cs}, and
2516 @var{base_cs} is returned.
2517 @end deffn
2518
2519 @deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
2520 @deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
2521 Return a character set containing every character from @var{cs}
2522 so that it satisfies @var{pred}. If provided, the characters
2523 from @var{base_cs} are added to the result.
2524 @end deffn
2525
2526 @deffn {Scheme Procedure} char-set-filter! pred cs base_cs
2527 @deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
2528 Return a character set containing every character from @var{cs}
2529 so that it satisfies @var{pred}. The characters are added to
2530 @var{base_cs} and @var{base_cs} is returned.
2531 @end deffn
2532
2533 @deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
2534 @deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
2535 Return a character set containing all characters whose
2536 character codes lie in the half-open range
2537 [@var{lower},@var{upper}).
2538
2539 If @var{error} is a true value, an error is signalled if the
2540 specified range contains characters which are not contained in
2541 the implemented character range. If @var{error} is @code{#f},
2542 these characters are silently left out of the resulting
2543 character set.
2544
2545 The characters in @var{base_cs} are added to the result, if
2546 given.
2547 @end deffn
2548
2549 @deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
2550 @deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
2551 Return a character set containing all characters whose
2552 character codes lie in the half-open range
2553 [@var{lower},@var{upper}).
2554
2555 If @var{error} is a true value, an error is signalled if the
2556 specified range contains characters which are not contained in
2557 the implemented character range. If @var{error} is @code{#f},
2558 these characters are silently left out of the resulting
2559 character set.
2560
2561 The characters are added to @var{base_cs} and @var{base_cs} is
2562 returned.
2563 @end deffn
2564
2565 @deffn {Scheme Procedure} ->char-set x
2566 @deffnx {C Function} scm_to_char_set (x)
2567 Coerces x into a char-set. @var{x} may be a string, character or
2568 char-set. A string is converted to the set of its constituent
2569 characters; a character is converted to a singleton set; a char-set is
2570 returned as-is.
2571 @end deffn
2572
2573 @c ===================================================================
2574
2575 @node Querying Character Sets
2576 @subsubsection Querying Character Sets
2577
2578 Access the elements and other information of a character set with these
2579 procedures.
2580
2581 @deffn {Scheme Procedure} %char-set-dump cs
2582 Returns an association list containing debugging information
2583 for @var{cs}. The association list has the following entries.
2584 @table @code
2585 @item char-set
2586 The char-set itself
2587 @item len
2588 The number of groups of contiguous code points the char-set
2589 contains
2590 @item ranges
2591 A list of lists where each sublist is a range of code points
2592 and their associated characters
2593 @end table
2594 The return value of this function cannot be relied upon to be
2595 consistent between versions of Guile and should not be used in code.
2596 @end deffn
2597
2598 @deffn {Scheme Procedure} char-set-size cs
2599 @deffnx {C Function} scm_char_set_size (cs)
2600 Return the number of elements in character set @var{cs}.
2601 @end deffn
2602
2603 @deffn {Scheme Procedure} char-set-count pred cs
2604 @deffnx {C Function} scm_char_set_count (pred, cs)
2605 Return the number of the elements int the character set
2606 @var{cs} which satisfy the predicate @var{pred}.
2607 @end deffn
2608
2609 @deffn {Scheme Procedure} char-set->list cs
2610 @deffnx {C Function} scm_char_set_to_list (cs)
2611 Return a list containing the elements of the character set
2612 @var{cs}.
2613 @end deffn
2614
2615 @deffn {Scheme Procedure} char-set->string cs
2616 @deffnx {C Function} scm_char_set_to_string (cs)
2617 Return a string containing the elements of the character set
2618 @var{cs}. The order in which the characters are placed in the
2619 string is not defined.
2620 @end deffn
2621
2622 @deffn {Scheme Procedure} char-set-contains? cs ch
2623 @deffnx {C Function} scm_char_set_contains_p (cs, ch)
2624 Return @code{#t} if the character @var{ch} is contained in the
2625 character set @var{cs}, or @code{#f} otherwise.
2626 @end deffn
2627
2628 @deffn {Scheme Procedure} char-set-every pred cs
2629 @deffnx {C Function} scm_char_set_every (pred, cs)
2630 Return a true value if every character in the character set
2631 @var{cs} satisfies the predicate @var{pred}.
2632 @end deffn
2633
2634 @deffn {Scheme Procedure} char-set-any pred cs
2635 @deffnx {C Function} scm_char_set_any (pred, cs)
2636 Return a true value if any character in the character set
2637 @var{cs} satisfies the predicate @var{pred}.
2638 @end deffn
2639
2640 @c ===================================================================
2641
2642 @node Character-Set Algebra
2643 @subsubsection Character-Set Algebra
2644
2645 Character sets can be manipulated with the common set algebra operation,
2646 such as union, complement, intersection etc. All of these procedures
2647 provide side-effecting variants, which modify their character set
2648 argument(s).
2649
2650 @deffn {Scheme Procedure} char-set-adjoin cs chr @dots{}
2651 @deffnx {C Function} scm_char_set_adjoin (cs, chrs)
2652 Add all character arguments to the first argument, which must
2653 be a character set.
2654 @end deffn
2655
2656 @deffn {Scheme Procedure} char-set-delete cs chr @dots{}
2657 @deffnx {C Function} scm_char_set_delete (cs, chrs)
2658 Delete all character arguments from the first argument, which
2659 must be a character set.
2660 @end deffn
2661
2662 @deffn {Scheme Procedure} char-set-adjoin! cs chr @dots{}
2663 @deffnx {C Function} scm_char_set_adjoin_x (cs, chrs)
2664 Add all character arguments to the first argument, which must
2665 be a character set.
2666 @end deffn
2667
2668 @deffn {Scheme Procedure} char-set-delete! cs chr @dots{}
2669 @deffnx {C Function} scm_char_set_delete_x (cs, chrs)
2670 Delete all character arguments from the first argument, which
2671 must be a character set.
2672 @end deffn
2673
2674 @deffn {Scheme Procedure} char-set-complement cs
2675 @deffnx {C Function} scm_char_set_complement (cs)
2676 Return the complement of the character set @var{cs}.
2677 @end deffn
2678
2679 Note that the complement of a character set is likely to contain many
2680 reserved code points (code points that are not associated with
2681 characters). It may be helpful to modify the output of
2682 @code{char-set-complement} by computing its intersection with the set
2683 of designated code points, @code{char-set:designated}.
2684
2685 @deffn {Scheme Procedure} char-set-union cs @dots{}
2686 @deffnx {C Function} scm_char_set_union (char_sets)
2687 Return the union of all argument character sets.
2688 @end deffn
2689
2690 @deffn {Scheme Procedure} char-set-intersection cs @dots{}
2691 @deffnx {C Function} scm_char_set_intersection (char_sets)
2692 Return the intersection of all argument character sets.
2693 @end deffn
2694
2695 @deffn {Scheme Procedure} char-set-difference cs1 cs @dots{}
2696 @deffnx {C Function} scm_char_set_difference (cs1, char_sets)
2697 Return the difference of all argument character sets.
2698 @end deffn
2699
2700 @deffn {Scheme Procedure} char-set-xor cs @dots{}
2701 @deffnx {C Function} scm_char_set_xor (char_sets)
2702 Return the exclusive-or of all argument character sets.
2703 @end deffn
2704
2705 @deffn {Scheme Procedure} char-set-diff+intersection cs1 cs @dots{}
2706 @deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, char_sets)
2707 Return the difference and the intersection of all argument
2708 character sets.
2709 @end deffn
2710
2711 @deffn {Scheme Procedure} char-set-complement! cs
2712 @deffnx {C Function} scm_char_set_complement_x (cs)
2713 Return the complement of the character set @var{cs}.
2714 @end deffn
2715
2716 @deffn {Scheme Procedure} char-set-union! cs1 cs @dots{}
2717 @deffnx {C Function} scm_char_set_union_x (cs1, char_sets)
2718 Return the union of all argument character sets.
2719 @end deffn
2720
2721 @deffn {Scheme Procedure} char-set-intersection! cs1 cs @dots{}
2722 @deffnx {C Function} scm_char_set_intersection_x (cs1, char_sets)
2723 Return the intersection of all argument character sets.
2724 @end deffn
2725
2726 @deffn {Scheme Procedure} char-set-difference! cs1 cs @dots{}
2727 @deffnx {C Function} scm_char_set_difference_x (cs1, char_sets)
2728 Return the difference of all argument character sets.
2729 @end deffn
2730
2731 @deffn {Scheme Procedure} char-set-xor! cs1 cs @dots{}
2732 @deffnx {C Function} scm_char_set_xor_x (cs1, char_sets)
2733 Return the exclusive-or of all argument character sets.
2734 @end deffn
2735
2736 @deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 cs @dots{}
2737 @deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, char_sets)
2738 Return the difference and the intersection of all argument
2739 character sets.
2740 @end deffn
2741
2742 @c ===================================================================
2743
2744 @node Standard Character Sets
2745 @subsubsection Standard Character Sets
2746
2747 In order to make the use of the character set data type and procedures
2748 useful, several predefined character set variables exist.
2749
2750 @cindex codeset
2751 @cindex charset
2752 @cindex locale
2753
2754 These character sets are locale independent and are not recomputed
2755 upon a @code{setlocale} call. They contain characters from the whole
2756 range of Unicode code points. For instance, @code{char-set:letter}
2757 contains about 100,000 characters.
2758
2759 @defvr {Scheme Variable} char-set:lower-case
2760 @defvrx {C Variable} scm_char_set_lower_case
2761 All lower-case characters.
2762 @end defvr
2763
2764 @defvr {Scheme Variable} char-set:upper-case
2765 @defvrx {C Variable} scm_char_set_upper_case
2766 All upper-case characters.
2767 @end defvr
2768
2769 @defvr {Scheme Variable} char-set:title-case
2770 @defvrx {C Variable} scm_char_set_title_case
2771 All single characters that function as if they were an upper-case
2772 letter followed by a lower-case letter.
2773 @end defvr
2774
2775 @defvr {Scheme Variable} char-set:letter
2776 @defvrx {C Variable} scm_char_set_letter
2777 All letters. This includes @code{char-set:lower-case},
2778 @code{char-set:upper-case}, @code{char-set:title-case}, and many
2779 letters that have no case at all. For example, Chinese and Japanese
2780 characters typically have no concept of case.
2781 @end defvr
2782
2783 @defvr {Scheme Variable} char-set:digit
2784 @defvrx {C Variable} scm_char_set_digit
2785 All digits.
2786 @end defvr
2787
2788 @defvr {Scheme Variable} char-set:letter+digit
2789 @defvrx {C Variable} scm_char_set_letter_and_digit
2790 The union of @code{char-set:letter} and @code{char-set:digit}.
2791 @end defvr
2792
2793 @defvr {Scheme Variable} char-set:graphic
2794 @defvrx {C Variable} scm_char_set_graphic
2795 All characters which would put ink on the paper.
2796 @end defvr
2797
2798 @defvr {Scheme Variable} char-set:printing
2799 @defvrx {C Variable} scm_char_set_printing
2800 The union of @code{char-set:graphic} and @code{char-set:whitespace}.
2801 @end defvr
2802
2803 @defvr {Scheme Variable} char-set:whitespace
2804 @defvrx {C Variable} scm_char_set_whitespace
2805 All whitespace characters.
2806 @end defvr
2807
2808 @defvr {Scheme Variable} char-set:blank
2809 @defvrx {C Variable} scm_char_set_blank
2810 All horizontal whitespace characters, which notably includes
2811 @code{#\space} and @code{#\tab}.
2812 @end defvr
2813
2814 @defvr {Scheme Variable} char-set:iso-control
2815 @defvrx {C Variable} scm_char_set_iso_control
2816 The ISO control characters are the C0 control characters (U+0000 to
2817 U+001F), delete (U+007F), and the C1 control characters (U+0080 to
2818 U+009F).
2819 @end defvr
2820
2821 @defvr {Scheme Variable} char-set:punctuation
2822 @defvrx {C Variable} scm_char_set_punctuation
2823 All punctuation characters, such as the characters
2824 @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
2825 @end defvr
2826
2827 @defvr {Scheme Variable} char-set:symbol
2828 @defvrx {C Variable} scm_char_set_symbol
2829 All symbol characters, such as the characters @code{$+<=>^`|~}.
2830 @end defvr
2831
2832 @defvr {Scheme Variable} char-set:hex-digit
2833 @defvrx {C Variable} scm_char_set_hex_digit
2834 The hexadecimal digits @code{0123456789abcdefABCDEF}.
2835 @end defvr
2836
2837 @defvr {Scheme Variable} char-set:ascii
2838 @defvrx {C Variable} scm_char_set_ascii
2839 All ASCII characters.
2840 @end defvr
2841
2842 @defvr {Scheme Variable} char-set:empty
2843 @defvrx {C Variable} scm_char_set_empty
2844 The empty character set.
2845 @end defvr
2846
2847 @defvr {Scheme Variable} char-set:designated
2848 @defvrx {C Variable} scm_char_set_designated
2849 This character set contains all designated code points. This includes
2850 all the code points to which Unicode has assigned a character or other
2851 meaning.
2852 @end defvr
2853
2854 @defvr {Scheme Variable} char-set:full
2855 @defvrx {C Variable} scm_char_set_full
2856 This character set contains all possible code points. This includes
2857 both designated and reserved code points.
2858 @end defvr
2859
2860 @node Strings
2861 @subsection Strings
2862 @tpindex Strings
2863
2864 Strings are fixed-length sequences of characters. They can be created
2865 by calling constructor procedures, but they can also literally get
2866 entered at the @acronym{REPL} or in Scheme source files.
2867
2868 @c Guile provides a rich set of string processing procedures, because text
2869 @c handling is very important when Guile is used as a scripting language.
2870
2871 Strings always carry the information about how many characters they are
2872 composed of with them, so there is no special end-of-string character,
2873 like in C. That means that Scheme strings can contain any character,
2874 even the @samp{#\nul} character @samp{\0}.
2875
2876 To use strings efficiently, you need to know a bit about how Guile
2877 implements them. In Guile, a string consists of two parts, a head and
2878 the actual memory where the characters are stored. When a string (or
2879 a substring of it) is copied, only a new head gets created, the memory
2880 is usually not copied. The two heads start out pointing to the same
2881 memory.
2882
2883 When one of these two strings is modified, as with @code{string-set!},
2884 their common memory does get copied so that each string has its own
2885 memory and modifying one does not accidentally modify the other as well.
2886 Thus, Guile's strings are `copy on write'; the actual copying of their
2887 memory is delayed until one string is written to.
2888
2889 This implementation makes functions like @code{substring} very
2890 efficient in the common case that no modifications are done to the
2891 involved strings.
2892
2893 If you do know that your strings are getting modified right away, you
2894 can use @code{substring/copy} instead of @code{substring}. This
2895 function performs the copy immediately at the time of creation. This
2896 is more efficient, especially in a multi-threaded program. Also,
2897 @code{substring/copy} can avoid the problem that a short substring
2898 holds on to the memory of a very large original string that could
2899 otherwise be recycled.
2900
2901 If you want to avoid the copy altogether, so that modifications of one
2902 string show up in the other, you can use @code{substring/shared}. The
2903 strings created by this procedure are called @dfn{mutation sharing
2904 substrings} since the substring and the original string share
2905 modifications to each other.
2906
2907 If you want to prevent modifications, use @code{substring/read-only}.
2908
2909 Guile provides all procedures of SRFI-13 and a few more.
2910
2911 @menu
2912 * String Syntax:: Read syntax for strings.
2913 * String Predicates:: Testing strings for certain properties.
2914 * String Constructors:: Creating new string objects.
2915 * List/String Conversion:: Converting from/to lists of characters.
2916 * String Selection:: Select portions from strings.
2917 * String Modification:: Modify parts or whole strings.
2918 * String Comparison:: Lexicographic ordering predicates.
2919 * String Searching:: Searching in strings.
2920 * Alphabetic Case Mapping:: Convert the alphabetic case of strings.
2921 * Reversing and Appending Strings:: Appending strings to form a new string.
2922 * Mapping Folding and Unfolding:: Iterating over strings.
2923 * Miscellaneous String Operations:: Replicating, insertion, parsing, ...
2924 * Representing Strings as Bytes:: Encoding and decoding strings.
2925 * Conversion to/from C::
2926 * String Internals:: The storage strategy for strings.
