change asubrs to be gsubrs
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23 \f
24 /* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
29 * All objects satisfying SCM_FRACTIONP are never an integer.
30 */
31
32 /* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
43
44 #ifdef HAVE_CONFIG_H
45 # include <config.h>
46 #endif
47
48 #include <math.h>
49 #include <string.h>
50 #include <unicase.h>
51 #include <unictype.h>
52
53 #if HAVE_COMPLEX_H
54 #include <complex.h>
55 #endif
56
57 #include "libguile/_scm.h"
58 #include "libguile/feature.h"
59 #include "libguile/ports.h"
60 #include "libguile/root.h"
61 #include "libguile/smob.h"
62 #include "libguile/strings.h"
63
64 #include "libguile/validate.h"
65 #include "libguile/numbers.h"
66 #include "libguile/deprecation.h"
67
68 #include "libguile/eq.h"
69
70 #include "libguile/discouraged.h"
71
72 /* values per glibc, if not already defined */
73 #ifndef M_LOG10E
74 #define M_LOG10E 0.43429448190325182765
75 #endif
76 #ifndef M_PI
77 #define M_PI 3.14159265358979323846
78 #endif
79
80 \f
81
82 /*
83 Wonder if this might be faster for some of our code? A switch on
84 the numtag would jump directly to the right case, and the
85 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
86
87 #define SCM_I_NUMTAG_NOTNUM 0
88 #define SCM_I_NUMTAG_INUM 1
89 #define SCM_I_NUMTAG_BIG scm_tc16_big
90 #define SCM_I_NUMTAG_REAL scm_tc16_real
91 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
92 #define SCM_I_NUMTAG(x) \
93 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
94 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
95 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
96 : SCM_I_NUMTAG_NOTNUM)))
97 */
98 /* the macro above will not work as is with fractions */
99
100
101 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
102
103 /* FLOBUFLEN is the maximum number of characters neccessary for the
104 * printed or scm_string representation of an inexact number.
105 */
106 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
107
108 #if defined (SCO)
109 #if ! defined (HAVE_ISNAN)
110 #define HAVE_ISNAN
111 static int
112 isnan (double x)
113 {
114 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
115 }
116 #endif
117 #if ! defined (HAVE_ISINF)
118 #define HAVE_ISINF
119 static int
120 isinf (double x)
121 {
122 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
123 }
124
125 #endif
126 #endif
127
128
129 #if !defined (HAVE_ASINH)
130 static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
131 #endif
132 #if !defined (HAVE_ACOSH)
133 static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
134 #endif
135 #if !defined (HAVE_ATANH)
136 static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
137 #endif
138
139 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
140 an explicit check. In some future gmp (don't know what version number),
141 mpz_cmp_d is supposed to do this itself. */
142 #if 1
143 #define xmpz_cmp_d(z, d) \
144 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
145 #else
146 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
147 #endif
148
149 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
150 isinf. It does have finite and isnan though, hence the use of those.
151 fpclass would be a possibility on that system too. */
152 static int
153 xisinf (double x)
154 {
155 #if defined (HAVE_ISINF)
156 return isinf (x);
157 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
158 return (! (finite (x) || isnan (x)));
159 #else
160 return 0;
161 #endif
162 }
163
164 static int
165 xisnan (double x)
166 {
167 #if defined (HAVE_ISNAN)
168 return isnan (x);
169 #else
170 return 0;
171 #endif
172 }
173
174 #if defined (GUILE_I)
175 #if HAVE_COMPLEX_DOUBLE
176
177 /* For an SCM object Z which is a complex number (ie. satisfies
178 SCM_COMPLEXP), return its value as a C level "complex double". */
179 #define SCM_COMPLEX_VALUE(z) \
180 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
181
182 static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
183
184 /* Convert a C "complex double" to an SCM value. */
185 static inline SCM
186 scm_from_complex_double (complex double z)
187 {
188 return scm_c_make_rectangular (creal (z), cimag (z));
189 }
190
191 #endif /* HAVE_COMPLEX_DOUBLE */
192 #endif /* GUILE_I */
193
194 \f
195
196 static mpz_t z_negative_one;
197
198 \f
199
200 SCM
201 scm_i_mkbig ()
202 {
203 /* Return a newly created bignum. */
204 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
205 mpz_init (SCM_I_BIG_MPZ (z));
206 return z;
207 }
208
209 SCM
210 scm_i_long2big (long x)
211 {
212 /* Return a newly created bignum initialized to X. */
213 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
214 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
215 return z;
216 }
217
218 SCM
219 scm_i_ulong2big (unsigned long x)
220 {
221 /* Return a newly created bignum initialized to X. */
222 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
223 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
224 return z;
225 }
226
227 SCM
228 scm_i_clonebig (SCM src_big, int same_sign_p)
229 {
230 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
231 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
232 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
233 if (!same_sign_p)
234 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
235 return z;
236 }
237
238 int
239 scm_i_bigcmp (SCM x, SCM y)
240 {
241 /* Return neg if x < y, pos if x > y, and 0 if x == y */
242 /* presume we already know x and y are bignums */
243 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
244 scm_remember_upto_here_2 (x, y);
245 return result;
246 }
247
248 SCM
249 scm_i_dbl2big (double d)
250 {
251 /* results are only defined if d is an integer */
252 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
253 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
254 return z;
255 }
256
257 /* Convert a integer in double representation to a SCM number. */
258
259 SCM
260 scm_i_dbl2num (double u)
261 {
262 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
263 powers of 2, so there's no rounding when making "double" values
264 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
265 get rounded on a 64-bit machine, hence the "+1".
266
267 The use of floor() to force to an integer value ensures we get a
268 "numerically closest" value without depending on how a
269 double->long cast or how mpz_set_d will round. For reference,
270 double->long probably follows the hardware rounding mode,
271 mpz_set_d truncates towards zero. */
272
273 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
274 representable as a double? */
275
276 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
277 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
278 return SCM_I_MAKINUM ((long) u);
279 else
280 return scm_i_dbl2big (u);
281 }
282
283 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
284 with R5RS exact->inexact.
285
286 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
287 (ie. truncate towards zero), then adjust to get the closest double by
288 examining the next lower bit and adding 1 (to the absolute value) if
289 necessary.
290
291 Bignums exactly half way between representable doubles are rounded to the
292 next higher absolute value (ie. away from zero). This seems like an
293 adequate interpretation of R5RS "numerically closest", and it's easier
294 and faster than a full "nearest-even" style.
295
296 The bit test must be done on the absolute value of the mpz_t, which means
297 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
298 negatives as twos complement.
299
300 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
301 following the hardware rounding mode, but applied to the absolute value
302 of the mpz_t operand. This is not what we want so we put the high
303 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
304 mpz_get_d is supposed to always truncate towards zero.
305
306 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
307 is a slowdown. It'd be faster to pick out the relevant high bits with
308 mpz_getlimbn if we could be bothered coding that, and if the new
309 truncating gmp doesn't come out. */
310
311 double
312 scm_i_big2dbl (SCM b)
313 {
314 double result;
315 size_t bits;
316
317 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
318
319 #if 1
320 {
321 /* Current GMP, eg. 4.1.3, force truncation towards zero */
322 mpz_t tmp;
323 if (bits > DBL_MANT_DIG)
324 {
325 size_t shift = bits - DBL_MANT_DIG;
326 mpz_init2 (tmp, DBL_MANT_DIG);
327 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
328 result = ldexp (mpz_get_d (tmp), shift);
329 mpz_clear (tmp);
330 }
331 else
332 {
333 result = mpz_get_d (SCM_I_BIG_MPZ (b));
334 }
335 }
336 #else
337 /* Future GMP */
338 result = mpz_get_d (SCM_I_BIG_MPZ (b));
339 #endif
340
341 if (bits > DBL_MANT_DIG)
342 {
343 unsigned long pos = bits - DBL_MANT_DIG - 1;
344 /* test bit number "pos" in absolute value */
345 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
346 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
347 {
348 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
349 }
350 }
351
352 scm_remember_upto_here_1 (b);
353 return result;
354 }
355
356 SCM
357 scm_i_normbig (SCM b)
358 {
359 /* convert a big back to a fixnum if it'll fit */
360 /* presume b is a bignum */
361 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
362 {
363 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
364 if (SCM_FIXABLE (val))
365 b = SCM_I_MAKINUM (val);
366 }
367 return b;
368 }
369
370 static SCM_C_INLINE_KEYWORD SCM
371 scm_i_mpz2num (mpz_t b)
372 {
373 /* convert a mpz number to a SCM number. */
374 if (mpz_fits_slong_p (b))
375 {
376 long val = mpz_get_si (b);
377 if (SCM_FIXABLE (val))
378 return SCM_I_MAKINUM (val);
379 }
380
381 {
382 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
383 mpz_init_set (SCM_I_BIG_MPZ (z), b);
384 return z;
385 }
386 }
387
388 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
389 static SCM scm_divide2real (SCM x, SCM y);
390
391 static SCM
392 scm_i_make_ratio (SCM numerator, SCM denominator)
393 #define FUNC_NAME "make-ratio"
394 {
395 /* First make sure the arguments are proper.
396 */
397 if (SCM_I_INUMP (denominator))
398 {
399 if (scm_is_eq (denominator, SCM_INUM0))
400 scm_num_overflow ("make-ratio");
401 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
402 return numerator;
403 }
404 else
405 {
406 if (!(SCM_BIGP(denominator)))
407 SCM_WRONG_TYPE_ARG (2, denominator);
408 }
409 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
410 SCM_WRONG_TYPE_ARG (1, numerator);
411
412 /* Then flip signs so that the denominator is positive.
413 */
414 if (scm_is_true (scm_negative_p (denominator)))
415 {
416 numerator = scm_difference (numerator, SCM_UNDEFINED);
417 denominator = scm_difference (denominator, SCM_UNDEFINED);
418 }
419
420 /* Now consider for each of the four fixnum/bignum combinations
421 whether the rational number is really an integer.
422 */
423 if (SCM_I_INUMP (numerator))
424 {
425 long x = SCM_I_INUM (numerator);
426 if (scm_is_eq (numerator, SCM_INUM0))
427 return SCM_INUM0;
428 if (SCM_I_INUMP (denominator))
429 {
430 long y;
431 y = SCM_I_INUM (denominator);
432 if (x == y)
433 return SCM_I_MAKINUM(1);
434 if ((x % y) == 0)
435 return SCM_I_MAKINUM (x / y);
436 }
437 else
438 {
439 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
440 of that value for the denominator, as a bignum. Apart from
441 that case, abs(bignum) > abs(inum) so inum/bignum is not an
442 integer. */
443 if (x == SCM_MOST_NEGATIVE_FIXNUM
444 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
445 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
446 return SCM_I_MAKINUM(-1);
447 }
448 }
449 else if (SCM_BIGP (numerator))
450 {
451 if (SCM_I_INUMP (denominator))
452 {
453 long yy = SCM_I_INUM (denominator);
454 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
455 return scm_divide (numerator, denominator);
456 }
457 else
458 {
459 if (scm_is_eq (numerator, denominator))
460 return SCM_I_MAKINUM(1);
461 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
462 SCM_I_BIG_MPZ (denominator)))
463 return scm_divide(numerator, denominator);
464 }
465 }
466
467 /* No, it's a proper fraction.
468 */
469 {
470 SCM divisor = scm_gcd (numerator, denominator);
471 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
472 {
473 numerator = scm_divide (numerator, divisor);
474 denominator = scm_divide (denominator, divisor);
475 }
476
477 return scm_double_cell (scm_tc16_fraction,
478 SCM_UNPACK (numerator),
479 SCM_UNPACK (denominator), 0);
480 }
481 }
482 #undef FUNC_NAME
483
484 double
485 scm_i_fraction2double (SCM z)
486 {
487 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
488 SCM_FRACTION_DENOMINATOR (z)));
489 }
490
491 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
492 (SCM x),
493 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
494 "otherwise.")
495 #define FUNC_NAME s_scm_exact_p
496 {
497 if (SCM_I_INUMP (x))
498 return SCM_BOOL_T;
499 if (SCM_BIGP (x))
500 return SCM_BOOL_T;
501 if (SCM_FRACTIONP (x))
502 return SCM_BOOL_T;
503 if (SCM_NUMBERP (x))
504 return SCM_BOOL_F;
505 SCM_WRONG_TYPE_ARG (1, x);
506 }
507 #undef FUNC_NAME
508
509
510 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
511 (SCM n),
512 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
513 "otherwise.")
514 #define FUNC_NAME s_scm_odd_p
515 {
516 if (SCM_I_INUMP (n))
517 {
518 long val = SCM_I_INUM (n);
519 return scm_from_bool ((val & 1L) != 0);
520 }
521 else if (SCM_BIGP (n))
522 {
523 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
524 scm_remember_upto_here_1 (n);
525 return scm_from_bool (odd_p);
526 }
527 else if (scm_is_true (scm_inf_p (n)))
528 return SCM_BOOL_T;
529 else if (SCM_REALP (n))
530 {
531 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
532 if (rem == 1.0)
533 return SCM_BOOL_T;
534 else if (rem == 0.0)
535 return SCM_BOOL_F;
536 else
537 SCM_WRONG_TYPE_ARG (1, n);
538 }
539 else
540 SCM_WRONG_TYPE_ARG (1, n);
541 }
542 #undef FUNC_NAME
543
544
545 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
546 (SCM n),
547 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
548 "otherwise.")
549 #define FUNC_NAME s_scm_even_p
550 {
551 if (SCM_I_INUMP (n))
552 {
553 long val = SCM_I_INUM (n);
554 return scm_from_bool ((val & 1L) == 0);
555 }
556 else if (SCM_BIGP (n))
557 {
558 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
559 scm_remember_upto_here_1 (n);
560 return scm_from_bool (even_p);
561 }
562 else if (scm_is_true (scm_inf_p (n)))
563 return SCM_BOOL_T;
564 else if (SCM_REALP (n))
565 {
566 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
567 if (rem == 1.0)
568 return SCM_BOOL_F;
569 else if (rem == 0.0)
570 return SCM_BOOL_T;
571 else
572 SCM_WRONG_TYPE_ARG (1, n);
573 }
574 else
575 SCM_WRONG_TYPE_ARG (1, n);
576 }
577 #undef FUNC_NAME
578
579 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
580 (SCM x),
581 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
582 "or @samp{-inf.0}, @code{#f} otherwise.")
583 #define FUNC_NAME s_scm_inf_p
584 {
585 if (SCM_REALP (x))
586 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
587 else if (SCM_COMPLEXP (x))
588 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
589 || xisinf (SCM_COMPLEX_IMAG (x)));
590 else
591 return SCM_BOOL_F;
592 }
593 #undef FUNC_NAME
594
595 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
596 (SCM n),
597 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
598 "otherwise.")
599 #define FUNC_NAME s_scm_nan_p
600 {
601 if (SCM_REALP (n))
602 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
603 else if (SCM_COMPLEXP (n))
604 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
605 || xisnan (SCM_COMPLEX_IMAG (n)));
606 else
607 return SCM_BOOL_F;
608 }
609 #undef FUNC_NAME
610
611 /* Guile's idea of infinity. */
612 static double guile_Inf;
613
614 /* Guile's idea of not a number. */
615 static double guile_NaN;
616
617 static void
618 guile_ieee_init (void)
619 {
620 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
621
622 /* Some version of gcc on some old version of Linux used to crash when
623 trying to make Inf and NaN. */
624
625 #ifdef INFINITY
626 /* C99 INFINITY, when available.
627 FIXME: The standard allows for INFINITY to be something that overflows
628 at compile time. We ought to have a configure test to check for that
629 before trying to use it. (But in practice we believe this is not a
630 problem on any system guile is likely to target.) */
631 guile_Inf = INFINITY;
632 #elif defined HAVE_DINFINITY
633 /* OSF */
634 extern unsigned int DINFINITY[2];
635 guile_Inf = (*((double *) (DINFINITY)));
636 #else
637 double tmp = 1e+10;
638 guile_Inf = tmp;
639 for (;;)
640 {
641 guile_Inf *= 1e+10;
642 if (guile_Inf == tmp)
643 break;
644 tmp = guile_Inf;
645 }
646 #endif
647
648 #endif
649
650 #if defined (HAVE_ISNAN)
651
652 #ifdef NAN
653 /* C99 NAN, when available */
654 guile_NaN = NAN;
655 #elif defined HAVE_DQNAN
656 {
657 /* OSF */
658 extern unsigned int DQNAN[2];
659 guile_NaN = (*((double *)(DQNAN)));
660 }
661 #else
662 guile_NaN = guile_Inf / guile_Inf;
663 #endif
664
665 #endif
666 }
667
668 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
669 (void),
670 "Return Inf.")
671 #define FUNC_NAME s_scm_inf
672 {
673 static int initialized = 0;
674 if (! initialized)
675 {
676 guile_ieee_init ();
677 initialized = 1;
678 }
679 return scm_from_double (guile_Inf);
680 }
681 #undef FUNC_NAME
682
683 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
684 (void),
685 "Return NaN.")
686 #define FUNC_NAME s_scm_nan
687 {
688 static int initialized = 0;
689 if (!initialized)
690 {
691 guile_ieee_init ();
692 initialized = 1;
693 }
694 return scm_from_double (guile_NaN);
695 }
696 #undef FUNC_NAME
697
698
699 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
700 (SCM x),
701 "Return the absolute value of @var{x}.")
702 #define FUNC_NAME
703 {
704 if (SCM_I_INUMP (x))
705 {
706 long int xx = SCM_I_INUM (x);
707 if (xx >= 0)
708 return x;
709 else if (SCM_POSFIXABLE (-xx))
710 return SCM_I_MAKINUM (-xx);
711 else
712 return scm_i_long2big (-xx);
713 }
714 else if (SCM_BIGP (x))
715 {
716 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
717 if (sgn < 0)
718 return scm_i_clonebig (x, 0);
719 else
720 return x;
721 }
722 else if (SCM_REALP (x))
723 {
724 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
725 double xx = SCM_REAL_VALUE (x);
726 if (xx < 0.0)
727 return scm_from_double (-xx);
728 else
729 return x;
730 }
731 else if (SCM_FRACTIONP (x))
732 {
733 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
734 return x;
735 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
736 SCM_FRACTION_DENOMINATOR (x));
737 }
738 else
739 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
740 }
741 #undef FUNC_NAME
742
743
744 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
745 /* "Return the quotient of the numbers @var{x} and @var{y}."
746 */
747 SCM
748 scm_quotient (SCM x, SCM y)
749 {
750 if (SCM_I_INUMP (x))
751 {
752 long xx = SCM_I_INUM (x);
753 if (SCM_I_INUMP (y))
754 {
755 long yy = SCM_I_INUM (y);
756 if (yy == 0)
757 scm_num_overflow (s_quotient);
758 else
759 {
760 long z = xx / yy;
761 if (SCM_FIXABLE (z))
762 return SCM_I_MAKINUM (z);
763 else
764 return scm_i_long2big (z);
765 }
766 }
767 else if (SCM_BIGP (y))
768 {
769 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
770 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
771 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
772 {
773 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
774 scm_remember_upto_here_1 (y);
775 return SCM_I_MAKINUM (-1);
776 }
777 else
778 return SCM_I_MAKINUM (0);
779 }
780 else
781 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
782 }
783 else if (SCM_BIGP (x))
784 {
785 if (SCM_I_INUMP (y))
786 {
787 long yy = SCM_I_INUM (y);
788 if (yy == 0)
789 scm_num_overflow (s_quotient);
790 else if (yy == 1)
791 return x;
792 else
793 {
794 SCM result = scm_i_mkbig ();
795 if (yy < 0)
796 {
797 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
798 SCM_I_BIG_MPZ (x),
799 - yy);
800 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
801 }
802 else
803 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
804 scm_remember_upto_here_1 (x);
805 return scm_i_normbig (result);
806 }
807 }
808 else if (SCM_BIGP (y))
809 {
810 SCM result = scm_i_mkbig ();
811 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
812 SCM_I_BIG_MPZ (x),
813 SCM_I_BIG_MPZ (y));
814 scm_remember_upto_here_2 (x, y);
815 return scm_i_normbig (result);
816 }
817 else
818 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
819 }
820 else
821 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
822 }
823
824 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
825 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
826 * "@lisp\n"
827 * "(remainder 13 4) @result{} 1\n"
828 * "(remainder -13 4) @result{} -1\n"
829 * "@end lisp"
830 */
831 SCM
832 scm_remainder (SCM x, SCM y)
833 {
834 if (SCM_I_INUMP (x))
835 {
836 if (SCM_I_INUMP (y))
837 {
838 long yy = SCM_I_INUM (y);
839 if (yy == 0)
840 scm_num_overflow (s_remainder);
841 else
842 {
843 long z = SCM_I_INUM (x) % yy;
844 return SCM_I_MAKINUM (z);
845 }
846 }
847 else if (SCM_BIGP (y))
848 {
849 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
850 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
851 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
852 {
853 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
854 scm_remember_upto_here_1 (y);
855 return SCM_I_MAKINUM (0);
856 }
857 else
858 return x;
859 }
860 else
861 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
862 }
863 else if (SCM_BIGP (x))
864 {
865 if (SCM_I_INUMP (y))
866 {
867 long yy = SCM_I_INUM (y);
868 if (yy == 0)
869 scm_num_overflow (s_remainder);
870 else
871 {
872 SCM result = scm_i_mkbig ();
873 if (yy < 0)
874 yy = - yy;
875 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
876 scm_remember_upto_here_1 (x);
877 return scm_i_normbig (result);
878 }
879 }
880 else if (SCM_BIGP (y))
881 {
882 SCM result = scm_i_mkbig ();
883 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
884 SCM_I_BIG_MPZ (x),
885 SCM_I_BIG_MPZ (y));
886 scm_remember_upto_here_2 (x, y);
887 return scm_i_normbig (result);
888 }
889 else
890 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
891 }
892 else
893 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
894 }
895
896
897 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
898 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
899 * "@lisp\n"
900 * "(modulo 13 4) @result{} 1\n"
901 * "(modulo -13 4) @result{} 3\n"
902 * "@end lisp"
903 */
904 SCM
905 scm_modulo (SCM x, SCM y)
906 {
907 if (SCM_I_INUMP (x))
908 {
909 long xx = SCM_I_INUM (x);
910 if (SCM_I_INUMP (y))
911 {
912 long yy = SCM_I_INUM (y);
913 if (yy == 0)
914 scm_num_overflow (s_modulo);
915 else
916 {
917 /* C99 specifies that "%" is the remainder corresponding to a
918 quotient rounded towards zero, and that's also traditional
919 for machine division, so z here should be well defined. */
920 long z = xx % yy;
921 long result;
922
923 if (yy < 0)
924 {
925 if (z > 0)
926 result = z + yy;
927 else
928 result = z;
929 }
930 else
931 {
932 if (z < 0)
933 result = z + yy;
934 else
935 result = z;
936 }
937 return SCM_I_MAKINUM (result);
938 }
939 }
940 else if (SCM_BIGP (y))
941 {
942 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
943 {
944 mpz_t z_x;
945 SCM result;
946
947 if (sgn_y < 0)
948 {
949 SCM pos_y = scm_i_clonebig (y, 0);
950 /* do this after the last scm_op */
951 mpz_init_set_si (z_x, xx);
952 result = pos_y; /* re-use this bignum */
953 mpz_mod (SCM_I_BIG_MPZ (result),
954 z_x,
955 SCM_I_BIG_MPZ (pos_y));
956 scm_remember_upto_here_1 (pos_y);
957 }
958 else
959 {
960 result = scm_i_mkbig ();
961 /* do this after the last scm_op */
962 mpz_init_set_si (z_x, xx);
963 mpz_mod (SCM_I_BIG_MPZ (result),
964 z_x,
965 SCM_I_BIG_MPZ (y));
966 scm_remember_upto_here_1 (y);
967 }
968
969 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
970 mpz_add (SCM_I_BIG_MPZ (result),
971 SCM_I_BIG_MPZ (y),
972 SCM_I_BIG_MPZ (result));
973 scm_remember_upto_here_1 (y);
974 /* and do this before the next one */
975 mpz_clear (z_x);
976 return scm_i_normbig (result);
977 }
978 }
979 else
980 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
981 }
982 else if (SCM_BIGP (x))
983 {
984 if (SCM_I_INUMP (y))
985 {
986 long yy = SCM_I_INUM (y);
987 if (yy == 0)
988 scm_num_overflow (s_modulo);
989 else
990 {
991 SCM result = scm_i_mkbig ();
992 mpz_mod_ui (SCM_I_BIG_MPZ (result),
993 SCM_I_BIG_MPZ (x),
994 (yy < 0) ? - yy : yy);
995 scm_remember_upto_here_1 (x);
996 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
997 mpz_sub_ui (SCM_I_BIG_MPZ (result),
998 SCM_I_BIG_MPZ (result),
999 - yy);
1000 return scm_i_normbig (result);
1001 }
1002 }
1003 else if (SCM_BIGP (y))
1004 {
1005 {
1006 SCM result = scm_i_mkbig ();
1007 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1008 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1009 mpz_mod (SCM_I_BIG_MPZ (result),
1010 SCM_I_BIG_MPZ (x),
1011 SCM_I_BIG_MPZ (pos_y));
1012
1013 scm_remember_upto_here_1 (x);
1014 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1015 mpz_add (SCM_I_BIG_MPZ (result),
1016 SCM_I_BIG_MPZ (y),
1017 SCM_I_BIG_MPZ (result));
1018 scm_remember_upto_here_2 (y, pos_y);
1019 return scm_i_normbig (result);
1020 }
1021 }
1022 else
1023 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1024 }
1025 else
1026 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
1027 }
1028
1029 SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1030 (SCM x, SCM y, SCM rest),
1031 "Return the greatest common divisor of all parameter values.\n"
1032 "If called without arguments, 0 is returned.")
