merge stable-2.0
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001, 2002, 2003, 2006, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc.
2 *
3 * This library is free software; you can redistribute it and/or
4 * modify it under the terms of the GNU Lesser General Public License
5 * as published by the Free Software Foundation; either version 3 of
6 * the License, or (at your option) any later version.
7 *
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301 USA
17 */
18
19 /* #define DEBUGINFO */
20
21 #ifdef HAVE_CONFIG_H
22 # include <config.h>
23 #endif
24
25 #include "libguile/gen-scmconfig.h"
26
27 #include <stdio.h>
28 #include <errno.h>
29 #include <string.h>
30 #include <stdlib.h>
31 #include <math.h>
32
33 #ifdef __ia64__
34 #include <ucontext.h>
35 extern unsigned long * __libc_ia64_register_backing_store_base;
36 #endif
37
38 #include "libguile/_scm.h"
39 #include "libguile/eval.h"
40 #include "libguile/stime.h"
41 #include "libguile/stackchk.h"
42 #include "libguile/struct.h"
43 #include "libguile/smob.h"
44 #include "libguile/arrays.h"
45 #include "libguile/async.h"
46 #include "libguile/ports.h"
47 #include "libguile/root.h"
48 #include "libguile/strings.h"
49 #include "libguile/vectors.h"
50 #include "libguile/hashtab.h"
51 #include "libguile/tags.h"
52
53 #include "libguile/private-gc.h"
54 #include "libguile/validate.h"
55 #include "libguile/deprecation.h"
56 #include "libguile/gc.h"
57 #include "libguile/dynwind.h"
58
59 #include "libguile/bdw-gc.h"
60
61 /* For GC_set_start_callback. */
62 #include <gc/gc_mark.h>
63
64 #ifdef GUILE_DEBUG_MALLOC
65 #include "libguile/debug-malloc.h"
66 #endif
67
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #endif
71
72 /* Set this to != 0 if every cell that is accessed shall be checked:
73 */
74 int scm_debug_cell_accesses_p = 0;
75 int scm_expensive_debug_cell_accesses_p = 0;
76
77 /* Set this to 0 if no additional gc's shall be performed, otherwise set it to
78 * the number of cell accesses after which a gc shall be called.
79 */
80 int scm_debug_cells_gc_interval = 0;
81
82 /* Hash table that keeps a reference to objects the user wants to protect from
83 garbage collection. */
84 static SCM scm_protects;
85
86
87 #if (SCM_DEBUG_CELL_ACCESSES == 1)
88
89
90 /*
91
92 Assert that the given object is a valid reference to a valid cell. This
93 test involves to determine whether the object is a cell pointer, whether
94 this pointer actually points into a heap segment and whether the cell
95 pointed to is not a free cell. Further, additional garbage collections may
96 get executed after a user defined number of cell accesses. This helps to
97 find places in the C code where references are dropped for extremely short
98 periods.
99
100 */
101 void
102 scm_i_expensive_validation_check (SCM cell)
103 {
104 /* If desired, perform additional garbage collections after a user
105 * defined number of cell accesses.
106 */
107 if (scm_debug_cells_gc_interval)
108 {
109 static unsigned int counter = 0;
110
111 if (counter != 0)
112 {
113 --counter;
114 }
115 else
116 {
117 counter = scm_debug_cells_gc_interval;
118 scm_gc ();
119 }
120 }
121 }
122
123 /* Whether cell validation is already running. */
124 static int scm_i_cell_validation_already_running = 0;
125
126 void
127 scm_assert_cell_valid (SCM cell)
128 {
129 if (!scm_i_cell_validation_already_running && scm_debug_cell_accesses_p)
130 {
131 scm_i_cell_validation_already_running = 1; /* set to avoid recursion */
132
133 /*
134 During GC, no user-code should be run, and the guile core
135 should use non-protected accessors.
136 */
137 if (scm_gc_running_p)
138 return;
139
140 /*
141 Only scm_in_heap_p and rescanning the heap is wildly
142 expensive.