2927 @end menu
2928
2929 @node String Syntax
2930 @subsubsection String Read Syntax
2931
2932 @c In the following @code is used to get a good font in TeX etc, but
2933 @c is omitted for Info format, so as not to risk any confusion over
2934 @c whether surrounding ` ' quotes are part of the escape or are
2935 @c special in a string (they're not).
2936
2937 The read syntax for strings is an arbitrarily long sequence of
2938 characters enclosed in double quotes (@nicode{"}).
2939
2940 Backslash is an escape character and can be used to insert the following
2941 special characters. @nicode{\"} and @nicode{\\} are R5RS standard, the
2942 next seven are R6RS standard --- notice they follow C syntax --- and the
2943 remaining four are Guile extensions.
2944
2945 @table @asis
2946 @item @nicode{\\}
2947 Backslash character.
2948
2949 @item @nicode{\"}
2950 Double quote character (an unescaped @nicode{"} is otherwise the end
2951 of the string).
2952
2953 @item @nicode{\a}
2954 Bell character (ASCII 7).
2955
2956 @item @nicode{\f}
2957 Formfeed character (ASCII 12).
2958
2959 @item @nicode{\n}
2960 Newline character (ASCII 10).
2961
2962 @item @nicode{\r}
2963 Carriage return character (ASCII 13).
2964
2965 @item @nicode{\t}
2966 Tab character (ASCII 9).
2967
2968 @item @nicode{\v}
2969 Vertical tab character (ASCII 11).
2970
2971 @item @nicode{\b}
2972 Backspace character (ASCII 8).
2973
2974 @item @nicode{\0}
2975 NUL character (ASCII 0).
2976
2977 @item @nicode{\} followed by newline (ASCII 10)
2978 Nothing. This way if @nicode{\} is the last character in a line, the
2979 string will continue with the first character from the next line,
2980 without a line break.
2981
2982 If the @code{hungry-eol-escapes} reader option is enabled, which is not
2983 the case by default, leading whitespace on the next line is discarded.
2984
2985 @lisp
2986 "foo\
2987 bar"
2988 @result{} "foo bar"
2989 (read-enable 'hungry-eol-escapes)
2990 "foo\
2991 bar"
2992 @result{} "foobar"
2993 @end lisp
2994 @item @nicode{\xHH}
2995 Character code given by two hexadecimal digits. For example
2996 @nicode{\x7f} for an ASCII DEL (127).
2997
2998 @item @nicode{\uHHHH}
2999 Character code given by four hexadecimal digits. For example
3000 @nicode{\u0100} for a capital A with macron (U+0100).
3001
3002 @item @nicode{\UHHHHHH}
3003 Character code given by six hexadecimal digits. For example
3004 @nicode{\U010402}.
3005 @end table
3006
3007 @noindent
3008 The following are examples of string literals:
3009
3010 @lisp
3011 "foo"
3012 "bar plonk"
3013 "Hello World"
3014 "\"Hi\", he said."
3015 @end lisp
3016
3017 The three escape sequences @code{\xHH}, @code{\uHHHH} and @code{\UHHHHHH} were
3018 chosen to not break compatibility with code written for previous versions of
3019 Guile. The R6RS specification suggests a different, incompatible syntax for hex
3020 escapes: @code{\xHHHH;} -- a character code followed by one to eight hexadecimal
3021 digits terminated with a semicolon. If this escape format is desired instead,
3022 it can be enabled with the reader option @code{r6rs-hex-escapes}.
3023
3024 @lisp
3025 (read-enable 'r6rs-hex-escapes)
3026 @end lisp
3027
3028 For more on reader options, @xref{Scheme Read}.
3029
3030 @node String Predicates
3031 @subsubsection String Predicates
3032
3033 The following procedures can be used to check whether a given string
3034 fulfills some specified property.
3035
3036 @rnindex string?
3037 @deffn {Scheme Procedure} string? obj
3038 @deffnx {C Function} scm_string_p (obj)
3039 Return @code{#t} if @var{obj} is a string, else @code{#f}.
3040 @end deffn
3041
3042 @deftypefn {C Function} int scm_is_string (SCM obj)
3043 Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
3044 @end deftypefn
3045
3046 @deffn {Scheme Procedure} string-null? str
3047 @deffnx {C Function} scm_string_null_p (str)
3048 Return @code{#t} if @var{str}'s length is zero, and
3049 @code{#f} otherwise.
3050 @lisp
3051 (string-null? "") @result{} #t
3052 y @result{} "foo"
3053 (string-null? y) @result{} #f
3054 @end lisp
3055 @end deffn
3056
3057 @deffn {Scheme Procedure} string-any char_pred s [start [end]]
3058 @deffnx {C Function} scm_string_any (char_pred, s, start, end)
3059 Check if @var{char_pred} is true for any character in string @var{s}.
3060
3061 @var{char_pred} can be a character to check for any equal to that, or
3062 a character set (@pxref{Character Sets}) to check for any in that set,
3063 or a predicate procedure to call.
3064
3065 For a procedure, calls @code{(@var{char_pred} c)} are made
3066 successively on the characters from @var{start} to @var{end}. If
3067 @var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
3068 stops and that return value is the return from @code{string-any}. The
3069 call on the last character (ie.@: at @math{@var{end}-1}), if that
3070 point is reached, is a tail call.
3071
3072 If there are no characters in @var{s} (ie.@: @var{start} equals
3073 @var{end}) then the return is @code{#f}.
3074 @end deffn
3075
3076 @deffn {Scheme Procedure} string-every char_pred s [start [end]]
3077 @deffnx {C Function} scm_string_every (char_pred, s, start, end)
3078 Check if @var{char_pred} is true for every character in string
3079 @var{s}.
3080
3081 @var{char_pred} can be a character to check for every character equal
3082 to that, or a character set (@pxref{Character Sets}) to check for
3083 every character being in that set, or a predicate procedure to call.
3084
3085 For a procedure, calls @code{(@var{char_pred} c)} are made
3086 successively on the characters from @var{start} to @var{end}. If
3087 @var{char_pred} returns @code{#f}, @code{string-every} stops and
3088 returns @code{#f}. The call on the last character (ie.@: at
3089 @math{@var{end}-1}), if that point is reached, is a tail call and the
3090 return from that call is the return from @code{string-every}.
3091
3092 If there are no characters in @var{s} (ie.@: @var{start} equals
3093 @var{end}) then the return is @code{#t}.
3094 @end deffn
3095
3096 @node String Constructors
3097 @subsubsection String Constructors
3098
3099 The string constructor procedures create new string objects, possibly
3100 initializing them with some specified character data. See also
3101 @xref{String Selection}, for ways to create strings from existing
3102 strings.
3103
3104 @c FIXME::martin: list->string belongs into `List/String Conversion'
3105
3106 @deffn {Scheme Procedure} string char@dots{}
3107 @rnindex string
3108 Return a newly allocated string made from the given character
3109 arguments.
3110
3111 @example
3112 (string #\x #\y #\z) @result{} "xyz"
3113 (string) @result{} ""
3114 @end example
3115 @end deffn
3116
3117 @deffn {Scheme Procedure} list->string lst
3118 @deffnx {C Function} scm_string (lst)
3119 @rnindex list->string
3120 Return a newly allocated string made from a list of characters.
3121
3122 @example
3123 (list->string '(#\a #\b #\c)) @result{} "abc"
3124 @end example
3125 @end deffn
3126
3127 @deffn {Scheme Procedure} reverse-list->string lst
3128 @deffnx {C Function} scm_reverse_list_to_string (lst)
3129 Return a newly allocated string made from a list of characters, in
3130 reverse order.
3131
3132 @example
3133 (reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
3134 @end example
3135 @end deffn
3136
3137 @rnindex make-string
3138 @deffn {Scheme Procedure} make-string k [chr]
3139 @deffnx {C Function} scm_make_string (k, chr)
3140 Return a newly allocated string of
3141 length @var{k}. If @var{chr} is given, then all elements of
3142 the string are initialized to @var{chr}, otherwise the contents
3143 of the string are unspecified.
3144 @end deffn
3145
3146 @deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
3147 Like @code{scm_make_string}, but expects the length as a
3148 @code{size_t}.
3149 @end deftypefn
3150
3151 @deffn {Scheme Procedure} string-tabulate proc len
3152 @deffnx {C Function} scm_string_tabulate (proc, len)
3153 @var{proc} is an integer->char procedure. Construct a string
3154 of size @var{len} by applying @var{proc} to each index to
3155 produce the corresponding string element. The order in which
3156 @var{proc} is applied to the indices is not specified.
3157 @end deffn
3158
3159 @deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
3160 @deffnx {C Function} scm_string_join (ls, delimiter, grammar)
3161 Append the string in the string list @var{ls}, using the string
3162 @var{delimiter} as a delimiter between the elements of @var{ls}.
3163 @var{grammar} is a symbol which specifies how the delimiter is
3164 placed between the strings, and defaults to the symbol
3165 @code{infix}.
3166
3167 @table @code
3168 @item infix
3169 Insert the separator between list elements. An empty string
3170 will produce an empty list.
3171 @item strict-infix
3172 Like @code{infix}, but will raise an error if given the empty
3173 list.
3174 @item suffix
3175 Insert the separator after every list element.
3176 @item prefix
3177 Insert the separator before each list element.
3178 @end table
3179 @end deffn
3180
3181 @node List/String Conversion
3182 @subsubsection List/String conversion
3183
3184 When processing strings, it is often convenient to first convert them
3185 into a list representation by using the procedure @code{string->list},
3186 work with the resulting list, and then convert it back into a string.
3187 These procedures are useful for similar tasks.
3188
3189 @rnindex string->list
3190 @deffn {Scheme Procedure} string->list str [start [end]]
3191 @deffnx {C Function} scm_substring_to_list (str, start, end)
3192 @deffnx {C Function} scm_string_to_list (str)
3193 Convert the string @var{str} into a list of characters.
3194 @end deffn
3195
3196 @deffn {Scheme Procedure} string-split str char_pred
3197 @deffnx {C Function} scm_string_split (str, char_pred)
3198 Split the string @var{str} into a list of substrings delimited
3199 by appearances of characters that
3200
3201 @itemize @bullet
3202 @item
3203 equal @var{char_pred}, if it is a character,
3204
3205 @item
3206 satisfy the predicate @var{char_pred}, if it is a procedure,
3207
3208 @item
3209 are in the set @var{char_pred}, if it is a character set.
3210 @end itemize
3211
3212 Note that an empty substring between separator characters will result in
3213 an empty string in the result list.
3214
3215 @lisp
3216 (string-split "root:x:0:0:root:/root:/bin/bash" #\:)
3217 @result{}
3218 ("root" "x" "0" "0" "root" "/root" "/bin/bash")
3219
3220 (string-split "::" #\:)
3221 @result{}
3222 ("" "" "")
3223
3224 (string-split "" #\:)
3225 @result{}
3226 ("")
3227 @end lisp
3228 @end deffn
3229
3230
3231 @node String Selection
3232 @subsubsection String Selection
3233
3234 Portions of strings can be extracted by these procedures.
3235 @code{string-ref} delivers individual characters whereas
3236 @code{substring} can be used to extract substrings from longer strings.
3237
3238 @rnindex string-length
3239 @deffn {Scheme Procedure} string-length string
3240 @deffnx {C Function} scm_string_length (string)
3241 Return the number of characters in @var{string}.
3242 @end deffn
3243
3244 @deftypefn {C Function} size_t scm_c_string_length (SCM str)
3245 Return the number of characters in @var{str} as a @code{size_t}.
3246 @end deftypefn
3247
3248 @rnindex string-ref
3249 @deffn {Scheme Procedure} string-ref str k
3250 @deffnx {C Function} scm_string_ref (str, k)
3251 Return character @var{k} of @var{str} using zero-origin
3252 indexing. @var{k} must be a valid index of @var{str}.
3253 @end deffn
3254
3255 @deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
3256 Return character @var{k} of @var{str} using zero-origin
3257 indexing. @var{k} must be a valid index of @var{str}.
3258 @end deftypefn
3259
3260 @rnindex string-copy
3261 @deffn {Scheme Procedure} string-copy str [start [end]]
3262 @deffnx {C Function} scm_substring_copy (str, start, end)
3263 @deffnx {C Function} scm_string_copy (str)
3264 Return a copy of the given string @var{str}.
3265
3266 The returned string shares storage with @var{str} initially, but it is
3267 copied as soon as one of the two strings is modified.
3268 @end deffn
3269
3270 @rnindex substring
3271 @deffn {Scheme Procedure} substring str start [end]
3272 @deffnx {C Function} scm_substring (str, start, end)
3273 Return a new string formed from the characters
3274 of @var{str} beginning with index @var{start} (inclusive) and
3275 ending with index @var{end} (exclusive).
3276 @var{str} must be a string, @var{start} and @var{end} must be
3277 exact integers satisfying:
3278
3279 0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.
3280
3281 The returned string shares storage with @var{str} initially, but it is
3282 copied as soon as one of the two strings is modified.
3283 @end deffn
3284
3285 @deffn {Scheme Procedure} substring/shared str start [end]
3286 @deffnx {C Function} scm_substring_shared (str, start, end)
3287 Like @code{substring}, but the strings continue to share their storage
3288 even if they are modified. Thus, modifications to @var{str} show up
3289 in the new string, and vice versa.
3290 @end deffn
3291
3292 @deffn {Scheme Procedure} substring/copy str start [end]
3293 @deffnx {C Function} scm_substring_copy (str, start, end)
3294 Like @code{substring}, but the storage for the new string is copied
3295 immediately.
3296 @end deffn
3297
3298 @deffn {Scheme Procedure} substring/read-only str start [end]
3299 @deffnx {C Function} scm_substring_read_only (str, start, end)
3300 Like @code{substring}, but the resulting string can not be modified.
3301 @end deffn
3302
3303 @deftypefn {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
3304 @deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
3305 @deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
3306 @deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
3307 Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
3308 @end deftypefn
3309
3310 @deffn {Scheme Procedure} string-take s n
3311 @deffnx {C Function} scm_string_take (s, n)
3312 Return the @var{n} first characters of @var{s}.
3313 @end deffn
3314
3315 @deffn {Scheme Procedure} string-drop s n
3316 @deffnx {C Function} scm_string_drop (s, n)
3317 Return all but the first @var{n} characters of @var{s}.
3318 @end deffn
3319
3320 @deffn {Scheme Procedure} string-take-right s n
3321 @deffnx {C Function} scm_string_take_right (s, n)
3322 Return the @var{n} last characters of @var{s}.
3323 @end deffn
3324
3325 @deffn {Scheme Procedure} string-drop-right s n
3326 @deffnx {C Function} scm_string_drop_right (s, n)
3327 Return all but the last @var{n} characters of @var{s}.
3328 @end deffn
3329
3330 @deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
3331 @deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
3332 @deffnx {C Function} scm_string_pad (s, len, chr, start, end)
3333 @deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
3334 Take characters @var{start} to @var{end} from the string @var{s} and
3335 either pad with @var{chr} or truncate them to give @var{len}
3336 characters.
3337
3338 @code{string-pad} pads or truncates on the left, so for example
3339
3340 @example
3341 (string-pad "x" 3) @result{} " x"
3342 (string-pad "abcde" 3) @result{} "cde"
3343 @end example
3344
3345 @code{string-pad-right} pads or truncates on the right, so for example
3346
3347 @example
3348 (string-pad-right "x" 3) @result{} "x "
3349 (string-pad-right "abcde" 3) @result{} "abc"
3350 @end example
3351 @end deffn
3352
3353 @deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
3354 @deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
3355 @deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
3356 @deffnx {C Function} scm_string_trim (s, char_pred, start, end)
3357 @deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
3358 @deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
3359 Trim occurrences of @var{char_pred} from the ends of @var{s}.
3360
3361 @code{string-trim} trims @var{char_pred} characters from the left
3362 (start) of the string, @code{string-trim-right} trims them from the
3363 right (end) of the string, @code{string-trim-both} trims from both
3364 ends.
3365
3366 @var{char_pred} can be a character, a character set, or a predicate
3367 procedure to call on each character. If @var{char_pred} is not given
3368 the default is whitespace as per @code{char-set:whitespace}
3369 (@pxref{Standard Character Sets}).
