(scm_ash): Rewrite using shifts, much faster than
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 \f
23 /* General assumptions:
24 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
25 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
26 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
27 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
28 * All objects satisfying SCM_FRACTIONP are never an integer.
29 */
30
31 /* TODO:
32
33 - see if special casing bignums and reals in integer-exponent when
34 possible (to use mpz_pow and mpf_pow_ui) is faster.
35
36 - look in to better short-circuiting of common cases in
37 integer-expt and elsewhere.
38
39 - see if direct mpz operations can help in ash and elsewhere.
40
41 */
42
43 /* tell glibc (2.3) to give prototype for C99 trunc() */
44 #define _GNU_SOURCE
45
46 #if HAVE_CONFIG_H
47 # include <config.h>
48 #endif
49
50 #include <math.h>
51 #include <ctype.h>
52 #include <string.h>
53
54 #include "libguile/_scm.h"
55 #include "libguile/feature.h"
56 #include "libguile/ports.h"
57 #include "libguile/root.h"
58 #include "libguile/smob.h"
59 #include "libguile/strings.h"
60
61 #include "libguile/validate.h"
62 #include "libguile/numbers.h"
63 #include "libguile/deprecation.h"
64
65 #include "libguile/eq.h"
66
67 #include "libguile/discouraged.h"
68
69 \f
70
71 /*
72 Wonder if this might be faster for some of our code? A switch on
73 the numtag would jump directly to the right case, and the
74 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
75
76 #define SCM_I_NUMTAG_NOTNUM 0
77 #define SCM_I_NUMTAG_INUM 1
78 #define SCM_I_NUMTAG_BIG scm_tc16_big
79 #define SCM_I_NUMTAG_REAL scm_tc16_real
80 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
81 #define SCM_I_NUMTAG(x) \
82 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
83 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
84 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
85 : SCM_I_NUMTAG_NOTNUM)))
86 */
87 /* the macro above will not work as is with fractions */
88
89
90 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
91
92 /* FLOBUFLEN is the maximum number of characters neccessary for the
93 * printed or scm_string representation of an inexact number.
94 */
95 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
96
97 #if defined (SCO)
98 #if ! defined (HAVE_ISNAN)
99 #define HAVE_ISNAN
100 static int
101 isnan (double x)
102 {
103 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
104 }
105 #endif
106 #if ! defined (HAVE_ISINF)
107 #define HAVE_ISINF
108 static int
109 isinf (double x)
110 {
111 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
112 }
113
114 #endif
115 #endif
116
117
118 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
119 an explicit check. In some future gmp (don't know what version number),
120 mpz_cmp_d is supposed to do this itself. */
121 #if 1
122 #define xmpz_cmp_d(z, d) \
123 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
124 #else
125 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
126 #endif
127
128 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
129 isinf. It does have finite and isnan though, hence the use of those.
130 fpclass would be a possibility on that system too. */
131 static int
132 xisinf (double x)
133 {
134 #if defined (HAVE_ISINF)
135 return isinf (x);
136 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
137 return (! (finite (x) || isnan (x)));
138 #else
139 return 0;
140 #endif
141 }
142
143 static int
144 xisnan (double x)
145 {
146 #if defined (HAVE_ISNAN)
147 return isnan (x);
148 #else
149 return 0;
150 #endif
151 }
152
153 \f
154
155 static mpz_t z_negative_one;
156
157 \f
158
159 SCM_C_INLINE_KEYWORD SCM
160 scm_i_mkbig ()
161 {
162 /* Return a newly created bignum. */
163 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
164 mpz_init (SCM_I_BIG_MPZ (z));
165 return z;
166 }
167
168 SCM_C_INLINE_KEYWORD SCM
169 scm_i_long2big (long x)
170 {
171 /* Return a newly created bignum initialized to X. */
172 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
173 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
174 return z;
175 }
176
177 SCM_C_INLINE_KEYWORD SCM
178 scm_i_ulong2big (unsigned long x)
179 {
180 /* Return a newly created bignum initialized to X. */
181 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
182 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
183 return z;
184 }
185
186 SCM_C_INLINE_KEYWORD static SCM
187 scm_i_clonebig (SCM src_big, int same_sign_p)
188 {
189 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
190 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
191 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
192 if (!same_sign_p)
193 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
194 return z;
195 }
196
197 SCM_C_INLINE_KEYWORD int
198 scm_i_bigcmp (SCM x, SCM y)
199 {
200 /* Return neg if x < y, pos if x > y, and 0 if x == y */
201 /* presume we already know x and y are bignums */
202 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
203 scm_remember_upto_here_2 (x, y);
204 return result;
205 }
206
207 SCM_C_INLINE_KEYWORD SCM
208 scm_i_dbl2big (double d)
209 {
210 /* results are only defined if d is an integer */
211 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
212 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
213 return z;
214 }
215
216 /* Convert a integer in double representation to a SCM number. */
217
218 SCM_C_INLINE_KEYWORD SCM
219 scm_i_dbl2num (double u)
220 {
221 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
222 powers of 2, so there's no rounding when making "double" values
223 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
224 get rounded on a 64-bit machine, hence the "+1".
225
226 The use of floor() to force to an integer value ensures we get a
227 "numerically closest" value without depending on how a
228 double->long cast or how mpz_set_d will round. For reference,
229 double->long probably follows the hardware rounding mode,
230 mpz_set_d truncates towards zero. */
231
232 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
233 representable as a double? */
234
235 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
236 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
237 return SCM_I_MAKINUM ((long) u);
238 else
239 return scm_i_dbl2big (u);
240 }
241
242 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
243 with R5RS exact->inexact.
244
245 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
246 (ie. truncate towards zero), then adjust to get the closest double by
247 examining the next lower bit and adding 1 (to the absolute value) if
248 necessary.
249
250 Bignums exactly half way between representable doubles are rounded to the
251 next higher absolute value (ie. away from zero). This seems like an
252 adequate interpretation of R5RS "numerically closest", and it's easier
253 and faster than a full "nearest-even" style.
254
255 The bit test must be done on the absolute value of the mpz_t, which means
256 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
257 negatives as twos complement.
258
259 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
260 following the hardware rounding mode, but applied to the absolute value
261 of the mpz_t operand. This is not what we want so we put the high
262 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
263 mpz_get_d is supposed to always truncate towards zero.
264
265 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
266 is a slowdown. It'd be faster to pick out the relevant high bits with
267 mpz_getlimbn if we could be bothered coding that, and if the new
268 truncating gmp doesn't come out. */
269
270 double
271 scm_i_big2dbl (SCM b)
272 {
273 double result;
274 size_t bits;
275
276 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
277
278 #if 1
279 {
280 /* Current GMP, eg. 4.1.3, force truncation towards zero */
281 mpz_t tmp;
282 if (bits > DBL_MANT_DIG)
283 {
284 size_t shift = bits - DBL_MANT_DIG;
285 mpz_init2 (tmp, DBL_MANT_DIG);
286 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
287 result = ldexp (mpz_get_d (tmp), shift);
288 mpz_clear (tmp);
289 }
290 else
291 {
292 result = mpz_get_d (SCM_I_BIG_MPZ (b));
293 }
294 }
295 #else
296 /* Future GMP */
297 result = mpz_get_d (SCM_I_BIG_MPZ (b));
298 #endif
299
300 if (bits > DBL_MANT_DIG)
301 {
302 unsigned long pos = bits - DBL_MANT_DIG - 1;
303 /* test bit number "pos" in absolute value */
304 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
305 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
306 {
307 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
308 }
309 }
310
311 scm_remember_upto_here_1 (b);
312 return result;
313 }
314
315 SCM_C_INLINE_KEYWORD SCM
316 scm_i_normbig (SCM b)
317 {
318 /* convert a big back to a fixnum if it'll fit */
319 /* presume b is a bignum */
320 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
321 {
322 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
323 if (SCM_FIXABLE (val))
324 b = SCM_I_MAKINUM (val);
325 }
326 return b;
327 }
328
329 static SCM_C_INLINE_KEYWORD SCM
330 scm_i_mpz2num (mpz_t b)
331 {
332 /* convert a mpz number to a SCM number. */
333 if (mpz_fits_slong_p (b))
334 {
335 long val = mpz_get_si (b);
336 if (SCM_FIXABLE (val))
337 return SCM_I_MAKINUM (val);
338 }
339
340 {
341 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
342 mpz_init_set (SCM_I_BIG_MPZ (z), b);
343 return z;
344 }
345 }
346
347 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
348 static SCM scm_divide2real (SCM x, SCM y);
349
350 static SCM
351 scm_i_make_ratio (SCM numerator, SCM denominator)
352 #define FUNC_NAME "make-ratio"
353 {
354 /* First make sure the arguments are proper.
355 */
356 if (SCM_I_INUMP (denominator))
357 {
358 if (scm_is_eq (denominator, SCM_INUM0))
359 scm_num_overflow ("make-ratio");
360 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
361 return numerator;
362 }
363 else
364 {
365 if (!(SCM_BIGP(denominator)))
366 SCM_WRONG_TYPE_ARG (2, denominator);
367 }
368 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
369 SCM_WRONG_TYPE_ARG (1, numerator);
370
371 /* Then flip signs so that the denominator is positive.
372 */
373 if (scm_is_true (scm_negative_p (denominator)))
374 {
375 numerator = scm_difference (numerator, SCM_UNDEFINED);
376 denominator = scm_difference (denominator, SCM_UNDEFINED);
377 }
378
379 /* Now consider for each of the four fixnum/bignum combinations
380 whether the rational number is really an integer.
381 */
382 if (SCM_I_INUMP (numerator))
383 {
384 long x = SCM_I_INUM (numerator);
385 if (scm_is_eq (numerator, SCM_INUM0))
386 return SCM_INUM0;
387 if (SCM_I_INUMP (denominator))
388 {
389 long y;
390 y = SCM_I_INUM (denominator);
391 if (x == y)
392 return SCM_I_MAKINUM(1);
393 if ((x % y) == 0)
394 return SCM_I_MAKINUM (x / y);
395 }
396 else
397 {
398 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
399 of that value for the denominator, as a bignum. Apart from
400 that case, abs(bignum) > abs(inum) so inum/bignum is not an
401 integer. */
402 if (x == SCM_MOST_NEGATIVE_FIXNUM
403 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
404 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
405 return SCM_I_MAKINUM(-1);
406 }
407 }
408 else if (SCM_BIGP (numerator))
409 {
410 if (SCM_I_INUMP (denominator))
411 {
412 long yy = SCM_I_INUM (denominator);
413 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
414 return scm_divide (numerator, denominator);
415 }
416 else
417 {
418 if (scm_is_eq (numerator, denominator))
419 return SCM_I_MAKINUM(1);
420 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
421 SCM_I_BIG_MPZ (denominator)))
422 return scm_divide(numerator, denominator);
423 }
424 }
425
426 /* No, it's a proper fraction.
427 */
428 return scm_double_cell (scm_tc16_fraction,
429 SCM_UNPACK (numerator),
430 SCM_UNPACK (denominator), 0);
431 }
432 #undef FUNC_NAME
433
434 static void scm_i_fraction_reduce (SCM z)
435 {
436 if (!(SCM_FRACTION_REDUCED (z)))
437 {
438 SCM divisor;
439 divisor = scm_gcd (SCM_FRACTION_NUMERATOR (z), SCM_FRACTION_DENOMINATOR (z));
440 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
441 {
442 /* is this safe? */
443 SCM_FRACTION_SET_NUMERATOR (z, scm_divide (SCM_FRACTION_NUMERATOR (z), divisor));
444 SCM_FRACTION_SET_DENOMINATOR (z, scm_divide (SCM_FRACTION_DENOMINATOR (z), divisor));
445 }
446 SCM_FRACTION_REDUCED_SET (z);
447 }
448 }
449
450 double
451 scm_i_fraction2double (SCM z)
452 {
453 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
454 SCM_FRACTION_DENOMINATOR (z)));
455 }
456
457 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
458 (SCM x),
459 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
460 "otherwise.")
461 #define FUNC_NAME s_scm_exact_p
462 {
463 if (SCM_I_INUMP (x))
464 return SCM_BOOL_T;
465 if (SCM_BIGP (x))
466 return SCM_BOOL_T;
467 if (SCM_FRACTIONP (x))
468 return SCM_BOOL_T;
469 if (SCM_NUMBERP (x))
470 return SCM_BOOL_F;
471 SCM_WRONG_TYPE_ARG (1, x);
472 }
473 #undef FUNC_NAME
474
475
476 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
477 (SCM n),
478 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
479 "otherwise.")
480 #define FUNC_NAME s_scm_odd_p
481 {
482 if (SCM_I_INUMP (n))
483 {
484 long val = SCM_I_INUM (n);
485 return scm_from_bool ((val & 1L) != 0);
486 }
487 else if (SCM_BIGP (n))
488 {
489 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
490 scm_remember_upto_here_1 (n);
491 return scm_from_bool (odd_p);
492 }
493 else if (scm_is_true (scm_inf_p (n)))
494 return SCM_BOOL_T;
495 else if (SCM_REALP (n))
496 {
497 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
498 if (rem == 1.0)
499 return SCM_BOOL_T;
500 else if (rem == 0.0)
501 return SCM_BOOL_F;
502 else
503 SCM_WRONG_TYPE_ARG (1, n);
504 }
505 else
506 SCM_WRONG_TYPE_ARG (1, n);
507 }
508 #undef FUNC_NAME
509
510
511 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
512 (SCM n),
513 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
514 "otherwise.")
515 #define FUNC_NAME s_scm_even_p
516 {
517 if (SCM_I_INUMP (n))
518 {
519 long val = SCM_I_INUM (n);
520 return scm_from_bool ((val & 1L) == 0);
521 }
522 else if (SCM_BIGP (n))
523 {
524 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
525 scm_remember_upto_here_1 (n);
526 return scm_from_bool (even_p);
527 }
528 else if (scm_is_true (scm_inf_p (n)))
529 return SCM_BOOL_T;
530 else if (SCM_REALP (n))
531 {
532 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
533 if (rem == 1.0)
534 return SCM_BOOL_F;
535 else if (rem == 0.0)
536 return SCM_BOOL_T;
537 else
538 SCM_WRONG_TYPE_ARG (1, n);
539 }
540 else
541 SCM_WRONG_TYPE_ARG (1, n);
542 }
543 #undef FUNC_NAME
544
545 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
546 (SCM x),
547 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
548 "or @samp{-inf.0}, @code{#f} otherwise.")
549 #define FUNC_NAME s_scm_inf_p
550 {
551 if (SCM_REALP (x))
552 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
553 else if (SCM_COMPLEXP (x))
554 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
555 || xisinf (SCM_COMPLEX_IMAG (x)));
556 else
557 return SCM_BOOL_F;
558 }
559 #undef FUNC_NAME
560
561 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
562 (SCM n),
563 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
564 "otherwise.")
565 #define FUNC_NAME s_scm_nan_p
566 {
567 if (SCM_REALP (n))
568 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
569 else if (SCM_COMPLEXP (n))
570 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
571 || xisnan (SCM_COMPLEX_IMAG (n)));
572 else
573 return SCM_BOOL_F;
574 }
575 #undef FUNC_NAME
576
577 /* Guile's idea of infinity. */
578 static double guile_Inf;
579
580 /* Guile's idea of not a number. */
581 static double guile_NaN;
582
583 static void
584 guile_ieee_init (void)
585 {
586 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
587
588 /* Some version of gcc on some old version of Linux used to crash when
589 trying to make Inf and NaN. */
590
591 #ifdef INFINITY
592 /* C99 INFINITY, when available.
593 FIXME: The standard allows for INFINITY to be something that overflows
594 at compile time. We ought to have a configure test to check for that
595 before trying to use it. (But in practice we believe this is not a
596 problem on any system guile is likely to target.) */
597 guile_Inf = INFINITY;
598 #elif HAVE_DINFINITY
599 /* OSF */
600 extern unsigned int DINFINITY[2];
601 guile_Inf = (*(X_CAST(double *, DINFINITY)));
602 #else
603 double tmp = 1e+10;
604 guile_Inf = tmp;
605 for (;;)
606 {
607 guile_Inf *= 1e+10;
608 if (guile_Inf == tmp)
609 break;
610 tmp = guile_Inf;
611 }
612 #endif
613
614 #endif
615
616 #if defined (HAVE_ISNAN)
617
618 #ifdef NAN
619 /* C99 NAN, when available */
620 guile_NaN = NAN;
621 #elif HAVE_DQNAN
622 /* OSF */
623 extern unsigned int DQNAN[2];
624 guile_NaN = (*(X_CAST(double *, DQNAN)));
625 #else
626 guile_NaN = guile_Inf / guile_Inf;
627 #endif
628
629 #endif
630 }
631
632 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
633 (void),
634 "Return Inf.")
635 #define FUNC_NAME s_scm_inf
636 {
637 static int initialized = 0;
638 if (! initialized)
639 {
640 guile_ieee_init ();
641 initialized = 1;
642 }
643 return scm_from_double (guile_Inf);
644 }
645 #undef FUNC_NAME
646
647 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
648 (void),
649 "Return NaN.")
650 #define FUNC_NAME s_scm_nan
651 {
652 static int initialized = 0;
653 if (!initialized)
654 {
655 guile_ieee_init ();
656 initialized = 1;
657 }
658 return scm_from_double (guile_NaN);
659 }
660 #undef FUNC_NAME
661
662
663 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
664 (SCM x),
665 "Return the absolute value of @var{x}.")
666 #define FUNC_NAME
667 {
668 if (SCM_I_INUMP (x))
669 {
670 long int xx = SCM_I_INUM (x);
671 if (xx >= 0)
672 return x;
673 else if (SCM_POSFIXABLE (-xx))
674 return SCM_I_MAKINUM (-xx);
675 else
676 return scm_i_long2big (-xx);
677 }
678 else if (SCM_BIGP (x))
679 {
680 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
681 if (sgn < 0)
682 return scm_i_clonebig (x, 0);
683 else
684 return x;
685 }
686 else if (SCM_REALP (x))
687 {
688 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
689 double xx = SCM_REAL_VALUE (x);
690 if (xx < 0.0)
691 return scm_from_double (-xx);
692 else
693 return x;
694 }
695 else if (SCM_FRACTIONP (x))
696 {
697 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
698 return x;
699 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
700 SCM_FRACTION_DENOMINATOR (x));
701 }
702 else
703 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
704 }
705 #undef FUNC_NAME
706
707
708 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
709 /* "Return the quotient of the numbers @var{x} and @var{y}."