143 */
144 if (scm_expensive_debug_cell_accesses_p)
145 scm_i_expensive_validation_check (cell);
146
147 scm_i_cell_validation_already_running = 0; /* re-enable */
148 }
149 }
150
151
152
153 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
154 (SCM flag),
155 "If @var{flag} is @code{#f}, cell access checking is disabled.\n"
156 "If @var{flag} is @code{#t}, cheap cell access checking is enabled,\n"
157 "but no additional calls to garbage collection are issued.\n"
158 "If @var{flag} is a number, strict cell access checking is enabled,\n"
159 "with an additional garbage collection after the given\n"
160 "number of cell accesses.\n"
161 "This procedure only exists when the compile-time flag\n"
162 "@code{SCM_DEBUG_CELL_ACCESSES} was set to 1.")
163 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
164 {
165 if (scm_is_false (flag))
166 {
167 scm_debug_cell_accesses_p = 0;
168 }
169 else if (scm_is_eq (flag, SCM_BOOL_T))
170 {
171 scm_debug_cells_gc_interval = 0;
172 scm_debug_cell_accesses_p = 1;
173 scm_expensive_debug_cell_accesses_p = 0;
174 }
175 else
176 {
177 scm_debug_cells_gc_interval = scm_to_signed_integer (flag, 0, INT_MAX);
178 scm_debug_cell_accesses_p = 1;
179 scm_expensive_debug_cell_accesses_p = 1;
180 }
181 return SCM_UNSPECIFIED;
182 }
183 #undef FUNC_NAME
184
185
186 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
187
188 \f
189
190 /* Hooks. */
191 scm_t_c_hook scm_before_gc_c_hook;
192 scm_t_c_hook scm_before_mark_c_hook;
193 scm_t_c_hook scm_before_sweep_c_hook;
194 scm_t_c_hook scm_after_sweep_c_hook;
195 scm_t_c_hook scm_after_gc_c_hook;
196
197
198 static void
199 run_before_gc_c_hook (void)
200 {
201 if (!SCM_I_CURRENT_THREAD)
202 /* GC while a thread is spinning up; punt. */
203 return;
204
205 scm_c_hook_run (&scm_before_gc_c_hook, NULL);
206 }
207
208
209 /* GC Statistics Keeping
210 */
211 unsigned long scm_gc_ports_collected = 0;
212 static long gc_time_taken = 0;
213 static long gc_start_time = 0;
214
215 static unsigned long free_space_divisor;
216 static unsigned long minimum_free_space_divisor;
217 static double target_free_space_divisor;
218
219 static unsigned long protected_obj_count = 0;
220
221
222 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
223 SCM_SYMBOL (sym_heap_size, "heap-size");
224 SCM_SYMBOL (sym_heap_free_size, "heap-free-size");
225 SCM_SYMBOL (sym_heap_total_allocated, "heap-total-allocated");
226 SCM_SYMBOL (sym_heap_allocated_since_gc, "heap-allocated-since-gc");
227 SCM_SYMBOL (sym_protected_objects, "protected-objects");
228 SCM_SYMBOL (sym_times, "gc-times");
229
230
231 /* {Scheme Interface to GC}
232 */
233 static SCM
234 tag_table_to_type_alist (void *closure, SCM key, SCM val, SCM acc)
235 {
236 if (scm_is_integer (key))
237 {
238 int c_tag = scm_to_int (key);
239
240 char const * name = scm_i_tag_name (c_tag);
241 if (name != NULL)
242 {
243 key = scm_from_locale_string (name);
244 }
245 else
246 {
247 char s[100];
248 sprintf (s, "tag %d", c_tag);
249 key = scm_from_locale_string (s);
250 }
251 }
252
253 return scm_cons (scm_cons (key, val), acc);
254 }
255
256 SCM_DEFINE (scm_gc_live_object_stats, "gc-live-object-stats", 0, 0, 0,
257 (),
258 "Return an alist of statistics of the current live objects. ")
259 #define FUNC_NAME s_scm_gc_live_object_stats
260 {
261 SCM tab = scm_make_hash_table (scm_from_int (57));
262 SCM alist;
263
264 alist
265 = scm_internal_hash_fold (&tag_table_to_type_alist, NULL, SCM_EOL, tab);
266
267 return alist;
268 }
269 #undef FUNC_NAME
270
271 extern int scm_gc_malloc_yield_percentage;