3370
3371 @example
3372 (string-trim " x ") @result{} "x "
3373 (string-trim-right "banana" #\a) @result{} "banan"
3374 (string-trim-both ".,xy:;" char-set:punctuation)
3375 @result{} "xy"
3376 (string-trim-both "xyzzy" (lambda (c)
3377 (or (eqv? c #\x)
3378 (eqv? c #\y))))
3379 @result{} "zz"
3380 @end example
3381 @end deffn
3382
3383 @node String Modification
3384 @subsubsection String Modification
3385
3386 These procedures are for modifying strings in-place. This means that the
3387 result of the operation is not a new string; instead, the original string's
3388 memory representation is modified.
3389
3390 @rnindex string-set!
3391 @deffn {Scheme Procedure} string-set! str k chr
3392 @deffnx {C Function} scm_string_set_x (str, k, chr)
3393 Store @var{chr} in element @var{k} of @var{str} and return
3394 an unspecified value. @var{k} must be a valid index of
3395 @var{str}.
3396 @end deffn
3397
3398 @deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
3399 Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
3400 @end deftypefn
3401
3402 @rnindex string-fill!
3403 @deffn {Scheme Procedure} string-fill! str chr [start [end]]
3404 @deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
3405 @deffnx {C Function} scm_string_fill_x (str, chr)
3406 Stores @var{chr} in every element of the given @var{str} and
3407 returns an unspecified value.
3408 @end deffn
3409
3410 @deffn {Scheme Procedure} substring-fill! str start end fill
3411 @deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
3412 Change every character in @var{str} between @var{start} and
3413 @var{end} to @var{fill}.
3414
3415 @lisp
3416 (define y (string-copy "abcdefg"))
3417 (substring-fill! y 1 3 #\r)
3418 y
3419 @result{} "arrdefg"
3420 @end lisp
3421 @end deffn
3422
3423 @deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
3424 @deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
3425 Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
3426 into @var{str2} beginning at position @var{start2}.
3427 @var{str1} and @var{str2} can be the same string.
3428 @end deffn
3429
3430 @deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
3431 @deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
3432 Copy the sequence of characters from index range [@var{start},
3433 @var{end}) in string @var{s} to string @var{target}, beginning
3434 at index @var{tstart}. The characters are copied left-to-right
3435 or right-to-left as needed -- the copy is guaranteed to work,
3436 even if @var{target} and @var{s} are the same string. It is an
3437 error if the copy operation runs off the end of the target
3438 string.
3439 @end deffn
3440
3441
3442 @node String Comparison
3443 @subsubsection String Comparison
3444
3445 The procedures in this section are similar to the character ordering
3446 predicates (@pxref{Characters}), but are defined on character sequences.
3447
3448 The first set is specified in R5RS and has names that end in @code{?}.
3449 The second set is specified in SRFI-13 and the names have not ending
3450 @code{?}.
3451
3452 The predicates ending in @code{-ci} ignore the character case
3453 when comparing strings. For now, case-insensitive comparison is done
3454 using the R5RS rules, where every lower-case character that has a
3455 single character upper-case form is converted to uppercase before
3456 comparison. See @xref{Text Collation, the @code{(ice-9
3457 i18n)} module}, for locale-dependent string comparison.
3458
3459 @rnindex string=?
3460 @deffn {Scheme Procedure} string=? s1 s2 s3 @dots{}
3461 Lexicographic equality predicate; return @code{#t} if all strings are
3462 the same length and contain the same characters in the same positions,
3463 otherwise return @code{#f}.
3464
3465 The procedure @code{string-ci=?} treats upper and lower case
3466 letters as though they were the same character, but
3467 @code{string=?} treats upper and lower case as distinct
3468 characters.
3469 @end deffn
3470
3471 @rnindex string<?
3472 @deffn {Scheme Procedure} string<? s1 s2 s3 @dots{}
3473 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3474 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3475 lexicographically less than @var{str_i+1}.
3476 @end deffn
3477
3478 @rnindex string<=?
3479 @deffn {Scheme Procedure} string<=? s1 s2 s3 @dots{}
3480 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3481 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3482 lexicographically less than or equal to @var{str_i+1}.
3483 @end deffn
3484
3485 @rnindex string>?
3486 @deffn {Scheme Procedure} string>? s1 s2 s3 @dots{}
3487 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3488 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3489 lexicographically greater than @var{str_i+1}.
3490 @end deffn
3491
3492 @rnindex string>=?
3493 @deffn {Scheme Procedure} string>=? s1 s2 s3 @dots{}
3494 Lexicographic ordering predicate; return @code{#t} if, for every pair of
3495 consecutive string arguments @var{str_i} and @var{str_i+1}, @var{str_i} is
3496 lexicographically greater than or equal to @var{str_i+1}.
3497 @end deffn
3498
3499 @rnindex string-ci=?
3500 @deffn {Scheme Procedure} string-ci=? s1 s2 s3 @dots{}
3501 Case-insensitive string equality predicate; return @code{#t} if
3502 all strings are the same length and their component
3503 characters match (ignoring case) at each position; otherwise
3504 return @code{#f}.
3505 @end deffn
3506
3507 @rnindex string-ci<?
3508 @deffn {Scheme Procedure} string-ci<? s1 s2 s3 @dots{}
3509 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3510 for every pair of consecutive string arguments @var{str_i} and
3511 @var{str_i+1}, @var{str_i} is lexicographically less than @var{str_i+1}
3512 regardless of case.
3513 @end deffn
3514
3515 @rnindex string<=?
3516 @deffn {Scheme Procedure} string-ci<=? s1 s2 s3 @dots{}
3517 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3518 for every pair of consecutive string arguments @var{str_i} and
3519 @var{str_i+1}, @var{str_i} is lexicographically less than or equal to
3520 @var{str_i+1} regardless of case.
3521 @end deffn
3522
3523 @rnindex string-ci>?
3524 @deffn {Scheme Procedure} string-ci>? s1 s2 s3 @dots{}
3525 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3526 for every pair of consecutive string arguments @var{str_i} and
3527 @var{str_i+1}, @var{str_i} is lexicographically greater than
3528 @var{str_i+1} regardless of case.
3529 @end deffn
3530
3531 @rnindex string-ci>=?
3532 @deffn {Scheme Procedure} string-ci>=? s1 s2 s3 @dots{}
3533 Case insensitive lexicographic ordering predicate; return @code{#t} if,
3534 for every pair of consecutive string arguments @var{str_i} and
3535 @var{str_i+1}, @var{str_i} is lexicographically greater than or equal to
3536 @var{str_i+1} regardless of case.
3537 @end deffn
3538
3539 @deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3540 @deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3541 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3542 mismatch index, depending upon whether @var{s1} is less than,
3543 equal to, or greater than @var{s2}. The mismatch index is the
3544 largest index @var{i} such that for every 0 <= @var{j} <
3545 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3546 @var{i} is the first position that does not match.
3547 @end deffn
3548
3549 @deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
3550 @deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
3551 Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
3552 mismatch index, depending upon whether @var{s1} is less than,
3553 equal to, or greater than @var{s2}. The mismatch index is the
3554 largest index @var{i} such that for every 0 <= @var{j} <
3555 @var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
3556 @var{i} is the first position where the lowercased letters
3557 do not match.
3558
3559 @end deffn
3560
3561 @deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
3562 @deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
3563 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3564 value otherwise.
3565 @end deffn
3566
3567 @deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
3568 @deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
3569 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3570 value otherwise.
3571 @end deffn
3572
3573 @deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
3574 @deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
3575 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3576 true value otherwise.
3577 @end deffn
3578
3579 @deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
3580 @deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
3581 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3582 true value otherwise.
3583 @end deffn
3584
3585 @deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
3586 @deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
3587 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3588 value otherwise.
3589 @end deffn
3590
3591 @deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
3592 @deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
3593 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3594 otherwise.
3595 @end deffn
3596
3597 @deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
3598 @deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
3599 Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
3600 value otherwise. The character comparison is done
3601 case-insensitively.
3602 @end deffn
3603
3604 @deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
3605 @deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
3606 Return @code{#f} if @var{s1} and @var{s2} are equal, a true
3607 value otherwise. The character comparison is done
3608 case-insensitively.
3609 @end deffn
3610
3611 @deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
3612 @deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
3613 Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
3614 true value otherwise. The character comparison is done
3615 case-insensitively.
3616 @end deffn
3617
3618 @deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
3619 @deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
3620 Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
3621 true value otherwise. The character comparison is done
3622 case-insensitively.
3623 @end deffn
3624
3625 @deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
3626 @deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
3627 Return @code{#f} if @var{s1} is greater to @var{s2}, a true
3628 value otherwise. The character comparison is done
3629 case-insensitively.
3630 @end deffn
3631
3632 @deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
3633 @deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
3634 Return @code{#f} if @var{s1} is less to @var{s2}, a true value
3635 otherwise. The character comparison is done
3636 case-insensitively.
3637 @end deffn
3638
3639 @deffn {Scheme Procedure} string-hash s [bound [start [end]]]
3640 @deffnx {C Function} scm_substring_hash (s, bound, start, end)
3641 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3642 @end deffn
3643
3644 @deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
3645 @deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
3646 Compute a hash value for @var{s}. The optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
3647 @end deffn
3648
3649 Because the same visual appearance of an abstract Unicode character can
3650 be obtained via multiple sequences of Unicode characters, even the
3651 case-insensitive string comparison functions described above may return
3652 @code{#f} when presented with strings containing different
3653 representations of the same character. For example, the Unicode
3654 character ``LATIN SMALL LETTER S WITH DOT BELOW AND DOT ABOVE'' can be
3655 represented with a single character (U+1E69) or by the character ``LATIN
3656 SMALL LETTER S'' (U+0073) followed by the combining marks ``COMBINING
3657 DOT BELOW'' (U+0323) and ``COMBINING DOT ABOVE'' (U+0307).
3658
3659 For this reason, it is often desirable to ensure that the strings
3660 to be compared are using a mutually consistent representation for every
3661 character. The Unicode standard defines two methods of normalizing the
3662 contents of strings: Decomposition, which breaks composite characters
3663 into a set of constituent characters with an ordering defined by the
3664 Unicode Standard; and composition, which performs the converse.
3665
3666 There are two decomposition operations. ``Canonical decomposition''
3667 produces character sequences that share the same visual appearance as
3668 the original characters, while ``compatibility decomposition'' produces
3669 ones whose visual appearances may differ from the originals but which
3670 represent the same abstract character.
3671
3672 These operations are encapsulated in the following set of normalization
3673 forms:
3674
3675 @table @dfn
3676 @item NFD
3677 Characters are decomposed to their canonical forms.
3678
3679 @item NFKD
3680 Characters are decomposed to their compatibility forms.
3681
3682 @item NFC
3683 Characters are decomposed to their canonical forms, then composed.
3684
3685 @item NFKC
3686 Characters are decomposed to their compatibility forms, then composed.
3687
3688 @end table
3689
3690 The functions below put their arguments into one of the forms described
3691 above.
3692
3693 @deffn {Scheme Procedure} string-normalize-nfd s
3694 @deffnx {C Function} scm_string_normalize_nfd (s)
3695 Return the @code{NFD} normalized form of @var{s}.
3696 @end deffn
3697
3698 @deffn {Scheme Procedure} string-normalize-nfkd s
3699 @deffnx {C Function} scm_string_normalize_nfkd (s)
3700 Return the @code{NFKD} normalized form of @var{s}.
3701 @end deffn
3702
3703 @deffn {Scheme Procedure} string-normalize-nfc s
3704 @deffnx {C Function} scm_string_normalize_nfc (s)
3705 Return the @code{NFC} normalized form of @var{s}.
3706 @end deffn
3707
3708 @deffn {Scheme Procedure} string-normalize-nfkc s
3709 @deffnx {C Function} scm_string_normalize_nfkc (s)
3710 Return the @code{NFKC} normalized form of @var{s}.
3711 @end deffn
3712
3713 @node String Searching
3714 @subsubsection String Searching
3715
3716 @deffn {Scheme Procedure} string-index s char_pred [start [end]]
3717 @deffnx {C Function} scm_string_index (s, char_pred, start, end)
3718 Search through the string @var{s} from left to right, returning
3719 the index of the first occurrence of a character which
3720
3721 @itemize @bullet
3722 @item
3723 equals @var{char_pred}, if it is character,
3724
3725 @item
3726 satisfies the predicate @var{char_pred}, if it is a procedure,
3727
3728 @item
3729 is in the set @var{char_pred}, if it is a character set.
3730 @end itemize
3731
3732 Return @code{#f} if no match is found.
3733 @end deffn
3734
3735 @deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
3736 @deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
3737 Search through the string @var{s} from right to left, returning
3738 the index of the last occurrence of a character which
3739
3740 @itemize @bullet
3741 @item
3742 equals @var{char_pred}, if it is character,
3743
3744 @item
3745 satisfies the predicate @var{char_pred}, if it is a procedure,
3746
3747 @item
3748 is in the set if @var{char_pred} is a character set.
3749 @end itemize
3750
3751 Return @code{#f} if no match is found.
3752 @end deffn
3753
3754 @deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3755 @deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
3756 Return the length of the longest common prefix of the two
3757 strings.
3758 @end deffn
3759
3760 @deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3761 @deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
3762 Return the length of the longest common prefix of the two
3763 strings, ignoring character case.
3764 @end deffn
3765
3766 @deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
3767 @deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
3768 Return the length of the longest common suffix of the two
3769 strings.
3770 @end deffn
3771
3772 @deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3773 @deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
3774 Return the length of the longest common suffix of the two
3775 strings, ignoring character case.
3776 @end deffn
3777
3778 @deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
3779 @deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
3780 Is @var{s1} a prefix of @var{s2}?
3781 @end deffn
3782
3783 @deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3784 @deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
3785 Is @var{s1} a prefix of @var{s2}, ignoring character case?
3786 @end deffn
3787
3788 @deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
3789 @deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
3790 Is @var{s1} a suffix of @var{s2}?
3791 @end deffn
3792
3793 @deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
3794 @deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
3795 Is @var{s1} a suffix of @var{s2}, ignoring character case?
3796 @end deffn
3797
3798 @deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
3799 @deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
3800 Search through the string @var{s} from right to left, returning
3801 the index of the last occurrence of a character which
3802
3803 @itemize @bullet
3804 @item
3805 equals @var{char_pred}, if it is character,
3806
3807 @item
3808 satisfies the predicate @var{char_pred}, if it is a procedure,
3809
3810 @item
3811 is in the set if @var{char_pred} is a character set.
3812 @end itemize
3813
3814 Return @code{#f} if no match is found.
3815 @end deffn
3816
3817 @deffn {Scheme Procedure} string-skip s char_pred [start [end]]
3818 @deffnx {C Function} scm_string_skip (s, char_pred, start, end)
3819 Search through the string @var{s} from left to right, returning
3820 the index of the first occurrence of a character which
3821
3822 @itemize @bullet
3823 @item
3824 does not equal @var{char_pred}, if it is character,
3825
3826 @item
3827 does not satisfy the predicate @var{char_pred}, if it is a
3828 procedure,
3829
3830 @item
3831 is not in the set if @var{char_pred} is a character set.
3832 @end itemize
3833 @end deffn
3834
3835 @deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
3836 @deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
3837 Search through the string @var{s} from right to left, returning
3838 the index of the last occurrence of a character which
3839
3840 @itemize @bullet
3841 @item
3842 does not equal @var{char_pred}, if it is character,
3843
3844 @item
3845 does not satisfy the predicate @var{char_pred}, if it is a
3846 procedure,
3847
3848 @item
3849 is not in the set if @var{char_pred} is a character set.
3850 @end itemize
3851 @end deffn
3852
3853 @deffn {Scheme Procedure} string-count s char_pred [start [end]]
3854 @deffnx {C Function} scm_string_count (s, char_pred, start, end)
3855 Return the count of the number of characters in the string
3856 @var{s} which
3857
3858 @itemize @bullet
3859 @item
3860 equals @var{char_pred}, if it is character,
3861
3862 @item
3863 satisfies the predicate @var{char_pred}, if it is a procedure.
3864
3865 @item
3866 is in the set @var{char_pred}, if it is a character set.
3867 @end itemize
3868 @end deffn
3869
3870 @deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
3871 @deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
3872 Does string @var{s1} contain string @var{s2}? Return the index
3873 in @var{s1} where @var{s2} occurs as a substring, or false.
3874 The optional start/end indices restrict the operation to the
3875 indicated substrings.
3876 @end deffn
3877
3878 @deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
3879 @deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
3880 Does string @var{s1} contain string @var{s2}? Return the index
3881 in @var{s1} where @var{s2} occurs as a substring, or false.
3882 The optional start/end indices restrict the operation to the
3883 indicated substrings. Character comparison is done
3884 case-insensitively.