710 */
711 SCM
712 scm_quotient (SCM x, SCM y)
713 {
714 if (SCM_I_INUMP (x))
715 {
716 long xx = SCM_I_INUM (x);
717 if (SCM_I_INUMP (y))
718 {
719 long yy = SCM_I_INUM (y);
720 if (yy == 0)
721 scm_num_overflow (s_quotient);
722 else
723 {
724 long z = xx / yy;
725 if (SCM_FIXABLE (z))
726 return SCM_I_MAKINUM (z);
727 else
728 return scm_i_long2big (z);
729 }
730 }
731 else if (SCM_BIGP (y))
732 {
733 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
734 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
735 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
736 {
737 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
738 scm_remember_upto_here_1 (y);
739 return SCM_I_MAKINUM (-1);
740 }
741 else
742 return SCM_I_MAKINUM (0);
743 }
744 else
745 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
746 }
747 else if (SCM_BIGP (x))
748 {
749 if (SCM_I_INUMP (y))
750 {
751 long yy = SCM_I_INUM (y);
752 if (yy == 0)
753 scm_num_overflow (s_quotient);
754 else if (yy == 1)
755 return x;
756 else
757 {
758 SCM result = scm_i_mkbig ();
759 if (yy < 0)
760 {
761 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
762 SCM_I_BIG_MPZ (x),
763 - yy);
764 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
765 }
766 else
767 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
768 scm_remember_upto_here_1 (x);
769 return scm_i_normbig (result);
770 }
771 }
772 else if (SCM_BIGP (y))
773 {
774 SCM result = scm_i_mkbig ();
775 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
776 SCM_I_BIG_MPZ (x),
777 SCM_I_BIG_MPZ (y));
778 scm_remember_upto_here_2 (x, y);
779 return scm_i_normbig (result);
780 }
781 else
782 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
783 }
784 else
785 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
786 }
787
788 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
789 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
790 * "@lisp\n"
791 * "(remainder 13 4) @result{} 1\n"
792 * "(remainder -13 4) @result{} -1\n"
793 * "@end lisp"
794 */
795 SCM
796 scm_remainder (SCM x, SCM y)
797 {
798 if (SCM_I_INUMP (x))
799 {
800 if (SCM_I_INUMP (y))
801 {
802 long yy = SCM_I_INUM (y);
803 if (yy == 0)
804 scm_num_overflow (s_remainder);
805 else
806 {
807 long z = SCM_I_INUM (x) % yy;
808 return SCM_I_MAKINUM (z);
809 }
810 }
811 else if (SCM_BIGP (y))
812 {
813 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
814 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
815 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
816 {
817 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
818 scm_remember_upto_here_1 (y);
819 return SCM_I_MAKINUM (0);
820 }
821 else
822 return x;
823 }
824 else
825 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
826 }
827 else if (SCM_BIGP (x))
828 {
829 if (SCM_I_INUMP (y))
830 {
831 long yy = SCM_I_INUM (y);
832 if (yy == 0)
833 scm_num_overflow (s_remainder);
834 else
835 {
836 SCM result = scm_i_mkbig ();
837 if (yy < 0)
838 yy = - yy;
839 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
840 scm_remember_upto_here_1 (x);
841 return scm_i_normbig (result);
842 }
843 }
844 else if (SCM_BIGP (y))
845 {
846 SCM result = scm_i_mkbig ();
847 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
848 SCM_I_BIG_MPZ (x),
849 SCM_I_BIG_MPZ (y));
850 scm_remember_upto_here_2 (x, y);
851 return scm_i_normbig (result);
852 }
853 else
854 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
855 }
856 else
857 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
858 }
859
860
861 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
862 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
863 * "@lisp\n"
864 * "(modulo 13 4) @result{} 1\n"
865 * "(modulo -13 4) @result{} 3\n"
866 * "@end lisp"
867 */
868 SCM
869 scm_modulo (SCM x, SCM y)
870 {
871 if (SCM_I_INUMP (x))
872 {
873 long xx = SCM_I_INUM (x);
874 if (SCM_I_INUMP (y))
875 {
876 long yy = SCM_I_INUM (y);
877 if (yy == 0)
878 scm_num_overflow (s_modulo);
879 else
880 {
881 /* C99 specifies that "%" is the remainder corresponding to a
882 quotient rounded towards zero, and that's also traditional
883 for machine division, so z here should be well defined. */
884 long z = xx % yy;
885 long result;
886
887 if (yy < 0)
888 {
889 if (z > 0)
890 result = z + yy;
891 else
892 result = z;
893 }
894 else
895 {
896 if (z < 0)
897 result = z + yy;
898 else
899 result = z;
900 }
901 return SCM_I_MAKINUM (result);
902 }
903 }
904 else if (SCM_BIGP (y))
905 {
906 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
907 {
908 mpz_t z_x;
909 SCM result;
910
911 if (sgn_y < 0)
912 {
913 SCM pos_y = scm_i_clonebig (y, 0);
914 /* do this after the last scm_op */
915 mpz_init_set_si (z_x, xx);
916 result = pos_y; /* re-use this bignum */
917 mpz_mod (SCM_I_BIG_MPZ (result),
918 z_x,
919 SCM_I_BIG_MPZ (pos_y));
920 scm_remember_upto_here_1 (pos_y);
921 }
922 else
923 {
924 result = scm_i_mkbig ();
925 /* do this after the last scm_op */
926 mpz_init_set_si (z_x, xx);
927 mpz_mod (SCM_I_BIG_MPZ (result),
928 z_x,
929 SCM_I_BIG_MPZ (y));
930 scm_remember_upto_here_1 (y);
931 }
932
933 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
934 mpz_add (SCM_I_BIG_MPZ (result),
935 SCM_I_BIG_MPZ (y),
936 SCM_I_BIG_MPZ (result));
937 scm_remember_upto_here_1 (y);
938 /* and do this before the next one */
939 mpz_clear (z_x);
940 return scm_i_normbig (result);
941 }
942 }
943 else
944 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
945 }
946 else if (SCM_BIGP (x))
947 {
948 if (SCM_I_INUMP (y))
949 {
950 long yy = SCM_I_INUM (y);
951 if (yy == 0)
952 scm_num_overflow (s_modulo);
953 else
954 {
955 SCM result = scm_i_mkbig ();
956 mpz_mod_ui (SCM_I_BIG_MPZ (result),
957 SCM_I_BIG_MPZ (x),
958 (yy < 0) ? - yy : yy);
959 scm_remember_upto_here_1 (x);
960 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
961 mpz_sub_ui (SCM_I_BIG_MPZ (result),
962 SCM_I_BIG_MPZ (result),
963 - yy);
964 return scm_i_normbig (result);
965 }
966 }
967 else if (SCM_BIGP (y))
968 {
969 {
970 SCM result = scm_i_mkbig ();
971 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
972 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
973 mpz_mod (SCM_I_BIG_MPZ (result),
974 SCM_I_BIG_MPZ (x),
975 SCM_I_BIG_MPZ (pos_y));
976
977 scm_remember_upto_here_1 (x);
978 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
979 mpz_add (SCM_I_BIG_MPZ (result),
980 SCM_I_BIG_MPZ (y),
981 SCM_I_BIG_MPZ (result));
982 scm_remember_upto_here_2 (y, pos_y);
983 return scm_i_normbig (result);
984 }
985 }
986 else
987 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
988 }
989 else
990 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
991 }
992
993 SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
994 /* "Return the greatest common divisor of all arguments.\n"
995 * "If called without arguments, 0 is returned."
996 */
997 SCM
998 scm_gcd (SCM x, SCM y)
999 {
1000 if (SCM_UNBNDP (y))
1001 return SCM_UNBNDP (x) ? SCM_INUM0 : x;
1002
1003 if (SCM_I_INUMP (x))
1004 {
1005 if (SCM_I_INUMP (y))
1006 {
1007 long xx = SCM_I_INUM (x);
1008 long yy = SCM_I_INUM (y);
1009 long u = xx < 0 ? -xx : xx;
1010 long v = yy < 0 ? -yy : yy;
1011 long result;
1012 if (xx == 0)
1013 result = v;
1014 else if (yy == 0)
1015 result = u;
1016 else
1017 {
1018 long k = 1;
1019 long t;
1020 /* Determine a common factor 2^k */
1021 while (!(1 & (u | v)))
1022 {
1023 k <<= 1;
1024 u >>= 1;
1025 v >>= 1;
1026 }
1027 /* Now, any factor 2^n can be eliminated */
1028 if (u & 1)
1029 t = -v;
1030 else
1031 {
1032 t = u;
1033 b3:
1034 t = SCM_SRS (t, 1);
1035 }
1036 if (!(1 & t))
1037 goto b3;
1038 if (t > 0)
1039 u = t;
1040 else
1041 v = -t;
1042 t = u - v;
1043 if (t != 0)
1044 goto b3;
1045 result = u * k;
1046 }
1047 return (SCM_POSFIXABLE (result)
1048 ? SCM_I_MAKINUM (result)
1049 : scm_i_long2big (result));
1050 }
1051 else if (SCM_BIGP (y))
1052 {
1053 SCM_SWAP (x, y);
1054 goto big_inum;
1055 }
1056 else
1057 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1058 }
1059 else if (SCM_BIGP (x))
1060 {
1061 if (SCM_I_INUMP (y))
1062 {
1063 unsigned long result;
1064 long yy;
1065 big_inum:
1066 yy = SCM_I_INUM (y);
1067 if (yy == 0)
1068 return scm_abs (x);
1069 if (yy < 0)
1070 yy = -yy;
1071 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1072 scm_remember_upto_here_1 (x);
1073 return (SCM_POSFIXABLE (result)
1074 ? SCM_I_MAKINUM (result)
1075 : scm_from_ulong (result));
1076 }
1077 else if (SCM_BIGP (y))
1078 {
1079 SCM result = scm_i_mkbig ();
1080 mpz_gcd (SCM_I_BIG_MPZ (result),
1081 SCM_I_BIG_MPZ (x),
1082 SCM_I_BIG_MPZ (y));
1083 scm_remember_upto_here_2 (x, y);
1084 return scm_i_normbig (result);
1085 }
1086 else
1087 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1088 }
1089 else
1090 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1091 }
1092
1093 SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
1094 /* "Return the least common multiple of the arguments.\n"
1095 * "If called without arguments, 1 is returned."
1096 */
1097 SCM
1098 scm_lcm (SCM n1, SCM n2)
1099 {
1100 if (SCM_UNBNDP (n2))
1101 {
1102 if (SCM_UNBNDP (n1))
1103 return SCM_I_MAKINUM (1L);
1104 n2 = SCM_I_MAKINUM (1L);
1105 }
1106
1107 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1108 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1109 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1110 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1111
1112 if (SCM_I_INUMP (n1))
1113 {
1114 if (SCM_I_INUMP (n2))
1115 {
1116 SCM d = scm_gcd (n1, n2);
1117 if (scm_is_eq (d, SCM_INUM0))
1118 return d;
1119 else
1120 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1121 }
1122 else
1123 {
1124 /* inum n1, big n2 */
1125 inumbig:
1126 {
1127 SCM result = scm_i_mkbig ();
1128 long nn1 = SCM_I_INUM (n1);
1129 if (nn1 == 0) return SCM_INUM0;
1130 if (nn1 < 0) nn1 = - nn1;
1131 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1132 scm_remember_upto_here_1 (n2);
1133 return result;
1134 }
1135 }
1136 }
1137 else
1138 {
1139 /* big n1 */
1140 if (SCM_I_INUMP (n2))
1141 {
1142 SCM_SWAP (n1, n2);
1143 goto inumbig;
1144 }
1145 else
1146 {
1147 SCM result = scm_i_mkbig ();
1148 mpz_lcm(SCM_I_BIG_MPZ (result),
1149 SCM_I_BIG_MPZ (n1),
1150 SCM_I_BIG_MPZ (n2));
1151 scm_remember_upto_here_2(n1, n2);
1152 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1153 return result;
1154 }
1155 }
1156 }
1157
1158 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1159
1160 Logand:
1161 X Y Result Method:
1162 (len)
1163 + + + x (map digit:logand X Y)
1164 + - + x (map digit:logand X (lognot (+ -1 Y)))
1165 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1166 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1167
1168 Logior:
1169 X Y Result Method:
1170
1171 + + + (map digit:logior X Y)
1172 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1173 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1174 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1175
1176 Logxor:
1177 X Y Result Method:
1178
1179 + + + (map digit:logxor X Y)
1180 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1181 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1182 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1183
1184 Logtest:
1185 X Y Result
1186
1187 + + (any digit:logand X Y)
1188 + - (any digit:logand X (lognot (+ -1 Y)))
1189 - + (any digit:logand (lognot (+ -1 X)) Y)
1190 - - #t
1191
1192 */
1193
1194 SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
1195 (SCM n1, SCM n2),
1196 "Return the bitwise AND of the integer arguments.\n\n"
1197 "@lisp\n"
1198 "(logand) @result{} -1\n"
1199 "(logand 7) @result{} 7\n"
1200 "(logand #b111 #b011 #b001) @result{} 1\n"
1201 "@end lisp")
1202 #define FUNC_NAME s_scm_logand
1203 {
1204 long int nn1;
1205
1206 if (SCM_UNBNDP (n2))
1207 {
1208 if (SCM_UNBNDP (n1))
1209 return SCM_I_MAKINUM (-1);
1210 else if (!SCM_NUMBERP (n1))
1211 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1212 else if (SCM_NUMBERP (n1))
1213 return n1;
1214 else
1215 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1216 }
1217
1218 if (SCM_I_INUMP (n1))
1219 {
1220 nn1 = SCM_I_INUM (n1);
1221 if (SCM_I_INUMP (n2))
1222 {
1223 long nn2 = SCM_I_INUM (n2);
1224 return SCM_I_MAKINUM (nn1 & nn2);
1225 }
1226 else if SCM_BIGP (n2)
1227 {
1228 intbig:
1229 if (n1 == 0)
1230 return SCM_INUM0;
1231 {
1232 SCM result_z = scm_i_mkbig ();
1233 mpz_t nn1_z;
1234 mpz_init_set_si (nn1_z, nn1);
1235 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1236 scm_remember_upto_here_1 (n2);
1237 mpz_clear (nn1_z);
1238 return scm_i_normbig (result_z);
1239 }
1240 }
1241 else
1242 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1243 }
1244 else if (SCM_BIGP (n1))
1245 {
1246 if (SCM_I_INUMP (n2))
1247 {
1248 SCM_SWAP (n1, n2);
1249 nn1 = SCM_I_INUM (n1);
1250 goto intbig;
1251 }
1252 else if (SCM_BIGP (n2))
1253 {
1254 SCM result_z = scm_i_mkbig ();
1255 mpz_and (SCM_I_BIG_MPZ (result_z),
1256 SCM_I_BIG_MPZ (n1),
1257 SCM_I_BIG_MPZ (n2));
1258 scm_remember_upto_here_2 (n1, n2);
1259 return scm_i_normbig (result_z);
1260 }
1261 else
1262 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1263 }
1264 else
1265 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1266 }
1267 #undef FUNC_NAME
1268
1269
1270 SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
1271 (SCM n1, SCM n2),
1272 "Return the bitwise OR of the integer arguments.\n\n"
1273 "@lisp\n"
1274 "(logior) @result{} 0\n"
1275 "(logior 7) @result{} 7\n"
1276 "(logior #b000 #b001 #b011) @result{} 3\n"
1277 "@end lisp")
1278 #define FUNC_NAME s_scm_logior
1279 {
1280 long int nn1;
1281
1282 if (SCM_UNBNDP (n2))
1283 {
1284 if (SCM_UNBNDP (n1))
1285 return SCM_INUM0;
1286 else if (SCM_NUMBERP (n1))
1287 return n1;
1288 else
1289 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1290 }
1291
1292 if (SCM_I_INUMP (n1))
1293 {
1294 nn1 = SCM_I_INUM (n1);
1295 if (SCM_I_INUMP (n2))
1296 {
1297 long nn2 = SCM_I_INUM (n2);
1298 return SCM_I_MAKINUM (nn1 | nn2);
1299 }
1300 else if (SCM_BIGP (n2))
1301 {
1302 intbig:
1303 if (nn1 == 0)
1304 return n2;
1305 {
1306 SCM result_z = scm_i_mkbig ();
1307 mpz_t nn1_z;
1308 mpz_init_set_si (nn1_z, nn1);
1309 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1310 scm_remember_upto_here_1 (n2);
1311 mpz_clear (nn1_z);
1312 return result_z;
1313 }
1314 }
1315 else
1316 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1317 }
1318 else if (SCM_BIGP (n1))
1319 {
1320 if (SCM_I_INUMP (n2))
1321 {
1322 SCM_SWAP (n1, n2);
1323 nn1 = SCM_I_INUM (n1);
1324 goto intbig;
1325 }
1326 else if (SCM_BIGP (n2))
1327 {
1328 SCM result_z = scm_i_mkbig ();
1329 mpz_ior (SCM_I_BIG_MPZ (result_z),
1330 SCM_I_BIG_MPZ (n1),
1331 SCM_I_BIG_MPZ (n2));
1332 scm_remember_upto_here_2 (n1, n2);
1333 return result_z;
1334 }
1335 else
1336 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1337 }
1338 else
1339 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1340 }
1341 #undef FUNC_NAME
1342
1343
1344 SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
1345 (SCM n1, SCM n2),
1346 "Return the bitwise XOR of the integer arguments. A bit is\n"
1347 "set in the result if it is set in an odd number of arguments.\n"
1348 "@lisp\n"
1349 "(logxor) @result{} 0\n"
1350 "(logxor 7) @result{} 7\n"
1351 "(logxor #b000 #b001 #b011) @result{} 2\n"
1352 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1353 "@end lisp")
1354 #define FUNC_NAME s_scm_logxor
1355 {
1356 long int nn1;
1357
1358 if (SCM_UNBNDP (n2))
1359 {
1360 if (SCM_UNBNDP (n1))
1361 return SCM_INUM0;
1362 else if (SCM_NUMBERP (n1))
1363 return n1;
1364 else
1365 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1366 }
1367
1368 if (SCM_I_INUMP (n1))
1369 {
1370 nn1 = SCM_I_INUM (n1);
1371 if (SCM_I_INUMP (n2))
1372 {
1373 long nn2 = SCM_I_INUM (n2);
1374 return SCM_I_MAKINUM (nn1 ^ nn2);
1375 }
1376 else if (SCM_BIGP (n2))
1377 {
1378 intbig:
1379 {
1380 SCM result_z = scm_i_mkbig ();
1381 mpz_t nn1_z;
1382 mpz_init_set_si (nn1_z, nn1);
1383 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1384 scm_remember_upto_here_1 (n2);
1385 mpz_clear (nn1_z);
1386 return scm_i_normbig (result_z);
1387 }
1388 }
1389 else
1390 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1391 }
1392 else if (SCM_BIGP (n1))
1393 {
1394 if (SCM_I_INUMP (n2))
1395 {
1396 SCM_SWAP (n1, n2);
1397 nn1 = SCM_I_INUM (n1);
1398 goto intbig;
1399 }
1400 else if (SCM_BIGP (n2))
1401 {
1402 SCM result_z = scm_i_mkbig ();
1403 mpz_xor (SCM_I_BIG_MPZ (result_z),
1404 SCM_I_BIG_MPZ (n1),
1405 SCM_I_BIG_MPZ (n2));
1406 scm_remember_upto_here_2 (n1, n2);
1407 return scm_i_normbig (result_z);
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1411 }
1412 else
1413 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1414 }
1415 #undef FUNC_NAME
1416
1417
1418 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1419 (SCM j, SCM k),
1420 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1421 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1422 "without actually calculating the @code{logand}, just testing\n"
1423 "for non-zero.\n"
1424 "\n"
1425 "@lisp\n"
1426 "(logtest #b0100 #b1011) @result{} #f\n"
1427 "(logtest #b0100 #b0111) @result{} #t\n"
1428 "@end lisp")
1429 #define FUNC_NAME s_scm_logtest
1430 {
1431 long int nj;
1432
1433 if (SCM_I_INUMP (j))
1434 {
1435 nj = SCM_I_INUM (j);
1436 if (SCM_I_INUMP (k))
1437 {
1438 long nk = SCM_I_INUM (k);
1439 return scm_from_bool (nj & nk);
1440 }
1441 else if (SCM_BIGP (k))
1442 {
1443 intbig:
1444 if (nj == 0)
1445 return SCM_BOOL_F;
1446 {
1447 SCM result;
1448 mpz_t nj_z;
1449 mpz_init_set_si (nj_z, nj);
1450 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1451 scm_remember_upto_here_1 (k);
1452 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1453 mpz_clear (nj_z);
1454 return result;
1455 }
1456 }
1457 else
1458 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1459 }
1460 else if (SCM_BIGP (j))
1461 {
1462 if (SCM_I_INUMP (k))
1463 {
1464 SCM_SWAP (j, k);
1465 nj = SCM_I_INUM (j);
1466 goto intbig;
1467 }
1468 else if (SCM_BIGP (k))
1469 {
1470 SCM result;
1471 mpz_t result_z;
1472 mpz_init (result_z);
1473 mpz_and (result_z,
1474 SCM_I_BIG_MPZ (j),
1475 SCM_I_BIG_MPZ (k));
1476 scm_remember_upto_here_2 (j, k);
1477 result = scm_from_bool (mpz_sgn (result_z) != 0);
1478 mpz_clear (result_z);
1479 return result;
1480 }
1481 else
1482 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1483 }
1484 else
1485 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1486 }
1487 #undef FUNC_NAME
1488
1489
1490 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1491 (SCM index, SCM j),
1492 "Test whether bit number @var{index} in @var{j} is set.\n"
1493 "@var{index} starts from 0 for the least significant bit.\n"
1494 "\n"
1495 "@lisp\n"
1496 "(logbit? 0 #b1101) @result{} #t\n"
1497 "(logbit? 1 #b1101) @result{} #f\n"
1498 "(logbit? 2 #b1101) @result{} #t\n"
1499 "(logbit? 3 #b1101) @result{} #t\n"
1500 "(logbit? 4 #b1101) @result{} #f\n"
1501 "@end lisp")
1502 #define FUNC_NAME s_scm_logbit_p
1503 {
1504 unsigned long int iindex;
1505 iindex = scm_to_ulong (index);
1506
1507 if (SCM_I_INUMP (j))
1508 {
1509 /* bits above what's in an inum follow the sign bit */
1510 iindex = min (iindex, SCM_LONG_BIT - 1);
1511 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1512 }
1513 else if (SCM_BIGP (j))
1514 {
1515 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1516 scm_remember_upto_here_1 (j);
1517 return scm_from_bool (val);
1518 }
1519 else
1520 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1521 }
1522 #undef FUNC_NAME
1523
1524
1525 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1526 (SCM n),
1527 "Return the integer which is the ones-complement of the integer\n"
1528 "argument.\n"
1529 "\n"
1530 "@lisp\n"
1531 "(number->string (lognot #b10000000) 2)\n"
1532 " @result{} \"-10000001\"\n"
1533 "(number->string (lognot #b0) 2)\n"
1534 " @result{} \"-1\"\n"
1535 "@end lisp")
1536 #define FUNC_NAME s_scm_lognot
1537 {
1538 if (SCM_I_INUMP (n)) {
1539 /* No overflow here, just need to toggle all the bits making up the inum.
