(set-module-eval-closure!): Undone change from 2005-06-10; with the
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. The only defined situation right now is `load-toplevel' which
96 ;; triggers for code evaluated at the top-level, for example from the
97 ;; REPL or when loading a file.
98
99 (define eval-case
100 (procedure->memoizing-macro
101 (lambda (exp env)
102 (define (toplevel-env? env)
103 (or (not (pair? env)) (not (pair? (car env)))))
104 (define (syntax)
105 (error "syntax error in eval-case"))
106 (let loop ((clauses (cdr exp)))
107 (cond
108 ((null? clauses)
109 #f)
110 ((not (list? (car clauses)))
111 (syntax))
112 ((eq? 'else (caar clauses))
113 (or (null? (cdr clauses))
114 (syntax))
115 (cons 'begin (cdar clauses)))
116 ((not (list? (caar clauses)))
117 (syntax))
118 ((and (toplevel-env? env)
119 (memq 'load-toplevel (caar clauses)))
120 (cons 'begin (cdar clauses)))
121 (else
122 (loop (cdr clauses))))))))
123
124 \f
125
126 ;;; {Defmacros}
127 ;;;
128 ;;; Depends on: features, eval-case
129 ;;;
130
131 (define macro-table (make-weak-key-hash-table 61))
132 (define xformer-table (make-weak-key-hash-table 61))
133
134 (define (defmacro? m) (hashq-ref macro-table m))
135 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
136 (define (defmacro-transformer m) (hashq-ref xformer-table m))
137 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
138
139 (define defmacro:transformer
140 (lambda (f)
141 (let* ((xform (lambda (exp env)
142 (copy-tree (apply f (cdr exp)))))
143 (a (procedure->memoizing-macro xform)))
144 (assert-defmacro?! a)
145 (set-defmacro-transformer! a f)
146 a)))
147
148
149 (define defmacro
150 (let ((defmacro-transformer
151 (lambda (name parms . body)
152 (let ((transformer `(lambda ,parms ,@body)))
153 `(eval-case
154 ((load-toplevel)
155 (define ,name (defmacro:transformer ,transformer)))
156 (else
157 (error "defmacro can only be used at the top level")))))))
158 (defmacro:transformer defmacro-transformer)))
159
160 (define defmacro:syntax-transformer
161 (lambda (f)
162 (procedure->syntax
163 (lambda (exp env)
164 (copy-tree (apply f (cdr exp)))))))
165
166
167 ;; XXX - should the definition of the car really be looked up in the
168 ;; current module?
169
170 (define (macroexpand-1 e)
171 (cond
172 ((pair? e) (let* ((a (car e))
173 (val (and (symbol? a) (local-ref (list a)))))
174 (if (defmacro? val)
175 (apply (defmacro-transformer val) (cdr e))
176 e)))
177 (#t e)))
178
179 (define (macroexpand e)
180 (cond
181 ((pair? e) (let* ((a (car e))
182 (val (and (symbol? a) (local-ref (list a)))))
183 (if (defmacro? val)
184 (macroexpand (apply (defmacro-transformer val) (cdr e)))
185 e)))
186 (#t e)))
187
188 (provide 'defmacro)
189
190 \f
191
192 ;;; {Deprecation}
193 ;;;
194 ;;; Depends on: defmacro
195 ;;;
196
197 (defmacro begin-deprecated forms
198 (if (include-deprecated-features)
199 (cons begin forms)
200 #f))
201
202 \f
203
204 ;;; {R4RS compliance}
205 ;;;
206
207 (primitive-load-path "ice-9/r4rs.scm")
208
209 \f
210
211 ;;; {Simple Debugging Tools}
212 ;;;
213
214 ;; peek takes any number of arguments, writes them to the
215 ;; current ouput port, and returns the last argument.
216 ;; It is handy to wrap around an expression to look at
217 ;; a value each time is evaluated, e.g.:
218 ;;
219 ;; (+ 10 (troublesome-fn))
220 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
221 ;;
222
223 (define (peek . stuff)
224 (newline)
225 (display ";;; ")
226 (write stuff)
227 (newline)
228 (car (last-pair stuff)))
229
230 (define pk peek)
231
232 (define (warn . stuff)
233 (with-output-to-port (current-error-port)
234 (lambda ()
235 (newline)
236 (display ";;; WARNING ")
237 (display stuff)
238 (newline)
239 (car (last-pair stuff)))))
240
241 \f
242
243 ;;; {Trivial Functions}
244 ;;;
245
246 (define (identity x) x)
247 (define (and=> value procedure) (and value (procedure value)))
248 (define call/cc call-with-current-continuation)
249
250 ;;; apply-to-args is functionally redundant with apply and, worse,
251 ;;; is less general than apply since it only takes two arguments.
252 ;;;
253 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
254 ;;; perform binding in many circumstances when the "let" family of
255 ;;; of forms don't cut it. E.g.:
256 ;;;
257 ;;; (apply-to-args (return-3d-mouse-coords)
258 ;;; (lambda (x y z)
259 ;;; ...))
260 ;;;
261
262 (define (apply-to-args args fn) (apply fn args))
263
264 (defmacro false-if-exception (expr)
265 `(catch #t (lambda () ,expr)
266 (lambda args #f)))
267
268 \f
269
270 ;;; {General Properties}
271 ;;;
272
273 ;; This is a more modern interface to properties. It will replace all
274 ;; other property-like things eventually.
275
276 (define (make-object-property)
277 (let ((prop (primitive-make-property #f)))
278 (make-procedure-with-setter
279 (lambda (obj) (primitive-property-ref prop obj))
280 (lambda (obj val) (primitive-property-set! prop obj val)))))
281
282 \f
283
284 ;;; {Symbol Properties}
285 ;;;
286
287 (define (symbol-property sym prop)
288 (let ((pair (assoc prop (symbol-pref sym))))
289 (and pair (cdr pair))))
290
291 (define (set-symbol-property! sym prop val)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (if pair
294 (set-cdr! pair val)
295 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
296
297 (define (symbol-property-remove! sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (if pair
300 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
301
302 \f
303
304 ;;; {Arrays}
305 ;;;
306
307 (define (array-shape a)
308 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
309 (array-dimensions a)))
310
311 \f
312
313 ;;; {Keywords}
314 ;;;
315
316 (define (kw-arg-ref args kw)
317 (let ((rem (member kw args)))
318 (and rem (pair? (cdr rem)) (cadr rem))))
319
320 \f
321
322 ;;; {Structs}
323 ;;;
324
325 (define (struct-layout s)
326 (struct-ref (struct-vtable s) vtable-index-layout))
327
328 \f
329
330 ;;; {Environments}
331 ;;;
332
333 (define the-environment
334 (procedure->syntax
335 (lambda (x e)
336 e)))
337
338 (define the-root-environment (the-environment))
339
340 (define (environment-module env)
341 (let ((closure (and (pair? env) (car (last-pair env)))))
342 (and closure (eval-closure-module closure))))
343
344 \f
345
346 ;;; {Records}
347 ;;;
348
349 ;; Printing records: by default, records are printed as
350 ;;
351 ;; #<type-name field1: val1 field2: val2 ...>
352 ;;
353 ;; You can change that by giving a custom printing function to
354 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
355 ;; will be called like
356 ;;
357 ;; (<printer> object port)
358 ;;
359 ;; It should print OBJECT to PORT.
360
361 (define (inherit-print-state old-port new-port)
362 (if (get-print-state old-port)
363 (port-with-print-state new-port (get-print-state old-port))
364 new-port))
365
366 ;; 0: type-name, 1: fields
367 (define record-type-vtable
368 (make-vtable-vtable "prpr" 0
369 (lambda (s p)
370 (cond ((eq? s record-type-vtable)
371 (display "#<record-type-vtable>" p))
372 (else
373 (display "#<record-type " p)
374 (display (record-type-name s) p)
375 (display ">" p))))))
376
377 (define (record-type? obj)
378 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
379
380 (define (make-record-type type-name fields . opt)
381 (let ((printer-fn (and (pair? opt) (car opt))))
382 (let ((struct (make-struct record-type-vtable 0
383 (make-struct-layout
384 (apply string-append
385 (map (lambda (f) "pw") fields)))
386 (or printer-fn
387 (lambda (s p)
388 (display "#<" p)
389 (display type-name p)
390 (let loop ((fields fields)
391 (off 0))
392 (cond
393 ((not (null? fields))
394 (display " " p)
395 (display (car fields) p)
396 (display ": " p)
397 (display (struct-ref s off) p)
398 (loop (cdr fields) (+ 1 off)))))
399 (display ">" p)))
400 type-name
401 (copy-tree fields))))
402 ;; Temporary solution: Associate a name to the record type descriptor
403 ;; so that the object system can create a wrapper class for it.
404 (set-struct-vtable-name! struct (if (symbol? type-name)
405 type-name
406 (string->symbol type-name)))
407 struct)))
408
409 (define (record-type-name obj)
410 (if (record-type? obj)
411 (struct-ref obj vtable-offset-user)
412 (error 'not-a-record-type obj)))
413
414 (define (record-type-fields obj)
415 (if (record-type? obj)
416 (struct-ref obj (+ 1 vtable-offset-user))
417 (error 'not-a-record-type obj)))
418
419 (define (record-constructor rtd . opt)
420 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
421 (local-eval `(lambda ,field-names
422 (make-struct ',rtd 0 ,@(map (lambda (f)
423 (if (memq f field-names)
424 f
425 #f))
426 (record-type-fields rtd))))
427 the-root-environment)))
428
429 (define (record-predicate rtd)
430 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
431
432 (define (record-accessor rtd field-name)
433 (let* ((pos (list-index (record-type-fields rtd) field-name)))
434 (if (not pos)
435 (error 'no-such-field field-name))
436 (local-eval `(lambda (obj)
437 (and (eq? ',rtd (record-type-descriptor obj))
438 (struct-ref obj ,pos)))
439 the-root-environment)))
440
441 (define (record-modifier rtd field-name)
442 (let* ((pos (list-index (record-type-fields rtd) field-name)))
443 (if (not pos)
444 (error 'no-such-field field-name))
445 (local-eval `(lambda (obj val)
446 (and (eq? ',rtd (record-type-descriptor obj))
447 (struct-set! obj ,pos val)))
448 the-root-environment)))
449
450
451 (define (record? obj)
452 (and (struct? obj) (record-type? (struct-vtable obj))))
453
454 (define (record-type-descriptor obj)
455 (if (struct? obj)
456 (struct-vtable obj)
457 (error 'not-a-record obj)))
458
459 (provide 'record)
460
461 \f
462
463 ;;; {Booleans}
464 ;;;
465
466 (define (->bool x) (not (not x)))
467
468 \f
469
470 ;;; {Symbols}
471 ;;;
472
473 (define (symbol-append . args)
474 (string->symbol (apply string-append (map symbol->string args))))
475
476 (define (list->symbol . args)
477 (string->symbol (apply list->string args)))
478
479 (define (symbol . args)
480 (string->symbol (apply string args)))
481
482 \f
483
484 ;;; {Lists}
485 ;;;
486
487 (define (list-index l k)
488 (let loop ((n 0)
489 (l l))
490 (and (not (null? l))
491 (if (eq? (car l) k)
492 n
493 (loop (+ n 1) (cdr l))))))
494
495 \f
496
497 ;;; {and-map and or-map}
498 ;;;
499 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
500 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
501 ;;;
502
503 ;; and-map f l
504 ;;
505 ;; Apply f to successive elements of l until exhaustion or f returns #f.
506 ;; If returning early, return #f. Otherwise, return the last value returned
507 ;; by f. If f has never been called because l is empty, return #t.
508 ;;
509 (define (and-map f lst)
510 (let loop ((result #t)
511 (l lst))
512 (and result
513 (or (and (null? l)
514 result)
515 (loop (f (car l)) (cdr l))))))
516
517 ;; or-map f l
518 ;;
519 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
520 ;; If returning early, return the return value of f.
521 ;;
522 (define (or-map f lst)
523 (let loop ((result #f)
524 (l lst))
525 (or result
526 (and (not (null? l))
527 (loop (f (car l)) (cdr l))))))
528
529 \f
530
531 (if (provided? 'posix)
532 (primitive-load-path "ice-9/posix.scm"))
533
534 (if (provided? 'socket)
535 (primitive-load-path "ice-9/networking.scm"))
536
537 ;; For reference, Emacs file-exists-p uses stat in this same way.
538 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
539 ;; C where all that's needed is to inspect the return from stat().
540 (define file-exists?
541 (if (provided? 'posix)
542 (lambda (str)
543 (->bool (false-if-exception (stat str))))
544 (lambda (str)
545 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
546 (lambda args #f))))
547 (if port (begin (close-port port) #t)
548 #f)))))
549
550 (define file-is-directory?
551 (if (provided? 'posix)
552 (lambda (str)
553 (eq? (stat:type (stat str)) 'directory))
554 (lambda (str)
555 (let ((port (catch 'system-error
556 (lambda () (open-file (string-append str "/.")
557 OPEN_READ))
558 (lambda args #f))))
559 (if port (begin (close-port port) #t)
560 #f)))))
561
562 (define (has-suffix? str suffix)
563 (let ((sufl (string-length suffix))
564 (sl (string-length str)))
565 (and (> sl sufl)
566 (string=? (substring str (- sl sufl) sl) suffix))))
567
568 (define (system-error-errno args)
569 (if (eq? (car args) 'system-error)
570 (car (list-ref args 4))
571 #f))
572
573 \f
574
575 ;;; {Error Handling}
576 ;;;
577
578 (define (error . args)
579 (save-stack)
580 (if (null? args)
581 (scm-error 'misc-error #f "?" #f #f)
582 (let loop ((msg "~A")
583 (rest (cdr args)))
584 (if (not (null? rest))
585 (loop (string-append msg " ~S")
586 (cdr rest))
587 (scm-error 'misc-error #f msg args #f)))))
588
589 ;; bad-throw is the hook that is called upon a throw to a an unhandled
590 ;; key (unless the throw has four arguments, in which case
591 ;; it's usually interpreted as an error throw.)
592 ;; If the key has a default handler (a throw-handler-default property),
593 ;; it is applied to the throw.