3885 @end deffn
3886
3887 @node Alphabetic Case Mapping
3888 @subsubsection Alphabetic Case Mapping
3889
3890 These are procedures for mapping strings to their upper- or lower-case
3891 equivalents, respectively, or for capitalizing strings.
3892
3893 They use the basic case mapping rules for Unicode characters. No
3894 special language or context rules are considered. The resulting strings
3895 are guaranteed to be the same length as the input strings.
3896
3897 @xref{Character Case Mapping, the @code{(ice-9
3898 i18n)} module}, for locale-dependent case conversions.
3899
3900 @deffn {Scheme Procedure} string-upcase str [start [end]]
3901 @deffnx {C Function} scm_substring_upcase (str, start, end)
3902 @deffnx {C Function} scm_string_upcase (str)
3903 Upcase every character in @code{str}.
3904 @end deffn
3905
3906 @deffn {Scheme Procedure} string-upcase! str [start [end]]
3907 @deffnx {C Function} scm_substring_upcase_x (str, start, end)
3908 @deffnx {C Function} scm_string_upcase_x (str)
3909 Destructively upcase every character in @code{str}.
3910
3911 @lisp
3912 (string-upcase! y)
3913 @result{} "ARRDEFG"
3914 y
3915 @result{} "ARRDEFG"
3916 @end lisp
3917 @end deffn
3918
3919 @deffn {Scheme Procedure} string-downcase str [start [end]]
3920 @deffnx {C Function} scm_substring_downcase (str, start, end)
3921 @deffnx {C Function} scm_string_downcase (str)
3922 Downcase every character in @var{str}.
3923 @end deffn
3924
3925 @deffn {Scheme Procedure} string-downcase! str [start [end]]
3926 @deffnx {C Function} scm_substring_downcase_x (str, start, end)
3927 @deffnx {C Function} scm_string_downcase_x (str)
3928 Destructively downcase every character in @var{str}.
3929
3930 @lisp
3931 y
3932 @result{} "ARRDEFG"
3933 (string-downcase! y)
3934 @result{} "arrdefg"
3935 y
3936 @result{} "arrdefg"
3937 @end lisp
3938 @end deffn
3939
3940 @deffn {Scheme Procedure} string-capitalize str
3941 @deffnx {C Function} scm_string_capitalize (str)
3942 Return a freshly allocated string with the characters in
3943 @var{str}, where the first character of every word is
3944 capitalized.
3945 @end deffn
3946
3947 @deffn {Scheme Procedure} string-capitalize! str
3948 @deffnx {C Function} scm_string_capitalize_x (str)
3949 Upcase the first character of every word in @var{str}
3950 destructively and return @var{str}.
3951
3952 @lisp
3953 y @result{} "hello world"
3954 (string-capitalize! y) @result{} "Hello World"
3955 y @result{} "Hello World"
3956 @end lisp
3957 @end deffn
3958
3959 @deffn {Scheme Procedure} string-titlecase str [start [end]]
3960 @deffnx {C Function} scm_string_titlecase (str, start, end)
3961 Titlecase every first character in a word in @var{str}.
3962 @end deffn
3963
3964 @deffn {Scheme Procedure} string-titlecase! str [start [end]]
3965 @deffnx {C Function} scm_string_titlecase_x (str, start, end)
3966 Destructively titlecase every first character in a word in
3967 @var{str}.
3968 @end deffn
3969
3970 @node Reversing and Appending Strings
3971 @subsubsection Reversing and Appending Strings
3972
3973 @deffn {Scheme Procedure} string-reverse str [start [end]]
3974 @deffnx {C Function} scm_string_reverse (str, start, end)
3975 Reverse the string @var{str}. The optional arguments
3976 @var{start} and @var{end} delimit the region of @var{str} to
3977 operate on.
3978 @end deffn
3979
3980 @deffn {Scheme Procedure} string-reverse! str [start [end]]
3981 @deffnx {C Function} scm_string_reverse_x (str, start, end)
3982 Reverse the string @var{str} in-place. The optional arguments
3983 @var{start} and @var{end} delimit the region of @var{str} to
3984 operate on. The return value is unspecified.
3985 @end deffn
3986
3987 @rnindex string-append
3988 @deffn {Scheme Procedure} string-append arg @dots{}
3989 @deffnx {C Function} scm_string_append (args)
3990 Return a newly allocated string whose characters form the
3991 concatenation of the given strings, @var{arg} @enddots{}.
3992
3993 @example
3994 (let ((h "hello "))
3995 (string-append h "world"))
3996 @result{} "hello world"
3997 @end example
3998 @end deffn
3999
4000 @deffn {Scheme Procedure} string-append/shared arg @dots{}
4001 @deffnx {C Function} scm_string_append_shared (args)
4002 Like @code{string-append}, but the result may share memory
4003 with the argument strings.
4004 @end deffn
4005
4006 @deffn {Scheme Procedure} string-concatenate ls
4007 @deffnx {C Function} scm_string_concatenate (ls)
4008 Append the elements (which must be strings) of @var{ls} together into a
4009 single string. Guaranteed to return a freshly allocated string.
4010 @end deffn
4011
4012 @deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
4013 @deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
4014 Without optional arguments, this procedure is equivalent to
4015
4016 @lisp
4017 (string-concatenate (reverse ls))
4018 @end lisp
4019
4020 If the optional argument @var{final_string} is specified, it is
4021 consed onto the beginning to @var{ls} before performing the
4022 list-reverse and string-concatenate operations. If @var{end}
4023 is given, only the characters of @var{final_string} up to index
4024 @var{end} are used.
4025
4026 Guaranteed to return a freshly allocated string.
4027 @end deffn
4028
4029 @deffn {Scheme Procedure} string-concatenate/shared ls
4030 @deffnx {C Function} scm_string_concatenate_shared (ls)
4031 Like @code{string-concatenate}, but the result may share memory
4032 with the strings in the list @var{ls}.
4033 @end deffn
4034
4035 @deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
4036 @deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
4037 Like @code{string-concatenate-reverse}, but the result may
4038 share memory with the strings in the @var{ls} arguments.
4039 @end deffn
4040
4041 @node Mapping Folding and Unfolding
4042 @subsubsection Mapping, Folding, and Unfolding
4043
4044 @deffn {Scheme Procedure} string-map proc s [start [end]]
4045 @deffnx {C Function} scm_string_map (proc, s, start, end)
4046 @var{proc} is a char->char procedure, it is mapped over
4047 @var{s}. The order in which the procedure is applied to the
4048 string elements is not specified.
4049 @end deffn
4050
4051 @deffn {Scheme Procedure} string-map! proc s [start [end]]
4052 @deffnx {C Function} scm_string_map_x (proc, s, start, end)
4053 @var{proc} is a char->char procedure, it is mapped over
4054 @var{s}. The order in which the procedure is applied to the
4055 string elements is not specified. The string @var{s} is
4056 modified in-place, the return value is not specified.
4057 @end deffn
4058
4059 @deffn {Scheme Procedure} string-for-each proc s [start [end]]
4060 @deffnx {C Function} scm_string_for_each (proc, s, start, end)
4061 @var{proc} is mapped over @var{s} in left-to-right order. The
4062 return value is not specified.
4063 @end deffn
4064
4065 @deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
4066 @deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
4067 Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
4068 right.
4069
4070 For example, to change characters to alternately upper and lower case,
4071
4072 @example
4073 (define str (string-copy "studly"))
4074 (string-for-each-index
4075 (lambda (i)
4076 (string-set! str i
4077 ((if (even? i) char-upcase char-downcase)
4078 (string-ref str i))))
4079 str)
4080 str @result{} "StUdLy"
4081 @end example
4082 @end deffn
4083
4084 @deffn {Scheme Procedure} string-fold kons knil s [start [end]]
4085 @deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
4086 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4087 as the terminating element, from left to right. @var{kons}
4088 must expect two arguments: The actual character and the last
4089 result of @var{kons}' application.
4090 @end deffn
4091
4092 @deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
4093 @deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
4094 Fold @var{kons} over the characters of @var{s}, with @var{knil}
4095 as the terminating element, from right to left. @var{kons}
4096 must expect two arguments: The actual character and the last
4097 result of @var{kons}' application.
4098 @end deffn
4099
4100 @deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
4101 @deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
4102 @itemize @bullet
4103 @item @var{g} is used to generate a series of @emph{seed}
4104 values from the initial @var{seed}: @var{seed}, (@var{g}
4105 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4106 @dots{}
4107 @item @var{p} tells us when to stop -- when it returns true
4108 when applied to one of these seed values.
4109 @item @var{f} maps each seed value to the corresponding
4110 character in the result string. These chars are assembled
4111 into the string in a left-to-right order.
4112 @item @var{base} is the optional initial/leftmost portion
4113 of the constructed string; it default to the empty
4114 string.
4115 @item @var{make_final} is applied to the terminal seed
4116 value (on which @var{p} returns true) to produce
4117 the final/rightmost portion of the constructed string.
4118 The default is nothing extra.
4119 @end itemize
4120 @end deffn
4121
4122 @deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
4123 @deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
4124 @itemize @bullet
4125 @item @var{g} is used to generate a series of @emph{seed}
4126 values from the initial @var{seed}: @var{seed}, (@var{g}
4127 @var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
4128 @dots{}
4129 @item @var{p} tells us when to stop -- when it returns true
4130 when applied to one of these seed values.
4131 @item @var{f} maps each seed value to the corresponding
4132 character in the result string. These chars are assembled
4133 into the string in a right-to-left order.
4134 @item @var{base} is the optional initial/rightmost portion
4135 of the constructed string; it default to the empty
4136 string.
4137 @item @var{make_final} is applied to the terminal seed
4138 value (on which @var{p} returns true) to produce
4139 the final/leftmost portion of the constructed string.
4140 It defaults to @code{(lambda (x) )}.
4141 @end itemize
4142 @end deffn
4143
4144 @node Miscellaneous String Operations
4145 @subsubsection Miscellaneous String Operations
4146
4147 @deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
4148 @deffnx {C Function} scm_xsubstring (s, from, to, start, end)
4149 This is the @emph{extended substring} procedure that implements
4150 replicated copying of a substring of some string.
4151
4152 @var{s} is a string, @var{start} and @var{end} are optional
4153 arguments that demarcate a substring of @var{s}, defaulting to
4154 0 and the length of @var{s}. Replicate this substring up and
4155 down index space, in both the positive and negative directions.
4156 @code{xsubstring} returns the substring of this string
4157 beginning at index @var{from}, and ending at @var{to}, which
4158 defaults to @var{from} + (@var{end} - @var{start}).
4159 @end deffn
4160
4161 @deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
4162 @deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
4163 Exactly the same as @code{xsubstring}, but the extracted text
4164 is written into the string @var{target} starting at index
4165 @var{tstart}. The operation is not defined if @code{(eq?
4166 @var{target} @var{s})} or these arguments share storage -- you
4167 cannot copy a string on top of itself.
4168 @end deffn
4169
4170 @deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
4171 @deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
4172 Return the string @var{s1}, but with the characters
4173 @var{start1} @dots{} @var{end1} replaced by the characters
4174 @var{start2} @dots{} @var{end2} from @var{s2}.
4175 @end deffn
4176
4177 @deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
4178 @deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
4179 Split the string @var{s} into a list of substrings, where each
4180 substring is a maximal non-empty contiguous sequence of
4181 characters from the character set @var{token_set}, which
4182 defaults to @code{char-set:graphic}.
4183 If @var{start} or @var{end} indices are provided, they restrict
4184 @code{string-tokenize} to operating on the indicated substring
4185 of @var{s}.
4186 @end deffn
4187
4188 @deffn {Scheme Procedure} string-filter char_pred s [start [end]]
4189 @deffnx {C Function} scm_string_filter (char_pred, s, start, end)
4190 Filter the string @var{s}, retaining only those characters which
4191 satisfy @var{char_pred}.
4192
4193 If @var{char_pred} is a procedure, it is applied to each character as
4194 a predicate, if it is a character, it is tested for equality and if it
4195 is a character set, it is tested for membership.
4196 @end deffn
4197
4198 @deffn {Scheme Procedure} string-delete char_pred s [start [end]]
4199 @deffnx {C Function} scm_string_delete (char_pred, s, start, end)
4200 Delete characters satisfying @var{char_pred} from @var{s}.
4201
4202 If @var{char_pred} is a procedure, it is applied to each character as
4203 a predicate, if it is a character, it is tested for equality and if it
4204 is a character set, it is tested for membership.
4205 @end deffn
4206
4207 @node Representing Strings as Bytes
4208 @subsubsection Representing Strings as Bytes
4209
4210 Out in the cold world outside of Guile, not all strings are treated in
4211 the same way. Out there there are only bytes, and there are many ways
4212 of representing a strings (sequences of characters) as binary data
4213 (sequences of bytes).
4214
4215 As a user, usually you don't have to think about this very much. When
4216 you type on your keyboard, your system encodes your keystrokes as bytes
4217 according to the locale that you have configured on your computer.
4218 Guile uses the locale to decode those bytes back into characters --
4219 hopefully the same characters that you typed in.
4220
4221 All is not so clear when dealing with a system with multiple users, such
4222 as a web server. Your web server might get a request from one user for
4223 data encoded in the ISO-8859-1 character set, and then another request
4224 from a different user for UTF-8 data.
4225
4226 @cindex iconv
4227 @cindex character encoding
4228 Guile provides an @dfn{iconv} module for converting between strings and
4229 sequences of bytes. @xref{Bytevectors}, for more on how Guile
4230 represents raw byte sequences. This module gets its name from the
4231 common @sc{unix} command of the same name.
4232
4233 Note that often it is sufficient to just read and write strings from
4234 ports instead of using these functions. To do this, specify the port
4235 encoding using @code{set-port-encoding!}. @xref{Ports}, for more on
4236 ports and character encodings.
4237
4238 Unlike the rest of the procedures in this section, you have to load the
4239 @code{iconv} module before having access to these procedures:
4240
4241 @example
4242 (use-modules (ice-9 iconv))
4243 @end example
4244
4245 @deffn {Scheme Procedure} string->bytevector string encoding [conversion-strategy]
4246 Encode @var{string} as a sequence of bytes.
4247
4248 The string will be encoded in the character set specified by the
4249 @var{encoding} string. If the string has characters that cannot be
4250 represented in the encoding, by default this procedure raises an
4251 @code{encoding-error}. Pass a @var{conversion-strategy} argument to
4252 specify other behaviors.
4253
4254 The return value is a bytevector. @xref{Bytevectors}, for more on
4255 bytevectors. @xref{Ports}, for more on character encodings and
4256 conversion strategies.
4257 @end deffn
4258
4259 @deffn {Scheme Procedure} bytevector->string bytevector encoding [conversion-strategy]
4260 Decode @var{bytevector} into a string.
4261
4262 The bytes will be decoded from the character set by the @var{encoding}
4263 string. If the bytes do not form a valid encoding, by default this
4264 procedure raises an @code{decoding-error}. As with
4265 @code{string->bytevector}, pass the optional @var{conversion-strategy}
4266 argument to modify this behavior. @xref{Ports}, for more on character
4267 encodings and conversion strategies.
4268 @end deffn
4269
4270 @deffn {Scheme Procedure} call-with-output-encoded-string encoding proc [conversion-strategy]
4271 Like @code{call-with-output-string}, but instead of returning a string,
4272 returns a encoding of the string according to @var{encoding}, as a
4273 bytevector. This procedure can be more efficient than collecting a
4274 string and then converting it via @code{string->bytevector}.
4275 @end deffn
4276
4277 @node Conversion to/from C
4278 @subsubsection Conversion to/from C
4279
4280 When creating a Scheme string from a C string or when converting a
4281 Scheme string to a C string, the concept of character encoding becomes
4282 important.
4283
4284 In C, a string is just a sequence of bytes, and the character encoding
4285 describes the relation between these bytes and the actual characters
4286 that make up the string. For Scheme strings, character encoding is not
4287 an issue (most of the time), since in Scheme you usually treat strings
4288 as character sequences, not byte sequences.
4289
4290 Converting to C and converting from C each have their own challenges.
4291
4292 When converting from C to Scheme, it is important that the sequence of
4293 bytes in the C string be valid with respect to its encoding. ASCII
4294 strings, for example, can't have any bytes greater than 127. An ASCII
4295 byte greater than 127 is considered @emph{ill-formed} and cannot be
4296 converted into a Scheme character.