1540 Enhancement: No need to strip the tag and add it back, could just xor
1541 a block of 1 bits, if that worked with the various debug versions of
1542 the SCM typedef. */
1543 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1544
1545 } else if (SCM_BIGP (n)) {
1546 SCM result = scm_i_mkbig ();
1547 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1548 scm_remember_upto_here_1 (n);
1549 return result;
1550
1551 } else {
1552 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1553 }
1554 }
1555 #undef FUNC_NAME
1556
1557 /* returns 0 if IN is not an integer. OUT must already be
1558 initialized. */
1559 static int
1560 coerce_to_big (SCM in, mpz_t out)
1561 {
1562 if (SCM_BIGP (in))
1563 mpz_set (out, SCM_I_BIG_MPZ (in));
1564 else if (SCM_I_INUMP (in))
1565 mpz_set_si (out, SCM_I_INUM (in));
1566 else
1567 return 0;
1568
1569 return 1;
1570 }
1571
1572 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1573 (SCM n, SCM k, SCM m),
1574 "Return @var{n} raised to the integer exponent\n"
1575 "@var{k}, modulo @var{m}.\n"
1576 "\n"
1577 "@lisp\n"
1578 "(modulo-expt 2 3 5)\n"
1579 " @result{} 3\n"
1580 "@end lisp")
1581 #define FUNC_NAME s_scm_modulo_expt
1582 {
1583 mpz_t n_tmp;
1584 mpz_t k_tmp;
1585 mpz_t m_tmp;
1586
1587 /* There are two classes of error we might encounter --
1588 1) Math errors, which we'll report by calling scm_num_overflow,
1589 and
1590 2) wrong-type errors, which of course we'll report by calling
1591 SCM_WRONG_TYPE_ARG.
1592 We don't report those errors immediately, however; instead we do
1593 some cleanup first. These variables tell us which error (if
1594 any) we should report after cleaning up.
1595 */
1596 int report_overflow = 0;
1597
1598 int position_of_wrong_type = 0;
1599 SCM value_of_wrong_type = SCM_INUM0;
1600
1601 SCM result = SCM_UNDEFINED;
1602
1603 mpz_init (n_tmp);
1604 mpz_init (k_tmp);
1605 mpz_init (m_tmp);
1606
1607 if (scm_is_eq (m, SCM_INUM0))
1608 {
1609 report_overflow = 1;
1610 goto cleanup;
1611 }
1612
1613 if (!coerce_to_big (n, n_tmp))
1614 {
1615 value_of_wrong_type = n;
1616 position_of_wrong_type = 1;
1617 goto cleanup;
1618 }
1619
1620 if (!coerce_to_big (k, k_tmp))
1621 {
1622 value_of_wrong_type = k;
1623 position_of_wrong_type = 2;
1624 goto cleanup;
1625 }
1626
1627 if (!coerce_to_big (m, m_tmp))
1628 {
1629 value_of_wrong_type = m;
1630 position_of_wrong_type = 3;
1631 goto cleanup;
1632 }
1633
1634 /* if the exponent K is negative, and we simply call mpz_powm, we
1635 will get a divide-by-zero exception when an inverse 1/n mod m
1636 doesn't exist (or is not unique). Since exceptions are hard to
1637 handle, we'll attempt the inversion "by hand" -- that way, we get
1638 a simple failure code, which is easy to handle. */
1639
1640 if (-1 == mpz_sgn (k_tmp))
1641 {
1642 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1643 {
1644 report_overflow = 1;
1645 goto cleanup;
1646 }
1647 mpz_neg (k_tmp, k_tmp);
1648 }
1649
1650 result = scm_i_mkbig ();
1651 mpz_powm (SCM_I_BIG_MPZ (result),
1652 n_tmp,
1653 k_tmp,
1654 m_tmp);
1655
1656 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1657 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1658
1659 cleanup:
1660 mpz_clear (m_tmp);
1661 mpz_clear (k_tmp);
1662 mpz_clear (n_tmp);
1663
1664 if (report_overflow)
1665 scm_num_overflow (FUNC_NAME);
1666
1667 if (position_of_wrong_type)
1668 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1669 value_of_wrong_type);
1670
1671 return scm_i_normbig (result);
1672 }
1673 #undef FUNC_NAME
1674
1675 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1676 (SCM n, SCM k),
1677 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1678 "exact integer, @var{n} can be any number.\n"
1679 "\n"
1680 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1681 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1682 "includes @math{0^0} is 1.\n"
1683 "\n"
1684 "@lisp\n"
1685 "(integer-expt 2 5) @result{} 32\n"
1686 "(integer-expt -3 3) @result{} -27\n"
1687 "(integer-expt 5 -3) @result{} 1/125\n"
1688 "(integer-expt 0 0) @result{} 1\n"
1689 "@end lisp")
1690 #define FUNC_NAME s_scm_integer_expt
1691 {
1692 long i2 = 0;
1693 SCM z_i2 = SCM_BOOL_F;
1694 int i2_is_big = 0;
1695 SCM acc = SCM_I_MAKINUM (1L);
1696
1697 /* 0^0 == 1 according to R5RS */
1698 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1699 return scm_is_false (scm_zero_p(k)) ? n : acc;
1700 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1701 return scm_is_false (scm_even_p (k)) ? n : acc;
1702
1703 if (SCM_I_INUMP (k))
1704 i2 = SCM_I_INUM (k);
1705 else if (SCM_BIGP (k))
1706 {
1707 z_i2 = scm_i_clonebig (k, 1);
1708 scm_remember_upto_here_1 (k);
1709 i2_is_big = 1;
1710 }
1711 else
1712 SCM_WRONG_TYPE_ARG (2, k);
1713
1714 if (i2_is_big)
1715 {
1716 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1717 {
1718 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1719 n = scm_divide (n, SCM_UNDEFINED);
1720 }
1721 while (1)
1722 {
1723 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1724 {
1725 return acc;
1726 }
1727 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1728 {
1729 return scm_product (acc, n);
1730 }
1731 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1732 acc = scm_product (acc, n);
1733 n = scm_product (n, n);
1734 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1735 }
1736 }
1737 else
1738 {
1739 if (i2 < 0)
1740 {
1741 i2 = -i2;
1742 n = scm_divide (n, SCM_UNDEFINED);
1743 }
1744 while (1)
1745 {
1746 if (0 == i2)
1747 return acc;
1748 if (1 == i2)
1749 return scm_product (acc, n);
1750 if (i2 & 1)
1751 acc = scm_product (acc, n);
1752 n = scm_product (n, n);
1753 i2 >>= 1;
1754 }
1755 }
1756 }
1757 #undef FUNC_NAME
1758
1759 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1760 (SCM n, SCM cnt),
1761 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1762 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1763 "\n"
1764 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1765 "@var{cnt} is negative it's a division, rounded towards negative\n"
1766 "infinity. (Note that this is not the same rounding as\n"
1767 "@code{quotient} does.)\n"
1768 "\n"
1769 "With @var{n} viewed as an infinite precision twos complement,\n"
1770 "@code{ash} means a left shift introducing zero bits, or a right\n"
1771 "shift dropping bits.\n"
1772 "\n"
1773 "@lisp\n"
1774 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1775 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1776 "\n"
1777 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1778 "(ash -23 -2) @result{} -6\n"
1779 "@end lisp")
1780 #define FUNC_NAME s_scm_ash
1781 {
1782 long bits_to_shift;
1783 bits_to_shift = scm_to_long (cnt);
1784
1785 if (SCM_I_INUMP (n))
1786 {
1787 long nn = SCM_I_INUM (n);
1788
1789 if (bits_to_shift > 0)
1790 {
1791 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1792 overflow a non-zero fixnum. For smaller shifts we check the
1793 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1794 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1795 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1796 bits_to_shift)". */
1797
1798 if (nn == 0)
1799 return n;
1800
1801 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1802 && ((unsigned long)
1803 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1804 <= 1))
1805 {
1806 return SCM_I_MAKINUM (nn << bits_to_shift);
1807 }
1808 else
1809 {
1810 SCM result = scm_i_long2big (nn);
1811 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1812 bits_to_shift);
1813 return result;
1814 }
1815 }
1816 else
1817 {
1818 bits_to_shift = -bits_to_shift;
1819 if (bits_to_shift >= SCM_LONG_BIT)
1820 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1821 else
1822 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1823 }
1824
1825 }
1826 else if (SCM_BIGP (n))
1827 {
1828 SCM result;
1829
1830 if (bits_to_shift == 0)
1831 return n;
1832
1833 result = scm_i_mkbig ();
1834 if (bits_to_shift >= 0)
1835 {
1836 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1837 bits_to_shift);
1838 return result;
1839 }
1840 else
1841 {
1842 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1843 we have to allocate a bignum even if the result is going to be a
1844 fixnum. */
1845 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1846 -bits_to_shift);
1847 return scm_i_normbig (result);
1848 }
1849
1850 }
1851 else
1852 {
1853 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1854 }
1855 }
1856 #undef FUNC_NAME
1857
1858
1859 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1860 (SCM n, SCM start, SCM end),
1861 "Return the integer composed of the @var{start} (inclusive)\n"
1862 "through @var{end} (exclusive) bits of @var{n}. The\n"
1863 "@var{start}th bit becomes the 0-th bit in the result.\n"
1864 "\n"
1865 "@lisp\n"
1866 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1867 " @result{} \"1010\"\n"
1868 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1869 " @result{} \"10110\"\n"
1870 "@end lisp")
1871 #define FUNC_NAME s_scm_bit_extract
1872 {
1873 unsigned long int istart, iend, bits;
1874 istart = scm_to_ulong (start);
1875 iend = scm_to_ulong (end);
1876 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1877
1878 /* how many bits to keep */
1879 bits = iend - istart;
1880
1881 if (SCM_I_INUMP (n))
1882 {
1883 long int in = SCM_I_INUM (n);
1884
1885 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1886 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1887 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1888
1889 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
1890 {
1891 /* Since we emulate two's complement encoded numbers, this
1892 * special case requires us to produce a result that has
1893 * more bits than can be stored in a fixnum.
1894 */
1895 SCM result = scm_i_long2big (in);
1896 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1897 bits);
1898 return result;
1899 }
1900
1901 /* mask down to requisite bits */
1902 bits = min (bits, SCM_I_FIXNUM_BIT);
1903 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
1904 }
1905 else if (SCM_BIGP (n))
1906 {
1907 SCM result;
1908 if (bits == 1)
1909 {
1910 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
1911 }
1912 else
1913 {
1914 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
1915 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
1916 such bits into a ulong. */
1917 result = scm_i_mkbig ();
1918 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
1919 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
1920 result = scm_i_normbig (result);
1921 }
1922 scm_remember_upto_here_1 (n);
1923 return result;
1924 }
1925 else
1926 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1927 }
1928 #undef FUNC_NAME
1929
1930
1931 static const char scm_logtab[] = {
1932 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
1933 };
1934
1935 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
1936 (SCM n),
1937 "Return the number of bits in integer @var{n}. If integer is\n"
1938 "positive, the 1-bits in its binary representation are counted.\n"
1939 "If negative, the 0-bits in its two's-complement binary\n"
1940 "representation are counted. If 0, 0 is returned.\n"
1941 "\n"
1942 "@lisp\n"
1943 "(logcount #b10101010)\n"
1944 " @result{} 4\n"
1945 "(logcount 0)\n"
1946 " @result{} 0\n"
1947 "(logcount -2)\n"
1948 " @result{} 1\n"
1949 "@end lisp")
1950 #define FUNC_NAME s_scm_logcount
1951 {
1952 if (SCM_I_INUMP (n))
1953 {
1954 unsigned long int c = 0;
1955 long int nn = SCM_I_INUM (n);
1956 if (nn < 0)
1957 nn = -1 - nn;
1958 while (nn)
1959 {
1960 c += scm_logtab[15 & nn];
1961 nn >>= 4;
1962 }
1963 return SCM_I_MAKINUM (c);
1964 }
1965 else if (SCM_BIGP (n))
1966 {
1967 unsigned long count;
1968 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
1969 count = mpz_popcount (SCM_I_BIG_MPZ (n));
1970 else
1971 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
1972 scm_remember_upto_here_1 (n);
1973 return SCM_I_MAKINUM (count);
1974 }
1975 else
1976 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1977 }
1978 #undef FUNC_NAME
1979
1980
1981 static const char scm_ilentab[] = {
1982 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
1983 };
1984
1985
1986 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
1987 (SCM n),
1988 "Return the number of bits necessary to represent @var{n}.\n"
1989 "\n"
1990 "@lisp\n"
1991 "(integer-length #b10101010)\n"
1992 " @result{} 8\n"
1993 "(integer-length 0)\n"
1994 " @result{} 0\n"
1995 "(integer-length #b1111)\n"
1996 " @result{} 4\n"
1997 "@end lisp")
1998 #define FUNC_NAME s_scm_integer_length
1999 {
2000 if (SCM_I_INUMP (n))
2001 {
2002 unsigned long int c = 0;
2003 unsigned int l = 4;
2004 long int nn = SCM_I_INUM (n);
2005 if (nn < 0)
2006 nn = -1 - nn;
2007 while (nn)
2008 {
2009 c += 4;
2010 l = scm_ilentab [15 & nn];
2011 nn >>= 4;
2012 }
2013 return SCM_I_MAKINUM (c - 4 + l);
2014 }
2015 else if (SCM_BIGP (n))
2016 {
2017 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2018 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2019 1 too big, so check for that and adjust. */
2020 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2021 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2022 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2023 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2024 size--;
2025 scm_remember_upto_here_1 (n);
2026 return SCM_I_MAKINUM (size);
2027 }
2028 else
2029 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2030 }
2031 #undef FUNC_NAME
2032
2033 /*** NUMBERS -> STRINGS ***/
2034 #define SCM_MAX_DBL_PREC 60
2035 #define SCM_MAX_DBL_RADIX 36
2036
2037 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2038 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2039 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2040
2041 static
2042 void init_dblprec(int *prec, int radix) {
2043 /* determine floating point precision by adding successively
2044 smaller increments to 1.0 until it is considered == 1.0 */
2045 double f = ((double)1.0)/radix;
2046 double fsum = 1.0 + f;
2047
2048 *prec = 0;
2049 while (fsum != 1.0)
2050 {
2051 if (++(*prec) > SCM_MAX_DBL_PREC)
2052 fsum = 1.0;
2053 else
2054 {
2055 f /= radix;
2056 fsum = f + 1.0;
2057 }
2058 }
2059 (*prec) -= 1;
2060 }
2061
2062 static
2063 void init_fx_radix(double *fx_list, int radix)
2064 {
2065 /* initialize a per-radix list of tolerances. When added
2066 to a number < 1.0, we can determine if we should raund
2067 up and quit converting a number to a string. */
2068 int i;
2069 fx_list[0] = 0.0;
2070 fx_list[1] = 0.5;
2071 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2072 fx_list[i] = (fx_list[i-1] / radix);
2073 }
2074
2075 /* use this array as a way to generate a single digit */
2076 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2077
2078 static size_t
2079 idbl2str (double f, char *a, int radix)
2080 {
2081 int efmt, dpt, d, i, wp;
2082 double *fx;
2083 #ifdef DBL_MIN_10_EXP
2084 double f_cpy;
2085 int exp_cpy;
2086 #endif /* DBL_MIN_10_EXP */
2087 size_t ch = 0;
2088 int exp = 0;
2089
2090 if(radix < 2 ||
2091 radix > SCM_MAX_DBL_RADIX)
2092 {
2093 /* revert to existing behavior */
2094 radix = 10;
2095 }
2096
2097 wp = scm_dblprec[radix-2];
2098 fx = fx_per_radix[radix-2];
2099
2100 if (f == 0.0)
2101 {
2102 #ifdef HAVE_COPYSIGN
2103 double sgn = copysign (1.0, f);
2104
2105 if (sgn < 0.0)
2106 a[ch++] = '-';
2107 #endif
2108 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2109 }
2110
2111 if (xisinf (f))
2112 {
2113 if (f < 0)
2114 strcpy (a, "-inf.0");
2115 else
2116 strcpy (a, "+inf.0");
2117 return ch+6;
2118 }
2119 else if (xisnan (f))
2120 {
2121 strcpy (a, "+nan.0");
2122 return ch+6;
2123 }
2124
2125 if (f < 0.0)
2126 {
2127 f = -f;
2128 a[ch++] = '-';
2129 }
2130
2131 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2132 make-uniform-vector, from causing infinite loops. */
2133 /* just do the checking...if it passes, we do the conversion for our
2134 radix again below */
2135 f_cpy = f;
2136 exp_cpy = exp;
2137
2138 while (f_cpy < 1.0)
2139 {
2140 f_cpy *= 10.0;
2141 if (exp_cpy-- < DBL_MIN_10_EXP)
2142 {
2143 a[ch++] = '#';
2144 a[ch++] = '.';
2145 a[ch++] = '#';
2146 return ch;
2147 }
2148 }
2149 while (f_cpy > 10.0)
2150 {
2151 f_cpy *= 0.10;
2152 if (exp_cpy++ > DBL_MAX_10_EXP)
2153 {
2154 a[ch++] = '#';
2155 a[ch++] = '.';
2156 a[ch++] = '#';
2157 return ch;
2158 }
2159 }
2160 #endif
2161
2162 while (f < 1.0)
2163 {
2164 f *= radix;
2165 exp--;
2166 }
2167 while (f > radix)
2168 {
2169 f /= radix;
2170 exp++;
2171 }
2172
2173 if (f + fx[wp] >= radix)
2174 {
2175 f = 1.0;
2176 exp++;
2177 }
2178 zero:
2179 #ifdef ENGNOT
2180 /* adding 9999 makes this equivalent to abs(x) % 3 */
2181 dpt = (exp + 9999) % 3;
2182 exp -= dpt++;
2183 efmt = 1;
2184 #else
2185 efmt = (exp < -3) || (exp > wp + 2);
2186 if (!efmt)
2187 {
2188 if (exp < 0)
2189 {
2190 a[ch++] = '0';
2191 a[ch++] = '.';
2192 dpt = exp;
2193 while (++dpt)
2194 a[ch++] = '0';
2195 }
2196 else
2197 dpt = exp + 1;
2198 }
2199 else
2200 dpt = 1;
2201 #endif
2202
2203 do
2204 {
2205 d = f;
2206 f -= d;
2207 a[ch++] = number_chars[d];
2208 if (f < fx[wp])
2209 break;
2210 if (f + fx[wp] >= 1.0)
2211 {
2212 a[ch - 1] = number_chars[d+1];
2213 break;
2214 }
2215 f *= radix;
2216 if (!(--dpt))
2217 a[ch++] = '.';
2218 }
2219 while (wp--);
2220
2221 if (dpt > 0)
2222 {
2223 #ifndef ENGNOT
2224 if ((dpt > 4) && (exp > 6))
2225 {
2226 d = (a[0] == '-' ? 2 : 1);
2227 for (i = ch++; i > d; i--)
2228 a[i] = a[i - 1];
2229 a[d] = '.';
2230 efmt = 1;
2231 }
2232 else
2233 #endif
2234 {
2235 while (--dpt)
2236 a[ch++] = '0';
2237 a[ch++] = '.';
2238 }
2239 }
2240 if (a[ch - 1] == '.')
2241 a[ch++] = '0'; /* trailing zero */
2242 if (efmt && exp)
2243 {
2244 a[ch++] = 'e';
2245 if (exp < 0)
2246 {
2247 exp = -exp;
2248 a[ch++] = '-';
2249 }
2250 for (i = radix; i <= exp; i *= radix);
2251 for (i /= radix; i; i /= radix)
2252 {
2253 a[ch++] = number_chars[exp / i];
2254 exp %= i;
2255 }
2256 }
2257 return ch;
2258 }
2259
2260
2261 static size_t
2262 icmplx2str (double real, double imag, char *str, int radix)
2263 {
2264 size_t i;
2265
2266 i = idbl2str (real, str, radix);
2267 if (imag != 0.0)
2268 {
2269 /* Don't output a '+' for negative numbers or for Inf and
2270 NaN. They will provide their own sign. */
2271 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2272 str[i++] = '+';
2273 i += idbl2str (imag, &str[i], radix);
2274 str[i++] = 'i';
2275 }
2276 return i;
2277 }
2278
2279 static size_t
2280 iflo2str (SCM flt, char *str, int radix)
2281 {
2282 size_t i;
2283 if (SCM_REALP (flt))
2284 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2285 else
2286 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2287 str, radix);
2288 return i;
2289 }
2290
2291 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2292 characters in the result.