594 ;;
595 (define (bad-throw key . args)
596 (let ((default (symbol-property key 'throw-handler-default)))
597 (or (and default (apply default key args))
598 (apply error "unhandled-exception:" key args))))
599
600 \f
601
602 (define (tm:sec obj) (vector-ref obj 0))
603 (define (tm:min obj) (vector-ref obj 1))
604 (define (tm:hour obj) (vector-ref obj 2))
605 (define (tm:mday obj) (vector-ref obj 3))
606 (define (tm:mon obj) (vector-ref obj 4))
607 (define (tm:year obj) (vector-ref obj 5))
608 (define (tm:wday obj) (vector-ref obj 6))
609 (define (tm:yday obj) (vector-ref obj 7))
610 (define (tm:isdst obj) (vector-ref obj 8))
611 (define (tm:gmtoff obj) (vector-ref obj 9))
612 (define (tm:zone obj) (vector-ref obj 10))
613
614 (define (set-tm:sec obj val) (vector-set! obj 0 val))
615 (define (set-tm:min obj val) (vector-set! obj 1 val))
616 (define (set-tm:hour obj val) (vector-set! obj 2 val))
617 (define (set-tm:mday obj val) (vector-set! obj 3 val))
618 (define (set-tm:mon obj val) (vector-set! obj 4 val))
619 (define (set-tm:year obj val) (vector-set! obj 5 val))
620 (define (set-tm:wday obj val) (vector-set! obj 6 val))
621 (define (set-tm:yday obj val) (vector-set! obj 7 val))
622 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
623 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
624 (define (set-tm:zone obj val) (vector-set! obj 10 val))
625
626 (define (tms:clock obj) (vector-ref obj 0))
627 (define (tms:utime obj) (vector-ref obj 1))
628 (define (tms:stime obj) (vector-ref obj 2))
629 (define (tms:cutime obj) (vector-ref obj 3))
630 (define (tms:cstime obj) (vector-ref obj 4))
631
632 (define file-position ftell)
633 (define (file-set-position port offset . whence)
634 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
635 (seek port offset whence)))
636
637 (define (move->fdes fd/port fd)
638 (cond ((integer? fd/port)
639 (dup->fdes fd/port fd)
640 (close fd/port)
641 fd)
642 (else
643 (primitive-move->fdes fd/port fd)
644 (set-port-revealed! fd/port 1)
645 fd/port)))
646
647 (define (release-port-handle port)
648 (let ((revealed (port-revealed port)))
649 (if (> revealed 0)
650 (set-port-revealed! port (- revealed 1)))))
651
652 (define (dup->port port/fd mode . maybe-fd)
653 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
654 mode)))
655 (if (pair? maybe-fd)
656 (set-port-revealed! port 1))
657 port))
658
659 (define (dup->inport port/fd . maybe-fd)
660 (apply dup->port port/fd "r" maybe-fd))
661
662 (define (dup->outport port/fd . maybe-fd)
663 (apply dup->port port/fd "w" maybe-fd))
664
665 (define (dup port/fd . maybe-fd)
666 (if (integer? port/fd)
667 (apply dup->fdes port/fd maybe-fd)
668 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
669
670 (define (duplicate-port port modes)
671 (dup->port port modes))
672
673 (define (fdes->inport fdes)
674 (let loop ((rest-ports (fdes->ports fdes)))
675 (cond ((null? rest-ports)
676 (let ((result (fdopen fdes "r")))
677 (set-port-revealed! result 1)
678 result))
679 ((input-port? (car rest-ports))
680 (set-port-revealed! (car rest-ports)
681 (+ (port-revealed (car rest-ports)) 1))
682 (car rest-ports))
683 (else
684 (loop (cdr rest-ports))))))
685
686 (define (fdes->outport fdes)
687 (let loop ((rest-ports (fdes->ports fdes)))
688 (cond ((null? rest-ports)
689 (let ((result (fdopen fdes "w")))
690 (set-port-revealed! result 1)
691 result))
692 ((output-port? (car rest-ports))
693 (set-port-revealed! (car rest-ports)
694 (+ (port-revealed (car rest-ports)) 1))
695 (car rest-ports))
696 (else
697 (loop (cdr rest-ports))))))
698
699 (define (port->fdes port)
700 (set-port-revealed! port (+ (port-revealed port) 1))
701 (fileno port))
702
703 (define (setenv name value)
704 (if value
705 (putenv (string-append name "=" value))
706 (putenv name)))
707
708 (define (unsetenv name)
709 "Remove the entry for NAME from the environment."
710 (putenv name))
711
712 \f
713
714 ;;; {Load Paths}
715 ;;;
716
717 ;;; Here for backward compatability
718 ;;
719 (define scheme-file-suffix (lambda () ".scm"))
720
721 (define (in-vicinity vicinity file)
722 (let ((tail (let ((len (string-length vicinity)))
723 (if (zero? len)
724 #f
725 (string-ref vicinity (- len 1))))))
726 (string-append vicinity
727 (if (or (not tail)
728 (eq? tail #\/))
729 ""
730 "/")
731 file)))
732
733 \f
734
735 ;;; {Help for scm_shell}
736 ;;;
737 ;;; The argument-processing code used by Guile-based shells generates
738 ;;; Scheme code based on the argument list. This page contains help
739 ;;; functions for the code it generates.
740 ;;;
741
742 (define (command-line) (program-arguments))
743
744 ;; This is mostly for the internal use of the code generated by
745 ;; scm_compile_shell_switches.
746
747 (define (turn-on-debugging)
748 (debug-enable 'debug)
749 (debug-enable 'backtrace)
750 (read-enable 'positions))
751
752 (define (load-user-init)
753 (let* ((home (or (getenv "HOME")
754 (false-if-exception (passwd:dir (getpwuid (getuid))))
755 "/")) ;; fallback for cygwin etc.
756 (init-file (in-vicinity home ".guile")))
757 (if (file-exists? init-file)
758 (primitive-load init-file))))
759
760 \f
761
762 ;;; {Loading by paths}
763 ;;;
764
765 ;;; Load a Scheme source file named NAME, searching for it in the
766 ;;; directories listed in %load-path, and applying each of the file
767 ;;; name extensions listed in %load-extensions.
768 (define (load-from-path name)
769 (start-stack 'load-stack
770 (primitive-load-path name)))
771
772
773 \f
774
775 ;;; {Transcendental Functions}
776 ;;;
777 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
778 ;;; Written by Jerry D. Hedden, (C) FSF.
779 ;;; See the file `COPYING' for terms applying to this program.
780 ;;;
781
782 (define (exp z)
783 (if (real? z) ($exp z)
784 (make-polar ($exp (real-part z)) (imag-part z))))
785
786 (define (log z)
787 (if (and (real? z) (>= z 0))
788 ($log z)
789 (make-rectangular ($log (magnitude z)) (angle z))))
790
791 (define (sqrt z)
792 (if (real? z)
793 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
794 ($sqrt z))
795 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
796
797 (define expt
798 (let ((integer-expt integer-expt))
799 (lambda (z1 z2)
800 (cond ((and (exact? z2) (integer? z2))
801 (integer-expt z1 z2))
802 ((and (real? z2) (real? z1) (>= z1 0))
803 ($expt z1 z2))
804 (else
805 (exp (* z2 (log z1))))))))
806
807 (define (sinh z)
808 (if (real? z) ($sinh z)
809 (let ((x (real-part z)) (y (imag-part z)))
810 (make-rectangular (* ($sinh x) ($cos y))
811 (* ($cosh x) ($sin y))))))
812 (define (cosh z)
813 (if (real? z) ($cosh z)
814 (let ((x (real-part z)) (y (imag-part z)))
815 (make-rectangular (* ($cosh x) ($cos y))
816 (* ($sinh x) ($sin y))))))
817 (define (tanh z)
818 (if (real? z) ($tanh z)
819 (let* ((x (* 2 (real-part z)))
820 (y (* 2 (imag-part z)))
821 (w (+ ($cosh x) ($cos y))))
822 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
823
824 (define (asinh z)
825 (if (real? z) ($asinh z)
826 (log (+ z (sqrt (+ (* z z) 1))))))
827
828 (define (acosh z)
829 (if (and (real? z) (>= z 1))
830 ($acosh z)
831 (log (+ z (sqrt (- (* z z) 1))))))
832
833 (define (atanh z)
834 (if (and (real? z) (> z -1) (< z 1))
835 ($atanh z)
836 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
837
838 (define (sin z)
839 (if (real? z) ($sin z)
840 (let ((x (real-part z)) (y (imag-part z)))
841 (make-rectangular (* ($sin x) ($cosh y))
842 (* ($cos x) ($sinh y))))))
843 (define (cos z)
844 (if (real? z) ($cos z)
845 (let ((x (real-part z)) (y (imag-part z)))
846 (make-rectangular (* ($cos x) ($cosh y))
847 (- (* ($sin x) ($sinh y)))))))
848 (define (tan z)
849 (if (real? z) ($tan z)
850 (let* ((x (* 2 (real-part z)))
851 (y (* 2 (imag-part z)))
852 (w (+ ($cos x) ($cosh y))))
853 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
854
855 (define (asin z)
856 (if (and (real? z) (>= z -1) (<= z 1))
857 ($asin z)
858 (* -i (asinh (* +i z)))))
859
860 (define (acos z)
861 (if (and (real? z) (>= z -1) (<= z 1))
862 ($acos z)
863 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
864
865 (define (atan z . y)
866 (if (null? y)
867 (if (real? z) ($atan z)
868 (/ (log (/ (- +i z) (+ +i z))) +2i))
869 ($atan2 z (car y))))
870
871 (define (log10 arg)
872 (/ (log arg) (log 10)))
873
874 \f
875
876 ;;; {Reader Extensions}
877 ;;;
878 ;;; Reader code for various "#c" forms.
879 ;;;
880
881 (read-hash-extend #\' (lambda (c port)
882 (read port)))
883
884 (define read-eval? (make-fluid))
885 (fluid-set! read-eval? #f)
886 (read-hash-extend #\.
887 (lambda (c port)
888 (if (fluid-ref read-eval?)
889 (eval (read port) (interaction-environment))
890 (error
891 "#. read expansion found and read-eval? is #f."))))
892
893 \f
894
895 ;;; {Command Line Options}
896 ;;;
897
898 (define (get-option argv kw-opts kw-args return)
899 (cond
900 ((null? argv)
901 (return #f #f argv))
902
903 ((or (not (eq? #\- (string-ref (car argv) 0)))
904 (eq? (string-length (car argv)) 1))
905 (return 'normal-arg (car argv) (cdr argv)))
906
907 ((eq? #\- (string-ref (car argv) 1))
908 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
909 (string-length (car argv))))
910 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
911 (kw-opt? (member kw kw-opts))
912 (kw-arg? (member kw kw-args))
913 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
914 (substring (car argv)
915 (+ kw-arg-pos 1)
916 (string-length (car argv))))
917 (and kw-arg?
918 (begin (set! argv (cdr argv)) (car argv))))))
919 (if (or kw-opt? kw-arg?)
920 (return kw arg (cdr argv))
921 (return 'usage-error kw (cdr argv)))))
922
923 (else
924 (let* ((char (substring (car argv) 1 2))
925 (kw (symbol->keyword char)))
926 (cond
927
928 ((member kw kw-opts)
929 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
930 (new-argv (if (= 0 (string-length rest-car))
931 (cdr argv)
932 (cons (string-append "-" rest-car) (cdr argv)))))
933 (return kw #f new-argv)))
934
935 ((member kw kw-args)
936 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
937 (arg (if (= 0 (string-length rest-car))
938 (cadr argv)
939 rest-car))
940 (new-argv (if (= 0 (string-length rest-car))
941 (cddr argv)
942 (cdr argv))))
943 (return kw arg new-argv)))
944
945 (else (return 'usage-error kw argv)))))))
946
947 (define (for-next-option proc argv kw-opts kw-args)
948 (let loop ((argv argv))
949 (get-option argv kw-opts kw-args
950 (lambda (opt opt-arg argv)
951 (and opt (proc opt opt-arg argv loop))))))
952
953 (define (display-usage-report kw-desc)
954 (for-each
955 (lambda (kw)
956 (or (eq? (car kw) #t)
957 (eq? (car kw) 'else)
958 (let* ((opt-desc kw)
959 (help (cadr opt-desc))
960 (opts (car opt-desc))
961 (opts-proper (if (string? (car opts)) (cdr opts) opts))
962 (arg-name (if (string? (car opts))
963 (string-append "<" (car opts) ">")
964 ""))
965 (left-part (string-append
966 (with-output-to-string
967 (lambda ()
968 (map (lambda (x) (display (keyword->symbol x)) (display " "))
969 opts-proper)))
970 arg-name))
971 (middle-part (if (and (< (string-length left-part) 30)
972 (< (string-length help) 40))
973 (make-string (- 30 (string-length left-part)) #\ )
974 "\n\t")))
975 (display left-part)
976 (display middle-part)
977 (display help)
978 (newline))))
979 kw-desc))
980
981
982
983 (define (transform-usage-lambda cases)
984 (let* ((raw-usage (delq! 'else (map car cases)))
985 (usage-sans-specials (map (lambda (x)
986 (or (and (not (list? x)) x)
987 (and (symbol? (car x)) #t)
988 (and (boolean? (car x)) #t)
989 x))
990 raw-usage))
991 (usage-desc (delq! #t usage-sans-specials))
992 (kw-desc (map car usage-desc))
993 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
994 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
995 (transmogrified-cases (map (lambda (case)
996 (cons (let ((opts (car case)))
997 (if (or (boolean? opts) (eq? 'else opts))
998 opts
999 (cond
1000 ((symbol? (car opts)) opts)
1001 ((boolean? (car opts)) opts)
1002 ((string? (caar opts)) (cdar opts))
1003 (else (car opts)))))
1004 (cdr case)))
1005 cases)))
1006 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1007 (lambda (%argv)
1008 (let %next-arg ((%argv %argv))
1009 (get-option %argv
1010 ',kw-opts
1011 ',kw-args
1012 (lambda (%opt %arg %new-argv)
1013 (case %opt
1014 ,@ transmogrified-cases))))))))
1015
1016
1017 \f
1018
1019 ;;; {Low Level Modules}
1020 ;;;
1021 ;;; These are the low level data structures for modules.