1033 #define FUNC_NAME s_scm_i_gcd
1034 {
1035 while (!scm_is_null (rest))
1036 { x = scm_gcd (x, y);
1037 y = scm_car (rest);
1038 rest = scm_cdr (rest);
1039 }
1040 return scm_gcd (x, y);
1041 }
1042 #undef FUNC_NAME
1043
1044 #define s_gcd s_scm_i_gcd
1045 #define g_gcd g_scm_i_gcd
1046
1047 SCM
1048 scm_gcd (SCM x, SCM y)
1049 {
1050 if (SCM_UNBNDP (y))
1051 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
1052
1053 if (SCM_I_INUMP (x))
1054 {
1055 if (SCM_I_INUMP (y))
1056 {
1057 long xx = SCM_I_INUM (x);
1058 long yy = SCM_I_INUM (y);
1059 long u = xx < 0 ? -xx : xx;
1060 long v = yy < 0 ? -yy : yy;
1061 long result;
1062 if (xx == 0)
1063 result = v;
1064 else if (yy == 0)
1065 result = u;
1066 else
1067 {
1068 long k = 1;
1069 long t;
1070 /* Determine a common factor 2^k */
1071 while (!(1 & (u | v)))
1072 {
1073 k <<= 1;
1074 u >>= 1;
1075 v >>= 1;
1076 }
1077 /* Now, any factor 2^n can be eliminated */
1078 if (u & 1)
1079 t = -v;
1080 else
1081 {
1082 t = u;
1083 b3:
1084 t = SCM_SRS (t, 1);
1085 }
1086 if (!(1 & t))
1087 goto b3;
1088 if (t > 0)
1089 u = t;
1090 else
1091 v = -t;
1092 t = u - v;
1093 if (t != 0)
1094 goto b3;
1095 result = u * k;
1096 }
1097 return (SCM_POSFIXABLE (result)
1098 ? SCM_I_MAKINUM (result)
1099 : scm_i_long2big (result));
1100 }
1101 else if (SCM_BIGP (y))
1102 {
1103 SCM_SWAP (x, y);
1104 goto big_inum;
1105 }
1106 else
1107 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1108 }
1109 else if (SCM_BIGP (x))
1110 {
1111 if (SCM_I_INUMP (y))
1112 {
1113 unsigned long result;
1114 long yy;
1115 big_inum:
1116 yy = SCM_I_INUM (y);
1117 if (yy == 0)
1118 return scm_abs (x);
1119 if (yy < 0)
1120 yy = -yy;
1121 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1122 scm_remember_upto_here_1 (x);
1123 return (SCM_POSFIXABLE (result)
1124 ? SCM_I_MAKINUM (result)
1125 : scm_from_ulong (result));
1126 }
1127 else if (SCM_BIGP (y))
1128 {
1129 SCM result = scm_i_mkbig ();
1130 mpz_gcd (SCM_I_BIG_MPZ (result),
1131 SCM_I_BIG_MPZ (x),
1132 SCM_I_BIG_MPZ (y));
1133 scm_remember_upto_here_2 (x, y);
1134 return scm_i_normbig (result);
1135 }
1136 else
1137 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1138 }
1139 else
1140 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1141 }
1142
1143 SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1144 (SCM x, SCM y, SCM rest),
1145 "Return the least common multiple of the arguments.\n"
1146 "If called without arguments, 1 is returned.")
1147 #define FUNC_NAME s_scm_i_lcm
1148 {
1149 while (!scm_is_null (rest))
1150 { x = scm_lcm (x, y);
1151 y = scm_car (rest);
1152 rest = scm_cdr (rest);
1153 }
1154 return scm_lcm (x, y);
1155 }
1156 #undef FUNC_NAME
1157
1158 #define s_lcm s_scm_i_lcm
1159 #define g_lcm g_scm_i_lcm
1160
1161 SCM
1162 scm_lcm (SCM n1, SCM n2)
1163 {
1164 if (SCM_UNBNDP (n2))
1165 {
1166 if (SCM_UNBNDP (n1))
1167 return SCM_I_MAKINUM (1L);
1168 n2 = SCM_I_MAKINUM (1L);
1169 }
1170
1171 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1172 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1173 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1174 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1175
1176 if (SCM_I_INUMP (n1))
1177 {
1178 if (SCM_I_INUMP (n2))
1179 {
1180 SCM d = scm_gcd (n1, n2);
1181 if (scm_is_eq (d, SCM_INUM0))
1182 return d;
1183 else
1184 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1185 }
1186 else
1187 {
1188 /* inum n1, big n2 */
1189 inumbig:
1190 {
1191 SCM result = scm_i_mkbig ();
1192 long nn1 = SCM_I_INUM (n1);
1193 if (nn1 == 0) return SCM_INUM0;
1194 if (nn1 < 0) nn1 = - nn1;
1195 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1196 scm_remember_upto_here_1 (n2);
1197 return result;
1198 }
1199 }
1200 }
1201 else
1202 {
1203 /* big n1 */
1204 if (SCM_I_INUMP (n2))
1205 {
1206 SCM_SWAP (n1, n2);
1207 goto inumbig;
1208 }
1209 else
1210 {
1211 SCM result = scm_i_mkbig ();
1212 mpz_lcm(SCM_I_BIG_MPZ (result),
1213 SCM_I_BIG_MPZ (n1),
1214 SCM_I_BIG_MPZ (n2));
1215 scm_remember_upto_here_2(n1, n2);
1216 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1217 return result;
1218 }
1219 }
1220 }
1221
1222 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1223
1224 Logand:
1225 X Y Result Method:
1226 (len)
1227 + + + x (map digit:logand X Y)
1228 + - + x (map digit:logand X (lognot (+ -1 Y)))
1229 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1230 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1231
1232 Logior:
1233 X Y Result Method:
1234
1235 + + + (map digit:logior X Y)
1236 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1237 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1238 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1239
1240 Logxor:
1241 X Y Result Method:
1242
1243 + + + (map digit:logxor X Y)
1244 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1245 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1246 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1247
1248 Logtest:
1249 X Y Result
1250
1251 + + (any digit:logand X Y)
1252 + - (any digit:logand X (lognot (+ -1 Y)))
1253 - + (any digit:logand (lognot (+ -1 X)) Y)
1254 - - #t
1255
1256 */
1257
1258 SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1259 (SCM x, SCM y, SCM rest),
1260 "Return the bitwise AND of the integer arguments.\n\n"
1261 "@lisp\n"
1262 "(logand) @result{} -1\n"
1263 "(logand 7) @result{} 7\n"
1264 "(logand #b111 #b011 #b001) @result{} 1\n"
1265 "@end lisp")
1266 #define FUNC_NAME s_scm_i_logand
1267 {
1268 while (!scm_is_null (rest))
1269 { x = scm_logand (x, y);
1270 y = scm_car (rest);
1271 rest = scm_cdr (rest);
1272 }
1273 return scm_logand (x, y);
1274 }
1275 #undef FUNC_NAME
1276
1277 #define s_scm_logand s_scm_i_logand
1278
1279 SCM scm_logand (SCM n1, SCM n2)
1280 #define FUNC_NAME s_scm_logand
1281 {
1282 long int nn1;
1283
1284 if (SCM_UNBNDP (n2))
1285 {
1286 if (SCM_UNBNDP (n1))
1287 return SCM_I_MAKINUM (-1);
1288 else if (!SCM_NUMBERP (n1))
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1290 else if (SCM_NUMBERP (n1))
1291 return n1;
1292 else
1293 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1294 }
1295
1296 if (SCM_I_INUMP (n1))
1297 {
1298 nn1 = SCM_I_INUM (n1);
1299 if (SCM_I_INUMP (n2))
1300 {
1301 long nn2 = SCM_I_INUM (n2);
1302 return SCM_I_MAKINUM (nn1 & nn2);
1303 }
1304 else if SCM_BIGP (n2)
1305 {
1306 intbig:
1307 if (n1 == 0)
1308 return SCM_INUM0;
1309 {
1310 SCM result_z = scm_i_mkbig ();
1311 mpz_t nn1_z;
1312 mpz_init_set_si (nn1_z, nn1);
1313 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1314 scm_remember_upto_here_1 (n2);
1315 mpz_clear (nn1_z);
1316 return scm_i_normbig (result_z);
1317 }
1318 }
1319 else
1320 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1321 }
1322 else if (SCM_BIGP (n1))
1323 {
1324 if (SCM_I_INUMP (n2))
1325 {
1326 SCM_SWAP (n1, n2);
1327 nn1 = SCM_I_INUM (n1);
1328 goto intbig;
1329 }
1330 else if (SCM_BIGP (n2))
1331 {
1332 SCM result_z = scm_i_mkbig ();
1333 mpz_and (SCM_I_BIG_MPZ (result_z),
1334 SCM_I_BIG_MPZ (n1),
1335 SCM_I_BIG_MPZ (n2));
1336 scm_remember_upto_here_2 (n1, n2);
1337 return scm_i_normbig (result_z);
1338 }
1339 else
1340 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1341 }
1342 else
1343 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1344 }
1345 #undef FUNC_NAME
1346
1347
1348 SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1349 (SCM x, SCM y, SCM rest),
1350 "Return the bitwise OR of the integer arguments.\n\n"
1351 "@lisp\n"
1352 "(logior) @result{} 0\n"
1353 "(logior 7) @result{} 7\n"
1354 "(logior #b000 #b001 #b011) @result{} 3\n"
1355 "@end lisp")
1356 #define FUNC_NAME s_scm_i_logior
1357 {
1358 while (!scm_is_null (rest))
1359 { x = scm_logior (x, y);
1360 y = scm_car (rest);
1361 rest = scm_cdr (rest);
1362 }
1363 return scm_logior (x, y);
1364 }
1365 #undef FUNC_NAME
1366
1367 #define s_scm_logior s_scm_i_logior
1368
1369 SCM scm_logior (SCM n1, SCM n2)
1370 #define FUNC_NAME s_scm_logior
1371 {
1372 long int nn1;
1373
1374 if (SCM_UNBNDP (n2))
1375 {
1376 if (SCM_UNBNDP (n1))
1377 return SCM_INUM0;
1378 else if (SCM_NUMBERP (n1))
1379 return n1;
1380 else
1381 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1382 }
1383
1384 if (SCM_I_INUMP (n1))
1385 {
1386 nn1 = SCM_I_INUM (n1);
1387 if (SCM_I_INUMP (n2))
1388 {
1389 long nn2 = SCM_I_INUM (n2);
1390 return SCM_I_MAKINUM (nn1 | nn2);
1391 }
1392 else if (SCM_BIGP (n2))
1393 {
1394 intbig:
1395 if (nn1 == 0)
1396 return n2;
1397 {
1398 SCM result_z = scm_i_mkbig ();
1399 mpz_t nn1_z;
1400 mpz_init_set_si (nn1_z, nn1);
1401 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1402 scm_remember_upto_here_1 (n2);
1403 mpz_clear (nn1_z);
1404 return scm_i_normbig (result_z);
1405 }
1406 }
1407 else
1408 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1409 }
1410 else if (SCM_BIGP (n1))
1411 {
1412 if (SCM_I_INUMP (n2))
1413 {
1414 SCM_SWAP (n1, n2);
1415 nn1 = SCM_I_INUM (n1);
1416 goto intbig;
1417 }
1418 else if (SCM_BIGP (n2))
1419 {
1420 SCM result_z = scm_i_mkbig ();
1421 mpz_ior (SCM_I_BIG_MPZ (result_z),
1422 SCM_I_BIG_MPZ (n1),
1423 SCM_I_BIG_MPZ (n2));
1424 scm_remember_upto_here_2 (n1, n2);
1425 return scm_i_normbig (result_z);
1426 }
1427 else
1428 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1429 }
1430 else
1431 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1432 }
1433 #undef FUNC_NAME
1434
1435
1436 SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1437 (SCM x, SCM y, SCM rest),
1438 "Return the bitwise XOR of the integer arguments. A bit is\n"
1439 "set in the result if it is set in an odd number of arguments.\n"
1440 "@lisp\n"
1441 "(logxor) @result{} 0\n"
1442 "(logxor 7) @result{} 7\n"
1443 "(logxor #b000 #b001 #b011) @result{} 2\n"
1444 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1445 "@end lisp")
1446 #define FUNC_NAME s_scm_i_logxor
1447 {
1448 while (!scm_is_null (rest))
1449 { x = scm_logxor (x, y);
1450 y = scm_car (rest);
1451 rest = scm_cdr (rest);
1452 }
1453 return scm_logxor (x, y);
1454 }
1455 #undef FUNC_NAME
1456
1457 #define s_scm_logxor s_scm_i_logxor
1458
1459 SCM scm_logxor (SCM n1, SCM n2)
1460 #define FUNC_NAME s_scm_logxor
1461 {
1462 long int nn1;
1463
1464 if (SCM_UNBNDP (n2))
1465 {
1466 if (SCM_UNBNDP (n1))
1467 return SCM_INUM0;
1468 else if (SCM_NUMBERP (n1))
1469 return n1;
1470 else
1471 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1472 }
1473
1474 if (SCM_I_INUMP (n1))
1475 {
1476 nn1 = SCM_I_INUM (n1);
1477 if (SCM_I_INUMP (n2))
1478 {
1479 long nn2 = SCM_I_INUM (n2);
1480 return SCM_I_MAKINUM (nn1 ^ nn2);
1481 }
1482 else if (SCM_BIGP (n2))
1483 {
1484 intbig:
1485 {
1486 SCM result_z = scm_i_mkbig ();
1487 mpz_t nn1_z;
1488 mpz_init_set_si (nn1_z, nn1);
1489 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1490 scm_remember_upto_here_1 (n2);
1491 mpz_clear (nn1_z);
1492 return scm_i_normbig (result_z);
1493 }
1494 }
1495 else
1496 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1497 }
1498 else if (SCM_BIGP (n1))
1499 {
1500 if (SCM_I_INUMP (n2))
1501 {
1502 SCM_SWAP (n1, n2);
1503 nn1 = SCM_I_INUM (n1);
1504 goto intbig;
1505 }
1506 else if (SCM_BIGP (n2))
1507 {
1508 SCM result_z = scm_i_mkbig ();
1509 mpz_xor (SCM_I_BIG_MPZ (result_z),
1510 SCM_I_BIG_MPZ (n1),
1511 SCM_I_BIG_MPZ (n2));
1512 scm_remember_upto_here_2 (n1, n2);
1513 return scm_i_normbig (result_z);
1514 }
1515 else
1516 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1517 }
1518 else
1519 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1520 }
1521 #undef FUNC_NAME
1522
1523
1524 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1525 (SCM j, SCM k),
1526 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1527 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1528 "without actually calculating the @code{logand}, just testing\n"
1529 "for non-zero.\n"
1530 "\n"
1531 "@lisp\n"
1532 "(logtest #b0100 #b1011) @result{} #f\n"
1533 "(logtest #b0100 #b0111) @result{} #t\n"
1534 "@end lisp")
1535 #define FUNC_NAME s_scm_logtest
1536 {
1537 long int nj;
1538
1539 if (SCM_I_INUMP (j))
1540 {
1541 nj = SCM_I_INUM (j);
1542 if (SCM_I_INUMP (k))
1543 {
1544 long nk = SCM_I_INUM (k);
1545 return scm_from_bool (nj & nk);
1546 }
1547 else if (SCM_BIGP (k))
1548 {
1549 intbig:
1550 if (nj == 0)
1551 return SCM_BOOL_F;
1552 {
1553 SCM result;
1554 mpz_t nj_z;
1555 mpz_init_set_si (nj_z, nj);
1556 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1557 scm_remember_upto_here_1 (k);
1558 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1559 mpz_clear (nj_z);
1560 return result;
1561 }
1562 }
1563 else
1564 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1565 }
1566 else if (SCM_BIGP (j))
1567 {
1568 if (SCM_I_INUMP (k))
1569 {
1570 SCM_SWAP (j, k);
1571 nj = SCM_I_INUM (j);
1572 goto intbig;
1573 }
1574 else if (SCM_BIGP (k))
1575 {
1576 SCM result;
1577 mpz_t result_z;
1578 mpz_init (result_z);
1579 mpz_and (result_z,
1580 SCM_I_BIG_MPZ (j),
1581 SCM_I_BIG_MPZ (k));
1582 scm_remember_upto_here_2 (j, k);
1583 result = scm_from_bool (mpz_sgn (result_z) != 0);
1584 mpz_clear (result_z);
1585 return result;
1586 }
1587 else
1588 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1589 }
1590 else
1591 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1592 }
1593 #undef FUNC_NAME
1594
1595
1596 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1597 (SCM index, SCM j),
1598 "Test whether bit number @var{index} in @var{j} is set.\n"
1599 "@var{index} starts from 0 for the least significant bit.\n"
1600 "\n"
1601 "@lisp\n"
1602 "(logbit? 0 #b1101) @result{} #t\n"
1603 "(logbit? 1 #b1101) @result{} #f\n"
1604 "(logbit? 2 #b1101) @result{} #t\n"
1605 "(logbit? 3 #b1101) @result{} #t\n"
1606 "(logbit? 4 #b1101) @result{} #f\n"
1607 "@end lisp")
1608 #define FUNC_NAME s_scm_logbit_p
1609 {
1610 unsigned long int iindex;
1611 iindex = scm_to_ulong (index);
1612
1613 if (SCM_I_INUMP (j))
1614 {
1615 /* bits above what's in an inum follow the sign bit */
1616 iindex = min (iindex, SCM_LONG_BIT - 1);
1617 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1618 }
1619 else if (SCM_BIGP (j))
1620 {
1621 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1622 scm_remember_upto_here_1 (j);
1623 return scm_from_bool (val);
1624 }
1625 else
1626 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1627 }
1628 #undef FUNC_NAME
1629
1630
1631 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1632 (SCM n),
1633 "Return the integer which is the ones-complement of the integer\n"
1634 "argument.\n"
1635 "\n"
1636 "@lisp\n"
1637 "(number->string (lognot #b10000000) 2)\n"
1638 " @result{} \"-10000001\"\n"
1639 "(number->string (lognot #b0) 2)\n"
1640 " @result{} \"-1\"\n"
1641 "@end lisp")
1642 #define FUNC_NAME s_scm_lognot
1643 {
1644 if (SCM_I_INUMP (n)) {
1645 /* No overflow here, just need to toggle all the bits making up the inum.
1646 Enhancement: No need to strip the tag and add it back, could just xor
1647 a block of 1 bits, if that worked with the various debug versions of
1648 the SCM typedef. */
1649 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1650
1651 } else if (SCM_BIGP (n)) {
1652 SCM result = scm_i_mkbig ();
1653 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1654 scm_remember_upto_here_1 (n);
1655 return result;
1656
1657 } else {
1658 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1659 }
1660 }
1661 #undef FUNC_NAME
1662
1663 /* returns 0 if IN is not an integer. OUT must already be
1664 initialized. */
1665 static int
1666 coerce_to_big (SCM in, mpz_t out)
1667 {
1668 if (SCM_BIGP (in))
1669 mpz_set (out, SCM_I_BIG_MPZ (in));
1670 else if (SCM_I_INUMP (in))
1671 mpz_set_si (out, SCM_I_INUM (in));
1672 else
1673 return 0;
1674
1675 return 1;
1676 }
1677
1678 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1679 (SCM n, SCM k, SCM m),
1680 "Return @var{n} raised to the integer exponent\n"
1681 "@var{k}, modulo @var{m}.\n"
1682 "\n"
1683 "@lisp\n"
1684 "(modulo-expt 2 3 5)\n"
1685 " @result{} 3\n"
1686 "@end lisp")
1687 #define FUNC_NAME s_scm_modulo_expt
1688 {
1689 mpz_t n_tmp;
1690 mpz_t k_tmp;
1691 mpz_t m_tmp;
1692
1693 /* There are two classes of error we might encounter --
1694 1) Math errors, which we'll report by calling scm_num_overflow,
1695 and
1696 2) wrong-type errors, which of course we'll report by calling
1697 SCM_WRONG_TYPE_ARG.
1698 We don't report those errors immediately, however; instead we do
1699 some cleanup first. These variables tell us which error (if
1700 any) we should report after cleaning up.