2293 rad is output base
2294 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2295 size_t
2296 scm_iint2str (scm_t_intmax num, int rad, char *p)
2297 {
2298 if (num < 0)
2299 {
2300 *p++ = '-';
2301 return scm_iuint2str (-num, rad, p) + 1;
2302 }
2303 else
2304 return scm_iuint2str (num, rad, p);
2305 }
2306
2307 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2308 characters in the result.
2309 rad is output base
2310 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2311 size_t
2312 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2313 {
2314 size_t j = 1;
2315 size_t i;
2316 scm_t_uintmax n = num;
2317
2318 for (n /= rad; n > 0; n /= rad)
2319 j++;
2320
2321 i = j;
2322 n = num;
2323 while (i--)
2324 {
2325 int d = n % rad;
2326
2327 n /= rad;
2328 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2329 }
2330 return j;
2331 }
2332
2333 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2334 (SCM n, SCM radix),
2335 "Return a string holding the external representation of the\n"
2336 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2337 "inexact, a radix of 10 will be used.")
2338 #define FUNC_NAME s_scm_number_to_string
2339 {
2340 int base;
2341
2342 if (SCM_UNBNDP (radix))
2343 base = 10;
2344 else
2345 base = scm_to_signed_integer (radix, 2, 36);
2346
2347 if (SCM_I_INUMP (n))
2348 {
2349 char num_buf [SCM_INTBUFLEN];
2350 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2351 return scm_from_locale_stringn (num_buf, length);
2352 }
2353 else if (SCM_BIGP (n))
2354 {
2355 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2356 scm_remember_upto_here_1 (n);
2357 return scm_take_locale_string (str);
2358 }
2359 else if (SCM_FRACTIONP (n))
2360 {
2361 scm_i_fraction_reduce (n);
2362 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2363 scm_from_locale_string ("/"),
2364 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2365 }
2366 else if (SCM_INEXACTP (n))
2367 {
2368 char num_buf [FLOBUFLEN];
2369 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2370 }
2371 else
2372 SCM_WRONG_TYPE_ARG (1, n);
2373 }
2374 #undef FUNC_NAME
2375
2376
2377 /* These print routines used to be stubbed here so that scm_repl.c
2378 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2379
2380 int
2381 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2382 {
2383 char num_buf[FLOBUFLEN];
2384 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2385 return !0;
2386 }
2387
2388 void
2389 scm_i_print_double (double val, SCM port)
2390 {
2391 char num_buf[FLOBUFLEN];
2392 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2393 }
2394
2395 int
2396 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2397
2398 {
2399 char num_buf[FLOBUFLEN];
2400 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2401 return !0;
2402 }
2403
2404 void
2405 scm_i_print_complex (double real, double imag, SCM port)
2406 {
2407 char num_buf[FLOBUFLEN];
2408 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2409 }
2410
2411 int
2412 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2413 {
2414 SCM str;
2415 scm_i_fraction_reduce (sexp);
2416 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2417 scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
2418 scm_remember_upto_here_1 (str);
2419 return !0;
2420 }
2421
2422 int
2423 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2424 {
2425 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2426 scm_remember_upto_here_1 (exp);
2427 scm_lfwrite (str, (size_t) strlen (str), port);
2428 free (str);
2429 return !0;
2430 }
2431 /*** END nums->strs ***/
2432
2433
2434 /*** STRINGS -> NUMBERS ***/
2435
2436 /* The following functions implement the conversion from strings to numbers.
2437 * The implementation somehow follows the grammar for numbers as it is given
2438 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2439 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2440 * points should be noted about the implementation:
2441 * * Each function keeps a local index variable 'idx' that points at the
2442 * current position within the parsed string. The global index is only
2443 * updated if the function could parse the corresponding syntactic unit
2444 * successfully.
2445 * * Similarly, the functions keep track of indicators of inexactness ('#',
2446 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2447 * global exactness information is only updated after each part has been
2448 * successfully parsed.
2449 * * Sequences of digits are parsed into temporary variables holding fixnums.
2450 * Only if these fixnums would overflow, the result variables are updated
2451 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2452 * the temporary variables holding the fixnums are cleared, and the process
2453 * starts over again. If for example fixnums were able to store five decimal
2454 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2455 * and the result was computed as 12345 * 100000 + 67890. In other words,
2456 * only every five digits two bignum operations were performed.
2457 */
2458
2459 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2460
2461 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2462
2463 /* In non ASCII-style encodings the following macro might not work. */
2464 #define XDIGIT2UINT(d) \
2465 (isdigit ((int) (unsigned char) d) \
2466 ? (d) - '0' \
2467 : tolower ((int) (unsigned char) d) - 'a' + 10)
2468
2469 static SCM
2470 mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
2471 unsigned int radix, enum t_exactness *p_exactness)
2472 {
2473 unsigned int idx = *p_idx;
2474 unsigned int hash_seen = 0;
2475 scm_t_bits shift = 1;
2476 scm_t_bits add = 0;
2477 unsigned int digit_value;
2478 SCM result;
2479 char c;
2480
2481 if (idx == len)
2482 return SCM_BOOL_F;
2483
2484 c = mem[idx];
2485 if (!isxdigit ((int) (unsigned char) c))
2486 return SCM_BOOL_F;
2487 digit_value = XDIGIT2UINT (c);
2488 if (digit_value >= radix)
2489 return SCM_BOOL_F;
2490
2491 idx++;
2492 result = SCM_I_MAKINUM (digit_value);
2493 while (idx != len)
2494 {
2495 char c = mem[idx];
2496 if (isxdigit ((int) (unsigned char) c))
2497 {
2498 if (hash_seen)
2499 break;
2500 digit_value = XDIGIT2UINT (c);
2501 if (digit_value >= radix)
2502 break;
2503 }
2504 else if (c == '#')
2505 {
2506 hash_seen = 1;
2507 digit_value = 0;
2508 }
2509 else
2510 break;
2511
2512 idx++;
2513 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2514 {
2515 result = scm_product (result, SCM_I_MAKINUM (shift));
2516 if (add > 0)
2517 result = scm_sum (result, SCM_I_MAKINUM (add));
2518
2519 shift = radix;
2520 add = digit_value;
2521 }
2522 else
2523 {
2524 shift = shift * radix;
2525 add = add * radix + digit_value;
2526 }
2527 };
2528
2529 if (shift > 1)
2530 result = scm_product (result, SCM_I_MAKINUM (shift));
2531 if (add > 0)
2532 result = scm_sum (result, SCM_I_MAKINUM (add));
2533
2534 *p_idx = idx;
2535 if (hash_seen)
2536 *p_exactness = INEXACT;
2537
2538 return result;
2539 }
2540
2541
2542 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2543 * covers the parts of the rules that start at a potential point. The value
2544 * of the digits up to the point have been parsed by the caller and are given
2545 * in variable result. The content of *p_exactness indicates, whether a hash
2546 * has already been seen in the digits before the point.
2547 */
2548
2549 /* In non ASCII-style encodings the following macro might not work. */
2550 #define DIGIT2UINT(d) ((d) - '0')
2551
2552 static SCM
2553 mem2decimal_from_point (SCM result, const char* mem, size_t len,
2554 unsigned int *p_idx, enum t_exactness *p_exactness)
2555 {
2556 unsigned int idx = *p_idx;
2557 enum t_exactness x = *p_exactness;
2558
2559 if (idx == len)
2560 return result;
2561
2562 if (mem[idx] == '.')
2563 {
2564 scm_t_bits shift = 1;
2565 scm_t_bits add = 0;
2566 unsigned int digit_value;
2567 SCM big_shift = SCM_I_MAKINUM (1);
2568
2569 idx++;
2570 while (idx != len)
2571 {
2572 char c = mem[idx];
2573 if (isdigit ((int) (unsigned char) c))
2574 {
2575 if (x == INEXACT)
2576 return SCM_BOOL_F;
2577 else
2578 digit_value = DIGIT2UINT (c);
2579 }
2580 else if (c == '#')
2581 {
2582 x = INEXACT;
2583 digit_value = 0;
2584 }
2585 else
2586 break;
2587
2588 idx++;
2589 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2590 {
2591 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2592 result = scm_product (result, SCM_I_MAKINUM (shift));
2593 if (add > 0)
2594 result = scm_sum (result, SCM_I_MAKINUM (add));
2595
2596 shift = 10;
2597 add = digit_value;
2598 }
2599 else
2600 {
2601 shift = shift * 10;
2602 add = add * 10 + digit_value;
2603 }
2604 };
2605
2606 if (add > 0)
2607 {
2608 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2609 result = scm_product (result, SCM_I_MAKINUM (shift));
2610 result = scm_sum (result, SCM_I_MAKINUM (add));
2611 }
2612
2613 result = scm_divide (result, big_shift);
2614
2615 /* We've seen a decimal point, thus the value is implicitly inexact. */
2616 x = INEXACT;
2617 }
2618
2619 if (idx != len)
2620 {
2621 int sign = 1;
2622 unsigned int start;
2623 char c;
2624 int exponent;
2625 SCM e;
2626
2627 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2628
2629 switch (mem[idx])
2630 {
2631 case 'd': case 'D':
2632 case 'e': case 'E':
2633 case 'f': case 'F':
2634 case 'l': case 'L':
2635 case 's': case 'S':
2636 idx++;
2637 start = idx;
2638 c = mem[idx];
2639 if (c == '-')
2640 {
2641 idx++;
2642 sign = -1;
2643 c = mem[idx];
2644 }
2645 else if (c == '+')
2646 {
2647 idx++;
2648 sign = 1;
2649 c = mem[idx];
2650 }
2651 else
2652 sign = 1;
2653
2654 if (!isdigit ((int) (unsigned char) c))
2655 return SCM_BOOL_F;
2656
2657 idx++;
2658 exponent = DIGIT2UINT (c);
2659 while (idx != len)
2660 {
2661 char c = mem[idx];
2662 if (isdigit ((int) (unsigned char) c))
2663 {
2664 idx++;
2665 if (exponent <= SCM_MAXEXP)
2666 exponent = exponent * 10 + DIGIT2UINT (c);
2667 }
2668 else
2669 break;
2670 }
2671
2672 if (exponent > SCM_MAXEXP)
2673 {
2674 size_t exp_len = idx - start;
2675 SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
2676 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2677 scm_out_of_range ("string->number", exp_num);
2678 }
2679
2680 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2681 if (sign == 1)
2682 result = scm_product (result, e);
2683 else
2684 result = scm_divide2real (result, e);
2685
2686 /* We've seen an exponent, thus the value is implicitly inexact. */
2687 x = INEXACT;
2688
2689 break;
2690
2691 default:
2692 break;
2693 }
2694 }
2695
2696 *p_idx = idx;
2697 if (x == INEXACT)
2698 *p_exactness = x;
2699
2700 return result;
2701 }
2702
2703
2704 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2705
2706 static SCM
2707 mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
2708 unsigned int radix, enum t_exactness *p_exactness)
2709 {
2710 unsigned int idx = *p_idx;
2711 SCM result;
2712
2713 if (idx == len)
2714 return SCM_BOOL_F;
2715
2716 if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
2717 {
2718 *p_idx = idx+5;
2719 return scm_inf ();
2720 }
2721
2722 if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
2723 {
2724 enum t_exactness x = EXACT;
2725
2726 /* Cobble up the fractional part. We might want to set the
2727 NaN's mantissa from it. */
2728 idx += 4;
2729 mem2uinteger (mem, len, &idx, 10, &x);
2730 *p_idx = idx;
2731 return scm_nan ();
2732 }
2733
2734 if (mem[idx] == '.')
2735 {
2736 if (radix != 10)
2737 return SCM_BOOL_F;
2738 else if (idx + 1 == len)
2739 return SCM_BOOL_F;
2740 else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
2741 return SCM_BOOL_F;
2742 else
2743 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
2744 p_idx, p_exactness);
2745 }
2746 else
2747 {
2748 enum t_exactness x = EXACT;
2749 SCM uinteger;
2750
2751 uinteger = mem2uinteger (mem, len, &idx, radix, &x);
2752 if (scm_is_false (uinteger))
2753 return SCM_BOOL_F;
2754
2755 if (idx == len)
2756 result = uinteger;
2757 else if (mem[idx] == '/')
2758 {
2759 SCM divisor;
2760
2761 idx++;
2762
2763 divisor = mem2uinteger (mem, len, &idx, radix, &x);
2764 if (scm_is_false (divisor))
2765 return SCM_BOOL_F;
2766
2767 /* both are int/big here, I assume */
2768 result = scm_i_make_ratio (uinteger, divisor);
2769 }
2770 else if (radix == 10)
2771 {
2772 result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
2773 if (scm_is_false (result))
2774 return SCM_BOOL_F;
2775 }
2776 else
2777 result = uinteger;
2778
2779 *p_idx = idx;
2780 if (x == INEXACT)
2781 *p_exactness = x;
2782 }
2783
2784 /* When returning an inexact zero, make sure it is represented as a
2785 floating point value so that we can change its sign.
2786 */
2787 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2788 result = scm_from_double (0.0);
2789
2790 return result;
2791 }
2792
2793
2794 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2795
2796 static SCM
2797 mem2complex (const char* mem, size_t len, unsigned int idx,
2798 unsigned int radix, enum t_exactness *p_exactness)
2799 {
2800 char c;
2801 int sign = 0;
2802 SCM ureal;
2803
2804 if (idx == len)
2805 return SCM_BOOL_F;
2806
2807 c = mem[idx];
2808 if (c == '+')
2809 {
2810 idx++;
2811 sign = 1;
2812 }
2813 else if (c == '-')
2814 {
2815 idx++;
2816 sign = -1;
2817 }
2818
2819 if (idx == len)
2820 return SCM_BOOL_F;
2821
2822 ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
2823 if (scm_is_false (ureal))
2824 {
2825 /* input must be either +i or -i */
2826
2827 if (sign == 0)
2828 return SCM_BOOL_F;
2829
2830 if (mem[idx] == 'i' || mem[idx] == 'I')
2831 {
2832 idx++;
2833 if (idx != len)
2834 return SCM_BOOL_F;
2835
2836 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2837 }
2838 else
2839 return SCM_BOOL_F;
2840 }
2841 else
2842 {
2843 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2844 ureal = scm_difference (ureal, SCM_UNDEFINED);
2845
2846 if (idx == len)
2847 return ureal;
2848
2849 c = mem[idx];
2850 switch (c)
2851 {
2852 case 'i': case 'I':
2853 /* either +<ureal>i or -<ureal>i */
2854
2855 idx++;
2856 if (sign == 0)
2857 return SCM_BOOL_F;
2858 if (idx != len)
2859 return SCM_BOOL_F;
2860 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2861
2862 case '@':
2863 /* polar input: <real>@<real>. */
2864
2865 idx++;
2866 if (idx == len)
2867 return SCM_BOOL_F;
2868 else
2869 {
2870 int sign;
2871 SCM angle;
2872 SCM result;
2873
2874 c = mem[idx];
2875 if (c == '+')
2876 {
2877 idx++;
2878 sign = 1;
2879 }
2880 else if (c == '-')
2881 {
2882 idx++;
2883 sign = -1;
2884 }
2885 else
2886 sign = 1;
2887
2888 angle = mem2ureal (mem, len, &idx, radix, p_exactness);
2889 if (scm_is_false (angle))
2890 return SCM_BOOL_F;
2891 if (idx != len)
2892 return SCM_BOOL_F;
2893
2894 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2895 angle = scm_difference (angle, SCM_UNDEFINED);
2896
2897 result = scm_make_polar (ureal, angle);
2898 return result;
2899 }
2900 case '+':
2901 case '-':
2902 /* expecting input matching <real>[+-]<ureal>?i */
2903
2904 idx++;
2905 if (idx == len)
2906 return SCM_BOOL_F;
2907 else
2908 {
2909 int sign = (c == '+') ? 1 : -1;
2910 SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
2911
2912 if (scm_is_false (imag))
2913 imag = SCM_I_MAKINUM (sign);
2914 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2915 imag = scm_difference (imag, SCM_UNDEFINED);
2916
2917 if (idx == len)
2918 return SCM_BOOL_F;
2919 if (mem[idx] != 'i' && mem[idx] != 'I')
2920 return SCM_BOOL_F;
2921
2922 idx++;
2923 if (idx != len)
2924 return SCM_BOOL_F;
2925
2926 return scm_make_rectangular (ureal, imag);
2927 }
2928 default:
2929 return SCM_BOOL_F;
2930 }
2931 }
2932 }
2933
2934
2935 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
2936
2937 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
2938
2939 SCM
2940 scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
2941 {
2942 unsigned int idx = 0;
2943 unsigned int radix = NO_RADIX;
2944 enum t_exactness forced_x = NO_EXACTNESS;
2945 enum t_exactness implicit_x = EXACT;
2946 SCM result;
2947
2948 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
2949 while (idx + 2 < len && mem[idx] == '#')
2950 {
2951 switch (mem[idx + 1])
2952 {
2953 case 'b': case 'B':
2954 if (radix != NO_RADIX)
2955 return SCM_BOOL_F;
2956 radix = DUAL;
2957 break;
2958 case 'd': case 'D':
2959 if (radix != NO_RADIX)
2960 return SCM_BOOL_F;
2961 radix = DEC;
2962 break;
2963 case 'i': case 'I':
2964 if (forced_x != NO_EXACTNESS)
2965 return SCM_BOOL_F;
2966 forced_x = INEXACT;
2967 break;
2968 case 'e': case 'E':
2969 if (forced_x != NO_EXACTNESS)
2970 return SCM_BOOL_F;
2971 forced_x = EXACT;
2972 break;
2973 case 'o': case 'O':
2974 if (radix != NO_RADIX)
2975 return SCM_BOOL_F;
2976 radix = OCT;
2977 break;
2978 case 'x': case 'X':
2979 if (radix != NO_RADIX)
2980 return SCM_BOOL_F;
2981 radix = HEX;
2982 break;
2983 default:
2984 return SCM_BOOL_F;
2985 }
2986 idx += 2;
2987 }
2988
2989 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2990 if (radix == NO_RADIX)
2991 result = mem2complex (mem, len, idx, default_radix, &implicit_x);
2992 else
2993 result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
2994
2995 if (scm_is_false (result))
2996 return SCM_BOOL_F;
2997
2998 switch (forced_x)
2999 {
3000 case EXACT:
3001 if (SCM_INEXACTP (result))
3002 return scm_inexact_to_exact (result);
3003 else
3004 return result;
3005 case INEXACT:
3006 if (SCM_INEXACTP (result))
3007 return result;
3008 else
3009 return scm_exact_to_inexact (result);
3010 case NO_EXACTNESS:
3011 default:
3012 if (implicit_x == INEXACT)
3013 {
3014 if (SCM_INEXACTP (result))
3015 return result;
3016 else
3017 return scm_exact_to_inexact (result);
3018 }
3019 else
3020 return result;
3021 }
3022 }
3023
3024
3025 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3026 (SCM string, SCM radix),
3027 "Return a number of the maximally precise representation\n"
3028 "expressed by the given @var{string}. @var{radix} must be an\n"
3029 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3030 "is a default radix that may be overridden by an explicit radix\n"
3031 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3032 "supplied, then the default radix is 10. If string is not a\n"
3033 "syntactically valid notation for a number, then\n"
3034 "@code{string->number} returns @code{#f}.")
3035 #define FUNC_NAME s_scm_string_to_number
3036 {
3037 SCM answer;
3038 unsigned int base;
3039 SCM_VALIDATE_STRING (1, string);
3040
3041 if (SCM_UNBNDP (radix))
3042 base = 10;
3043 else
3044 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3045
3046 answer = scm_i_mem2number (scm_i_string_chars (string),
3047 scm_i_string_length (string),
3048 base);
3049 scm_remember_upto_here_1 (string);
3050 return answer;
3051 }
3052 #undef FUNC_NAME
3053
3054
3055 /*** END strs->nums ***/
3056
3057
3058 SCM
3059 scm_bigequal (SCM x, SCM y)
3060 {
3061 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3062 scm_remember_upto_here_2 (x, y);
3063 return scm_from_bool (0 == result);
3064 }
3065
3066 SCM
3067 scm_real_equalp (SCM x, SCM y)
3068 {
3069 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3070 }
3071
3072 SCM
3073 scm_complex_equalp (SCM x, SCM y)
3074 {
3075 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3076 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3077 }
3078
3079 SCM
3080 scm_i_fraction_equalp (SCM x, SCM y)
3081 {
3082 scm_i_fraction_reduce (x);
3083 scm_i_fraction_reduce (y);
3084 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3085 SCM_FRACTION_NUMERATOR (y)))
3086 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3087 SCM_FRACTION_DENOMINATOR (y))))
3088 return SCM_BOOL_F;
3089 else
3090 return SCM_BOOL_T;
3091 }
3092
3093
3094 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3095 (SCM x),
3096 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3097 "otherwise.")