4297
4298 Problems can occur in the reverse operation as well. Not all character
4299 encodings can hold all possible Scheme characters. Some encodings, like
4300 ASCII for example, can only describe a small subset of all possible
4301 characters. So, when converting to C, one must first decide what to do
4302 with Scheme characters that can't be represented in the C string.
4303
4304 Converting a Scheme string to a C string will often allocate fresh
4305 memory to hold the result. You must take care that this memory is
4306 properly freed eventually. In many cases, this can be achieved by
4307 using @code{scm_dynwind_free} inside an appropriate dynwind context,
4308 @xref{Dynamic Wind}.
4309
4310 @deftypefn {C Function} SCM scm_from_locale_string (const char *str)
4311 @deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
4312 Creates a new Scheme string that has the same contents as @var{str} when
4313 interpreted in the character encoding of the current locale.
4314
4315 For @code{scm_from_locale_string}, @var{str} must be null-terminated.
4316
4317 For @code{scm_from_locale_stringn}, @var{len} specifies the length of
4318 @var{str} in bytes, and @var{str} does not need to be null-terminated.
4319 If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
4320 null-terminated and the real length will be found with @code{strlen}.
4321
4322 If the C string is ill-formed, an error will be raised.
4323
4324 Note that these functions should @emph{not} be used to convert C string
4325 constants, because there is no guarantee that the current locale will
4326 match that of the execution character set, used for string and character
4327 constants. Most modern C compilers use UTF-8 by default, so to convert
4328 C string constants we recommend @code{scm_from_utf8_string}.
4329 @end deftypefn
4330
4331 @deftypefn {C Function} SCM scm_take_locale_string (char *str)
4332 @deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
4333 Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
4334 respectively, but also frees @var{str} with @code{free} eventually.
4335 Thus, you can use this function when you would free @var{str} anyway
4336 immediately after creating the Scheme string. In certain cases, Guile
4337 can then use @var{str} directly as its internal representation.
4338 @end deftypefn
4339
4340 @deftypefn {C Function} {char *} scm_to_locale_string (SCM str)
4341 @deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
4342 Returns a C string with the same contents as @var{str} in the character
4343 encoding of the current locale. The C string must be freed with
4344 @code{free} eventually, maybe by using @code{scm_dynwind_free},
4345 @xref{Dynamic Wind}.
4346
4347 For @code{scm_to_locale_string}, the returned string is
4348 null-terminated and an error is signalled when @var{str} contains
4349 @code{#\nul} characters.
4350
4351 For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
4352 @var{str} might contain @code{#\nul} characters and the length of the
4353 returned string in bytes is stored in @code{*@var{lenp}}. The
4354 returned string will not be null-terminated in this case. If
4355 @var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
4356 @code{scm_to_locale_string}.
4357
4358 If a character in @var{str} cannot be represented in the character
4359 encoding of the current locale, the default port conversion strategy is
4360 used. @xref{Ports}, for more on conversion strategies.
4361
4362 If the conversion strategy is @code{error}, an error will be raised. If
4363 it is @code{substitute}, a replacement character, such as a question
4364 mark, will be inserted in its place. If it is @code{escape}, a hex
4365 escape will be inserted in its place.
4366 @end deftypefn
4367
4368 @deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
4369 Puts @var{str} as a C string in the current locale encoding into the
4370 memory pointed to by @var{buf}. The buffer at @var{buf} has room for
4371 @var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
4372 more than that. No terminating @code{'\0'} will be stored.
4373
4374 The return value of @code{scm_to_locale_stringbuf} is the number of
4375 bytes that are needed for all of @var{str}, regardless of whether
4376 @var{buf} was large enough to hold them. Thus, when the return value
4377 is larger than @var{max_len}, only @var{max_len} bytes have been
4378 stored and you probably need to try again with a larger buffer.
4379 @end deftypefn
4380
4381 For most situations, string conversion should occur using the current
4382 locale, such as with the functions above. But there may be cases where
4383 one wants to convert strings from a character encoding other than the
4384 locale's character encoding. For these cases, the lower-level functions
4385 @code{scm_to_stringn} and @code{scm_from_stringn} are provided. These
4386 functions should seldom be necessary if one is properly using locales.
4387
4388 @deftp {C Type} scm_t_string_failed_conversion_handler
4389 This is an enumerated type that can take one of three values:
4390 @code{SCM_FAILED_CONVERSION_ERROR},
4391 @code{SCM_FAILED_CONVERSION_QUESTION_MARK}, and
4392 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}. They are used to indicate
4393 a strategy for handling characters that cannot be converted to or from a
4394 given character encoding. @code{SCM_FAILED_CONVERSION_ERROR} indicates
4395 that a conversion should throw an error if some characters cannot be
4396 converted. @code{SCM_FAILED_CONVERSION_QUESTION_MARK} indicates that a
4397 conversion should replace unconvertable characters with the question
4398 mark character. And, @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE}
4399 requests that a conversion should replace an unconvertable character
4400 with an escape sequence.
4401
4402 While all three strategies apply when converting Scheme strings to C,
4403 only @code{SCM_FAILED_CONVERSION_ERROR} and
4404 @code{SCM_FAILED_CONVERSION_QUESTION_MARK} can be used when converting C
4405 strings to Scheme.
4406 @end deftp
4407
4408 @deftypefn {C Function} char *scm_to_stringn (SCM str, size_t *lenp, const char *encoding, scm_t_string_failed_conversion_handler handler)
4409 This function returns a newly allocated C string from the Guile string
4410 @var{str}. The length of the returned string in bytes will be returned in
4411 @var{lenp}. The character encoding of the C string is passed as the ASCII,
4412 null-terminated C string @var{encoding}. The @var{handler} parameter
4413 gives a strategy for dealing with characters that cannot be converted
4414 into @var{encoding}.
4415
4416 If @var{lenp} is @code{NULL}, this function will return a null-terminated C
4417 string. It will throw an error if the string contains a null
4418 character.
4419
4420 The Scheme interface to this function is @code{string->bytevector}, from the
4421 @code{ice-9 iconv} module. @xref{Representing Strings as Bytes}.
4422 @end deftypefn
4423
4424 @deftypefn {C Function} SCM scm_from_stringn (const char *str, size_t len, const char *encoding, scm_t_string_failed_conversion_handler handler)
4425 This function returns a scheme string from the C string @var{str}. The
4426 length in bytes of the C string is input as @var{len}. The encoding of the C
4427 string is passed as the ASCII, null-terminated C string @code{encoding}.
4428 The @var{handler} parameters suggests a strategy for dealing with
4429 unconvertable characters.
4430
4431 The Scheme interface to this function is @code{bytevector->string}.
4432 @xref{Representing Strings as Bytes}.
4433 @end deftypefn
4434
4435 The following conversion functions are provided as a convenience for the
4436 most commonly used encodings.
4437
4438 @deftypefn {C Function} SCM scm_from_latin1_string (const char *str)
4439 @deftypefnx {C Function} SCM scm_from_utf8_string (const char *str)
4440 @deftypefnx {C Function} SCM scm_from_utf32_string (const scm_t_wchar *str)
4441 Return a scheme string from the null-terminated C string @var{str},
4442 which is ISO-8859-1-, UTF-8-, or UTF-32-encoded. These functions should
4443 be used to convert hard-coded C string constants into Scheme strings.
4444 @end deftypefn
4445
4446 @deftypefn {C Function} SCM scm_from_latin1_stringn (const char *str, size_t len)
4447 @deftypefnx {C Function} SCM scm_from_utf8_stringn (const char *str, size_t len)
4448 @deftypefnx {C Function} SCM scm_from_utf32_stringn (const scm_t_wchar *str, size_t len)
4449 Return a scheme string from C string @var{str}, which is ISO-8859-1-,
4450 UTF-8-, or UTF-32-encoded, of length @var{len}. @var{len} is the number
4451 of bytes pointed to by @var{str} for @code{scm_from_latin1_stringn} and
4452 @code{scm_from_utf8_stringn}; it is the number of elements (code points)
4453 in @var{str} in the case of @code{scm_from_utf32_stringn}.
4454 @end deftypefn
4455
4456 @deftypefn {C function} char *scm_to_latin1_stringn (SCM str, size_t *lenp)
4457 @deftypefnx {C function} char *scm_to_utf8_stringn (SCM str, size_t *lenp)
4458 @deftypefnx {C function} scm_t_wchar *scm_to_utf32_stringn (SCM str, size_t *lenp)
4459 Return a newly allocated, ISO-8859-1-, UTF-8-, or UTF-32-encoded C string
4460 from Scheme string @var{str}. An error is thrown when @var{str}
4461 cannot be converted to the specified encoding. If @var{lenp} is
4462 @code{NULL}, the returned C string will be null terminated, and an error
4463 will be thrown if the C string would otherwise contain null
4464 characters. If @var{lenp} is not @code{NULL}, the string is not null terminated,
4465 and the length of the returned string is returned in @var{lenp}. The length
4466 returned is the number of bytes for @code{scm_to_latin1_stringn} and
4467 @code{scm_to_utf8_stringn}; it is the number of elements (code points)
4468 for @code{scm_to_utf32_stringn}.
4469 @end deftypefn
4470
4471 @node String Internals
4472 @subsubsection String Internals
4473
4474 Guile stores each string in memory as a contiguous array of Unicode code
4475 points along with an associated set of attributes. If all of the code
4476 points of a string have an integer range between 0 and 255 inclusive,
4477 the code point array is stored as one byte per code point: it is stored
4478 as an ISO-8859-1 (aka Latin-1) string. If any of the code points of the
4479 string has an integer value greater that 255, the code point array is
4480 stored as four bytes per code point: it is stored as a UTF-32 string.
4481
4482 Conversion between the one-byte-per-code-point and
4483 four-bytes-per-code-point representations happens automatically as
4484 necessary.
4485
4486 No API is provided to set the internal representation of strings;
4487 however, there are pair of procedures available to query it. These are
4488 debugging procedures. Using them in production code is discouraged,
4489 since the details of Guile's internal representation of strings may
4490 change from release to release.
4491
4492 @deffn {Scheme Procedure} string-bytes-per-char str
4493 @deffnx {C Function} scm_string_bytes_per_char (str)
4494 Return the number of bytes used to encode a Unicode code point in string
4495 @var{str}. The result is one or four.
4496 @end deffn
4497
4498 @deffn {Scheme Procedure} %string-dump str
4499 @deffnx {C Function} scm_sys_string_dump (str)
4500 Returns an association list containing debugging information for
4501 @var{str}. The association list has the following entries.
4502 @table @code
4503
4504 @item string
4505 The string itself.
4506
4507 @item start
4508 The start index of the string into its stringbuf
4509
4510 @item length
4511 The length of the string
4512
4513 @item shared
4514 If this string is a substring, it returns its
4515 parent string. Otherwise, it returns @code{#f}
4516
4517 @item read-only
4518 @code{#t} if the string is read-only
4519
4520 @item stringbuf-chars
4521 A new string containing this string's stringbuf's characters
4522
4523 @item stringbuf-length
4524 The number of characters in this stringbuf
4525
4526 @item stringbuf-shared
4527 @code{#t} if this stringbuf is shared
4528
4529 @item stringbuf-wide
4530 @code{#t} if this stringbuf's characters are stored in a 32-bit buffer,
4531 or @code{#f} if they are stored in an 8-bit buffer
4532 @end table
4533 @end deffn
4534
4535
4536 @node Bytevectors
4537 @subsection Bytevectors
4538
4539 @cindex bytevector
4540 @cindex R6RS
4541
4542 A @dfn{bytevector} is a raw bit string. The @code{(rnrs bytevectors)}
4543 module provides the programming interface specified by the
4544 @uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
4545 Scheme (R6RS)}. It contains procedures to manipulate bytevectors and
4546 interpret their contents in a number of ways: bytevector contents can be
4547 accessed as signed or unsigned integer of various sizes and endianness,
4548 as IEEE-754 floating point numbers, or as strings. It is a useful tool
4549 to encode and decode binary data.
4550
4551 The R6RS (Section 4.3.4) specifies an external representation for
4552 bytevectors, whereby the octets (integers in the range 0--255) contained
4553 in the bytevector are represented as a list prefixed by @code{#vu8}:
4554
4555 @lisp
4556 #vu8(1 53 204)
4557 @end lisp
4558
4559 denotes a 3-byte bytevector containing the octets 1, 53, and 204. Like
4560 string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
4561 they do not need to be quoted:
4562
4563 @lisp
4564 #vu8(1 53 204)
4565 @result{} #vu8(1 53 204)
4566 @end lisp
4567
4568 Bytevectors can be used with the binary input/output primitives of the
4569 R6RS (@pxref{R6RS I/O Ports}).
4570
4571 @menu
4572 * Bytevector Endianness:: Dealing with byte order.
4573 * Bytevector Manipulation:: Creating, copying, manipulating bytevectors.
4574 * Bytevectors as Integers:: Interpreting bytes as integers.
4575 * Bytevectors and Integer Lists:: Converting to/from an integer list.
4576 * Bytevectors as Floats:: Interpreting bytes as real numbers.
4577 * Bytevectors as Strings:: Interpreting bytes as Unicode strings.
4578 * Bytevectors as Arrays:: Guile extension to the bytevector API.
4579 * Bytevectors as Uniform Vectors:: Bytevectors and SRFI-4.
4580 @end menu
4581
4582 @node Bytevector Endianness
4583 @subsubsection Endianness
4584
4585 @cindex endianness
4586 @cindex byte order
4587 @cindex word order
4588
4589 Some of the following procedures take an @var{endianness} parameter.
4590 The @dfn{endianness} is defined as the order of bytes in multi-byte
4591 numbers: numbers encoded in @dfn{big endian} have their most
4592 significant bytes written first, whereas numbers encoded in
4593 @dfn{little endian} have their least significant bytes
4594 first@footnote{Big-endian and little-endian are the most common
4595 ``endiannesses'', but others do exist. For instance, the GNU MP
4596 library allows @dfn{word order} to be specified independently of
4597 @dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
4598 Multiple Precision Arithmetic Library Manual}).}.
4599
4600 Little-endian is the native endianness of the IA32 architecture and
4601 its derivatives, while big-endian is native to SPARC and PowerPC,
4602 among others. The @code{native-endianness} procedure returns the
4603 native endianness of the machine it runs on.
4604
4605 @deffn {Scheme Procedure} native-endianness
4606 @deffnx {C Function} scm_native_endianness ()
4607 Return a value denoting the native endianness of the host machine.
4608 @end deffn
4609
4610 @deffn {Scheme Macro} endianness symbol
4611 Return an object denoting the endianness specified by @var{symbol}. If
4612 @var{symbol} is neither @code{big} nor @code{little} then an error is
4613 raised at expand-time.
4614 @end deffn
4615
4616 @defvr {C Variable} scm_endianness_big
4617 @defvrx {C Variable} scm_endianness_little
4618 The objects denoting big- and little-endianness, respectively.
4619 @end defvr
4620
4621
4622 @node Bytevector Manipulation
4623 @subsubsection Manipulating Bytevectors
4624
4625 Bytevectors can be created, copied, and analyzed with the following
4626 procedures and C functions.
4627
4628 @deffn {Scheme Procedure} make-bytevector len [fill]
4629 @deffnx {C Function} scm_make_bytevector (len, fill)
4630 @deffnx {C Function} scm_c_make_bytevector (size_t len)
4631 Return a new bytevector of @var{len} bytes. Optionally, if @var{fill}
4632 is given, fill it with @var{fill}; @var{fill} must be in the range
4633 [-128,255].
4634 @end deffn
4635
4636 @deffn {Scheme Procedure} bytevector? obj
4637 @deffnx {C Function} scm_bytevector_p (obj)
4638 Return true if @var{obj} is a bytevector.
4639 @end deffn
4640
4641 @deftypefn {C Function} int scm_is_bytevector (SCM obj)
4642 Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
4643 @end deftypefn
4644
4645 @deffn {Scheme Procedure} bytevector-length bv
4646 @deffnx {C Function} scm_bytevector_length (bv)
4647 Return the length in bytes of bytevector @var{bv}.
4648 @end deffn
4649
4650 @deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
4651 Likewise, return the length in bytes of bytevector @var{bv}.
4652 @end deftypefn
4653
4654 @deffn {Scheme Procedure} bytevector=? bv1 bv2
4655 @deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
4656 Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
4657 length and contents.