272 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
273 (),
274 "Return an association list of statistics about Guile's current\n"
275 "use of storage.\n")
276 #define FUNC_NAME s_scm_gc_stats
277 {
278 SCM answer;
279 GC_word heap_size, free_bytes, unmapped_bytes, bytes_since_gc, total_bytes;
280 size_t gc_times;
281
282 GC_get_heap_usage_safe (&heap_size, &free_bytes, &unmapped_bytes,
283 &bytes_since_gc, &total_bytes);
284 gc_times = GC_gc_no;
285
286 answer =
287 scm_list_n (scm_cons (sym_gc_time_taken, scm_from_long (gc_time_taken)),
288 scm_cons (sym_heap_size, scm_from_size_t (heap_size)),
289 scm_cons (sym_heap_free_size, scm_from_size_t (free_bytes)),
290 scm_cons (sym_heap_total_allocated,
291 scm_from_size_t (total_bytes)),
292 scm_cons (sym_heap_allocated_since_gc,
293 scm_from_size_t (bytes_since_gc)),
294 scm_cons (sym_protected_objects,
295 scm_from_ulong (protected_obj_count)),
296 scm_cons (sym_times, scm_from_size_t (gc_times)),
297 SCM_UNDEFINED);
298
299 return answer;
300 }
301 #undef FUNC_NAME
302
303
304 SCM_DEFINE (scm_gc_dump, "gc-dump", 0, 0, 0,
305 (void),
306 "Dump information about the garbage collector's internal data "
307 "structures and memory usage to the standard output.")
308 #define FUNC_NAME s_scm_gc_dump
309 {
310 GC_dump ();
311
312 return SCM_UNSPECIFIED;
313 }
314 #undef FUNC_NAME
315
316
317 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
318 (SCM obj),
319 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
320 "returned by this function for @var{obj}")
321 #define FUNC_NAME s_scm_object_address
322 {
323 return scm_from_ulong (SCM_UNPACK (obj));
324 }
325 #undef FUNC_NAME
326
327
328 SCM_DEFINE (scm_gc_disable, "gc-disable", 0, 0, 0,
329 (),
330 "Disables the garbage collector. Nested calls are permitted. "
331 "GC is re-enabled once @code{gc-enable} has been called the "
332 "same number of times @code{gc-disable} was called.")
333 #define FUNC_NAME s_scm_gc_disable
334 {
335 GC_disable ();
336 return SCM_UNSPECIFIED;
337 }
338 #undef FUNC_NAME
339
340 SCM_DEFINE (scm_gc_enable, "gc-enable", 0, 0, 0,
341 (),
342 "Enables the garbage collector.")
343 #define FUNC_NAME s_scm_gc_enable
344 {
345 GC_enable ();
346 return SCM_UNSPECIFIED;
347 }
348 #undef FUNC_NAME
349
350
351 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
352 (),
353 "Scans all of SCM objects and reclaims for further use those that are\n"
354 "no longer accessible.")
355 #define FUNC_NAME s_scm_gc
356 {
357 scm_i_gc ("call");
358 /* If you're calling scm_gc(), you probably want synchronous
359 finalization. */
360 GC_invoke_finalizers ();
361 return SCM_UNSPECIFIED;
362 }
363 #undef FUNC_NAME
364
365 void
366 scm_i_gc (const char *what)
367 {
368 GC_gcollect ();
369 }
370
371
372 \f
373 /* {GC Protection Helper Functions}
374 */
375
376
377 /*
378 * If within a function you need to protect one or more scheme objects from
379 * garbage collection, pass them as parameters to one of the
380 * scm_remember_upto_here* functions below. These functions don't do
381 * anything, but since the compiler does not know that they are actually
382 * no-ops, it will generate code that calls these functions with the given
383 * parameters. Therefore, you can be sure that the compiler will keep those
384 * scheme values alive (on the stack or in a register) up to the point where
385 * scm_remember_upto_here* is called. In other words, place the call to
386 * scm_remember_upto_here* _behind_ the last code in your function, that
387 * depends on the scheme object to exist.