1701 */
1702 int report_overflow = 0;
1703
1704 int position_of_wrong_type = 0;
1705 SCM value_of_wrong_type = SCM_INUM0;
1706
1707 SCM result = SCM_UNDEFINED;
1708
1709 mpz_init (n_tmp);
1710 mpz_init (k_tmp);
1711 mpz_init (m_tmp);
1712
1713 if (scm_is_eq (m, SCM_INUM0))
1714 {
1715 report_overflow = 1;
1716 goto cleanup;
1717 }
1718
1719 if (!coerce_to_big (n, n_tmp))
1720 {
1721 value_of_wrong_type = n;
1722 position_of_wrong_type = 1;
1723 goto cleanup;
1724 }
1725
1726 if (!coerce_to_big (k, k_tmp))
1727 {
1728 value_of_wrong_type = k;
1729 position_of_wrong_type = 2;
1730 goto cleanup;
1731 }
1732
1733 if (!coerce_to_big (m, m_tmp))
1734 {
1735 value_of_wrong_type = m;
1736 position_of_wrong_type = 3;
1737 goto cleanup;
1738 }
1739
1740 /* if the exponent K is negative, and we simply call mpz_powm, we
1741 will get a divide-by-zero exception when an inverse 1/n mod m
1742 doesn't exist (or is not unique). Since exceptions are hard to
1743 handle, we'll attempt the inversion "by hand" -- that way, we get
1744 a simple failure code, which is easy to handle. */
1745
1746 if (-1 == mpz_sgn (k_tmp))
1747 {
1748 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1749 {
1750 report_overflow = 1;
1751 goto cleanup;
1752 }
1753 mpz_neg (k_tmp, k_tmp);
1754 }
1755
1756 result = scm_i_mkbig ();
1757 mpz_powm (SCM_I_BIG_MPZ (result),
1758 n_tmp,
1759 k_tmp,
1760 m_tmp);
1761
1762 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1763 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1764
1765 cleanup:
1766 mpz_clear (m_tmp);
1767 mpz_clear (k_tmp);
1768 mpz_clear (n_tmp);
1769
1770 if (report_overflow)
1771 scm_num_overflow (FUNC_NAME);
1772
1773 if (position_of_wrong_type)
1774 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1775 value_of_wrong_type);
1776
1777 return scm_i_normbig (result);
1778 }
1779 #undef FUNC_NAME
1780
1781 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1782 (SCM n, SCM k),
1783 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1784 "exact integer, @var{n} can be any number.\n"
1785 "\n"
1786 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1787 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1788 "includes @math{0^0} is 1.\n"
1789 "\n"
1790 "@lisp\n"
1791 "(integer-expt 2 5) @result{} 32\n"
1792 "(integer-expt -3 3) @result{} -27\n"
1793 "(integer-expt 5 -3) @result{} 1/125\n"
1794 "(integer-expt 0 0) @result{} 1\n"
1795 "@end lisp")
1796 #define FUNC_NAME s_scm_integer_expt
1797 {
1798 long i2 = 0;
1799 SCM z_i2 = SCM_BOOL_F;
1800 int i2_is_big = 0;
1801 SCM acc = SCM_I_MAKINUM (1L);
1802
1803 /* 0^0 == 1 according to R5RS */
1804 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1805 return scm_is_false (scm_zero_p(k)) ? n : acc;
1806 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1807 return scm_is_false (scm_even_p (k)) ? n : acc;
1808
1809 if (SCM_I_INUMP (k))
1810 i2 = SCM_I_INUM (k);
1811 else if (SCM_BIGP (k))
1812 {
1813 z_i2 = scm_i_clonebig (k, 1);
1814 scm_remember_upto_here_1 (k);
1815 i2_is_big = 1;
1816 }
1817 else
1818 SCM_WRONG_TYPE_ARG (2, k);
1819
1820 if (i2_is_big)
1821 {
1822 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1823 {
1824 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1825 n = scm_divide (n, SCM_UNDEFINED);
1826 }
1827 while (1)
1828 {
1829 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1830 {
1831 return acc;
1832 }
1833 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1834 {
1835 return scm_product (acc, n);
1836 }
1837 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1838 acc = scm_product (acc, n);
1839 n = scm_product (n, n);
1840 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1841 }
1842 }
1843 else
1844 {
1845 if (i2 < 0)
1846 {
1847 i2 = -i2;
1848 n = scm_divide (n, SCM_UNDEFINED);
1849 }
1850 while (1)
1851 {
1852 if (0 == i2)
1853 return acc;
1854 if (1 == i2)
1855 return scm_product (acc, n);
1856 if (i2 & 1)
1857 acc = scm_product (acc, n);
1858 n = scm_product (n, n);
1859 i2 >>= 1;
1860 }
1861 }
1862 }
1863 #undef FUNC_NAME
1864
1865 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1866 (SCM n, SCM cnt),
1867 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1868 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1869 "\n"
1870 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1871 "@var{cnt} is negative it's a division, rounded towards negative\n"
1872 "infinity. (Note that this is not the same rounding as\n"
1873 "@code{quotient} does.)\n"
1874 "\n"
1875 "With @var{n} viewed as an infinite precision twos complement,\n"
1876 "@code{ash} means a left shift introducing zero bits, or a right\n"
1877 "shift dropping bits.\n"
1878 "\n"
1879 "@lisp\n"
1880 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1881 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1882 "\n"
1883 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1884 "(ash -23 -2) @result{} -6\n"
1885 "@end lisp")
1886 #define FUNC_NAME s_scm_ash
1887 {
1888 long bits_to_shift;
1889 bits_to_shift = scm_to_long (cnt);
1890
1891 if (SCM_I_INUMP (n))
1892 {
1893 long nn = SCM_I_INUM (n);
1894
1895 if (bits_to_shift > 0)
1896 {
1897 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1898 overflow a non-zero fixnum. For smaller shifts we check the
1899 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1900 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1901 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1902 bits_to_shift)". */
1903
1904 if (nn == 0)
1905 return n;
1906
1907 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1908 && ((unsigned long)
1909 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1910 <= 1))
1911 {
1912 return SCM_I_MAKINUM (nn << bits_to_shift);
1913 }
1914 else
1915 {
1916 SCM result = scm_i_long2big (nn);
1917 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1918 bits_to_shift);
1919 return result;
1920 }
1921 }
1922 else
1923 {
1924 bits_to_shift = -bits_to_shift;
1925 if (bits_to_shift >= SCM_LONG_BIT)
1926 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1927 else
1928 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1929 }
1930
1931 }
1932 else if (SCM_BIGP (n))
1933 {
1934 SCM result;
1935
1936 if (bits_to_shift == 0)
1937 return n;
1938
1939 result = scm_i_mkbig ();
1940 if (bits_to_shift >= 0)
1941 {
1942 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1943 bits_to_shift);
1944 return result;
1945 }
1946 else
1947 {
1948 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1949 we have to allocate a bignum even if the result is going to be a
1950 fixnum. */
1951 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1952 -bits_to_shift);
1953 return scm_i_normbig (result);
1954 }
1955
1956 }
1957 else
1958 {
1959 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1960 }
1961 }
1962 #undef FUNC_NAME
1963
1964
1965 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1966 (SCM n, SCM start, SCM end),
1967 "Return the integer composed of the @var{start} (inclusive)\n"
1968 "through @var{end} (exclusive) bits of @var{n}. The\n"
1969 "@var{start}th bit becomes the 0-th bit in the result.\n"
1970 "\n"
1971 "@lisp\n"
1972 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1973 " @result{} \"1010\"\n"
1974 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1975 " @result{} \"10110\"\n"
1976 "@end lisp")
1977 #define FUNC_NAME s_scm_bit_extract
1978 {
1979 unsigned long int istart, iend, bits;
1980 istart = scm_to_ulong (start);
1981 iend = scm_to_ulong (end);
1982 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1983
1984 /* how many bits to keep */
1985 bits = iend - istart;
1986
1987 if (SCM_I_INUMP (n))
1988 {
1989 long int in = SCM_I_INUM (n);
1990
1991 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1992 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1993 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1994
1995 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1996 {
1997 /* Since we emulate two's complement encoded numbers, this
1998 * special case requires us to produce a result that has
1999 * more bits than can be stored in a fixnum.
2000 */
2001 SCM result = scm_i_long2big (in);
2002 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2003 bits);
2004 return result;
2005 }
2006
2007 /* mask down to requisite bits */
2008 bits = min (bits, SCM_I_FIXNUM_BIT);
2009 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
2010 }
2011 else if (SCM_BIGP (n))
2012 {
2013 SCM result;
2014 if (bits == 1)
2015 {
2016 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
2017 }
2018 else
2019 {
2020 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2021 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2022 such bits into a ulong. */
2023 result = scm_i_mkbig ();
2024 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2025 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2026 result = scm_i_normbig (result);
2027 }
2028 scm_remember_upto_here_1 (n);
2029 return result;
2030 }
2031 else
2032 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2033 }
2034 #undef FUNC_NAME
2035
2036
2037 static const char scm_logtab[] = {
2038 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2039 };
2040
2041 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
2042 (SCM n),
2043 "Return the number of bits in integer @var{n}. If integer is\n"
2044 "positive, the 1-bits in its binary representation are counted.\n"
2045 "If negative, the 0-bits in its two's-complement binary\n"
2046 "representation are counted. If 0, 0 is returned.\n"
2047 "\n"
2048 "@lisp\n"
2049 "(logcount #b10101010)\n"
2050 " @result{} 4\n"
2051 "(logcount 0)\n"
2052 " @result{} 0\n"
2053 "(logcount -2)\n"
2054 " @result{} 1\n"
2055 "@end lisp")
2056 #define FUNC_NAME s_scm_logcount
2057 {
2058 if (SCM_I_INUMP (n))
2059 {
2060 unsigned long int c = 0;
2061 long int nn = SCM_I_INUM (n);
2062 if (nn < 0)
2063 nn = -1 - nn;
2064 while (nn)
2065 {
2066 c += scm_logtab[15 & nn];
2067 nn >>= 4;
2068 }
2069 return SCM_I_MAKINUM (c);
2070 }
2071 else if (SCM_BIGP (n))
2072 {
2073 unsigned long count;
2074 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2075 count = mpz_popcount (SCM_I_BIG_MPZ (n));
2076 else
2077 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2078 scm_remember_upto_here_1 (n);
2079 return SCM_I_MAKINUM (count);
2080 }
2081 else
2082 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2083 }
2084 #undef FUNC_NAME
2085
2086
2087 static const char scm_ilentab[] = {
2088 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2089 };
2090
2091
2092 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2093 (SCM n),
2094 "Return the number of bits necessary to represent @var{n}.\n"
2095 "\n"
2096 "@lisp\n"
2097 "(integer-length #b10101010)\n"
2098 " @result{} 8\n"
2099 "(integer-length 0)\n"
2100 " @result{} 0\n"
2101 "(integer-length #b1111)\n"
2102 " @result{} 4\n"
2103 "@end lisp")
2104 #define FUNC_NAME s_scm_integer_length
2105 {
2106 if (SCM_I_INUMP (n))
2107 {
2108 unsigned long int c = 0;
2109 unsigned int l = 4;
2110 long int nn = SCM_I_INUM (n);
2111 if (nn < 0)
2112 nn = -1 - nn;
2113 while (nn)
2114 {
2115 c += 4;
2116 l = scm_ilentab [15 & nn];
2117 nn >>= 4;
2118 }
2119 return SCM_I_MAKINUM (c - 4 + l);
2120 }
2121 else if (SCM_BIGP (n))
2122 {
2123 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2124 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2125 1 too big, so check for that and adjust. */
2126 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2127 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2128 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2129 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2130 size--;
2131 scm_remember_upto_here_1 (n);
2132 return SCM_I_MAKINUM (size);
2133 }
2134 else
2135 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2136 }
2137 #undef FUNC_NAME
2138
2139 /*** NUMBERS -> STRINGS ***/
2140 #define SCM_MAX_DBL_PREC 60
2141 #define SCM_MAX_DBL_RADIX 36
2142
2143 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2144 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2145 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2146
2147 static
2148 void init_dblprec(int *prec, int radix) {
2149 /* determine floating point precision by adding successively
2150 smaller increments to 1.0 until it is considered == 1.0 */
2151 double f = ((double)1.0)/radix;
2152 double fsum = 1.0 + f;
2153
2154 *prec = 0;
2155 while (fsum != 1.0)
2156 {
2157 if (++(*prec) > SCM_MAX_DBL_PREC)
2158 fsum = 1.0;
2159 else
2160 {
2161 f /= radix;
2162 fsum = f + 1.0;
2163 }
2164 }
2165 (*prec) -= 1;
2166 }
2167
2168 static
2169 void init_fx_radix(double *fx_list, int radix)
2170 {
2171 /* initialize a per-radix list of tolerances. When added
2172 to a number < 1.0, we can determine if we should raund
2173 up and quit converting a number to a string. */
2174 int i;
2175 fx_list[0] = 0.0;
2176 fx_list[1] = 0.5;
2177 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2178 fx_list[i] = (fx_list[i-1] / radix);
2179 }
2180
2181 /* use this array as a way to generate a single digit */
2182 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2183
2184 static size_t
2185 idbl2str (double f, char *a, int radix)
2186 {
2187 int efmt, dpt, d, i, wp;
2188 double *fx;
2189 #ifdef DBL_MIN_10_EXP
2190 double f_cpy;
2191 int exp_cpy;
2192 #endif /* DBL_MIN_10_EXP */
2193 size_t ch = 0;
2194 int exp = 0;
2195
2196 if(radix < 2 ||
2197 radix > SCM_MAX_DBL_RADIX)
2198 {
2199 /* revert to existing behavior */
2200 radix = 10;
2201 }
2202
2203 wp = scm_dblprec[radix-2];
2204 fx = fx_per_radix[radix-2];
2205
2206 if (f == 0.0)
2207 {
2208 #ifdef HAVE_COPYSIGN
2209 double sgn = copysign (1.0, f);
2210
2211 if (sgn < 0.0)
2212 a[ch++] = '-';
2213 #endif
2214 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2215 }
2216
2217 if (xisinf (f))
2218 {
2219 if (f < 0)
2220 strcpy (a, "-inf.0");
2221 else
2222 strcpy (a, "+inf.0");
2223 return ch+6;
2224 }
2225 else if (xisnan (f))
2226 {
2227 strcpy (a, "+nan.0");
2228 return ch+6;
2229 }
2230
2231 if (f < 0.0)
2232 {
2233 f = -f;
2234 a[ch++] = '-';
2235 }
2236
2237 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2238 make-uniform-vector, from causing infinite loops. */
2239 /* just do the checking...if it passes, we do the conversion for our
2240 radix again below */
2241 f_cpy = f;
2242 exp_cpy = exp;
2243
2244 while (f_cpy < 1.0)
2245 {
2246 f_cpy *= 10.0;
2247 if (exp_cpy-- < DBL_MIN_10_EXP)
2248 {
2249 a[ch++] = '#';
2250 a[ch++] = '.';
2251 a[ch++] = '#';
2252 return ch;
2253 }
2254 }
2255 while (f_cpy > 10.0)
2256 {
2257 f_cpy *= 0.10;
2258 if (exp_cpy++ > DBL_MAX_10_EXP)
2259 {
2260 a[ch++] = '#';
2261 a[ch++] = '.';
2262 a[ch++] = '#';
2263 return ch;
2264 }
2265 }
2266 #endif
2267
2268 while (f < 1.0)
2269 {
2270 f *= radix;
2271 exp--;
2272 }
2273 while (f > radix)
2274 {
2275 f /= radix;
2276 exp++;
2277 }
2278
2279 if (f + fx[wp] >= radix)
2280 {
2281 f = 1.0;
2282 exp++;
2283 }
2284 zero:
2285 #ifdef ENGNOT
2286 /* adding 9999 makes this equivalent to abs(x) % 3 */
2287 dpt = (exp + 9999) % 3;
2288 exp -= dpt++;
2289 efmt = 1;
2290 #else
2291 efmt = (exp < -3) || (exp > wp + 2);
2292 if (!efmt)
2293 {
2294 if (exp < 0)
2295 {
2296 a[ch++] = '0';
2297 a[ch++] = '.';
2298 dpt = exp;
2299 while (++dpt)
2300 a[ch++] = '0';
2301 }
2302 else
2303 dpt = exp + 1;
2304 }
2305 else
2306 dpt = 1;
2307 #endif
2308
2309 do
2310 {
2311 d = f;
2312 f -= d;
2313 a[ch++] = number_chars[d];
2314 if (f < fx[wp])
2315 break;
2316 if (f + fx[wp] >= 1.0)
2317 {
2318 a[ch - 1] = number_chars[d+1];
2319 break;
2320 }
2321 f *= radix;
2322 if (!(--dpt))
2323 a[ch++] = '.';
2324 }
2325 while (wp--);
2326
2327 if (dpt > 0)
2328 {
2329 #ifndef ENGNOT
2330 if ((dpt > 4) && (exp > 6))
2331 {
2332 d = (a[0] == '-' ? 2 : 1);
2333 for (i = ch++; i > d; i--)
2334 a[i] = a[i - 1];
2335 a[d] = '.';
2336 efmt = 1;
2337 }
2338 else
2339 #endif
2340 {
2341 while (--dpt)
2342 a[ch++] = '0';
2343 a[ch++] = '.';
2344 }
2345 }
2346 if (a[ch - 1] == '.')
2347 a[ch++] = '0'; /* trailing zero */
2348 if (efmt && exp)
2349 {
2350 a[ch++] = 'e';
2351 if (exp < 0)
2352 {
2353 exp = -exp;
2354 a[ch++] = '-';
2355 }
2356 for (i = radix; i <= exp; i *= radix);
2357 for (i /= radix; i; i /= radix)
2358 {
2359 a[ch++] = number_chars[exp / i];
2360 exp %= i;
2361 }
2362 }
2363 return ch;
2364 }
2365
2366
2367 static size_t
2368 icmplx2str (double real, double imag, char *str, int radix)
2369 {
2370 size_t i;
2371
2372 i = idbl2str (real, str, radix);
2373 if (imag != 0.0)
2374 {
2375 /* Don't output a '+' for negative numbers or for Inf and
2376 NaN. They will provide their own sign. */
2377 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2378 str[i++] = '+';
2379 i += idbl2str (imag, &str[i], radix);
2380 str[i++] = 'i';
2381 }
2382 return i;
2383 }
2384
2385 static size_t
2386 iflo2str (SCM flt, char *str, int radix)
2387 {
2388 size_t i;
2389 if (SCM_REALP (flt))
2390 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2391 else
2392 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2393 str, radix);
2394 return i;
2395 }
2396
2397 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2398 characters in the result.
2399 rad is output base
2400 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2401 size_t
2402 scm_iint2str (scm_t_intmax num, int rad, char *p)
2403 {
2404 if (num < 0)
2405 {
2406 *p++ = '-';
2407 return scm_iuint2str (-num, rad, p) + 1;
2408 }
2409 else
2410 return scm_iuint2str (num, rad, p);
2411 }
2412
2413 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2414 characters in the result.
2415 rad is output base
2416 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2417 size_t
2418 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2419 {
2420 size_t j = 1;
2421 size_t i;
2422 scm_t_uintmax n = num;
2423
2424 for (n /= rad; n > 0; n /= rad)
2425 j++;
2426
2427 i = j;
2428 n = num;
2429 while (i--)
2430 {
2431 int d = n % rad;
2432
2433 n /= rad;
2434 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2435 }
2436 return j;
2437 }
2438
2439 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2440 (SCM n, SCM radix),
2441 "Return a string holding the external representation of the\n"
2442 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2443 "inexact, a radix of 10 will be used.")
2444 #define FUNC_NAME s_scm_number_to_string
2445 {
2446 int base;
2447
2448 if (SCM_UNBNDP (radix))
2449 base = 10;
2450 else
2451 base = scm_to_signed_integer (radix, 2, 36);
2452
2453 if (SCM_I_INUMP (n))
2454 {
2455 char num_buf [SCM_INTBUFLEN];
2456 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2457 return scm_from_locale_stringn (num_buf, length);
2458 }
2459 else if (SCM_BIGP (n))
2460 {
2461 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2462 scm_remember_upto_here_1 (n);
2463 return scm_take_locale_string (str);
2464 }
2465 else if (SCM_FRACTIONP (n))
2466 {
2467 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2468 scm_from_locale_string ("/"),
2469 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2470 }
2471 else if (SCM_INEXACTP (n))
2472 {
2473 char num_buf [FLOBUFLEN];
2474 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2475 }
2476 else
2477 SCM_WRONG_TYPE_ARG (1, n);
2478 }
2479 #undef FUNC_NAME
2480
2481
2482 /* These print routines used to be stubbed here so that scm_repl.c
2483 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2484
2485 int
2486 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2487 {
2488 char num_buf[FLOBUFLEN];
2489 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2490 return !0;
2491 }
2492
2493 void
2494 scm_i_print_double (double val, SCM port)
2495 {
2496 char num_buf[FLOBUFLEN];
2497 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2498 }
2499
2500 int
2501 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2502
2503 {
2504 char num_buf[FLOBUFLEN];
2505 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2506 return !0;
2507 }
2508
2509 void
2510 scm_i_print_complex (double real, double imag, SCM port)
2511 {
2512 char num_buf[FLOBUFLEN];
2513 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2514 }
2515
2516 int
2517 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2518 {
2519 SCM str;
2520 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2521 scm_lfwrite_str (str, port);
2522 scm_remember_upto_here_1 (str);
2523 return !0;
2524 }
2525
2526 int
2527 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2528 {
2529 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2530 scm_remember_upto_here_1 (exp);
2531 scm_lfwrite (str, (size_t) strlen (str), port);
2532 free (str);
2533 return !0;
2534 }
2535 /*** END nums->strs ***/
2536
2537
2538 /*** STRINGS -> NUMBERS ***/
2539
2540 /* The following functions implement the conversion from strings to numbers.
2541 * The implementation somehow follows the grammar for numbers as it is given
2542 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2543 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2544 * points should be noted about the implementation:
2545 * * Each function keeps a local index variable 'idx' that points at the
2546 * current position within the parsed string. The global index is only
2547 * updated if the function could parse the corresponding syntactic unit
2548 * successfully.
2549 * * Similarly, the functions keep track of indicators of inexactness ('#',
2550 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2551 * global exactness information is only updated after each part has been
2552 * successfully parsed.
2553 * * Sequences of digits are parsed into temporary variables holding fixnums.
2554 * Only if these fixnums would overflow, the result variables are updated
2555 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2556 * the temporary variables holding the fixnums are cleared, and the process
2557 * starts over again. If for example fixnums were able to store five decimal
2558 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2559 * and the result was computed as 12345 * 100000 + 67890. In other words,
2560 * only every five digits two bignum operations were performed.