3098 #define FUNC_NAME s_scm_number_p
3099 {
3100 return scm_from_bool (SCM_NUMBERP (x));
3101 }
3102 #undef FUNC_NAME
3103
3104 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3105 (SCM x),
3106 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3107 "otherwise. Note that the sets of real, rational and integer\n"
3108 "values form subsets of the set of complex numbers, i. e. the\n"
3109 "predicate will also be fulfilled if @var{x} is a real,\n"
3110 "rational or integer number.")
3111 #define FUNC_NAME s_scm_complex_p
3112 {
3113 /* all numbers are complex. */
3114 return scm_number_p (x);
3115 }
3116 #undef FUNC_NAME
3117
3118 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3119 (SCM x),
3120 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3121 "otherwise. Note that the set of integer values forms a subset of\n"
3122 "the set of real numbers, i. e. the predicate will also be\n"
3123 "fulfilled if @var{x} is an integer number.")
3124 #define FUNC_NAME s_scm_real_p
3125 {
3126 /* we can't represent irrational numbers. */
3127 return scm_rational_p (x);
3128 }
3129 #undef FUNC_NAME
3130
3131 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3132 (SCM x),
3133 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3134 "otherwise. Note that the set of integer values forms a subset of\n"
3135 "the set of rational numbers, i. e. the predicate will also be\n"
3136 "fulfilled if @var{x} is an integer number.")
3137 #define FUNC_NAME s_scm_rational_p
3138 {
3139 if (SCM_I_INUMP (x))
3140 return SCM_BOOL_T;
3141 else if (SCM_IMP (x))
3142 return SCM_BOOL_F;
3143 else if (SCM_BIGP (x))
3144 return SCM_BOOL_T;
3145 else if (SCM_FRACTIONP (x))
3146 return SCM_BOOL_T;
3147 else if (SCM_REALP (x))
3148 /* due to their limited precision, all floating point numbers are
3149 rational as well. */
3150 return SCM_BOOL_T;
3151 else
3152 return SCM_BOOL_F;
3153 }
3154 #undef FUNC_NAME
3155
3156 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3157 (SCM x),
3158 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3159 "else.")
3160 #define FUNC_NAME s_scm_integer_p
3161 {
3162 double r;
3163 if (SCM_I_INUMP (x))
3164 return SCM_BOOL_T;
3165 if (SCM_IMP (x))
3166 return SCM_BOOL_F;
3167 if (SCM_BIGP (x))
3168 return SCM_BOOL_T;
3169 if (!SCM_INEXACTP (x))
3170 return SCM_BOOL_F;
3171 if (SCM_COMPLEXP (x))
3172 return SCM_BOOL_F;
3173 r = SCM_REAL_VALUE (x);
3174 /* +/-inf passes r==floor(r), making those #t */
3175 if (r == floor (r))
3176 return SCM_BOOL_T;
3177 return SCM_BOOL_F;
3178 }
3179 #undef FUNC_NAME
3180
3181
3182 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3183 (SCM x),
3184 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3185 "else.")
3186 #define FUNC_NAME s_scm_inexact_p
3187 {
3188 if (SCM_INEXACTP (x))
3189 return SCM_BOOL_T;
3190 if (SCM_NUMBERP (x))
3191 return SCM_BOOL_F;
3192 SCM_WRONG_TYPE_ARG (1, x);
3193 }
3194 #undef FUNC_NAME
3195
3196
3197 SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
3198 /* "Return @code{#t} if all parameters are numerically equal." */
3199 SCM
3200 scm_num_eq_p (SCM x, SCM y)
3201 {
3202 again:
3203 if (SCM_I_INUMP (x))
3204 {
3205 long xx = SCM_I_INUM (x);
3206 if (SCM_I_INUMP (y))
3207 {
3208 long yy = SCM_I_INUM (y);
3209 return scm_from_bool (xx == yy);
3210 }
3211 else if (SCM_BIGP (y))
3212 return SCM_BOOL_F;
3213 else if (SCM_REALP (y))
3214 return scm_from_bool ((double) xx == SCM_REAL_VALUE (y));
3215 else if (SCM_COMPLEXP (y))
3216 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3217 && (0.0 == SCM_COMPLEX_IMAG (y)));
3218 else if (SCM_FRACTIONP (y))
3219 return SCM_BOOL_F;
3220 else
3221 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3222 }
3223 else if (SCM_BIGP (x))
3224 {
3225 if (SCM_I_INUMP (y))
3226 return SCM_BOOL_F;
3227 else if (SCM_BIGP (y))
3228 {
3229 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3230 scm_remember_upto_here_2 (x, y);
3231 return scm_from_bool (0 == cmp);
3232 }
3233 else if (SCM_REALP (y))
3234 {
3235 int cmp;
3236 if (xisnan (SCM_REAL_VALUE (y)))
3237 return SCM_BOOL_F;
3238 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3239 scm_remember_upto_here_1 (x);
3240 return scm_from_bool (0 == cmp);
3241 }
3242 else if (SCM_COMPLEXP (y))
3243 {
3244 int cmp;
3245 if (0.0 != SCM_COMPLEX_IMAG (y))
3246 return SCM_BOOL_F;
3247 if (xisnan (SCM_COMPLEX_REAL (y)))
3248 return SCM_BOOL_F;
3249 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3250 scm_remember_upto_here_1 (x);
3251 return scm_from_bool (0 == cmp);
3252 }
3253 else if (SCM_FRACTIONP (y))
3254 return SCM_BOOL_F;
3255 else
3256 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3257 }
3258 else if (SCM_REALP (x))
3259 {
3260 if (SCM_I_INUMP (y))
3261 return scm_from_bool (SCM_REAL_VALUE (x) == (double) SCM_I_INUM (y));
3262 else if (SCM_BIGP (y))
3263 {
3264 int cmp;
3265 if (xisnan (SCM_REAL_VALUE (x)))
3266 return SCM_BOOL_F;
3267 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3268 scm_remember_upto_here_1 (y);
3269 return scm_from_bool (0 == cmp);
3270 }
3271 else if (SCM_REALP (y))
3272 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3273 else if (SCM_COMPLEXP (y))
3274 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3275 && (0.0 == SCM_COMPLEX_IMAG (y)));
3276 else if (SCM_FRACTIONP (y))
3277 {
3278 double xx = SCM_REAL_VALUE (x);
3279 if (xisnan (xx))
3280 return SCM_BOOL_F;
3281 if (xisinf (xx))
3282 return scm_from_bool (xx < 0.0);
3283 x = scm_inexact_to_exact (x); /* with x as frac or int */
3284 goto again;
3285 }
3286 else
3287 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3288 }
3289 else if (SCM_COMPLEXP (x))
3290 {
3291 if (SCM_I_INUMP (y))
3292 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3293 && (SCM_COMPLEX_IMAG (x) == 0.0));
3294 else if (SCM_BIGP (y))
3295 {
3296 int cmp;
3297 if (0.0 != SCM_COMPLEX_IMAG (x))
3298 return SCM_BOOL_F;
3299 if (xisnan (SCM_COMPLEX_REAL (x)))
3300 return SCM_BOOL_F;
3301 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3302 scm_remember_upto_here_1 (y);
3303 return scm_from_bool (0 == cmp);
3304 }
3305 else if (SCM_REALP (y))
3306 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3307 && (SCM_COMPLEX_IMAG (x) == 0.0));
3308 else if (SCM_COMPLEXP (y))
3309 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3310 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3311 else if (SCM_FRACTIONP (y))
3312 {
3313 double xx;
3314 if (SCM_COMPLEX_IMAG (x) != 0.0)
3315 return SCM_BOOL_F;
3316 xx = SCM_COMPLEX_REAL (x);
3317 if (xisnan (xx))
3318 return SCM_BOOL_F;
3319 if (xisinf (xx))
3320 return scm_from_bool (xx < 0.0);
3321 x = scm_inexact_to_exact (x); /* with x as frac or int */
3322 goto again;
3323 }
3324 else
3325 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3326 }
3327 else if (SCM_FRACTIONP (x))
3328 {
3329 if (SCM_I_INUMP (y))
3330 return SCM_BOOL_F;
3331 else if (SCM_BIGP (y))
3332 return SCM_BOOL_F;
3333 else if (SCM_REALP (y))
3334 {
3335 double yy = SCM_REAL_VALUE (y);
3336 if (xisnan (yy))
3337 return SCM_BOOL_F;
3338 if (xisinf (yy))
3339 return scm_from_bool (0.0 < yy);
3340 y = scm_inexact_to_exact (y); /* with y as frac or int */
3341 goto again;
3342 }
3343 else if (SCM_COMPLEXP (y))
3344 {
3345 double yy;
3346 if (SCM_COMPLEX_IMAG (y) != 0.0)
3347 return SCM_BOOL_F;
3348 yy = SCM_COMPLEX_REAL (y);
3349 if (xisnan (yy))
3350 return SCM_BOOL_F;
3351 if (xisinf (yy))
3352 return scm_from_bool (0.0 < yy);
3353 y = scm_inexact_to_exact (y); /* with y as frac or int */
3354 goto again;
3355 }
3356 else if (SCM_FRACTIONP (y))
3357 return scm_i_fraction_equalp (x, y);
3358 else
3359 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
3360 }
3361 else
3362 SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
3363 }
3364
3365
3366 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3367 done are good for inums, but for bignums an answer can almost always be
3368 had by just examining a few high bits of the operands, as done by GMP in
3369 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3370 of the float exponent to take into account. */
3371
3372 SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
3373 /* "Return @code{#t} if the list of parameters is monotonically\n"
3374 * "increasing."
3375 */
3376 SCM
3377 scm_less_p (SCM x, SCM y)
3378 {
3379 again:
3380 if (SCM_I_INUMP (x))
3381 {
3382 long xx = SCM_I_INUM (x);
3383 if (SCM_I_INUMP (y))
3384 {
3385 long yy = SCM_I_INUM (y);
3386 return scm_from_bool (xx < yy);
3387 }
3388 else if (SCM_BIGP (y))
3389 {
3390 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3391 scm_remember_upto_here_1 (y);
3392 return scm_from_bool (sgn > 0);
3393 }
3394 else if (SCM_REALP (y))
3395 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3396 else if (SCM_FRACTIONP (y))
3397 {
3398 /* "x < a/b" becomes "x*b < a" */
3399 int_frac:
3400 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3401 y = SCM_FRACTION_NUMERATOR (y);
3402 goto again;
3403 }
3404 else
3405 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3406 }
3407 else if (SCM_BIGP (x))
3408 {
3409 if (SCM_I_INUMP (y))
3410 {
3411 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3412 scm_remember_upto_here_1 (x);
3413 return scm_from_bool (sgn < 0);
3414 }
3415 else if (SCM_BIGP (y))
3416 {
3417 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3418 scm_remember_upto_here_2 (x, y);
3419 return scm_from_bool (cmp < 0);
3420 }
3421 else if (SCM_REALP (y))
3422 {
3423 int cmp;
3424 if (xisnan (SCM_REAL_VALUE (y)))
3425 return SCM_BOOL_F;
3426 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3427 scm_remember_upto_here_1 (x);
3428 return scm_from_bool (cmp < 0);
3429 }
3430 else if (SCM_FRACTIONP (y))
3431 goto int_frac;
3432 else
3433 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3434 }
3435 else if (SCM_REALP (x))
3436 {
3437 if (SCM_I_INUMP (y))
3438 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3439 else if (SCM_BIGP (y))
3440 {
3441 int cmp;
3442 if (xisnan (SCM_REAL_VALUE (x)))
3443 return SCM_BOOL_F;
3444 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3445 scm_remember_upto_here_1 (y);
3446 return scm_from_bool (cmp > 0);
3447 }
3448 else if (SCM_REALP (y))
3449 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3450 else if (SCM_FRACTIONP (y))
3451 {
3452 double xx = SCM_REAL_VALUE (x);
3453 if (xisnan (xx))
3454 return SCM_BOOL_F;
3455 if (xisinf (xx))
3456 return scm_from_bool (xx < 0.0);
3457 x = scm_inexact_to_exact (x); /* with x as frac or int */
3458 goto again;
3459 }
3460 else
3461 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3462 }
3463 else if (SCM_FRACTIONP (x))
3464 {
3465 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3466 {
3467 /* "a/b < y" becomes "a < y*b" */
3468 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3469 x = SCM_FRACTION_NUMERATOR (x);
3470 goto again;
3471 }
3472 else if (SCM_REALP (y))
3473 {
3474 double yy = SCM_REAL_VALUE (y);
3475 if (xisnan (yy))
3476 return SCM_BOOL_F;
3477 if (xisinf (yy))
3478 return scm_from_bool (0.0 < yy);
3479 y = scm_inexact_to_exact (y); /* with y as frac or int */
3480 goto again;
3481 }
3482 else if (SCM_FRACTIONP (y))
3483 {
3484 /* "a/b < c/d" becomes "a*d < c*b" */
3485 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3486 SCM_FRACTION_DENOMINATOR (y));
3487 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3488 SCM_FRACTION_DENOMINATOR (x));
3489 x = new_x;
3490 y = new_y;
3491 goto again;
3492 }
3493 else
3494 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
3495 }
3496 else
3497 SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
3498 }
3499
3500
3501 SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
3502 /* "Return @code{#t} if the list of parameters is monotonically\n"
3503 * "decreasing."
3504 */
3505 #define FUNC_NAME s_scm_gr_p
3506 SCM
3507 scm_gr_p (SCM x, SCM y)
3508 {
3509 if (!SCM_NUMBERP (x))
3510 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3511 else if (!SCM_NUMBERP (y))
3512 SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3513 else
3514 return scm_less_p (y, x);
3515 }
3516 #undef FUNC_NAME
3517
3518
3519 SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
3520 /* "Return @code{#t} if the list of parameters is monotonically\n"
3521 * "non-decreasing."
3522 */
3523 #define FUNC_NAME s_scm_leq_p
3524 SCM
3525 scm_leq_p (SCM x, SCM y)
3526 {
3527 if (!SCM_NUMBERP (x))
3528 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3529 else if (!SCM_NUMBERP (y))
3530 SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3531 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3532 return SCM_BOOL_F;
3533 else
3534 return scm_not (scm_less_p (y, x));
3535 }
3536 #undef FUNC_NAME
3537
3538
3539 SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
3540 /* "Return @code{#t} if the list of parameters is monotonically\n"
3541 * "non-increasing."
3542 */
3543 #define FUNC_NAME s_scm_geq_p
3544 SCM
3545 scm_geq_p (SCM x, SCM y)
3546 {
3547 if (!SCM_NUMBERP (x))
3548 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3549 else if (!SCM_NUMBERP (y))
3550 SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3551 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3552 return SCM_BOOL_F;
3553 else
3554 return scm_not (scm_less_p (x, y));
3555 }
3556 #undef FUNC_NAME
3557
3558
3559 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3560 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3561 * "zero."
3562 */
3563 SCM
3564 scm_zero_p (SCM z)
3565 {
3566 if (SCM_I_INUMP (z))
3567 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3568 else if (SCM_BIGP (z))
3569 return SCM_BOOL_F;
3570 else if (SCM_REALP (z))
3571 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3572 else if (SCM_COMPLEXP (z))
3573 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3574 && SCM_COMPLEX_IMAG (z) == 0.0);
3575 else if (SCM_FRACTIONP (z))
3576 return SCM_BOOL_F;
3577 else
3578 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3579 }
3580
3581
3582 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3583 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3584 * "zero."
3585 */
3586 SCM
3587 scm_positive_p (SCM x)
3588 {
3589 if (SCM_I_INUMP (x))
3590 return scm_from_bool (SCM_I_INUM (x) > 0);
3591 else if (SCM_BIGP (x))
3592 {
3593 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3594 scm_remember_upto_here_1 (x);
3595 return scm_from_bool (sgn > 0);
3596 }
3597 else if (SCM_REALP (x))
3598 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3599 else if (SCM_FRACTIONP (x))
3600 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3601 else
3602 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3603 }
3604
3605
3606 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3607 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3608 * "zero."
3609 */
3610 SCM
3611 scm_negative_p (SCM x)
3612 {
3613 if (SCM_I_INUMP (x))
3614 return scm_from_bool (SCM_I_INUM (x) < 0);
3615 else if (SCM_BIGP (x))
3616 {
3617 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3618 scm_remember_upto_here_1 (x);
3619 return scm_from_bool (sgn < 0);
3620 }
3621 else if (SCM_REALP (x))
3622 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3623 else if (SCM_FRACTIONP (x))
3624 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3625 else
3626 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3627 }
3628
3629
3630 /* scm_min and scm_max return an inexact when either argument is inexact, as
3631 required by r5rs. On that basis, for exact/inexact combinations the
3632 exact is converted to inexact to compare and possibly return. This is
3633 unlike scm_less_p above which takes some trouble to preserve all bits in
3634 its test, such trouble is not required for min and max. */
3635
3636 SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
3637 /* "Return the maximum of all parameter values."
3638 */
3639 SCM
3640 scm_max (SCM x, SCM y)
3641 {
3642 if (SCM_UNBNDP (y))
3643 {
3644 if (SCM_UNBNDP (x))
3645 SCM_WTA_DISPATCH_0 (g_max, s_max);
3646 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3647 return x;
3648 else
3649 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3650 }
3651
3652 if (SCM_I_INUMP (x))
3653 {
3654 long xx = SCM_I_INUM (x);
3655 if (SCM_I_INUMP (y))
3656 {
3657 long yy = SCM_I_INUM (y);
3658 return (xx < yy) ? y : x;
3659 }
3660 else if (SCM_BIGP (y))
3661 {
3662 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3663 scm_remember_upto_here_1 (y);
3664 return (sgn < 0) ? x : y;
3665 }
3666 else if (SCM_REALP (y))
3667 {
3668 double z = xx;
3669 /* if y==NaN then ">" is false and we return NaN */
3670 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3671 }
3672 else if (SCM_FRACTIONP (y))
3673 {
3674 use_less:
3675 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3676 }
3677 else
3678 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3679 }
3680 else if (SCM_BIGP (x))
3681 {
3682 if (SCM_I_INUMP (y))
3683 {
3684 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3685 scm_remember_upto_here_1 (x);
3686 return (sgn < 0) ? y : x;
3687 }
3688 else if (SCM_BIGP (y))
3689 {
3690 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3691 scm_remember_upto_here_2 (x, y);
3692 return (cmp > 0) ? x : y;
3693 }
3694 else if (SCM_REALP (y))
3695 {
3696 /* if y==NaN then xx>yy is false, so we return the NaN y */
3697 double xx, yy;
3698 big_real:
3699 xx = scm_i_big2dbl (x);
3700 yy = SCM_REAL_VALUE (y);
3701 return (xx > yy ? scm_from_double (xx) : y);
3702 }
3703 else if (SCM_FRACTIONP (y))
3704 {
3705 goto use_less;
3706 }
3707 else
3708 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3709 }
3710 else if (SCM_REALP (x))
3711 {
3712 if (SCM_I_INUMP (y))
3713 {
3714 double z = SCM_I_INUM (y);
3715 /* if x==NaN then "<" is false and we return NaN */
3716 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3717 }
3718 else if (SCM_BIGP (y))
3719 {
3720 SCM_SWAP (x, y);
3721 goto big_real;
3722 }
3723 else if (SCM_REALP (y))
3724 {
3725 /* if x==NaN then our explicit check means we return NaN
3726 if y==NaN then ">" is false and we return NaN
3727 calling isnan is unavoidable, since it's the only way to know
3728 which of x or y causes any compares to be false */
3729 double xx = SCM_REAL_VALUE (x);
3730 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3731 }
3732 else if (SCM_FRACTIONP (y))
3733 {
3734 double yy = scm_i_fraction2double (y);
3735 double xx = SCM_REAL_VALUE (x);
3736 return (xx < yy) ? scm_from_double (yy) : x;
3737 }
3738 else
3739 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3740 }
3741 else if (SCM_FRACTIONP (x))
3742 {
3743 if (SCM_I_INUMP (y))
3744 {
3745 goto use_less;
3746 }
3747 else if (SCM_BIGP (y))
3748 {
3749 goto use_less;
3750 }
3751 else if (SCM_REALP (y))
3752 {
3753 double xx = scm_i_fraction2double (x);
3754 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
3755 }
3756 else if (SCM_FRACTIONP (y))
3757 {
3758 goto use_less;
3759 }
3760 else
3761 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3762 }
3763 else
3764 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
3765 }
3766
3767
3768 SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
3769 /* "Return the minium of all parameter values."