388 *
389 * Example: We want to make sure that the string object str does not get
390 * garbage collected during the execution of 'some_function' in the code
391 * below, because otherwise the characters belonging to str would be freed and
392 * 'some_function' might access freed memory. To make sure that the compiler
393 * keeps str alive on the stack or in a register such that it is visible to
394 * the conservative gc we add the call to scm_remember_upto_here_1 _after_ the
395 * call to 'some_function'. Note that this would not be necessary if str was
396 * used anyway after the call to 'some_function'.
397 * char *chars = scm_i_string_chars (str);
398 * some_function (chars);
399 * scm_remember_upto_here_1 (str); // str will be alive up to this point.
400 */
401
402 /* Remove any macro versions of these while defining the functions.
403 Functions are always included in the library, for upward binary
404 compatibility and in case combinations of GCC and non-GCC are used. */
405 #undef scm_remember_upto_here_1
406 #undef scm_remember_upto_here_2
407
408 void
409 scm_remember_upto_here_1 (SCM obj SCM_UNUSED)
410 {
411 /* Empty. Protects a single object from garbage collection. */
412 }
413
414 void
415 scm_remember_upto_here_2 (SCM obj1 SCM_UNUSED, SCM obj2 SCM_UNUSED)
416 {
417 /* Empty. Protects two objects from garbage collection. */
418 }
419
420 void
421 scm_remember_upto_here (SCM obj SCM_UNUSED, ...)
422 {
423 /* Empty. Protects any number of objects from garbage collection. */
424 }
425
426 /*
427 These crazy functions prevent garbage collection
428 of arguments after the first argument by
429 ensuring they remain live throughout the
430 function because they are used in the last
431 line of the code block.
432 It'd be better to have a nice compiler hint to
433 aid the conservative stack-scanning GC. --03/09/00 gjb */
434 SCM
435 scm_return_first (SCM elt, ...)
436 {
437 return elt;
438 }
439
440 int
441 scm_return_first_int (int i, ...)
442 {
443 return i;
444 }
445
446
447 SCM
448 scm_permanent_object (SCM obj)
449 {
450 return (scm_gc_protect_object (obj));
451 }
452
453
454 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
455 other references are dropped, until the object is unprotected by calling
456 scm_gc_unprotect_object (OBJ). Calls to scm_gc_protect/unprotect_object nest,
457 i. e. it is possible to protect the same object several times, but it is
458 necessary to unprotect the object the same number of times to actually get
459 the object unprotected. It is an error to unprotect an object more often
460 than it has been protected before. The function scm_protect_object returns
461 OBJ.
462 */
463
464 /* Implementation note: For every object X, there is a counter which
465 scm_gc_protect_object (X) increments and scm_gc_unprotect_object (X) decrements.
466 */
467
468
469
470 SCM
471 scm_gc_protect_object (SCM obj)
472 {
473 SCM handle;
474
475 /* This critical section barrier will be replaced by a mutex. */
476 /* njrev: Indeed; if my comment above is correct, there is the same
477 critsec/mutex inconsistency here. */
478 SCM_CRITICAL_SECTION_START;
479
480 handle = scm_hashq_create_handle_x (scm_protects, obj, scm_from_int (0));
481 SCM_SETCDR (handle, scm_sum (SCM_CDR (handle), scm_from_int (1)));
482
483 protected_obj_count ++;
484
485 SCM_CRITICAL_SECTION_END;
486
487 return obj;
488 }
489
490
491 /* Remove any protection for OBJ established by a prior call to
492 scm_protect_object. This function returns OBJ.
493
494 See scm_protect_object for more information. */
495 SCM
496 scm_gc_unprotect_object (SCM obj)
497 {
498 SCM handle;
499
500 /* This critical section barrier will be replaced by a mutex. */
501 /* njrev: and again. */
502 SCM_CRITICAL_SECTION_START;
503
504 if (scm_gc_running_p)
505 {
506 fprintf (stderr, "scm_unprotect_object called during GC.\n");
507 abort ();
508 }
509
510 handle = scm_hashq_get_handle (scm_protects, obj);
511
512 if (scm_is_false (handle))
513 {
514 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
515 abort ();
516 }
517 else
518 {
519 SCM count = scm_difference (SCM_CDR (handle), scm_from_int (1));
520 if (scm_is_eq (count, scm_from_int (0)))
521 scm_hashq_remove_x (scm_protects, obj);
522 else
523 SCM_SETCDR (handle, count);
524 }
525 protected_obj_count --;
526
527 SCM_CRITICAL_SECTION_END;
528
529 return obj;
530 }
531
532 void
533 scm_gc_register_root (SCM *p)
534 {
535 /* Nothing. */
536 }
537
538 void
539 scm_gc_unregister_root (SCM *p)
540 {
541 /* Nothing. */
542 }
543
544 void
545 scm_gc_register_roots (SCM *b, unsigned long n)
546 {
547 SCM *p = b;
548 for (; p < b + n; ++p)
549 scm_gc_register_root (p);
550 }
551
552 void
553 scm_gc_unregister_roots (SCM *b, unsigned long n)
554 {
555 SCM *p = b;
556 for (; p < b + n; ++p)
557 scm_gc_unregister_root (p);
558 }
559
560 \f
561
562
563 /*
564 MOVE THIS FUNCTION. IT DOES NOT HAVE ANYTHING TODO WITH GC.
565 */
566
567 /* Get an integer from an environment variable. */
568 int
569 scm_getenv_int (const char *var, int def)
570 {
571 char *end = 0;
572 char *val = getenv (var);
573 long res = def;
574 if (!val)
575 return def;
576 res = strtol (val, &end, 10);
577 if (end == val)
578 return def;
579 return res;
580 }
581
582 void
583 scm_storage_prehistory ()
584 {
585 GC_all_interior_pointers = 0;
586 free_space_divisor = scm_getenv_int ("GC_FREE_SPACE_DIVISOR", 3);
587 minimum_free_space_divisor = free_space_divisor;
588 target_free_space_divisor = free_space_divisor;
589 GC_set_free_space_divisor (free_space_divisor);
590 GC_set_finalize_on_demand (1);
591
592 GC_INIT ();
593
594 #if (! ((defined GC_VERSION_MAJOR) && (GC_VERSION_MAJOR >= 7))) \
595 && (defined SCM_I_GSC_USE_PTHREAD_THREADS)
596 /* When using GC 6.8, this call is required to initialize thread-local
597 freelists (shouldn't be necessary with GC 7.0). */
598 GC_init ();
599 #endif
600
601 GC_expand_hp (SCM_DEFAULT_INIT_HEAP_SIZE_2);
602
603 /* We only need to register a displacement for those types for which the
604 higher bits of the type tag are used to store a pointer (that is, a
605 pointer to an 8-octet aligned region). For `scm_tc3_struct', this is
606 handled in `scm_alloc_struct ()'. */
607 GC_REGISTER_DISPLACEMENT (scm_tc3_cons);
608 /* GC_REGISTER_DISPLACEMENT (scm_tc3_unused); */
609
610 /* Sanity check. */
611 if (!GC_is_visible (&scm_protects))
612 abort ();
613
614 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
615 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
616 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
617 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
618 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
619 }
620
621 scm_i_pthread_mutex_t scm_i_gc_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
622
623 void
624 scm_init_gc_protect_object ()
625 {
626 scm_protects = scm_c_make_hash_table (31);
627
628 #if 0
629 /* We can't have a cleanup handler since we have no thread to run it
630 in. */
631
632 #ifdef HAVE_ATEXIT
633 atexit (cleanup);
634 #else
635 #ifdef HAVE_ON_EXIT
636 on_exit (cleanup, 0);
637 #endif
638 #endif
639
640 #endif
641 }
642
643 \f
644
645 SCM scm_after_gc_hook;
646
647 static SCM after_gc_async_cell;
648
649 /* The function after_gc_async_thunk causes the execution of the
650 * after-gc-hook. It is run after the gc, as soon as the asynchronous
651 * events are handled by the evaluator.
652 */
653 static SCM
654 after_gc_async_thunk (void)
655 {
656 /* Fun, no? Hook-run *and* run-hook? */
657 scm_c_hook_run (&scm_after_gc_c_hook, NULL);
658 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
659 return SCM_UNSPECIFIED;
660 }
661
662
663 /* The function queue_after_gc_hook is run by the scm_before_gc_c_hook
664 * at the end of the garbage collection. The only purpose of this
665 * function is to mark the after_gc_async (which will eventually lead to
666 * the execution of the after_gc_async_thunk).
667 */
668 static void *
669 queue_after_gc_hook (void * hook_data SCM_UNUSED,
670 void *fn_data SCM_UNUSED,
671 void *data SCM_UNUSED)
672 {
673 /* If cell access debugging is enabled, the user may choose to perform
674 * additional garbage collections after an arbitrary number of cell
675 * accesses. We don't want the scheme level after-gc-hook to be performed
676 * for each of these garbage collections for the following reason: The
677 * execution of the after-gc-hook causes cell accesses itself. Thus, if the
678 * after-gc-hook was performed with every gc, and if the gc was performed
679 * after a very small number of cell accesses, then the number of cell
680 * accesses during the execution of the after-gc-hook will suffice to cause
681 * the execution of the next gc. Then, guile would keep executing the
682 * after-gc-hook over and over again, and would never come to do other
683 * things.
684 *
685 * To overcome this problem, if cell access debugging with additional
686 * garbage collections is enabled, the after-gc-hook is never run by the
687 * garbage collecter. When running guile with cell access debugging and the
688 * execution of the after-gc-hook is desired, then it is necessary to run
689 * the hook explicitly from the user code. This has the effect, that from
690 * the scheme level point of view it seems that garbage collection is
691 * performed with a much lower frequency than it actually is. Obviously,
692 * this will not work for code that depends on a fixed one to one
693 * relationship between the execution counts of the C level garbage
694 * collection hooks and the execution count of the scheme level
695 * after-gc-hook.
696 */
697
698 #if (SCM_DEBUG_CELL_ACCESSES == 1)
699 if (scm_debug_cells_gc_interval == 0)
700 #endif
701 {
702 scm_i_thread *t = SCM_I_CURRENT_THREAD;
703
704 if (scm_is_false (SCM_CDR (after_gc_async_cell)))
705 {
706 SCM_SETCDR (after_gc_async_cell, t->active_asyncs);
707 t->active_asyncs = after_gc_async_cell;
708 t->pending_asyncs = 1;
709 }
710 }
711
712 return NULL;
713 }
714
715 \f
716
717 static void *
718 start_gc_timer (void * hook_data SCM_UNUSED,
719 void *fn_data SCM_UNUSED,
720 void *data SCM_UNUSED)
721 {
722 if (!gc_start_time)
723 gc_start_time = scm_c_get_internal_run_time ();
724
725 return NULL;
726 }
727
728 static void *
729 accumulate_gc_timer (void * hook_data SCM_UNUSED,
730 void *fn_data SCM_UNUSED,
731 void *data SCM_UNUSED)
732 {
733 if (gc_start_time)
734 {
735 long now = scm_c_get_internal_run_time ();
736 gc_time_taken += now - gc_start_time;
737 gc_start_time = 0;
738 }
739
740 return NULL;
741 }
742
743 /* Return some idea of the memory footprint of a process, in bytes.
744 Currently only works on Linux systems. */
745 static size_t
746 get_image_size (void)
747 {
748 unsigned long size, resident, share;
749 size_t ret = 0;
750
751 FILE *fp = fopen ("/proc/self/statm", "r");
752
753 if (fp && fscanf (fp, "%lu %lu %lu", &size, &resident, &share) == 3)
754 ret = resident * 4096;
755
756 if (fp)
757 fclose (fp);
758
759 return ret;
760 }
761
762 /* These are discussed later. */
763 static size_t bytes_until_gc;
764 static scm_i_pthread_mutex_t bytes_until_gc_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
765
766 /* Make GC run more frequently when the process image size is growing,
767 measured against the number of bytes allocated through the GC.
768
769 If Guile is allocating at a GC-managed heap size H, libgc will tend
770 to limit the process image size to H*N. But if at the same time the
771 user program is mallocating at a rate M bytes per GC-allocated byte,
772 then the process stabilizes at H*N*M -- assuming that collecting data
773 will result in malloc'd data being freed. It doesn't take a very
774 large M for this to be a bad situation. To limit the image size,
775 Guile should GC more often -- the bigger the M, the more often.
776
777 Numeric functions that produce bigger and bigger integers are
778 pessimal, because M is an increasing function of time. Here is an
779 example of such a function:
780
781 (define (factorial n)
782 (define (fac n acc)
783 (if (<= n 1)
784 acc
785 (fac (1- n) (* n acc))))
786 (fac n 1))
787
788 It is possible for a process to grow for reasons that will not be
789 solved by faster GC. In that case M will be estimated as
790 artificially high for a while, and so GC will happen more often on
791 the Guile side. But when it stabilizes, Guile can ease back the GC
792 frequency.
793
794 The key is to measure process image growth, not mallocation rate.
795 For maximum effectiveness, Guile reacts quickly to process growth,
796 and exponentially backs down when the process stops growing.
797
798 See http://thread.gmane.org/gmane.lisp.guile.devel/12552/focus=12936
799 for further discussion.
800 */
801 static void *
802 adjust_gc_frequency (void * hook_data SCM_UNUSED,
803 void *fn_data SCM_UNUSED,
804 void *data SCM_UNUSED)
805 {
806 static size_t prev_image_size = 0;
807 static size_t prev_bytes_alloced = 0;
808 size_t image_size;
809 size_t bytes_alloced;
810
811 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
812 bytes_until_gc = GC_get_heap_size ();
813 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
814
815 image_size = get_image_size ();
816 bytes_alloced = GC_get_total_bytes ();
817
818 #define HEURISTICS_DEBUG 0
819
820 #if HEURISTICS_DEBUG
821 fprintf (stderr, "prev image / alloced: %lu / %lu\n", prev_image_size, prev_bytes_alloced);
822 fprintf (stderr, " image / alloced: %lu / %lu\n", image_size, bytes_alloced);
823 fprintf (stderr, "divisor %lu / %f\n", free_space_divisor, target_free_space_divisor);
824 #endif
825
826 if (prev_image_size && bytes_alloced != prev_bytes_alloced)
827 {
828 double growth_rate, new_target_free_space_divisor;
829 double decay_factor = 0.5;
830 double hysteresis = 0.1;
831
832 growth_rate = ((double) image_size - prev_image_size)
833 / ((double)bytes_alloced - prev_bytes_alloced);
834
835 #if HEURISTICS_DEBUG
836 fprintf (stderr, "growth rate %f\n", growth_rate);
837 #endif
838
839 new_target_free_space_divisor = minimum_free_space_divisor;
840
841 if (growth_rate > 0)
842 new_target_free_space_divisor *= 1.0 + growth_rate;
843
844 #if HEURISTICS_DEBUG
845 fprintf (stderr, "new divisor %f\n", new_target_free_space_divisor);
846 #endif
847
848 if (new_target_free_space_divisor < target_free_space_divisor)
849 /* Decay down. */
850 target_free_space_divisor =
851 (decay_factor * target_free_space_divisor
852 + (1.0 - decay_factor) * new_target_free_space_divisor);
853 else
854 /* Jump up. */
855 target_free_space_divisor = new_target_free_space_divisor;
856
857 #if HEURISTICS_DEBUG
858 fprintf (stderr, "new target divisor %f\n", target_free_space_divisor);
859 #endif
860
861 if (free_space_divisor + 0.5 + hysteresis < target_free_space_divisor
862 || free_space_divisor - 0.5 - hysteresis > target_free_space_divisor)
863 {
864 free_space_divisor = lround (target_free_space_divisor);
865 #if HEURISTICS_DEBUG
866 fprintf (stderr, "new divisor %lu\n", free_space_divisor);
867 #endif
868 GC_set_free_space_divisor (free_space_divisor);
869 }
870 }
871
872 prev_image_size = image_size;
873 prev_bytes_alloced = bytes_alloced;
874
875 return NULL;
876 }
877
878 /* The adjust_gc_frequency routine handles transients in the process
879 image size. It can't handle instense non-GC-managed steady-state
880 allocation though, as it decays the FSD at steady-state down to its
881 minimum value.
882
883 The only real way to handle continuous, high non-GC allocation is to
884 let the GC know about it. This routine can handle non-GC allocation
885 rates that are similar in size to the GC-managed heap size.
886 */
887
888 void
889 scm_gc_register_allocation (size_t size)
890 {
891 scm_i_pthread_mutex_lock (&bytes_until_gc_lock);
892 if (bytes_until_gc - size > bytes_until_gc)
893 {
894 bytes_until_gc = GC_get_heap_size ();
895 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
896 GC_gcollect ();
897 }
898 else
899 {
900 bytes_until_gc -= size;
901 scm_i_pthread_mutex_unlock (&bytes_until_gc_lock);
902 }
903 }
904
905
906 \f
907
908 char const *
909 scm_i_tag_name (scm_t_bits tag)
910 {
911 switch (tag & 0x7f) /* 7 bits */
912 {
913 case scm_tcs_struct:
914 return "struct";
915 case scm_tcs_cons_imcar:
916 return "cons (immediate car)";
917 case scm_tcs_cons_nimcar:
918 return "cons (non-immediate car)";
919 case scm_tc7_pointer:
920 return "foreign";
921 case scm_tc7_hashtable:
922 return "hashtable";
923 case scm_tc7_weak_set:
924 return "weak-set";
925 case scm_tc7_weak_table:
926 return "weak-table";
927 case scm_tc7_fluid:
928 return "fluid";
929 case scm_tc7_dynamic_state:
930 return "dynamic state";
931 case scm_tc7_frame:
932 return "frame";
933 case scm_tc7_objcode:
934 return "objcode";
935 case scm_tc7_vm:
936 return "vm";
937 case scm_tc7_vm_cont:
938 return "vm continuation";
939 case scm_tc7_wvect:
940 return "weak vector";
941 case scm_tc7_vector:
942 return "vector";
943 case scm_tc7_number:
944 switch (tag)
945 {
946 case scm_tc16_real:
947 return "real";
948 break;
949 case scm_tc16_big:
950 return "bignum";
951 break;
952 case scm_tc16_complex:
953 return "complex number";
954 break;
955 case scm_tc16_fraction:
956 return "fraction";
957 break;
958 }
959 break;
960 case scm_tc7_string:
961 return "string";
962 break;
963 case scm_tc7_stringbuf:
964 return "string buffer";
965 break;
966 case scm_tc7_symbol:
967 return "symbol";
968 break;
969 case scm_tc7_variable:
970 return "variable";
971 break;
972 case scm_tc7_port:
973 return "port";
974 break;
975 case scm_tc7_smob:
976 {
977 int k = 0xff & (tag >> 8);
978 return (scm_smobs[k].name);
979 }
980 break;
981 }
982
983 return NULL;
984 }
985
986
987
988 \f
989 void
990 scm_init_gc ()
991 {
992 /* `GC_INIT ()' was invoked in `scm_storage_prehistory ()'. */
993
994 scm_after_gc_hook = scm_make_hook (SCM_INUM0);
995 scm_c_define ("after-gc-hook", scm_after_gc_hook);
996
997 /* When the async is to run, the cdr of the gc_async pair gets set to
998 the asyncs queue of the current thread. */
999 after_gc_async_cell = scm_cons (scm_c_make_gsubr ("%after-gc-thunk", 0, 0, 0,
1000 after_gc_async_thunk),
1001 SCM_BOOL_F);
1002
1003 scm_c_hook_add (&scm_before_gc_c_hook, queue_after_gc_hook, NULL, 0);
1004 scm_c_hook_add (&scm_before_gc_c_hook, start_gc_timer, NULL, 0);
1005 scm_c_hook_add (&scm_after_gc_c_hook, accumulate_gc_timer, NULL, 0);
1006
1007 /* GC_get_heap_usage does not take a lock, and so can run in the GC
1008 start hook. */
1009 scm_c_hook_add (&scm_before_gc_c_hook, adjust_gc_frequency, NULL, 0);
1010
1011 GC_set_start_callback (run_before_gc_c_hook);
1012
1013 #include "libguile/gc.x"
1014 }
1015
1016
1017 void
1018 scm_gc_sweep (void)
1019 #define FUNC_NAME "scm_gc_sweep"
1020 {
1021 /* FIXME */
1022 fprintf (stderr, "%s: doing nothing\n", FUNC_NAME);
1023 }
1024 #undef FUNC_NAME
1025
1026 /*
1027 Local Variables:
1028 c-file-style: "gnu"
1029 End:
1030 */