4658 @end deffn
4659
4660 @deffn {Scheme Procedure} bytevector-fill! bv fill
4661 @deffnx {C Function} scm_bytevector_fill_x (bv, fill)
4662 Fill bytevector @var{bv} with @var{fill}, a byte.
4663 @end deffn
4664
4665 @deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
4666 @deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
4667 Copy @var{len} bytes from @var{source} into @var{target}, starting
4668 reading from @var{source-start} (a positive index within @var{source})
4669 and start writing at @var{target-start}. It is permitted for the
4670 @var{source} and @var{target} regions to overlap.
4671 @end deffn
4672
4673 @deffn {Scheme Procedure} bytevector-copy bv
4674 @deffnx {C Function} scm_bytevector_copy (bv)
4675 Return a newly allocated copy of @var{bv}.
4676 @end deffn
4677
4678 @deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
4679 Return the byte at @var{index} in bytevector @var{bv}.
4680 @end deftypefn
4681
4682 @deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
4683 Set the byte at @var{index} in @var{bv} to @var{value}.
4684 @end deftypefn
4685
4686 Low-level C macros are available. They do not perform any
4687 type-checking; as such they should be used with care.
4688
4689 @deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
4690 Return the length in bytes of bytevector @var{bv}.
4691 @end deftypefn
4692
4693 @deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
4694 Return a pointer to the contents of bytevector @var{bv}.
4695 @end deftypefn
4696
4697
4698 @node Bytevectors as Integers
4699 @subsubsection Interpreting Bytevector Contents as Integers
4700
4701 The contents of a bytevector can be interpreted as a sequence of
4702 integers of any given size, sign, and endianness.
4703
4704 @lisp
4705 (let ((bv (make-bytevector 4)))
4706 (bytevector-u8-set! bv 0 #x12)
4707 (bytevector-u8-set! bv 1 #x34)
4708 (bytevector-u8-set! bv 2 #x56)
4709 (bytevector-u8-set! bv 3 #x78)
4710
4711 (map (lambda (number)
4712 (number->string number 16))
4713 (list (bytevector-u8-ref bv 0)
4714 (bytevector-u16-ref bv 0 (endianness big))
4715 (bytevector-u32-ref bv 0 (endianness little)))))
4716
4717 @result{} ("12" "1234" "78563412")
4718 @end lisp
4719
4720 The most generic procedures to interpret bytevector contents as integers
4721 are described below.
4722
4723 @deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
4724 @deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
4725 Return the @var{size}-byte long unsigned integer at index @var{index} in
4726 @var{bv}, decoded according to @var{endianness}.
4727 @end deffn
4728
4729 @deffn {Scheme Procedure} bytevector-sint-ref bv index endianness size
4730 @deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
4731 Return the @var{size}-byte long signed integer at index @var{index} in
4732 @var{bv}, decoded according to @var{endianness}.
4733 @end deffn
4734
4735 @deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
4736 @deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
4737 Set the @var{size}-byte long unsigned integer at @var{index} to
4738 @var{value}, encoded according to @var{endianness}.
4739 @end deffn
4740
4741 @deffn {Scheme Procedure} bytevector-sint-set! bv index value endianness size
4742 @deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
4743 Set the @var{size}-byte long signed integer at @var{index} to
4744 @var{value}, encoded according to @var{endianness}.
4745 @end deffn
4746
4747 The following procedures are similar to the ones above, but specialized
4748 to a given integer size:
4749
4750 @deffn {Scheme Procedure} bytevector-u8-ref bv index
4751 @deffnx {Scheme Procedure} bytevector-s8-ref bv index
4752 @deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
4753 @deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
4754 @deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
4755 @deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
4756 @deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
4757 @deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
4758 @deffnx {C Function} scm_bytevector_u8_ref (bv, index)
4759 @deffnx {C Function} scm_bytevector_s8_ref (bv, index)
4760 @deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
4761 @deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
4762 @deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
4763 @deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
4764 @deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
4765 @deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
4766 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4767 16, 32 or 64) from @var{bv} at @var{index}, decoded according to
4768 @var{endianness}.
4769 @end deffn
4770
4771 @deffn {Scheme Procedure} bytevector-u8-set! bv index value
4772 @deffnx {Scheme Procedure} bytevector-s8-set! bv index value
4773 @deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
4774 @deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
4775 @deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
4776 @deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
4777 @deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
4778 @deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
4779 @deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
4780 @deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
4781 @deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
4782 @deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
4783 @deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
4784 @deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
4785 @deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
4786 @deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
4787 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4788 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
4789 @var{endianness}.
4790 @end deffn
4791
4792 Finally, a variant specialized for the host's endianness is available
4793 for each of these functions (with the exception of the @code{u8}
4794 accessors, for obvious reasons):
4795
4796 @deffn {Scheme Procedure} bytevector-u16-native-ref bv index
4797 @deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
4798 @deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
4799 @deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
4800 @deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
4801 @deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
4802 @deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
4803 @deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
4804 @deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
4805 @deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
4806 @deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
4807 @deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
4808 Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
4809 16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
4810 host's native endianness.
4811 @end deffn
4812
4813 @deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
4814 @deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
4815 @deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
4816 @deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
4817 @deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
4818 @deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
4819 @deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
4820 @deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
4821 @deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
4822 @deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
4823 @deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
4824 @deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
4825 Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
4826 8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
4827 host's native endianness.
4828 @end deffn
4829
4830
4831 @node Bytevectors and Integer Lists
4832 @subsubsection Converting Bytevectors to/from Integer Lists
4833
4834 Bytevector contents can readily be converted to/from lists of signed or
4835 unsigned integers:
4836
4837 @lisp
4838 (bytevector->sint-list (u8-list->bytevector (make-list 4 255))
4839 (endianness little) 2)
4840 @result{} (-1 -1)
4841 @end lisp
4842
4843 @deffn {Scheme Procedure} bytevector->u8-list bv
4844 @deffnx {C Function} scm_bytevector_to_u8_list (bv)
4845 Return a newly allocated list of unsigned 8-bit integers from the
4846 contents of @var{bv}.
4847 @end deffn
4848
4849 @deffn {Scheme Procedure} u8-list->bytevector lst
4850 @deffnx {C Function} scm_u8_list_to_bytevector (lst)
4851 Return a newly allocated bytevector consisting of the unsigned 8-bit
4852 integers listed in @var{lst}.
4853 @end deffn
4854
4855 @deffn {Scheme Procedure} bytevector->uint-list bv endianness size
4856 @deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
4857 Return a list of unsigned integers of @var{size} bytes representing the
4858 contents of @var{bv}, decoded according to @var{endianness}.
4859 @end deffn
4860
4861 @deffn {Scheme Procedure} bytevector->sint-list bv endianness size
4862 @deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
4863 Return a list of signed integers of @var{size} bytes representing the
4864 contents of @var{bv}, decoded according to @var{endianness}.
4865 @end deffn
4866
4867 @deffn {Scheme Procedure} uint-list->bytevector lst endianness size
4868 @deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
4869 Return a new bytevector containing the unsigned integers listed in
4870 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4871 @end deffn
4872
4873 @deffn {Scheme Procedure} sint-list->bytevector lst endianness size
4874 @deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
4875 Return a new bytevector containing the signed integers listed in
4876 @var{lst} and encoded on @var{size} bytes according to @var{endianness}.
4877 @end deffn
4878
4879 @node Bytevectors as Floats
4880 @subsubsection Interpreting Bytevector Contents as Floating Point Numbers
4881
4882 @cindex IEEE-754 floating point numbers
4883
4884 Bytevector contents can also be accessed as IEEE-754 single- or
4885 double-precision floating point numbers (respectively 32 and 64-bit
4886 long) using the procedures described here.
4887
4888 @deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
4889 @deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
4890 @deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
4891 @deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
4892 Return the IEEE-754 single-precision floating point number from @var{bv}
4893 at @var{index} according to @var{endianness}.
4894 @end deffn
4895
4896 @deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
4897 @deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
4898 @deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
4899 @deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
4900 Store real number @var{value} in @var{bv} at @var{index} according to
4901 @var{endianness}.
4902 @end deffn
4903
4904 Specialized procedures are also available:
4905
4906 @deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
4907 @deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
4908 @deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
4909 @deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
4910 Return the IEEE-754 single-precision floating point number from @var{bv}
4911 at @var{index} according to the host's native endianness.
4912 @end deffn
4913
4914 @deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
4915 @deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
4916 @deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
4917 @deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
4918 Store real number @var{value} in @var{bv} at @var{index} according to
4919 the host's native endianness.
4920 @end deffn
4921
4922
4923 @node Bytevectors as Strings
4924 @subsubsection Interpreting Bytevector Contents as Unicode Strings
4925
4926 @cindex Unicode string encoding
4927
4928 Bytevector contents can also be interpreted as Unicode strings encoded
4929 in one of the most commonly available encoding formats.
4930 @xref{Representing Strings as Bytes}, for a more generic interface.
4931
4932 @lisp
4933 (utf8->string (u8-list->bytevector '(99 97 102 101)))
4934 @result{} "cafe"
4935
4936 (string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
4937 @result{} #vu8(99 97 102 195 169)
4938 @end lisp
4939
4940 @deffn {Scheme Procedure} string->utf8 str
4941 @deffnx {Scheme Procedure} string->utf16 str [endianness]
4942 @deffnx {Scheme Procedure} string->utf32 str [endianness]
4943 @deffnx {C Function} scm_string_to_utf8 (str)
4944 @deffnx {C Function} scm_string_to_utf16 (str, endianness)
4945 @deffnx {C Function} scm_string_to_utf32 (str, endianness)
4946 Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
4947 UTF-32 (aka. UCS-4) encoding of @var{str}. For UTF-16 and UTF-32,
4948 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4949 it defaults to big endian.
4950 @end deffn
4951
4952 @deffn {Scheme Procedure} utf8->string utf
4953 @deffnx {Scheme Procedure} utf16->string utf [endianness]
4954 @deffnx {Scheme Procedure} utf32->string utf [endianness]
4955 @deffnx {C Function} scm_utf8_to_string (utf)
4956 @deffnx {C Function} scm_utf16_to_string (utf, endianness)
4957 @deffnx {C Function} scm_utf32_to_string (utf, endianness)
4958 Return a newly allocated string that contains from the UTF-8-, UTF-16-,
4959 or UTF-32-decoded contents of bytevector @var{utf}. For UTF-16 and UTF-32,
4960 @var{endianness} should be the symbol @code{big} or @code{little}; when omitted,
4961 it defaults to big endian.
4962 @end deffn
4963
4964 @node Bytevectors as Arrays
4965 @subsubsection Accessing Bytevectors with the Array API
4966
4967 As an extension to the R6RS, Guile allows bytevectors to be manipulated
4968 with the @dfn{array} procedures (@pxref{Arrays}). When using these
4969 APIs, bytes are accessed one at a time as 8-bit unsigned integers:
4970
4971 @example
4972 (define bv #vu8(0 1 2 3))
4973
4974 (array? bv)
4975 @result{} #t
4976
4977 (array-rank bv)
4978 @result{} 1
4979
4980 (array-ref bv 2)
4981 @result{} 2
4982
4983 ;; Note the different argument order on array-set!.
4984 (array-set! bv 77 2)
4985 (array-ref bv 2)
4986 @result{} 77
4987
4988 (array-type bv)
4989 @result{} vu8
4990 @end example
4991
4992
4993 @node Bytevectors as Uniform Vectors
4994 @subsubsection Accessing Bytevectors with the SRFI-4 API
4995
4996 Bytevectors may also be accessed with the SRFI-4 API. @xref{SRFI-4 and
4997 Bytevectors}, for more information.
4998
4999
5000 @node Symbols
5001 @subsection Symbols
5002 @tpindex Symbols
5003
5004 Symbols in Scheme are widely used in three ways: as items of discrete
5005 data, as lookup keys for alists and hash tables, and to denote variable
5006 references.
5007
5008 A @dfn{symbol} is similar to a string in that it is defined by a
5009 sequence of characters. The sequence of characters is known as the
5010 symbol's @dfn{name}. In the usual case --- that is, where the symbol's
5011 name doesn't include any characters that could be confused with other
5012 elements of Scheme syntax --- a symbol is written in a Scheme program by
5013 writing the sequence of characters that make up the name, @emph{without}
5014 any quotation marks or other special syntax. For example, the symbol
5015 whose name is ``multiply-by-2'' is written, simply:
5016
5017 @lisp
5018 multiply-by-2
5019 @end lisp
5020
5021 Notice how this differs from a @emph{string} with contents
5022 ``multiply-by-2'', which is written with double quotation marks, like
5023 this:
5024
5025 @lisp
5026 "multiply-by-2"
5027 @end lisp
5028
5029 Looking beyond how they are written, symbols are different from strings
5030 in two important respects.
5031
5032 The first important difference is uniqueness. If the same-looking
5033 string is read twice from two different places in a program, the result
5034 is two @emph{different} string objects whose contents just happen to be
5035 the same. If, on the other hand, the same-looking symbol is read twice
5036 from two different places in a program, the result is the @emph{same}
5037 symbol object both times.
5038
5039 Given two read symbols, you can use @code{eq?} to test whether they are
5040 the same (that is, have the same name). @code{eq?} is the most
5041 efficient comparison operator in Scheme, and comparing two symbols like
5042 this is as fast as comparing, for example, two numbers. Given two
5043 strings, on the other hand, you must use @code{equal?} or
5044 @code{string=?}, which are much slower comparison operators, to
5045 determine whether the strings have the same contents.
5046
5047 @lisp
5048 (define sym1 (quote hello))
5049 (define sym2 (quote hello))
5050 (eq? sym1 sym2) @result{} #t
5051
5052 (define str1 "hello")
5053 (define str2 "hello")
5054 (eq? str1 str2) @result{} #f
5055 (equal? str1 str2) @result{} #t
5056 @end lisp
5057
5058 The second important difference is that symbols, unlike strings, are not
5059 self-evaluating. This is why we need the @code{(quote @dots{})}s in the
5060 example above: @code{(quote hello)} evaluates to the symbol named
5061 "hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
5062 symbol named "hello" and evaluated as a variable reference @dots{} about
5063 which more below (@pxref{Symbol Variables}).
5064
5065 @menu
5066 * Symbol Data:: Symbols as discrete data.
5067 * Symbol Keys:: Symbols as lookup keys.
5068 * Symbol Variables:: Symbols as denoting variables.
5069 * Symbol Primitives:: Operations related to symbols.
5070 * Symbol Props:: Function slots and property lists.
5071 * Symbol Read Syntax:: Extended read syntax for symbols.
5072 * Symbol Uninterned:: Uninterned symbols.
5073 @end menu
5074
5075
5076 @node Symbol Data
5077 @subsubsection Symbols as Discrete Data
5078
5079 Numbers and symbols are similar to the extent that they both lend
5080 themselves to @code{eq?} comparison. But symbols are more descriptive
5081 than numbers, because a symbol's name can be used directly to describe
5082 the concept for which that symbol stands.
5083
5084 For example, imagine that you need to represent some colours in a
5085 computer program. Using numbers, you would have to choose arbitrarily
5086 some mapping between numbers and colours, and then take care to use that
5087 mapping consistently:
5088
5089 @lisp
5090 ;; 1=red, 2=green, 3=purple
5091
5092 (if (eq? (colour-of car) 1)
5093 ...)
5094 @end lisp
5095
5096 @noindent
5097 You can make the mapping more explicit and the code more readable by
5098 defining constants:
5099
5100 @lisp
5101 (define red 1)
5102 (define green 2)
5103 (define purple 3)
5104
5105 (if (eq? (colour-of car) red)
5106 ...)
5107 @end lisp
5108
5109 @noindent
5110 But the simplest and clearest approach is not to use numbers at all, but
5111 symbols whose names specify the colours that they refer to:
5112
5113 @lisp
5114 (if (eq? (colour-of car) 'red)
5115 ...)
5116 @end lisp
5117
5118 The descriptive advantages of symbols over numbers increase as the set
5119 of concepts that you want to describe grows. Suppose that a car object
5120 can have other properties as well, such as whether it has or uses:
5121
5122 @itemize @bullet
5123 @item
5124 automatic or manual transmission
5125 @item
5126 leaded or unleaded fuel
5127 @item
5128 power steering (or not).