3770 */
3771 SCM
3772 scm_min (SCM x, SCM y)
3773 {
3774 if (SCM_UNBNDP (y))
3775 {
3776 if (SCM_UNBNDP (x))
3777 SCM_WTA_DISPATCH_0 (g_min, s_min);
3778 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3779 return x;
3780 else
3781 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
3782 }
3783
3784 if (SCM_I_INUMP (x))
3785 {
3786 long xx = SCM_I_INUM (x);
3787 if (SCM_I_INUMP (y))
3788 {
3789 long yy = SCM_I_INUM (y);
3790 return (xx < yy) ? x : y;
3791 }
3792 else if (SCM_BIGP (y))
3793 {
3794 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3795 scm_remember_upto_here_1 (y);
3796 return (sgn < 0) ? y : x;
3797 }
3798 else if (SCM_REALP (y))
3799 {
3800 double z = xx;
3801 /* if y==NaN then "<" is false and we return NaN */
3802 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3803 }
3804 else if (SCM_FRACTIONP (y))
3805 {
3806 use_less:
3807 return (scm_is_false (scm_less_p (x, y)) ? y : x);
3808 }
3809 else
3810 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3811 }
3812 else if (SCM_BIGP (x))
3813 {
3814 if (SCM_I_INUMP (y))
3815 {
3816 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3817 scm_remember_upto_here_1 (x);
3818 return (sgn < 0) ? x : y;
3819 }
3820 else if (SCM_BIGP (y))
3821 {
3822 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3823 scm_remember_upto_here_2 (x, y);
3824 return (cmp > 0) ? y : x;
3825 }
3826 else if (SCM_REALP (y))
3827 {
3828 /* if y==NaN then xx<yy is false, so we return the NaN y */
3829 double xx, yy;
3830 big_real:
3831 xx = scm_i_big2dbl (x);
3832 yy = SCM_REAL_VALUE (y);
3833 return (xx < yy ? scm_from_double (xx) : y);
3834 }
3835 else if (SCM_FRACTIONP (y))
3836 {
3837 goto use_less;
3838 }
3839 else
3840 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3841 }
3842 else if (SCM_REALP (x))
3843 {
3844 if (SCM_I_INUMP (y))
3845 {
3846 double z = SCM_I_INUM (y);
3847 /* if x==NaN then "<" is false and we return NaN */
3848 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
3849 }
3850 else if (SCM_BIGP (y))
3851 {
3852 SCM_SWAP (x, y);
3853 goto big_real;
3854 }
3855 else if (SCM_REALP (y))
3856 {
3857 /* if x==NaN then our explicit check means we return NaN
3858 if y==NaN then "<" is false and we return NaN
3859 calling isnan is unavoidable, since it's the only way to know
3860 which of x or y causes any compares to be false */
3861 double xx = SCM_REAL_VALUE (x);
3862 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
3863 }
3864 else if (SCM_FRACTIONP (y))
3865 {
3866 double yy = scm_i_fraction2double (y);
3867 double xx = SCM_REAL_VALUE (x);
3868 return (yy < xx) ? scm_from_double (yy) : x;
3869 }
3870 else
3871 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
3872 }
3873 else if (SCM_FRACTIONP (x))
3874 {
3875 if (SCM_I_INUMP (y))
3876 {
3877 goto use_less;
3878 }
3879 else if (SCM_BIGP (y))
3880 {
3881 goto use_less;
3882 }
3883 else if (SCM_REALP (y))
3884 {
3885 double xx = scm_i_fraction2double (x);
3886 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
3887 }
3888 else if (SCM_FRACTIONP (y))
3889 {
3890 goto use_less;
3891 }
3892 else
3893 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3894 }
3895 else
3896 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
3897 }
3898
3899
3900 SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
3901 /* "Return the sum of all parameter values. Return 0 if called without\n"
3902 * "any parameters."
3903 */
3904 SCM
3905 scm_sum (SCM x, SCM y)
3906 {
3907 if (SCM_UNBNDP (y))
3908 {
3909 if (SCM_NUMBERP (x)) return x;
3910 if (SCM_UNBNDP (x)) return SCM_INUM0;
3911 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
3912 }
3913
3914 if (SCM_I_INUMP (x))
3915 {
3916 if (SCM_I_INUMP (y))
3917 {
3918 long xx = SCM_I_INUM (x);
3919 long yy = SCM_I_INUM (y);
3920 long int z = xx + yy;
3921 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
3922 }
3923 else if (SCM_BIGP (y))
3924 {
3925 SCM_SWAP (x, y);
3926 goto add_big_inum;
3927 }
3928 else if (SCM_REALP (y))
3929 {
3930 long int xx = SCM_I_INUM (x);
3931 return scm_from_double (xx + SCM_REAL_VALUE (y));
3932 }
3933 else if (SCM_COMPLEXP (y))
3934 {
3935 long int xx = SCM_I_INUM (x);
3936 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
3937 SCM_COMPLEX_IMAG (y));
3938 }
3939 else if (SCM_FRACTIONP (y))
3940 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
3941 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
3942 SCM_FRACTION_DENOMINATOR (y));
3943 else
3944 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
3945 } else if (SCM_BIGP (x))
3946 {
3947 if (SCM_I_INUMP (y))
3948 {
3949 long int inum;
3950 int bigsgn;
3951 add_big_inum:
3952 inum = SCM_I_INUM (y);
3953 if (inum == 0)
3954 return x;
3955 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3956 if (inum < 0)
3957 {
3958 SCM result = scm_i_mkbig ();
3959 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
3960 scm_remember_upto_here_1 (x);
3961 /* we know the result will have to be a bignum */
3962 if (bigsgn == -1)
3963 return result;
3964 return scm_i_normbig (result);
3965 }
3966 else
3967 {
3968 SCM result = scm_i_mkbig ();
3969 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
3970 scm_remember_upto_here_1 (x);
3971 /* we know the result will have to be a bignum */
3972 if (bigsgn == 1)
3973 return result;
3974 return scm_i_normbig (result);
3975 }
3976 }
3977 else if (SCM_BIGP (y))
3978 {
3979 SCM result = scm_i_mkbig ();
3980 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
3981 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
3982 mpz_add (SCM_I_BIG_MPZ (result),
3983 SCM_I_BIG_MPZ (x),
3984 SCM_I_BIG_MPZ (y));
3985 scm_remember_upto_here_2 (x, y);
3986 /* we know the result will have to be a bignum */
3987 if (sgn_x == sgn_y)
3988 return result;
3989 return scm_i_normbig (result);
3990 }
3991 else if (SCM_REALP (y))
3992 {
3993 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
3994 scm_remember_upto_here_1 (x);
3995 return scm_from_double (result);
3996 }
3997 else if (SCM_COMPLEXP (y))
3998 {
3999 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4000 + SCM_COMPLEX_REAL (y));
4001 scm_remember_upto_here_1 (x);
4002 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4003 }
4004 else if (SCM_FRACTIONP (y))
4005 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4006 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4007 SCM_FRACTION_DENOMINATOR (y));
4008 else
4009 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4010 }
4011 else if (SCM_REALP (x))
4012 {
4013 if (SCM_I_INUMP (y))
4014 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4015 else if (SCM_BIGP (y))
4016 {
4017 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4018 scm_remember_upto_here_1 (y);
4019 return scm_from_double (result);
4020 }
4021 else if (SCM_REALP (y))
4022 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4023 else if (SCM_COMPLEXP (y))
4024 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4025 SCM_COMPLEX_IMAG (y));
4026 else if (SCM_FRACTIONP (y))
4027 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4028 else
4029 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4030 }
4031 else if (SCM_COMPLEXP (x))
4032 {
4033 if (SCM_I_INUMP (y))
4034 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4035 SCM_COMPLEX_IMAG (x));
4036 else if (SCM_BIGP (y))
4037 {
4038 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4039 + SCM_COMPLEX_REAL (x));
4040 scm_remember_upto_here_1 (y);
4041 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4042 }
4043 else if (SCM_REALP (y))
4044 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4045 SCM_COMPLEX_IMAG (x));
4046 else if (SCM_COMPLEXP (y))
4047 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4048 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4049 else if (SCM_FRACTIONP (y))
4050 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4051 SCM_COMPLEX_IMAG (x));
4052 else
4053 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4054 }
4055 else if (SCM_FRACTIONP (x))
4056 {
4057 if (SCM_I_INUMP (y))
4058 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4059 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4060 SCM_FRACTION_DENOMINATOR (x));
4061 else if (SCM_BIGP (y))
4062 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4063 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4064 SCM_FRACTION_DENOMINATOR (x));
4065 else if (SCM_REALP (y))
4066 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4067 else if (SCM_COMPLEXP (y))
4068 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4069 SCM_COMPLEX_IMAG (y));
4070 else if (SCM_FRACTIONP (y))
4071 /* a/b + c/d = (ad + bc) / bd */
4072 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4073 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4074 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4075 else
4076 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4077 }
4078 else
4079 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4080 }
4081
4082
4083 SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
4084 /* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
4085 * the sum of all but the first argument are subtracted from the first
4086 * argument. */
4087 #define FUNC_NAME s_difference
4088 SCM
4089 scm_difference (SCM x, SCM y)
4090 {
4091 if (SCM_UNBNDP (y))
4092 {
4093 if (SCM_UNBNDP (x))
4094 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4095 else
4096 if (SCM_I_INUMP (x))
4097 {
4098 long xx = -SCM_I_INUM (x);
4099 if (SCM_FIXABLE (xx))
4100 return SCM_I_MAKINUM (xx);
4101 else
4102 return scm_i_long2big (xx);
4103 }
4104 else if (SCM_BIGP (x))
4105 /* FIXME: do we really need to normalize here? */
4106 return scm_i_normbig (scm_i_clonebig (x, 0));
4107 else if (SCM_REALP (x))
4108 return scm_from_double (-SCM_REAL_VALUE (x));
4109 else if (SCM_COMPLEXP (x))
4110 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4111 -SCM_COMPLEX_IMAG (x));
4112 else if (SCM_FRACTIONP (x))
4113 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4114 SCM_FRACTION_DENOMINATOR (x));
4115 else
4116 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4117 }
4118
4119 if (SCM_I_INUMP (x))
4120 {
4121 if (SCM_I_INUMP (y))
4122 {
4123 long int xx = SCM_I_INUM (x);
4124 long int yy = SCM_I_INUM (y);
4125 long int z = xx - yy;
4126 if (SCM_FIXABLE (z))
4127 return SCM_I_MAKINUM (z);
4128 else
4129 return scm_i_long2big (z);
4130 }
4131 else if (SCM_BIGP (y))
4132 {
4133 /* inum-x - big-y */
4134 long xx = SCM_I_INUM (x);
4135
4136 if (xx == 0)
4137 return scm_i_clonebig (y, 0);
4138 else
4139 {
4140 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4141 SCM result = scm_i_mkbig ();
4142
4143 if (xx >= 0)
4144 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4145 else
4146 {
4147 /* x - y == -(y + -x) */
4148 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4149 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4150 }
4151 scm_remember_upto_here_1 (y);
4152
4153 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4154 /* we know the result will have to be a bignum */
4155 return result;
4156 else
4157 return scm_i_normbig (result);
4158 }
4159 }
4160 else if (SCM_REALP (y))
4161 {
4162 long int xx = SCM_I_INUM (x);
4163 return scm_from_double (xx - SCM_REAL_VALUE (y));
4164 }
4165 else if (SCM_COMPLEXP (y))
4166 {
4167 long int xx = SCM_I_INUM (x);
4168 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4169 - SCM_COMPLEX_IMAG (y));
4170 }
4171 else if (SCM_FRACTIONP (y))
4172 /* a - b/c = (ac - b) / c */
4173 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4174 SCM_FRACTION_NUMERATOR (y)),
4175 SCM_FRACTION_DENOMINATOR (y));
4176 else
4177 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4178 }
4179 else if (SCM_BIGP (x))
4180 {
4181 if (SCM_I_INUMP (y))
4182 {
4183 /* big-x - inum-y */
4184 long yy = SCM_I_INUM (y);
4185 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4186
4187 scm_remember_upto_here_1 (x);
4188 if (sgn_x == 0)
4189 return (SCM_FIXABLE (-yy) ?
4190 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4191 else
4192 {
4193 SCM result = scm_i_mkbig ();
4194
4195 if (yy >= 0)
4196 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4197 else
4198 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4199 scm_remember_upto_here_1 (x);
4200
4201 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4202 /* we know the result will have to be a bignum */
4203 return result;
4204 else
4205 return scm_i_normbig (result);
4206 }
4207 }
4208 else if (SCM_BIGP (y))
4209 {
4210 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4211 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4212 SCM result = scm_i_mkbig ();
4213 mpz_sub (SCM_I_BIG_MPZ (result),
4214 SCM_I_BIG_MPZ (x),
4215 SCM_I_BIG_MPZ (y));
4216 scm_remember_upto_here_2 (x, y);
4217 /* we know the result will have to be a bignum */
4218 if ((sgn_x == 1) && (sgn_y == -1))
4219 return result;
4220 if ((sgn_x == -1) && (sgn_y == 1))
4221 return result;
4222 return scm_i_normbig (result);
4223 }
4224 else if (SCM_REALP (y))
4225 {
4226 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4227 scm_remember_upto_here_1 (x);
4228 return scm_from_double (result);
4229 }
4230 else if (SCM_COMPLEXP (y))
4231 {
4232 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4233 - SCM_COMPLEX_REAL (y));
4234 scm_remember_upto_here_1 (x);
4235 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4236 }
4237 else if (SCM_FRACTIONP (y))
4238 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4239 SCM_FRACTION_NUMERATOR (y)),
4240 SCM_FRACTION_DENOMINATOR (y));
4241 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4242 }
4243 else if (SCM_REALP (x))
4244 {
4245 if (SCM_I_INUMP (y))
4246 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4247 else if (SCM_BIGP (y))
4248 {
4249 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4250 scm_remember_upto_here_1 (x);
4251 return scm_from_double (result);
4252 }
4253 else if (SCM_REALP (y))
4254 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4255 else if (SCM_COMPLEXP (y))
4256 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4257 -SCM_COMPLEX_IMAG (y));
4258 else if (SCM_FRACTIONP (y))
4259 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4260 else
4261 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4262 }
4263 else if (SCM_COMPLEXP (x))
4264 {
4265 if (SCM_I_INUMP (y))
4266 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4267 SCM_COMPLEX_IMAG (x));
4268 else if (SCM_BIGP (y))
4269 {
4270 double real_part = (SCM_COMPLEX_REAL (x)
4271 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4272 scm_remember_upto_here_1 (x);
4273 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4274 }
4275 else if (SCM_REALP (y))
4276 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4277 SCM_COMPLEX_IMAG (x));
4278 else if (SCM_COMPLEXP (y))
4279 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4280 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4281 else if (SCM_FRACTIONP (y))
4282 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4283 SCM_COMPLEX_IMAG (x));
4284 else
4285 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4286 }
4287 else if (SCM_FRACTIONP (x))
4288 {
4289 if (SCM_I_INUMP (y))
4290 /* a/b - c = (a - cb) / b */
4291 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4292 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4293 SCM_FRACTION_DENOMINATOR (x));
4294 else if (SCM_BIGP (y))
4295 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4296 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4297 SCM_FRACTION_DENOMINATOR (x));
4298 else if (SCM_REALP (y))
4299 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4300 else if (SCM_COMPLEXP (y))
4301 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4302 -SCM_COMPLEX_IMAG (y));
4303 else if (SCM_FRACTIONP (y))
4304 /* a/b - c/d = (ad - bc) / bd */
4305 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4306 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4307 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4308 else
4309 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4310 }
4311 else
4312 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4313 }
4314 #undef FUNC_NAME
4315
4316
4317 SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
4318 /* "Return the product of all arguments. If called without arguments,\n"
4319 * "1 is returned."
4320 */
4321 SCM
4322 scm_product (SCM x, SCM y)
4323 {
4324 if (SCM_UNBNDP (y))
4325 {
4326 if (SCM_UNBNDP (x))
4327 return SCM_I_MAKINUM (1L);
4328 else if (SCM_NUMBERP (x))
4329 return x;
4330 else
4331 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4332 }
4333
4334 if (SCM_I_INUMP (x))
4335 {
4336 long xx;
4337
4338 intbig:
4339 xx = SCM_I_INUM (x);
4340
4341 switch (xx)
4342 {
4343 case 0: return x; break;
4344 case 1: return y; break;
4345 }
4346
4347 if (SCM_I_INUMP (y))
4348 {
4349 long yy = SCM_I_INUM (y);
4350 long kk = xx * yy;
4351 SCM k = SCM_I_MAKINUM (kk);
4352 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4353 return k;
4354 else
4355 {
4356 SCM result = scm_i_long2big (xx);
4357 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4358 return scm_i_normbig (result);
4359 }
4360 }
4361 else if (SCM_BIGP (y))
4362 {
4363 SCM result = scm_i_mkbig ();
4364 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4365 scm_remember_upto_here_1 (y);
4366 return result;
4367 }
4368 else if (SCM_REALP (y))
4369 return scm_from_double (xx * SCM_REAL_VALUE (y));
4370 else if (SCM_COMPLEXP (y))
4371 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4372 xx * SCM_COMPLEX_IMAG (y));
4373 else if (SCM_FRACTIONP (y))
4374 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4375 SCM_FRACTION_DENOMINATOR (y));
4376 else
4377 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4378 }
4379 else if (SCM_BIGP (x))
4380 {
4381 if (SCM_I_INUMP (y))
4382 {
4383 SCM_SWAP (x, y);
4384 goto intbig;
4385 }
4386 else if (SCM_BIGP (y))
4387 {
4388 SCM result = scm_i_mkbig ();
4389 mpz_mul (SCM_I_BIG_MPZ (result),
4390 SCM_I_BIG_MPZ (x),
4391 SCM_I_BIG_MPZ (y));
4392 scm_remember_upto_here_2 (x, y);
4393 return result;
4394 }
4395 else if (SCM_REALP (y))
4396 {
4397 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4398 scm_remember_upto_here_1 (x);
4399 return scm_from_double (result);
4400 }
4401 else if (SCM_COMPLEXP (y))
4402 {
4403 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4404 scm_remember_upto_here_1 (x);
4405 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4406 z * SCM_COMPLEX_IMAG (y));
4407 }
4408 else if (SCM_FRACTIONP (y))
4409 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4410 SCM_FRACTION_DENOMINATOR (y));
4411 else
4412 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4413 }
4414 else if (SCM_REALP (x))
4415 {
4416 if (SCM_I_INUMP (y))
4417 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4418 else if (SCM_BIGP (y))
4419 {
4420 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4421 scm_remember_upto_here_1 (y);
4422 return scm_from_double (result);
4423 }
4424 else if (SCM_REALP (y))
4425 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4426 else if (SCM_COMPLEXP (y))
4427 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4428 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4429 else if (SCM_FRACTIONP (y))
4430 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4431 else
4432 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4433 }
4434 else if (SCM_COMPLEXP (x))
4435 {
4436 if (SCM_I_INUMP (y))
4437 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4438 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4439 else if (SCM_BIGP (y))
4440 {
4441 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4442 scm_remember_upto_here_1 (y);
4443 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4444 z * SCM_COMPLEX_IMAG (x));
4445 }
4446 else if (SCM_REALP (y))
4447 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4448 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4449 else if (SCM_COMPLEXP (y))
4450 {
4451 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4452 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4453 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4454 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4455 }
4456 else if (SCM_FRACTIONP (y))
4457 {
4458 double yy = scm_i_fraction2double (y);
4459 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4460 yy * SCM_COMPLEX_IMAG (x));
4461 }
4462 else
4463 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4464 }
4465 else if (SCM_FRACTIONP (x))
4466 {
4467 if (SCM_I_INUMP (y))
4468 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4469 SCM_FRACTION_DENOMINATOR (x));
4470 else if (SCM_BIGP (y))
4471 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4472 SCM_FRACTION_DENOMINATOR (x));
4473 else if (SCM_REALP (y))
4474 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4475 else if (SCM_COMPLEXP (y))
4476 {
4477 double xx = scm_i_fraction2double (x);
4478 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4479 xx * SCM_COMPLEX_IMAG (y));
4480 }
4481 else if (SCM_FRACTIONP (y))
4482 /* a/b * c/d = ac / bd */
4483 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4484 SCM_FRACTION_NUMERATOR (y)),
4485 scm_product (SCM_FRACTION_DENOMINATOR (x),
4486 SCM_FRACTION_DENOMINATOR (y)));
4487 else
4488 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4489 }
4490 else
4491 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4492 }
4493
4494 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4495 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4496 #define ALLOW_DIVIDE_BY_ZERO
4497 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4498 #endif
4499
4500 /* The code below for complex division is adapted from the GNU
4501 libstdc++, which adapted it from f2c's libF77, and is subject to
4502 this copyright: */
4503
4504 /****************************************************************
4505 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4506
4507 Permission to use, copy, modify, and distribute this software
4508 and its documentation for any purpose and without fee is hereby
4509 granted, provided that the above copyright notice appear in all
4510 copies and that both that the copyright notice and this
4511 permission notice and warranty disclaimer appear in supporting
4512 documentation, and that the names of AT&T Bell Laboratories or
4513 Bellcore or any of their entities not be used in advertising or
4514 publicity pertaining to distribution of the software without
4515 specific, written prior permission.