2561 */
2562
2563 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2564
2565 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2566
2567 /* In non ASCII-style encodings the following macro might not work. */
2568 #define XDIGIT2UINT(d) \
2569 (uc_is_property_decimal_digit ((int) (unsigned char) d) \
2570 ? (d) - '0' \
2571 : uc_tolower ((int) (unsigned char) d) - 'a' + 10)
2572
2573 static SCM
2574 mem2uinteger (SCM mem, unsigned int *p_idx,
2575 unsigned int radix, enum t_exactness *p_exactness)
2576 {
2577 unsigned int idx = *p_idx;
2578 unsigned int hash_seen = 0;
2579 scm_t_bits shift = 1;
2580 scm_t_bits add = 0;
2581 unsigned int digit_value;
2582 SCM result;
2583 char c;
2584 size_t len = scm_i_string_length (mem);
2585
2586 if (idx == len)
2587 return SCM_BOOL_F;
2588
2589 c = scm_i_string_ref (mem, idx);
2590 if (!uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
2591 return SCM_BOOL_F;
2592 digit_value = XDIGIT2UINT (c);
2593 if (digit_value >= radix)
2594 return SCM_BOOL_F;
2595
2596 idx++;
2597 result = SCM_I_MAKINUM (digit_value);
2598 while (idx != len)
2599 {
2600 scm_t_wchar c = scm_i_string_ref (mem, idx);
2601 if (uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
2602 {
2603 if (hash_seen)
2604 break;
2605 digit_value = XDIGIT2UINT (c);
2606 if (digit_value >= radix)
2607 break;
2608 }
2609 else if (c == '#')
2610 {
2611 hash_seen = 1;
2612 digit_value = 0;
2613 }
2614 else
2615 break;
2616
2617 idx++;
2618 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2619 {
2620 result = scm_product (result, SCM_I_MAKINUM (shift));
2621 if (add > 0)
2622 result = scm_sum (result, SCM_I_MAKINUM (add));
2623
2624 shift = radix;
2625 add = digit_value;
2626 }
2627 else
2628 {
2629 shift = shift * radix;
2630 add = add * radix + digit_value;
2631 }
2632 };
2633
2634 if (shift > 1)
2635 result = scm_product (result, SCM_I_MAKINUM (shift));
2636 if (add > 0)
2637 result = scm_sum (result, SCM_I_MAKINUM (add));
2638
2639 *p_idx = idx;
2640 if (hash_seen)
2641 *p_exactness = INEXACT;
2642
2643 return result;
2644 }
2645
2646
2647 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2648 * covers the parts of the rules that start at a potential point. The value
2649 * of the digits up to the point have been parsed by the caller and are given
2650 * in variable result. The content of *p_exactness indicates, whether a hash
2651 * has already been seen in the digits before the point.
2652 */
2653
2654 #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
2655
2656 static SCM
2657 mem2decimal_from_point (SCM result, SCM mem,
2658 unsigned int *p_idx, enum t_exactness *p_exactness)
2659 {
2660 unsigned int idx = *p_idx;
2661 enum t_exactness x = *p_exactness;
2662 size_t len = scm_i_string_length (mem);
2663
2664 if (idx == len)
2665 return result;
2666
2667 if (scm_i_string_ref (mem, idx) == '.')
2668 {
2669 scm_t_bits shift = 1;
2670 scm_t_bits add = 0;
2671 unsigned int digit_value;
2672 SCM big_shift = SCM_I_MAKINUM (1);
2673
2674 idx++;
2675 while (idx != len)
2676 {
2677 scm_t_wchar c = scm_i_string_ref (mem, idx);
2678 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2679 {
2680 if (x == INEXACT)
2681 return SCM_BOOL_F;
2682 else
2683 digit_value = DIGIT2UINT (c);
2684 }
2685 else if (c == '#')
2686 {
2687 x = INEXACT;
2688 digit_value = 0;
2689 }
2690 else
2691 break;
2692
2693 idx++;
2694 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2695 {
2696 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2697 result = scm_product (result, SCM_I_MAKINUM (shift));
2698 if (add > 0)
2699 result = scm_sum (result, SCM_I_MAKINUM (add));
2700
2701 shift = 10;
2702 add = digit_value;
2703 }
2704 else
2705 {
2706 shift = shift * 10;
2707 add = add * 10 + digit_value;
2708 }
2709 };
2710
2711 if (add > 0)
2712 {
2713 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2714 result = scm_product (result, SCM_I_MAKINUM (shift));
2715 result = scm_sum (result, SCM_I_MAKINUM (add));
2716 }
2717
2718 result = scm_divide (result, big_shift);
2719
2720 /* We've seen a decimal point, thus the value is implicitly inexact. */
2721 x = INEXACT;
2722 }
2723
2724 if (idx != len)
2725 {
2726 int sign = 1;
2727 unsigned int start;
2728 scm_t_wchar c;
2729 int exponent;
2730 SCM e;
2731
2732 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2733
2734 switch (scm_i_string_ref (mem, idx))
2735 {
2736 case 'd': case 'D':
2737 case 'e': case 'E':
2738 case 'f': case 'F':
2739 case 'l': case 'L':
2740 case 's': case 'S':
2741 idx++;
2742 if (idx == len)
2743 return SCM_BOOL_F;
2744
2745 start = idx;
2746 c = scm_i_string_ref (mem, idx);
2747 if (c == '-')
2748 {
2749 idx++;
2750 if (idx == len)
2751 return SCM_BOOL_F;
2752
2753 sign = -1;
2754 c = scm_i_string_ref (mem, idx);
2755 }
2756 else if (c == '+')
2757 {
2758 idx++;
2759 if (idx == len)
2760 return SCM_BOOL_F;
2761
2762 sign = 1;
2763 c = scm_i_string_ref (mem, idx);
2764 }
2765 else
2766 sign = 1;
2767
2768 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
2769 return SCM_BOOL_F;
2770
2771 idx++;
2772 exponent = DIGIT2UINT (c);
2773 while (idx != len)
2774 {
2775 scm_t_wchar c = scm_i_string_ref (mem, idx);
2776 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2777 {
2778 idx++;
2779 if (exponent <= SCM_MAXEXP)
2780 exponent = exponent * 10 + DIGIT2UINT (c);
2781 }
2782 else
2783 break;
2784 }
2785
2786 if (exponent > SCM_MAXEXP)
2787 {
2788 size_t exp_len = idx - start;
2789 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
2790 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2791 scm_out_of_range ("string->number", exp_num);
2792 }
2793
2794 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2795 if (sign == 1)
2796 result = scm_product (result, e);
2797 else
2798 result = scm_divide2real (result, e);
2799
2800 /* We've seen an exponent, thus the value is implicitly inexact. */
2801 x = INEXACT;
2802
2803 break;
2804
2805 default:
2806 break;
2807 }
2808 }
2809
2810 *p_idx = idx;
2811 if (x == INEXACT)
2812 *p_exactness = x;
2813
2814 return result;
2815 }
2816
2817
2818 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2819
2820 static SCM
2821 mem2ureal (SCM mem, unsigned int *p_idx,
2822 unsigned int radix, enum t_exactness *p_exactness)
2823 {
2824 unsigned int idx = *p_idx;
2825 SCM result;
2826 size_t len = scm_i_string_length (mem);
2827
2828 /* Start off believing that the number will be exact. This changes
2829 to INEXACT if we see a decimal point or a hash. */
2830 enum t_exactness x = EXACT;
2831
2832 if (idx == len)
2833 return SCM_BOOL_F;
2834
2835 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
2836 {
2837 *p_idx = idx+5;
2838 return scm_inf ();
2839 }
2840
2841 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
2842 {
2843 /* Cobble up the fractional part. We might want to set the
2844 NaN's mantissa from it. */
2845 idx += 4;
2846 mem2uinteger (mem, &idx, 10, &x);
2847 *p_idx = idx;
2848 return scm_nan ();
2849 }
2850
2851 if (scm_i_string_ref (mem, idx) == '.')
2852 {
2853 if (radix != 10)
2854 return SCM_BOOL_F;
2855 else if (idx + 1 == len)
2856 return SCM_BOOL_F;
2857 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
2858 return SCM_BOOL_F;
2859 else
2860 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
2861 p_idx, &x);
2862 }
2863 else
2864 {
2865 SCM uinteger;
2866
2867 uinteger = mem2uinteger (mem, &idx, radix, &x);
2868 if (scm_is_false (uinteger))
2869 return SCM_BOOL_F;
2870
2871 if (idx == len)
2872 result = uinteger;
2873 else if (scm_i_string_ref (mem, idx) == '/')
2874 {
2875 SCM divisor;
2876
2877 idx++;
2878 if (idx == len)
2879 return SCM_BOOL_F;
2880
2881 divisor = mem2uinteger (mem, &idx, radix, &x);
2882 if (scm_is_false (divisor))
2883 return SCM_BOOL_F;
2884
2885 /* both are int/big here, I assume */
2886 result = scm_i_make_ratio (uinteger, divisor);
2887 }
2888 else if (radix == 10)
2889 {
2890 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
2891 if (scm_is_false (result))
2892 return SCM_BOOL_F;
2893 }
2894 else
2895 result = uinteger;
2896
2897 *p_idx = idx;
2898 }
2899
2900 /* Update *p_exactness if the number just read was inexact. This is
2901 important for complex numbers, so that a complex number is
2902 treated as inexact overall if either its real or imaginary part
2903 is inexact.
2904 */
2905 if (x == INEXACT)
2906 *p_exactness = x;
2907
2908 /* When returning an inexact zero, make sure it is represented as a
2909 floating point value so that we can change its sign.
2910 */
2911 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2912 result = scm_from_double (0.0);
2913
2914 return result;
2915 }
2916
2917
2918 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2919
2920 static SCM
2921 mem2complex (SCM mem, unsigned int idx,
2922 unsigned int radix, enum t_exactness *p_exactness)
2923 {
2924 scm_t_wchar c;
2925 int sign = 0;
2926 SCM ureal;
2927 size_t len = scm_i_string_length (mem);
2928
2929 if (idx == len)
2930 return SCM_BOOL_F;
2931
2932 c = scm_i_string_ref (mem, idx);
2933 if (c == '+')
2934 {
2935 idx++;
2936 sign = 1;
2937 }
2938 else if (c == '-')
2939 {
2940 idx++;
2941 sign = -1;
2942 }
2943
2944 if (idx == len)
2945 return SCM_BOOL_F;
2946
2947 ureal = mem2ureal (mem, &idx, radix, p_exactness);
2948 if (scm_is_false (ureal))
2949 {
2950 /* input must be either +i or -i */
2951
2952 if (sign == 0)
2953 return SCM_BOOL_F;
2954
2955 if (scm_i_string_ref (mem, idx) == 'i'
2956 || scm_i_string_ref (mem, idx) == 'I')
2957 {
2958 idx++;
2959 if (idx != len)
2960 return SCM_BOOL_F;
2961
2962 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2963 }
2964 else
2965 return SCM_BOOL_F;
2966 }
2967 else
2968 {
2969 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2970 ureal = scm_difference (ureal, SCM_UNDEFINED);
2971
2972 if (idx == len)
2973 return ureal;
2974
2975 c = scm_i_string_ref (mem, idx);
2976 switch (c)
2977 {
2978 case 'i': case 'I':
2979 /* either +<ureal>i or -<ureal>i */
2980
2981 idx++;
2982 if (sign == 0)
2983 return SCM_BOOL_F;
2984 if (idx != len)
2985 return SCM_BOOL_F;
2986 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2987
2988 case '@':
2989 /* polar input: <real>@<real>. */
2990
2991 idx++;
2992 if (idx == len)
2993 return SCM_BOOL_F;
2994 else
2995 {
2996 int sign;
2997 SCM angle;
2998 SCM result;
2999
3000 c = scm_i_string_ref (mem, idx);
3001 if (c == '+')
3002 {
3003 idx++;
3004 if (idx == len)
3005 return SCM_BOOL_F;
3006 sign = 1;
3007 }
3008 else if (c == '-')
3009 {
3010 idx++;
3011 if (idx == len)
3012 return SCM_BOOL_F;
3013 sign = -1;
3014 }
3015 else
3016 sign = 1;
3017
3018 angle = mem2ureal (mem, &idx, radix, p_exactness);
3019 if (scm_is_false (angle))
3020 return SCM_BOOL_F;
3021 if (idx != len)
3022 return SCM_BOOL_F;
3023
3024 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3025 angle = scm_difference (angle, SCM_UNDEFINED);
3026
3027 result = scm_make_polar (ureal, angle);
3028 return result;
3029 }
3030 case '+':
3031 case '-':
3032 /* expecting input matching <real>[+-]<ureal>?i */
3033
3034 idx++;
3035 if (idx == len)
3036 return SCM_BOOL_F;
3037 else
3038 {
3039 int sign = (c == '+') ? 1 : -1;
3040 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
3041
3042 if (scm_is_false (imag))
3043 imag = SCM_I_MAKINUM (sign);
3044 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3045 imag = scm_difference (imag, SCM_UNDEFINED);
3046
3047 if (idx == len)
3048 return SCM_BOOL_F;
3049 if (scm_i_string_ref (mem, idx) != 'i'
3050 && scm_i_string_ref (mem, idx) != 'I')
3051 return SCM_BOOL_F;
3052
3053 idx++;
3054 if (idx != len)
3055 return SCM_BOOL_F;
3056
3057 return scm_make_rectangular (ureal, imag);
3058 }
3059 default:
3060 return SCM_BOOL_F;
3061 }
3062 }
3063 }
3064
3065
3066 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3067
3068 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
3069
3070 SCM
3071 scm_i_string_to_number (SCM mem, unsigned int default_radix)
3072 {
3073 unsigned int idx = 0;
3074 unsigned int radix = NO_RADIX;
3075 enum t_exactness forced_x = NO_EXACTNESS;
3076 enum t_exactness implicit_x = EXACT;
3077 SCM result;
3078 size_t len = scm_i_string_length (mem);
3079
3080 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3081 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3082 {
3083 switch (scm_i_string_ref (mem, idx + 1))
3084 {
3085 case 'b': case 'B':
3086 if (radix != NO_RADIX)
3087 return SCM_BOOL_F;
3088 radix = DUAL;
3089 break;
3090 case 'd': case 'D':
3091 if (radix != NO_RADIX)
3092 return SCM_BOOL_F;
3093 radix = DEC;
3094 break;
3095 case 'i': case 'I':
3096 if (forced_x != NO_EXACTNESS)
3097 return SCM_BOOL_F;
3098 forced_x = INEXACT;
3099 break;
3100 case 'e': case 'E':
3101 if (forced_x != NO_EXACTNESS)
3102 return SCM_BOOL_F;
3103 forced_x = EXACT;
3104 break;
3105 case 'o': case 'O':
3106 if (radix != NO_RADIX)
3107 return SCM_BOOL_F;
3108 radix = OCT;
3109 break;
3110 case 'x': case 'X':
3111 if (radix != NO_RADIX)
3112 return SCM_BOOL_F;
3113 radix = HEX;
3114 break;
3115 default:
3116 return SCM_BOOL_F;
3117 }
3118 idx += 2;
3119 }
3120
3121 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3122 if (radix == NO_RADIX)
3123 result = mem2complex (mem, idx, default_radix, &implicit_x);
3124 else
3125 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3126
3127 if (scm_is_false (result))
3128 return SCM_BOOL_F;
3129
3130 switch (forced_x)
3131 {
3132 case EXACT:
3133 if (SCM_INEXACTP (result))
3134 return scm_inexact_to_exact (result);
3135 else
3136 return result;
3137 case INEXACT:
3138 if (SCM_INEXACTP (result))
3139 return result;
3140 else
3141 return scm_exact_to_inexact (result);
3142 case NO_EXACTNESS:
3143 default:
3144 if (implicit_x == INEXACT)
3145 {
3146 if (SCM_INEXACTP (result))
3147 return result;
3148 else
3149 return scm_exact_to_inexact (result);
3150 }
3151 else
3152 return result;
3153 }
3154 }
3155
3156 SCM
3157 scm_c_locale_stringn_to_number (const char* mem, size_t len,
3158 unsigned int default_radix)
3159 {
3160 SCM str = scm_from_locale_stringn (mem, len);
3161
3162 return scm_i_string_to_number (str, default_radix);
3163 }
3164
3165
3166 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3167 (SCM string, SCM radix),
3168 "Return a number of the maximally precise representation\n"
3169 "expressed by the given @var{string}. @var{radix} must be an\n"
3170 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3171 "is a default radix that may be overridden by an explicit radix\n"
3172 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3173 "supplied, then the default radix is 10. If string is not a\n"
3174 "syntactically valid notation for a number, then\n"
3175 "@code{string->number} returns @code{#f}.")
3176 #define FUNC_NAME s_scm_string_to_number
3177 {
3178 SCM answer;
3179 unsigned int base;
3180 SCM_VALIDATE_STRING (1, string);
3181
3182 if (SCM_UNBNDP (radix))
3183 base = 10;
3184 else
3185 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3186
3187 answer = scm_i_string_to_number (string, base);
3188 scm_remember_upto_here_1 (string);
3189 return answer;
3190 }
3191 #undef FUNC_NAME
3192
3193
3194 /*** END strs->nums ***/
3195
3196
3197 SCM
3198 scm_bigequal (SCM x, SCM y)
3199 {
3200 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3201 scm_remember_upto_here_2 (x, y);
3202 return scm_from_bool (0 == result);
3203 }
3204
3205 SCM
3206 scm_real_equalp (SCM x, SCM y)
3207 {
3208 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3209 }
3210
3211 SCM
3212 scm_complex_equalp (SCM x, SCM y)
3213 {
3214 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3215 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3216 }
3217
3218 SCM
3219 scm_i_fraction_equalp (SCM x, SCM y)
3220 {
3221 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3222 SCM_FRACTION_NUMERATOR (y)))
3223 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3224 SCM_FRACTION_DENOMINATOR (y))))
3225 return SCM_BOOL_F;
3226 else
3227 return SCM_BOOL_T;
3228 }
3229
3230
3231 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3232 (SCM x),
3233 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3234 "otherwise.")
3235 #define FUNC_NAME s_scm_number_p
3236 {
3237 return scm_from_bool (SCM_NUMBERP (x));
3238 }
3239 #undef FUNC_NAME
3240
3241 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3242 (SCM x),
3243 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3244 "otherwise. Note that the sets of real, rational and integer\n"
3245 "values form subsets of the set of complex numbers, i. e. the\n"
3246 "predicate will also be fulfilled if @var{x} is a real,\n"
3247 "rational or integer number.")
3248 #define FUNC_NAME s_scm_complex_p
3249 {
3250 /* all numbers are complex. */
3251 return scm_number_p (x);
3252 }
3253 #undef FUNC_NAME
3254
3255 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3256 (SCM x),
3257 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3258 "otherwise. Note that the set of integer values forms a subset of\n"
3259 "the set of real numbers, i. e. the predicate will also be\n"
3260 "fulfilled if @var{x} is an integer number.")
3261 #define FUNC_NAME s_scm_real_p
3262 {
3263 /* we can't represent irrational numbers. */
3264 return scm_rational_p (x);
3265 }
3266 #undef FUNC_NAME
3267
3268 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3269 (SCM x),
3270 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3271 "otherwise. Note that the set of integer values forms a subset of\n"
3272 "the set of rational numbers, i. e. the predicate will also be\n"
3273 "fulfilled if @var{x} is an integer number.")
3274 #define FUNC_NAME s_scm_rational_p
3275 {
3276 if (SCM_I_INUMP (x))
3277 return SCM_BOOL_T;
3278 else if (SCM_IMP (x))
3279 return SCM_BOOL_F;
3280 else if (SCM_BIGP (x))
3281 return SCM_BOOL_T;
3282 else if (SCM_FRACTIONP (x))
3283 return SCM_BOOL_T;
3284 else if (SCM_REALP (x))
3285 /* due to their limited precision, all floating point numbers are
3286 rational as well. */
3287 return SCM_BOOL_T;
3288 else
3289 return SCM_BOOL_F;
3290 }
3291 #undef FUNC_NAME
3292
3293 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3294 (SCM x),
3295 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3296 "else.")
3297 #define FUNC_NAME s_scm_integer_p
3298 {
3299 double r;
3300 if (SCM_I_INUMP (x))
3301 return SCM_BOOL_T;
3302 if (SCM_IMP (x))
3303 return SCM_BOOL_F;
3304 if (SCM_BIGP (x))
3305 return SCM_BOOL_T;
3306 if (!SCM_INEXACTP (x))
3307 return SCM_BOOL_F;
3308 if (SCM_COMPLEXP (x))
3309 return SCM_BOOL_F;
3310 r = SCM_REAL_VALUE (x);
3311 /* +/-inf passes r==floor(r), making those #t */
3312 if (r == floor (r))
3313 return SCM_BOOL_T;
3314 return SCM_BOOL_F;
3315 }
3316 #undef FUNC_NAME
3317
3318
3319 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3320 (SCM x),
3321 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3322 "else.")
3323 #define FUNC_NAME s_scm_inexact_p
3324 {
3325 if (SCM_INEXACTP (x))
3326 return SCM_BOOL_T;
3327 if (SCM_NUMBERP (x))
3328 return SCM_BOOL_F;
3329 SCM_WRONG_TYPE_ARG (1, x);
3330 }
3331 #undef FUNC_NAME
3332
3333
3334 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3335 /* "Return @code{#t} if all parameters are numerically equal." */
3336 SCM
3337 scm_num_eq_p (SCM x, SCM y)
3338 {
3339 again:
3340 if (SCM_I_INUMP (x))
3341 {
3342 long xx = SCM_I_INUM (x);
3343 if (SCM_I_INUMP (y))
3344 {
3345 long yy = SCM_I_INUM (y);
3346 return scm_from_bool (xx == yy);
3347 }
3348 else if (SCM_BIGP (y))
3349 return SCM_BOOL_F;
3350 else if (SCM_REALP (y))
3351 {
3352 /* On a 32-bit system an inum fits a double, we can cast the inum
3353 to a double and compare.
3354
3355 But on a 64-bit system an inum is bigger than a double and
3356 casting it to a double (call that dxx) will round. dxx is at
3357 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3358 an integer and fits a long. So we cast yy to a long and
3359 compare with plain xx.
3360
3361 An alternative (for any size system actually) would be to check
3362 yy is an integer (with floor) and is in range of an inum
3363 (compare against appropriate powers of 2) then test
3364 xx==(long)yy. It's just a matter of which casts/comparisons
3365 might be fastest or easiest for the cpu. */
3366
3367 double yy = SCM_REAL_VALUE (y);
3368 return scm_from_bool ((double) xx == yy
3369 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3370 || xx == (long) yy));
3371 }
3372 else if (SCM_COMPLEXP (y))
3373 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3374 && (0.0 == SCM_COMPLEX_IMAG (y)));
3375 else if (SCM_FRACTIONP (y))
3376 return SCM_BOOL_F;
3377 else
3378 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3379 }
3380 else if (SCM_BIGP (x))
3381 {
3382 if (SCM_I_INUMP (y))
3383 return SCM_BOOL_F;
3384 else if (SCM_BIGP (y))
3385 {
3386 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3387 scm_remember_upto_here_2 (x, y);
3388 return scm_from_bool (0 == cmp);
3389 }
3390 else if (SCM_REALP (y))
3391 {
3392 int cmp;
3393 if (xisnan (SCM_REAL_VALUE (y)))
3394 return SCM_BOOL_F;
3395 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3396 scm_remember_upto_here_1 (x);
3397 return scm_from_bool (0 == cmp);
3398 }
3399 else if (SCM_COMPLEXP (y))
3400 {
3401 int cmp;
3402 if (0.0 != SCM_COMPLEX_IMAG (y))
3403 return SCM_BOOL_F;
3404 if (xisnan (SCM_COMPLEX_REAL (y)))
3405 return SCM_BOOL_F;
3406 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3407 scm_remember_upto_here_1 (x);
3408 return scm_from_bool (0 == cmp);
3409 }
3410 else if (SCM_FRACTIONP (y))
3411 return SCM_BOOL_F;
3412 else
3413 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3414 }
3415 else if (SCM_REALP (x))
3416 {
3417 double xx = SCM_REAL_VALUE (x);
3418 if (SCM_I_INUMP (y))
3419 {
3420 /* see comments with inum/real above */
3421 long yy = SCM_I_INUM (y);
3422 return scm_from_bool (xx == (double) yy
3423 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3424 || (long) xx == yy));
3425 }
3426 else if (SCM_BIGP (y))
3427 {
3428 int cmp;
3429 if (xisnan (SCM_REAL_VALUE (x)))
3430 return SCM_BOOL_F;
3431 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3432 scm_remember_upto_here_1 (y);
3433 return scm_from_bool (0 == cmp);
3434 }
3435 else if (SCM_REALP (y))
3436 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3437 else if (SCM_COMPLEXP (y))
3438 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3439 && (0.0 == SCM_COMPLEX_IMAG (y)));
3440 else if (SCM_FRACTIONP (y))
3441 {
3442 double xx = SCM_REAL_VALUE (x);
3443 if (xisnan (xx))
3444 return SCM_BOOL_F;
3445 if (xisinf (xx))
3446 return scm_from_bool (xx < 0.0);
3447 x = scm_inexact_to_exact (x); /* with x as frac or int */
3448 goto again;
3449 }
3450 else
3451 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3452 }
3453 else if (SCM_COMPLEXP (x))
3454 {
3455 if (SCM_I_INUMP (y))
3456 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3457 && (SCM_COMPLEX_IMAG (x) == 0.0));
3458 else if (SCM_BIGP (y))
3459 {
3460 int cmp;
3461 if (0.0 != SCM_COMPLEX_IMAG (x))
3462 return SCM_BOOL_F;
3463 if (xisnan (SCM_COMPLEX_REAL (x)))
3464 return SCM_BOOL_F;
3465 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3466 scm_remember_upto_here_1 (y);
3467 return scm_from_bool (0 == cmp);
3468 }
3469 else if (SCM_REALP (y))
3470 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3471 && (SCM_COMPLEX_IMAG (x) == 0.0));
3472 else if (SCM_COMPLEXP (y))
3473 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3474 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3475 else if (SCM_FRACTIONP (y))
3476 {
3477 double xx;
3478 if (SCM_COMPLEX_IMAG (x) != 0.0)
3479 return SCM_BOOL_F;
3480 xx = SCM_COMPLEX_REAL (x);
3481 if (xisnan (xx))
3482 return SCM_BOOL_F;
3483 if (xisinf (xx))
3484 return scm_from_bool (xx < 0.0);
3485 x = scm_inexact_to_exact (x); /* with x as frac or int */
3486 goto again;
3487 }
3488 else
3489 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3490 }
3491 else if (SCM_FRACTIONP (x))
3492 {
3493 if (SCM_I_INUMP (y))
3494 return SCM_BOOL_F;
3495 else if (SCM_BIGP (y))
3496 return SCM_BOOL_F;
3497 else if (SCM_REALP (y))
3498 {
3499 double yy = SCM_REAL_VALUE (y);
3500 if (xisnan (yy))
3501 return SCM_BOOL_F;
3502 if (xisinf (yy))
3503 return scm_from_bool (0.0 < yy);
3504 y = scm_inexact_to_exact (y); /* with y as frac or int */
3505 goto again;
3506 }
3507 else if (SCM_COMPLEXP (y))
3508 {
3509 double yy;
3510 if (SCM_COMPLEX_IMAG (y) != 0.0)
3511 return SCM_BOOL_F;
3512 yy = SCM_COMPLEX_REAL (y);
3513 if (xisnan (yy))
3514 return SCM_BOOL_F;
3515 if (xisinf (yy))
3516 return scm_from_bool (0.0 < yy);
3517 y = scm_inexact_to_exact (y); /* with y as frac or int */
3518 goto again;
3519 }
3520 else if (SCM_FRACTIONP (y))
3521 return scm_i_fraction_equalp (x, y);
3522 else
3523 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3524 }
3525 else
3526 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3527 }
3528
3529
3530 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3531 done are good for inums, but for bignums an answer can almost always be
3532 had by just examining a few high bits of the operands, as done by GMP in
3533 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3534 of the float exponent to take into account. */
3535
3536 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3537 /* "Return @code{#t} if the list of parameters is monotonically\n"
3538 * "increasing."
3539 */
3540 SCM
3541 scm_less_p (SCM x, SCM y)
3542 {
3543 again:
3544 if (SCM_I_INUMP (x))
3545 {
3546 long xx = SCM_I_INUM (x);
3547 if (SCM_I_INUMP (y))
3548 {
3549 long yy = SCM_I_INUM (y);
3550 return scm_from_bool (xx < yy);
3551 }
3552 else if (SCM_BIGP (y))
3553 {
3554 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3555 scm_remember_upto_here_1 (y);
3556 return scm_from_bool (sgn > 0);
3557 }
3558 else if (SCM_REALP (y))
3559 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3560 else if (SCM_FRACTIONP (y))
3561 {
3562 /* "x < a/b" becomes "x*b < a" */
3563 int_frac:
3564 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3565 y = SCM_FRACTION_NUMERATOR (y);
3566 goto again;
3567 }
3568 else
3569 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3570 }
3571 else if (SCM_BIGP (x))
3572 {
3573 if (SCM_I_INUMP (y))
3574 {
3575 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3576 scm_remember_upto_here_1 (x);
3577 return scm_from_bool (sgn < 0);
3578 }
3579 else if (SCM_BIGP (y))
3580 {
3581 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3582 scm_remember_upto_here_2 (x, y);
3583 return scm_from_bool (cmp < 0);
3584 }
3585 else if (SCM_REALP (y))
3586 {
3587 int cmp;
3588 if (xisnan (SCM_REAL_VALUE (y)))
3589 return SCM_BOOL_F;
3590 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3591 scm_remember_upto_here_1 (x);
3592 return scm_from_bool (cmp < 0);
3593 }
3594 else if (SCM_FRACTIONP (y))
3595 goto int_frac;
3596 else
3597 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3598 }
3599 else if (SCM_REALP (x))
3600 {
3601 if (SCM_I_INUMP (y))
3602 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3603 else if (SCM_BIGP (y))
3604 {
3605 int cmp;
3606 if (xisnan (SCM_REAL_VALUE (x)))
3607 return SCM_BOOL_F;
3608 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3609 scm_remember_upto_here_1 (y);
3610 return scm_from_bool (cmp > 0);
3611 }
3612 else if (SCM_REALP (y))
3613 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3614 else if (SCM_FRACTIONP (y))
3615 {
3616 double xx = SCM_REAL_VALUE (x);
3617 if (xisnan (xx))
3618 return SCM_BOOL_F;
3619 if (xisinf (xx))
3620 return scm_from_bool (xx < 0.0);
3621 x = scm_inexact_to_exact (x); /* with x as frac or int */
3622 goto again;
3623 }
3624 else
3625 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3626 }
3627 else if (SCM_FRACTIONP (x))
3628 {
3629 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3630 {
3631 /* "a/b < y" becomes "a < y*b" */
3632 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3633 x = SCM_FRACTION_NUMERATOR (x);
3634 goto again;
3635 }
3636 else if (SCM_REALP (y))
3637 {
3638 double yy = SCM_REAL_VALUE (y);
3639 if (xisnan (yy))
3640 return SCM_BOOL_F;
3641 if (xisinf (yy))
3642 return scm_from_bool (0.0 < yy);
3643 y = scm_inexact_to_exact (y); /* with y as frac or int */
3644 goto again;
3645 }
3646 else if (SCM_FRACTIONP (y))
3647 {
3648 /* "a/b < c/d" becomes "a*d < c*b" */
3649 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3650 SCM_FRACTION_DENOMINATOR (y));
3651 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3652 SCM_FRACTION_DENOMINATOR (x));
3653 x = new_x;
3654 y = new_y;
3655 goto again;
3656 }
3657 else
3658 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3659 }
3660 else
3661 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3662 }
3663
3664
3665 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3666 /* "Return @code{#t} if the list of parameters is monotonically\n"
3667 * "decreasing."
3668 */
3669 #define FUNC_NAME s_scm_gr_p
3670 SCM
3671 scm_gr_p (SCM x, SCM y)
3672 {
3673 if (!SCM_NUMBERP (x))
3674 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3675 else if (!SCM_NUMBERP (y))
3676 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3677 else
3678 return scm_less_p (y, x);
3679 }
3680 #undef FUNC_NAME
3681
3682
3683 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3684 /* "Return @code{#t} if the list of parameters is monotonically\n"
3685 * "non-decreasing."
3686 */
3687 #define FUNC_NAME s_scm_leq_p
3688 SCM
3689 scm_leq_p (SCM x, SCM y)
3690 {
3691 if (!SCM_NUMBERP (x))
3692 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3693 else if (!SCM_NUMBERP (y))
3694 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3695 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3696 return SCM_BOOL_F;
3697 else
3698 return scm_not (scm_less_p (y, x));
3699 }
3700 #undef FUNC_NAME
3701
3702
3703 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3704 /* "Return @code{#t} if the list of parameters is monotonically\n"
3705 * "non-increasing."
3706 */
3707 #define FUNC_NAME s_scm_geq_p
3708 SCM
3709 scm_geq_p (SCM x, SCM y)
3710 {
3711 if (!SCM_NUMBERP (x))
3712 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3713 else if (!SCM_NUMBERP (y))
3714 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3715 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3716 return SCM_BOOL_F;
3717 else
3718 return scm_not (scm_less_p (x, y));
3719 }
3720 #undef FUNC_NAME
3721
3722
3723 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3724 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3725 * "zero."
3726 */
3727 SCM
3728 scm_zero_p (SCM z)
3729 {
3730 if (SCM_I_INUMP (z))
3731 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3732 else if (SCM_BIGP (z))
3733 return SCM_BOOL_F;
3734 else if (SCM_REALP (z))
3735 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3736 else if (SCM_COMPLEXP (z))
3737 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3738 && SCM_COMPLEX_IMAG (z) == 0.0);
3739 else if (SCM_FRACTIONP (z))
3740 return SCM_BOOL_F;
3741 else
3742 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3743 }
3744
3745
3746 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3747 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3748 * "zero."
3749 */
3750 SCM
3751 scm_positive_p (SCM x)
3752 {
3753 if (SCM_I_INUMP (x))
3754 return scm_from_bool (SCM_I_INUM (x) > 0);
3755 else if (SCM_BIGP (x))
3756 {
3757 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3758 scm_remember_upto_here_1 (x);
3759 return scm_from_bool (sgn > 0);
3760 }
3761 else if (SCM_REALP (x))
3762 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3763 else if (SCM_FRACTIONP (x))
3764 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3765 else
3766 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3767 }
3768
3769
3770 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3771 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3772 * "zero."
3773 */
3774 SCM
3775 scm_negative_p (SCM x)
3776 {
3777 if (SCM_I_INUMP (x))
3778 return scm_from_bool (SCM_I_INUM (x) < 0);
3779 else if (SCM_BIGP (x))
3780 {
3781 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3782 scm_remember_upto_here_1 (x);
3783 return scm_from_bool (sgn < 0);
3784 }
3785 else if (SCM_REALP (x))
3786 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3787 else if (SCM_FRACTIONP (x))
3788 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3789 else
3790 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3791 }
3792
3793
3794 /* scm_min and scm_max return an inexact when either argument is inexact, as
3795 required by r5rs. On that basis, for exact/inexact combinations the
3796 exact is converted to inexact to compare and possibly return. This is
3797 unlike scm_less_p above which takes some trouble to preserve all bits in
3798 its test, such trouble is not required for min and max. */
3799
3800 SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3801 (SCM x, SCM y, SCM rest),
3802 "Return the maximum of all parameter values.")
3803 #define FUNC_NAME s_scm_i_max
3804 {
3805 while (!scm_is_null (rest))
3806 { x = scm_max (x, y);
3807 y = scm_car (rest);
3808 rest = scm_cdr (rest);
3809 }
3810 return scm_max (x, y);
3811 }
3812 #undef FUNC_NAME
3813
3814 #define s_max s_scm_i_max
3815 #define g_max g_scm_i_max
3816
3817 SCM
3818 scm_max (SCM x, SCM y)
3819 {
3820 if (SCM_UNBNDP (y))
3821 {
3822 if (SCM_UNBNDP (x))
3823 SCM_WTA_DISPATCH_0 (g_max, s_max);
3824 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3825 return x;
3826 else
3827 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3828 }
3829
3830 if (SCM_I_INUMP (x))
3831 {
3832 long xx = SCM_I_INUM (x);
3833 if (SCM_I_INUMP (y))
3834 {
3835 long yy = SCM_I_INUM (y);
3836 return (xx < yy) ? y : x;
3837 }
3838 else if (SCM_BIGP (y))
3839 {
3840 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3841 scm_remember_upto_here_1 (y);
3842 return (sgn < 0) ? x : y;
3843 }
3844 else if (SCM_REALP (y))
3845 {
3846 double z = xx;
3847 /* if y==NaN then ">" is false and we return NaN */
3848 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3849 }
3850 else if (SCM_FRACTIONP (y))
3851 {
3852 use_less:
3853 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3854 }
3855 else
3856 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3857 }
3858 else if (SCM_BIGP (x))
3859 {
3860 if (SCM_I_INUMP (y))
3861 {
3862 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3863 scm_remember_upto_here_1 (x);
3864 return (sgn < 0) ? y : x;
3865 }
3866 else if (SCM_BIGP (y))
3867 {
3868 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3869 scm_remember_upto_here_2 (x, y);
3870 return (cmp > 0) ? x : y;
3871 }
3872 else if (SCM_REALP (y))
3873 {
3874 /* if y==NaN then xx>yy is false, so we return the NaN y */
3875 double xx, yy;
3876 big_real:
3877 xx = scm_i_big2dbl (x);
3878 yy = SCM_REAL_VALUE (y);
3879 return (xx > yy ? scm_from_double (xx) : y);
3880 }
3881 else if (SCM_FRACTIONP (y))
3882 {
3883 goto use_less;
3884 }
3885 else
3886 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3887 }
3888 else if (SCM_REALP (x))
3889 {
3890 if (SCM_I_INUMP (y))
3891 {
3892 double z = SCM_I_INUM (y);
3893 /* if x==NaN then "<" is false and we return NaN */
3894 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3895 }
3896 else if (SCM_BIGP (y))
3897 {
3898 SCM_SWAP (x, y);
3899 goto big_real;
3900 }
3901 else if (SCM_REALP (y))
3902 {
3903 /* if x==NaN then our explicit check means we return NaN
3904 if y==NaN then ">" is false and we return NaN
3905 calling isnan is unavoidable, since it's the only way to know
3906 which of x or y causes any compares to be false */
3907 double xx = SCM_REAL_VALUE (x);
3908 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3909 }
3910 else if (SCM_FRACTIONP (y))
3911 {
3912 double yy = scm_i_fraction2double (y);
3913 double xx = SCM_REAL_VALUE (x);
3914 return (xx < yy) ? scm_from_double (yy) : x;
3915 }
3916 else
3917 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3918 }
3919 else if (SCM_FRACTIONP (x))
3920 {
3921 if (SCM_I_INUMP (y))
3922 {
3923 goto use_less;
3924 }
3925 else if (SCM_BIGP (y))
3926 {
3927 goto use_less;
3928 }
3929 else if (SCM_REALP (y))
3930 {
3931 double xx = scm_i_fraction2double (x);
3932 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3933 }
3934 else if (SCM_FRACTIONP (y))
3935 {
3936 goto use_less;
3937 }
3938 else
3939 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3940 }
3941 else
3942 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3943 }
3944
3945
3946 SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
3947 (SCM x, SCM y, SCM rest),
3948 "Return the minimum of all parameter values.")
3949 #define FUNC_NAME s_scm_i_min
3950 {
3951 while (!scm_is_null (rest))
3952 { x = scm_min (x, y);
3953 y = scm_car (rest);
3954 rest = scm_cdr (rest);
3955 }
3956 return scm_min (x, y);
3957 }
3958 #undef FUNC_NAME
3959
3960 #define s_min s_scm_i_min
3961 #define g_min g_scm_i_min
3962
3963 SCM
3964 scm_min (SCM x, SCM y)
3965 {
3966 if (SCM_UNBNDP (y))
3967 {
3968 if (SCM_UNBNDP (x))
3969 SCM_WTA_DISPATCH_0 (g_min, s_min);
3970 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3971 return x;
3972 else
3973 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3974 }
3975
3976 if (SCM_I_INUMP (x))
3977 {
3978 long xx = SCM_I_INUM (x);
3979 if (SCM_I_INUMP (y))
3980 {
3981 long yy = SCM_I_INUM (y);
3982 return (xx < yy) ? x : y;
3983 }
3984 else if (SCM_BIGP (y))
3985 {
3986 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3987 scm_remember_upto_here_1 (y);
3988 return (sgn < 0) ? y : x;
3989 }
3990 else if (SCM_REALP (y))
3991 {
3992 double z = xx;
3993 /* if y==NaN then "<" is false and we return NaN */
3994 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3995 }
3996 else if (SCM_FRACTIONP (y))
3997 {
3998 use_less:
3999 return (scm_is_false (scm_less_p (x, y)) ? y : x);
4000 }
4001 else
4002 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4003 }
4004 else if (SCM_BIGP (x))
4005 {
4006 if (SCM_I_INUMP (y))
4007 {
4008 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4009 scm_remember_upto_here_1 (x);
4010 return (sgn < 0) ? x : y;
4011 }
4012 else if (SCM_BIGP (y))
4013 {
4014 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4015 scm_remember_upto_here_2 (x, y);
4016 return (cmp > 0) ? y : x;
4017 }
4018 else if (SCM_REALP (y))
4019 {
4020 /* if y==NaN then xx<yy is false, so we return the NaN y */
4021 double xx, yy;
4022 big_real:
4023 xx = scm_i_big2dbl (x);
4024 yy = SCM_REAL_VALUE (y);
4025 return (xx < yy ? scm_from_double (xx) : y);
4026 }
4027 else if (SCM_FRACTIONP (y))
4028 {
4029 goto use_less;
4030 }
4031 else
4032 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4033 }
4034 else if (SCM_REALP (x))
4035 {
4036 if (SCM_I_INUMP (y))
4037 {
4038 double z = SCM_I_INUM (y);
4039 /* if x==NaN then "<" is false and we return NaN */
4040 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
4041 }
4042 else if (SCM_BIGP (y))
4043 {
4044 SCM_SWAP (x, y);
4045 goto big_real;
4046 }
4047 else if (SCM_REALP (y))
4048 {
4049 /* if x==NaN then our explicit check means we return NaN
4050 if y==NaN then "<" is false and we return NaN
4051 calling isnan is unavoidable, since it's the only way to know
4052 which of x or y causes any compares to be false */
4053 double xx = SCM_REAL_VALUE (x);
4054 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
4055 }
4056 else if (SCM_FRACTIONP (y))
4057 {
4058 double yy = scm_i_fraction2double (y);
4059 double xx = SCM_REAL_VALUE (x);
4060 return (yy < xx) ? scm_from_double (yy) : x;
4061 }
4062 else
4063 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4064 }
4065 else if (SCM_FRACTIONP (x))
4066 {
4067 if (SCM_I_INUMP (y))
4068 {
4069 goto use_less;
4070 }
4071 else if (SCM_BIGP (y))
4072 {
4073 goto use_less;
4074 }
4075 else if (SCM_REALP (y))
4076 {
4077 double xx = scm_i_fraction2double (x);
4078 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
4079 }
4080 else if (SCM_FRACTIONP (y))
4081 {
4082 goto use_less;
4083 }
4084 else
4085 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4086 }
4087 else
4088 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
4089 }
4090
4091
4092 SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4093 (SCM x, SCM y, SCM rest),
4094 "Return the sum of all parameter values. Return 0 if called without\n"
4095 "any parameters." )
4096 #define FUNC_NAME s_scm_i_sum
4097 {
4098 while (!scm_is_null (rest))
4099 { x = scm_sum (x, y);
4100 y = scm_car (rest);
4101 rest = scm_cdr (rest);
4102 }
4103 return scm_sum (x, y);
4104 }
4105 #undef FUNC_NAME
4106
4107 #define s_sum s_scm_i_sum
4108 #define g_sum g_scm_i_sum
4109
4110 SCM
4111 scm_sum (SCM x, SCM y)
4112 {
4113 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4114 {
4115 if (SCM_NUMBERP (x)) return x;
4116 if (SCM_UNBNDP (x)) return SCM_INUM0;
4117 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
4118 }
4119
4120 if (SCM_LIKELY (SCM_I_INUMP (x)))
4121 {
4122 if (SCM_LIKELY (SCM_I_INUMP (y)))
4123 {
4124 long xx = SCM_I_INUM (x);
4125 long yy = SCM_I_INUM (y);
4126 long int z = xx + yy;
4127 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
4128 }
4129 else if (SCM_BIGP (y))
4130 {
4131 SCM_SWAP (x, y);
4132 goto add_big_inum;
4133 }
4134 else if (SCM_REALP (y))
4135 {
4136 long int xx = SCM_I_INUM (x);
4137 return scm_from_double (xx + SCM_REAL_VALUE (y));
4138 }
4139 else if (SCM_COMPLEXP (y))
4140 {
4141 long int xx = SCM_I_INUM (x);
4142 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
4143 SCM_COMPLEX_IMAG (y));
4144 }
4145 else if (SCM_FRACTIONP (y))
4146 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4147 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4148 SCM_FRACTION_DENOMINATOR (y));
4149 else
4150 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4151 } else if (SCM_BIGP (x))
4152 {
4153 if (SCM_I_INUMP (y))
4154 {
4155 long int inum;
4156 int bigsgn;
4157 add_big_inum:
4158 inum = SCM_I_INUM (y);
4159 if (inum == 0)
4160 return x;
4161 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4162 if (inum < 0)
4163 {
4164 SCM result = scm_i_mkbig ();
4165 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4166 scm_remember_upto_here_1 (x);
4167 /* we know the result will have to be a bignum */
4168 if (bigsgn == -1)
4169 return result;
4170 return scm_i_normbig (result);
4171 }
4172 else
4173 {
4174 SCM result = scm_i_mkbig ();
4175 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4176 scm_remember_upto_here_1 (x);
4177 /* we know the result will have to be a bignum */
4178 if (bigsgn == 1)
4179 return result;
4180 return scm_i_normbig (result);
4181 }
4182 }
4183 else if (SCM_BIGP (y))
4184 {
4185 SCM result = scm_i_mkbig ();
4186 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4187 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4188 mpz_add (SCM_I_BIG_MPZ (result),
4189 SCM_I_BIG_MPZ (x),
4190 SCM_I_BIG_MPZ (y));
4191 scm_remember_upto_here_2 (x, y);
4192 /* we know the result will have to be a bignum */
4193 if (sgn_x == sgn_y)
4194 return result;
4195 return scm_i_normbig (result);
4196 }
4197 else if (SCM_REALP (y))
4198 {
4199 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4200 scm_remember_upto_here_1 (x);
4201 return scm_from_double (result);
4202 }
4203 else if (SCM_COMPLEXP (y))
4204 {
4205 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4206 + SCM_COMPLEX_REAL (y));
4207 scm_remember_upto_here_1 (x);
4208 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4209 }
4210 else if (SCM_FRACTIONP (y))
4211 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4212 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4213 SCM_FRACTION_DENOMINATOR (y));
4214 else
4215 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4216 }
4217 else if (SCM_REALP (x))
4218 {
4219 if (SCM_I_INUMP (y))
4220 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4221 else if (SCM_BIGP (y))
4222 {
4223 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4224 scm_remember_upto_here_1 (y);
4225 return scm_from_double (result);
4226 }
4227 else if (SCM_REALP (y))
4228 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4229 else if (SCM_COMPLEXP (y))
4230 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4231 SCM_COMPLEX_IMAG (y));
4232 else if (SCM_FRACTIONP (y))
4233 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4234 else
4235 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4236 }
4237 else if (SCM_COMPLEXP (x))
4238 {
4239 if (SCM_I_INUMP (y))
4240 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4241 SCM_COMPLEX_IMAG (x));
4242 else if (SCM_BIGP (y))
4243 {
4244 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4245 + SCM_COMPLEX_REAL (x));
4246 scm_remember_upto_here_1 (y);
4247 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4248 }
4249 else if (SCM_REALP (y))
4250 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4251 SCM_COMPLEX_IMAG (x));
4252 else if (SCM_COMPLEXP (y))
4253 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4254 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4255 else if (SCM_FRACTIONP (y))
4256 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4257 SCM_COMPLEX_IMAG (x));
4258 else
4259 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4260 }
4261 else if (SCM_FRACTIONP (x))
4262 {
4263 if (SCM_I_INUMP (y))
4264 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4265 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4266 SCM_FRACTION_DENOMINATOR (x));
4267 else if (SCM_BIGP (y))
4268 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4269 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4270 SCM_FRACTION_DENOMINATOR (x));
4271 else if (SCM_REALP (y))
4272 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4273 else if (SCM_COMPLEXP (y))
4274 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4275 SCM_COMPLEX_IMAG (y));
4276 else if (SCM_FRACTIONP (y))
4277 /* a/b + c/d = (ad + bc) / bd */
4278 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4279 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4280 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4281 else
4282 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4283 }
4284 else
4285 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4286 }
4287
4288
4289 SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4290 (SCM x),
4291 "Return @math{@var{x}+1}.")
4292 #define FUNC_NAME s_scm_oneplus
4293 {
4294 return scm_sum (x, SCM_I_MAKINUM (1));
4295 }
4296 #undef FUNC_NAME
4297
4298
4299 SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4300 (SCM x, SCM y, SCM rest),
4301 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4302 "the sum of all but the first argument are subtracted from the first\n"
4303 "argument.")
4304 #define FUNC_NAME s_scm_i_difference
4305 {
4306 while (!scm_is_null (rest))
4307 { x = scm_difference (x, y);
4308 y = scm_car (rest);
4309 rest = scm_cdr (rest);
4310 }
4311 return scm_difference (x, y);
4312 }
4313 #undef FUNC_NAME
4314
4315 #define s_difference s_scm_i_difference
4316 #define g_difference g_scm_i_difference
4317
4318 SCM
4319 scm_difference (SCM x, SCM y)
4320 #define FUNC_NAME s_difference
4321 {
4322 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4323 {
4324 if (SCM_UNBNDP (x))
4325 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4326 else
4327 if (SCM_I_INUMP (x))
4328 {
4329 long xx = -SCM_I_INUM (x);
4330 if (SCM_FIXABLE (xx))
4331 return SCM_I_MAKINUM (xx);
4332 else
4333 return scm_i_long2big (xx);
4334 }
4335 else if (SCM_BIGP (x))
4336 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4337 bignum, but negating that gives a fixnum. */
4338 return scm_i_normbig (scm_i_clonebig (x, 0));
4339 else if (SCM_REALP (x))
4340 return scm_from_double (-SCM_REAL_VALUE (x));
4341 else if (SCM_COMPLEXP (x))
4342 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4343 -SCM_COMPLEX_IMAG (x));
4344 else if (SCM_FRACTIONP (x))
4345 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4346 SCM_FRACTION_DENOMINATOR (x));
4347 else
4348 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4349 }
4350
4351 if (SCM_LIKELY (SCM_I_INUMP (x)))
4352 {
4353 if (SCM_LIKELY (SCM_I_INUMP (y)))
4354 {
4355 long int xx = SCM_I_INUM (x);
4356 long int yy = SCM_I_INUM (y);
4357 long int z = xx - yy;
4358 if (SCM_FIXABLE (z))
4359 return SCM_I_MAKINUM (z);
4360 else
4361 return scm_i_long2big (z);
4362 }
4363 else if (SCM_BIGP (y))
4364 {
4365 /* inum-x - big-y */
4366 long xx = SCM_I_INUM (x);
4367
4368 if (xx == 0)
4369 return scm_i_clonebig (y, 0);
4370 else
4371 {
4372 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4373 SCM result = scm_i_mkbig ();
4374
4375 if (xx >= 0)
4376 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4377 else
4378 {
4379 /* x - y == -(y + -x) */
4380 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4381 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4382 }
4383 scm_remember_upto_here_1 (y);
4384
4385 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4386 /* we know the result will have to be a bignum */
4387 return result;
4388 else
4389 return scm_i_normbig (result);
4390 }
4391 }
4392 else if (SCM_REALP (y))
4393 {
4394 long int xx = SCM_I_INUM (x);
4395 return scm_from_double (xx - SCM_REAL_VALUE (y));
4396 }
4397 else if (SCM_COMPLEXP (y))
4398 {
4399 long int xx = SCM_I_INUM (x);
4400 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4401 - SCM_COMPLEX_IMAG (y));
4402 }
4403 else if (SCM_FRACTIONP (y))
4404 /* a - b/c = (ac - b) / c */
4405 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4406 SCM_FRACTION_NUMERATOR (y)),
4407 SCM_FRACTION_DENOMINATOR (y));
4408 else
4409 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4410 }
4411 else if (SCM_BIGP (x))
4412 {
4413 if (SCM_I_INUMP (y))
4414 {
4415 /* big-x - inum-y */
4416 long yy = SCM_I_INUM (y);
4417 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4418
4419 scm_remember_upto_here_1 (x);
4420 if (sgn_x == 0)
4421 return (SCM_FIXABLE (-yy) ?
4422 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4423 else
4424 {
4425 SCM result = scm_i_mkbig ();
4426
4427 if (yy >= 0)
4428 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4429 else
4430 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4431 scm_remember_upto_here_1 (x);
4432
4433 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4434 /* we know the result will have to be a bignum */
4435 return result;
4436 else
4437 return scm_i_normbig (result);
4438 }
4439 }
4440 else if (SCM_BIGP (y))
4441 {
4442 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4443 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4444 SCM result = scm_i_mkbig ();
4445 mpz_sub (SCM_I_BIG_MPZ (result),
4446 SCM_I_BIG_MPZ (x),
4447 SCM_I_BIG_MPZ (y));
4448 scm_remember_upto_here_2 (x, y);
4449 /* we know the result will have to be a bignum */
4450 if ((sgn_x == 1) && (sgn_y == -1))
4451 return result;
4452 if ((sgn_x == -1) && (sgn_y == 1))
4453 return result;
4454 return scm_i_normbig (result);
4455 }
4456 else if (SCM_REALP (y))
4457 {
4458 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4459 scm_remember_upto_here_1 (x);
4460 return scm_from_double (result);
4461 }
4462 else if (SCM_COMPLEXP (y))
4463 {
4464 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4465 - SCM_COMPLEX_REAL (y));
4466 scm_remember_upto_here_1 (x);
4467 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4468 }
4469 else if (SCM_FRACTIONP (y))
4470 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4471 SCM_FRACTION_NUMERATOR (y)),
4472 SCM_FRACTION_DENOMINATOR (y));
4473 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4474 }
4475 else if (SCM_REALP (x))
4476 {
4477 if (SCM_I_INUMP (y))
4478 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4479 else if (SCM_BIGP (y))
4480 {
4481 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4482 scm_remember_upto_here_1 (x);
4483 return scm_from_double (result);
4484 }
4485 else if (SCM_REALP (y))
4486 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4487 else if (SCM_COMPLEXP (y))
4488 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4489 -SCM_COMPLEX_IMAG (y));
4490 else if (SCM_FRACTIONP (y))
4491 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4492 else
4493 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4494 }
4495 else if (SCM_COMPLEXP (x))
4496 {
4497 if (SCM_I_INUMP (y))
4498 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4499 SCM_COMPLEX_IMAG (x));
4500 else if (SCM_BIGP (y))
4501 {
4502 double real_part = (SCM_COMPLEX_REAL (x)
4503 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4504 scm_remember_upto_here_1 (x);
4505 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4506 }
4507 else if (SCM_REALP (y))
4508 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4509 SCM_COMPLEX_IMAG (x));
4510 else if (SCM_COMPLEXP (y))
4511 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4512 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4513 else if (SCM_FRACTIONP (y))
4514 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4515 SCM_COMPLEX_IMAG (x));
4516 else
4517 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4518 }
4519 else if (SCM_FRACTIONP (x))
4520 {
4521 if (SCM_I_INUMP (y))
4522 /* a/b - c = (a - cb) / b */
4523 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4524 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4525 SCM_FRACTION_DENOMINATOR (x));
4526 else if (SCM_BIGP (y))
4527 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4528 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4529 SCM_FRACTION_DENOMINATOR (x));
4530 else if (SCM_REALP (y))
4531 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4532 else if (SCM_COMPLEXP (y))
4533 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4534 -SCM_COMPLEX_IMAG (y));
4535 else if (SCM_FRACTIONP (y))
4536 /* a/b - c/d = (ad - bc) / bd */
4537 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4538 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4539 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4540 else
4541 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4542 }
4543 else
4544 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4545 }
4546 #undef FUNC_NAME
4547
4548
4549 SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4550 (SCM x),
4551 "Return @math{@var{x}-1}.")
4552 #define FUNC_NAME s_scm_oneminus
4553 {
4554 return scm_difference (x, SCM_I_MAKINUM (1));
4555 }
4556 #undef FUNC_NAME
4557
4558
4559 SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4560 (SCM x, SCM y, SCM rest),
4561 "Return the product of all arguments. If called without arguments,\n"
4562 "1 is returned.")
4563 #define FUNC_NAME s_scm_i_product
4564 {
4565 while (!scm_is_null (rest))
4566 { x = scm_product (x, y);
4567 y = scm_car (rest);
4568 rest = scm_cdr (rest);
4569 }
4570 return scm_product (x, y);
4571 }
4572 #undef FUNC_NAME
4573
4574 #define s_product s_scm_i_product
4575 #define g_product g_scm_i_product
4576
4577 SCM
4578 scm_product (SCM x, SCM y)
4579 {
4580 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4581 {
4582 if (SCM_UNBNDP (x))
4583 return SCM_I_MAKINUM (1L);
4584 else if (SCM_NUMBERP (x))
4585 return x;
4586 else
4587 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4588 }
4589
4590 if (SCM_LIKELY (SCM_I_INUMP (x)))
4591 {
4592 long xx;
4593
4594 intbig:
4595 xx = SCM_I_INUM (x);
4596
4597 switch (xx)
4598 {
4599 case 0: return x; break;
4600 case 1: return y; break;
4601 }
4602
4603 if (SCM_LIKELY (SCM_I_INUMP (y)))
4604 {
4605 long yy = SCM_I_INUM (y);
4606 long kk = xx * yy;
4607 SCM k = SCM_I_MAKINUM (kk);
4608 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4609 return k;
4610 else
4611 {
4612 SCM result = scm_i_long2big (xx);
4613 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4614 return scm_i_normbig (result);
4615 }
4616 }
4617 else if (SCM_BIGP (y))
4618 {
4619 SCM result = scm_i_mkbig ();
4620 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4621 scm_remember_upto_here_1 (y);
4622 return result;
4623 }
4624 else if (SCM_REALP (y))
4625 return scm_from_double (xx * SCM_REAL_VALUE (y));
4626 else if (SCM_COMPLEXP (y))
4627 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4628 xx * SCM_COMPLEX_IMAG (y));
4629 else if (SCM_FRACTIONP (y))
4630 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4631 SCM_FRACTION_DENOMINATOR (y));
4632 else
4633 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4634 }
4635 else if (SCM_BIGP (x))
4636 {
4637 if (SCM_I_INUMP (y))
4638 {
4639 SCM_SWAP (x, y);
4640 goto intbig;
4641 }
4642 else if (SCM_BIGP (y))
4643 {
4644 SCM result = scm_i_mkbig ();
4645 mpz_mul (SCM_I_BIG_MPZ (result),
4646 SCM_I_BIG_MPZ (x),
4647 SCM_I_BIG_MPZ (y));
4648 scm_remember_upto_here_2 (x, y);
4649 return result;
4650 }
4651 else if (SCM_REALP (y))
4652 {
4653 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4654 scm_remember_upto_here_1 (x);
4655 return scm_from_double (result);
4656 }
4657 else if (SCM_COMPLEXP (y))
4658 {
4659 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4660 scm_remember_upto_here_1 (x);
4661 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4662 z * SCM_COMPLEX_IMAG (y));
4663 }
4664 else if (SCM_FRACTIONP (y))
4665 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4666 SCM_FRACTION_DENOMINATOR (y));
4667 else
4668 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4669 }
4670 else if (SCM_REALP (x))
4671 {
4672 if (SCM_I_INUMP (y))
4673 {
4674 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4675 if (scm_is_eq (y, SCM_INUM0))
4676 return y;
4677 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4678 }
4679 else if (SCM_BIGP (y))
4680 {
4681 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4682 scm_remember_upto_here_1 (y);
4683 return scm_from_double (result);
4684 }
4685 else if (SCM_REALP (y))
4686 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4687 else if (SCM_COMPLEXP (y))
4688 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4689 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4690 else if (SCM_FRACTIONP (y))
4691 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4692 else
4693 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4694 }
4695 else if (SCM_COMPLEXP (x))
4696 {
4697 if (SCM_I_INUMP (y))
4698 {
4699 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4700 if (scm_is_eq (y, SCM_INUM0))
4701 return y;
4702 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4703 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4704 }
4705 else if (SCM_BIGP (y))
4706 {
4707 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4708 scm_remember_upto_here_1 (y);
4709 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4710 z * SCM_COMPLEX_IMAG (x));
4711 }
4712 else if (SCM_REALP (y))
4713 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4714 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4715 else if (SCM_COMPLEXP (y))
4716 {
4717 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4718 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4719 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4720 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4721 }
4722 else if (SCM_FRACTIONP (y))
4723 {
4724 double yy = scm_i_fraction2double (y);
4725 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4726 yy * SCM_COMPLEX_IMAG (x));
4727 }
4728 else
4729 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4730 }
4731 else if (SCM_FRACTIONP (x))
4732 {
4733 if (SCM_I_INUMP (y))
4734 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4735 SCM_FRACTION_DENOMINATOR (x));
4736 else if (SCM_BIGP (y))
4737 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4738 SCM_FRACTION_DENOMINATOR (x));
4739 else if (SCM_REALP (y))
4740 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4741 else if (SCM_COMPLEXP (y))
4742 {
4743 double xx = scm_i_fraction2double (x);
4744 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4745 xx * SCM_COMPLEX_IMAG (y));
4746 }
4747 else if (SCM_FRACTIONP (y))
4748 /* a/b * c/d = ac / bd */
4749 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4750 SCM_FRACTION_NUMERATOR (y)),
4751 scm_product (SCM_FRACTION_DENOMINATOR (x),
4752 SCM_FRACTION_DENOMINATOR (y)));
4753 else
4754 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4755 }
4756 else
4757 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4758 }
4759
4760 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4761 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4762 #define ALLOW_DIVIDE_BY_ZERO
4763 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4764 #endif
4765
4766 /* The code below for complex division is adapted from the GNU
4767 libstdc++, which adapted it from f2c's libF77, and is subject to
4768 this copyright: */
4769
4770 /****************************************************************
4771 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4772
4773 Permission to use, copy, modify, and distribute this software
4774 and its documentation for any purpose and without fee is hereby
4775 granted, provided that the above copyright notice appear in all
4776 copies and that both that the copyright notice and this
4777 permission notice and warranty disclaimer appear in supporting
4778 documentation, and that the names of AT&T Bell Laboratories or
4779 Bellcore or any of their entities not be used in advertising or
4780 publicity pertaining to distribution of the software without
4781 specific, written prior permission.
4782
4783 AT&T and Bellcore disclaim all warranties with regard to this
4784 software, including all implied warranties of merchantability
4785 and fitness. In no event shall AT&T or Bellcore be liable for
4786 any special, indirect or consequential damages or any damages
4787 whatsoever resulting from loss of use, data or profits, whether
4788 in an action of contract, negligence or other tortious action,
4789 arising out of or in connection with the use or performance of
4790 this software.
4791 ****************************************************************/
4792
4793 SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4794 (SCM x, SCM y, SCM rest),
4795 "Divide the first argument by the product of the remaining\n"
4796 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4797 "returned.")
4798 #define FUNC_NAME s_scm_i_divide
4799 {
4800 while (!scm_is_null (rest))
4801 { x = scm_divide (x, y);
4802 y = scm_car (rest);
4803 rest = scm_cdr (rest);
4804 }
4805 return scm_divide (x, y);
4806 }
4807 #undef FUNC_NAME
4808
4809 #define s_divide s_scm_i_divide
4810 #define g_divide g_scm_i_divide
4811
4812 static SCM
4813 do_divide (SCM x, SCM y, int inexact)
4814 #define FUNC_NAME s_divide
4815 {
4816 double a;
4817
4818 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4819 {
4820 if (SCM_UNBNDP (x))
4821 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4822 else if (SCM_I_INUMP (x))
4823 {
4824 long xx = SCM_I_INUM (x);
4825 if (xx == 1 || xx == -1)
4826 return x;
4827 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4828 else if (xx == 0)
4829 scm_num_overflow (s_divide);
4830 #endif
4831 else
4832 {
4833 if (inexact)
4834 return scm_from_double (1.0 / (double) xx);
4835 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4836 }
4837 }
4838 else if (SCM_BIGP (x))
4839 {
4840 if (inexact)
4841 return scm_from_double (1.0 / scm_i_big2dbl (x));
4842 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4843 }
4844 else if (SCM_REALP (x))
4845 {
4846 double xx = SCM_REAL_VALUE (x);
4847 #ifndef ALLOW_DIVIDE_BY_ZERO
4848 if (xx == 0.0)
4849 scm_num_overflow (s_divide);
4850 else
4851 #endif
4852 return scm_from_double (1.0 / xx);
4853 }
4854 else if (SCM_COMPLEXP (x))
4855 {
4856 double r = SCM_COMPLEX_REAL (x);
4857 double i = SCM_COMPLEX_IMAG (x);
4858 if (fabs(r) <= fabs(i))
4859 {
4860 double t = r / i;
4861 double d = i * (1.0 + t * t);
4862 return scm_c_make_rectangular (t / d, -1.0 / d);
4863 }
4864 else
4865 {
4866 double t = i / r;
4867 double d = r * (1.0 + t * t);
4868 return scm_c_make_rectangular (1.0 / d, -t / d);
4869 }
4870 }
4871 else if (SCM_FRACTIONP (x))
4872 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4873 SCM_FRACTION_NUMERATOR (x));
4874 else
4875 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4876 }
4877
4878 if (SCM_LIKELY (SCM_I_INUMP (x)))
4879 {
4880 long xx = SCM_I_INUM (x);
4881 if (SCM_LIKELY (SCM_I_INUMP (y)))
4882 {
4883 long yy = SCM_I_INUM (y);
4884 if (yy == 0)
4885 {
4886 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4887 scm_num_overflow (s_divide);
4888 #else
4889 return scm_from_double ((double) xx / (double) yy);
4890 #endif
4891 }
4892 else if (xx % yy != 0)
4893 {
4894 if (inexact)
4895 return scm_from_double ((double) xx / (double) yy);
4896 else return scm_i_make_ratio (x, y);
4897 }
4898 else
4899 {
4900 long z = xx / yy;
4901 if (SCM_FIXABLE (z))
4902 return SCM_I_MAKINUM (z);
4903 else
4904 return scm_i_long2big (z);
4905 }
4906 }
4907 else if (SCM_BIGP (y))
4908 {
4909 if (inexact)
4910 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4911 else return scm_i_make_ratio (x, y);
4912 }
4913 else if (SCM_REALP (y))
4914 {
4915 double yy = SCM_REAL_VALUE (y);
4916 #ifndef ALLOW_DIVIDE_BY_ZERO
4917 if (yy == 0.0)
4918 scm_num_overflow (s_divide);
4919 else
4920 #endif
4921 return scm_from_double ((double) xx / yy);
4922 }
4923 else if (SCM_COMPLEXP (y))
4924 {
4925 a = xx;
4926 complex_div: /* y _must_ be a complex number */
4927 {
4928 double r = SCM_COMPLEX_REAL (y);
4929 double i = SCM_COMPLEX_IMAG (y);
4930 if (fabs(r) <= fabs(i))
4931 {
4932 double t = r / i;
4933 double d = i * (1.0 + t * t);
4934 return scm_c_make_rectangular ((a * t) / d, -a / d);
4935 }
4936 else
4937 {
4938 double t = i / r;
4939 double d = r * (1.0 + t * t);
4940 return scm_c_make_rectangular (a / d, -(a * t) / d);
4941 }
4942 }
4943 }
4944 else if (SCM_FRACTIONP (y))
4945 /* a / b/c = ac / b */
4946 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4947 SCM_FRACTION_NUMERATOR (y));
4948 else
4949 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4950 }
4951 else if (SCM_BIGP (x))
4952 {
4953 if (SCM_I_INUMP (y))
4954 {
4955 long int yy = SCM_I_INUM (y);
4956 if (yy == 0)
4957 {
4958 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4959 scm_num_overflow (s_divide);
4960 #else
4961 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4962 scm_remember_upto_here_1 (x);
4963 return (sgn == 0) ? scm_nan () : scm_inf ();
4964 #endif
4965 }
4966 else if (yy == 1)
4967 return x;
4968 else
4969 {
4970 /* FIXME: HMM, what are the relative performance issues here?
4971 We need to test. Is it faster on average to test
4972 divisible_p, then perform whichever operation, or is it
4973 faster to perform the integer div opportunistically and
4974 switch to real if there's a remainder? For now we take the
4975 middle ground: test, then if divisible, use the faster div
4976 func. */
4977
4978 long abs_yy = yy < 0 ? -yy : yy;
4979 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4980
4981 if (divisible_p)
4982 {
4983 SCM result = scm_i_mkbig ();
4984 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4985 scm_remember_upto_here_1 (x);
4986 if (yy < 0)
4987 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4988 return scm_i_normbig (result);
4989 }
4990 else
4991 {
4992 if (inexact)
4993 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4994 else return scm_i_make_ratio (x, y);
4995 }
4996 }
4997 }
4998 else if (SCM_BIGP (y))
4999 {
5000 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
5001 if (y_is_zero)
5002 {
5003 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5004 scm_num_overflow (s_divide);
5005 #else
5006 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5007 scm_remember_upto_here_1 (x);
5008 return (sgn == 0) ? scm_nan () : scm_inf ();
5009 #endif
5010 }
5011 else
5012 {
5013 /* big_x / big_y */
5014 if (inexact)
5015 {
5016 /* It's easily possible for the ratio x/y to fit a double
5017 but one or both x and y be too big to fit a double,
5018 hence the use of mpq_get_d rather than converting and
5019 dividing. */
5020 mpq_t q;
5021 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5022 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5023 return scm_from_double (mpq_get_d (q));
5024 }
5025 else
5026 {
5027 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5028 SCM_I_BIG_MPZ (y));
5029 if (divisible_p)
5030 {
5031 SCM result = scm_i_mkbig ();
5032 mpz_divexact (SCM_I_BIG_MPZ (result),
5033 SCM_I_BIG_MPZ (x),
5034 SCM_I_BIG_MPZ (y));
5035 scm_remember_upto_here_2 (x, y);
5036 return scm_i_normbig (result);
5037 }
5038 else
5039 return scm_i_make_ratio (x, y);
5040 }
5041 }
5042 }
5043 else if (SCM_REALP (y))
5044 {
5045 double yy = SCM_REAL_VALUE (y);
5046 #ifndef ALLOW_DIVIDE_BY_ZERO
5047 if (yy == 0.0)
5048 scm_num_overflow (s_divide);
5049 else
5050 #endif
5051 return scm_from_double (scm_i_big2dbl (x) / yy);
5052 }
5053 else if (SCM_COMPLEXP (y))
5054 {
5055 a = scm_i_big2dbl (x);
5056 goto complex_div;
5057 }
5058 else if (SCM_FRACTIONP (y))
5059 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
5060 SCM_FRACTION_NUMERATOR (y));
5061 else
5062 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5063 }
5064 else if (SCM_REALP (x))
5065 {
5066 double rx = SCM_REAL_VALUE (x);
5067 if (SCM_I_INUMP (y))
5068 {
5069 long int yy = SCM_I_INUM (y);
5070 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5071 if (yy == 0)
5072 scm_num_overflow (s_divide);
5073 else
5074 #endif
5075 return scm_from_double (rx / (double) yy);
5076 }
5077 else if (SCM_BIGP (y))
5078 {
5079 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5080 scm_remember_upto_here_1 (y);
5081 return scm_from_double (rx / dby);
5082 }
5083 else if (SCM_REALP (y))
5084 {
5085 double yy = SCM_REAL_VALUE (y);
5086 #ifndef ALLOW_DIVIDE_BY_ZERO
5087 if (yy == 0.0)
5088 scm_num_overflow (s_divide);
5089 else
5090 #endif
5091 return scm_from_double (rx / yy);
5092 }
5093 else if (SCM_COMPLEXP (y))
5094 {
5095 a = rx;
5096 goto complex_div;
5097 }
5098 else if (SCM_FRACTIONP (y))
5099 return scm_from_double (rx / scm_i_fraction2double (y));
5100 else
5101 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5102 }
5103 else if (SCM_COMPLEXP (x))
5104 {
5105 double rx = SCM_COMPLEX_REAL (x);
5106 double ix = SCM_COMPLEX_IMAG (x);
5107 if (SCM_I_INUMP (y))
5108 {
5109 long int yy = SCM_I_INUM (y);
5110 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5111 if (yy == 0)
5112 scm_num_overflow (s_divide);
5113 else
5114 #endif
5115 {
5116 double d = yy;
5117 return scm_c_make_rectangular (rx / d, ix / d);
5118 }
5119 }
5120 else if (SCM_BIGP (y))
5121 {
5122 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5123 scm_remember_upto_here_1 (y);
5124 return scm_c_make_rectangular (rx / dby, ix / dby);
5125 }
5126 else if (SCM_REALP (y))
5127 {
5128 double yy = SCM_REAL_VALUE (y);
5129 #ifndef ALLOW_DIVIDE_BY_ZERO
5130 if (yy == 0.0)
5131 scm_num_overflow (s_divide);
5132 else
5133 #endif
5134 return scm_c_make_rectangular (rx / yy, ix / yy);
5135 }
5136 else if (SCM_COMPLEXP (y))
5137 {
5138 double ry = SCM_COMPLEX_REAL (y);
5139 double iy = SCM_COMPLEX_IMAG (y);
5140 if (fabs(ry) <= fabs(iy))
5141 {
5142 double t = ry / iy;
5143 double d = iy * (1.0 + t * t);
5144 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
5145 }
5146 else
5147 {
5148 double t = iy / ry;
5149 double d = ry * (1.0 + t * t);
5150 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
5151 }
5152 }
5153 else if (SCM_FRACTIONP (y))
5154 {
5155 double yy = scm_i_fraction2double (y);
5156 return scm_c_make_rectangular (rx / yy, ix / yy);
5157 }
5158 else
5159 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5160 }
5161 else if (SCM_FRACTIONP (x))
5162 {
5163 if (SCM_I_INUMP (y))
5164 {
5165 long int yy = SCM_I_INUM (y);
5166 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5167 if (yy == 0)
5168 scm_num_overflow (s_divide);
5169 else
5170 #endif
5171 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5172 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5173 }
5174 else if (SCM_BIGP (y))
5175 {
5176 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5177 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5178 }
5179 else if (SCM_REALP (y))
5180 {
5181 double yy = SCM_REAL_VALUE (y);
5182 #ifndef ALLOW_DIVIDE_BY_ZERO
5183 if (yy == 0.0)
5184 scm_num_overflow (s_divide);
5185 else
5186 #endif
5187 return scm_from_double (scm_i_fraction2double (x) / yy);
5188 }
5189 else if (SCM_COMPLEXP (y))
5190 {
5191 a = scm_i_fraction2double (x);
5192 goto complex_div;
5193 }
5194 else if (SCM_FRACTIONP (y))
5195 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
5196 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5197 else
5198 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5199 }
5200 else
5201 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
5202 }
5203
5204 SCM
5205 scm_divide (SCM x, SCM y)
5206 {
5207 return do_divide (x, y, 0);
5208 }
5209
5210 static SCM scm_divide2real (SCM x, SCM y)
5211 {
5212 return do_divide (x, y, 1);
5213 }
5214 #undef FUNC_NAME
5215
5216
5217 double
5218 scm_c_truncate (double x)
5219 {
5220 #if HAVE_TRUNC
5221 return trunc (x);
5222 #else
5223 if (x < 0.0)
5224 return -floor (-x);
5225 return floor (x);
5226 #endif
5227 }
5228
5229 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
5230 half-way case (ie. when x is an integer plus 0.5) going upwards.
5231 Then half-way cases are identified and adjusted down if the
5232 round-upwards didn't give the desired even integer.
5233
5234 "plus_half == result" identifies a half-way case. If plus_half, which is
5235 x + 0.5, is an integer then x must be an integer plus 0.5.
5236
5237 An odd "result" value is identified with result/2 != floor(result/2).
5238 This is done with plus_half, since that value is ready for use sooner in
5239 a pipelined cpu, and we're already requiring plus_half == result.
5240
5241 Note however that we need to be careful when x is big and already an
5242 integer. In that case "x+0.5" may round to an adjacent integer, causing
5243 us to return such a value, incorrectly. For instance if the hardware is
5244 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5245 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5246 returned. Or if the hardware is in round-upwards mode, then other bigger
5247 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5248 representable value, 2^128+2^76 (or whatever), again incorrect.
5249
5250 These bad roundings of x+0.5 are avoided by testing at the start whether
5251 x is already an integer. If it is then clearly that's the desired result
5252 already. And if it's not then the exponent must be small enough to allow
5253 an 0.5 to be represented, and hence added without a bad rounding. */
5254
5255 double
5256 scm_c_round (double x)
5257 {
5258 double plus_half, result;
5259
5260 if (x == floor (x))
5261 return x;
5262
5263 plus_half = x + 0.5;
5264 result = floor (plus_half);
5265 /* Adjust so that the rounding is towards even. */
5266 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5267 ? result - 1
5268 : result);
5269 }
5270
5271 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5272 (SCM x),
5273 "Round the number @var{x} towards zero.")
5274 #define FUNC_NAME s_scm_truncate_number
5275 {
5276 if (scm_is_false (scm_negative_p (x)))
5277 return scm_floor (x);
5278 else
5279 return scm_ceiling (x);
5280 }
5281 #undef FUNC_NAME
5282
5283 static SCM exactly_one_half;
5284
5285 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5286 (SCM x),
5287 "Round the number @var{x} towards the nearest integer. "
5288 "When it is exactly halfway between two integers, "
5289 "round towards the even one.")
5290 #define FUNC_NAME s_scm_round_number
5291 {
5292 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5293 return x;
5294 else if (SCM_REALP (x))
5295 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5296 else
5297 {
5298 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5299 single quotient+remainder division then examining to see which way
5300 the rounding should go. */
5301 SCM plus_half = scm_sum (x, exactly_one_half);
5302 SCM result = scm_floor (plus_half);
5303 /* Adjust so that the rounding is towards even. */
5304 if (scm_is_true (scm_num_eq_p (plus_half, result))
5305 && scm_is_true (scm_odd_p (result)))
5306 return scm_difference (result, SCM_I_MAKINUM (1));
5307 else
5308 return result;
5309 }
5310 }
5311 #undef FUNC_NAME
5312
5313 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5314 (SCM x),
5315 "Round the number @var{x} towards minus infinity.")
5316 #define FUNC_NAME s_scm_floor
5317 {
5318 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5319 return x;
5320 else if (SCM_REALP (x))
5321 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5322 else if (SCM_FRACTIONP (x))
5323 {
5324 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5325 SCM_FRACTION_DENOMINATOR (x));
5326 if (scm_is_false (scm_negative_p (x)))
5327 {
5328 /* For positive x, rounding towards zero is correct. */
5329 return q;
5330 }
5331 else
5332 {
5333 /* For negative x, we need to return q-1 unless x is an
5334 integer. But fractions are never integer, per our
5335 assumptions. */
5336 return scm_difference (q, SCM_I_MAKINUM (1));
5337 }
5338 }
5339 else
5340 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5341 }
5342 #undef FUNC_NAME
5343
5344 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5345 (SCM x),
5346 "Round the number @var{x} towards infinity.")
5347 #define FUNC_NAME s_scm_ceiling
5348 {
5349 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5350 return x;
5351 else if (SCM_REALP (x))
5352 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5353 else if (SCM_FRACTIONP (x))
5354 {
5355 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5356 SCM_FRACTION_DENOMINATOR (x));
5357 if (scm_is_false (scm_positive_p (x)))
5358 {
5359 /* For negative x, rounding towards zero is correct. */
5360 return q;
5361 }
5362 else
5363 {
5364 /* For positive x, we need to return q+1 unless x is an
5365 integer. But fractions are never integer, per our
5366 assumptions. */
5367 return scm_sum (q, SCM_I_MAKINUM (1));
5368 }
5369 }
5370 else
5371 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5372 }
5373 #undef FUNC_NAME
5374
5375 /* sin/cos/tan/asin/acos/atan
5376 sinh/cosh/tanh/asinh/acosh/atanh
5377 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5378 Written by Jerry D. Hedden, (C) FSF.
5379 See the file `COPYING' for terms applying to this program. */
5380
5381 SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
5382 (SCM x, SCM y),
5383 "Return @var{x} raised to the power of @var{y}.")
5384 #define FUNC_NAME s_scm_expt
5385 {
5386 if (!SCM_INEXACTP (y) && scm_is_integer (y))
5387 return scm_integer_expt (x, y);
5388 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5389 {
5390 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5391 }
5392 else
5393 return scm_exp (scm_product (scm_log (x), y));
5394 }
5395 #undef FUNC_NAME
5396
5397 SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5398 (SCM z),
5399 "Compute the sine of @var{z}.")
5400 #define FUNC_NAME s_scm_sin
5401 {
5402 if (scm_is_real (z))
5403 return scm_from_double (sin (scm_to_double (z)));
5404 else if (SCM_COMPLEXP (z))
5405 { double x, y;
5406 x = SCM_COMPLEX_REAL (z);
5407 y = SCM_COMPLEX_IMAG (z);
5408 return scm_c_make_rectangular (sin (x) * cosh (y),
5409 cos (x) * sinh (y));
5410 }
5411 else
5412 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5413 }
5414 #undef FUNC_NAME
5415
5416 SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5417 (SCM z),
5418 "Compute the cosine of @var{z}.")
5419 #define FUNC_NAME s_scm_cos
5420 {
5421 if (scm_is_real (z))
5422 return scm_from_double (cos (scm_to_double (z)));
5423 else if (SCM_COMPLEXP (z))
5424 { double x, y;
5425 x = SCM_COMPLEX_REAL (z);
5426 y = SCM_COMPLEX_IMAG (z);
5427 return scm_c_make_rectangular (cos (x) * cosh (y),
5428 -sin (x) * sinh (y));
5429 }
5430 else
5431 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5432 }
5433 #undef FUNC_NAME
5434
5435 SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5436 (SCM z),
5437 "Compute the tangent of @var{z}.")
5438 #define FUNC_NAME s_scm_tan
5439 {
5440 if (scm_is_real (z))
5441 return scm_from_double (tan (scm_to_double (z)));
5442 else if (SCM_COMPLEXP (z))
5443 { double x, y, w;
5444 x = 2.0 * SCM_COMPLEX_REAL (z);
5445 y = 2.0 * SCM_COMPLEX_IMAG (z);
5446 w = cos (x) + cosh (y);
5447 #ifndef ALLOW_DIVIDE_BY_ZERO
5448 if (w == 0.0)
5449 scm_num_overflow (s_scm_tan);
5450 #endif
5451 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5452 }
5453 else
5454 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5455 }
5456 #undef FUNC_NAME
5457
5458 SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5459 (SCM z),
5460 "Compute the hyperbolic sine of @var{z}.")
5461 #define FUNC_NAME s_scm_sinh
5462 {
5463 if (scm_is_real (z))
5464 return scm_from_double (sinh (scm_to_double (z)));
5465 else if (SCM_COMPLEXP (z))
5466 { double x, y;
5467 x = SCM_COMPLEX_REAL (z);
5468 y = SCM_COMPLEX_IMAG (z);
5469 return scm_c_make_rectangular (sinh (x) * cos (y),
5470 cosh (x) * sin (y));
5471 }
5472 else
5473 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5474 }
5475 #undef FUNC_NAME
5476
5477 SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5478 (SCM z),
5479 "Compute the hyperbolic cosine of @var{z}.")
5480 #define FUNC_NAME s_scm_cosh
5481 {
5482 if (scm_is_real (z))
5483 return scm_from_double (cosh (scm_to_double (z)));
5484 else if (SCM_COMPLEXP (z))
5485 { double x, y;
5486 x = SCM_COMPLEX_REAL (z);
5487 y = SCM_COMPLEX_IMAG (z);
5488 return scm_c_make_rectangular (cosh (x) * cos (y),
5489 sinh (x) * sin (y));
5490 }
5491 else
5492 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5493 }
5494 #undef FUNC_NAME
5495
5496 SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5497 (SCM z),
5498 "Compute the hyperbolic tangent of @var{z}.")
5499 #define FUNC_NAME s_scm_tanh
5500 {
5501 if (scm_is_real (z))
5502 return scm_from_double (tanh (scm_to_double (z)));
5503 else if (SCM_COMPLEXP (z))
5504 { double x, y, w;
5505 x = 2.0 * SCM_COMPLEX_REAL (z);
5506 y = 2.0 * SCM_COMPLEX_IMAG (z);
5507 w = cosh (x) + cos (y);
5508 #ifndef ALLOW_DIVIDE_BY_ZERO
5509 if (w == 0.0)
5510 scm_num_overflow (s_scm_tanh);
5511 #endif
5512 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5513 }
5514 else
5515 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5516 }
5517 #undef FUNC_NAME
5518
5519 SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5520 (SCM z),
5521 "Compute the arc sine of @var{z}.")
5522 #define FUNC_NAME s_scm_asin
5523 {
5524 if (scm_is_real (z))
5525 {
5526 double w = scm_to_double (z);
5527 if (w >= -1.0 && w <= 1.0)
5528 return scm_from_double (asin (w));
5529 else
5530 return scm_product (scm_c_make_rectangular (0, -1),
5531 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5532 }
5533 else if (SCM_COMPLEXP (z))
5534 { double x, y;
5535 x = SCM_COMPLEX_REAL (z);
5536 y = SCM_COMPLEX_IMAG (z);
5537 return scm_product (scm_c_make_rectangular (0, -1),
5538 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5539 }
5540 else
5541 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5542 }
5543 #undef FUNC_NAME
5544
5545 SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5546 (SCM z),
5547 "Compute the arc cosine of @var{z}.")
5548 #define FUNC_NAME s_scm_acos
5549 {
5550 if (scm_is_real (z))
5551 {
5552 double w = scm_to_double (z);
5553 if (w >= -1.0 && w <= 1.0)
5554 return scm_from_double (acos (w));
5555 else
5556 return scm_sum (scm_from_double (acos (0.0)),
5557 scm_product (scm_c_make_rectangular (0, 1),
5558 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5559 }
5560 else if (SCM_COMPLEXP (z))
5561 { double x, y;
5562 x = SCM_COMPLEX_REAL (z);
5563 y = SCM_COMPLEX_IMAG (z);
5564 return scm_sum (scm_from_double (acos (0.0)),
5565 scm_product (scm_c_make_rectangular (0, 1),
5566 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5567 }
5568 else
5569 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5570 }
5571 #undef FUNC_NAME
5572
5573 SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5574 (SCM z, SCM y),
5575 "With one argument, compute the arc tangent of @var{z}.\n"
5576 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5577 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5578 #define FUNC_NAME s_scm_atan
5579 {
5580 if (SCM_UNBNDP (y))
5581 {
5582 if (scm_is_real (z))
5583 return scm_from_double (atan (scm_to_double (z)));
5584 else if (SCM_COMPLEXP (z))
5585 {
5586 double v, w;
5587 v = SCM_COMPLEX_REAL (z);
5588 w = SCM_COMPLEX_IMAG (z);
5589 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5590 scm_c_make_rectangular (v, w + 1.0))),
5591 scm_c_make_rectangular (0, 2));
5592 }
5593 else
5594 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5595 }
5596 else if (scm_is_real (z))
5597 {
5598 if (scm_is_real (y))
5599 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5600 else
5601 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5602 }
5603 else
5604 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5605 }
5606 #undef FUNC_NAME
5607
5608 SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5609 (SCM z),
5610 "Compute the inverse hyperbolic sine of @var{z}.")
5611 #define FUNC_NAME s_scm_sys_asinh
5612 {
5613 if (scm_is_real (z))
5614 return scm_from_double (asinh (scm_to_double (z)));
5615 else if (scm_is_number (z))
5616 return scm_log (scm_sum (z,
5617 scm_sqrt (scm_sum (scm_product (z, z),
5618 SCM_I_MAKINUM (1)))));
5619 else
5620 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5621 }
5622 #undef FUNC_NAME
5623
5624 SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5625 (SCM z),
5626 "Compute the inverse hyperbolic cosine of @var{z}.")
5627 #define FUNC_NAME s_scm_sys_acosh
5628 {
5629 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5630 return scm_from_double (acosh (scm_to_double (z)));
5631 else if (scm_is_number (z))
5632 return scm_log (scm_sum (z,
5633 scm_sqrt (scm_difference (scm_product (z, z),
5634 SCM_I_MAKINUM (1)))));
5635 else
5636 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5637 }
5638 #undef FUNC_NAME
5639
5640 SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5641 (SCM z),
5642 "Compute the inverse hyperbolic tangent of @var{z}.")
5643 #define FUNC_NAME s_scm_sys_atanh
5644 {
5645 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5646 return scm_from_double (atanh (scm_to_double (z)));
5647 else if (scm_is_number (z))
5648 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5649 scm_difference (SCM_I_MAKINUM (1), z))),
5650 SCM_I_MAKINUM (2));
5651 else
5652 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
5653 }
5654 #undef FUNC_NAME
5655
5656 SCM
5657 scm_c_make_rectangular (double re, double im)
5658 {
5659 if (im == 0.0)
5660 return scm_from_double (re);
5661 else
5662 {
5663 SCM z;
5664 SCM_NEWSMOB (z, scm_tc16_complex,
5665 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5666 "complex"));
5667 SCM_COMPLEX_REAL (z) = re;
5668 SCM_COMPLEX_IMAG (z) = im;
5669 return z;
5670 }
5671 }
5672
5673 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5674 (SCM real_part, SCM imaginary_part),
5675 "Return a complex number constructed of the given @var{real-part} "
5676 "and @var{imaginary-part} parts.")
5677 #define FUNC_NAME s_scm_make_rectangular
5678 {
5679 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5680 SCM_ARG1, FUNC_NAME, "real");
5681 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5682 SCM_ARG2, FUNC_NAME, "real");
5683 return scm_c_make_rectangular (scm_to_double (real_part),
5684 scm_to_double (imaginary_part));
5685 }
5686 #undef FUNC_NAME
5687
5688 SCM
5689 scm_c_make_polar (double mag, double ang)
5690 {
5691 double s, c;
5692
5693 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5694 use it on Glibc-based systems that have it (it's a GNU extension). See
5695 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5696 details. */
5697 #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
5698 sincos (ang, &s, &c);
5699 #else
5700 s = sin (ang);
5701 c = cos (ang);
5702 #endif
5703 return scm_c_make_rectangular (mag * c, mag * s);
5704 }
5705
5706 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5707 (SCM x, SCM y),
5708 "Return the complex number @var{x} * e^(i * @var{y}).")
5709 #define FUNC_NAME s_scm_make_polar
5710 {
5711 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5712 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5713 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
5714 }
5715 #undef FUNC_NAME
5716
5717
5718 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5719 /* "Return the real part of the number @var{z}."
5720 */
5721 SCM
5722 scm_real_part (SCM z)
5723 {
5724 if (SCM_I_INUMP (z))
5725 return z;
5726 else if (SCM_BIGP (z))
5727 return z;
5728 else if (SCM_REALP (z))
5729 return z;
5730 else if (SCM_COMPLEXP (z))
5731 return scm_from_double (SCM_COMPLEX_REAL (z));
5732 else if (SCM_FRACTIONP (z))
5733 return z;
5734 else
5735 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5736 }
5737
5738
5739 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5740 /* "Return the imaginary part of the number @var{z}."
5741 */
5742 SCM
5743 scm_imag_part (SCM z)
5744 {
5745 if (SCM_I_INUMP (z))
5746 return SCM_INUM0;
5747 else if (SCM_BIGP (z))
5748 return SCM_INUM0;
5749 else if (SCM_REALP (z))
5750 return scm_flo0;
5751 else if (SCM_COMPLEXP (z))
5752 return scm_from_double (SCM_COMPLEX_IMAG (z));
5753 else if (SCM_FRACTIONP (z))
5754 return SCM_INUM0;
5755 else
5756 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5757 }
5758
5759 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5760 /* "Return the numerator of the number @var{z}."
5761 */
5762 SCM
5763 scm_numerator (SCM z)
5764 {
5765 if (SCM_I_INUMP (z))
5766 return z;
5767 else if (SCM_BIGP (z))
5768 return z;
5769 else if (SCM_FRACTIONP (z))
5770 return SCM_FRACTION_NUMERATOR (z);
5771 else if (SCM_REALP (z))
5772 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5773 else
5774 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5775 }
5776
5777
5778 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5779 /* "Return the denominator of the number @var{z}."
5780 */
5781 SCM
5782 scm_denominator (SCM z)
5783 {
5784 if (SCM_I_INUMP (z))
5785 return SCM_I_MAKINUM (1);
5786 else if (SCM_BIGP (z))
5787 return SCM_I_MAKINUM (1);
5788 else if (SCM_FRACTIONP (z))
5789 return SCM_FRACTION_DENOMINATOR (z);
5790 else if (SCM_REALP (z))
5791 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5792 else
5793 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5794 }
5795
5796 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5797 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5798 * "@code{abs} for real arguments, but also allows complex numbers."
5799 */
5800 SCM
5801 scm_magnitude (SCM z)
5802 {
5803 if (SCM_I_INUMP (z))
5804 {
5805 long int zz = SCM_I_INUM (z);
5806 if (zz >= 0)
5807 return z;
5808 else if (SCM_POSFIXABLE (-zz))
5809 return SCM_I_MAKINUM (-zz);
5810 else
5811 return scm_i_long2big (-zz);
5812 }
5813 else if (SCM_BIGP (z))
5814 {
5815 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5816 scm_remember_upto_here_1 (z);
5817 if (sgn < 0)
5818 return scm_i_clonebig (z, 0);
5819 else
5820 return z;
5821 }
5822 else if (SCM_REALP (z))
5823 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5824 else if (SCM_COMPLEXP (z))
5825 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5826 else if (SCM_FRACTIONP (z))
5827 {
5828 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5829 return z;
5830 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5831 SCM_FRACTION_DENOMINATOR (z));
5832 }
5833 else
5834 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5835 }
5836
5837
5838 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5839 /* "Return the angle of the complex number @var{z}."
5840 */
5841 SCM
5842 scm_angle (SCM z)
5843 {
5844 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5845 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5846 But if atan2 follows the floating point rounding mode, then the value
5847 is not a constant. Maybe it'd be close enough though. */
5848 if (SCM_I_INUMP (z))
5849 {
5850 if (SCM_I_INUM (z) >= 0)
5851 return scm_flo0;
5852 else
5853 return scm_from_double (atan2 (0.0, -1.0));
5854 }
5855 else if (SCM_BIGP (z))
5856 {
5857 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5858 scm_remember_upto_here_1 (z);
5859 if (sgn < 0)
5860 return scm_from_double (atan2 (0.0, -1.0));
5861 else
5862 return scm_flo0;
5863 }
5864 else if (SCM_REALP (z))
5865 {
5866 if (SCM_REAL_VALUE (z) >= 0)
5867 return scm_flo0;
5868 else
5869 return scm_from_double (atan2 (0.0, -1.0));
5870 }
5871 else if (SCM_COMPLEXP (z))
5872 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5873 else if (SCM_FRACTIONP (z))
5874 {
5875 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5876 return scm_flo0;
5877 else return scm_from_double (atan2 (0.0, -1.0));
5878 }
5879 else
5880 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5881 }
5882
5883
5884 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5885 /* Convert the number @var{x} to its inexact representation.\n"
5886 */
5887 SCM
5888 scm_exact_to_inexact (SCM z)
5889 {
5890 if (SCM_I_INUMP (z))
5891 return scm_from_double ((double) SCM_I_INUM (z));
5892 else if (SCM_BIGP (z))
5893 return scm_from_double (scm_i_big2dbl (z));
5894 else if (SCM_FRACTIONP (z))
5895 return scm_from_double (scm_i_fraction2double (z));
5896 else if (SCM_INEXACTP (z))
5897 return z;
5898 else
5899 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5900 }
5901
5902
5903 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5904 (SCM z),
5905 "Return an exact number that is numerically closest to @var{z}.")
5906 #define FUNC_NAME s_scm_inexact_to_exact
5907 {
5908 if (SCM_I_INUMP (z))
5909 return z;
5910 else if (SCM_BIGP (z))
5911 return z;
5912 else if (SCM_REALP (z))
5913 {
5914 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5915 SCM_OUT_OF_RANGE (1, z);
5916 else
5917 {
5918 mpq_t frac;
5919 SCM q;
5920
5921 mpq_init (frac);
5922 mpq_set_d (frac, SCM_REAL_VALUE (z));
5923 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5924 scm_i_mpz2num (mpq_denref (frac)));
5925
5926 /* When scm_i_make_ratio throws, we leak the memory allocated
5927 for frac...
5928 */
5929 mpq_clear (frac);
5930 return q;
5931 }
5932 }
5933 else if (SCM_FRACTIONP (z))
5934 return z;
5935 else
5936 SCM_WRONG_TYPE_ARG (1, z);
5937 }
5938 #undef FUNC_NAME
5939
5940 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5941 (SCM x, SCM eps),
5942 "Returns the @emph{simplest} rational number differing\n"
5943 "from @var{x} by no more than @var{eps}.\n"
5944 "\n"
5945 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
5946 "exact result when both its arguments are exact. Thus, you might need\n"
5947 "to use @code{inexact->exact} on the arguments.\n"
5948 "\n"
5949 "@lisp\n"
5950 "(rationalize (inexact->exact 1.2) 1/100)\n"
5951 "@result{} 6/5\n"
5952 "@end lisp")
5953 #define FUNC_NAME s_scm_rationalize
5954 {
5955 if (SCM_I_INUMP (x))
5956 return x;
5957 else if (SCM_BIGP (x))
5958 return x;
5959 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5960 {
5961 /* Use continued fractions to find closest ratio. All
5962 arithmetic is done with exact numbers.
5963 */
5964
5965 SCM ex = scm_inexact_to_exact (x);
5966 SCM int_part = scm_floor (ex);
5967 SCM tt = SCM_I_MAKINUM (1);
5968 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5969 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5970 SCM rx;
5971 int i = 0;
5972
5973 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5974 return ex;
5975
5976 ex = scm_difference (ex, int_part); /* x = x-int_part */
5977 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5978
5979 /* We stop after a million iterations just to be absolutely sure
5980 that we don't go into an infinite loop. The process normally
5981 converges after less than a dozen iterations.
5982 */
5983
5984 eps = scm_abs (eps);
5985 while (++i < 1000000)
5986 {
5987 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5988 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5989 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5990 scm_is_false
5991 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5992 eps))) /* abs(x-a/b) <= eps */
5993 {
5994 SCM res = scm_sum (int_part, scm_divide (a, b));
5995 if (scm_is_false (scm_exact_p (x))
5996 || scm_is_false (scm_exact_p (eps)))
5997 return scm_exact_to_inexact (res);
5998 else
5999 return res;
6000 }
6001 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6002 SCM_UNDEFINED);
6003 tt = scm_floor (rx); /* tt = floor (rx) */
6004 a2 = a1;
6005 b2 = b1;
6006 a1 = a;
6007 b1 = b;
6008 }
6009 scm_num_overflow (s_scm_rationalize);
6010 }
6011 else
6012 SCM_WRONG_TYPE_ARG (1, x);
6013 }
6014 #undef FUNC_NAME
6015
6016 /* conversion functions */
6017
6018 int
6019 scm_is_integer (SCM val)
6020 {
6021 return scm_is_true (scm_integer_p (val));
6022 }
6023
6024 int
6025 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6026 {
6027 if (SCM_I_INUMP (val))
6028 {
6029 scm_t_signed_bits n = SCM_I_INUM (val);
6030 return n >= min && n <= max;
6031 }
6032 else if (SCM_BIGP (val))
6033 {
6034 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6035 return 0;
6036 else if (min >= LONG_MIN && max <= LONG_MAX)
6037 {
6038 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6039 {
6040 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6041 return n >= min && n <= max;
6042 }
6043 else
6044 return 0;
6045 }
6046 else
6047 {
6048 scm_t_intmax n;
6049 size_t count;
6050
6051 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6052 > CHAR_BIT*sizeof (scm_t_uintmax))
6053 return 0;
6054
6055 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6056 SCM_I_BIG_MPZ (val));
6057
6058 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
6059 {
6060 if (n < 0)
6061 return 0;
6062 }
6063 else
6064 {
6065 n = -n;
6066 if (n >= 0)
6067 return 0;
6068 }
6069
6070 return n >= min && n <= max;
6071 }
6072 }
6073 else
6074 return 0;
6075 }
6076
6077 int
6078 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6079 {
6080 if (SCM_I_INUMP (val))
6081 {
6082 scm_t_signed_bits n = SCM_I_INUM (val);
6083 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6084 }
6085 else if (SCM_BIGP (val))
6086 {
6087 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6088 return 0;
6089 else if (max <= ULONG_MAX)
6090 {
6091 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6092 {
6093 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6094 return n >= min && n <= max;
6095 }
6096 else
6097 return 0;
6098 }
6099 else
6100 {
6101 scm_t_uintmax n;
6102 size_t count;
6103
6104 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6105 return 0;
6106
6107 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6108 > CHAR_BIT*sizeof (scm_t_uintmax))
6109 return 0;
6110
6111 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6112 SCM_I_BIG_MPZ (val));
6113
6114 return n >= min && n <= max;
6115 }
6116 }
6117 else
6118 return 0;
6119 }
6120
6121 static void
6122 scm_i_range_error (SCM bad_val, SCM min, SCM max)
6123 {
6124 scm_error (scm_out_of_range_key,
6125 NULL,
6126 "Value out of range ~S to ~S: ~S",
6127 scm_list_3 (min, max, bad_val),
6128 scm_list_1 (bad_val));
6129 }
6130
6131 #define TYPE scm_t_intmax
6132 #define TYPE_MIN min
6133 #define TYPE_MAX max
6134 #define SIZEOF_TYPE 0
6135 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6136 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6137 #include "libguile/conv-integer.i.c"
6138
6139 #define TYPE scm_t_uintmax
6140 #define TYPE_MIN min
6141 #define TYPE_MAX max
6142 #define SIZEOF_TYPE 0
6143 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6144 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6145 #include "libguile/conv-uinteger.i.c"
6146
6147 #define TYPE scm_t_int8
6148 #define TYPE_MIN SCM_T_INT8_MIN
6149 #define TYPE_MAX SCM_T_INT8_MAX
6150 #define SIZEOF_TYPE 1
6151 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6152 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6153 #include "libguile/conv-integer.i.c"
6154
6155 #define TYPE scm_t_uint8
6156 #define TYPE_MIN 0
6157 #define TYPE_MAX SCM_T_UINT8_MAX
6158 #define SIZEOF_TYPE 1
6159 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6160 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6161 #include "libguile/conv-uinteger.i.c"
6162
6163 #define TYPE scm_t_int16
6164 #define TYPE_MIN SCM_T_INT16_MIN
6165 #define TYPE_MAX SCM_T_INT16_MAX
6166 #define SIZEOF_TYPE 2
6167 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6168 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6169 #include "libguile/conv-integer.i.c"
6170
6171 #define TYPE scm_t_uint16
6172 #define TYPE_MIN 0
6173 #define TYPE_MAX SCM_T_UINT16_MAX
6174 #define SIZEOF_TYPE 2
6175 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6176 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6177 #include "libguile/conv-uinteger.i.c"
6178
6179 #define TYPE scm_t_int32
6180 #define TYPE_MIN SCM_T_INT32_MIN
6181 #define TYPE_MAX SCM_T_INT32_MAX
6182 #define SIZEOF_TYPE 4
6183 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6184 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6185 #include "libguile/conv-integer.i.c"
6186
6187 #define TYPE scm_t_uint32
6188 #define TYPE_MIN 0
6189 #define TYPE_MAX SCM_T_UINT32_MAX
6190 #define SIZEOF_TYPE 4
6191 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6192 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6193 #include "libguile/conv-uinteger.i.c"
6194
6195 #define TYPE scm_t_wchar
6196 #define TYPE_MIN (scm_t_int32)-1
6197 #define TYPE_MAX (scm_t_int32)0x10ffff
6198 #define SIZEOF_TYPE 4
6199 #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6200 #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6201 #include "libguile/conv-integer.i.c"
6202
6203 #if SCM_HAVE_T_INT64
6204
6205 #define TYPE scm_t_int64
6206 #define TYPE_MIN SCM_T_INT64_MIN
6207 #define TYPE_MAX SCM_T_INT64_MAX
6208 #define SIZEOF_TYPE 8
6209 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6210 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6211 #include "libguile/conv-integer.i.c"
6212
6213 #define TYPE scm_t_uint64
6214 #define TYPE_MIN 0
6215 #define TYPE_MAX SCM_T_UINT64_MAX
6216 #define SIZEOF_TYPE 8
6217 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6218 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6219 #include "libguile/conv-uinteger.i.c"
6220
6221 #endif
6222
6223 void
6224 scm_to_mpz (SCM val, mpz_t rop)
6225 {
6226 if (SCM_I_INUMP (val))
6227 mpz_set_si (rop, SCM_I_INUM (val));
6228 else if (SCM_BIGP (val))
6229 mpz_set (rop, SCM_I_BIG_MPZ (val));
6230 else
6231 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6232 }
6233
6234 SCM
6235 scm_from_mpz (mpz_t val)
6236 {
6237 return scm_i_mpz2num (val);
6238 }
6239
6240 int
6241 scm_is_real (SCM val)
6242 {
6243 return scm_is_true (scm_real_p (val));
6244 }
6245
6246 int
6247 scm_is_rational (SCM val)
6248 {
6249 return scm_is_true (scm_rational_p (val));
6250 }
6251
6252 double
6253 scm_to_double (SCM val)
6254 {
6255 if (SCM_I_INUMP (val))
6256 return SCM_I_INUM (val);
6257 else if (SCM_BIGP (val))
6258 return scm_i_big2dbl (val);
6259 else if (SCM_FRACTIONP (val))
6260 return scm_i_fraction2double (val);
6261 else if (SCM_REALP (val))
6262 return SCM_REAL_VALUE (val);
6263 else
6264 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
6265 }
6266
6267 SCM
6268 scm_from_double (double val)
6269 {
6270 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
6271 SCM_REAL_VALUE (z) = val;
6272 return z;
6273 }
6274
6275 #if SCM_ENABLE_DISCOURAGED == 1
6276
6277 float
6278 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
6279 {
6280 if (SCM_BIGP (num))
6281 {
6282 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6283 if (!xisinf (res))
6284 return res;
6285 else
6286 scm_out_of_range (NULL, num);
6287 }
6288 else
6289 return scm_to_double (num);
6290 }
6291
6292 double
6293 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
6294 {
6295 if (SCM_BIGP (num))
6296 {
6297 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6298 if (!xisinf (res))
6299 return res;
6300 else
6301 scm_out_of_range (NULL, num);
6302 }
6303 else
6304 return scm_to_double (num);
6305 }
6306
6307 #endif
6308
6309 int
6310 scm_is_complex (SCM val)
6311 {
6312 return scm_is_true (scm_complex_p (val));
6313 }
6314
6315 double
6316 scm_c_real_part (SCM z)
6317 {
6318 if (SCM_COMPLEXP (z))
6319 return SCM_COMPLEX_REAL (z);
6320 else
6321 {
6322 /* Use the scm_real_part to get proper error checking and
6323 dispatching.
6324 */
6325 return scm_to_double (scm_real_part (z));
6326 }
6327 }
6328
6329 double
6330 scm_c_imag_part (SCM z)
6331 {
6332 if (SCM_COMPLEXP (z))
6333 return SCM_COMPLEX_IMAG (z);
6334 else
6335 {
6336 /* Use the scm_imag_part to get proper error checking and
6337 dispatching. The result will almost always be 0.0, but not
6338 always.
6339 */
6340 return scm_to_double (scm_imag_part (z));
6341 }
6342 }
6343
6344 double
6345 scm_c_magnitude (SCM z)
6346 {
6347 return scm_to_double (scm_magnitude (z));
6348 }
6349
6350 double
6351 scm_c_angle (SCM z)
6352 {
6353 return scm_to_double (scm_angle (z));
6354 }
6355
6356 int
6357 scm_is_number (SCM z)
6358 {
6359 return scm_is_true (scm_number_p (z));
6360 }
6361
6362
6363 /* In the following functions we dispatch to the real-arg funcs like log()
6364 when we know the arg is real, instead of just handing everything to
6365 clog() for instance. This is in case clog() doesn't optimize for a
6366 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6367 well use it to go straight to the applicable C func. */
6368
6369 SCM_DEFINE (scm_log, "log", 1, 0, 0,
6370 (SCM z),
6371 "Return the natural logarithm of @var{z}.")
6372 #define FUNC_NAME s_scm_log
6373 {
6374 if (SCM_COMPLEXP (z))
6375 {
6376 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
6377 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6378 #else
6379 double re = SCM_COMPLEX_REAL (z);
6380 double im = SCM_COMPLEX_IMAG (z);
6381 return scm_c_make_rectangular (log (hypot (re, im)),
6382 atan2 (im, re));
6383 #endif
6384 }
6385 else
6386 {
6387 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6388 although the value itself overflows. */
6389 double re = scm_to_double (z);
6390 double l = log (fabs (re));
6391 if (re >= 0.0)
6392 return scm_from_double (l);
6393 else
6394 return scm_c_make_rectangular (l, M_PI);
6395 }
6396 }
6397 #undef FUNC_NAME
6398
6399
6400 SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6401 (SCM z),
6402 "Return the base 10 logarithm of @var{z}.")
6403 #define FUNC_NAME s_scm_log10
6404 {
6405 if (SCM_COMPLEXP (z))
6406 {
6407 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6408 clog() and a multiply by M_LOG10E, rather than the fallback
6409 log10+hypot+atan2.) */
6410 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
6411 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6412 #else
6413 double re = SCM_COMPLEX_REAL (z);
6414 double im = SCM_COMPLEX_IMAG (z);
6415 return scm_c_make_rectangular (log10 (hypot (re, im)),
6416 M_LOG10E * atan2 (im, re));
6417 #endif
6418 }
6419 else
6420 {
6421 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6422 although the value itself overflows. */
6423 double re = scm_to_double (z);
6424 double l = log10 (fabs (re));
6425 if (re >= 0.0)
6426 return scm_from_double (l);
6427 else
6428 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6429 }
6430 }
6431 #undef FUNC_NAME
6432
6433
6434 SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6435 (SCM z),
6436 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6437 "base of natural logarithms (2.71828@dots{}).")
6438 #define FUNC_NAME s_scm_exp
6439 {
6440 if (SCM_COMPLEXP (z))
6441 {
6442 #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
6443 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6444 #else
6445 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6446 SCM_COMPLEX_IMAG (z));
6447 #endif
6448 }
6449 else
6450 {
6451 /* When z is a negative bignum the conversion to double overflows,
6452 giving -infinity, but that's ok, the exp is still 0.0. */
6453 return scm_from_double (exp (scm_to_double (z)));
6454 }
6455 }
6456 #undef FUNC_NAME
6457
6458
6459 SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6460 (SCM x),
6461 "Return the square root of @var{z}. Of the two possible roots\n"
6462 "(positive and negative), the one with the a positive real part\n"
6463 "is returned, or if that's zero then a positive imaginary part.\n"
6464 "Thus,\n"
6465 "\n"
6466 "@example\n"
6467 "(sqrt 9.0) @result{} 3.0\n"
6468 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6469 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6470 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6471 "@end example")
6472 #define FUNC_NAME s_scm_sqrt
6473 {
6474 if (SCM_COMPLEXP (x))
6475 {
6476 #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
6477 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6478 #else
6479 double re = SCM_COMPLEX_REAL (x);
6480 double im = SCM_COMPLEX_IMAG (x);
6481 return scm_c_make_polar (sqrt (hypot (re, im)),
6482 0.5 * atan2 (im, re));
6483 #endif
6484 }
6485 else
6486 {
6487 double xx = scm_to_double (x);
6488 if (xx < 0)
6489 return scm_c_make_rectangular (0.0, sqrt (-xx));
6490 else
6491 return scm_from_double (sqrt (xx));
6492 }
6493 }
6494 #undef FUNC_NAME
6495
6496
6497
6498 void
6499 scm_init_numbers ()
6500 {
6501 int i;
6502
6503 mpz_init_set_si (z_negative_one, -1);
6504
6505 /* It may be possible to tune the performance of some algorithms by using
6506 * the following constants to avoid the creation of bignums. Please, before
6507 * using these values, remember the two rules of program optimization:
6508 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
6509 scm_c_define ("most-positive-fixnum",
6510 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
6511 scm_c_define ("most-negative-fixnum",
6512 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
6513
6514 scm_add_feature ("complex");
6515 scm_add_feature ("inexact");
6516 scm_flo0 = scm_from_double (0.0);
6517
6518 /* determine floating point precision */
6519 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
6520 {
6521 init_dblprec(&scm_dblprec[i-2],i);
6522 init_fx_radix(fx_per_radix[i-2],i);
6523 }
6524 #ifdef DBL_DIG
6525 /* hard code precision for base 10 if the preprocessor tells us to... */
6526 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6527 #endif
6528
6529 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
6530 SCM_I_MAKINUM (2)));
6531 #include "libguile/numbers.x"
6532 }
6533
6534 /*
6535 Local Variables:
6536 c-file-style: "gnu"
6537 End:
6538 */