5129 @end itemize
5130
5131 @noindent
5132 Then a car's combined property set could be naturally represented and
5133 manipulated as a list of symbols:
5134
5135 @lisp
5136 (properties-of car1)
5137 @result{}
5138 (red manual unleaded power-steering)
5139
5140 (if (memq 'power-steering (properties-of car1))
5141 (display "Unfit people can drive this car.\n")
5142 (display "You'll need strong arms to drive this car!\n"))
5143 @print{}
5144 Unfit people can drive this car.
5145 @end lisp
5146
5147 Remember, the fundamental property of symbols that we are relying on
5148 here is that an occurrence of @code{'red} in one part of a program is an
5149 @emph{indistinguishable} symbol from an occurrence of @code{'red} in
5150 another part of a program; this means that symbols can usefully be
5151 compared using @code{eq?}. At the same time, symbols have naturally
5152 descriptive names. This combination of efficiency and descriptive power
5153 makes them ideal for use as discrete data.
5154
5155
5156 @node Symbol Keys
5157 @subsubsection Symbols as Lookup Keys
5158
5159 Given their efficiency and descriptive power, it is natural to use
5160 symbols as the keys in an association list or hash table.
5161
5162 To illustrate this, consider a more structured representation of the car
5163 properties example from the preceding subsection. Rather than
5164 mixing all the properties up together in a flat list, we could use an
5165 association list like this:
5166
5167 @lisp
5168 (define car1-properties '((colour . red)
5169 (transmission . manual)
5170 (fuel . unleaded)
5171 (steering . power-assisted)))
5172 @end lisp
5173
5174 Notice how this structure is more explicit and extensible than the flat
5175 list. For example it makes clear that @code{manual} refers to the
5176 transmission rather than, say, the windows or the locking of the car.
5177 It also allows further properties to use the same symbols among their
5178 possible values without becoming ambiguous:
5179
5180 @lisp
5181 (define car1-properties '((colour . red)
5182 (transmission . manual)
5183 (fuel . unleaded)
5184 (steering . power-assisted)
5185 (seat-colour . red)
5186 (locking . manual)))
5187 @end lisp
5188
5189 With a representation like this, it is easy to use the efficient
5190 @code{assq-XXX} family of procedures (@pxref{Association Lists}) to
5191 extract or change individual pieces of information:
5192
5193 @lisp
5194 (assq-ref car1-properties 'fuel) @result{} unleaded
5195 (assq-ref car1-properties 'transmission) @result{} manual
5196
5197 (assq-set! car1-properties 'seat-colour 'black)
5198 @result{}
5199 ((colour . red)
5200 (transmission . manual)
5201 (fuel . unleaded)
5202 (steering . power-assisted)
5203 (seat-colour . black)
5204 (locking . manual)))
5205 @end lisp
5206
5207 Hash tables also have keys, and exactly the same arguments apply to the
5208 use of symbols in hash tables as in association lists. The hash value
5209 that Guile uses to decide where to add a symbol-keyed entry to a hash
5210 table can be obtained by calling the @code{symbol-hash} procedure:
5211
5212 @deffn {Scheme Procedure} symbol-hash symbol
5213 @deffnx {C Function} scm_symbol_hash (symbol)
5214 Return a hash value for @var{symbol}.
5215 @end deffn
5216
5217 See @ref{Hash Tables} for information about hash tables in general, and
5218 for why you might choose to use a hash table rather than an association
5219 list.
5220
5221
5222 @node Symbol Variables
5223 @subsubsection Symbols as Denoting Variables
5224
5225 When an unquoted symbol in a Scheme program is evaluated, it is
5226 interpreted as a variable reference, and the result of the evaluation is
5227 the appropriate variable's value.
5228
5229 For example, when the expression @code{(string-length "abcd")} is read
5230 and evaluated, the sequence of characters @code{string-length} is read
5231 as the symbol whose name is "string-length". This symbol is associated
5232 with a variable whose value is the procedure that implements string
5233 length calculation. Therefore evaluation of the @code{string-length}
5234 symbol results in that procedure.
5235
5236 The details of the connection between an unquoted symbol and the
5237 variable to which it refers are explained elsewhere. See @ref{Binding
5238 Constructs}, for how associations between symbols and variables are
5239 created, and @ref{Modules}, for how those associations are affected by
5240 Guile's module system.
5241
5242
5243 @node Symbol Primitives
5244 @subsubsection Operations Related to Symbols
5245
5246 Given any Scheme value, you can determine whether it is a symbol using
5247 the @code{symbol?} primitive:
5248
5249 @rnindex symbol?
5250 @deffn {Scheme Procedure} symbol? obj
5251 @deffnx {C Function} scm_symbol_p (obj)
5252 Return @code{#t} if @var{obj} is a symbol, otherwise return
5253 @code{#f}.
5254 @end deffn
5255
5256 @deftypefn {C Function} int scm_is_symbol (SCM val)
5257 Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
5258 @end deftypefn
5259
5260 Once you know that you have a symbol, you can obtain its name as a
5261 string by calling @code{symbol->string}. Note that Guile differs by
5262 default from R5RS on the details of @code{symbol->string} as regards
5263 case-sensitivity:
5264
5265 @rnindex symbol->string
5266 @deffn {Scheme Procedure} symbol->string s
5267 @deffnx {C Function} scm_symbol_to_string (s)
5268 Return the name of symbol @var{s} as a string. By default, Guile reads
5269 symbols case-sensitively, so the string returned will have the same case
5270 variation as the sequence of characters that caused @var{s} to be
5271 created.
5272
5273 If Guile is set to read symbols case-insensitively (as specified by
5274 R5RS), and @var{s} comes into being as part of a literal expression
5275 (@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
5276 by a call to the @code{read} or @code{string-ci->symbol} procedures,
5277 Guile converts any alphabetic characters in the symbol's name to
5278 lower case before creating the symbol object, so the string returned
5279 here will be in lower case.
5280
5281 If @var{s} was created by @code{string->symbol}, the case of characters
5282 in the string returned will be the same as that in the string that was
5283 passed to @code{string->symbol}, regardless of Guile's case-sensitivity
5284 setting at the time @var{s} was created.
5285
5286 It is an error to apply mutation procedures like @code{string-set!} to
5287 strings returned by this procedure.
5288 @end deffn
5289
5290 Most symbols are created by writing them literally in code. However it
5291 is also possible to create symbols programmatically using the following
5292 procedures:
5293
5294 @deffn {Scheme Procedure} symbol char@dots{}
5295 @rnindex symbol
5296 Return a newly allocated symbol made from the given character arguments.
5297
5298 @example
5299 (symbol #\x #\y #\z) @result{} xyz
5300 @end example
5301 @end deffn
5302
5303 @deffn {Scheme Procedure} list->symbol lst
5304 @rnindex list->symbol
5305 Return a newly allocated symbol made from a list of characters.
5306
5307 @example
5308 (list->symbol '(#\a #\b #\c)) @result{} abc
5309 @end example
5310 @end deffn
5311
5312 @rnindex symbol-append
5313 @deffn {Scheme Procedure} symbol-append arg @dots{}
5314 Return a newly allocated symbol whose characters form the
5315 concatenation of the given symbols, @var{arg} @enddots{}.
5316
5317 @example
5318 (let ((h 'hello))
5319 (symbol-append h 'world))
5320 @result{} helloworld
5321 @end example
5322 @end deffn
5323
5324 @rnindex string->symbol
5325 @deffn {Scheme Procedure} string->symbol string
5326 @deffnx {C Function} scm_string_to_symbol (string)
5327 Return the symbol whose name is @var{string}. This procedure can create
5328 symbols with names containing special characters or letters in the
5329 non-standard case, but it is usually a bad idea to create such symbols
5330 because in some implementations of Scheme they cannot be read as
5331 themselves.
5332 @end deffn
5333
5334 @deffn {Scheme Procedure} string-ci->symbol str
5335 @deffnx {C Function} scm_string_ci_to_symbol (str)
5336 Return the symbol whose name is @var{str}. If Guile is currently
5337 reading symbols case-insensitively, @var{str} is converted to lowercase
5338 before the returned symbol is looked up or created.
5339 @end deffn
5340
5341 The following examples illustrate Guile's detailed behaviour as regards
5342 the case-sensitivity of symbols:
5343
5344 @lisp
5345 (read-enable 'case-insensitive) ; R5RS compliant behaviour
5346
5347 (symbol->string 'flying-fish) @result{} "flying-fish"
5348 (symbol->string 'Martin) @result{} "martin"
5349 (symbol->string
5350 (string->symbol "Malvina")) @result{} "Malvina"
5351
5352 (eq? 'mISSISSIppi 'mississippi) @result{} #t
5353 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5354 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
5355 (eq? 'LolliPop
5356 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5357 (string=? "K. Harper, M.D."
5358 (symbol->string
5359 (string->symbol "K. Harper, M.D."))) @result{} #t
5360
5361 (read-disable 'case-insensitive) ; Guile default behaviour
5362
5363 (symbol->string 'flying-fish) @result{} "flying-fish"
5364 (symbol->string 'Martin) @result{} "Martin"
5365 (symbol->string
5366 (string->symbol "Malvina")) @result{} "Malvina"
5367
5368 (eq? 'mISSISSIppi 'mississippi) @result{} #f
5369 (string->symbol "mISSISSIppi") @result{} mISSISSIppi
5370 (eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
5371 (eq? 'LolliPop
5372 (string->symbol (symbol->string 'LolliPop))) @result{} #t
5373 (string=? "K. Harper, M.D."
5374 (symbol->string
5375 (string->symbol "K. Harper, M.D."))) @result{} #t
5376 @end lisp
5377
5378 From C, there are lower level functions that construct a Scheme symbol
5379 from a C string in the current locale encoding.
5380
5381 When you want to do more from C, you should convert between symbols
5382 and strings using @code{scm_symbol_to_string} and
5383 @code{scm_string_to_symbol} and work with the strings.
5384
5385 @deftypefn {C Function} SCM scm_from_latin1_symbol (const char *name)
5386 @deftypefnx {C Function} SCM scm_from_utf8_symbol (const char *name)
5387 Construct and return a Scheme symbol whose name is specified by the
5388 null-terminated C string @var{name}. These are appropriate when
5389 the C string is hard-coded in the source code.
5390 @end deftypefn
5391
5392 @deftypefn {C Function} SCM scm_from_locale_symbol (const char *name)
5393 @deftypefnx {C Function} SCM scm_from_locale_symboln (const char *name, size_t len)
5394 Construct and return a Scheme symbol whose name is specified by
5395 @var{name}. For @code{scm_from_locale_symbol}, @var{name} must be null
5396 terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
5397 specified explicitly by @var{len}.
5398
5399 Note that these functions should @emph{not} be used when @var{name} is a
5400 C string constant, because there is no guarantee that the current locale
5401 will match that of the execution character set, used for string and
5402 character constants. Most modern C compilers use UTF-8 by default, so
5403 in such cases we recommend @code{scm_from_utf8_symbol}.
5404 @end deftypefn
5405
5406 @deftypefn {C Function} SCM scm_take_locale_symbol (char *str)
5407 @deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
5408 Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
5409 respectively, but also frees @var{str} with @code{free} eventually.
5410 Thus, you can use this function when you would free @var{str} anyway
5411 immediately after creating the Scheme string. In certain cases, Guile
5412 can then use @var{str} directly as its internal representation.
5413 @end deftypefn
5414
5415 The size of a symbol can also be obtained from C:
5416
5417 @deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
5418 Return the number of characters in @var{sym}.
5419 @end deftypefn
5420
5421 Finally, some applications, especially those that generate new Scheme
5422 code dynamically, need to generate symbols for use in the generated
5423 code. The @code{gensym} primitive meets this need:
5424
5425 @deffn {Scheme Procedure} gensym [prefix]
5426 @deffnx {C Function} scm_gensym (prefix)
5427 Create a new symbol with a name constructed from a prefix and a counter
5428 value. The string @var{prefix} can be specified as an optional
5429 argument. Default prefix is @samp{@w{ g}}. The counter is increased by 1
5430 at each call. There is no provision for resetting the counter.
5431 @end deffn
5432
5433 The symbols generated by @code{gensym} are @emph{likely} to be unique,
5434 since their names begin with a space and it is only otherwise possible
5435 to generate such symbols if a programmer goes out of their way to do
5436 so. Uniqueness can be guaranteed by instead using uninterned symbols
5437 (@pxref{Symbol Uninterned}), though they can't be usefully written out
5438 and read back in.
5439
5440
5441 @node Symbol Props
5442 @subsubsection Function Slots and Property Lists
5443
5444 In traditional Lisp dialects, symbols are often understood as having
5445 three kinds of value at once:
5446
5447 @itemize @bullet
5448 @item
5449 a @dfn{variable} value, which is used when the symbol appears in
5450 code in a variable reference context
5451
5452 @item
5453 a @dfn{function} value, which is used when the symbol appears in
5454 code in a function name position (i.e.@: as the first element in an
5455 unquoted list)
5456
5457 @item
5458 a @dfn{property list} value, which is used when the symbol is given as
5459 the first argument to Lisp's @code{put} or @code{get} functions.
5460 @end itemize
5461
5462 Although Scheme (as one of its simplifications with respect to Lisp)
5463 does away with the distinction between variable and function namespaces,
5464 Guile currently retains some elements of the traditional structure in
5465 case they turn out to be useful when implementing translators for other
5466 languages, in particular Emacs Lisp.
5467
5468 Specifically, Guile symbols have two extra slots, one for a symbol's
5469 property list, and one for its ``function value.'' The following procedures
5470 are provided to access these slots.
5471
5472 @deffn {Scheme Procedure} symbol-fref symbol
5473 @deffnx {C Function} scm_symbol_fref (symbol)
5474 Return the contents of @var{symbol}'s @dfn{function slot}.
5475 @end deffn
5476
5477 @deffn {Scheme Procedure} symbol-fset! symbol value
5478 @deffnx {C Function} scm_symbol_fset_x (symbol, value)
5479 Set the contents of @var{symbol}'s function slot to @var{value}.
5480 @end deffn
5481
5482 @deffn {Scheme Procedure} symbol-pref symbol
5483 @deffnx {C Function} scm_symbol_pref (symbol)
5484 Return the @dfn{property list} currently associated with @var{symbol}.
5485 @end deffn
5486
5487 @deffn {Scheme Procedure} symbol-pset! symbol value
5488 @deffnx {C Function} scm_symbol_pset_x (symbol, value)
5489 Set @var{symbol}'s property list to @var{value}.
5490 @end deffn
5491
5492 @deffn {Scheme Procedure} symbol-property sym prop
5493 From @var{sym}'s property list, return the value for property
5494 @var{prop}. The assumption is that @var{sym}'s property list is an
5495 association list whose keys are distinguished from each other using
5496 @code{equal?}; @var{prop} should be one of the keys in that list. If
5497 the property list has no entry for @var{prop}, @code{symbol-property}
5498 returns @code{#f}.
5499 @end deffn
5500
5501 @deffn {Scheme Procedure} set-symbol-property! sym prop val
5502 In @var{sym}'s property list, set the value for property @var{prop} to
5503 @var{val}, or add a new entry for @var{prop}, with value @var{val}, if
5504 none already exists. For the structure of the property list, see
5505 @code{symbol-property}.
5506 @end deffn
5507
5508 @deffn {Scheme Procedure} symbol-property-remove! sym prop
5509 From @var{sym}'s property list, remove the entry for property
5510 @var{prop}, if there is one. For the structure of the property list,
5511 see @code{symbol-property}.
5512 @end deffn
5513
5514 Support for these extra slots may be removed in a future release, and it
5515 is probably better to avoid using them. For a more modern and Schemely
5516 approach to properties, see @ref{Object Properties}.
5517
5518
5519 @node Symbol Read Syntax
5520 @subsubsection Extended Read Syntax for Symbols
5521
5522 The read syntax for a symbol is a sequence of letters, digits, and
5523 @dfn{extended alphabetic characters}, beginning with a character that
5524 cannot begin a number. In addition, the special cases of @code{+},
5525 @code{-}, and @code{...} are read as symbols even though numbers can
5526 begin with @code{+}, @code{-} or @code{.}.
5527
5528 Extended alphabetic characters may be used within identifiers as if
5529 they were letters. The set of extended alphabetic characters is:
5530
5531 @example
5532 ! $ % & * + - . / : < = > ? @@ ^ _ ~
5533 @end example
5534
5535 In addition to the standard read syntax defined above (which is taken
5536 from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
5537 Scheme})), Guile provides an extended symbol read syntax that allows the
5538 inclusion of unusual characters such as space characters, newlines and
5539 parentheses. If (for whatever reason) you need to write a symbol
5540 containing characters not mentioned above, you can do so as follows.
5541
5542 @itemize @bullet
5543 @item
5544 Begin the symbol with the characters @code{#@{},
5545
5546 @item
5547 write the characters of the symbol and
5548
5549 @item
5550 finish the symbol with the characters @code{@}#}.