1022 ;;;
1023 ;;; Every module object is of the type 'module-type', which is a record
1024 ;;; consisting of the following members:
1025 ;;;
1026 ;;; - eval-closure: the function that defines for its module the strategy that
1027 ;;; shall be followed when looking up symbols in the module.
1028 ;;;
1029 ;;; An eval-closure is a function taking two arguments: the symbol to be
1030 ;;; looked up and a boolean value telling whether a binding for the symbol
1031 ;;; should be created if it does not exist yet. If the symbol lookup
1032 ;;; succeeded (either because an existing binding was found or because a new
1033 ;;; binding was created), a variable object representing the binding is
1034 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1035 ;;; closure does not take the module to be searched as an argument: During
1036 ;;; construction of the eval-closure, the eval-closure has to store the
1037 ;;; module it belongs to in its environment. This means, that any
1038 ;;; eval-closure can belong to only one module.
1039 ;;;
1040 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1041 ;;; special cases of eval-closures are to be distinguished: During startup
1042 ;;; the module system is not yet activated. In this phase, no modules are
1043 ;;; defined and all bindings are automatically stored by the system in the
1044 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1045 ;;; functions which require an eval-closure as their argument need to be
1046 ;;; passed the value #f.
1047 ;;;
1048 ;;; The other two special cases of eval-closures are the
1049 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1050 ;;; behave equally for the case that no new binding is to be created. The
1051 ;;; difference between the two comes in, when the boolean argument to the
1052 ;;; eval-closure indicates that a new binding shall be created if it is not
1053 ;;; found.
1054 ;;;
1055 ;;; Given that no new binding shall be created, both standard eval-closures
1056 ;;; define the following standard strategy of searching bindings in the
1057 ;;; module: First, the module's obarray is searched for the symbol. Second,
1058 ;;; if no binding for the symbol was found in the module's obarray, the
1059 ;;; module's binder procedure is exececuted. If this procedure did not
1060 ;;; return a binding for the symbol, the modules referenced in the module's
1061 ;;; uses list are recursively searched for a binding of the symbol. If the
1062 ;;; binding can not be found in these modules also, the symbol lookup has
1063 ;;; failed.
1064 ;;;
1065 ;;; If a new binding shall be created, the standard-interface-eval-closure
1066 ;;; immediately returns indicating failure. That is, it does not even try
1067 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1068 ;;; first search the obarray, and if no binding was found there, would
1069 ;;; create a new binding in the obarray, therefore not calling the binder
1070 ;;; procedure or searching the modules in the uses list.
1071 ;;;
1072 ;;; The explanation of the following members obarray, binder and uses
1073 ;;; assumes that the symbol lookup follows the strategy that is defined in
1074 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1075 ;;;
1076 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1077 ;;; hash table, the definitions are found that are local to the module (that
1078 ;;; is, not imported from other modules). When looking up bindings in the
1079 ;;; module, this hash table is searched first.
1080 ;;;
1081 ;;; - binder: either #f or a function taking a module and a symbol argument.
1082 ;;; If it is a function it is called after the obarray has been
1083 ;;; unsuccessfully searched for a binding. It then can provide bindings
1084 ;;; that would otherwise not be found locally in the module.
1085 ;;;
1086 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1087 ;;; These modules are the third place queried for bindings after the obarray
1088 ;;; has been unsuccessfully searched and the binder function did not deliver
1089 ;;; a result either.
1090 ;;;
1091 ;;; - transformer: either #f or a function taking a scheme expression as
1092 ;;; delivered by read. If it is a function, it will be called to perform
1093 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1094 ;;; expression. The output of the transformer function will then be passed
1095 ;;; to Guile's internal memoizer. This means that the output must be valid
1096 ;;; scheme code. The only exception is, that the output may make use of the
1097 ;;; syntax extensions provided to identify the modules that a binding
1098 ;;; belongs to.
1099 ;;;
1100 ;;; - name: the name of the module. This is used for all kinds of printing
1101 ;;; outputs. In certain places the module name also serves as a way of
1102 ;;; identification. When adding a module to the uses list of another
1103 ;;; module, it is made sure that the new uses list will not contain two
1104 ;;; modules of the same name.
1105 ;;;
1106 ;;; - kind: classification of the kind of module. The value is (currently?)
1107 ;;; only used for printing. It has no influence on how a module is treated.
1108 ;;; Currently the following values are used when setting the module kind:
1109 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1110 ;;; is set, it defaults to 'module.
1111 ;;;
1112 ;;; - duplicates-handlers
1113 ;;;
1114 ;;; - duplicates-interface
1115 ;;;
1116 ;;; - observers
1117 ;;;
1118 ;;; - weak-observers
1119 ;;;
1120 ;;; - observer-id
1121 ;;;
1122 ;;; In addition, the module may (must?) contain a binding for
1123 ;;; %module-public-interface... More explanations here...
1124 ;;;
1125 ;;; !!! warning: The interface to lazy binder procedures is going
1126 ;;; to be changed in an incompatible way to permit all the basic
1127 ;;; module ops to be virtualized.
1128 ;;;
1129 ;;; (make-module size use-list lazy-binding-proc) => module
1130 ;;; module-{obarray,uses,binder}[|-set!]
1131 ;;; (module? obj) => [#t|#f]
1132 ;;; (module-locally-bound? module symbol) => [#t|#f]
1133 ;;; (module-bound? module symbol) => [#t|#f]
1134 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1135 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1136 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1137 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1138 ;;; (module-symbol-binding module symbol opt-value)
1139 ;;; => [ <obj> | opt-value | an error occurs ]
1140 ;;; (module-make-local-var! module symbol) => #<variable...>
1141 ;;; (module-add! module symbol var) => unspecified
1142 ;;; (module-remove! module symbol) => unspecified
1143 ;;; (module-for-each proc module) => unspecified
1144 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1145 ;;; (set-current-module module) => unspecified
1146 ;;; (current-module) => #<module...>
1147 ;;;
1148 ;;;
1149
1150 \f
1151
1152 ;;; {Printing Modules}
1153 ;;;
1154
1155 ;; This is how modules are printed. You can re-define it.
1156 ;; (Redefining is actually more complicated than simply redefining
1157 ;; %print-module because that would only change the binding and not
1158 ;; the value stored in the vtable that determines how record are
1159 ;; printed. Sigh.)
1160
1161 (define (%print-module mod port) ; unused args: depth length style table)
1162 (display "#<" port)
1163 (display (or (module-kind mod) "module") port)
1164 (let ((name (module-name mod)))
1165 (if name
1166 (begin
1167 (display " " port)
1168 (display name port))))
1169 (display " " port)
1170 (display (number->string (object-address mod) 16) port)
1171 (display ">" port))
1172
1173 ;; module-type
1174 ;;
1175 ;; A module is characterized by an obarray in which local symbols
1176 ;; are interned, a list of modules, "uses", from which non-local
1177 ;; bindings can be inherited, and an optional lazy-binder which
1178 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1179 ;; bindings that would otherwise not be found locally in the module.
1180 ;;
1181 ;; NOTE: If you change anything here, you also need to change
1182 ;; libguile/modules.h.
1183 ;;
1184 (define module-type
1185 (make-record-type 'module
1186 '(obarray uses binder eval-closure transformer name kind
1187 duplicates-handlers duplicates-interface
1188 observers weak-observers observer-id)
1189 %print-module))
1190
1191 ;; make-module &opt size uses binder
1192 ;;
1193 ;; Create a new module, perhaps with a particular size of obarray,
1194 ;; initial uses list, or binding procedure.
1195 ;;
1196 (define make-module
1197 (lambda args
1198
1199 (define (parse-arg index default)
1200 (if (> (length args) index)
1201 (list-ref args index)
1202 default))
1203
1204 (if (> (length args) 3)
1205 (error "Too many args to make-module." args))
1206
1207 (let ((size (parse-arg 0 31))
1208 (uses (parse-arg 1 '()))
1209 (binder (parse-arg 2 #f)))
1210
1211 (if (not (integer? size))
1212 (error "Illegal size to make-module." size))
1213 (if (not (and (list? uses)
1214 (and-map module? uses)))
1215 (error "Incorrect use list." uses))
1216 (if (and binder (not (procedure? binder)))
1217 (error
1218 "Lazy-binder expected to be a procedure or #f." binder))
1219
1220 (let ((module (module-constructor (make-hash-table size)
1221 uses binder #f #f #f #f #f #f
1222 '()
1223 (make-weak-value-hash-table 31)
1224 0)))
1225
1226 ;; We can't pass this as an argument to module-constructor,
1227 ;; because we need it to close over a pointer to the module
1228 ;; itself.
1229 (set-module-eval-closure! module (standard-eval-closure module))
1230
1231 module))))
1232
1233 (define module-constructor (record-constructor module-type))
1234 (define module-obarray (record-accessor module-type 'obarray))
1235 (define set-module-obarray! (record-modifier module-type 'obarray))
1236 (define module-uses (record-accessor module-type 'uses))
1237 (define set-module-uses! (record-modifier module-type 'uses))
1238 (define module-binder (record-accessor module-type 'binder))
1239 (define set-module-binder! (record-modifier module-type 'binder))
1240
1241 ;; NOTE: This binding is used in libguile/modules.c.
1242 (define module-eval-closure (record-accessor module-type 'eval-closure))
1243
1244 (define module-transformer (record-accessor module-type 'transformer))
1245 (define set-module-transformer! (record-modifier module-type 'transformer))
1246 (define module-name (record-accessor module-type 'name))
1247 (define set-module-name! (record-modifier module-type 'name))
1248 (define module-kind (record-accessor module-type 'kind))
1249 (define set-module-kind! (record-modifier module-type 'kind))
1250 (define module-duplicates-handlers
1251 (record-accessor module-type 'duplicates-handlers))
1252 (define set-module-duplicates-handlers!
1253 (record-modifier module-type 'duplicates-handlers))
1254 (define module-duplicates-interface
1255 (record-accessor module-type 'duplicates-interface))
1256 (define set-module-duplicates-interface!
1257 (record-modifier module-type 'duplicates-interface))
1258 (define module-observers (record-accessor module-type 'observers))
1259 (define set-module-observers! (record-modifier module-type 'observers))
1260 (define module-weak-observers (record-accessor module-type 'weak-observers))
1261 (define module-observer-id (record-accessor module-type 'observer-id))
1262 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1263 (define module? (record-predicate module-type))
1264
1265 (define set-module-eval-closure!
1266 (let ((setter (record-modifier module-type 'eval-closure)))
1267 (lambda (module closure)
1268 (setter module closure)
1269 ;; Make it possible to lookup the module from the environment.
1270 ;; This implementation is correct since an eval closure can belong
1271 ;; to maximally one module.
1272 (set-procedure-property! closure 'module module))))
1273
1274 \f
1275
1276 ;;; {Observer protocol}
1277 ;;;
1278
1279 (define (module-observe module proc)
1280 (set-module-observers! module (cons proc (module-observers module)))
1281 (cons module proc))
1282
1283 (define (module-observe-weak module proc)
1284 (let ((id (module-observer-id module)))
1285 (hash-set! (module-weak-observers module) id proc)
1286 (set-module-observer-id! module (+ 1 id))
1287 (cons module id)))
1288
1289 (define (module-unobserve token)
1290 (let ((module (car token))
1291 (id (cdr token)))
1292 (if (integer? id)
1293 (hash-remove! (module-weak-observers module) id)
1294 (set-module-observers! module (delq1! id (module-observers module)))))
1295 *unspecified*)
1296
1297 (define module-defer-observers #f)
1298 (define module-defer-observers-mutex (make-mutex))
1299 (define module-defer-observers-table (make-hash-table))
1300
1301 (define (module-modified m)
1302 (if module-defer-observers
1303 (hash-set! module-defer-observers-table m #t)
1304 (module-call-observers m)))
1305
1306 ;;; This function can be used to delay calls to observers so that they
1307 ;;; can be called once only in the face of massive updating of modules.
1308 ;;;
1309 (define (call-with-deferred-observers thunk)
1310 (dynamic-wind
1311 (lambda ()
1312 (lock-mutex module-defer-observers-mutex)
1313 (set! module-defer-observers #t))
1314 thunk
1315 (lambda ()
1316 (set! module-defer-observers #f)
1317 (hash-for-each (lambda (m dummy)
1318 (module-call-observers m))
1319 module-defer-observers-table)
1320 (hash-clear! module-defer-observers-table)
1321 (unlock-mutex module-defer-observers-mutex))))
1322
1323 (define (module-call-observers m)
1324 (for-each (lambda (proc) (proc m)) (module-observers m))
1325 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1326
1327 \f
1328
1329 ;;; {Module Searching in General}
1330 ;;;
1331 ;;; We sometimes want to look for properties of a symbol
1332 ;;; just within the obarray of one module. If the property
1333 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1334 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1335 ;;;
1336 ;;;
1337 ;;; Other times, we want to test for a symbol property in the obarray
1338 ;;; of M and, if it is not found there, try each of the modules in the
1339 ;;; uses list of M. This is the normal way of testing for some
1340 ;;; property, so we state these properties without qualification as
1341 ;;; in: ``The symbol 'fnord is interned in module M because it is
1342 ;;; interned locally in module M2 which is a member of the uses list
1343 ;;; of M.''
1344 ;;;
1345
1346 ;; module-search fn m
1347 ;;
1348 ;; return the first non-#f result of FN applied to M and then to
1349 ;; the modules in the uses of m, and so on recursively. If all applications
1350 ;; return #f, then so does this function.
1351 ;;
1352 (define (module-search fn m v)
1353 (define (loop pos)
1354 (and (pair? pos)
1355 (or (module-search fn (car pos) v)
1356 (loop (cdr pos)))))
1357 (or (fn m v)
1358 (loop (module-uses m))))
1359
1360
1361 ;;; {Is a symbol bound in a module?}
1362 ;;;
1363 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1364 ;;; of S in M has been set to some well-defined value.
1365 ;;;
1366
1367 ;; module-locally-bound? module symbol
1368 ;;
1369 ;; Is a symbol bound (interned and defined) locally in a given module?
1370 ;;
1371 (define (module-locally-bound? m v)
1372 (let ((var (module-local-variable m v)))
1373 (and var
1374 (variable-bound? var))))
1375
1376 ;; module-bound? module symbol
1377 ;;
1378 ;; Is a symbol bound (interned and defined) anywhere in a given module
1379 ;; or its uses?
1380 ;;
1381 (define (module-bound? m v)
1382 (module-search module-locally-bound? m v))
1383
1384 ;;; {Is a symbol interned in a module?}
1385 ;;;
1386 ;;; Symbol S in Module M is interned if S occurs in
1387 ;;; of S in M has been set to some well-defined value.
1388 ;;;
1389 ;;; It is possible to intern a symbol in a module without providing
1390 ;;; an initial binding for the corresponding variable. This is done
1391 ;;; with:
1392 ;;; (module-add! module symbol (make-undefined-variable))
1393 ;;;
1394 ;;; In that case, the symbol is interned in the module, but not
1395 ;;; bound there. The unbound symbol shadows any binding for that
1396 ;;; symbol that might otherwise be inherited from a member of the uses list.
1397 ;;;
1398
1399 (define (module-obarray-get-handle ob key)
1400 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1401
1402 (define (module-obarray-ref ob key)
1403 ((if (symbol? key) hashq-ref hash-ref) ob key))
1404
1405 (define (module-obarray-set! ob key val)
1406 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1407
1408 (define (module-obarray-remove! ob key)
1409 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1410
1411 ;; module-symbol-locally-interned? module symbol
1412 ;;
1413 ;; is a symbol interned (not neccessarily defined) locally in a given module
1414 ;; or its uses? Interned symbols shadow inherited bindings even if
1415 ;; they are not themselves bound to a defined value.
1416 ;;
1417 (define (module-symbol-locally-interned? m v)
1418 (not (not (module-obarray-get-handle (module-obarray m) v))))
1419
1420 ;; module-symbol-interned? module symbol
1421 ;;
1422 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1423 ;; or its uses? Interned symbols shadow inherited bindings even if
1424 ;; they are not themselves bound to a defined value.
1425 ;;
1426 (define (module-symbol-interned? m v)
1427 (module-search module-symbol-locally-interned? m v))
1428
1429
1430 ;;; {Mapping modules x symbols --> variables}
1431 ;;;
1432
1433 ;; module-local-variable module symbol
1434 ;; return the local variable associated with a MODULE and SYMBOL.
1435 ;;
1436 ;;; This function is very important. It is the only function that can
1437 ;;; return a variable from a module other than the mutators that store
1438 ;;; new variables in modules. Therefore, this function is the location
1439 ;;; of the "lazy binder" hack.
1440 ;;;
1441 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1442 ;;; to a variable, return that variable object.
1443 ;;;
1444 ;;; If the symbols is not found at first, but the module has a lazy binder,
1445 ;;; then try the binder.
1446 ;;;
1447 ;;; If the symbol is not found at all, return #f.
1448 ;;;
1449 (define (module-local-variable m v)
1450 ; (caddr
1451 ; (list m v
1452 (let ((b (module-obarray-ref (module-obarray m) v)))
1453 (or (and (variable? b) b)
1454 (and (module-binder m)
1455 ((module-binder m) m v #f)))))
1456 ;))
1457
1458 ;; module-variable module symbol
1459 ;;
1460 ;; like module-local-variable, except search the uses in the
1461 ;; case V is not found in M.
1462 ;;
1463 ;; NOTE: This function is superseded with C code (see modules.c)
1464 ;;; when using the standard eval closure.
1465 ;;
1466 (define (module-variable m v)
1467 (module-search module-local-variable m v))
1468
1469
1470 ;;; {Mapping modules x symbols --> bindings}
1471 ;;;
1472 ;;; These are similar to the mapping to variables, except that the
1473 ;;; variable is dereferenced.
1474 ;;;
1475
1476 ;; module-symbol-binding module symbol opt-value
1477 ;;
1478 ;; return the binding of a variable specified by name within
1479 ;; a given module, signalling an error if the variable is unbound.
1480 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1481 ;; return OPT-VALUE.
1482 ;;
1483 (define (module-symbol-local-binding m v . opt-val)
1484 (let ((var (module-local-variable m v)))
1485 (if (and var (variable-bound? var))
1486 (variable-ref var)
1487 (if (not (null? opt-val))
1488 (car opt-val)
1489 (error "Locally unbound variable." v)))))
1490
1491 ;; module-symbol-binding module symbol opt-value
1492 ;;
1493 ;; return the binding of a variable specified by name within
1494 ;; a given module, signalling an error if the variable is unbound.
1495 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1496 ;; return OPT-VALUE.
1497 ;;
1498 (define (module-symbol-binding m v . opt-val)
1499 (let ((var (module-variable m v)))
1500 (if (and var (variable-bound? var))
1501 (variable-ref var)
1502 (if (not (null? opt-val))
1503 (car opt-val)
1504 (error "Unbound variable." v)))))
1505
1506
1507 \f
1508
1509 ;;; {Adding Variables to Modules}
1510 ;;;
1511
1512 ;; module-make-local-var! module symbol
1513 ;;
1514 ;; ensure a variable for V in the local namespace of M.
1515 ;; If no variable was already there, then create a new and uninitialzied
1516 ;; variable.
1517 ;;
1518 ;; This function is used in modules.c.
1519 ;;
1520 (define (module-make-local-var! m v)
1521 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1522 (and (variable? b)
1523 (begin
1524 ;; Mark as modified since this function is called when
1525 ;; the standard eval closure defines a binding
1526 (module-modified m)
1527 b)))
1528
1529 ;; No local variable yet, so we need to create a new one. That
1530 ;; new variable is initialized with the old imported value of V,
1531 ;; if there is one.
1532 (let ((imported-var (module-variable m v))
1533 (local-var (or (and (module-binder m)
1534 ((module-binder m) m v #t))
1535 (begin
1536 (let ((answer (make-undefined-variable)))
1537 (module-add! m v answer)
1538 answer)))))
1539 (if (and imported-var (not (variable-bound? local-var)))
1540 (variable-set! local-var (variable-ref imported-var)))
1541 local-var)))
1542
1543 ;; module-ensure-local-variable! module symbol
1544 ;;
1545 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1546 ;; there is no binding for SYMBOL, create a new uninitialized
1547 ;; variable. Return the local variable.
1548 ;;
1549 (define (module-ensure-local-variable! module symbol)
1550 (or (module-local-variable module symbol)
1551 (let ((var (make-undefined-variable)))
1552 (module-add! module symbol var)
1553 var)))
1554
1555 ;; module-add! module symbol var
1556 ;;
1557 ;; ensure a particular variable for V in the local namespace of M.
1558 ;;
1559 (define (module-add! m v var)
1560 (if (not (variable? var))
1561 (error "Bad variable to module-add!" var))
1562 (module-obarray-set! (module-obarray m) v var)
1563 (module-modified m))
1564
1565 ;; module-remove!
1566 ;;
1567 ;; make sure that a symbol is undefined in the local namespace of M.
1568 ;;
1569 (define (module-remove! m v)
1570 (module-obarray-remove! (module-obarray m) v)
1571 (module-modified m))
1572
1573 (define (module-clear! m)
1574 (hash-clear! (module-obarray m))
1575 (module-modified m))
1576
1577 ;; MODULE-FOR-EACH -- exported
1578 ;;
1579 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1580 ;;
1581 (define (module-for-each proc module)
1582 (hash-for-each proc (module-obarray module)))
1583
1584 (define (module-map proc module)
1585 (hash-map->list proc (module-obarray module)))
1586
1587 \f
1588
1589 ;;; {Low Level Bootstrapping}
1590 ;;;
1591
1592 ;; make-root-module
1593
1594 ;; A root module uses the pre-modules-obarray as its obarray. This
1595 ;; special obarray accumulates all bindings that have been established
1596 ;; before the module system is fully booted.
1597 ;;
1598 ;; (The obarray continues to be used by code that has been closed over
1599 ;; before the module system has been booted.)
1600
1601 (define (make-root-module)
1602 (let ((m (make-module 0)))
1603 (set-module-obarray! m (%get-pre-modules-obarray))
1604 m))
1605
1606 ;; make-scm-module
1607
1608 ;; The root interface is a module that uses the same obarray as the
1609 ;; root module. It does not allow new definitions, tho.
1610
1611 (define (make-scm-module)
1612 (let ((m (make-module 0)))
1613 (set-module-obarray! m (%get-pre-modules-obarray))
1614 (set-module-eval-closure! m (standard-interface-eval-closure m))
1615 m))
1616
1617
1618 \f
1619
1620 ;;; {Module-based Loading}
1621 ;;;
1622
1623 (define (save-module-excursion thunk)
1624 (let ((inner-module (current-module))
1625 (outer-module #f))
1626 (dynamic-wind (lambda ()
1627 (set! outer-module (current-module))
1628 (set-current-module inner-module)
1629 (set! inner-module #f))
1630 thunk
1631 (lambda ()
1632 (set! inner-module (current-module))
1633 (set-current-module outer-module)
1634 (set! outer-module #f)))))
1635
1636 (define basic-load load)
1637
1638 (define (load-module filename)
1639 (save-module-excursion
1640 (lambda ()
1641 (let ((oldname (and (current-load-port)
1642 (port-filename (current-load-port)))))
1643 (basic-load (if (and oldname
1644 (> (string-length filename) 0)
1645 (not (char=? (string-ref filename 0) #\/))
1646 (not (string=? (dirname oldname) ".")))
1647 (string-append (dirname oldname) "/" filename)
1648 filename))))))
1649
1650
1651 \f
1652
1653 ;;; {MODULE-REF -- exported}
1654 ;;;
1655
1656 ;; Returns the value of a variable called NAME in MODULE or any of its
1657 ;; used modules. If there is no such variable, then if the optional third
1658 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1659 ;;
1660 (define (module-ref module name . rest)
1661 (let ((variable (module-variable module name)))
1662 (if (and variable (variable-bound? variable))
1663 (variable-ref variable)
1664 (if (null? rest)
1665 (error "No variable named" name 'in module)
1666 (car rest) ; default value
1667 ))))
1668
1669 ;; MODULE-SET! -- exported
1670 ;;
1671 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1672 ;; to VALUE; if there is no such variable, an error is signaled.
1673 ;;
1674 (define (module-set! module name value)
1675 (let ((variable (module-variable module name)))
1676 (if variable
1677 (variable-set! variable value)
1678 (error "No variable named" name 'in module))))
1679
1680 ;; MODULE-DEFINE! -- exported
1681 ;;
1682 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1683 ;; variable, it is added first.
1684 ;;
1685 (define (module-define! module name value)
1686 (let ((variable (module-local-variable module name)))
1687 (if variable
1688 (begin
1689 (variable-set! variable value)
1690 (module-modified module))
1691 (let ((variable (make-variable value)))
1692 (module-add! module name variable)))))
1693
1694 ;; MODULE-DEFINED? -- exported
1695 ;;
1696 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1697 ;; uses)
1698 ;;
1699 (define (module-defined? module name)
1700 (let ((variable (module-variable module name)))
1701 (and variable (variable-bound? variable))))
1702
1703 ;; MODULE-USE! module interface
1704 ;;
1705 ;; Add INTERFACE to the list of interfaces used by MODULE.
1706 ;;
1707 (define (module-use! module interface)
1708 (set-module-uses! module
1709 (cons interface
1710 (filter (lambda (m)
1711 (not (equal? (module-name m)
1712 (module-name interface))))
1713 (module-uses module))))
1714 (module-modified module))
1715
1716 ;; MODULE-USE-INTERFACES! module interfaces
1717 ;;
1718 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1719 ;;
1720 (define (module-use-interfaces! module interfaces)
1721 (let* ((duplicates-handlers? (or (module-duplicates-handlers module)
1722 (default-duplicate-binding-procedures)))
1723 (uses (module-uses module)))
1724 ;; remove duplicates-interface
1725 (set! uses (delq! (module-duplicates-interface module) uses))
1726 ;; remove interfaces to be added
1727 (for-each (lambda (interface)
1728 (set! uses
1729 (filter (lambda (m)
1730 (not (equal? (module-name m)
1731 (module-name interface))))
1732 uses)))
1733 interfaces)
1734 ;; add interfaces to use list
1735 (set-module-uses! module uses)
1736 (for-each (lambda (interface)
1737 (and duplicates-handlers?
1738 ;; perform duplicate checking
1739 (process-duplicates module interface))
1740 (set! uses (cons interface uses))
1741 (set-module-uses! module uses))
1742 interfaces)
1743 ;; add duplicates interface
1744 (if (module-duplicates-interface module)
1745 (set-module-uses! module
1746 (cons (module-duplicates-interface module) uses)))
1747 (module-modified module)))
1748
1749 \f
1750
1751 ;;; {Recursive Namespaces}
1752 ;;;
1753 ;;; A hierarchical namespace emerges if we consider some module to be
1754 ;;; root, and variables bound to modules as nested namespaces.
1755 ;;;
1756 ;;; The routines in this file manage variable names in hierarchical namespace.
1757 ;;; Each variable name is a list of elements, looked up in successively nested
1758 ;;; modules.
1759 ;;;
1760 ;;; (nested-ref some-root-module '(foo bar baz))
1761 ;;; => <value of a variable named baz in the module bound to bar in
1762 ;;; the module bound to foo in some-root-module>
1763 ;;;
1764 ;;;
1765 ;;; There are:
1766 ;;;
1767 ;;; ;; a-root is a module
1768 ;;; ;; name is a list of symbols
1769 ;;;
1770 ;;; nested-ref a-root name
1771 ;;; nested-set! a-root name val
1772 ;;; nested-define! a-root name val
1773 ;;; nested-remove! a-root name
1774 ;;;
1775 ;;;
1776 ;;; (current-module) is a natural choice for a-root so for convenience there are
1777 ;;; also:
1778 ;;;
1779 ;;; local-ref name == nested-ref (current-module) name
1780 ;;; local-set! name val == nested-set! (current-module) name val
1781 ;;; local-define! name val == nested-define! (current-module) name val
1782 ;;; local-remove! name == nested-remove! (current-module) name
1783 ;;;
1784
1785
1786 (define (nested-ref root names)
1787 (let loop ((cur root)
1788 (elts names))
1789 (cond
1790 ((null? elts) cur)
1791 ((not (module? cur)) #f)
1792 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1793
1794 (define (nested-set! root names val)
1795 (let loop ((cur root)
1796 (elts names))
1797 (if (null? (cdr elts))
1798 (module-set! cur (car elts) val)
1799 (loop (module-ref cur (car elts)) (cdr elts)))))
1800
1801 (define (nested-define! root names val)
1802 (let loop ((cur root)
1803 (elts names))
1804 (if (null? (cdr elts))
1805 (module-define! cur (car elts) val)
1806 (loop (module-ref cur (car elts)) (cdr elts)))))
1807
1808 (define (nested-remove! root names)
1809 (let loop ((cur root)
1810 (elts names))
1811 (if (null? (cdr elts))
1812 (module-remove! cur (car elts))
1813 (loop (module-ref cur (car elts)) (cdr elts)))))
1814
1815 (define (local-ref names) (nested-ref (current-module) names))
1816 (define (local-set! names val) (nested-set! (current-module) names val))
1817 (define (local-define names val) (nested-define! (current-module) names val))
1818 (define (local-remove names) (nested-remove! (current-module) names))
1819
1820
1821 \f
1822
1823 ;;; {The (%app) module}
1824 ;;;
1825 ;;; The root of conventionally named objects not directly in the top level.
1826 ;;;
1827 ;;; (%app modules)
1828 ;;; (%app modules guile)
1829 ;;;
1830 ;;; The directory of all modules and the standard root module.
1831 ;;;
1832
1833 (define (module-public-interface m)
1834 (module-ref m '%module-public-interface #f))
1835 (define (set-module-public-interface! m i)
1836 (module-define! m '%module-public-interface i))
1837 (define (set-system-module! m s)
1838 (set-procedure-property! (module-eval-closure m) 'system-module s))
1839 (define the-root-module (make-root-module))
1840 (define the-scm-module (make-scm-module))
1841 (set-module-public-interface! the-root-module the-scm-module)
1842 (set-module-name! the-root-module '(guile))
1843 (set-module-name! the-scm-module '(guile))
1844 (set-module-kind! the-scm-module 'interface)
1845 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1846
1847 ;; NOTE: This binding is used in libguile/modules.c.
1848 ;;
1849 (define (make-modules-in module name)
1850 (if (null? name)
1851 module
1852 (cond
1853 ((module-ref module (car name) #f)
1854 => (lambda (m) (make-modules-in m (cdr name))))
1855 (else (let ((m (make-module 31)))
1856 (set-module-kind! m 'directory)
1857 (set-module-name! m (append (or (module-name module)
1858 '())
1859 (list (car name))))
1860 (module-define! module (car name) m)
1861 (make-modules-in m (cdr name)))))))
1862
1863 (define (beautify-user-module! module)
1864 (let ((interface (module-public-interface module)))
1865 (if (or (not interface)
1866 (eq? interface module))
1867 (let ((interface (make-module 31)))
1868 (set-module-name! interface (module-name module))
1869 (set-module-kind! interface 'interface)
1870 (set-module-public-interface! module interface))))
1871 (if (and (not (memq the-scm-module (module-uses module)))
1872 (not (eq? module the-root-module)))
1873 (set-module-uses! module
1874 (append (module-uses module) (list the-scm-module)))))
1875
1876 ;; NOTE: This binding is used in libguile/modules.c.
1877 ;;
1878 (define (resolve-module name . maybe-autoload)
1879 (let ((full-name (append '(%app modules) name)))
1880 (let ((already (nested-ref the-root-module full-name)))
1881 (if already
1882 ;; The module already exists...
1883 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1884 (not (module-public-interface already)))
1885 ;; ...but we are told to load and it doesn't contain source, so
1886 (begin
1887 (try-load-module name)
1888 already)
1889 ;; simply return it.
1890 already)
1891 (begin
1892 ;; Try to autoload it if we are told so
1893 (if (or (null? maybe-autoload) (car maybe-autoload))
1894 (try-load-module name))
1895 ;; Get/create it.
1896 (make-modules-in (current-module) full-name))))))
1897
1898 ;; Cheat. These bindings are needed by modules.c, but we don't want
1899 ;; to move their real definition here because that would be unnatural.
1900 ;;
1901 (define try-module-autoload #f)
1902 (define process-define-module #f)
1903 (define process-use-modules #f)
1904 (define module-export! #f)
1905
1906 ;; This boots the module system. All bindings needed by modules.c
1907 ;; must have been defined by now.
1908 ;;
1909 (set-current-module the-root-module)
1910
1911 (define %app (make-module 31))
1912 (define app %app) ;; for backwards compatability
1913 (local-define '(%app modules) (make-module 31))
1914 (local-define '(%app modules guile) the-root-module)
1915
1916 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1917
1918 (define (try-load-module name)
1919 (or (begin-deprecated (try-module-linked name))
1920 (try-module-autoload name)
1921 (begin-deprecated (try-module-dynamic-link name))))
1922
1923 (define (purify-module! module)
1924 "Removes bindings in MODULE which are inherited from the (guile) module."
1925 (let ((use-list (module-uses module)))
1926 (if (and (pair? use-list)
1927 (eq? (car (last-pair use-list)) the-scm-module))
1928 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1929
1930 ;; Return a module that is an interface to the module designated by
1931 ;; NAME.
1932 ;;
1933 ;; `resolve-interface' takes four keyword arguments:
1934 ;;
1935 ;; #:select SELECTION
1936 ;;
1937 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1938 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1939 ;; is the name in the used module and SEEN is the name in the using
1940 ;; module. Note that SEEN is also passed through RENAMER, below. The
1941 ;; default is to select all bindings. If you specify no selection but
1942 ;; a renamer, only the bindings that already exist in the used module
1943 ;; are made available in the interface. Bindings that are added later
1944 ;; are not picked up.
1945 ;;
1946 ;; #:hide BINDINGS
1947 ;;
1948 ;; BINDINGS is a list of bindings which should not be imported.
1949 ;;
1950 ;; #:prefix PREFIX
1951 ;;
1952 ;; PREFIX is a symbol that will be appended to each exported name.
1953 ;; The default is to not perform any renaming.
1954 ;;
1955 ;; #:renamer RENAMER
1956 ;;
1957 ;; RENAMER is a procedure that takes a symbol and returns its new
1958 ;; name. The default is not perform any renaming.
1959 ;;
1960 ;; Signal "no code for module" error if module name is not resolvable
1961 ;; or its public interface is not available. Signal "no binding"
1962 ;; error if selected binding does not exist in the used module.
1963 ;;
1964 (define (resolve-interface name . args)
1965
1966 (define (get-keyword-arg args kw def)
1967 (cond ((memq kw args)
1968 => (lambda (kw-arg)
1969 (if (null? (cdr kw-arg))
1970 (error "keyword without value: " kw))
1971 (cadr kw-arg)))
1972 (else
1973 def)))
1974
1975 (let* ((select (get-keyword-arg args #:select #f))
1976 (hide (get-keyword-arg args #:hide '()))
1977 (renamer (or (get-keyword-arg args #:renamer #f)
1978 (let ((prefix (get-keyword-arg args #:prefix #f)))
1979 (and prefix (symbol-prefix-proc prefix)))
1980 identity))
1981 (module (resolve-module name))
1982 (public-i (and module (module-public-interface module))))
1983 (and (or (not module) (not public-i))
1984 (error "no code for module" name))
1985 (if (and (not select) (null? hide) (eq? renamer identity))
1986 public-i
1987 (let ((selection (or select (module-map (lambda (sym var) sym)
1988 public-i)))
1989 (custom-i (make-module 31)))
1990 (set-module-kind! custom-i 'custom-interface)
1991 (set-module-name! custom-i name)
1992 ;; XXX - should use a lazy binder so that changes to the
1993 ;; used module are picked up automatically.
1994 (for-each (lambda (bspec)
1995 (let* ((direct? (symbol? bspec))
1996 (orig (if direct? bspec (car bspec)))
1997 (seen (if direct? bspec (cdr bspec)))
1998 (var (or (module-local-variable public-i orig)
1999 (module-local-variable module orig)
2000 (error
2001 ;; fixme: format manually for now
2002 (simple-format
2003 #f "no binding `~A' in module ~A"
2004 orig name)))))
2005 (if (memq orig hide)
2006 (set! hide (delq! orig hide))
2007 (module-add! custom-i
2008 (renamer seen)
2009 var))))
2010 selection)
2011 ;; Check that we are not hiding bindings which don't exist
2012 (for-each (lambda (binding)
2013 (if (not (module-local-variable public-i binding))
2014 (error
2015 (simple-format
2016 #f "no binding `~A' to hide in module ~A"
2017 binding name))))
2018 hide)
2019 custom-i))))
2020
2021 (define (symbol-prefix-proc prefix)
2022 (lambda (symbol)
2023 (symbol-append prefix symbol)))
2024
2025 ;; This function is called from "modules.c". If you change it, be
2026 ;; sure to update "modules.c" as well.
2027
2028 (define (process-define-module args)
2029 (let* ((module-id (car args))
2030 (module (resolve-module module-id #f))
2031 (kws (cdr args))
2032 (unrecognized (lambda (arg)
2033 (error "unrecognized define-module argument" arg))))
2034 (beautify-user-module! module)
2035 (let loop ((kws kws)
2036 (reversed-interfaces '())
2037 (exports '())
2038 (re-exports '())
2039 (replacements '()))
2040
2041 (if (null? kws)
2042 (call-with-deferred-observers
2043 (lambda ()
2044 (module-use-interfaces! module (reverse reversed-interfaces))
2045 (module-export! module exports)
2046 (module-replace! module replacements)
2047 (module-re-export! module re-exports)))
2048 (case (car kws)
2049 ((#:use-module #:use-syntax)
2050 (or (pair? (cdr kws))
2051 (unrecognized kws))
2052 (let* ((interface-args (cadr kws))
2053 (interface (apply resolve-interface interface-args)))
2054 (and (eq? (car kws) #:use-syntax)
2055 (or (symbol? (caar interface-args))
2056 (error "invalid module name for use-syntax"
2057 (car interface-args)))
2058 (set-module-transformer!
2059 module
2060 (module-ref interface
2061 (car (last-pair (car interface-args)))
2062 #f)))
2063 (loop (cddr kws)
2064 (cons interface reversed-interfaces)
2065 exports
2066 re-exports
2067 replacements)))
2068 ((#:autoload)
2069 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2070 (unrecognized kws))
2071 (loop (cdddr kws)
2072 (cons (make-autoload-interface module
2073 (cadr kws)
2074 (caddr kws))
2075 reversed-interfaces)
2076 exports
2077 re-exports
2078 replacements))
2079 ((#:no-backtrace)
2080 (set-system-module! module #t)
2081 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2082 ((#:pure)
2083 (purify-module! module)
2084 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2085 ((#:duplicates)
2086 (if (not (pair? (cdr kws)))
2087 (unrecognized kws))
2088 (set-module-duplicates-handlers!
2089 module
2090 (lookup-duplicates-handlers (cadr kws)))
2091 (loop (cddr kws) reversed-interfaces exports re-exports replacements))
2092 ((#:export #:export-syntax)
2093 (or (pair? (cdr kws))
2094 (unrecognized kws))
2095 (loop (cddr kws)
2096 reversed-interfaces
2097 (append (cadr kws) exports)
2098 re-exports
2099 replacements))
2100 ((#:re-export #:re-export-syntax)
2101 (or (pair? (cdr kws))
2102 (unrecognized kws))
2103 (loop (cddr kws)
2104 reversed-interfaces
2105 exports
2106 (append (cadr kws) re-exports)
2107 replacements))
2108 ((#:replace #:replace-syntax)
2109 (or (pair? (cdr kws))
2110 (unrecognized kws))
2111 (loop (cddr kws)
2112 reversed-interfaces
2113 exports
2114 re-exports
2115 (append (cadr kws) replacements)))
2116 (else
2117 (unrecognized kws)))))
2118 (run-hook module-defined-hook module)
2119 module))
2120
2121 ;; `module-defined-hook' is a hook that is run whenever a new module
2122 ;; is defined. Its members are called with one argument, the new
2123 ;; module.
2124 (define module-defined-hook (make-hook 1))
2125
2126 \f
2127
2128 ;;; {Autoload}
2129 ;;;
2130
2131 (define (make-autoload-interface module name bindings)
2132 (let ((b (lambda (a sym definep)
2133 (and (memq sym bindings)
2134 (let ((i (module-public-interface (resolve-module name))))
2135 (if (not i)
2136 (error "missing interface for module" name))
2137 ;; Replace autoload-interface with interface
2138 (set-car! (memq a (module-uses module)) i)
2139 (module-local-variable i sym))))))
2140 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f #f
2141 '() (make-weak-value-hash-table 31) 0)))
2142
2143 ;;; {Compiled module}
2144
2145 (define load-compiled #f)
2146
2147 \f
2148
2149 ;;; {Autoloading modules}
2150 ;;;
2151
2152 (define autoloads-in-progress '())
2153
2154 ;; This function is called from "modules.c". If you change it, be
2155 ;; sure to update "modules.c" as well.
2156
2157 (define (try-module-autoload module-name)
2158 (let* ((reverse-name (reverse module-name))
2159 (name (symbol->string (car reverse-name)))
2160 (dir-hint-module-name (reverse (cdr reverse-name)))
2161 (dir-hint (apply string-append
2162 (map (lambda (elt)
2163 (string-append (symbol->string elt) "/"))
2164 dir-hint-module-name))))
2165 (resolve-module dir-hint-module-name #f)
2166 (and (not (autoload-done-or-in-progress? dir-hint name))
2167 (let ((didit #f))
2168 (define (load-file proc file)
2169 (save-module-excursion (lambda () (proc file)))
2170 (set! didit #t))
2171 (dynamic-wind
2172 (lambda () (autoload-in-progress! dir-hint name))
2173 (lambda ()
2174 (let ((file (in-vicinity dir-hint name)))
2175 (cond ((and load-compiled
2176 (%search-load-path (string-append file ".go")))
2177 => (lambda (full)
2178 (load-file load-compiled full)))
2179 ((%search-load-path file)
2180 => (lambda (full)
2181 (load-file primitive-load full))))))
2182 (lambda () (set-autoloaded! dir-hint name didit)))
2183 didit))))
2184
2185 \f
2186
2187 ;;; {Dynamic linking of modules}
2188 ;;;
2189
2190 (define autoloads-done '((guile . guile)))
2191
2192 (define (autoload-done-or-in-progress? p m)
2193 (let ((n (cons p m)))
2194 (->bool (or (member n autoloads-done)
2195 (member n autoloads-in-progress)))))
2196
2197 (define (autoload-done! p m)
2198 (let ((n (cons p m)))
2199 (set! autoloads-in-progress
2200 (delete! n autoloads-in-progress))
2201 (or (member n autoloads-done)
2202 (set! autoloads-done (cons n autoloads-done)))))
2203
2204 (define (autoload-in-progress! p m)
2205 (let ((n (cons p m)))
2206 (set! autoloads-done
2207 (delete! n autoloads-done))
2208 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2209
2210 (define (set-autoloaded! p m done?)
2211 (if done?
2212 (autoload-done! p m)
2213 (let ((n (cons p m)))
2214 (set! autoloads-done (delete! n autoloads-done))
2215 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2216
2217 \f
2218
2219 ;;; {Run-time options}
2220 ;;;
2221
2222 (define define-option-interface
2223 (let* ((option-name car)
2224 (option-value cadr)
2225 (option-documentation caddr)
2226
2227 (print-option (lambda (option)
2228 (display (option-name option))
2229 (if (< (string-length
2230 (symbol->string (option-name option)))
2231 8)
2232 (display #\tab))
2233 (display #\tab)
2234 (display (option-value option))
2235 (display #\tab)
2236 (display (option-documentation option))
2237 (newline)))
2238
2239 ;; Below follow the macros defining the run-time option interfaces.
2240
2241 (make-options (lambda (interface)
2242 `(lambda args
2243 (cond ((null? args) (,interface))
2244 ((list? (car args))
2245 (,interface (car args)) (,interface))
2246 (else (for-each ,print-option
2247 (,interface #t)))))))
2248
2249 (make-enable (lambda (interface)
2250 `(lambda flags
2251 (,interface (append flags (,interface)))
2252 (,interface))))
2253
2254 (make-disable (lambda (interface)
2255 `(lambda flags
2256 (let ((options (,interface)))
2257 (for-each (lambda (flag)
2258 (set! options (delq! flag options)))
2259 flags)
2260 (,interface options)
2261 (,interface))))))
2262 (procedure->memoizing-macro
2263 (lambda (exp env)
2264 (let* ((option-group (cadr exp))
2265 (interface (car option-group))
2266 (options/enable/disable (cadr option-group)))
2267 `(begin
2268 (define ,(car options/enable/disable)
2269 ,(make-options interface))
2270 (define ,(cadr options/enable/disable)
2271 ,(make-enable interface))
2272 (define ,(caddr options/enable/disable)
2273 ,(make-disable interface))
2274 (defmacro ,(caaddr option-group) (opt val)
2275 `(,,(car options/enable/disable)
2276 (append (,,(car options/enable/disable))
2277 (list ',opt ,val))))))))))
2278
2279 (define-option-interface
2280 (eval-options-interface
2281 (eval-options eval-enable eval-disable)
2282 (eval-set!)))
2283
2284 (define-option-interface
2285 (debug-options-interface
2286 (debug-options debug-enable debug-disable)
2287 (debug-set!)))
2288
2289 (define-option-interface
2290 (evaluator-traps-interface
2291 (traps trap-enable trap-disable)
2292 (trap-set!)))
2293
2294 (define-option-interface
2295 (read-options-interface
2296 (read-options read-enable read-disable)
2297 (read-set!)))
2298
2299 (define-option-interface
2300 (print-options-interface
2301 (print-options print-enable print-disable)
2302 (print-set!)))
2303
2304 \f
2305
2306 ;;; {Running Repls}
2307 ;;;
2308
2309 (define (repl read evaler print)
2310 (let loop ((source (read (current-input-port))))
2311 (print (evaler source))
2312 (loop (read (current-input-port)))))
2313
2314 ;; A provisional repl that acts like the SCM repl:
2315 ;;
2316 (define scm-repl-silent #f)
2317 (define (assert-repl-silence v) (set! scm-repl-silent v))
2318
2319 (define *unspecified* (if #f #f))
2320 (define (unspecified? v) (eq? v *unspecified*))
2321
2322 (define scm-repl-print-unspecified #f)
2323 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2324
2325 (define scm-repl-verbose #f)
2326 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2327
2328 (define scm-repl-prompt "guile> ")
2329
2330 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2331
2332 (define (default-lazy-handler key . args)
2333 (save-stack lazy-handler-dispatch)
2334 (apply throw key args))
2335
2336 (define (lazy-handler-dispatch key . args)
2337 (apply default-lazy-handler key args))
2338
2339 (define abort-hook (make-hook))
2340
2341 ;; these definitions are used if running a script.
2342 ;; otherwise redefined in error-catching-loop.
2343 (define (set-batch-mode?! arg) #t)
2344 (define (batch-mode?) #t)
2345
2346 (define (error-catching-loop thunk)
2347 (let ((status #f)
2348 (interactive #t))
2349 (define (loop first)
2350 (let ((next
2351 (catch #t
2352
2353 (lambda ()
2354 (lazy-catch #t
2355 (lambda ()
2356 (call-with-unblocked-asyncs
2357 (lambda ()
2358 (with-traps
2359 (lambda ()
2360 (first)
2361
2362 ;; This line is needed because mark
2363 ;; doesn't do closures quite right.
2364 ;; Unreferenced locals should be
2365 ;; collected.
2366 ;;
2367 (set! first #f)
2368 (let loop ((v (thunk)))
2369 (loop (thunk)))
2370 #f)))))
2371
2372 ;; Note that having just
2373 ;; `lazy-handler-dispatch' here is
2374 ;; connected with the mechanism that
2375 ;; produces a nice backtrace upon
2376 ;; error. If, for example, this is
2377 ;; replaced with (lambda args (apply
2378 ;; lazy-handler-dispatch args)), the
2379 ;; stack cutting (in save-stack)
2380 ;; goes wrong and ends up saving no
2381 ;; stack at all, so there is no
2382 ;; backtrace.
2383 lazy-handler-dispatch))
2384
2385 (lambda (key . args)
2386 (case key
2387 ((quit)
2388 (set! status args)
2389 #f)
2390
2391 ((switch-repl)
2392 (apply throw 'switch-repl args))
2393
2394 ((abort)
2395 ;; This is one of the closures that require
2396 ;; (set! first #f) above
2397 ;;
2398 (lambda ()
2399 (run-hook abort-hook)
2400 (force-output (current-output-port))
2401 (display "ABORT: " (current-error-port))
2402 (write args (current-error-port))
2403 (newline (current-error-port))
2404 (if interactive
2405 (begin
2406 (if (and
2407 (not has-shown-debugger-hint?)
2408 (not (memq 'backtrace
2409 (debug-options-interface)))
2410 (stack? (fluid-ref the-last-stack)))
2411 (begin
2412 (newline (current-error-port))
2413 (display
2414 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2415 (current-error-port))
2416 (set! has-shown-debugger-hint? #t)))
2417 (force-output (current-error-port)))
2418 (begin
2419 (primitive-exit 1)))
2420 (set! stack-saved? #f)))
2421
2422 (else
2423 ;; This is the other cons-leak closure...
2424 (lambda ()
2425 (cond ((= (length args) 4)
2426 (apply handle-system-error key args))
2427 (else
2428 (apply bad-throw key args))))))))))
2429 (if next (loop next) status)))
2430 (set! set-batch-mode?! (lambda (arg)
2431 (cond (arg
2432 (set! interactive #f)
2433 (restore-signals))
2434 (#t
2435 (error "sorry, not implemented")))))
2436 (set! batch-mode? (lambda () (not interactive)))
2437 (call-with-blocked-asyncs
2438 (lambda () (loop (lambda () #t))))))
2439
2440 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2441 (define before-signal-stack (make-fluid))
2442 (define stack-saved? #f)
2443
2444 (define (save-stack . narrowing)
2445 (or stack-saved?
2446 (cond ((not (memq 'debug (debug-options-interface)))
2447 (fluid-set! the-last-stack #f)
2448 (set! stack-saved? #t))
2449 (else
2450 (fluid-set!
2451 the-last-stack
2452 (case (stack-id #t)
2453 ((repl-stack)
2454 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2455 ((load-stack)
2456 (apply make-stack #t save-stack 0 #t 0 narrowing))
2457 ((tk-stack)
2458 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2459 ((#t)
2460 (apply make-stack #t save-stack 0 1 narrowing))
2461 (else
2462 (let ((id (stack-id #t)))
2463 (and (procedure? id)
2464 (apply make-stack #t save-stack id #t 0 narrowing))))))
2465 (set! stack-saved? #t)))))
2466
2467 (define before-error-hook (make-hook))
2468 (define after-error-hook (make-hook))
2469 (define before-backtrace-hook (make-hook))
2470 (define after-backtrace-hook (make-hook))
2471
2472 (define has-shown-debugger-hint? #f)
2473
2474 (define (handle-system-error key . args)
2475 (let ((cep (current-error-port)))
2476 (cond ((not (stack? (fluid-ref the-last-stack))))
2477 ((memq 'backtrace (debug-options-interface))
2478 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2479 (eq? key 'out-of-range))
2480 (list-ref args 3)
2481 '())))
2482 (run-hook before-backtrace-hook)
2483 (newline cep)
2484 (display "Backtrace:\n")
2485 (display-backtrace (fluid-ref the-last-stack) cep
2486 #f #f highlights)
2487 (newline cep)
2488 (run-hook after-backtrace-hook))))
2489 (run-hook before-error-hook)
2490 (apply display-error (fluid-ref the-last-stack) cep args)
2491 (run-hook after-error-hook)
2492 (force-output cep)
2493 (throw 'abort key)))
2494
2495 (define (quit . args)
2496 (apply throw 'quit args))
2497
2498 (define exit quit)
2499
2500 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2501
2502 ;; Replaced by C code:
2503 ;;(define (backtrace)
2504 ;; (if (fluid-ref the-last-stack)
2505 ;; (begin
2506 ;; (newline)
2507 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2508 ;; (newline)
2509 ;; (if (and (not has-shown-backtrace-hint?)
2510 ;; (not (memq 'backtrace (debug-options-interface))))
2511 ;; (begin
2512 ;; (display
2513 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2514 ;;automatically if an error occurs in the future.\n")
2515 ;; (set! has-shown-backtrace-hint? #t))))
2516 ;; (display "No backtrace available.\n")))
2517
2518 (define (error-catching-repl r e p)
2519 (error-catching-loop
2520 (lambda ()
2521 (call-with-values (lambda () (e (r)))
2522 (lambda the-values (for-each p the-values))))))
2523
2524 (define (gc-run-time)
2525 (cdr (assq 'gc-time-taken (gc-stats))))
2526
2527 (define before-read-hook (make-hook))
2528 (define after-read-hook (make-hook))
2529 (define before-eval-hook (make-hook 1))
2530 (define after-eval-hook (make-hook 1))
2531 (define before-print-hook (make-hook 1))
2532 (define after-print-hook (make-hook 1))
2533
2534 ;;; The default repl-reader function. We may override this if we've
2535 ;;; the readline library.
2536 (define repl-reader
2537 (lambda (prompt)
2538 (display prompt)
2539 (force-output)
2540 (run-hook before-read-hook)
2541 (read (current-input-port))))
2542
2543 (define (scm-style-repl)
2544
2545 (letrec (
2546 (start-gc-rt #f)
2547 (start-rt #f)
2548 (repl-report-start-timing (lambda ()
2549 (set! start-gc-rt (gc-run-time))
2550 (set! start-rt (get-internal-run-time))))
2551 (repl-report (lambda ()
2552 (display ";;; ")
2553 (display (inexact->exact
2554 (* 1000 (/ (- (get-internal-run-time) start-rt)
2555 internal-time-units-per-second))))
2556 (display " msec (")
2557 (display (inexact->exact
2558 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2559 internal-time-units-per-second))))
2560 (display " msec in gc)\n")))
2561
2562 (consume-trailing-whitespace
2563 (lambda ()
2564 (let ((ch (peek-char)))
2565 (cond
2566 ((eof-object? ch))
2567 ((or (char=? ch #\space) (char=? ch #\tab))
2568 (read-char)
2569 (consume-trailing-whitespace))
2570 ((char=? ch #\newline)
2571 (read-char))))))
2572 (-read (lambda ()
2573 (let ((val
2574 (let ((prompt (cond ((string? scm-repl-prompt)
2575 scm-repl-prompt)
2576 ((thunk? scm-repl-prompt)
2577 (scm-repl-prompt))
2578 (scm-repl-prompt "> ")
2579 (else ""))))
2580 (repl-reader prompt))))
2581
2582 ;; As described in R4RS, the READ procedure updates the
2583 ;; port to point to the first character past the end of
2584 ;; the external representation of the object. This
2585 ;; means that it doesn't consume the newline typically
2586 ;; found after an expression. This means that, when
2587 ;; debugging Guile with GDB, GDB gets the newline, which
2588 ;; it often interprets as a "continue" command, making
2589 ;; breakpoints kind of useless. So, consume any
2590 ;; trailing newline here, as well as any whitespace
2591 ;; before it.
2592 ;; But not if EOF, for control-D.
2593 (if (not (eof-object? val))
2594 (consume-trailing-whitespace))
2595 (run-hook after-read-hook)
2596 (if (eof-object? val)
2597 (begin
2598 (repl-report-start-timing)
2599 (if scm-repl-verbose
2600 (begin
2601 (newline)
2602 (display ";;; EOF -- quitting")
2603 (newline)))
2604 (quit 0)))
2605 val)))
2606
2607 (-eval (lambda (sourc)
2608 (repl-report-start-timing)
2609 (run-hook before-eval-hook sourc)
2610 (let ((val (start-stack 'repl-stack
2611 ;; If you change this procedure
2612 ;; (primitive-eval), please also
2613 ;; modify the repl-stack case in
2614 ;; save-stack so that stack cutting
2615 ;; continues to work.
2616 (primitive-eval sourc))))
2617 (run-hook after-eval-hook sourc)
2618 val)))
2619
2620
2621 (-print (let ((maybe-print (lambda (result)
2622 (if (or scm-repl-print-unspecified
2623 (not (unspecified? result)))
2624 (begin
2625 (write result)
2626 (newline))))))
2627 (lambda (result)
2628 (if (not scm-repl-silent)
2629 (begin
2630 (run-hook before-print-hook result)
2631 (maybe-print result)
2632 (run-hook after-print-hook result)
2633 (if scm-repl-verbose
2634 (repl-report))
2635 (force-output))))))
2636
2637 (-quit (lambda (args)
2638 (if scm-repl-verbose
2639 (begin
2640 (display ";;; QUIT executed, repl exitting")
2641 (newline)
2642 (repl-report)))
2643 args))
2644
2645 (-abort (lambda ()
2646 (if scm-repl-verbose
2647 (begin
2648 (display ";;; ABORT executed.")
2649 (newline)
2650 (repl-report)))
2651 (repl -read -eval -print))))
2652
2653 (let ((status (error-catching-repl -read
2654 -eval
2655 -print)))
2656 (-quit status))))
2657
2658
2659 \f
2660
2661 ;;; {IOTA functions: generating lists of numbers}
2662 ;;;
2663
2664 (define (iota n)
2665 (let loop ((count (1- n)) (result '()))
2666 (if (< count 0) result
2667 (loop (1- count) (cons count result)))))
2668
2669 \f
2670
2671 ;;; {collect}
2672 ;;;
2673 ;;; Similar to `begin' but returns a list of the results of all constituent
2674 ;;; forms instead of the result of the last form.
2675 ;;; (The definition relies on the current left-to-right
2676 ;;; order of evaluation of operands in applications.)
2677 ;;;
2678
2679 (defmacro collect forms
2680 (cons 'list forms))
2681
2682 \f
2683
2684 ;;; {with-fluids}
2685 ;;;
2686
2687 ;; with-fluids is a convenience wrapper for the builtin procedure
2688 ;; `with-fluids*'. The syntax is just like `let':
2689 ;;
2690 ;; (with-fluids ((fluid val)
2691 ;; ...)
2692 ;; body)
2693
2694 (defmacro with-fluids (bindings . body)
2695 (let ((fluids (map car bindings))
2696 (values (map cadr bindings)))
2697 (if (and (= (length fluids) 1) (= (length values) 1))
2698 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2699 `(with-fluids* (list ,@fluids) (list ,@values)
2700 (lambda () ,@body)))))
2701
2702 \f
2703
2704 ;;; {Macros}
2705 ;;;
2706
2707 ;; actually....hobbit might be able to hack these with a little
2708 ;; coaxing
2709 ;;
2710
2711 (define (primitive-macro? m)
2712 (and (macro? m)
2713 (not (macro-transformer m))))
2714
2715 (defmacro define-macro (first . rest)
2716 (let ((name (if (symbol? first) first (car first)))
2717 (transformer
2718 (if (symbol? first)
2719 (car rest)
2720 `(lambda ,(cdr first) ,@rest))))
2721 `(eval-case
2722 ((load-toplevel)
2723 (define ,name (defmacro:transformer ,transformer)))
2724 (else
2725 (error "define-macro can only be used at the top level")))))
2726
2727
2728 (defmacro define-syntax-macro (first . rest)
2729 (let ((name (if (symbol? first) first (car first)))
2730 (transformer
2731 (if (symbol? first)
2732 (car rest)
2733 `(lambda ,(cdr first) ,@rest))))
2734 `(eval-case
2735 ((load-toplevel)
2736 (define ,name (defmacro:syntax-transformer ,transformer)))
2737 (else
2738 (error "define-syntax-macro can only be used at the top level")))))
2739
2740 \f
2741
2742 ;;; {While}
2743 ;;;
2744 ;;; with `continue' and `break'.
2745 ;;;
2746
2747 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2748 ;; that's only necessary if continue is actually used. A new key is
2749 ;; generated every time, so break and continue apply to their originating
2750 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2751 ;; `key' binding away from the cond and body code.
2752 ;;
2753 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2754 ;; for lambda and not, so as to protect against any user rebinding of that
2755 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2756 ;;
2757 ;; (use-modules (ice-9 syncase))
2758 ;; (while #f)
2759 ;; => ERROR: invalid syntax ()
2760 ;;
2761 ;; This is probably a bug in syncase.
2762 ;;
2763 (define-macro (while cond . body)
2764 (define (while-helper proc)
2765 (do ((key (make-symbol "while-key")))
2766 ((catch key
2767 (lambda ()
2768 (proc (lambda () (throw key #t))
2769 (lambda () (throw key #f))))
2770 (lambda (key arg) arg)))))
2771 `(,while-helper (,lambda (break continue)
2772 (do ()
2773 ((,not ,cond))
2774 ,@body)
2775 #t)))
2776
2777
2778 \f
2779
2780 ;;; {Module System Macros}
2781 ;;;
2782
2783 ;; Return a list of expressions that evaluate to the appropriate
2784 ;; arguments for resolve-interface according to SPEC.
2785
2786 (define (compile-interface-spec spec)
2787 (define (make-keyarg sym key quote?)
2788 (cond ((or (memq sym spec)
2789 (memq key spec))
2790 => (lambda (rest)
2791 (if quote?
2792 (list key (list 'quote (cadr rest)))
2793 (list key (cadr rest)))))
2794 (else
2795 '())))
2796 (define (map-apply func list)
2797 (map (lambda (args) (apply func args)) list))
2798 (define keys
2799 ;; sym key quote?
2800 '((:select #:select #t)
2801 (:hide #:hide #t)
2802 (:prefix #:prefix #t)
2803 (:renamer #:renamer #f)))
2804 (if (not (pair? (car spec)))
2805 `(',spec)
2806 `(',(car spec)
2807 ,@(apply append (map-apply make-keyarg keys)))))
2808
2809 (define (keyword-like-symbol->keyword sym)
2810 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2811
2812 (define (compile-define-module-args args)
2813 ;; Just quote everything except #:use-module and #:use-syntax. We
2814 ;; need to know about all arguments regardless since we want to turn
2815 ;; symbols that look like keywords into real keywords, and the
2816 ;; keyword args in a define-module form are not regular
2817 ;; (i.e. no-backtrace doesn't take a value).
2818 (let loop ((compiled-args `((quote ,(car args))))
2819 (args (cdr args)))
2820 (cond ((null? args)
2821 (reverse! compiled-args))
2822 ;; symbol in keyword position
2823 ((symbol? (car args))
2824 (loop compiled-args
2825 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2826 ((memq (car args) '(#:no-backtrace #:pure))
2827 (loop (cons (car args) compiled-args)
2828 (cdr args)))
2829 ((null? (cdr args))
2830 (error "keyword without value:" (car args)))
2831 ((memq (car args) '(#:use-module #:use-syntax))
2832 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2833 (car args)
2834 compiled-args)
2835 (cddr args)))
2836 ((eq? (car args) #:autoload)
2837 (loop (cons* `(quote ,(caddr args))
2838 `(quote ,(cadr args))
2839 (car args)
2840 compiled-args)
2841 (cdddr args)))
2842 (else
2843 (loop (cons* `(quote ,(cadr args))
2844 (car args)
2845 compiled-args)
2846 (cddr args))))))
2847
2848 (defmacro define-module args
2849 `(eval-case
2850 ((load-toplevel)
2851 (let ((m (process-define-module
2852 (list ,@(compile-define-module-args args)))))
2853 (set-current-module m)
2854 m))
2855 (else
2856 (error "define-module can only be used at the top level"))))
2857
2858 ;; The guts of the use-modules macro. Add the interfaces of the named
2859 ;; modules to the use-list of the current module, in order.
2860
2861 ;; This function is called by "modules.c". If you change it, be sure
2862 ;; to change scm_c_use_module as well.
2863
2864 (define (process-use-modules module-interface-args)
2865 (let ((interfaces (map (lambda (mif-args)
2866 (or (apply resolve-interface mif-args)
2867 (error "no such module" mif-args)))
2868 module-interface-args)))
2869 (call-with-deferred-observers
2870 (lambda ()
2871 (module-use-interfaces! (current-module) interfaces)))))
2872
2873 (defmacro use-modules modules
2874 `(eval-case
2875 ((load-toplevel)
2876 (process-use-modules
2877 (list ,@(map (lambda (m)
2878 `(list ,@(compile-interface-spec m)))
2879 modules)))
2880 *unspecified*)
2881 (else
2882 (error "use-modules can only be used at the top level"))))
2883
2884 (defmacro use-syntax (spec)
2885 `(eval-case
2886 ((load-toplevel)
2887 ,@(if (pair? spec)
2888 `((process-use-modules (list
2889 (list ,@(compile-interface-spec spec))))
2890 (set-module-transformer! (current-module)
2891 ,(car (last-pair spec))))
2892 `((set-module-transformer! (current-module) ,spec)))
2893 *unspecified*)
2894 (else
2895 (error "use-syntax can only be used at the top level"))))
2896
2897 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2898 ;; as soon as guile supports hygienic macros.
2899 (define define-private define)
2900
2901 (defmacro define-public args
2902 (define (syntax)
2903 (error "bad syntax" (list 'define-public args)))
2904 (define (defined-name n)
2905 (cond
2906 ((symbol? n) n)
2907 ((pair? n) (defined-name (car n)))
2908 (else (syntax))))
2909 (cond
2910 ((null? args)
2911 (syntax))
2912 (#t
2913 (let ((name (defined-name (car args))))
2914 `(begin
2915 (define-private ,@args)
2916 (eval-case ((load-toplevel) (export ,name))))))))
2917
2918 (defmacro defmacro-public args
2919 (define (syntax)
2920 (error "bad syntax" (list 'defmacro-public args)))
2921 (define (defined-name n)
2922 (cond
2923 ((symbol? n) n)
2924 (else (syntax))))
2925 (cond
2926 ((null? args)
2927 (syntax))
2928 (#t
2929 (let ((name (defined-name (car args))))
2930 `(begin
2931 (eval-case ((load-toplevel) (export-syntax ,name)))
2932 (defmacro ,@args))))))
2933
2934 ;; Export a local variable
2935
2936 ;; This function is called from "modules.c". If you change it, be
2937 ;; sure to update "modules.c" as well.
2938
2939 (define (module-export! m names)
2940 (let ((public-i (module-public-interface m)))
2941 (for-each (lambda (name)
2942 (let ((var (module-ensure-local-variable! m name)))
2943 (module-add! public-i name var)))
2944 names)))
2945
2946 (define (module-replace! m names)
2947 (let ((public-i (module-public-interface m)))
2948 (for-each (lambda (name)
2949 (let ((var (module-ensure-local-variable! m name)))
2950 (set-object-property! var 'replace #t)
2951 (module-add! public-i name var)))
2952 names)))
2953
2954 ;; Re-export a imported variable
2955 ;;
2956 (define (module-re-export! m names)
2957 (let ((public-i (module-public-interface m)))
2958 (for-each (lambda (name)
2959 (let ((var (module-variable m name)))
2960 (cond ((not var)
2961 (error "Undefined variable:" name))
2962 ((eq? var (module-local-variable m name))
2963 (error "re-exporting local variable:" name))
2964 (else
2965 (module-add! public-i name var)))))
2966 names)))
2967
2968 (defmacro export names
2969 `(eval-case
2970 ((load-toplevel)
2971 (call-with-deferred-observers
2972 (lambda ()
2973 (module-export! (current-module) ',names))))
2974 (else
2975 (error "export can only be used at the top level"))))
2976
2977 (defmacro re-export names
2978 `(eval-case
2979 ((load-toplevel)
2980 (call-with-deferred-observers
2981 (lambda ()
2982 (module-re-export! (current-module) ',names))))
2983 (else
2984 (error "re-export can only be used at the top level"))))
2985
2986 (defmacro export-syntax names
2987 `(export ,@names))
2988
2989 (defmacro re-export-syntax names
2990 `(re-export ,@names))
2991
2992 (define load load-module)
2993
2994 ;; The following macro allows one to write, for example,
2995 ;;
2996 ;; (@ (ice-9 pretty-print) pretty-print)
2997 ;;
2998 ;; to refer directly to the pretty-print variable in module (ice-9
2999 ;; pretty-print). It works by looking up the variable and inserting
3000 ;; it directly into the code. This is understood by the evaluator.
3001 ;; Indeed, all references to global variables are memoized into such
3002 ;; variable objects.
3003
3004 (define-macro (@ mod-name var-name)
3005 (let ((var (module-variable (resolve-interface mod-name) var-name)))
3006 (if (not var)
3007 (error "no such public variable" (list '@ mod-name var-name)))
3008 var))
3009
3010 ;; The '@@' macro is like '@' but it can also access bindings that
3011 ;; have not been explicitely exported.
3012
3013 (define-macro (@@ mod-name var-name)
3014 (let ((var (module-variable (resolve-module mod-name) var-name)))
3015 (if (not var)
3016 (error "no such variable" (list '@@ mod-name var-name)))
3017 var))
3018
3019 \f
3020
3021 ;;; {Parameters}
3022 ;;;
3023
3024 (define make-mutable-parameter
3025 (let ((make (lambda (fluid converter)
3026 (lambda args
3027 (if (null? args)
3028 (fluid-ref fluid)
3029 (fluid-set! fluid (converter (car args))))))))
3030 (lambda (init . converter)
3031 (let ((fluid (make-fluid))
3032 (converter (if (null? converter)
3033 identity
3034 (car converter))))
3035 (fluid-set! fluid (converter init))
3036 (make fluid converter)))))
3037
3038 \f
3039
3040 ;;; {Handling of duplicate imported bindings}
3041 ;;;
3042
3043 ;; Duplicate handlers take the following arguments:
3044 ;;
3045 ;; module importing module
3046 ;; name conflicting name
3047 ;; int1 old interface where name occurs
3048 ;; val1 value of binding in old interface
3049 ;; int2 new interface where name occurs
3050 ;; val2 value of binding in new interface
3051 ;; var previous resolution or #f
3052 ;; val value of previous resolution
3053 ;;
3054 ;; A duplicate handler can take three alternative actions:
3055 ;;
3056 ;; 1. return #f => leave responsibility to next handler
3057 ;; 2. exit with an error
3058 ;; 3. return a variable resolving the conflict
3059 ;;
3060
3061 (define duplicate-handlers
3062 (let ((m (make-module 7)))
3063
3064 (define (check module name int1 val1 int2 val2 var val)
3065 (scm-error 'misc-error
3066 #f
3067 "~A: `~A' imported from both ~A and ~A"
3068 (list (module-name module)
3069 name
3070 (module-name int1)
3071 (module-name int2))
3072 #f))
3073
3074 (define (warn module name int1 val1 int2 val2 var val)
3075 (format #t
3076 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3077 (module-name module)
3078 name
3079 (module-name int1)
3080 (module-name int2))
3081 #f)
3082
3083 (define (replace module name int1 val1 int2 val2 var val)
3084 (let ((old (or (and var (object-property var 'replace) var)
3085 (module-variable int1 name)))
3086 (new (module-variable int2 name)))
3087 (if (object-property old 'replace)
3088 (and (or (eq? old new)
3089 (not (object-property new 'replace)))
3090 old)
3091 (and (object-property new 'replace)
3092 new))))
3093
3094 (define (warn-override-core module name int1 val1 int2 val2 var val)
3095 (and (eq? int1 the-scm-module)
3096 (begin
3097 (format #t
3098 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3099 (module-name module)
3100 (module-name int2)
3101 name)
3102 (module-local-variable int2 name))))
3103
3104 (define (first module name int1 val1 int2 val2 var val)
3105 (or var (module-local-variable int1 name)))
3106
3107 (define (last module name int1 val1 int2 val2 var val)
3108 (module-local-variable int2 name))
3109
3110 (define (noop module name int1 val1 int2 val2 var val)
3111 #f)
3112
3113 (set-module-name! m 'duplicate-handlers)
3114 (set-module-kind! m 'interface)
3115 (module-define! m 'check check)
3116 (module-define! m 'warn warn)
3117 (module-define! m 'replace replace)
3118 (module-define! m 'warn-override-core warn-override-core)
3119 (module-define! m 'first first)
3120 (module-define! m 'last last)
3121 (module-define! m 'merge-generics noop)
3122 (module-define! m 'merge-accessors noop)
3123 m))
3124
3125 (define (lookup-duplicates-handlers handler-names)
3126 (and handler-names
3127 (map (lambda (handler-name)
3128 (or (module-symbol-local-binding
3129 duplicate-handlers handler-name #f)
3130 (error "invalid duplicate handler name:"
3131 handler-name)))
3132 (if (list? handler-names)
3133 handler-names
3134 (list handler-names)))))
3135
3136 (define default-duplicate-binding-procedures
3137 (make-mutable-parameter #f))
3138
3139 (define default-duplicate-binding-handler
3140 (make-mutable-parameter '(replace warn-override-core warn last)
3141 (lambda (handler-names)
3142 (default-duplicate-binding-procedures
3143 (lookup-duplicates-handlers handler-names))
3144 handler-names)))
3145
3146 (define (make-duplicates-interface)
3147 (let ((m (make-module)))
3148 (set-module-kind! m 'custom-interface)
3149 (set-module-name! m 'duplicates)
3150 m))
3151
3152 (define (process-duplicates module interface)
3153 (let* ((duplicates-handlers (or (module-duplicates-handlers module)
3154 (default-duplicate-binding-procedures)))
3155 (duplicates-interface (module-duplicates-interface module)))
3156 (module-for-each
3157 (lambda (name var)
3158 (cond ((module-import-interface module name)
3159 =>
3160 (lambda (prev-interface)
3161 (let ((var1 (module-local-variable prev-interface name))
3162 (var2 (module-local-variable interface name)))
3163 (if (not (eq? var1 var2))
3164 (begin
3165 (if (not duplicates-interface)
3166 (begin
3167 (set! duplicates-interface
3168 (make-duplicates-interface))
3169 (set-module-duplicates-interface!
3170 module
3171 duplicates-interface)))
3172 (let* ((var (module-local-variable duplicates-interface
3173 name))
3174 (val (and var
3175 (variable-bound? var)
3176 (variable-ref var))))
3177 (let loop ((duplicates-handlers duplicates-handlers))
3178 (cond ((null? duplicates-handlers))
3179 (((car duplicates-handlers)
3180 module
3181 name
3182 prev-interface
3183 (and (variable-bound? var1)
3184 (variable-ref var1))
3185 interface
3186 (and (variable-bound? var2)
3187 (variable-ref var2))
3188 var
3189 val)
3190 =>
3191 (lambda (var)
3192 (module-add! duplicates-interface name var)))
3193 (else
3194 (loop (cdr duplicates-handlers)))))))))))))
3195 interface)))
3196
3197 \f
3198
3199 ;;; {`cond-expand' for SRFI-0 support.}
3200 ;;;
3201 ;;; This syntactic form expands into different commands or
3202 ;;; definitions, depending on the features provided by the Scheme
3203 ;;; implementation.
3204 ;;;
3205 ;;; Syntax:
3206 ;;;
3207 ;;; <cond-expand>
3208 ;;; --> (cond-expand <cond-expand-clause>+)
3209 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3210 ;;; <cond-expand-clause>
3211 ;;; --> (<feature-requirement> <command-or-definition>*)
3212 ;;; <feature-requirement>
3213 ;;; --> <feature-identifier>
3214 ;;; | (and <feature-requirement>*)
3215 ;;; | (or <feature-requirement>*)
3216 ;;; | (not <feature-requirement>)
3217 ;;; <feature-identifier>
3218 ;;; --> <a symbol which is the name or alias of a SRFI>
3219 ;;;
3220 ;;; Additionally, this implementation provides the
3221 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3222 ;;; determine the implementation type and the supported standard.
3223 ;;;
3224 ;;; Currently, the following feature identifiers are supported:
3225 ;;;
3226 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14
3227 ;;;
3228 ;;; Remember to update the features list when adding more SRFIs.
3229 ;;;
3230
3231 (define %cond-expand-features
3232 ;; Adjust the above comment when changing this.
3233 '(guile
3234 r5rs
3235 srfi-0 ;; cond-expand itself
3236 srfi-4 ;; homogenous numeric vectors
3237 srfi-6 ;; open-input-string etc, in the guile core
3238 srfi-13 ;; string library
3239 srfi-14 ;; character sets
3240 srfi-55 ;; require-extension
3241 ))
3242
3243 ;; This table maps module public interfaces to the list of features.
3244 ;;
3245 (define %cond-expand-table (make-hash-table 31))
3246
3247 ;; Add one or more features to the `cond-expand' feature list of the
3248 ;; module `module'.
3249 ;;
3250 (define (cond-expand-provide module features)
3251 (let ((mod (module-public-interface module)))
3252 (and mod
3253 (hashq-set! %cond-expand-table mod
3254 (append (hashq-ref %cond-expand-table mod '())
3255 features)))))
3256
3257 (define cond-expand
3258 (procedure->memoizing-macro
3259 (lambda (exp env)
3260 (let ((clauses (cdr exp))
3261 (syntax-error (lambda (cl)
3262 (error "invalid clause in `cond-expand'" cl))))
3263 (letrec
3264 ((test-clause
3265 (lambda (clause)
3266 (cond
3267 ((symbol? clause)
3268 (or (memq clause %cond-expand-features)
3269 (let lp ((uses (module-uses (env-module env))))
3270 (if (pair? uses)
3271 (or (memq clause
3272 (hashq-ref %cond-expand-table
3273 (car uses) '()))
3274 (lp (cdr uses)))
3275 #f))))
3276 ((pair? clause)
3277 (cond
3278 ((eq? 'and (car clause))
3279 (let lp ((l (cdr clause)))
3280 (cond ((null? l)
3281 #t)
3282 ((pair? l)
3283 (and (test-clause (car l)) (lp (cdr l))))
3284 (else
3285 (syntax-error clause)))))
3286 ((eq? 'or (car clause))
3287 (let lp ((l (cdr clause)))
3288 (cond ((null? l)
3289 #f)
3290 ((pair? l)
3291 (or (test-clause (car l)) (lp (cdr l))))
3292 (else
3293 (syntax-error clause)))))
3294 ((eq? 'not (car clause))
3295 (cond ((not (pair? (cdr clause)))
3296 (syntax-error clause))
3297 ((pair? (cddr clause))
3298 ((syntax-error clause))))
3299 (not (test-clause (cadr clause))))
3300 (else
3301 (syntax-error clause))))
3302 (else
3303 (syntax-error clause))))))
3304 (let lp ((c clauses))
3305 (cond
3306 ((null? c)
3307 (error "Unfulfilled `cond-expand'"))
3308 ((not (pair? c))
3309 (syntax-error c))
3310 ((not (pair? (car c)))
3311 (syntax-error (car c)))
3312 ((test-clause (caar c))
3313 `(begin ,@(cdar c)))
3314 ((eq? (caar c) 'else)
3315 (if (pair? (cdr c))
3316 (syntax-error c))
3317 `(begin ,@(cdar c)))
3318 (else
3319 (lp (cdr c))))))))))
3320
3321 ;; This procedure gets called from the startup code with a list of
3322 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3323 ;;
3324 (define (use-srfis srfis)
3325 (let lp ((s srfis))
3326 (if (pair? s)
3327 (let* ((srfi (string->symbol
3328 (string-append "srfi-" (number->string (car s)))))
3329 (mod-i (resolve-interface (list 'srfi srfi))))
3330 (module-use! (current-module) mod-i)
3331 (lp (cdr s))))))
3332
3333 \f
3334
3335 ;;; srfi-55: require-extension
3336 ;;;
3337
3338 (define-macro (require-extension extension-spec)
3339 ;; This macro only handles the srfi extension, which, at present, is
3340 ;; the only one defined by the standard.
3341 (if (not (pair? extension-spec))
3342 (scm-error 'wrong-type-arg "require-extension"
3343 "Not an extension: ~S" (list extension-spec) #f))
3344 (let ((extension (car extension-spec))
3345 (extension-args (cdr extension-spec)))
3346 (case extension
3347 ((srfi)
3348 (let ((use-list '()))
3349 (for-each
3350 (lambda (i)
3351 (if (not (integer? i))
3352 (scm-error 'wrong-type-arg "require-extension"
3353 "Invalid srfi name: ~S" (list i) #f))
3354 (let ((srfi-sym (string->symbol
3355 (string-append "srfi-" (number->string i)))))
3356 (if (not (memq srfi-sym %cond-expand-features))
3357 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3358 use-list)))))
3359 extension-args)
3360 (if (pair? use-list)
3361 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3362 `(begin ,@(reverse! use-list)))))
3363 (else
3364 (scm-error
3365 'wrong-type-arg "require-extension"
3366 "Not a recognized extension type: ~S" (list extension) #f)))))
3367
3368 \f
3369
3370 ;;; {Load emacs interface support if emacs option is given.}
3371 ;;;
3372
3373 (define (named-module-use! user usee)
3374 (module-use! (resolve-module user) (resolve-interface usee)))
3375
3376 (define (load-emacs-interface)
3377 (and (provided? 'debug-extensions)
3378 (debug-enable 'backtrace))
3379 (named-module-use! '(guile-user) '(ice-9 emacs)))
3380
3381 \f
3382
3383 (define using-readline?
3384 (let ((using-readline? (make-fluid)))
3385 (make-procedure-with-setter
3386 (lambda () (fluid-ref using-readline?))
3387 (lambda (v) (fluid-set! using-readline? v)))))
3388
3389 (define (top-repl)
3390 (let ((guile-user-module (resolve-module '(guile-user))))
3391
3392 ;; Load emacs interface support if emacs option is given.
3393 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3394 (module-ref guile-user-module 'use-emacs-interface))
3395 (load-emacs-interface))
3396
3397 ;; Use some convenient modules (in reverse order)
3398
3399 (if (provided? 'regex)
3400 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
3401 (if (provided? 'threads)
3402 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
3403 ;; load debugger on demand
3404 (module-use! guile-user-module
3405 (make-autoload-interface guile-user-module
3406 '(ice-9 debugger) '(debug)))
3407 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
3408 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
3409 ;; so that builtin bindings will be checked first
3410 (module-use! guile-user-module (resolve-interface '(ice-9 r5rs)))
3411 (module-use! guile-user-module (resolve-interface '(guile)))
3412
3413 (set-current-module guile-user-module)
3414
3415 (let ((old-handlers #f)
3416 (signals (if (provided? 'posix)
3417 `((,SIGINT . "User interrupt")
3418 (,SIGFPE . "Arithmetic error")
3419 (,SIGBUS . "Bad memory access (bus error)")
3420 (,SIGSEGV
3421 . "Bad memory access (Segmentation violation)"))
3422 '())))
3423
3424 (dynamic-wind
3425
3426 ;; call at entry
3427 (lambda ()
3428 (let ((make-handler (lambda (msg)
3429 (lambda (sig)
3430 ;; Make a backup copy of the stack
3431 (fluid-set! before-signal-stack
3432 (fluid-ref the-last-stack))
3433 (save-stack 2)
3434 (scm-error 'signal
3435 #f
3436 msg
3437 #f
3438 (list sig))))))
3439 (set! old-handlers
3440 (map (lambda (sig-msg)
3441 (sigaction (car sig-msg)
3442 (make-handler (cdr sig-msg))))
3443 signals))))
3444
3445 ;; the protected thunk.
3446 (lambda ()
3447 (let ((status (scm-style-repl)))
3448 (run-hook exit-hook)
3449 status))
3450
3451 ;; call at exit.
3452 (lambda ()
3453 (map (lambda (sig-msg old-handler)
3454 (if (not (car old-handler))
3455 ;; restore original C handler.
3456 (sigaction (car sig-msg) #f)
3457 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3458 (sigaction (car sig-msg)
3459 (car old-handler)
3460 (cdr old-handler))))
3461 signals old-handlers))))))
3462
3463 ;;; This hook is run at the very end of an interactive session.
3464 ;;;
3465 (define exit-hook (make-hook))
3466
3467 \f
3468
3469 ;;; {Deprecated stuff}
3470 ;;;
3471
3472 (begin-deprecated
3473 (define (feature? sym)
3474 (issue-deprecation-warning
3475 "`feature?' is deprecated. Use `provided?' instead.")
3476 (provided? sym)))
3477
3478 (begin-deprecated
3479 (primitive-load-path "ice-9/deprecated.scm"))
3480
3481 \f
3482
3483 ;;; Place the user in the guile-user module.
3484 ;;;
3485
3486 (define-module (guile-user))
3487
3488 ;;; boot-9.scm ends here