4516
4517 AT&T and Bellcore disclaim all warranties with regard to this
4518 software, including all implied warranties of merchantability
4519 and fitness. In no event shall AT&T or Bellcore be liable for
4520 any special, indirect or consequential damages or any damages
4521 whatsoever resulting from loss of use, data or profits, whether
4522 in an action of contract, negligence or other tortious action,
4523 arising out of or in connection with the use or performance of
4524 this software.
4525 ****************************************************************/
4526
4527 SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
4528 /* Divide the first argument by the product of the remaining
4529 arguments. If called with one argument @var{z1}, 1/@var{z1} is
4530 returned. */
4531 #define FUNC_NAME s_divide
4532 static SCM
4533 scm_i_divide (SCM x, SCM y, int inexact)
4534 {
4535 double a;
4536
4537 if (SCM_UNBNDP (y))
4538 {
4539 if (SCM_UNBNDP (x))
4540 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4541 else if (SCM_I_INUMP (x))
4542 {
4543 long xx = SCM_I_INUM (x);
4544 if (xx == 1 || xx == -1)
4545 return x;
4546 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4547 else if (xx == 0)
4548 scm_num_overflow (s_divide);
4549 #endif
4550 else
4551 {
4552 if (inexact)
4553 return scm_from_double (1.0 / (double) xx);
4554 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4555 }
4556 }
4557 else if (SCM_BIGP (x))
4558 {
4559 if (inexact)
4560 return scm_from_double (1.0 / scm_i_big2dbl (x));
4561 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4562 }
4563 else if (SCM_REALP (x))
4564 {
4565 double xx = SCM_REAL_VALUE (x);
4566 #ifndef ALLOW_DIVIDE_BY_ZERO
4567 if (xx == 0.0)
4568 scm_num_overflow (s_divide);
4569 else
4570 #endif
4571 return scm_from_double (1.0 / xx);
4572 }
4573 else if (SCM_COMPLEXP (x))
4574 {
4575 double r = SCM_COMPLEX_REAL (x);
4576 double i = SCM_COMPLEX_IMAG (x);
4577 if (r <= i)
4578 {
4579 double t = r / i;
4580 double d = i * (1.0 + t * t);
4581 return scm_c_make_rectangular (t / d, -1.0 / d);
4582 }
4583 else
4584 {
4585 double t = i / r;
4586 double d = r * (1.0 + t * t);
4587 return scm_c_make_rectangular (1.0 / d, -t / d);
4588 }
4589 }
4590 else if (SCM_FRACTIONP (x))
4591 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4592 SCM_FRACTION_NUMERATOR (x));
4593 else
4594 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4595 }
4596
4597 if (SCM_I_INUMP (x))
4598 {
4599 long xx = SCM_I_INUM (x);
4600 if (SCM_I_INUMP (y))
4601 {
4602 long yy = SCM_I_INUM (y);
4603 if (yy == 0)
4604 {
4605 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4606 scm_num_overflow (s_divide);
4607 #else
4608 return scm_from_double ((double) xx / (double) yy);
4609 #endif
4610 }
4611 else if (xx % yy != 0)
4612 {
4613 if (inexact)
4614 return scm_from_double ((double) xx / (double) yy);
4615 else return scm_i_make_ratio (x, y);
4616 }
4617 else
4618 {
4619 long z = xx / yy;
4620 if (SCM_FIXABLE (z))
4621 return SCM_I_MAKINUM (z);
4622 else
4623 return scm_i_long2big (z);
4624 }
4625 }
4626 else if (SCM_BIGP (y))
4627 {
4628 if (inexact)
4629 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4630 else return scm_i_make_ratio (x, y);
4631 }
4632 else if (SCM_REALP (y))
4633 {
4634 double yy = SCM_REAL_VALUE (y);
4635 #ifndef ALLOW_DIVIDE_BY_ZERO
4636 if (yy == 0.0)
4637 scm_num_overflow (s_divide);
4638 else
4639 #endif
4640 return scm_from_double ((double) xx / yy);
4641 }
4642 else if (SCM_COMPLEXP (y))
4643 {
4644 a = xx;
4645 complex_div: /* y _must_ be a complex number */
4646 {
4647 double r = SCM_COMPLEX_REAL (y);
4648 double i = SCM_COMPLEX_IMAG (y);
4649 if (r <= i)
4650 {
4651 double t = r / i;
4652 double d = i * (1.0 + t * t);
4653 return scm_c_make_rectangular ((a * t) / d, -a / d);
4654 }
4655 else
4656 {
4657 double t = i / r;
4658 double d = r * (1.0 + t * t);
4659 return scm_c_make_rectangular (a / d, -(a * t) / d);
4660 }
4661 }
4662 }
4663 else if (SCM_FRACTIONP (y))
4664 /* a / b/c = ac / b */
4665 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4666 SCM_FRACTION_NUMERATOR (y));
4667 else
4668 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4669 }
4670 else if (SCM_BIGP (x))
4671 {
4672 if (SCM_I_INUMP (y))
4673 {
4674 long int yy = SCM_I_INUM (y);
4675 if (yy == 0)
4676 {
4677 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4678 scm_num_overflow (s_divide);
4679 #else
4680 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4681 scm_remember_upto_here_1 (x);
4682 return (sgn == 0) ? scm_nan () : scm_inf ();
4683 #endif
4684 }
4685 else if (yy == 1)
4686 return x;
4687 else
4688 {
4689 /* FIXME: HMM, what are the relative performance issues here?
4690 We need to test. Is it faster on average to test
4691 divisible_p, then perform whichever operation, or is it
4692 faster to perform the integer div opportunistically and
4693 switch to real if there's a remainder? For now we take the
4694 middle ground: test, then if divisible, use the faster div
4695 func. */
4696
4697 long abs_yy = yy < 0 ? -yy : yy;
4698 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
4699
4700 if (divisible_p)
4701 {
4702 SCM result = scm_i_mkbig ();
4703 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
4704 scm_remember_upto_here_1 (x);
4705 if (yy < 0)
4706 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4707 return scm_i_normbig (result);
4708 }
4709 else
4710 {
4711 if (inexact)
4712 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
4713 else return scm_i_make_ratio (x, y);
4714 }
4715 }
4716 }
4717 else if (SCM_BIGP (y))
4718 {
4719 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
4720 if (y_is_zero)
4721 {
4722 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4723 scm_num_overflow (s_divide);
4724 #else
4725 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4726 scm_remember_upto_here_1 (x);
4727 return (sgn == 0) ? scm_nan () : scm_inf ();
4728 #endif
4729 }
4730 else
4731 {
4732 /* big_x / big_y */
4733 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
4734 SCM_I_BIG_MPZ (y));
4735 if (divisible_p)
4736 {
4737 SCM result = scm_i_mkbig ();
4738 mpz_divexact (SCM_I_BIG_MPZ (result),
4739 SCM_I_BIG_MPZ (x),
4740 SCM_I_BIG_MPZ (y));
4741 scm_remember_upto_here_2 (x, y);
4742 return scm_i_normbig (result);
4743 }
4744 else
4745 {
4746 if (inexact)
4747 {
4748 double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
4749 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4750 scm_remember_upto_here_2 (x, y);
4751 return scm_from_double (dbx / dby);
4752 }
4753 else return scm_i_make_ratio (x, y);
4754 }
4755 }
4756 }
4757 else if (SCM_REALP (y))
4758 {
4759 double yy = SCM_REAL_VALUE (y);
4760 #ifndef ALLOW_DIVIDE_BY_ZERO
4761 if (yy == 0.0)
4762 scm_num_overflow (s_divide);
4763 else
4764 #endif
4765 return scm_from_double (scm_i_big2dbl (x) / yy);
4766 }
4767 else if (SCM_COMPLEXP (y))
4768 {
4769 a = scm_i_big2dbl (x);
4770 goto complex_div;
4771 }
4772 else if (SCM_FRACTIONP (y))
4773 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4774 SCM_FRACTION_NUMERATOR (y));
4775 else
4776 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4777 }
4778 else if (SCM_REALP (x))
4779 {
4780 double rx = SCM_REAL_VALUE (x);
4781 if (SCM_I_INUMP (y))
4782 {
4783 long int yy = SCM_I_INUM (y);
4784 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4785 if (yy == 0)
4786 scm_num_overflow (s_divide);
4787 else
4788 #endif
4789 return scm_from_double (rx / (double) yy);
4790 }
4791 else if (SCM_BIGP (y))
4792 {
4793 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4794 scm_remember_upto_here_1 (y);
4795 return scm_from_double (rx / dby);
4796 }
4797 else if (SCM_REALP (y))
4798 {
4799 double yy = SCM_REAL_VALUE (y);
4800 #ifndef ALLOW_DIVIDE_BY_ZERO
4801 if (yy == 0.0)
4802 scm_num_overflow (s_divide);
4803 else
4804 #endif
4805 return scm_from_double (rx / yy);
4806 }
4807 else if (SCM_COMPLEXP (y))
4808 {
4809 a = rx;
4810 goto complex_div;
4811 }
4812 else if (SCM_FRACTIONP (y))
4813 return scm_from_double (rx / scm_i_fraction2double (y));
4814 else
4815 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4816 }
4817 else if (SCM_COMPLEXP (x))
4818 {
4819 double rx = SCM_COMPLEX_REAL (x);
4820 double ix = SCM_COMPLEX_IMAG (x);
4821 if (SCM_I_INUMP (y))
4822 {
4823 long int yy = SCM_I_INUM (y);
4824 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4825 if (yy == 0)
4826 scm_num_overflow (s_divide);
4827 else
4828 #endif
4829 {
4830 double d = yy;
4831 return scm_c_make_rectangular (rx / d, ix / d);
4832 }
4833 }
4834 else if (SCM_BIGP (y))
4835 {
4836 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
4837 scm_remember_upto_here_1 (y);
4838 return scm_c_make_rectangular (rx / dby, ix / dby);
4839 }
4840 else if (SCM_REALP (y))
4841 {
4842 double yy = SCM_REAL_VALUE (y);
4843 #ifndef ALLOW_DIVIDE_BY_ZERO
4844 if (yy == 0.0)
4845 scm_num_overflow (s_divide);
4846 else
4847 #endif
4848 return scm_c_make_rectangular (rx / yy, ix / yy);
4849 }
4850 else if (SCM_COMPLEXP (y))
4851 {
4852 double ry = SCM_COMPLEX_REAL (y);
4853 double iy = SCM_COMPLEX_IMAG (y);
4854 if (ry <= iy)
4855 {
4856 double t = ry / iy;
4857 double d = iy * (1.0 + t * t);
4858 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
4859 }
4860 else
4861 {
4862 double t = iy / ry;
4863 double d = ry * (1.0 + t * t);
4864 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
4865 }
4866 }
4867 else if (SCM_FRACTIONP (y))
4868 {
4869 double yy = scm_i_fraction2double (y);
4870 return scm_c_make_rectangular (rx / yy, ix / yy);
4871 }
4872 else
4873 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4874 }
4875 else if (SCM_FRACTIONP (x))
4876 {
4877 if (SCM_I_INUMP (y))
4878 {
4879 long int yy = SCM_I_INUM (y);
4880 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4881 if (yy == 0)
4882 scm_num_overflow (s_divide);
4883 else
4884 #endif
4885 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4886 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4887 }
4888 else if (SCM_BIGP (y))
4889 {
4890 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
4891 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
4892 }
4893 else if (SCM_REALP (y))
4894 {
4895 double yy = SCM_REAL_VALUE (y);
4896 #ifndef ALLOW_DIVIDE_BY_ZERO
4897 if (yy == 0.0)
4898 scm_num_overflow (s_divide);
4899 else
4900 #endif
4901 return scm_from_double (scm_i_fraction2double (x) / yy);
4902 }
4903 else if (SCM_COMPLEXP (y))
4904 {
4905 a = scm_i_fraction2double (x);
4906 goto complex_div;
4907 }
4908 else if (SCM_FRACTIONP (y))
4909 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4910 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
4911 else
4912 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
4913 }
4914 else
4915 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
4916 }
4917
4918 SCM
4919 scm_divide (SCM x, SCM y)
4920 {
4921 return scm_i_divide (x, y, 0);
4922 }
4923
4924 static SCM scm_divide2real (SCM x, SCM y)
4925 {
4926 return scm_i_divide (x, y, 1);
4927 }
4928 #undef FUNC_NAME
4929
4930
4931 double
4932 scm_asinh (double x)
4933 {
4934 #if HAVE_ASINH
4935 return asinh (x);
4936 #else
4937 #define asinh scm_asinh
4938 return log (x + sqrt (x * x + 1));
4939 #endif
4940 }
4941 SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
4942 /* "Return the inverse hyperbolic sine of @var{x}."
4943 */
4944
4945
4946 double
4947 scm_acosh (double x)
4948 {
4949 #if HAVE_ACOSH
4950 return acosh (x);
4951 #else
4952 #define acosh scm_acosh
4953 return log (x + sqrt (x * x - 1));
4954 #endif
4955 }
4956 SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
4957 /* "Return the inverse hyperbolic cosine of @var{x}."
4958 */
4959
4960
4961 double
4962 scm_atanh (double x)
4963 {
4964 #if HAVE_ATANH
4965 return atanh (x);
4966 #else
4967 #define atanh scm_atanh
4968 return 0.5 * log ((1 + x) / (1 - x));
4969 #endif
4970 }
4971 SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
4972 /* "Return the inverse hyperbolic tangent of @var{x}."
4973 */
4974
4975
4976 double
4977 scm_c_truncate (double x)
4978 {
4979 #if HAVE_TRUNC
4980 return trunc (x);
4981 #else
4982 if (x < 0.0)
4983 return -floor (-x);
4984 return floor (x);
4985 #endif
4986 }
4987
4988 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
4989 half-way case (ie. when x is an integer plus 0.5) going upwards.
4990 Then half-way cases are identified and adjusted down if the
4991 round-upwards didn't give the desired even integer.
4992
4993 "plus_half == result" identifies a half-way case. If plus_half, which is
4994 x + 0.5, is an integer then x must be an integer plus 0.5.
4995
4996 An odd "result" value is identified with result/2 != floor(result/2).
4997 This is done with plus_half, since that value is ready for use sooner in
4998 a pipelined cpu, and we're already requiring plus_half == result.
4999
5000 Note however that we need to be careful when x is big and already an
5001 integer. In that case "x+0.5" may round to an adjacent integer, causing
5002 us to return such a value, incorrectly. For instance if the hardware is
5003 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5004 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5005 returned. Or if the hardware is in round-upwards mode, then other bigger
5006 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5007 representable value, 2^128+2^76 (or whatever), again incorrect.
5008
5009 These bad roundings of x+0.5 are avoided by testing at the start whether
5010 x is already an integer. If it is then clearly that's the desired result
5011 already. And if it's not then the exponent must be small enough to allow
5012 an 0.5 to be represented, and hence added without a bad rounding. */
5013
5014 double
5015 scm_c_round (double x)
5016 {
5017 double plus_half, result;
5018
5019 if (x == floor (x))
5020 return x;
5021
5022 plus_half = x + 0.5;
5023 result = floor (plus_half);
5024 /* Adjust so that the rounding is towards even. */
5025 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5026 ? result - 1
5027 : result);
5028 }
5029
5030 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5031 (SCM x),
5032 "Round the number @var{x} towards zero.")
5033 #define FUNC_NAME s_scm_truncate_number
5034 {
5035 if (scm_is_false (scm_negative_p (x)))
5036 return scm_floor (x);
5037 else
5038 return scm_ceiling (x);
5039 }
5040 #undef FUNC_NAME
5041
5042 static SCM exactly_one_half;
5043
5044 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5045 (SCM x),
5046 "Round the number @var{x} towards the nearest integer. "
5047 "When it is exactly halfway between two integers, "
5048 "round towards the even one.")
5049 #define FUNC_NAME s_scm_round_number
5050 {
5051 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5052 return x;
5053 else if (SCM_REALP (x))
5054 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5055 else
5056 {
5057 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5058 single quotient+remainder division then examining to see which way
5059 the rounding should go. */
5060 SCM plus_half = scm_sum (x, exactly_one_half);
5061 SCM result = scm_floor (plus_half);
5062 /* Adjust so that the rounding is towards even. */
5063 if (scm_is_true (scm_num_eq_p (plus_half, result))
5064 && scm_is_true (scm_odd_p (result)))
5065 return scm_difference (result, SCM_I_MAKINUM (1));
5066 else
5067 return result;
5068 }
5069 }
5070 #undef FUNC_NAME
5071
5072 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5073 (SCM x),
5074 "Round the number @var{x} towards minus infinity.")
5075 #define FUNC_NAME s_scm_floor
5076 {
5077 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5078 return x;
5079 else if (SCM_REALP (x))
5080 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5081 else if (SCM_FRACTIONP (x))
5082 {
5083 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5084 SCM_FRACTION_DENOMINATOR (x));
5085 if (scm_is_false (scm_negative_p (x)))
5086 {
5087 /* For positive x, rounding towards zero is correct. */
5088 return q;
5089 }
5090 else
5091 {
5092 /* For negative x, we need to return q-1 unless x is an
5093 integer. But fractions are never integer, per our
5094 assumptions. */
5095 return scm_difference (q, SCM_I_MAKINUM (1));
5096 }
5097 }
5098 else
5099 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5100 }
5101 #undef FUNC_NAME
5102
5103 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5104 (SCM x),
5105 "Round the number @var{x} towards infinity.")
5106 #define FUNC_NAME s_scm_ceiling
5107 {
5108 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5109 return x;
5110 else if (SCM_REALP (x))
5111 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5112 else if (SCM_FRACTIONP (x))
5113 {
5114 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5115 SCM_FRACTION_DENOMINATOR (x));
5116 if (scm_is_false (scm_positive_p (x)))
5117 {
5118 /* For negative x, rounding towards zero is correct. */
5119 return q;
5120 }
5121 else
5122 {
5123 /* For positive x, we need to return q+1 unless x is an
5124 integer. But fractions are never integer, per our
5125 assumptions. */
5126 return scm_sum (q, SCM_I_MAKINUM (1));
5127 }
5128 }
5129 else
5130 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5131 }
5132 #undef FUNC_NAME
5133
5134 SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
5135 /* "Return the square root of the real number @var{x}."
5136 */
5137 SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
5138 /* "Return the absolute value of the real number @var{x}."
5139 */
5140 SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
5141 /* "Return the @var{x}th power of e."
5142 */
5143 SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
5144 /* "Return the natural logarithm of the real number @var{x}."
5145 */
5146 SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
5147 /* "Return the sine of the real number @var{x}."
5148 */
5149 SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
5150 /* "Return the cosine of the real number @var{x}."
5151 */
5152 SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
5153 /* "Return the tangent of the real number @var{x}."
5154 */
5155 SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
5156 /* "Return the arc sine of the real number @var{x}."
5157 */
5158 SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
5159 /* "Return the arc cosine of the real number @var{x}."
5160 */
5161 SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
5162 /* "Return the arc tangent of the real number @var{x}."
5163 */
5164 SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
5165 /* "Return the hyperbolic sine of the real number @var{x}."
5166 */
5167 SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
5168 /* "Return the hyperbolic cosine of the real number @var{x}."
5169 */
5170 SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
5171 /* "Return the hyperbolic tangent of the real number @var{x}."
5172 */
5173
5174 struct dpair
5175 {
5176 double x, y;
5177 };
5178
5179 static void scm_two_doubles (SCM x,
5180 SCM y,
5181 const char *sstring,
5182 struct dpair * xy);
5183
5184 static void
5185 scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
5186 {
5187 if (SCM_I_INUMP (x))
5188 xy->x = SCM_I_INUM (x);
5189 else if (SCM_BIGP (x))
5190 xy->x = scm_i_big2dbl (x);
5191 else if (SCM_REALP (x))
5192 xy->x = SCM_REAL_VALUE (x);
5193 else if (SCM_FRACTIONP (x))
5194 xy->x = scm_i_fraction2double (x);
5195 else
5196 scm_wrong_type_arg (sstring, SCM_ARG1, x);
5197
5198 if (SCM_I_INUMP (y))
5199 xy->y = SCM_I_INUM (y);
5200 else if (SCM_BIGP (y))
5201 xy->y = scm_i_big2dbl (y);
5202 else if (SCM_REALP (y))
5203 xy->y = SCM_REAL_VALUE (y);
5204 else if (SCM_FRACTIONP (y))
5205 xy->y = scm_i_fraction2double (y);
5206 else
5207 scm_wrong_type_arg (sstring, SCM_ARG2, y);
5208 }
5209
5210
5211 SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
5212 (SCM x, SCM y),
5213 "Return @var{x} raised to the power of @var{y}. This\n"
5214 "procedure does not accept complex arguments.")
5215 #define FUNC_NAME s_scm_sys_expt
5216 {
5217 struct dpair xy;
5218 scm_two_doubles (x, y, FUNC_NAME, &xy);
5219 return scm_from_double (pow (xy.x, xy.y));
5220 }
5221 #undef FUNC_NAME
5222
5223
5224 SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
5225 (SCM x, SCM y),
5226 "Return the arc tangent of the two arguments @var{x} and\n"
5227 "@var{y}. This is similar to calculating the arc tangent of\n"
5228 "@var{x} / @var{y}, except that the signs of both arguments\n"
5229 "are used to determine the quadrant of the result. This\n"
5230 "procedure does not accept complex arguments.")
5231 #define FUNC_NAME s_scm_sys_atan2
5232 {
5233 struct dpair xy;
5234 scm_two_doubles (x, y, FUNC_NAME, &xy);
5235 return scm_from_double (atan2 (xy.x, xy.y));
5236 }
5237 #undef FUNC_NAME
5238
5239 SCM
5240 scm_c_make_rectangular (double re, double im)
5241 {
5242 if (im == 0.0)
5243 return scm_from_double (re);
5244 else
5245 {
5246 SCM z;
5247 SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
5248 "complex"));
5249 SCM_COMPLEX_REAL (z) = re;
5250 SCM_COMPLEX_IMAG (z) = im;
5251 return z;
5252 }
5253 }
5254
5255 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5256 (SCM real, SCM imaginary),
5257 "Return a complex number constructed of the given @var{real} and\n"
5258 "@var{imaginary} parts.")
5259 #define FUNC_NAME s_scm_make_rectangular
5260 {
5261 struct dpair xy;
5262 scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
5263 return scm_c_make_rectangular (xy.x, xy.y);
5264 }
5265 #undef FUNC_NAME
5266
5267 SCM
5268 scm_c_make_polar (double mag, double ang)
5269 {
5270 double s, c;
5271 #if HAVE_SINCOS
5272 sincos (ang, &s, &c);
5273 #else
5274 s = sin (ang);
5275 c = cos (ang);
5276 #endif
5277 return scm_c_make_rectangular (mag * c, mag * s);
5278 }
5279
5280 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5281 (SCM x, SCM y),
5282 "Return the complex number @var{x} * e^(i * @var{y}).")
5283 #define FUNC_NAME s_scm_make_polar
5284 {
5285 struct dpair xy;
5286 scm_two_doubles (x, y, FUNC_NAME, &xy);
5287 return scm_c_make_polar (xy.x, xy.y);
5288 }
5289 #undef FUNC_NAME
5290
5291
5292 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5293 /* "Return the real part of the number @var{z}."
5294 */
5295 SCM
5296 scm_real_part (SCM z)
5297 {
5298 if (SCM_I_INUMP (z))
5299 return z;
5300 else if (SCM_BIGP (z))
5301 return z;
5302 else if (SCM_REALP (z))
5303 return z;
5304 else if (SCM_COMPLEXP (z))
5305 return scm_from_double (SCM_COMPLEX_REAL (z));
5306 else if (SCM_FRACTIONP (z))
5307 return z;
5308 else
5309 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5310 }
5311
5312
5313 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5314 /* "Return the imaginary part of the number @var{z}."
5315 */
5316 SCM
5317 scm_imag_part (SCM z)
5318 {
5319 if (SCM_I_INUMP (z))
5320 return SCM_INUM0;
5321 else if (SCM_BIGP (z))
5322 return SCM_INUM0;
5323 else if (SCM_REALP (z))
5324 return scm_flo0;
5325 else if (SCM_COMPLEXP (z))
5326 return scm_from_double (SCM_COMPLEX_IMAG (z));
5327 else if (SCM_FRACTIONP (z))
5328 return SCM_INUM0;
5329 else
5330 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5331 }
5332
5333 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5334 /* "Return the numerator of the number @var{z}."
5335 */
5336 SCM
5337 scm_numerator (SCM z)
5338 {
5339 if (SCM_I_INUMP (z))
5340 return z;
5341 else if (SCM_BIGP (z))
5342 return z;
5343 else if (SCM_FRACTIONP (z))
5344 {
5345 scm_i_fraction_reduce (z);
5346 return SCM_FRACTION_NUMERATOR (z);
5347 }
5348 else if (SCM_REALP (z))
5349 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5350 else
5351 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5352 }
5353
5354
5355 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5356 /* "Return the denominator of the number @var{z}."
5357 */
5358 SCM
5359 scm_denominator (SCM z)
5360 {
5361 if (SCM_I_INUMP (z))
5362 return SCM_I_MAKINUM (1);
5363 else if (SCM_BIGP (z))
5364 return SCM_I_MAKINUM (1);
5365 else if (SCM_FRACTIONP (z))
5366 {
5367 scm_i_fraction_reduce (z);
5368 return SCM_FRACTION_DENOMINATOR (z);
5369 }
5370 else if (SCM_REALP (z))
5371 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5372 else
5373 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5374 }
5375
5376 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5377 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5378 * "@code{abs} for real arguments, but also allows complex numbers."
5379 */
5380 SCM
5381 scm_magnitude (SCM z)
5382 {
5383 if (SCM_I_INUMP (z))
5384 {
5385 long int zz = SCM_I_INUM (z);
5386 if (zz >= 0)
5387 return z;
5388 else if (SCM_POSFIXABLE (-zz))
5389 return SCM_I_MAKINUM (-zz);
5390 else
5391 return scm_i_long2big (-zz);
5392 }
5393 else if (SCM_BIGP (z))
5394 {
5395 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5396 scm_remember_upto_here_1 (z);
5397 if (sgn < 0)
5398 return scm_i_clonebig (z, 0);
5399 else
5400 return z;
5401 }
5402 else if (SCM_REALP (z))
5403 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5404 else if (SCM_COMPLEXP (z))
5405 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5406 else if (SCM_FRACTIONP (z))
5407 {
5408 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5409 return z;
5410 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5411 SCM_FRACTION_DENOMINATOR (z));
5412 }
5413 else
5414 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5415 }
5416
5417
5418 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5419 /* "Return the angle of the complex number @var{z}."
5420 */
5421 SCM
5422 scm_angle (SCM z)
5423 {
5424 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5425 scm_flo0 to save allocating a new flonum with scm_from_double each time.
5426 But if atan2 follows the floating point rounding mode, then the value
5427 is not a constant. Maybe it'd be close enough though. */
5428 if (SCM_I_INUMP (z))
5429 {
5430 if (SCM_I_INUM (z) >= 0)
5431 return scm_flo0;
5432 else
5433 return scm_from_double (atan2 (0.0, -1.0));
5434 }
5435 else if (SCM_BIGP (z))
5436 {
5437 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5438 scm_remember_upto_here_1 (z);
5439 if (sgn < 0)
5440 return scm_from_double (atan2 (0.0, -1.0));
5441 else
5442 return scm_flo0;
5443 }
5444 else if (SCM_REALP (z))
5445 {
5446 if (SCM_REAL_VALUE (z) >= 0)
5447 return scm_flo0;
5448 else
5449 return scm_from_double (atan2 (0.0, -1.0));
5450 }
5451 else if (SCM_COMPLEXP (z))
5452 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5453 else if (SCM_FRACTIONP (z))
5454 {
5455 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5456 return scm_flo0;
5457 else return scm_from_double (atan2 (0.0, -1.0));
5458 }
5459 else
5460 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5461 }
5462
5463
5464 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5465 /* Convert the number @var{x} to its inexact representation.\n"
5466 */
5467 SCM
5468 scm_exact_to_inexact (SCM z)
5469 {
5470 if (SCM_I_INUMP (z))
5471 return scm_from_double ((double) SCM_I_INUM (z));
5472 else if (SCM_BIGP (z))
5473 return scm_from_double (scm_i_big2dbl (z));
5474 else if (SCM_FRACTIONP (z))
5475 return scm_from_double (scm_i_fraction2double (z));
5476 else if (SCM_INEXACTP (z))
5477 return z;
5478 else
5479 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5480 }
5481
5482
5483 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5484 (SCM z),
5485 "Return an exact number that is numerically closest to @var{z}.")
5486 #define FUNC_NAME s_scm_inexact_to_exact
5487 {
5488 if (SCM_I_INUMP (z))
5489 return z;
5490 else if (SCM_BIGP (z))
5491 return z;
5492 else if (SCM_REALP (z))
5493 {
5494 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
5495 SCM_OUT_OF_RANGE (1, z);
5496 else
5497 {
5498 mpq_t frac;
5499 SCM q;
5500
5501 mpq_init (frac);
5502 mpq_set_d (frac, SCM_REAL_VALUE (z));
5503 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
5504 scm_i_mpz2num (mpq_denref (frac)));
5505
5506 /* When scm_i_make_ratio throws, we leak the memory allocated
5507 for frac...
5508 */
5509 mpq_clear (frac);
5510 return q;
5511 }
5512 }
5513 else if (SCM_FRACTIONP (z))
5514 return z;
5515 else
5516 SCM_WRONG_TYPE_ARG (1, z);
5517 }
5518 #undef FUNC_NAME
5519
5520 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
5521 (SCM x, SCM err),
5522 "Return an exact number that is within @var{err} of @var{x}.")
5523 #define FUNC_NAME s_scm_rationalize
5524 {
5525 if (SCM_I_INUMP (x))
5526 return x;
5527 else if (SCM_BIGP (x))
5528 return x;
5529 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
5530 {
5531 /* Use continued fractions to find closest ratio. All
5532 arithmetic is done with exact numbers.
5533 */
5534
5535 SCM ex = scm_inexact_to_exact (x);
5536 SCM int_part = scm_floor (ex);
5537 SCM tt = SCM_I_MAKINUM (1);
5538 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
5539 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
5540 SCM rx;
5541 int i = 0;
5542
5543 if (scm_is_true (scm_num_eq_p (ex, int_part)))
5544 return ex;
5545
5546 ex = scm_difference (ex, int_part); /* x = x-int_part */
5547 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
5548
5549 /* We stop after a million iterations just to be absolutely sure
5550 that we don't go into an infinite loop. The process normally
5551 converges after less than a dozen iterations.
5552 */
5553
5554 err = scm_abs (err);
5555 while (++i < 1000000)
5556 {
5557 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
5558 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
5559 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
5560 scm_is_false
5561 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
5562 err))) /* abs(x-a/b) <= err */
5563 {
5564 SCM res = scm_sum (int_part, scm_divide (a, b));
5565 if (scm_is_false (scm_exact_p (x))
5566 || scm_is_false (scm_exact_p (err)))
5567 return scm_exact_to_inexact (res);
5568 else
5569 return res;
5570 }
5571 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
5572 SCM_UNDEFINED);
5573 tt = scm_floor (rx); /* tt = floor (rx) */
5574 a2 = a1;
5575 b2 = b1;
5576 a1 = a;
5577 b1 = b;
5578 }
5579 scm_num_overflow (s_scm_rationalize);
5580 }
5581 else
5582 SCM_WRONG_TYPE_ARG (1, x);
5583 }
5584 #undef FUNC_NAME
5585
5586 /* conversion functions */
5587
5588 int
5589 scm_is_integer (SCM val)
5590 {
5591 return scm_is_true (scm_integer_p (val));
5592 }
5593
5594 int
5595 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
5596 {
5597 if (SCM_I_INUMP (val))
5598 {
5599 scm_t_signed_bits n = SCM_I_INUM (val);
5600 return n >= min && n <= max;
5601 }
5602 else if (SCM_BIGP (val))
5603 {
5604 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
5605 return 0;
5606 else if (min >= LONG_MIN && max <= LONG_MAX)
5607 {
5608 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
5609 {
5610 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
5611 return n >= min && n <= max;
5612 }
5613 else
5614 return 0;
5615 }
5616 else
5617 {
5618 scm_t_intmax n;
5619 size_t count;
5620
5621 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5622 > CHAR_BIT*sizeof (scm_t_uintmax))
5623 return 0;
5624
5625 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5626 SCM_I_BIG_MPZ (val));
5627
5628 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
5629 {
5630 if (n < 0)
5631 return 0;
5632 }
5633 else
5634 {
5635 n = -n;
5636 if (n >= 0)
5637 return 0;
5638 }
5639
5640 return n >= min && n <= max;
5641 }
5642 }
5643 else
5644 return 0;
5645 }
5646
5647 int
5648 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
5649 {
5650 if (SCM_I_INUMP (val))
5651 {
5652 scm_t_signed_bits n = SCM_I_INUM (val);
5653 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
5654 }
5655 else if (SCM_BIGP (val))
5656 {
5657 if (max <= SCM_MOST_POSITIVE_FIXNUM)
5658 return 0;
5659 else if (max <= ULONG_MAX)
5660 {
5661 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
5662 {
5663 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
5664 return n >= min && n <= max;
5665 }
5666 else
5667 return 0;
5668 }
5669 else
5670 {
5671 scm_t_uintmax n;
5672 size_t count;
5673
5674 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
5675 return 0;
5676
5677 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
5678 > CHAR_BIT*sizeof (scm_t_uintmax))
5679 return 0;
5680
5681 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
5682 SCM_I_BIG_MPZ (val));
5683
5684 return n >= min && n <= max;
5685 }
5686 }
5687 else
5688 return 0;
5689 }
5690
5691 static void
5692 scm_i_range_error (SCM bad_val, SCM min, SCM max)
5693 {
5694 scm_error (scm_out_of_range_key,
5695 NULL,
5696 "Value out of range ~S to ~S: ~S",
5697 scm_list_3 (min, max, bad_val),
5698 scm_list_1 (bad_val));
5699 }
5700
5701 #define TYPE scm_t_intmax
5702 #define TYPE_MIN min
5703 #define TYPE_MAX max
5704 #define SIZEOF_TYPE 0
5705 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
5706 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
5707 #include "libguile/conv-integer.i.c"
5708
5709 #define TYPE scm_t_uintmax
5710 #define TYPE_MIN min
5711 #define TYPE_MAX max
5712 #define SIZEOF_TYPE 0
5713 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
5714 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
5715 #include "libguile/conv-uinteger.i.c"
5716
5717 #define TYPE scm_t_int8
5718 #define TYPE_MIN SCM_T_INT8_MIN
5719 #define TYPE_MAX SCM_T_INT8_MAX
5720 #define SIZEOF_TYPE 1
5721 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
5722 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
5723 #include "libguile/conv-integer.i.c"
5724
5725 #define TYPE scm_t_uint8
5726 #define TYPE_MIN 0
5727 #define TYPE_MAX SCM_T_UINT8_MAX
5728 #define SIZEOF_TYPE 1
5729 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
5730 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
5731 #include "libguile/conv-uinteger.i.c"
5732
5733 #define TYPE scm_t_int16
5734 #define TYPE_MIN SCM_T_INT16_MIN
5735 #define TYPE_MAX SCM_T_INT16_MAX
5736 #define SIZEOF_TYPE 2
5737 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
5738 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
5739 #include "libguile/conv-integer.i.c"
5740
5741 #define TYPE scm_t_uint16
5742 #define TYPE_MIN 0
5743 #define TYPE_MAX SCM_T_UINT16_MAX
5744 #define SIZEOF_TYPE 2
5745 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
5746 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
5747 #include "libguile/conv-uinteger.i.c"
5748
5749 #define TYPE scm_t_int32
5750 #define TYPE_MIN SCM_T_INT32_MIN
5751 #define TYPE_MAX SCM_T_INT32_MAX
5752 #define SIZEOF_TYPE 4
5753 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
5754 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
5755 #include "libguile/conv-integer.i.c"
5756
5757 #define TYPE scm_t_uint32
5758 #define TYPE_MIN 0
5759 #define TYPE_MAX SCM_T_UINT32_MAX
5760 #define SIZEOF_TYPE 4
5761 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
5762 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
5763 #include "libguile/conv-uinteger.i.c"
5764
5765 #if SCM_HAVE_T_INT64
5766
5767 #define TYPE scm_t_int64
5768 #define TYPE_MIN SCM_T_INT64_MIN
5769 #define TYPE_MAX SCM_T_INT64_MAX
5770 #define SIZEOF_TYPE 8
5771 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
5772 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
5773 #include "libguile/conv-integer.i.c"
5774
5775 #define TYPE scm_t_uint64
5776 #define TYPE_MIN 0
5777 #define TYPE_MAX SCM_T_UINT64_MAX
5778 #define SIZEOF_TYPE 8
5779 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
5780 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
5781 #include "libguile/conv-uinteger.i.c"
5782
5783 #endif
5784
5785 void
5786 scm_to_mpz (SCM val, mpz_t rop)
5787 {
5788 if (SCM_I_INUMP (val))
5789 mpz_set_si (rop, SCM_I_INUM (val));
5790 else if (SCM_BIGP (val))
5791 mpz_set (rop, SCM_I_BIG_MPZ (val));
5792 else
5793 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
5794 }
5795
5796 SCM
5797 scm_from_mpz (mpz_t val)
5798 {
5799 return scm_i_mpz2num (val);
5800 }
5801
5802 int
5803 scm_is_real (SCM val)
5804 {
5805 return scm_is_true (scm_real_p (val));
5806 }
5807
5808 int
5809 scm_is_rational (SCM val)
5810 {
5811 return scm_is_true (scm_rational_p (val));
5812 }
5813
5814 double
5815 scm_to_double (SCM val)
5816 {
5817 if (SCM_I_INUMP (val))
5818 return SCM_I_INUM (val);
5819 else if (SCM_BIGP (val))
5820 return scm_i_big2dbl (val);
5821 else if (SCM_FRACTIONP (val))
5822 return scm_i_fraction2double (val);
5823 else if (SCM_REALP (val))
5824 return SCM_REAL_VALUE (val);
5825 else
5826 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
5827 }
5828
5829 SCM
5830 scm_from_double (double val)
5831 {
5832 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
5833 SCM_REAL_VALUE (z) = val;
5834 return z;
5835 }
5836
5837 #if SCM_ENABLE_DISCOURAGED == 1
5838
5839 float
5840 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
5841 {
5842 if (SCM_BIGP (num))
5843 {
5844 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
5845 if (!xisinf (res))
5846 return res;
5847 else
5848 scm_out_of_range (NULL, num);
5849 }
5850 else
5851 return scm_to_double (num);
5852 }
5853
5854 double
5855 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
5856 {
5857 if (SCM_BIGP (num))
5858 {
5859 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
5860 if (!xisinf (res))
5861 return res;
5862 else
5863 scm_out_of_range (NULL, num);
5864 }
5865 else
5866 return scm_to_double (num);
5867 }
5868
5869 #endif
5870
5871 int
5872 scm_is_complex (SCM val)
5873 {
5874 return scm_is_true (scm_complex_p (val));
5875 }
5876
5877 double
5878 scm_c_real_part (SCM z)
5879 {
5880 if (SCM_COMPLEXP (z))
5881 return SCM_COMPLEX_REAL (z);
5882 else
5883 {
5884 /* Use the scm_real_part to get proper error checking and
5885 dispatching.
5886 */
5887 return scm_to_double (scm_real_part (z));
5888 }
5889 }
5890
5891 double
5892 scm_c_imag_part (SCM z)
5893 {
5894 if (SCM_COMPLEXP (z))
5895 return SCM_COMPLEX_IMAG (z);
5896 else
5897 {
5898 /* Use the scm_imag_part to get proper error checking and
5899 dispatching. The result will almost always be 0.0, but not
5900 always.
5901 */
5902 return scm_to_double (scm_imag_part (z));
5903 }
5904 }
5905
5906 double
5907 scm_c_magnitude (SCM z)
5908 {
5909 return scm_to_double (scm_magnitude (z));
5910 }
5911
5912 double
5913 scm_c_angle (SCM z)
5914 {
5915 return scm_to_double (scm_angle (z));
5916 }
5917
5918 int
5919 scm_is_number (SCM z)
5920 {
5921 return scm_is_true (scm_number_p (z));
5922 }
5923
5924 void
5925 scm_init_numbers ()
5926 {
5927 int i;
5928
5929 mpz_init_set_si (z_negative_one, -1);
5930
5931 /* It may be possible to tune the performance of some algorithms by using
5932 * the following constants to avoid the creation of bignums. Please, before
5933 * using these values, remember the two rules of program optimization:
5934 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
5935 scm_c_define ("most-positive-fixnum",
5936 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
5937 scm_c_define ("most-negative-fixnum",
5938 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
5939
5940 scm_add_feature ("complex");
5941 scm_add_feature ("inexact");
5942 scm_flo0 = scm_from_double (0.0);
5943
5944 /* determine floating point precision */
5945 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
5946 {
5947 init_dblprec(&scm_dblprec[i-2],i);
5948 init_fx_radix(fx_per_radix[i-2],i);
5949 }
5950 #ifdef DBL_DIG
5951 /* hard code precision for base 10 if the preprocessor tells us to... */
5952 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
5953 #endif
5954
5955 exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
5956 SCM_I_MAKINUM (2)));
5957 #include "libguile/numbers.x"
5958 }
5959
5960 /*
5961 Local Variables:
5962 c-file-style: "gnu"
5963 End:
5964 */