5551 @end itemize
5552
5553 Here are a few examples of this form of read syntax. The first symbol
5554 needs to use extended syntax because it contains a space character, the
5555 second because it contains a line break, and the last because it looks
5556 like a number.
5557
5558 @lisp
5559 #@{foo bar@}#
5560
5561 #@{what
5562 ever@}#
5563
5564 #@{4242@}#
5565 @end lisp
5566
5567 Although Guile provides this extended read syntax for symbols,
5568 widespread usage of it is discouraged because it is not portable and not
5569 very readable.
5570
5571
5572 @node Symbol Uninterned
5573 @subsubsection Uninterned Symbols
5574
5575 What makes symbols useful is that they are automatically kept unique.
5576 There are no two symbols that are distinct objects but have the same
5577 name. But of course, there is no rule without exception. In addition
5578 to the normal symbols that have been discussed up to now, you can also
5579 create special @dfn{uninterned} symbols that behave slightly
5580 differently.
5581
5582 To understand what is different about them and why they might be useful,
5583 we look at how normal symbols are actually kept unique.
5584
5585 Whenever Guile wants to find the symbol with a specific name, for
5586 example during @code{read} or when executing @code{string->symbol}, it
5587 first looks into a table of all existing symbols to find out whether a
5588 symbol with the given name already exists. When this is the case, Guile
5589 just returns that symbol. When not, a new symbol with the name is
5590 created and entered into the table so that it can be found later.
5591
5592 Sometimes you might want to create a symbol that is guaranteed `fresh',
5593 i.e.@: a symbol that did not exist previously. You might also want to
5594 somehow guarantee that no one else will ever unintentionally stumble
5595 across your symbol in the future. These properties of a symbol are
5596 often needed when generating code during macro expansion. When
5597 introducing new temporary variables, you want to guarantee that they
5598 don't conflict with variables in other people's code.
5599
5600 The simplest way to arrange for this is to create a new symbol but
5601 not enter it into the global table of all symbols. That way, no one
5602 will ever get access to your symbol by chance. Symbols that are not in
5603 the table are called @dfn{uninterned}. Of course, symbols that
5604 @emph{are} in the table are called @dfn{interned}.
5605
5606 You create new uninterned symbols with the function @code{make-symbol}.
5607 You can test whether a symbol is interned or not with
5608 @code{symbol-interned?}.
5609
5610 Uninterned symbols break the rule that the name of a symbol uniquely
5611 identifies the symbol object. Because of this, they can not be written
5612 out and read back in like interned symbols. Currently, Guile has no
5613 support for reading uninterned symbols. Note that the function
5614 @code{gensym} does not return uninterned symbols for this reason.
5615
5616 @deffn {Scheme Procedure} make-symbol name
5617 @deffnx {C Function} scm_make_symbol (name)
5618 Return a new uninterned symbol with the name @var{name}. The returned
5619 symbol is guaranteed to be unique and future calls to
5620 @code{string->symbol} will not return it.
5621 @end deffn
5622
5623 @deffn {Scheme Procedure} symbol-interned? symbol
5624 @deffnx {C Function} scm_symbol_interned_p (symbol)
5625 Return @code{#t} if @var{symbol} is interned, otherwise return
5626 @code{#f}.
5627 @end deffn
5628
5629 For example:
5630
5631 @lisp
5632 (define foo-1 (string->symbol "foo"))
5633 (define foo-2 (string->symbol "foo"))
5634 (define foo-3 (make-symbol "foo"))
5635 (define foo-4 (make-symbol "foo"))
5636
5637 (eq? foo-1 foo-2)
5638 @result{} #t
5639 ; Two interned symbols with the same name are the same object,
5640
5641 (eq? foo-1 foo-3)
5642 @result{} #f
5643 ; but a call to make-symbol with the same name returns a
5644 ; distinct object.
5645
5646 (eq? foo-3 foo-4)
5647 @result{} #f
5648 ; A call to make-symbol always returns a new object, even for
5649 ; the same name.
5650
5651 foo-3
5652 @result{} #<uninterned-symbol foo 8085290>
5653 ; Uninterned symbols print differently from interned symbols,
5654
5655 (symbol? foo-3)
5656 @result{} #t
5657 ; but they are still symbols,
5658
5659 (symbol-interned? foo-3)
5660 @result{} #f
5661 ; just not interned.
5662 @end lisp
5663
5664
5665 @node Keywords
5666 @subsection Keywords
5667 @tpindex Keywords
5668
5669 Keywords are self-evaluating objects with a convenient read syntax that
5670 makes them easy to type.
5671
5672 Guile's keyword support conforms to R5RS, and adds a (switchable) read
5673 syntax extension to permit keywords to begin with @code{:} as well as
5674 @code{#:}, or to end with @code{:}.
5675
5676 @menu
5677 * Why Use Keywords?:: Motivation for keyword usage.
5678 * Coding With Keywords:: How to use keywords.
5679 * Keyword Read Syntax:: Read syntax for keywords.
5680 * Keyword Procedures:: Procedures for dealing with keywords.
5681 @end menu
5682
5683 @node Why Use Keywords?
5684 @subsubsection Why Use Keywords?
5685
5686 Keywords are useful in contexts where a program or procedure wants to be
5687 able to accept a large number of optional arguments without making its
5688 interface unmanageable.
5689
5690 To illustrate this, consider a hypothetical @code{make-window}
5691 procedure, which creates a new window on the screen for drawing into
5692 using some graphical toolkit. There are many parameters that the caller
5693 might like to specify, but which could also be sensibly defaulted, for
5694 example:
5695
5696 @itemize @bullet
5697 @item
5698 color depth -- Default: the color depth for the screen
5699
5700 @item
5701 background color -- Default: white
5702
5703 @item
5704 width -- Default: 600
5705
5706 @item
5707 height -- Default: 400
5708 @end itemize
5709
5710 If @code{make-window} did not use keywords, the caller would have to
5711 pass in a value for each possible argument, remembering the correct
5712 argument order and using a special value to indicate the default value
5713 for that argument:
5714
5715 @lisp
5716 (make-window 'default ;; Color depth
5717 'default ;; Background color
5718 800 ;; Width
5719 100 ;; Height
5720 @dots{}) ;; More make-window arguments
5721 @end lisp
5722
5723 With keywords, on the other hand, defaulted arguments are omitted, and
5724 non-default arguments are clearly tagged by the appropriate keyword. As
5725 a result, the invocation becomes much clearer:
5726
5727 @lisp
5728 (make-window #:width 800 #:height 100)
5729 @end lisp
5730
5731 On the other hand, for a simpler procedure with few arguments, the use
5732 of keywords would be a hindrance rather than a help. The primitive
5733 procedure @code{cons}, for example, would not be improved if it had to
5734 be invoked as
5735
5736 @lisp
5737 (cons #:car x #:cdr y)
5738 @end lisp
5739
5740 So the decision whether to use keywords or not is purely pragmatic: use
5741 them if they will clarify the procedure invocation at point of call.
5742
5743 @node Coding With Keywords
5744 @subsubsection Coding With Keywords
5745
5746 If a procedure wants to support keywords, it should take a rest argument
5747 and then use whatever means is convenient to extract keywords and their
5748 corresponding arguments from the contents of that rest argument.
5749
5750 The following example illustrates the principle: the code for
5751 @code{make-window} uses a helper procedure called
5752 @code{get-keyword-value} to extract individual keyword arguments from
5753 the rest argument.
5754
5755 @lisp
5756 (define (get-keyword-value args keyword default)
5757 (let ((kv (memq keyword args)))
5758 (if (and kv (>= (length kv) 2))
5759 (cadr kv)
5760 default)))
5761
5762 (define (make-window . args)
5763 (let ((depth (get-keyword-value args #:depth screen-depth))
5764 (bg (get-keyword-value args #:bg "white"))
5765 (width (get-keyword-value args #:width 800))
5766 (height (get-keyword-value args #:height 100))
5767 @dots{})
5768 @dots{}))
5769 @end lisp
5770
5771 But you don't need to write @code{get-keyword-value}. The @code{(ice-9
5772 optargs)} module provides a set of powerful macros that you can use to
5773 implement keyword-supporting procedures like this:
5774
5775 @lisp
5776 (use-modules (ice-9 optargs))
5777
5778 (define (make-window . args)
5779 (let-keywords args #f ((depth screen-depth)
5780 (bg "white")
5781 (width 800)
5782 (height 100))
5783 ...))
5784 @end lisp
5785
5786 @noindent
5787 Or, even more economically, like this:
5788
5789 @lisp
5790 (use-modules (ice-9 optargs))
5791
5792 (define* (make-window #:key (depth screen-depth)
5793 (bg "white")
5794 (width 800)
5795 (height 100))
5796 ...)
5797 @end lisp
5798
5799 For further details on @code{let-keywords}, @code{define*} and other
5800 facilities provided by the @code{(ice-9 optargs)} module, see
5801 @ref{Optional Arguments}.
5802
5803 To handle keyword arguments from procedures implemented in C,
5804 use @code{scm_c_bind_keyword_arguments} (@pxref{Keyword Procedures}).
5805
5806 @node Keyword Read Syntax
5807 @subsubsection Keyword Read Syntax
5808
5809 Guile, by default, only recognizes a keyword syntax that is compatible
5810 with R5RS. A token of the form @code{#:NAME}, where @code{NAME} has the
5811 same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
5812 external representation of the keyword named @code{NAME}. Keyword
5813 objects print using this syntax as well, so values containing keyword
5814 objects can be read back into Guile. When used in an expression,
5815 keywords are self-quoting objects.
5816
5817 If the @code{keyword} read option is set to @code{'prefix}, Guile also
5818 recognizes the alternative read syntax @code{:NAME}. Otherwise, tokens
5819 of the form @code{:NAME} are read as symbols, as required by R5RS.
5820
5821 @cindex SRFI-88 keyword syntax
5822
5823 If the @code{keyword} read option is set to @code{'postfix}, Guile
5824 recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
5825 Otherwise, tokens of this form are read as symbols.
5826
5827 To enable and disable the alternative non-R5RS keyword syntax, you use
5828 the @code{read-set!} procedure documented @ref{Scheme Read}. Note that
5829 the @code{prefix} and @code{postfix} syntax are mutually exclusive.
5830
5831 @lisp
5832 (read-set! keywords 'prefix)
5833
5834 #:type
5835 @result{}
5836 #:type
5837
5838 :type
5839 @result{}
5840 #:type
5841
5842 (read-set! keywords 'postfix)
5843
5844 type:
5845 @result{}
5846 #:type
5847
5848 :type
5849 @result{}
5850 :type
5851
5852 (read-set! keywords #f)
5853
5854 #:type
5855 @result{}
5856 #:type
5857
5858 :type
5859 @print{}
5860 ERROR: In expression :type:
5861 ERROR: Unbound variable: :type
5862 ABORT: (unbound-variable)
5863 @end lisp
5864
5865 @node Keyword Procedures
5866 @subsubsection Keyword Procedures
5867
5868 @deffn {Scheme Procedure} keyword? obj
5869 @deffnx {C Function} scm_keyword_p (obj)
5870 Return @code{#t} if the argument @var{obj} is a keyword, else
5871 @code{#f}.
5872 @end deffn
5873
5874 @deffn {Scheme Procedure} keyword->symbol keyword
5875 @deffnx {C Function} scm_keyword_to_symbol (keyword)
5876 Return the symbol with the same name as @var{keyword}.
5877 @end deffn
5878
5879 @deffn {Scheme Procedure} symbol->keyword symbol
5880 @deffnx {C Function} scm_symbol_to_keyword (symbol)
5881 Return the keyword with the same name as @var{symbol}.
5882 @end deffn
5883
5884 @deftypefn {C Function} int scm_is_keyword (SCM obj)
5885 Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
5886 @end deftypefn
5887
5888 @deftypefn {C Function} SCM scm_from_locale_keyword (const char *name)
5889 @deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *name, size_t len)
5890 Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
5891 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
5892 (@var{name}, @var{len}))}, respectively.
5893
5894 Note that these functions should @emph{not} be used when @var{name} is a
5895 C string constant, because there is no guarantee that the current locale
5896 will match that of the execution character set, used for string and
5897 character constants. Most modern C compilers use UTF-8 by default, so
5898 in such cases we recommend @code{scm_from_utf8_keyword}.
5899 @end deftypefn
5900
5901 @deftypefn {C Function} SCM scm_from_latin1_keyword (const char *name)
5902 @deftypefnx {C Function} SCM scm_from_utf8_keyword (const char *name)
5903 Equivalent to @code{scm_symbol_to_keyword (scm_from_latin1_symbol
5904 (@var{name}))} and @code{scm_symbol_to_keyword (scm_from_utf8_symbol
5905 (@var{name}))}, respectively.
5906 @end deftypefn
5907
5908 @deftypefn {C Function} void scm_c_bind_keyword_arguments (const char *subr, @
5909 SCM rest, scm_t_keyword_arguments_flags flags, @
5910 SCM keyword1, SCM *argp1, @
5911 @dots{}, @
5912 SCM keywordN, SCM *argpN, @
5913 @nicode{SCM_UNDEFINED})
5914
5915 Extract the specified keyword arguments from @var{rest}, which is not
5916 modified. If the keyword argument @var{keyword1} is present in
5917 @var{rest} with an associated value, that value is stored in the
5918 variable pointed to by @var{argp1}, otherwise the variable is left
5919 unchanged. Similarly for the other keywords and argument pointers up to
5920 @var{keywordN} and @var{argpN}. The argument list to
5921 @code{scm_c_bind_keyword_arguments} must be terminated by
5922 @code{SCM_UNDEFINED}.
5923
5924 Note that since the variables pointed to by @var{argp1} through
5925 @var{argpN} are left unchanged if the associated keyword argument is not
5926 present, they should be initialized to their default values before
5927 calling @code{scm_c_bind_keyword_arguments}. Alternatively, you can
5928 initialize them to @code{SCM_UNDEFINED} before the call, and then use
5929 @code{SCM_UNBNDP} after the call to see which ones were provided.
5930
5931 If an unrecognized keyword argument is present in @var{rest} and
5932 @var{flags} does not contain @code{SCM_ALLOW_OTHER_KEYS}, or if
5933 non-keyword arguments are present and @var{flags} does not contain
5934 @code{SCM_ALLOW_NON_KEYWORD_ARGUMENTS}, an exception is raised.
5935 @var{subr} should be the name of the procedure receiving the keyword
5936 arguments, for purposes of error reporting.
5937
5938 For example:
5939
5940 @example
5941 SCM k_delimiter;
5942 SCM k_grammar;
5943 SCM sym_infix;
5944
5945 SCM my_string_join (SCM strings, SCM rest)
5946 @{
5947 SCM delimiter = SCM_UNDEFINED;
5948 SCM grammar = sym_infix;
5949
5950 scm_c_bind_keyword_arguments ("my-string-join", rest, 0,
5951 k_delimiter, &delimiter,
5952 k_grammar, &grammar,
5953 SCM_UNDEFINED);
5954
5955 if (SCM_UNBNDP (delimiter))
5956 delimiter = scm_from_utf8_string (" ");
5957
5958 return scm_string_join (strings, delimiter, grammar);
5959 @}
5960
5961 void my_init ()
5962 @{
5963 k_delimiter = scm_from_utf8_keyword ("delimiter");
5964 k_grammar = scm_from_utf8_keyword ("grammar");
5965 sym_infix = scm_from_utf8_symbol ("infix");
5966 scm_c_define_gsubr ("my-string-join", 1, 0, 1, my_string_join);
5967 @}
5968 @end example
5969 @end deftypefn
5970
5971
5972 @node Other Types
5973 @subsection ``Functionality-Centric'' Data Types
5974
5975 Procedures and macros are documented in their own sections: see
5976 @ref{Procedures} and @ref{Macros}.
5977
5978 Variable objects are documented as part of the description of Guile's
5979 module system: see @ref{Variables}.
5980
5981 Asyncs, dynamic roots and fluids are described in the section on
5982 scheduling: see @ref{Scheduling}.
5983
5984 Hooks are documented in the section on general utility functions: see
5985 @ref{Hooks}.
5986
5987 Ports are described in the section on I/O: see @ref{Input and Output}.
5988
5989 Regular expressions are described in their own section: see @ref{Regular
5990 Expressions}.
5991
5992 @c Local Variables:
5993 @c TeX-master: "guile.texi"
5994 @c End: