expt / integer-expt fixes
[bpt/guile.git] / libguile / numbers.c
1 /* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
2 *
3 * Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
4 * and Bellcore. See scm_divide.
5 *
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either version 3 of
10 * the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301 USA
21 */
22
23 \f
24 /* General assumptions:
25 * All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
26 * All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
27 * If an object satisfies integer?, it's either an inum, a bignum, or a real.
28 * If floor (r) == r, r is an int, and mpz_set_d will DTRT.
29 * All objects satisfying SCM_FRACTIONP are never an integer.
30 */
31
32 /* TODO:
33
34 - see if special casing bignums and reals in integer-exponent when
35 possible (to use mpz_pow and mpf_pow_ui) is faster.
36
37 - look in to better short-circuiting of common cases in
38 integer-expt and elsewhere.
39
40 - see if direct mpz operations can help in ash and elsewhere.
41
42 */
43
44 #ifdef HAVE_CONFIG_H
45 # include <config.h>
46 #endif
47
48 #include <math.h>
49 #include <string.h>
50 #include <unicase.h>
51 #include <unictype.h>
52
53 #if HAVE_COMPLEX_H
54 #include <complex.h>
55 #endif
56
57 #include "libguile/_scm.h"
58 #include "libguile/feature.h"
59 #include "libguile/ports.h"
60 #include "libguile/root.h"
61 #include "libguile/smob.h"
62 #include "libguile/strings.h"
63
64 #include "libguile/validate.h"
65 #include "libguile/numbers.h"
66 #include "libguile/deprecation.h"
67
68 #include "libguile/eq.h"
69
70 #include "libguile/discouraged.h"
71
72 /* values per glibc, if not already defined */
73 #ifndef M_LOG10E
74 #define M_LOG10E 0.43429448190325182765
75 #endif
76 #ifndef M_PI
77 #define M_PI 3.14159265358979323846
78 #endif
79
80 \f
81
82 /*
83 Wonder if this might be faster for some of our code? A switch on
84 the numtag would jump directly to the right case, and the
85 SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
86
87 #define SCM_I_NUMTAG_NOTNUM 0
88 #define SCM_I_NUMTAG_INUM 1
89 #define SCM_I_NUMTAG_BIG scm_tc16_big
90 #define SCM_I_NUMTAG_REAL scm_tc16_real
91 #define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
92 #define SCM_I_NUMTAG(x) \
93 (SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
94 : (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
95 : (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
96 : SCM_I_NUMTAG_NOTNUM)))
97 */
98 /* the macro above will not work as is with fractions */
99
100
101 static SCM flo0;
102
103 #define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
104
105 /* FLOBUFLEN is the maximum number of characters neccessary for the
106 * printed or scm_string representation of an inexact number.
107 */
108 #define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
109
110 #if defined (SCO)
111 #if ! defined (HAVE_ISNAN)
112 #define HAVE_ISNAN
113 static int
114 isnan (double x)
115 {
116 return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
117 }
118 #endif
119 #if ! defined (HAVE_ISINF)
120 #define HAVE_ISINF
121 static int
122 isinf (double x)
123 {
124 return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
125 }
126
127 #endif
128 #endif
129
130
131 #if !defined (HAVE_ASINH)
132 static double asinh (double x) { return log (x + sqrt (x * x + 1)); }
133 #endif
134 #if !defined (HAVE_ACOSH)
135 static double acosh (double x) { return log (x + sqrt (x * x - 1)); }
136 #endif
137 #if !defined (HAVE_ATANH)
138 static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); }
139 #endif
140
141 /* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
142 an explicit check. In some future gmp (don't know what version number),
143 mpz_cmp_d is supposed to do this itself. */
144 #if 1
145 #define xmpz_cmp_d(z, d) \
146 (xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
147 #else
148 #define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
149 #endif
150
151 /* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
152 isinf. It does have finite and isnan though, hence the use of those.
153 fpclass would be a possibility on that system too. */
154 static int
155 xisinf (double x)
156 {
157 #if defined (HAVE_ISINF)
158 return isinf (x);
159 #elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
160 return (! (finite (x) || isnan (x)));
161 #else
162 return 0;
163 #endif
164 }
165
166 static int
167 xisnan (double x)
168 {
169 #if defined (HAVE_ISNAN)
170 return isnan (x);
171 #else
172 return 0;
173 #endif
174 }
175
176 #if defined (GUILE_I)
177 #if HAVE_COMPLEX_DOUBLE
178
179 /* For an SCM object Z which is a complex number (ie. satisfies
180 SCM_COMPLEXP), return its value as a C level "complex double". */
181 #define SCM_COMPLEX_VALUE(z) \
182 (SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z))
183
184 static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED;
185
186 /* Convert a C "complex double" to an SCM value. */
187 static inline SCM
188 scm_from_complex_double (complex double z)
189 {
190 return scm_c_make_rectangular (creal (z), cimag (z));
191 }
192
193 #endif /* HAVE_COMPLEX_DOUBLE */
194 #endif /* GUILE_I */
195
196 \f
197
198 static mpz_t z_negative_one;
199
200 \f
201
202 SCM
203 scm_i_mkbig ()
204 {
205 /* Return a newly created bignum. */
206 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
207 mpz_init (SCM_I_BIG_MPZ (z));
208 return z;
209 }
210
211 SCM
212 scm_i_long2big (long x)
213 {
214 /* Return a newly created bignum initialized to X. */
215 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
216 mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
217 return z;
218 }
219
220 SCM
221 scm_i_ulong2big (unsigned long x)
222 {
223 /* Return a newly created bignum initialized to X. */
224 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
225 mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
226 return z;
227 }
228
229 SCM
230 scm_i_clonebig (SCM src_big, int same_sign_p)
231 {
232 /* Copy src_big's value, negate it if same_sign_p is false, and return. */
233 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
234 mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
235 if (!same_sign_p)
236 mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
237 return z;
238 }
239
240 int
241 scm_i_bigcmp (SCM x, SCM y)
242 {
243 /* Return neg if x < y, pos if x > y, and 0 if x == y */
244 /* presume we already know x and y are bignums */
245 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
246 scm_remember_upto_here_2 (x, y);
247 return result;
248 }
249
250 SCM
251 scm_i_dbl2big (double d)
252 {
253 /* results are only defined if d is an integer */
254 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
255 mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
256 return z;
257 }
258
259 /* Convert a integer in double representation to a SCM number. */
260
261 SCM
262 scm_i_dbl2num (double u)
263 {
264 /* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
265 powers of 2, so there's no rounding when making "double" values
266 from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
267 get rounded on a 64-bit machine, hence the "+1".
268
269 The use of floor() to force to an integer value ensures we get a
270 "numerically closest" value without depending on how a
271 double->long cast or how mpz_set_d will round. For reference,
272 double->long probably follows the hardware rounding mode,
273 mpz_set_d truncates towards zero. */
274
275 /* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
276 representable as a double? */
277
278 if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
279 && u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
280 return SCM_I_MAKINUM ((long) u);
281 else
282 return scm_i_dbl2big (u);
283 }
284
285 /* scm_i_big2dbl() rounds to the closest representable double, in accordance
286 with R5RS exact->inexact.
287
288 The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
289 (ie. truncate towards zero), then adjust to get the closest double by
290 examining the next lower bit and adding 1 (to the absolute value) if
291 necessary.
292
293 Bignums exactly half way between representable doubles are rounded to the
294 next higher absolute value (ie. away from zero). This seems like an
295 adequate interpretation of R5RS "numerically closest", and it's easier
296 and faster than a full "nearest-even" style.
297
298 The bit test must be done on the absolute value of the mpz_t, which means
299 we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
300 negatives as twos complement.
301
302 In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
303 following the hardware rounding mode, but applied to the absolute value
304 of the mpz_t operand. This is not what we want so we put the high
305 DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
306 mpz_get_d is supposed to always truncate towards zero.
307
308 ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
309 is a slowdown. It'd be faster to pick out the relevant high bits with
310 mpz_getlimbn if we could be bothered coding that, and if the new
311 truncating gmp doesn't come out. */
312
313 double
314 scm_i_big2dbl (SCM b)
315 {
316 double result;
317 size_t bits;
318
319 bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
320
321 #if 1
322 {
323 /* Current GMP, eg. 4.1.3, force truncation towards zero */
324 mpz_t tmp;
325 if (bits > DBL_MANT_DIG)
326 {
327 size_t shift = bits - DBL_MANT_DIG;
328 mpz_init2 (tmp, DBL_MANT_DIG);
329 mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
330 result = ldexp (mpz_get_d (tmp), shift);
331 mpz_clear (tmp);
332 }
333 else
334 {
335 result = mpz_get_d (SCM_I_BIG_MPZ (b));
336 }
337 }
338 #else
339 /* Future GMP */
340 result = mpz_get_d (SCM_I_BIG_MPZ (b));
341 #endif
342
343 if (bits > DBL_MANT_DIG)
344 {
345 unsigned long pos = bits - DBL_MANT_DIG - 1;
346 /* test bit number "pos" in absolute value */
347 if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
348 & ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
349 {
350 result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
351 }
352 }
353
354 scm_remember_upto_here_1 (b);
355 return result;
356 }
357
358 SCM
359 scm_i_normbig (SCM b)
360 {
361 /* convert a big back to a fixnum if it'll fit */
362 /* presume b is a bignum */
363 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
364 {
365 long val = mpz_get_si (SCM_I_BIG_MPZ (b));
366 if (SCM_FIXABLE (val))
367 b = SCM_I_MAKINUM (val);
368 }
369 return b;
370 }
371
372 static SCM_C_INLINE_KEYWORD SCM
373 scm_i_mpz2num (mpz_t b)
374 {
375 /* convert a mpz number to a SCM number. */
376 if (mpz_fits_slong_p (b))
377 {
378 long val = mpz_get_si (b);
379 if (SCM_FIXABLE (val))
380 return SCM_I_MAKINUM (val);
381 }
382
383 {
384 SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
385 mpz_init_set (SCM_I_BIG_MPZ (z), b);
386 return z;
387 }
388 }
389
390 /* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
391 static SCM scm_divide2real (SCM x, SCM y);
392
393 static SCM
394 scm_i_make_ratio (SCM numerator, SCM denominator)
395 #define FUNC_NAME "make-ratio"
396 {
397 /* First make sure the arguments are proper.
398 */
399 if (SCM_I_INUMP (denominator))
400 {
401 if (scm_is_eq (denominator, SCM_INUM0))
402 scm_num_overflow ("make-ratio");
403 if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
404 return numerator;
405 }
406 else
407 {
408 if (!(SCM_BIGP(denominator)))
409 SCM_WRONG_TYPE_ARG (2, denominator);
410 }
411 if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
412 SCM_WRONG_TYPE_ARG (1, numerator);
413
414 /* Then flip signs so that the denominator is positive.
415 */
416 if (scm_is_true (scm_negative_p (denominator)))
417 {
418 numerator = scm_difference (numerator, SCM_UNDEFINED);
419 denominator = scm_difference (denominator, SCM_UNDEFINED);
420 }
421
422 /* Now consider for each of the four fixnum/bignum combinations
423 whether the rational number is really an integer.
424 */
425 if (SCM_I_INUMP (numerator))
426 {
427 long x = SCM_I_INUM (numerator);
428 if (scm_is_eq (numerator, SCM_INUM0))
429 return SCM_INUM0;
430 if (SCM_I_INUMP (denominator))
431 {
432 long y;
433 y = SCM_I_INUM (denominator);
434 if (x == y)
435 return SCM_I_MAKINUM(1);
436 if ((x % y) == 0)
437 return SCM_I_MAKINUM (x / y);
438 }
439 else
440 {
441 /* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
442 of that value for the denominator, as a bignum. Apart from
443 that case, abs(bignum) > abs(inum) so inum/bignum is not an
444 integer. */
445 if (x == SCM_MOST_NEGATIVE_FIXNUM
446 && mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
447 - SCM_MOST_NEGATIVE_FIXNUM) == 0)
448 return SCM_I_MAKINUM(-1);
449 }
450 }
451 else if (SCM_BIGP (numerator))
452 {
453 if (SCM_I_INUMP (denominator))
454 {
455 long yy = SCM_I_INUM (denominator);
456 if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
457 return scm_divide (numerator, denominator);
458 }
459 else
460 {
461 if (scm_is_eq (numerator, denominator))
462 return SCM_I_MAKINUM(1);
463 if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
464 SCM_I_BIG_MPZ (denominator)))
465 return scm_divide(numerator, denominator);
466 }
467 }
468
469 /* No, it's a proper fraction.
470 */
471 {
472 SCM divisor = scm_gcd (numerator, denominator);
473 if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
474 {
475 numerator = scm_divide (numerator, divisor);
476 denominator = scm_divide (denominator, divisor);
477 }
478
479 return scm_double_cell (scm_tc16_fraction,
480 SCM_UNPACK (numerator),
481 SCM_UNPACK (denominator), 0);
482 }
483 }
484 #undef FUNC_NAME
485
486 double
487 scm_i_fraction2double (SCM z)
488 {
489 return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
490 SCM_FRACTION_DENOMINATOR (z)));
491 }
492
493 SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
494 (SCM x),
495 "Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
496 "otherwise.")
497 #define FUNC_NAME s_scm_exact_p
498 {
499 if (SCM_I_INUMP (x))
500 return SCM_BOOL_T;
501 if (SCM_BIGP (x))
502 return SCM_BOOL_T;
503 if (SCM_FRACTIONP (x))
504 return SCM_BOOL_T;
505 if (SCM_NUMBERP (x))
506 return SCM_BOOL_F;
507 SCM_WRONG_TYPE_ARG (1, x);
508 }
509 #undef FUNC_NAME
510
511
512 SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
513 (SCM n),
514 "Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
515 "otherwise.")
516 #define FUNC_NAME s_scm_odd_p
517 {
518 if (SCM_I_INUMP (n))
519 {
520 long val = SCM_I_INUM (n);
521 return scm_from_bool ((val & 1L) != 0);
522 }
523 else if (SCM_BIGP (n))
524 {
525 int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
526 scm_remember_upto_here_1 (n);
527 return scm_from_bool (odd_p);
528 }
529 else if (scm_is_true (scm_inf_p (n)))
530 return SCM_BOOL_T;
531 else if (SCM_REALP (n))
532 {
533 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
534 if (rem == 1.0)
535 return SCM_BOOL_T;
536 else if (rem == 0.0)
537 return SCM_BOOL_F;
538 else
539 SCM_WRONG_TYPE_ARG (1, n);
540 }
541 else
542 SCM_WRONG_TYPE_ARG (1, n);
543 }
544 #undef FUNC_NAME
545
546
547 SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
548 (SCM n),
549 "Return @code{#t} if @var{n} is an even number, @code{#f}\n"
550 "otherwise.")
551 #define FUNC_NAME s_scm_even_p
552 {
553 if (SCM_I_INUMP (n))
554 {
555 long val = SCM_I_INUM (n);
556 return scm_from_bool ((val & 1L) == 0);
557 }
558 else if (SCM_BIGP (n))
559 {
560 int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
561 scm_remember_upto_here_1 (n);
562 return scm_from_bool (even_p);
563 }
564 else if (scm_is_true (scm_inf_p (n)))
565 return SCM_BOOL_T;
566 else if (SCM_REALP (n))
567 {
568 double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
569 if (rem == 1.0)
570 return SCM_BOOL_F;
571 else if (rem == 0.0)
572 return SCM_BOOL_T;
573 else
574 SCM_WRONG_TYPE_ARG (1, n);
575 }
576 else
577 SCM_WRONG_TYPE_ARG (1, n);
578 }
579 #undef FUNC_NAME
580
581 SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
582 (SCM x),
583 "Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
584 "or @samp{-inf.0}, @code{#f} otherwise.")
585 #define FUNC_NAME s_scm_inf_p
586 {
587 if (SCM_REALP (x))
588 return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
589 else if (SCM_COMPLEXP (x))
590 return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
591 || xisinf (SCM_COMPLEX_IMAG (x)));
592 else
593 return SCM_BOOL_F;
594 }
595 #undef FUNC_NAME
596
597 SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
598 (SCM n),
599 "Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
600 "otherwise.")
601 #define FUNC_NAME s_scm_nan_p
602 {
603 if (SCM_REALP (n))
604 return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
605 else if (SCM_COMPLEXP (n))
606 return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
607 || xisnan (SCM_COMPLEX_IMAG (n)));
608 else
609 return SCM_BOOL_F;
610 }
611 #undef FUNC_NAME
612
613 /* Guile's idea of infinity. */
614 static double guile_Inf;
615
616 /* Guile's idea of not a number. */
617 static double guile_NaN;
618
619 static void
620 guile_ieee_init (void)
621 {
622 #if defined (HAVE_ISINF) || defined (HAVE_FINITE)
623
624 /* Some version of gcc on some old version of Linux used to crash when
625 trying to make Inf and NaN. */
626
627 #ifdef INFINITY
628 /* C99 INFINITY, when available.
629 FIXME: The standard allows for INFINITY to be something that overflows
630 at compile time. We ought to have a configure test to check for that
631 before trying to use it. (But in practice we believe this is not a
632 problem on any system guile is likely to target.) */
633 guile_Inf = INFINITY;
634 #elif defined HAVE_DINFINITY
635 /* OSF */
636 extern unsigned int DINFINITY[2];
637 guile_Inf = (*((double *) (DINFINITY)));
638 #else
639 double tmp = 1e+10;
640 guile_Inf = tmp;
641 for (;;)
642 {
643 guile_Inf *= 1e+10;
644 if (guile_Inf == tmp)
645 break;
646 tmp = guile_Inf;
647 }
648 #endif
649
650 #endif
651
652 #if defined (HAVE_ISNAN)
653
654 #ifdef NAN
655 /* C99 NAN, when available */
656 guile_NaN = NAN;
657 #elif defined HAVE_DQNAN
658 {
659 /* OSF */
660 extern unsigned int DQNAN[2];
661 guile_NaN = (*((double *)(DQNAN)));
662 }
663 #else
664 guile_NaN = guile_Inf / guile_Inf;
665 #endif
666
667 #endif
668 }
669
670 SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
671 (void),
672 "Return Inf.")
673 #define FUNC_NAME s_scm_inf
674 {
675 static int initialized = 0;
676 if (! initialized)
677 {
678 guile_ieee_init ();
679 initialized = 1;
680 }
681 return scm_from_double (guile_Inf);
682 }
683 #undef FUNC_NAME
684
685 SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
686 (void),
687 "Return NaN.")
688 #define FUNC_NAME s_scm_nan
689 {
690 static int initialized = 0;
691 if (!initialized)
692 {
693 guile_ieee_init ();
694 initialized = 1;
695 }
696 return scm_from_double (guile_NaN);
697 }
698 #undef FUNC_NAME
699
700
701 SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
702 (SCM x),
703 "Return the absolute value of @var{x}.")
704 #define FUNC_NAME
705 {
706 if (SCM_I_INUMP (x))
707 {
708 long int xx = SCM_I_INUM (x);
709 if (xx >= 0)
710 return x;
711 else if (SCM_POSFIXABLE (-xx))
712 return SCM_I_MAKINUM (-xx);
713 else
714 return scm_i_long2big (-xx);
715 }
716 else if (SCM_BIGP (x))
717 {
718 const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
719 if (sgn < 0)
720 return scm_i_clonebig (x, 0);
721 else
722 return x;
723 }
724 else if (SCM_REALP (x))
725 {
726 /* note that if x is a NaN then xx<0 is false so we return x unchanged */
727 double xx = SCM_REAL_VALUE (x);
728 if (xx < 0.0)
729 return scm_from_double (-xx);
730 else
731 return x;
732 }
733 else if (SCM_FRACTIONP (x))
734 {
735 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
736 return x;
737 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
738 SCM_FRACTION_DENOMINATOR (x));
739 }
740 else
741 SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
742 }
743 #undef FUNC_NAME
744
745
746 SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
747 /* "Return the quotient of the numbers @var{x} and @var{y}."
748 */
749 SCM
750 scm_quotient (SCM x, SCM y)
751 {
752 if (SCM_I_INUMP (x))
753 {
754 long xx = SCM_I_INUM (x);
755 if (SCM_I_INUMP (y))
756 {
757 long yy = SCM_I_INUM (y);
758 if (yy == 0)
759 scm_num_overflow (s_quotient);
760 else
761 {
762 long z = xx / yy;
763 if (SCM_FIXABLE (z))
764 return SCM_I_MAKINUM (z);
765 else
766 return scm_i_long2big (z);
767 }
768 }
769 else if (SCM_BIGP (y))
770 {
771 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
772 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
773 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
774 {
775 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
776 scm_remember_upto_here_1 (y);
777 return SCM_I_MAKINUM (-1);
778 }
779 else
780 return SCM_I_MAKINUM (0);
781 }
782 else
783 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
784 }
785 else if (SCM_BIGP (x))
786 {
787 if (SCM_I_INUMP (y))
788 {
789 long yy = SCM_I_INUM (y);
790 if (yy == 0)
791 scm_num_overflow (s_quotient);
792 else if (yy == 1)
793 return x;
794 else
795 {
796 SCM result = scm_i_mkbig ();
797 if (yy < 0)
798 {
799 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
800 SCM_I_BIG_MPZ (x),
801 - yy);
802 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
803 }
804 else
805 mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
806 scm_remember_upto_here_1 (x);
807 return scm_i_normbig (result);
808 }
809 }
810 else if (SCM_BIGP (y))
811 {
812 SCM result = scm_i_mkbig ();
813 mpz_tdiv_q (SCM_I_BIG_MPZ (result),
814 SCM_I_BIG_MPZ (x),
815 SCM_I_BIG_MPZ (y));
816 scm_remember_upto_here_2 (x, y);
817 return scm_i_normbig (result);
818 }
819 else
820 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
821 }
822 else
823 SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
824 }
825
826 SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
827 /* "Return the remainder of the numbers @var{x} and @var{y}.\n"
828 * "@lisp\n"
829 * "(remainder 13 4) @result{} 1\n"
830 * "(remainder -13 4) @result{} -1\n"
831 * "@end lisp"
832 */
833 SCM
834 scm_remainder (SCM x, SCM y)
835 {
836 if (SCM_I_INUMP (x))
837 {
838 if (SCM_I_INUMP (y))
839 {
840 long yy = SCM_I_INUM (y);
841 if (yy == 0)
842 scm_num_overflow (s_remainder);
843 else
844 {
845 long z = SCM_I_INUM (x) % yy;
846 return SCM_I_MAKINUM (z);
847 }
848 }
849 else if (SCM_BIGP (y))
850 {
851 if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
852 && (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
853 - SCM_MOST_NEGATIVE_FIXNUM) == 0))
854 {
855 /* Special case: x == fixnum-min && y == abs (fixnum-min) */
856 scm_remember_upto_here_1 (y);
857 return SCM_I_MAKINUM (0);
858 }
859 else
860 return x;
861 }
862 else
863 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
864 }
865 else if (SCM_BIGP (x))
866 {
867 if (SCM_I_INUMP (y))
868 {
869 long yy = SCM_I_INUM (y);
870 if (yy == 0)
871 scm_num_overflow (s_remainder);
872 else
873 {
874 SCM result = scm_i_mkbig ();
875 if (yy < 0)
876 yy = - yy;
877 mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
878 scm_remember_upto_here_1 (x);
879 return scm_i_normbig (result);
880 }
881 }
882 else if (SCM_BIGP (y))
883 {
884 SCM result = scm_i_mkbig ();
885 mpz_tdiv_r (SCM_I_BIG_MPZ (result),
886 SCM_I_BIG_MPZ (x),
887 SCM_I_BIG_MPZ (y));
888 scm_remember_upto_here_2 (x, y);
889 return scm_i_normbig (result);
890 }
891 else
892 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
893 }
894 else
895 SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
896 }
897
898
899 SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
900 /* "Return the modulo of the numbers @var{x} and @var{y}.\n"
901 * "@lisp\n"
902 * "(modulo 13 4) @result{} 1\n"
903 * "(modulo -13 4) @result{} 3\n"
904 * "@end lisp"
905 */
906 SCM
907 scm_modulo (SCM x, SCM y)
908 {
909 if (SCM_I_INUMP (x))
910 {
911 long xx = SCM_I_INUM (x);
912 if (SCM_I_INUMP (y))
913 {
914 long yy = SCM_I_INUM (y);
915 if (yy == 0)
916 scm_num_overflow (s_modulo);
917 else
918 {
919 /* C99 specifies that "%" is the remainder corresponding to a
920 quotient rounded towards zero, and that's also traditional
921 for machine division, so z here should be well defined. */
922 long z = xx % yy;
923 long result;
924
925 if (yy < 0)
926 {
927 if (z > 0)
928 result = z + yy;
929 else
930 result = z;
931 }
932 else
933 {
934 if (z < 0)
935 result = z + yy;
936 else
937 result = z;
938 }
939 return SCM_I_MAKINUM (result);
940 }
941 }
942 else if (SCM_BIGP (y))
943 {
944 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
945 {
946 mpz_t z_x;
947 SCM result;
948
949 if (sgn_y < 0)
950 {
951 SCM pos_y = scm_i_clonebig (y, 0);
952 /* do this after the last scm_op */
953 mpz_init_set_si (z_x, xx);
954 result = pos_y; /* re-use this bignum */
955 mpz_mod (SCM_I_BIG_MPZ (result),
956 z_x,
957 SCM_I_BIG_MPZ (pos_y));
958 scm_remember_upto_here_1 (pos_y);
959 }
960 else
961 {
962 result = scm_i_mkbig ();
963 /* do this after the last scm_op */
964 mpz_init_set_si (z_x, xx);
965 mpz_mod (SCM_I_BIG_MPZ (result),
966 z_x,
967 SCM_I_BIG_MPZ (y));
968 scm_remember_upto_here_1 (y);
969 }
970
971 if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
972 mpz_add (SCM_I_BIG_MPZ (result),
973 SCM_I_BIG_MPZ (y),
974 SCM_I_BIG_MPZ (result));
975 scm_remember_upto_here_1 (y);
976 /* and do this before the next one */
977 mpz_clear (z_x);
978 return scm_i_normbig (result);
979 }
980 }
981 else
982 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
983 }
984 else if (SCM_BIGP (x))
985 {
986 if (SCM_I_INUMP (y))
987 {
988 long yy = SCM_I_INUM (y);
989 if (yy == 0)
990 scm_num_overflow (s_modulo);
991 else
992 {
993 SCM result = scm_i_mkbig ();
994 mpz_mod_ui (SCM_I_BIG_MPZ (result),
995 SCM_I_BIG_MPZ (x),
996 (yy < 0) ? - yy : yy);
997 scm_remember_upto_here_1 (x);
998 if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
999 mpz_sub_ui (SCM_I_BIG_MPZ (result),
1000 SCM_I_BIG_MPZ (result),
1001 - yy);
1002 return scm_i_normbig (result);
1003 }
1004 }
1005 else if (SCM_BIGP (y))
1006 {
1007 {
1008 SCM result = scm_i_mkbig ();
1009 int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
1010 SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
1011 mpz_mod (SCM_I_BIG_MPZ (result),
1012 SCM_I_BIG_MPZ (x),
1013 SCM_I_BIG_MPZ (pos_y));
1014
1015 scm_remember_upto_here_1 (x);
1016 if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
1017 mpz_add (SCM_I_BIG_MPZ (result),
1018 SCM_I_BIG_MPZ (y),
1019 SCM_I_BIG_MPZ (result));
1020 scm_remember_upto_here_2 (y, pos_y);
1021 return scm_i_normbig (result);
1022 }
1023 }
1024 else
1025 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
1026 }
1027 else
1028 SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
1029 }
1030
1031 SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1,
1032 (SCM x, SCM y, SCM rest),
1033 "Return the greatest common divisor of all parameter values.\n"
1034 "If called without arguments, 0 is returned.")
1035 #define FUNC_NAME s_scm_i_gcd
1036 {
1037 while (!scm_is_null (rest))
1038 { x = scm_gcd (x, y);
1039 y = scm_car (rest);
1040 rest = scm_cdr (rest);
1041 }
1042 return scm_gcd (x, y);
1043 }
1044 #undef FUNC_NAME
1045
1046 #define s_gcd s_scm_i_gcd
1047 #define g_gcd g_scm_i_gcd
1048
1049 SCM
1050 scm_gcd (SCM x, SCM y)
1051 {
1052 if (SCM_UNBNDP (y))
1053 return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x);
1054
1055 if (SCM_I_INUMP (x))
1056 {
1057 if (SCM_I_INUMP (y))
1058 {
1059 long xx = SCM_I_INUM (x);
1060 long yy = SCM_I_INUM (y);
1061 long u = xx < 0 ? -xx : xx;
1062 long v = yy < 0 ? -yy : yy;
1063 long result;
1064 if (xx == 0)
1065 result = v;
1066 else if (yy == 0)
1067 result = u;
1068 else
1069 {
1070 long k = 1;
1071 long t;
1072 /* Determine a common factor 2^k */
1073 while (!(1 & (u | v)))
1074 {
1075 k <<= 1;
1076 u >>= 1;
1077 v >>= 1;
1078 }
1079 /* Now, any factor 2^n can be eliminated */
1080 if (u & 1)
1081 t = -v;
1082 else
1083 {
1084 t = u;
1085 b3:
1086 t = SCM_SRS (t, 1);
1087 }
1088 if (!(1 & t))
1089 goto b3;
1090 if (t > 0)
1091 u = t;
1092 else
1093 v = -t;
1094 t = u - v;
1095 if (t != 0)
1096 goto b3;
1097 result = u * k;
1098 }
1099 return (SCM_POSFIXABLE (result)
1100 ? SCM_I_MAKINUM (result)
1101 : scm_i_long2big (result));
1102 }
1103 else if (SCM_BIGP (y))
1104 {
1105 SCM_SWAP (x, y);
1106 goto big_inum;
1107 }
1108 else
1109 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1110 }
1111 else if (SCM_BIGP (x))
1112 {
1113 if (SCM_I_INUMP (y))
1114 {
1115 unsigned long result;
1116 long yy;
1117 big_inum:
1118 yy = SCM_I_INUM (y);
1119 if (yy == 0)
1120 return scm_abs (x);
1121 if (yy < 0)
1122 yy = -yy;
1123 result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
1124 scm_remember_upto_here_1 (x);
1125 return (SCM_POSFIXABLE (result)
1126 ? SCM_I_MAKINUM (result)
1127 : scm_from_ulong (result));
1128 }
1129 else if (SCM_BIGP (y))
1130 {
1131 SCM result = scm_i_mkbig ();
1132 mpz_gcd (SCM_I_BIG_MPZ (result),
1133 SCM_I_BIG_MPZ (x),
1134 SCM_I_BIG_MPZ (y));
1135 scm_remember_upto_here_2 (x, y);
1136 return scm_i_normbig (result);
1137 }
1138 else
1139 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
1140 }
1141 else
1142 SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
1143 }
1144
1145 SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1,
1146 (SCM x, SCM y, SCM rest),
1147 "Return the least common multiple of the arguments.\n"
1148 "If called without arguments, 1 is returned.")
1149 #define FUNC_NAME s_scm_i_lcm
1150 {
1151 while (!scm_is_null (rest))
1152 { x = scm_lcm (x, y);
1153 y = scm_car (rest);
1154 rest = scm_cdr (rest);
1155 }
1156 return scm_lcm (x, y);
1157 }
1158 #undef FUNC_NAME
1159
1160 #define s_lcm s_scm_i_lcm
1161 #define g_lcm g_scm_i_lcm
1162
1163 SCM
1164 scm_lcm (SCM n1, SCM n2)
1165 {
1166 if (SCM_UNBNDP (n2))
1167 {
1168 if (SCM_UNBNDP (n1))
1169 return SCM_I_MAKINUM (1L);
1170 n2 = SCM_I_MAKINUM (1L);
1171 }
1172
1173 SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
1174 g_lcm, n1, n2, SCM_ARG1, s_lcm);
1175 SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
1176 g_lcm, n1, n2, SCM_ARGn, s_lcm);
1177
1178 if (SCM_I_INUMP (n1))
1179 {
1180 if (SCM_I_INUMP (n2))
1181 {
1182 SCM d = scm_gcd (n1, n2);
1183 if (scm_is_eq (d, SCM_INUM0))
1184 return d;
1185 else
1186 return scm_abs (scm_product (n1, scm_quotient (n2, d)));
1187 }
1188 else
1189 {
1190 /* inum n1, big n2 */
1191 inumbig:
1192 {
1193 SCM result = scm_i_mkbig ();
1194 long nn1 = SCM_I_INUM (n1);
1195 if (nn1 == 0) return SCM_INUM0;
1196 if (nn1 < 0) nn1 = - nn1;
1197 mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
1198 scm_remember_upto_here_1 (n2);
1199 return result;
1200 }
1201 }
1202 }
1203 else
1204 {
1205 /* big n1 */
1206 if (SCM_I_INUMP (n2))
1207 {
1208 SCM_SWAP (n1, n2);
1209 goto inumbig;
1210 }
1211 else
1212 {
1213 SCM result = scm_i_mkbig ();
1214 mpz_lcm(SCM_I_BIG_MPZ (result),
1215 SCM_I_BIG_MPZ (n1),
1216 SCM_I_BIG_MPZ (n2));
1217 scm_remember_upto_here_2(n1, n2);
1218 /* shouldn't need to normalize b/c lcm of 2 bigs should be big */
1219 return result;
1220 }
1221 }
1222 }
1223
1224 /* Emulating 2's complement bignums with sign magnitude arithmetic:
1225
1226 Logand:
1227 X Y Result Method:
1228 (len)
1229 + + + x (map digit:logand X Y)
1230 + - + x (map digit:logand X (lognot (+ -1 Y)))
1231 - + + y (map digit:logand (lognot (+ -1 X)) Y)
1232 - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
1233
1234 Logior:
1235 X Y Result Method:
1236
1237 + + + (map digit:logior X Y)
1238 + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
1239 - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
1240 - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
1241
1242 Logxor:
1243 X Y Result Method:
1244
1245 + + + (map digit:logxor X Y)
1246 + - - (+ 1 (map digit:logxor X (+ -1 Y)))
1247 - + - (+ 1 (map digit:logxor (+ -1 X) Y))
1248 - - + (map digit:logxor (+ -1 X) (+ -1 Y))
1249
1250 Logtest:
1251 X Y Result
1252
1253 + + (any digit:logand X Y)
1254 + - (any digit:logand X (lognot (+ -1 Y)))
1255 - + (any digit:logand (lognot (+ -1 X)) Y)
1256 - - #t
1257
1258 */
1259
1260 SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1,
1261 (SCM x, SCM y, SCM rest),
1262 "Return the bitwise AND of the integer arguments.\n\n"
1263 "@lisp\n"
1264 "(logand) @result{} -1\n"
1265 "(logand 7) @result{} 7\n"
1266 "(logand #b111 #b011 #b001) @result{} 1\n"
1267 "@end lisp")
1268 #define FUNC_NAME s_scm_i_logand
1269 {
1270 while (!scm_is_null (rest))
1271 { x = scm_logand (x, y);
1272 y = scm_car (rest);
1273 rest = scm_cdr (rest);
1274 }
1275 return scm_logand (x, y);
1276 }
1277 #undef FUNC_NAME
1278
1279 #define s_scm_logand s_scm_i_logand
1280
1281 SCM scm_logand (SCM n1, SCM n2)
1282 #define FUNC_NAME s_scm_logand
1283 {
1284 long int nn1;
1285
1286 if (SCM_UNBNDP (n2))
1287 {
1288 if (SCM_UNBNDP (n1))
1289 return SCM_I_MAKINUM (-1);
1290 else if (!SCM_NUMBERP (n1))
1291 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1292 else if (SCM_NUMBERP (n1))
1293 return n1;
1294 else
1295 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1296 }
1297
1298 if (SCM_I_INUMP (n1))
1299 {
1300 nn1 = SCM_I_INUM (n1);
1301 if (SCM_I_INUMP (n2))
1302 {
1303 long nn2 = SCM_I_INUM (n2);
1304 return SCM_I_MAKINUM (nn1 & nn2);
1305 }
1306 else if SCM_BIGP (n2)
1307 {
1308 intbig:
1309 if (n1 == 0)
1310 return SCM_INUM0;
1311 {
1312 SCM result_z = scm_i_mkbig ();
1313 mpz_t nn1_z;
1314 mpz_init_set_si (nn1_z, nn1);
1315 mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1316 scm_remember_upto_here_1 (n2);
1317 mpz_clear (nn1_z);
1318 return scm_i_normbig (result_z);
1319 }
1320 }
1321 else
1322 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1323 }
1324 else if (SCM_BIGP (n1))
1325 {
1326 if (SCM_I_INUMP (n2))
1327 {
1328 SCM_SWAP (n1, n2);
1329 nn1 = SCM_I_INUM (n1);
1330 goto intbig;
1331 }
1332 else if (SCM_BIGP (n2))
1333 {
1334 SCM result_z = scm_i_mkbig ();
1335 mpz_and (SCM_I_BIG_MPZ (result_z),
1336 SCM_I_BIG_MPZ (n1),
1337 SCM_I_BIG_MPZ (n2));
1338 scm_remember_upto_here_2 (n1, n2);
1339 return scm_i_normbig (result_z);
1340 }
1341 else
1342 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1343 }
1344 else
1345 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1346 }
1347 #undef FUNC_NAME
1348
1349
1350 SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1,
1351 (SCM x, SCM y, SCM rest),
1352 "Return the bitwise OR of the integer arguments.\n\n"
1353 "@lisp\n"
1354 "(logior) @result{} 0\n"
1355 "(logior 7) @result{} 7\n"
1356 "(logior #b000 #b001 #b011) @result{} 3\n"
1357 "@end lisp")
1358 #define FUNC_NAME s_scm_i_logior
1359 {
1360 while (!scm_is_null (rest))
1361 { x = scm_logior (x, y);
1362 y = scm_car (rest);
1363 rest = scm_cdr (rest);
1364 }
1365 return scm_logior (x, y);
1366 }
1367 #undef FUNC_NAME
1368
1369 #define s_scm_logior s_scm_i_logior
1370
1371 SCM scm_logior (SCM n1, SCM n2)
1372 #define FUNC_NAME s_scm_logior
1373 {
1374 long int nn1;
1375
1376 if (SCM_UNBNDP (n2))
1377 {
1378 if (SCM_UNBNDP (n1))
1379 return SCM_INUM0;
1380 else if (SCM_NUMBERP (n1))
1381 return n1;
1382 else
1383 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1384 }
1385
1386 if (SCM_I_INUMP (n1))
1387 {
1388 nn1 = SCM_I_INUM (n1);
1389 if (SCM_I_INUMP (n2))
1390 {
1391 long nn2 = SCM_I_INUM (n2);
1392 return SCM_I_MAKINUM (nn1 | nn2);
1393 }
1394 else if (SCM_BIGP (n2))
1395 {
1396 intbig:
1397 if (nn1 == 0)
1398 return n2;
1399 {
1400 SCM result_z = scm_i_mkbig ();
1401 mpz_t nn1_z;
1402 mpz_init_set_si (nn1_z, nn1);
1403 mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1404 scm_remember_upto_here_1 (n2);
1405 mpz_clear (nn1_z);
1406 return scm_i_normbig (result_z);
1407 }
1408 }
1409 else
1410 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1411 }
1412 else if (SCM_BIGP (n1))
1413 {
1414 if (SCM_I_INUMP (n2))
1415 {
1416 SCM_SWAP (n1, n2);
1417 nn1 = SCM_I_INUM (n1);
1418 goto intbig;
1419 }
1420 else if (SCM_BIGP (n2))
1421 {
1422 SCM result_z = scm_i_mkbig ();
1423 mpz_ior (SCM_I_BIG_MPZ (result_z),
1424 SCM_I_BIG_MPZ (n1),
1425 SCM_I_BIG_MPZ (n2));
1426 scm_remember_upto_here_2 (n1, n2);
1427 return scm_i_normbig (result_z);
1428 }
1429 else
1430 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1431 }
1432 else
1433 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1434 }
1435 #undef FUNC_NAME
1436
1437
1438 SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1,
1439 (SCM x, SCM y, SCM rest),
1440 "Return the bitwise XOR of the integer arguments. A bit is\n"
1441 "set in the result if it is set in an odd number of arguments.\n"
1442 "@lisp\n"
1443 "(logxor) @result{} 0\n"
1444 "(logxor 7) @result{} 7\n"
1445 "(logxor #b000 #b001 #b011) @result{} 2\n"
1446 "(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
1447 "@end lisp")
1448 #define FUNC_NAME s_scm_i_logxor
1449 {
1450 while (!scm_is_null (rest))
1451 { x = scm_logxor (x, y);
1452 y = scm_car (rest);
1453 rest = scm_cdr (rest);
1454 }
1455 return scm_logxor (x, y);
1456 }
1457 #undef FUNC_NAME
1458
1459 #define s_scm_logxor s_scm_i_logxor
1460
1461 SCM scm_logxor (SCM n1, SCM n2)
1462 #define FUNC_NAME s_scm_logxor
1463 {
1464 long int nn1;
1465
1466 if (SCM_UNBNDP (n2))
1467 {
1468 if (SCM_UNBNDP (n1))
1469 return SCM_INUM0;
1470 else if (SCM_NUMBERP (n1))
1471 return n1;
1472 else
1473 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1474 }
1475
1476 if (SCM_I_INUMP (n1))
1477 {
1478 nn1 = SCM_I_INUM (n1);
1479 if (SCM_I_INUMP (n2))
1480 {
1481 long nn2 = SCM_I_INUM (n2);
1482 return SCM_I_MAKINUM (nn1 ^ nn2);
1483 }
1484 else if (SCM_BIGP (n2))
1485 {
1486 intbig:
1487 {
1488 SCM result_z = scm_i_mkbig ();
1489 mpz_t nn1_z;
1490 mpz_init_set_si (nn1_z, nn1);
1491 mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
1492 scm_remember_upto_here_1 (n2);
1493 mpz_clear (nn1_z);
1494 return scm_i_normbig (result_z);
1495 }
1496 }
1497 else
1498 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1499 }
1500 else if (SCM_BIGP (n1))
1501 {
1502 if (SCM_I_INUMP (n2))
1503 {
1504 SCM_SWAP (n1, n2);
1505 nn1 = SCM_I_INUM (n1);
1506 goto intbig;
1507 }
1508 else if (SCM_BIGP (n2))
1509 {
1510 SCM result_z = scm_i_mkbig ();
1511 mpz_xor (SCM_I_BIG_MPZ (result_z),
1512 SCM_I_BIG_MPZ (n1),
1513 SCM_I_BIG_MPZ (n2));
1514 scm_remember_upto_here_2 (n1, n2);
1515 return scm_i_normbig (result_z);
1516 }
1517 else
1518 SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
1519 }
1520 else
1521 SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
1522 }
1523 #undef FUNC_NAME
1524
1525
1526 SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
1527 (SCM j, SCM k),
1528 "Test whether @var{j} and @var{k} have any 1 bits in common.\n"
1529 "This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
1530 "without actually calculating the @code{logand}, just testing\n"
1531 "for non-zero.\n"
1532 "\n"
1533 "@lisp\n"
1534 "(logtest #b0100 #b1011) @result{} #f\n"
1535 "(logtest #b0100 #b0111) @result{} #t\n"
1536 "@end lisp")
1537 #define FUNC_NAME s_scm_logtest
1538 {
1539 long int nj;
1540
1541 if (SCM_I_INUMP (j))
1542 {
1543 nj = SCM_I_INUM (j);
1544 if (SCM_I_INUMP (k))
1545 {
1546 long nk = SCM_I_INUM (k);
1547 return scm_from_bool (nj & nk);
1548 }
1549 else if (SCM_BIGP (k))
1550 {
1551 intbig:
1552 if (nj == 0)
1553 return SCM_BOOL_F;
1554 {
1555 SCM result;
1556 mpz_t nj_z;
1557 mpz_init_set_si (nj_z, nj);
1558 mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
1559 scm_remember_upto_here_1 (k);
1560 result = scm_from_bool (mpz_sgn (nj_z) != 0);
1561 mpz_clear (nj_z);
1562 return result;
1563 }
1564 }
1565 else
1566 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1567 }
1568 else if (SCM_BIGP (j))
1569 {
1570 if (SCM_I_INUMP (k))
1571 {
1572 SCM_SWAP (j, k);
1573 nj = SCM_I_INUM (j);
1574 goto intbig;
1575 }
1576 else if (SCM_BIGP (k))
1577 {
1578 SCM result;
1579 mpz_t result_z;
1580 mpz_init (result_z);
1581 mpz_and (result_z,
1582 SCM_I_BIG_MPZ (j),
1583 SCM_I_BIG_MPZ (k));
1584 scm_remember_upto_here_2 (j, k);
1585 result = scm_from_bool (mpz_sgn (result_z) != 0);
1586 mpz_clear (result_z);
1587 return result;
1588 }
1589 else
1590 SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
1591 }
1592 else
1593 SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
1594 }
1595 #undef FUNC_NAME
1596
1597
1598 SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
1599 (SCM index, SCM j),
1600 "Test whether bit number @var{index} in @var{j} is set.\n"
1601 "@var{index} starts from 0 for the least significant bit.\n"
1602 "\n"
1603 "@lisp\n"
1604 "(logbit? 0 #b1101) @result{} #t\n"
1605 "(logbit? 1 #b1101) @result{} #f\n"
1606 "(logbit? 2 #b1101) @result{} #t\n"
1607 "(logbit? 3 #b1101) @result{} #t\n"
1608 "(logbit? 4 #b1101) @result{} #f\n"
1609 "@end lisp")
1610 #define FUNC_NAME s_scm_logbit_p
1611 {
1612 unsigned long int iindex;
1613 iindex = scm_to_ulong (index);
1614
1615 if (SCM_I_INUMP (j))
1616 {
1617 /* bits above what's in an inum follow the sign bit */
1618 iindex = min (iindex, SCM_LONG_BIT - 1);
1619 return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
1620 }
1621 else if (SCM_BIGP (j))
1622 {
1623 int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
1624 scm_remember_upto_here_1 (j);
1625 return scm_from_bool (val);
1626 }
1627 else
1628 SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
1629 }
1630 #undef FUNC_NAME
1631
1632
1633 SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
1634 (SCM n),
1635 "Return the integer which is the ones-complement of the integer\n"
1636 "argument.\n"
1637 "\n"
1638 "@lisp\n"
1639 "(number->string (lognot #b10000000) 2)\n"
1640 " @result{} \"-10000001\"\n"
1641 "(number->string (lognot #b0) 2)\n"
1642 " @result{} \"-1\"\n"
1643 "@end lisp")
1644 #define FUNC_NAME s_scm_lognot
1645 {
1646 if (SCM_I_INUMP (n)) {
1647 /* No overflow here, just need to toggle all the bits making up the inum.
1648 Enhancement: No need to strip the tag and add it back, could just xor
1649 a block of 1 bits, if that worked with the various debug versions of
1650 the SCM typedef. */
1651 return SCM_I_MAKINUM (~ SCM_I_INUM (n));
1652
1653 } else if (SCM_BIGP (n)) {
1654 SCM result = scm_i_mkbig ();
1655 mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
1656 scm_remember_upto_here_1 (n);
1657 return result;
1658
1659 } else {
1660 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1661 }
1662 }
1663 #undef FUNC_NAME
1664
1665 /* returns 0 if IN is not an integer. OUT must already be
1666 initialized. */
1667 static int
1668 coerce_to_big (SCM in, mpz_t out)
1669 {
1670 if (SCM_BIGP (in))
1671 mpz_set (out, SCM_I_BIG_MPZ (in));
1672 else if (SCM_I_INUMP (in))
1673 mpz_set_si (out, SCM_I_INUM (in));
1674 else
1675 return 0;
1676
1677 return 1;
1678 }
1679
1680 SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
1681 (SCM n, SCM k, SCM m),
1682 "Return @var{n} raised to the integer exponent\n"
1683 "@var{k}, modulo @var{m}.\n"
1684 "\n"
1685 "@lisp\n"
1686 "(modulo-expt 2 3 5)\n"
1687 " @result{} 3\n"
1688 "@end lisp")
1689 #define FUNC_NAME s_scm_modulo_expt
1690 {
1691 mpz_t n_tmp;
1692 mpz_t k_tmp;
1693 mpz_t m_tmp;
1694
1695 /* There are two classes of error we might encounter --
1696 1) Math errors, which we'll report by calling scm_num_overflow,
1697 and
1698 2) wrong-type errors, which of course we'll report by calling
1699 SCM_WRONG_TYPE_ARG.
1700 We don't report those errors immediately, however; instead we do
1701 some cleanup first. These variables tell us which error (if
1702 any) we should report after cleaning up.
1703 */
1704 int report_overflow = 0;
1705
1706 int position_of_wrong_type = 0;
1707 SCM value_of_wrong_type = SCM_INUM0;
1708
1709 SCM result = SCM_UNDEFINED;
1710
1711 mpz_init (n_tmp);
1712 mpz_init (k_tmp);
1713 mpz_init (m_tmp);
1714
1715 if (scm_is_eq (m, SCM_INUM0))
1716 {
1717 report_overflow = 1;
1718 goto cleanup;
1719 }
1720
1721 if (!coerce_to_big (n, n_tmp))
1722 {
1723 value_of_wrong_type = n;
1724 position_of_wrong_type = 1;
1725 goto cleanup;
1726 }
1727
1728 if (!coerce_to_big (k, k_tmp))
1729 {
1730 value_of_wrong_type = k;
1731 position_of_wrong_type = 2;
1732 goto cleanup;
1733 }
1734
1735 if (!coerce_to_big (m, m_tmp))
1736 {
1737 value_of_wrong_type = m;
1738 position_of_wrong_type = 3;
1739 goto cleanup;
1740 }
1741
1742 /* if the exponent K is negative, and we simply call mpz_powm, we
1743 will get a divide-by-zero exception when an inverse 1/n mod m
1744 doesn't exist (or is not unique). Since exceptions are hard to
1745 handle, we'll attempt the inversion "by hand" -- that way, we get
1746 a simple failure code, which is easy to handle. */
1747
1748 if (-1 == mpz_sgn (k_tmp))
1749 {
1750 if (!mpz_invert (n_tmp, n_tmp, m_tmp))
1751 {
1752 report_overflow = 1;
1753 goto cleanup;
1754 }
1755 mpz_neg (k_tmp, k_tmp);
1756 }
1757
1758 result = scm_i_mkbig ();
1759 mpz_powm (SCM_I_BIG_MPZ (result),
1760 n_tmp,
1761 k_tmp,
1762 m_tmp);
1763
1764 if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
1765 mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
1766
1767 cleanup:
1768 mpz_clear (m_tmp);
1769 mpz_clear (k_tmp);
1770 mpz_clear (n_tmp);
1771
1772 if (report_overflow)
1773 scm_num_overflow (FUNC_NAME);
1774
1775 if (position_of_wrong_type)
1776 SCM_WRONG_TYPE_ARG (position_of_wrong_type,
1777 value_of_wrong_type);
1778
1779 return scm_i_normbig (result);
1780 }
1781 #undef FUNC_NAME
1782
1783 SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
1784 (SCM n, SCM k),
1785 "Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
1786 "exact integer, @var{n} can be any number.\n"
1787 "\n"
1788 "Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
1789 "in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
1790 "includes @math{0^0} is 1.\n"
1791 "\n"
1792 "@lisp\n"
1793 "(integer-expt 2 5) @result{} 32\n"
1794 "(integer-expt -3 3) @result{} -27\n"
1795 "(integer-expt 5 -3) @result{} 1/125\n"
1796 "(integer-expt 0 0) @result{} 1\n"
1797 "@end lisp")
1798 #define FUNC_NAME s_scm_integer_expt
1799 {
1800 long i2 = 0;
1801 SCM z_i2 = SCM_BOOL_F;
1802 int i2_is_big = 0;
1803 SCM acc = SCM_I_MAKINUM (1L);
1804
1805 SCM_VALIDATE_NUMBER (SCM_ARG1, n);
1806
1807 /* 0^0 == 1 according to R5RS */
1808 if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
1809 return scm_is_false (scm_zero_p(k)) ? n : acc;
1810 else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
1811 return scm_is_false (scm_even_p (k)) ? n : acc;
1812
1813 if (SCM_I_INUMP (k))
1814 i2 = SCM_I_INUM (k);
1815 else if (SCM_BIGP (k))
1816 {
1817 z_i2 = scm_i_clonebig (k, 1);
1818 scm_remember_upto_here_1 (k);
1819 i2_is_big = 1;
1820 }
1821 else
1822 SCM_WRONG_TYPE_ARG (2, k);
1823
1824 if (i2_is_big)
1825 {
1826 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
1827 {
1828 mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
1829 n = scm_divide (n, SCM_UNDEFINED);
1830 }
1831 while (1)
1832 {
1833 if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
1834 {
1835 return acc;
1836 }
1837 if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
1838 {
1839 return scm_product (acc, n);
1840 }
1841 if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
1842 acc = scm_product (acc, n);
1843 n = scm_product (n, n);
1844 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
1845 }
1846 }
1847 else
1848 {
1849 if (i2 < 0)
1850 {
1851 i2 = -i2;
1852 n = scm_divide (n, SCM_UNDEFINED);
1853 }
1854 while (1)
1855 {
1856 if (0 == i2)
1857 return acc;
1858 if (1 == i2)
1859 return scm_product (acc, n);
1860 if (i2 & 1)
1861 acc = scm_product (acc, n);
1862 n = scm_product (n, n);
1863 i2 >>= 1;
1864 }
1865 }
1866 }
1867 #undef FUNC_NAME
1868
1869 SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
1870 (SCM n, SCM cnt),
1871 "Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
1872 "if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
1873 "\n"
1874 "This is effectively a multiplication by 2^@var{cnt}, and when\n"
1875 "@var{cnt} is negative it's a division, rounded towards negative\n"
1876 "infinity. (Note that this is not the same rounding as\n"
1877 "@code{quotient} does.)\n"
1878 "\n"
1879 "With @var{n} viewed as an infinite precision twos complement,\n"
1880 "@code{ash} means a left shift introducing zero bits, or a right\n"
1881 "shift dropping bits.\n"
1882 "\n"
1883 "@lisp\n"
1884 "(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
1885 "(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
1886 "\n"
1887 ";; -23 is bits ...11101001, -6 is bits ...111010\n"
1888 "(ash -23 -2) @result{} -6\n"
1889 "@end lisp")
1890 #define FUNC_NAME s_scm_ash
1891 {
1892 long bits_to_shift;
1893 bits_to_shift = scm_to_long (cnt);
1894
1895 if (SCM_I_INUMP (n))
1896 {
1897 long nn = SCM_I_INUM (n);
1898
1899 if (bits_to_shift > 0)
1900 {
1901 /* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
1902 overflow a non-zero fixnum. For smaller shifts we check the
1903 bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
1904 all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
1905 Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
1906 bits_to_shift)". */
1907
1908 if (nn == 0)
1909 return n;
1910
1911 if (bits_to_shift < SCM_I_FIXNUM_BIT-1
1912 && ((unsigned long)
1913 (SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
1914 <= 1))
1915 {
1916 return SCM_I_MAKINUM (nn << bits_to_shift);
1917 }
1918 else
1919 {
1920 SCM result = scm_i_long2big (nn);
1921 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
1922 bits_to_shift);
1923 return result;
1924 }
1925 }
1926 else
1927 {
1928 bits_to_shift = -bits_to_shift;
1929 if (bits_to_shift >= SCM_LONG_BIT)
1930 return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
1931 else
1932 return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
1933 }
1934
1935 }
1936 else if (SCM_BIGP (n))
1937 {
1938 SCM result;
1939
1940 if (bits_to_shift == 0)
1941 return n;
1942
1943 result = scm_i_mkbig ();
1944 if (bits_to_shift >= 0)
1945 {
1946 mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1947 bits_to_shift);
1948 return result;
1949 }
1950 else
1951 {
1952 /* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
1953 we have to allocate a bignum even if the result is going to be a
1954 fixnum. */
1955 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
1956 -bits_to_shift);
1957 return scm_i_normbig (result);
1958 }
1959
1960 }
1961 else
1962 {
1963 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
1964 }
1965 }
1966 #undef FUNC_NAME
1967
1968
1969 SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
1970 (SCM n, SCM start, SCM end),
1971 "Return the integer composed of the @var{start} (inclusive)\n"
1972 "through @var{end} (exclusive) bits of @var{n}. The\n"
1973 "@var{start}th bit becomes the 0-th bit in the result.\n"
1974 "\n"
1975 "@lisp\n"
1976 "(number->string (bit-extract #b1101101010 0 4) 2)\n"
1977 " @result{} \"1010\"\n"
1978 "(number->string (bit-extract #b1101101010 4 9) 2)\n"
1979 " @result{} \"10110\"\n"
1980 "@end lisp")
1981 #define FUNC_NAME s_scm_bit_extract
1982 {
1983 unsigned long int istart, iend, bits;
1984 istart = scm_to_ulong (start);
1985 iend = scm_to_ulong (end);
1986 SCM_ASSERT_RANGE (3, end, (iend >= istart));
1987
1988 /* how many bits to keep */
1989 bits = iend - istart;
1990
1991 if (SCM_I_INUMP (n))
1992 {
1993 long int in = SCM_I_INUM (n);
1994
1995 /* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
1996 SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
1997 in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
1998
1999 if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
2000 {
2001 /* Since we emulate two's complement encoded numbers, this
2002 * special case requires us to produce a result that has
2003 * more bits than can be stored in a fixnum.
2004 */
2005 SCM result = scm_i_long2big (in);
2006 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
2007 bits);
2008 return result;
2009 }
2010
2011 /* mask down to requisite bits */
2012 bits = min (bits, SCM_I_FIXNUM_BIT);
2013 return SCM_I_MAKINUM (in & ((1L << bits) - 1));
2014 }
2015 else if (SCM_BIGP (n))
2016 {
2017 SCM result;
2018 if (bits == 1)
2019 {
2020 result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
2021 }
2022 else
2023 {
2024 /* ENHANCE-ME: It'd be nice not to allocate a new bignum when
2025 bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
2026 such bits into a ulong. */
2027 result = scm_i_mkbig ();
2028 mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
2029 mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
2030 result = scm_i_normbig (result);
2031 }
2032 scm_remember_upto_here_1 (n);
2033 return result;
2034 }
2035 else
2036 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2037 }
2038 #undef FUNC_NAME
2039
2040
2041 static const char scm_logtab[] = {
2042 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
2043 };
2044
2045 SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
2046 (SCM n),
2047 "Return the number of bits in integer @var{n}. If integer is\n"
2048 "positive, the 1-bits in its binary representation are counted.\n"
2049 "If negative, the 0-bits in its two's-complement binary\n"
2050 "representation are counted. If 0, 0 is returned.\n"
2051 "\n"
2052 "@lisp\n"
2053 "(logcount #b10101010)\n"
2054 " @result{} 4\n"
2055 "(logcount 0)\n"
2056 " @result{} 0\n"
2057 "(logcount -2)\n"
2058 " @result{} 1\n"
2059 "@end lisp")
2060 #define FUNC_NAME s_scm_logcount
2061 {
2062 if (SCM_I_INUMP (n))
2063 {
2064 unsigned long int c = 0;
2065 long int nn = SCM_I_INUM (n);
2066 if (nn < 0)
2067 nn = -1 - nn;
2068 while (nn)
2069 {
2070 c += scm_logtab[15 & nn];
2071 nn >>= 4;
2072 }
2073 return SCM_I_MAKINUM (c);
2074 }
2075 else if (SCM_BIGP (n))
2076 {
2077 unsigned long count;
2078 if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
2079 count = mpz_popcount (SCM_I_BIG_MPZ (n));
2080 else
2081 count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
2082 scm_remember_upto_here_1 (n);
2083 return SCM_I_MAKINUM (count);
2084 }
2085 else
2086 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2087 }
2088 #undef FUNC_NAME
2089
2090
2091 static const char scm_ilentab[] = {
2092 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
2093 };
2094
2095
2096 SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
2097 (SCM n),
2098 "Return the number of bits necessary to represent @var{n}.\n"
2099 "\n"
2100 "@lisp\n"
2101 "(integer-length #b10101010)\n"
2102 " @result{} 8\n"
2103 "(integer-length 0)\n"
2104 " @result{} 0\n"
2105 "(integer-length #b1111)\n"
2106 " @result{} 4\n"
2107 "@end lisp")
2108 #define FUNC_NAME s_scm_integer_length
2109 {
2110 if (SCM_I_INUMP (n))
2111 {
2112 unsigned long int c = 0;
2113 unsigned int l = 4;
2114 long int nn = SCM_I_INUM (n);
2115 if (nn < 0)
2116 nn = -1 - nn;
2117 while (nn)
2118 {
2119 c += 4;
2120 l = scm_ilentab [15 & nn];
2121 nn >>= 4;
2122 }
2123 return SCM_I_MAKINUM (c - 4 + l);
2124 }
2125 else if (SCM_BIGP (n))
2126 {
2127 /* mpz_sizeinbase looks at the absolute value of negatives, whereas we
2128 want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
2129 1 too big, so check for that and adjust. */
2130 size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
2131 if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
2132 && mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
2133 mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
2134 size--;
2135 scm_remember_upto_here_1 (n);
2136 return SCM_I_MAKINUM (size);
2137 }
2138 else
2139 SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
2140 }
2141 #undef FUNC_NAME
2142
2143 /*** NUMBERS -> STRINGS ***/
2144 #define SCM_MAX_DBL_PREC 60
2145 #define SCM_MAX_DBL_RADIX 36
2146
2147 /* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
2148 static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
2149 static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
2150
2151 static
2152 void init_dblprec(int *prec, int radix) {
2153 /* determine floating point precision by adding successively
2154 smaller increments to 1.0 until it is considered == 1.0 */
2155 double f = ((double)1.0)/radix;
2156 double fsum = 1.0 + f;
2157
2158 *prec = 0;
2159 while (fsum != 1.0)
2160 {
2161 if (++(*prec) > SCM_MAX_DBL_PREC)
2162 fsum = 1.0;
2163 else
2164 {
2165 f /= radix;
2166 fsum = f + 1.0;
2167 }
2168 }
2169 (*prec) -= 1;
2170 }
2171
2172 static
2173 void init_fx_radix(double *fx_list, int radix)
2174 {
2175 /* initialize a per-radix list of tolerances. When added
2176 to a number < 1.0, we can determine if we should raund
2177 up and quit converting a number to a string. */
2178 int i;
2179 fx_list[0] = 0.0;
2180 fx_list[1] = 0.5;
2181 for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
2182 fx_list[i] = (fx_list[i-1] / radix);
2183 }
2184
2185 /* use this array as a way to generate a single digit */
2186 static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2187
2188 static size_t
2189 idbl2str (double f, char *a, int radix)
2190 {
2191 int efmt, dpt, d, i, wp;
2192 double *fx;
2193 #ifdef DBL_MIN_10_EXP
2194 double f_cpy;
2195 int exp_cpy;
2196 #endif /* DBL_MIN_10_EXP */
2197 size_t ch = 0;
2198 int exp = 0;
2199
2200 if(radix < 2 ||
2201 radix > SCM_MAX_DBL_RADIX)
2202 {
2203 /* revert to existing behavior */
2204 radix = 10;
2205 }
2206
2207 wp = scm_dblprec[radix-2];
2208 fx = fx_per_radix[radix-2];
2209
2210 if (f == 0.0)
2211 {
2212 #ifdef HAVE_COPYSIGN
2213 double sgn = copysign (1.0, f);
2214
2215 if (sgn < 0.0)
2216 a[ch++] = '-';
2217 #endif
2218 goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
2219 }
2220
2221 if (xisinf (f))
2222 {
2223 if (f < 0)
2224 strcpy (a, "-inf.0");
2225 else
2226 strcpy (a, "+inf.0");
2227 return ch+6;
2228 }
2229 else if (xisnan (f))
2230 {
2231 strcpy (a, "+nan.0");
2232 return ch+6;
2233 }
2234
2235 if (f < 0.0)
2236 {
2237 f = -f;
2238 a[ch++] = '-';
2239 }
2240
2241 #ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
2242 make-uniform-vector, from causing infinite loops. */
2243 /* just do the checking...if it passes, we do the conversion for our
2244 radix again below */
2245 f_cpy = f;
2246 exp_cpy = exp;
2247
2248 while (f_cpy < 1.0)
2249 {
2250 f_cpy *= 10.0;
2251 if (exp_cpy-- < DBL_MIN_10_EXP)
2252 {
2253 a[ch++] = '#';
2254 a[ch++] = '.';
2255 a[ch++] = '#';
2256 return ch;
2257 }
2258 }
2259 while (f_cpy > 10.0)
2260 {
2261 f_cpy *= 0.10;
2262 if (exp_cpy++ > DBL_MAX_10_EXP)
2263 {
2264 a[ch++] = '#';
2265 a[ch++] = '.';
2266 a[ch++] = '#';
2267 return ch;
2268 }
2269 }
2270 #endif
2271
2272 while (f < 1.0)
2273 {
2274 f *= radix;
2275 exp--;
2276 }
2277 while (f > radix)
2278 {
2279 f /= radix;
2280 exp++;
2281 }
2282
2283 if (f + fx[wp] >= radix)
2284 {
2285 f = 1.0;
2286 exp++;
2287 }
2288 zero:
2289 #ifdef ENGNOT
2290 /* adding 9999 makes this equivalent to abs(x) % 3 */
2291 dpt = (exp + 9999) % 3;
2292 exp -= dpt++;
2293 efmt = 1;
2294 #else
2295 efmt = (exp < -3) || (exp > wp + 2);
2296 if (!efmt)
2297 {
2298 if (exp < 0)
2299 {
2300 a[ch++] = '0';
2301 a[ch++] = '.';
2302 dpt = exp;
2303 while (++dpt)
2304 a[ch++] = '0';
2305 }
2306 else
2307 dpt = exp + 1;
2308 }
2309 else
2310 dpt = 1;
2311 #endif
2312
2313 do
2314 {
2315 d = f;
2316 f -= d;
2317 a[ch++] = number_chars[d];
2318 if (f < fx[wp])
2319 break;
2320 if (f + fx[wp] >= 1.0)
2321 {
2322 a[ch - 1] = number_chars[d+1];
2323 break;
2324 }
2325 f *= radix;
2326 if (!(--dpt))
2327 a[ch++] = '.';
2328 }
2329 while (wp--);
2330
2331 if (dpt > 0)
2332 {
2333 #ifndef ENGNOT
2334 if ((dpt > 4) && (exp > 6))
2335 {
2336 d = (a[0] == '-' ? 2 : 1);
2337 for (i = ch++; i > d; i--)
2338 a[i] = a[i - 1];
2339 a[d] = '.';
2340 efmt = 1;
2341 }
2342 else
2343 #endif
2344 {
2345 while (--dpt)
2346 a[ch++] = '0';
2347 a[ch++] = '.';
2348 }
2349 }
2350 if (a[ch - 1] == '.')
2351 a[ch++] = '0'; /* trailing zero */
2352 if (efmt && exp)
2353 {
2354 a[ch++] = 'e';
2355 if (exp < 0)
2356 {
2357 exp = -exp;
2358 a[ch++] = '-';
2359 }
2360 for (i = radix; i <= exp; i *= radix);
2361 for (i /= radix; i; i /= radix)
2362 {
2363 a[ch++] = number_chars[exp / i];
2364 exp %= i;
2365 }
2366 }
2367 return ch;
2368 }
2369
2370
2371 static size_t
2372 icmplx2str (double real, double imag, char *str, int radix)
2373 {
2374 size_t i;
2375
2376 i = idbl2str (real, str, radix);
2377 if (imag != 0.0)
2378 {
2379 /* Don't output a '+' for negative numbers or for Inf and
2380 NaN. They will provide their own sign. */
2381 if (0 <= imag && !xisinf (imag) && !xisnan (imag))
2382 str[i++] = '+';
2383 i += idbl2str (imag, &str[i], radix);
2384 str[i++] = 'i';
2385 }
2386 return i;
2387 }
2388
2389 static size_t
2390 iflo2str (SCM flt, char *str, int radix)
2391 {
2392 size_t i;
2393 if (SCM_REALP (flt))
2394 i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
2395 else
2396 i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
2397 str, radix);
2398 return i;
2399 }
2400
2401 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2402 characters in the result.
2403 rad is output base
2404 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2405 size_t
2406 scm_iint2str (scm_t_intmax num, int rad, char *p)
2407 {
2408 if (num < 0)
2409 {
2410 *p++ = '-';
2411 return scm_iuint2str (-num, rad, p) + 1;
2412 }
2413 else
2414 return scm_iuint2str (num, rad, p);
2415 }
2416
2417 /* convert a scm_t_intmax to a string (unterminated). returns the number of
2418 characters in the result.
2419 rad is output base
2420 p is destination: worst case (base 2) is SCM_INTBUFLEN */
2421 size_t
2422 scm_iuint2str (scm_t_uintmax num, int rad, char *p)
2423 {
2424 size_t j = 1;
2425 size_t i;
2426 scm_t_uintmax n = num;
2427
2428 for (n /= rad; n > 0; n /= rad)
2429 j++;
2430
2431 i = j;
2432 n = num;
2433 while (i--)
2434 {
2435 int d = n % rad;
2436
2437 n /= rad;
2438 p[i] = d + ((d < 10) ? '0' : 'a' - 10);
2439 }
2440 return j;
2441 }
2442
2443 SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
2444 (SCM n, SCM radix),
2445 "Return a string holding the external representation of the\n"
2446 "number @var{n} in the given @var{radix}. If @var{n} is\n"
2447 "inexact, a radix of 10 will be used.")
2448 #define FUNC_NAME s_scm_number_to_string
2449 {
2450 int base;
2451
2452 if (SCM_UNBNDP (radix))
2453 base = 10;
2454 else
2455 base = scm_to_signed_integer (radix, 2, 36);
2456
2457 if (SCM_I_INUMP (n))
2458 {
2459 char num_buf [SCM_INTBUFLEN];
2460 size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
2461 return scm_from_locale_stringn (num_buf, length);
2462 }
2463 else if (SCM_BIGP (n))
2464 {
2465 char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
2466 scm_remember_upto_here_1 (n);
2467 return scm_take_locale_string (str);
2468 }
2469 else if (SCM_FRACTIONP (n))
2470 {
2471 return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
2472 scm_from_locale_string ("/"),
2473 scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
2474 }
2475 else if (SCM_INEXACTP (n))
2476 {
2477 char num_buf [FLOBUFLEN];
2478 return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
2479 }
2480 else
2481 SCM_WRONG_TYPE_ARG (1, n);
2482 }
2483 #undef FUNC_NAME
2484
2485
2486 /* These print routines used to be stubbed here so that scm_repl.c
2487 wouldn't need SCM_BIGDIG conditionals (pre GMP) */
2488
2489 int
2490 scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2491 {
2492 char num_buf[FLOBUFLEN];
2493 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2494 return !0;
2495 }
2496
2497 void
2498 scm_i_print_double (double val, SCM port)
2499 {
2500 char num_buf[FLOBUFLEN];
2501 scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
2502 }
2503
2504 int
2505 scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2506
2507 {
2508 char num_buf[FLOBUFLEN];
2509 scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
2510 return !0;
2511 }
2512
2513 void
2514 scm_i_print_complex (double real, double imag, SCM port)
2515 {
2516 char num_buf[FLOBUFLEN];
2517 scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
2518 }
2519
2520 int
2521 scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
2522 {
2523 SCM str;
2524 str = scm_number_to_string (sexp, SCM_UNDEFINED);
2525 scm_lfwrite_str (str, port);
2526 scm_remember_upto_here_1 (str);
2527 return !0;
2528 }
2529
2530 int
2531 scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
2532 {
2533 char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
2534 scm_remember_upto_here_1 (exp);
2535 scm_lfwrite (str, (size_t) strlen (str), port);
2536 free (str);
2537 return !0;
2538 }
2539 /*** END nums->strs ***/
2540
2541
2542 /*** STRINGS -> NUMBERS ***/
2543
2544 /* The following functions implement the conversion from strings to numbers.
2545 * The implementation somehow follows the grammar for numbers as it is given
2546 * in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
2547 * <uinteger R>, ...) that are used to build up numbers in the grammar. Some
2548 * points should be noted about the implementation:
2549 * * Each function keeps a local index variable 'idx' that points at the
2550 * current position within the parsed string. The global index is only
2551 * updated if the function could parse the corresponding syntactic unit
2552 * successfully.
2553 * * Similarly, the functions keep track of indicators of inexactness ('#',
2554 * '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
2555 * global exactness information is only updated after each part has been
2556 * successfully parsed.
2557 * * Sequences of digits are parsed into temporary variables holding fixnums.
2558 * Only if these fixnums would overflow, the result variables are updated
2559 * using the standard functions scm_add, scm_product, scm_divide etc. Then,
2560 * the temporary variables holding the fixnums are cleared, and the process
2561 * starts over again. If for example fixnums were able to store five decimal
2562 * digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
2563 * and the result was computed as 12345 * 100000 + 67890. In other words,
2564 * only every five digits two bignum operations were performed.
2565 */
2566
2567 enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
2568
2569 /* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
2570
2571 /* In non ASCII-style encodings the following macro might not work. */
2572 #define XDIGIT2UINT(d) \
2573 (uc_is_property_decimal_digit ((int) (unsigned char) d) \
2574 ? (d) - '0' \
2575 : uc_tolower ((int) (unsigned char) d) - 'a' + 10)
2576
2577 static SCM
2578 mem2uinteger (SCM mem, unsigned int *p_idx,
2579 unsigned int radix, enum t_exactness *p_exactness)
2580 {
2581 unsigned int idx = *p_idx;
2582 unsigned int hash_seen = 0;
2583 scm_t_bits shift = 1;
2584 scm_t_bits add = 0;
2585 unsigned int digit_value;
2586 SCM result;
2587 char c;
2588 size_t len = scm_i_string_length (mem);
2589
2590 if (idx == len)
2591 return SCM_BOOL_F;
2592
2593 c = scm_i_string_ref (mem, idx);
2594 if (!uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
2595 return SCM_BOOL_F;
2596 digit_value = XDIGIT2UINT (c);
2597 if (digit_value >= radix)
2598 return SCM_BOOL_F;
2599
2600 idx++;
2601 result = SCM_I_MAKINUM (digit_value);
2602 while (idx != len)
2603 {
2604 scm_t_wchar c = scm_i_string_ref (mem, idx);
2605 if (uc_is_property_ascii_hex_digit ((scm_t_uint32) c))
2606 {
2607 if (hash_seen)
2608 break;
2609 digit_value = XDIGIT2UINT (c);
2610 if (digit_value >= radix)
2611 break;
2612 }
2613 else if (c == '#')
2614 {
2615 hash_seen = 1;
2616 digit_value = 0;
2617 }
2618 else
2619 break;
2620
2621 idx++;
2622 if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
2623 {
2624 result = scm_product (result, SCM_I_MAKINUM (shift));
2625 if (add > 0)
2626 result = scm_sum (result, SCM_I_MAKINUM (add));
2627
2628 shift = radix;
2629 add = digit_value;
2630 }
2631 else
2632 {
2633 shift = shift * radix;
2634 add = add * radix + digit_value;
2635 }
2636 };
2637
2638 if (shift > 1)
2639 result = scm_product (result, SCM_I_MAKINUM (shift));
2640 if (add > 0)
2641 result = scm_sum (result, SCM_I_MAKINUM (add));
2642
2643 *p_idx = idx;
2644 if (hash_seen)
2645 *p_exactness = INEXACT;
2646
2647 return result;
2648 }
2649
2650
2651 /* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
2652 * covers the parts of the rules that start at a potential point. The value
2653 * of the digits up to the point have been parsed by the caller and are given
2654 * in variable result. The content of *p_exactness indicates, whether a hash
2655 * has already been seen in the digits before the point.
2656 */
2657
2658 #define DIGIT2UINT(d) (uc_numeric_value(d).numerator)
2659
2660 static SCM
2661 mem2decimal_from_point (SCM result, SCM mem,
2662 unsigned int *p_idx, enum t_exactness *p_exactness)
2663 {
2664 unsigned int idx = *p_idx;
2665 enum t_exactness x = *p_exactness;
2666 size_t len = scm_i_string_length (mem);
2667
2668 if (idx == len)
2669 return result;
2670
2671 if (scm_i_string_ref (mem, idx) == '.')
2672 {
2673 scm_t_bits shift = 1;
2674 scm_t_bits add = 0;
2675 unsigned int digit_value;
2676 SCM big_shift = SCM_I_MAKINUM (1);
2677
2678 idx++;
2679 while (idx != len)
2680 {
2681 scm_t_wchar c = scm_i_string_ref (mem, idx);
2682 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2683 {
2684 if (x == INEXACT)
2685 return SCM_BOOL_F;
2686 else
2687 digit_value = DIGIT2UINT (c);
2688 }
2689 else if (c == '#')
2690 {
2691 x = INEXACT;
2692 digit_value = 0;
2693 }
2694 else
2695 break;
2696
2697 idx++;
2698 if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
2699 {
2700 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2701 result = scm_product (result, SCM_I_MAKINUM (shift));
2702 if (add > 0)
2703 result = scm_sum (result, SCM_I_MAKINUM (add));
2704
2705 shift = 10;
2706 add = digit_value;
2707 }
2708 else
2709 {
2710 shift = shift * 10;
2711 add = add * 10 + digit_value;
2712 }
2713 };
2714
2715 if (add > 0)
2716 {
2717 big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
2718 result = scm_product (result, SCM_I_MAKINUM (shift));
2719 result = scm_sum (result, SCM_I_MAKINUM (add));
2720 }
2721
2722 result = scm_divide (result, big_shift);
2723
2724 /* We've seen a decimal point, thus the value is implicitly inexact. */
2725 x = INEXACT;
2726 }
2727
2728 if (idx != len)
2729 {
2730 int sign = 1;
2731 unsigned int start;
2732 scm_t_wchar c;
2733 int exponent;
2734 SCM e;
2735
2736 /* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
2737
2738 switch (scm_i_string_ref (mem, idx))
2739 {
2740 case 'd': case 'D':
2741 case 'e': case 'E':
2742 case 'f': case 'F':
2743 case 'l': case 'L':
2744 case 's': case 'S':
2745 idx++;
2746 if (idx == len)
2747 return SCM_BOOL_F;
2748
2749 start = idx;
2750 c = scm_i_string_ref (mem, idx);
2751 if (c == '-')
2752 {
2753 idx++;
2754 if (idx == len)
2755 return SCM_BOOL_F;
2756
2757 sign = -1;
2758 c = scm_i_string_ref (mem, idx);
2759 }
2760 else if (c == '+')
2761 {
2762 idx++;
2763 if (idx == len)
2764 return SCM_BOOL_F;
2765
2766 sign = 1;
2767 c = scm_i_string_ref (mem, idx);
2768 }
2769 else
2770 sign = 1;
2771
2772 if (!uc_is_property_decimal_digit ((scm_t_uint32) c))
2773 return SCM_BOOL_F;
2774
2775 idx++;
2776 exponent = DIGIT2UINT (c);
2777 while (idx != len)
2778 {
2779 scm_t_wchar c = scm_i_string_ref (mem, idx);
2780 if (uc_is_property_decimal_digit ((scm_t_uint32) c))
2781 {
2782 idx++;
2783 if (exponent <= SCM_MAXEXP)
2784 exponent = exponent * 10 + DIGIT2UINT (c);
2785 }
2786 else
2787 break;
2788 }
2789
2790 if (exponent > SCM_MAXEXP)
2791 {
2792 size_t exp_len = idx - start;
2793 SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len);
2794 SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
2795 scm_out_of_range ("string->number", exp_num);
2796 }
2797
2798 e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
2799 if (sign == 1)
2800 result = scm_product (result, e);
2801 else
2802 result = scm_divide2real (result, e);
2803
2804 /* We've seen an exponent, thus the value is implicitly inexact. */
2805 x = INEXACT;
2806
2807 break;
2808
2809 default:
2810 break;
2811 }
2812 }
2813
2814 *p_idx = idx;
2815 if (x == INEXACT)
2816 *p_exactness = x;
2817
2818 return result;
2819 }
2820
2821
2822 /* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
2823
2824 static SCM
2825 mem2ureal (SCM mem, unsigned int *p_idx,
2826 unsigned int radix, enum t_exactness *p_exactness)
2827 {
2828 unsigned int idx = *p_idx;
2829 SCM result;
2830 size_t len = scm_i_string_length (mem);
2831
2832 /* Start off believing that the number will be exact. This changes
2833 to INEXACT if we see a decimal point or a hash. */
2834 enum t_exactness x = EXACT;
2835
2836 if (idx == len)
2837 return SCM_BOOL_F;
2838
2839 if (idx+5 <= len && !scm_i_string_strcmp (mem, idx, "inf.0"))
2840 {
2841 *p_idx = idx+5;
2842 return scm_inf ();
2843 }
2844
2845 if (idx+4 < len && !scm_i_string_strcmp (mem, idx, "nan."))
2846 {
2847 /* Cobble up the fractional part. We might want to set the
2848 NaN's mantissa from it. */
2849 idx += 4;
2850 mem2uinteger (mem, &idx, 10, &x);
2851 *p_idx = idx;
2852 return scm_nan ();
2853 }
2854
2855 if (scm_i_string_ref (mem, idx) == '.')
2856 {
2857 if (radix != 10)
2858 return SCM_BOOL_F;
2859 else if (idx + 1 == len)
2860 return SCM_BOOL_F;
2861 else if (!uc_is_property_decimal_digit ((scm_t_uint32) scm_i_string_ref (mem, idx+1)))
2862 return SCM_BOOL_F;
2863 else
2864 result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem,
2865 p_idx, &x);
2866 }
2867 else
2868 {
2869 SCM uinteger;
2870
2871 uinteger = mem2uinteger (mem, &idx, radix, &x);
2872 if (scm_is_false (uinteger))
2873 return SCM_BOOL_F;
2874
2875 if (idx == len)
2876 result = uinteger;
2877 else if (scm_i_string_ref (mem, idx) == '/')
2878 {
2879 SCM divisor;
2880
2881 idx++;
2882 if (idx == len)
2883 return SCM_BOOL_F;
2884
2885 divisor = mem2uinteger (mem, &idx, radix, &x);
2886 if (scm_is_false (divisor))
2887 return SCM_BOOL_F;
2888
2889 /* both are int/big here, I assume */
2890 result = scm_i_make_ratio (uinteger, divisor);
2891 }
2892 else if (radix == 10)
2893 {
2894 result = mem2decimal_from_point (uinteger, mem, &idx, &x);
2895 if (scm_is_false (result))
2896 return SCM_BOOL_F;
2897 }
2898 else
2899 result = uinteger;
2900
2901 *p_idx = idx;
2902 }
2903
2904 /* Update *p_exactness if the number just read was inexact. This is
2905 important for complex numbers, so that a complex number is
2906 treated as inexact overall if either its real or imaginary part
2907 is inexact.
2908 */
2909 if (x == INEXACT)
2910 *p_exactness = x;
2911
2912 /* When returning an inexact zero, make sure it is represented as a
2913 floating point value so that we can change its sign.
2914 */
2915 if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
2916 result = scm_from_double (0.0);
2917
2918 return result;
2919 }
2920
2921
2922 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
2923
2924 static SCM
2925 mem2complex (SCM mem, unsigned int idx,
2926 unsigned int radix, enum t_exactness *p_exactness)
2927 {
2928 scm_t_wchar c;
2929 int sign = 0;
2930 SCM ureal;
2931 size_t len = scm_i_string_length (mem);
2932
2933 if (idx == len)
2934 return SCM_BOOL_F;
2935
2936 c = scm_i_string_ref (mem, idx);
2937 if (c == '+')
2938 {
2939 idx++;
2940 sign = 1;
2941 }
2942 else if (c == '-')
2943 {
2944 idx++;
2945 sign = -1;
2946 }
2947
2948 if (idx == len)
2949 return SCM_BOOL_F;
2950
2951 ureal = mem2ureal (mem, &idx, radix, p_exactness);
2952 if (scm_is_false (ureal))
2953 {
2954 /* input must be either +i or -i */
2955
2956 if (sign == 0)
2957 return SCM_BOOL_F;
2958
2959 if (scm_i_string_ref (mem, idx) == 'i'
2960 || scm_i_string_ref (mem, idx) == 'I')
2961 {
2962 idx++;
2963 if (idx != len)
2964 return SCM_BOOL_F;
2965
2966 return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
2967 }
2968 else
2969 return SCM_BOOL_F;
2970 }
2971 else
2972 {
2973 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
2974 ureal = scm_difference (ureal, SCM_UNDEFINED);
2975
2976 if (idx == len)
2977 return ureal;
2978
2979 c = scm_i_string_ref (mem, idx);
2980 switch (c)
2981 {
2982 case 'i': case 'I':
2983 /* either +<ureal>i or -<ureal>i */
2984
2985 idx++;
2986 if (sign == 0)
2987 return SCM_BOOL_F;
2988 if (idx != len)
2989 return SCM_BOOL_F;
2990 return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
2991
2992 case '@':
2993 /* polar input: <real>@<real>. */
2994
2995 idx++;
2996 if (idx == len)
2997 return SCM_BOOL_F;
2998 else
2999 {
3000 int sign;
3001 SCM angle;
3002 SCM result;
3003
3004 c = scm_i_string_ref (mem, idx);
3005 if (c == '+')
3006 {
3007 idx++;
3008 if (idx == len)
3009 return SCM_BOOL_F;
3010 sign = 1;
3011 }
3012 else if (c == '-')
3013 {
3014 idx++;
3015 if (idx == len)
3016 return SCM_BOOL_F;
3017 sign = -1;
3018 }
3019 else
3020 sign = 1;
3021
3022 angle = mem2ureal (mem, &idx, radix, p_exactness);
3023 if (scm_is_false (angle))
3024 return SCM_BOOL_F;
3025 if (idx != len)
3026 return SCM_BOOL_F;
3027
3028 if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3029 angle = scm_difference (angle, SCM_UNDEFINED);
3030
3031 result = scm_make_polar (ureal, angle);
3032 return result;
3033 }
3034 case '+':
3035 case '-':
3036 /* expecting input matching <real>[+-]<ureal>?i */
3037
3038 idx++;
3039 if (idx == len)
3040 return SCM_BOOL_F;
3041 else
3042 {
3043 int sign = (c == '+') ? 1 : -1;
3044 SCM imag = mem2ureal (mem, &idx, radix, p_exactness);
3045
3046 if (scm_is_false (imag))
3047 imag = SCM_I_MAKINUM (sign);
3048 else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
3049 imag = scm_difference (imag, SCM_UNDEFINED);
3050
3051 if (idx == len)
3052 return SCM_BOOL_F;
3053 if (scm_i_string_ref (mem, idx) != 'i'
3054 && scm_i_string_ref (mem, idx) != 'I')
3055 return SCM_BOOL_F;
3056
3057 idx++;
3058 if (idx != len)
3059 return SCM_BOOL_F;
3060
3061 return scm_make_rectangular (ureal, imag);
3062 }
3063 default:
3064 return SCM_BOOL_F;
3065 }
3066 }
3067 }
3068
3069
3070 /* R5RS, section 7.1.1, lexical structure of numbers: <number> */
3071
3072 enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
3073
3074 SCM
3075 scm_i_string_to_number (SCM mem, unsigned int default_radix)
3076 {
3077 unsigned int idx = 0;
3078 unsigned int radix = NO_RADIX;
3079 enum t_exactness forced_x = NO_EXACTNESS;
3080 enum t_exactness implicit_x = EXACT;
3081 SCM result;
3082 size_t len = scm_i_string_length (mem);
3083
3084 /* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
3085 while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#')
3086 {
3087 switch (scm_i_string_ref (mem, idx + 1))
3088 {
3089 case 'b': case 'B':
3090 if (radix != NO_RADIX)
3091 return SCM_BOOL_F;
3092 radix = DUAL;
3093 break;
3094 case 'd': case 'D':
3095 if (radix != NO_RADIX)
3096 return SCM_BOOL_F;
3097 radix = DEC;
3098 break;
3099 case 'i': case 'I':
3100 if (forced_x != NO_EXACTNESS)
3101 return SCM_BOOL_F;
3102 forced_x = INEXACT;
3103 break;
3104 case 'e': case 'E':
3105 if (forced_x != NO_EXACTNESS)
3106 return SCM_BOOL_F;
3107 forced_x = EXACT;
3108 break;
3109 case 'o': case 'O':
3110 if (radix != NO_RADIX)
3111 return SCM_BOOL_F;
3112 radix = OCT;
3113 break;
3114 case 'x': case 'X':
3115 if (radix != NO_RADIX)
3116 return SCM_BOOL_F;
3117 radix = HEX;
3118 break;
3119 default:
3120 return SCM_BOOL_F;
3121 }
3122 idx += 2;
3123 }
3124
3125 /* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
3126 if (radix == NO_RADIX)
3127 result = mem2complex (mem, idx, default_radix, &implicit_x);
3128 else
3129 result = mem2complex (mem, idx, (unsigned int) radix, &implicit_x);
3130
3131 if (scm_is_false (result))
3132 return SCM_BOOL_F;
3133
3134 switch (forced_x)
3135 {
3136 case EXACT:
3137 if (SCM_INEXACTP (result))
3138 return scm_inexact_to_exact (result);
3139 else
3140 return result;
3141 case INEXACT:
3142 if (SCM_INEXACTP (result))
3143 return result;
3144 else
3145 return scm_exact_to_inexact (result);
3146 case NO_EXACTNESS:
3147 default:
3148 if (implicit_x == INEXACT)
3149 {
3150 if (SCM_INEXACTP (result))
3151 return result;
3152 else
3153 return scm_exact_to_inexact (result);
3154 }
3155 else
3156 return result;
3157 }
3158 }
3159
3160 SCM
3161 scm_c_locale_stringn_to_number (const char* mem, size_t len,
3162 unsigned int default_radix)
3163 {
3164 SCM str = scm_from_locale_stringn (mem, len);
3165
3166 return scm_i_string_to_number (str, default_radix);
3167 }
3168
3169
3170 SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
3171 (SCM string, SCM radix),
3172 "Return a number of the maximally precise representation\n"
3173 "expressed by the given @var{string}. @var{radix} must be an\n"
3174 "exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
3175 "is a default radix that may be overridden by an explicit radix\n"
3176 "prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
3177 "supplied, then the default radix is 10. If string is not a\n"
3178 "syntactically valid notation for a number, then\n"
3179 "@code{string->number} returns @code{#f}.")
3180 #define FUNC_NAME s_scm_string_to_number
3181 {
3182 SCM answer;
3183 unsigned int base;
3184 SCM_VALIDATE_STRING (1, string);
3185
3186 if (SCM_UNBNDP (radix))
3187 base = 10;
3188 else
3189 base = scm_to_unsigned_integer (radix, 2, INT_MAX);
3190
3191 answer = scm_i_string_to_number (string, base);
3192 scm_remember_upto_here_1 (string);
3193 return answer;
3194 }
3195 #undef FUNC_NAME
3196
3197
3198 /*** END strs->nums ***/
3199
3200
3201 SCM
3202 scm_bigequal (SCM x, SCM y)
3203 {
3204 int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3205 scm_remember_upto_here_2 (x, y);
3206 return scm_from_bool (0 == result);
3207 }
3208
3209 SCM
3210 scm_real_equalp (SCM x, SCM y)
3211 {
3212 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3213 }
3214
3215 SCM
3216 scm_complex_equalp (SCM x, SCM y)
3217 {
3218 return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
3219 && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
3220 }
3221
3222 SCM
3223 scm_i_fraction_equalp (SCM x, SCM y)
3224 {
3225 if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
3226 SCM_FRACTION_NUMERATOR (y)))
3227 || scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
3228 SCM_FRACTION_DENOMINATOR (y))))
3229 return SCM_BOOL_F;
3230 else
3231 return SCM_BOOL_T;
3232 }
3233
3234
3235 SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
3236 (SCM x),
3237 "Return @code{#t} if @var{x} is a number, @code{#f}\n"
3238 "otherwise.")
3239 #define FUNC_NAME s_scm_number_p
3240 {
3241 return scm_from_bool (SCM_NUMBERP (x));
3242 }
3243 #undef FUNC_NAME
3244
3245 SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
3246 (SCM x),
3247 "Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
3248 "otherwise. Note that the sets of real, rational and integer\n"
3249 "values form subsets of the set of complex numbers, i. e. the\n"
3250 "predicate will also be fulfilled if @var{x} is a real,\n"
3251 "rational or integer number.")
3252 #define FUNC_NAME s_scm_complex_p
3253 {
3254 /* all numbers are complex. */
3255 return scm_number_p (x);
3256 }
3257 #undef FUNC_NAME
3258
3259 SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
3260 (SCM x),
3261 "Return @code{#t} if @var{x} is a real number, @code{#f}\n"
3262 "otherwise. Note that the set of integer values forms a subset of\n"
3263 "the set of real numbers, i. e. the predicate will also be\n"
3264 "fulfilled if @var{x} is an integer number.")
3265 #define FUNC_NAME s_scm_real_p
3266 {
3267 /* we can't represent irrational numbers. */
3268 return scm_rational_p (x);
3269 }
3270 #undef FUNC_NAME
3271
3272 SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
3273 (SCM x),
3274 "Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
3275 "otherwise. Note that the set of integer values forms a subset of\n"
3276 "the set of rational numbers, i. e. the predicate will also be\n"
3277 "fulfilled if @var{x} is an integer number.")
3278 #define FUNC_NAME s_scm_rational_p
3279 {
3280 if (SCM_I_INUMP (x))
3281 return SCM_BOOL_T;
3282 else if (SCM_IMP (x))
3283 return SCM_BOOL_F;
3284 else if (SCM_BIGP (x))
3285 return SCM_BOOL_T;
3286 else if (SCM_FRACTIONP (x))
3287 return SCM_BOOL_T;
3288 else if (SCM_REALP (x))
3289 /* due to their limited precision, all floating point numbers are
3290 rational as well. */
3291 return SCM_BOOL_T;
3292 else
3293 return SCM_BOOL_F;
3294 }
3295 #undef FUNC_NAME
3296
3297 SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
3298 (SCM x),
3299 "Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
3300 "else.")
3301 #define FUNC_NAME s_scm_integer_p
3302 {
3303 double r;
3304 if (SCM_I_INUMP (x))
3305 return SCM_BOOL_T;
3306 if (SCM_IMP (x))
3307 return SCM_BOOL_F;
3308 if (SCM_BIGP (x))
3309 return SCM_BOOL_T;
3310 if (!SCM_INEXACTP (x))
3311 return SCM_BOOL_F;
3312 if (SCM_COMPLEXP (x))
3313 return SCM_BOOL_F;
3314 r = SCM_REAL_VALUE (x);
3315 /* +/-inf passes r==floor(r), making those #t */
3316 if (r == floor (r))
3317 return SCM_BOOL_T;
3318 return SCM_BOOL_F;
3319 }
3320 #undef FUNC_NAME
3321
3322
3323 SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
3324 (SCM x),
3325 "Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
3326 "else.")
3327 #define FUNC_NAME s_scm_inexact_p
3328 {
3329 if (SCM_INEXACTP (x))
3330 return SCM_BOOL_T;
3331 if (SCM_NUMBERP (x))
3332 return SCM_BOOL_F;
3333 SCM_WRONG_TYPE_ARG (1, x);
3334 }
3335 #undef FUNC_NAME
3336
3337
3338 SCM scm_i_num_eq_p (SCM, SCM, SCM);
3339 SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1,
3340 (SCM x, SCM y, SCM rest),
3341 "Return @code{#t} if all parameters are numerically equal.")
3342 #define FUNC_NAME s_scm_i_num_eq_p
3343 {
3344 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3345 return SCM_BOOL_T;
3346 while (!scm_is_null (rest))
3347 {
3348 if (scm_is_false (scm_num_eq_p (x, y)))
3349 return SCM_BOOL_F;
3350 x = y;
3351 y = scm_car (rest);
3352 rest = scm_cdr (rest);
3353 }
3354 return scm_num_eq_p (x, y);
3355 }
3356 #undef FUNC_NAME
3357 SCM
3358 scm_num_eq_p (SCM x, SCM y)
3359 {
3360 again:
3361 if (SCM_I_INUMP (x))
3362 {
3363 long xx = SCM_I_INUM (x);
3364 if (SCM_I_INUMP (y))
3365 {
3366 long yy = SCM_I_INUM (y);
3367 return scm_from_bool (xx == yy);
3368 }
3369 else if (SCM_BIGP (y))
3370 return SCM_BOOL_F;
3371 else if (SCM_REALP (y))
3372 {
3373 /* On a 32-bit system an inum fits a double, we can cast the inum
3374 to a double and compare.
3375
3376 But on a 64-bit system an inum is bigger than a double and
3377 casting it to a double (call that dxx) will round. dxx is at
3378 worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
3379 an integer and fits a long. So we cast yy to a long and
3380 compare with plain xx.
3381
3382 An alternative (for any size system actually) would be to check
3383 yy is an integer (with floor) and is in range of an inum
3384 (compare against appropriate powers of 2) then test
3385 xx==(long)yy. It's just a matter of which casts/comparisons
3386 might be fastest or easiest for the cpu. */
3387
3388 double yy = SCM_REAL_VALUE (y);
3389 return scm_from_bool ((double) xx == yy
3390 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3391 || xx == (long) yy));
3392 }
3393 else if (SCM_COMPLEXP (y))
3394 return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
3395 && (0.0 == SCM_COMPLEX_IMAG (y)));
3396 else if (SCM_FRACTIONP (y))
3397 return SCM_BOOL_F;
3398 else
3399 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3400 }
3401 else if (SCM_BIGP (x))
3402 {
3403 if (SCM_I_INUMP (y))
3404 return SCM_BOOL_F;
3405 else if (SCM_BIGP (y))
3406 {
3407 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3408 scm_remember_upto_here_2 (x, y);
3409 return scm_from_bool (0 == cmp);
3410 }
3411 else if (SCM_REALP (y))
3412 {
3413 int cmp;
3414 if (xisnan (SCM_REAL_VALUE (y)))
3415 return SCM_BOOL_F;
3416 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3417 scm_remember_upto_here_1 (x);
3418 return scm_from_bool (0 == cmp);
3419 }
3420 else if (SCM_COMPLEXP (y))
3421 {
3422 int cmp;
3423 if (0.0 != SCM_COMPLEX_IMAG (y))
3424 return SCM_BOOL_F;
3425 if (xisnan (SCM_COMPLEX_REAL (y)))
3426 return SCM_BOOL_F;
3427 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
3428 scm_remember_upto_here_1 (x);
3429 return scm_from_bool (0 == cmp);
3430 }
3431 else if (SCM_FRACTIONP (y))
3432 return SCM_BOOL_F;
3433 else
3434 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3435 }
3436 else if (SCM_REALP (x))
3437 {
3438 double xx = SCM_REAL_VALUE (x);
3439 if (SCM_I_INUMP (y))
3440 {
3441 /* see comments with inum/real above */
3442 long yy = SCM_I_INUM (y);
3443 return scm_from_bool (xx == (double) yy
3444 && (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
3445 || (long) xx == yy));
3446 }
3447 else if (SCM_BIGP (y))
3448 {
3449 int cmp;
3450 if (xisnan (SCM_REAL_VALUE (x)))
3451 return SCM_BOOL_F;
3452 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3453 scm_remember_upto_here_1 (y);
3454 return scm_from_bool (0 == cmp);
3455 }
3456 else if (SCM_REALP (y))
3457 return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
3458 else if (SCM_COMPLEXP (y))
3459 return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
3460 && (0.0 == SCM_COMPLEX_IMAG (y)));
3461 else if (SCM_FRACTIONP (y))
3462 {
3463 double xx = SCM_REAL_VALUE (x);
3464 if (xisnan (xx))
3465 return SCM_BOOL_F;
3466 if (xisinf (xx))
3467 return scm_from_bool (xx < 0.0);
3468 x = scm_inexact_to_exact (x); /* with x as frac or int */
3469 goto again;
3470 }
3471 else
3472 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3473 }
3474 else if (SCM_COMPLEXP (x))
3475 {
3476 if (SCM_I_INUMP (y))
3477 return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
3478 && (SCM_COMPLEX_IMAG (x) == 0.0));
3479 else if (SCM_BIGP (y))
3480 {
3481 int cmp;
3482 if (0.0 != SCM_COMPLEX_IMAG (x))
3483 return SCM_BOOL_F;
3484 if (xisnan (SCM_COMPLEX_REAL (x)))
3485 return SCM_BOOL_F;
3486 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
3487 scm_remember_upto_here_1 (y);
3488 return scm_from_bool (0 == cmp);
3489 }
3490 else if (SCM_REALP (y))
3491 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
3492 && (SCM_COMPLEX_IMAG (x) == 0.0));
3493 else if (SCM_COMPLEXP (y))
3494 return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
3495 && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
3496 else if (SCM_FRACTIONP (y))
3497 {
3498 double xx;
3499 if (SCM_COMPLEX_IMAG (x) != 0.0)
3500 return SCM_BOOL_F;
3501 xx = SCM_COMPLEX_REAL (x);
3502 if (xisnan (xx))
3503 return SCM_BOOL_F;
3504 if (xisinf (xx))
3505 return scm_from_bool (xx < 0.0);
3506 x = scm_inexact_to_exact (x); /* with x as frac or int */
3507 goto again;
3508 }
3509 else
3510 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3511 }
3512 else if (SCM_FRACTIONP (x))
3513 {
3514 if (SCM_I_INUMP (y))
3515 return SCM_BOOL_F;
3516 else if (SCM_BIGP (y))
3517 return SCM_BOOL_F;
3518 else if (SCM_REALP (y))
3519 {
3520 double yy = SCM_REAL_VALUE (y);
3521 if (xisnan (yy))
3522 return SCM_BOOL_F;
3523 if (xisinf (yy))
3524 return scm_from_bool (0.0 < yy);
3525 y = scm_inexact_to_exact (y); /* with y as frac or int */
3526 goto again;
3527 }
3528 else if (SCM_COMPLEXP (y))
3529 {
3530 double yy;
3531 if (SCM_COMPLEX_IMAG (y) != 0.0)
3532 return SCM_BOOL_F;
3533 yy = SCM_COMPLEX_REAL (y);
3534 if (xisnan (yy))
3535 return SCM_BOOL_F;
3536 if (xisinf (yy))
3537 return scm_from_bool (0.0 < yy);
3538 y = scm_inexact_to_exact (y); /* with y as frac or int */
3539 goto again;
3540 }
3541 else if (SCM_FRACTIONP (y))
3542 return scm_i_fraction_equalp (x, y);
3543 else
3544 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARGn, s_scm_i_num_eq_p);
3545 }
3546 else
3547 SCM_WTA_DISPATCH_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, s_scm_i_num_eq_p);
3548 }
3549
3550
3551 /* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
3552 done are good for inums, but for bignums an answer can almost always be
3553 had by just examining a few high bits of the operands, as done by GMP in
3554 mpq_cmp. flonum/frac compares likewise, but with the slight complication
3555 of the float exponent to take into account. */
3556
3557 SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM);
3558 SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1,
3559 (SCM x, SCM y, SCM rest),
3560 "Return @code{#t} if the list of parameters is monotonically\n"
3561 "increasing.")
3562 #define FUNC_NAME s_scm_i_num_less_p
3563 {
3564 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3565 return SCM_BOOL_T;
3566 while (!scm_is_null (rest))
3567 {
3568 if (scm_is_false (scm_less_p (x, y)))
3569 return SCM_BOOL_F;
3570 x = y;
3571 y = scm_car (rest);
3572 rest = scm_cdr (rest);
3573 }
3574 return scm_less_p (x, y);
3575 }
3576 #undef FUNC_NAME
3577 SCM
3578 scm_less_p (SCM x, SCM y)
3579 {
3580 again:
3581 if (SCM_I_INUMP (x))
3582 {
3583 long xx = SCM_I_INUM (x);
3584 if (SCM_I_INUMP (y))
3585 {
3586 long yy = SCM_I_INUM (y);
3587 return scm_from_bool (xx < yy);
3588 }
3589 else if (SCM_BIGP (y))
3590 {
3591 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3592 scm_remember_upto_here_1 (y);
3593 return scm_from_bool (sgn > 0);
3594 }
3595 else if (SCM_REALP (y))
3596 return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
3597 else if (SCM_FRACTIONP (y))
3598 {
3599 /* "x < a/b" becomes "x*b < a" */
3600 int_frac:
3601 x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
3602 y = SCM_FRACTION_NUMERATOR (y);
3603 goto again;
3604 }
3605 else
3606 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3607 }
3608 else if (SCM_BIGP (x))
3609 {
3610 if (SCM_I_INUMP (y))
3611 {
3612 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3613 scm_remember_upto_here_1 (x);
3614 return scm_from_bool (sgn < 0);
3615 }
3616 else if (SCM_BIGP (y))
3617 {
3618 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3619 scm_remember_upto_here_2 (x, y);
3620 return scm_from_bool (cmp < 0);
3621 }
3622 else if (SCM_REALP (y))
3623 {
3624 int cmp;
3625 if (xisnan (SCM_REAL_VALUE (y)))
3626 return SCM_BOOL_F;
3627 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
3628 scm_remember_upto_here_1 (x);
3629 return scm_from_bool (cmp < 0);
3630 }
3631 else if (SCM_FRACTIONP (y))
3632 goto int_frac;
3633 else
3634 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3635 }
3636 else if (SCM_REALP (x))
3637 {
3638 if (SCM_I_INUMP (y))
3639 return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
3640 else if (SCM_BIGP (y))
3641 {
3642 int cmp;
3643 if (xisnan (SCM_REAL_VALUE (x)))
3644 return SCM_BOOL_F;
3645 cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
3646 scm_remember_upto_here_1 (y);
3647 return scm_from_bool (cmp > 0);
3648 }
3649 else if (SCM_REALP (y))
3650 return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
3651 else if (SCM_FRACTIONP (y))
3652 {
3653 double xx = SCM_REAL_VALUE (x);
3654 if (xisnan (xx))
3655 return SCM_BOOL_F;
3656 if (xisinf (xx))
3657 return scm_from_bool (xx < 0.0);
3658 x = scm_inexact_to_exact (x); /* with x as frac or int */
3659 goto again;
3660 }
3661 else
3662 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3663 }
3664 else if (SCM_FRACTIONP (x))
3665 {
3666 if (SCM_I_INUMP (y) || SCM_BIGP (y))
3667 {
3668 /* "a/b < y" becomes "a < y*b" */
3669 y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
3670 x = SCM_FRACTION_NUMERATOR (x);
3671 goto again;
3672 }
3673 else if (SCM_REALP (y))
3674 {
3675 double yy = SCM_REAL_VALUE (y);
3676 if (xisnan (yy))
3677 return SCM_BOOL_F;
3678 if (xisinf (yy))
3679 return scm_from_bool (0.0 < yy);
3680 y = scm_inexact_to_exact (y); /* with y as frac or int */
3681 goto again;
3682 }
3683 else if (SCM_FRACTIONP (y))
3684 {
3685 /* "a/b < c/d" becomes "a*d < c*b" */
3686 SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
3687 SCM_FRACTION_DENOMINATOR (y));
3688 SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
3689 SCM_FRACTION_DENOMINATOR (x));
3690 x = new_x;
3691 y = new_y;
3692 goto again;
3693 }
3694 else
3695 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARGn, s_scm_i_num_less_p);
3696 }
3697 else
3698 SCM_WTA_DISPATCH_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, s_scm_i_num_less_p);
3699 }
3700
3701
3702 SCM scm_i_num_gr_p (SCM, SCM, SCM);
3703 SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1,
3704 (SCM x, SCM y, SCM rest),
3705 "Return @code{#t} if the list of parameters is monotonically\n"
3706 "decreasing.")
3707 #define FUNC_NAME s_scm_i_num_gr_p
3708 {
3709 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3710 return SCM_BOOL_T;
3711 while (!scm_is_null (rest))
3712 {
3713 if (scm_is_false (scm_gr_p (x, y)))
3714 return SCM_BOOL_F;
3715 x = y;
3716 y = scm_car (rest);
3717 rest = scm_cdr (rest);
3718 }
3719 return scm_gr_p (x, y);
3720 }
3721 #undef FUNC_NAME
3722 #define FUNC_NAME s_scm_i_num_gr_p
3723 SCM
3724 scm_gr_p (SCM x, SCM y)
3725 {
3726 if (!SCM_NUMBERP (x))
3727 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME);
3728 else if (!SCM_NUMBERP (y))
3729 SCM_WTA_DISPATCH_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME);
3730 else
3731 return scm_less_p (y, x);
3732 }
3733 #undef FUNC_NAME
3734
3735
3736 SCM scm_i_num_leq_p (SCM, SCM, SCM);
3737 SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1,
3738 (SCM x, SCM y, SCM rest),
3739 "Return @code{#t} if the list of parameters is monotonically\n"
3740 "non-decreasing.")
3741 #define FUNC_NAME s_scm_i_num_leq_p
3742 {
3743 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3744 return SCM_BOOL_T;
3745 while (!scm_is_null (rest))
3746 {
3747 if (scm_is_false (scm_leq_p (x, y)))
3748 return SCM_BOOL_F;
3749 x = y;
3750 y = scm_car (rest);
3751 rest = scm_cdr (rest);
3752 }
3753 return scm_leq_p (x, y);
3754 }
3755 #undef FUNC_NAME
3756 #define FUNC_NAME s_scm_i_num_leq_p
3757 SCM
3758 scm_leq_p (SCM x, SCM y)
3759 {
3760 if (!SCM_NUMBERP (x))
3761 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME);
3762 else if (!SCM_NUMBERP (y))
3763 SCM_WTA_DISPATCH_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME);
3764 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3765 return SCM_BOOL_F;
3766 else
3767 return scm_not (scm_less_p (y, x));
3768 }
3769 #undef FUNC_NAME
3770
3771
3772 SCM scm_i_num_geq_p (SCM, SCM, SCM);
3773 SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1,
3774 (SCM x, SCM y, SCM rest),
3775 "Return @code{#t} if the list of parameters is monotonically\n"
3776 "non-increasing.")
3777 #define FUNC_NAME s_scm_i_num_geq_p
3778 {
3779 if (SCM_UNBNDP (x) || SCM_UNBNDP (y))
3780 return SCM_BOOL_T;
3781 while (!scm_is_null (rest))
3782 {
3783 if (scm_is_false (scm_geq_p (x, y)))
3784 return SCM_BOOL_F;
3785 x = y;
3786 y = scm_car (rest);
3787 rest = scm_cdr (rest);
3788 }
3789 return scm_geq_p (x, y);
3790 }
3791 #undef FUNC_NAME
3792 #define FUNC_NAME s_scm_i_num_geq_p
3793 SCM
3794 scm_geq_p (SCM x, SCM y)
3795 {
3796 if (!SCM_NUMBERP (x))
3797 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME);
3798 else if (!SCM_NUMBERP (y))
3799 SCM_WTA_DISPATCH_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME);
3800 else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
3801 return SCM_BOOL_F;
3802 else
3803 return scm_not (scm_less_p (x, y));
3804 }
3805 #undef FUNC_NAME
3806
3807
3808 SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
3809 /* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
3810 * "zero."
3811 */
3812 SCM
3813 scm_zero_p (SCM z)
3814 {
3815 if (SCM_I_INUMP (z))
3816 return scm_from_bool (scm_is_eq (z, SCM_INUM0));
3817 else if (SCM_BIGP (z))
3818 return SCM_BOOL_F;
3819 else if (SCM_REALP (z))
3820 return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
3821 else if (SCM_COMPLEXP (z))
3822 return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
3823 && SCM_COMPLEX_IMAG (z) == 0.0);
3824 else if (SCM_FRACTIONP (z))
3825 return SCM_BOOL_F;
3826 else
3827 SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
3828 }
3829
3830
3831 SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
3832 /* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
3833 * "zero."
3834 */
3835 SCM
3836 scm_positive_p (SCM x)
3837 {
3838 if (SCM_I_INUMP (x))
3839 return scm_from_bool (SCM_I_INUM (x) > 0);
3840 else if (SCM_BIGP (x))
3841 {
3842 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3843 scm_remember_upto_here_1 (x);
3844 return scm_from_bool (sgn > 0);
3845 }
3846 else if (SCM_REALP (x))
3847 return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
3848 else if (SCM_FRACTIONP (x))
3849 return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
3850 else
3851 SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
3852 }
3853
3854
3855 SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
3856 /* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
3857 * "zero."
3858 */
3859 SCM
3860 scm_negative_p (SCM x)
3861 {
3862 if (SCM_I_INUMP (x))
3863 return scm_from_bool (SCM_I_INUM (x) < 0);
3864 else if (SCM_BIGP (x))
3865 {
3866 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3867 scm_remember_upto_here_1 (x);
3868 return scm_from_bool (sgn < 0);
3869 }
3870 else if (SCM_REALP (x))
3871 return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
3872 else if (SCM_FRACTIONP (x))
3873 return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
3874 else
3875 SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
3876 }
3877
3878
3879 /* scm_min and scm_max return an inexact when either argument is inexact, as
3880 required by r5rs. On that basis, for exact/inexact combinations the
3881 exact is converted to inexact to compare and possibly return. This is
3882 unlike scm_less_p above which takes some trouble to preserve all bits in
3883 its test, such trouble is not required for min and max. */
3884
3885 SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1,
3886 (SCM x, SCM y, SCM rest),
3887 "Return the maximum of all parameter values.")
3888 #define FUNC_NAME s_scm_i_max
3889 {
3890 while (!scm_is_null (rest))
3891 { x = scm_max (x, y);
3892 y = scm_car (rest);
3893 rest = scm_cdr (rest);
3894 }
3895 return scm_max (x, y);
3896 }
3897 #undef FUNC_NAME
3898
3899 #define s_max s_scm_i_max
3900 #define g_max g_scm_i_max
3901
3902 SCM
3903 scm_max (SCM x, SCM y)
3904 {
3905 if (SCM_UNBNDP (y))
3906 {
3907 if (SCM_UNBNDP (x))
3908 SCM_WTA_DISPATCH_0 (g_max, s_max);
3909 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
3910 return x;
3911 else
3912 SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
3913 }
3914
3915 if (SCM_I_INUMP (x))
3916 {
3917 long xx = SCM_I_INUM (x);
3918 if (SCM_I_INUMP (y))
3919 {
3920 long yy = SCM_I_INUM (y);
3921 return (xx < yy) ? y : x;
3922 }
3923 else if (SCM_BIGP (y))
3924 {
3925 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
3926 scm_remember_upto_here_1 (y);
3927 return (sgn < 0) ? x : y;
3928 }
3929 else if (SCM_REALP (y))
3930 {
3931 double z = xx;
3932 /* if y==NaN then ">" is false and we return NaN */
3933 return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
3934 }
3935 else if (SCM_FRACTIONP (y))
3936 {
3937 use_less:
3938 return (scm_is_false (scm_less_p (x, y)) ? x : y);
3939 }
3940 else
3941 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3942 }
3943 else if (SCM_BIGP (x))
3944 {
3945 if (SCM_I_INUMP (y))
3946 {
3947 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
3948 scm_remember_upto_here_1 (x);
3949 return (sgn < 0) ? y : x;
3950 }
3951 else if (SCM_BIGP (y))
3952 {
3953 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
3954 scm_remember_upto_here_2 (x, y);
3955 return (cmp > 0) ? x : y;
3956 }
3957 else if (SCM_REALP (y))
3958 {
3959 /* if y==NaN then xx>yy is false, so we return the NaN y */
3960 double xx, yy;
3961 big_real:
3962 xx = scm_i_big2dbl (x);
3963 yy = SCM_REAL_VALUE (y);
3964 return (xx > yy ? scm_from_double (xx) : y);
3965 }
3966 else if (SCM_FRACTIONP (y))
3967 {
3968 goto use_less;
3969 }
3970 else
3971 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
3972 }
3973 else if (SCM_REALP (x))
3974 {
3975 if (SCM_I_INUMP (y))
3976 {
3977 double z = SCM_I_INUM (y);
3978 /* if x==NaN then "<" is false and we return NaN */
3979 return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
3980 }
3981 else if (SCM_BIGP (y))
3982 {
3983 SCM_SWAP (x, y);
3984 goto big_real;
3985 }
3986 else if (SCM_REALP (y))
3987 {
3988 /* if x==NaN then our explicit check means we return NaN
3989 if y==NaN then ">" is false and we return NaN
3990 calling isnan is unavoidable, since it's the only way to know
3991 which of x or y causes any compares to be false */
3992 double xx = SCM_REAL_VALUE (x);
3993 return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
3994 }
3995 else if (SCM_FRACTIONP (y))
3996 {
3997 double yy = scm_i_fraction2double (y);
3998 double xx = SCM_REAL_VALUE (x);
3999 return (xx < yy) ? scm_from_double (yy) : x;
4000 }
4001 else
4002 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4003 }
4004 else if (SCM_FRACTIONP (x))
4005 {
4006 if (SCM_I_INUMP (y))
4007 {
4008 goto use_less;
4009 }
4010 else if (SCM_BIGP (y))
4011 {
4012 goto use_less;
4013 }
4014 else if (SCM_REALP (y))
4015 {
4016 double xx = scm_i_fraction2double (x);
4017 return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
4018 }
4019 else if (SCM_FRACTIONP (y))
4020 {
4021 goto use_less;
4022 }
4023 else
4024 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
4025 }
4026 else
4027 SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
4028 }
4029
4030
4031 SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1,
4032 (SCM x, SCM y, SCM rest),
4033 "Return the minimum of all parameter values.")
4034 #define FUNC_NAME s_scm_i_min
4035 {
4036 while (!scm_is_null (rest))
4037 { x = scm_min (x, y);
4038 y = scm_car (rest);
4039 rest = scm_cdr (rest);
4040 }
4041 return scm_min (x, y);
4042 }
4043 #undef FUNC_NAME
4044
4045 #define s_min s_scm_i_min
4046 #define g_min g_scm_i_min
4047
4048 SCM
4049 scm_min (SCM x, SCM y)
4050 {
4051 if (SCM_UNBNDP (y))
4052 {
4053 if (SCM_UNBNDP (x))
4054 SCM_WTA_DISPATCH_0 (g_min, s_min);
4055 else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
4056 return x;
4057 else
4058 SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
4059 }
4060
4061 if (SCM_I_INUMP (x))
4062 {
4063 long xx = SCM_I_INUM (x);
4064 if (SCM_I_INUMP (y))
4065 {
4066 long yy = SCM_I_INUM (y);
4067 return (xx < yy) ? x : y;
4068 }
4069 else if (SCM_BIGP (y))
4070 {
4071 int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
4072 scm_remember_upto_here_1 (y);
4073 return (sgn < 0) ? y : x;
4074 }
4075 else if (SCM_REALP (y))
4076 {
4077 double z = xx;
4078 /* if y==NaN then "<" is false and we return NaN */
4079 return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
4080 }
4081 else if (SCM_FRACTIONP (y))
4082 {
4083 use_less:
4084 return (scm_is_false (scm_less_p (x, y)) ? y : x);
4085 }
4086 else
4087 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4088 }
4089 else if (SCM_BIGP (x))
4090 {
4091 if (SCM_I_INUMP (y))
4092 {
4093 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4094 scm_remember_upto_here_1 (x);
4095 return (sgn < 0) ? x : y;
4096 }
4097 else if (SCM_BIGP (y))
4098 {
4099 int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
4100 scm_remember_upto_here_2 (x, y);
4101 return (cmp > 0) ? y : x;
4102 }
4103 else if (SCM_REALP (y))
4104 {
4105 /* if y==NaN then xx<yy is false, so we return the NaN y */
4106 double xx, yy;
4107 big_real:
4108 xx = scm_i_big2dbl (x);
4109 yy = SCM_REAL_VALUE (y);
4110 return (xx < yy ? scm_from_double (xx) : y);
4111 }
4112 else if (SCM_FRACTIONP (y))
4113 {
4114 goto use_less;
4115 }
4116 else
4117 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4118 }
4119 else if (SCM_REALP (x))
4120 {
4121 if (SCM_I_INUMP (y))
4122 {
4123 double z = SCM_I_INUM (y);
4124 /* if x==NaN then "<" is false and we return NaN */
4125 return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
4126 }
4127 else if (SCM_BIGP (y))
4128 {
4129 SCM_SWAP (x, y);
4130 goto big_real;
4131 }
4132 else if (SCM_REALP (y))
4133 {
4134 /* if x==NaN then our explicit check means we return NaN
4135 if y==NaN then "<" is false and we return NaN
4136 calling isnan is unavoidable, since it's the only way to know
4137 which of x or y causes any compares to be false */
4138 double xx = SCM_REAL_VALUE (x);
4139 return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
4140 }
4141 else if (SCM_FRACTIONP (y))
4142 {
4143 double yy = scm_i_fraction2double (y);
4144 double xx = SCM_REAL_VALUE (x);
4145 return (yy < xx) ? scm_from_double (yy) : x;
4146 }
4147 else
4148 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4149 }
4150 else if (SCM_FRACTIONP (x))
4151 {
4152 if (SCM_I_INUMP (y))
4153 {
4154 goto use_less;
4155 }
4156 else if (SCM_BIGP (y))
4157 {
4158 goto use_less;
4159 }
4160 else if (SCM_REALP (y))
4161 {
4162 double xx = scm_i_fraction2double (x);
4163 return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
4164 }
4165 else if (SCM_FRACTIONP (y))
4166 {
4167 goto use_less;
4168 }
4169 else
4170 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
4171 }
4172 else
4173 SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
4174 }
4175
4176
4177 SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1,
4178 (SCM x, SCM y, SCM rest),
4179 "Return the sum of all parameter values. Return 0 if called without\n"
4180 "any parameters." )
4181 #define FUNC_NAME s_scm_i_sum
4182 {
4183 while (!scm_is_null (rest))
4184 { x = scm_sum (x, y);
4185 y = scm_car (rest);
4186 rest = scm_cdr (rest);
4187 }
4188 return scm_sum (x, y);
4189 }
4190 #undef FUNC_NAME
4191
4192 #define s_sum s_scm_i_sum
4193 #define g_sum g_scm_i_sum
4194
4195 SCM
4196 scm_sum (SCM x, SCM y)
4197 {
4198 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4199 {
4200 if (SCM_NUMBERP (x)) return x;
4201 if (SCM_UNBNDP (x)) return SCM_INUM0;
4202 SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
4203 }
4204
4205 if (SCM_LIKELY (SCM_I_INUMP (x)))
4206 {
4207 if (SCM_LIKELY (SCM_I_INUMP (y)))
4208 {
4209 long xx = SCM_I_INUM (x);
4210 long yy = SCM_I_INUM (y);
4211 long int z = xx + yy;
4212 return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
4213 }
4214 else if (SCM_BIGP (y))
4215 {
4216 SCM_SWAP (x, y);
4217 goto add_big_inum;
4218 }
4219 else if (SCM_REALP (y))
4220 {
4221 long int xx = SCM_I_INUM (x);
4222 return scm_from_double (xx + SCM_REAL_VALUE (y));
4223 }
4224 else if (SCM_COMPLEXP (y))
4225 {
4226 long int xx = SCM_I_INUM (x);
4227 return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
4228 SCM_COMPLEX_IMAG (y));
4229 }
4230 else if (SCM_FRACTIONP (y))
4231 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4232 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4233 SCM_FRACTION_DENOMINATOR (y));
4234 else
4235 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4236 } else if (SCM_BIGP (x))
4237 {
4238 if (SCM_I_INUMP (y))
4239 {
4240 long int inum;
4241 int bigsgn;
4242 add_big_inum:
4243 inum = SCM_I_INUM (y);
4244 if (inum == 0)
4245 return x;
4246 bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
4247 if (inum < 0)
4248 {
4249 SCM result = scm_i_mkbig ();
4250 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
4251 scm_remember_upto_here_1 (x);
4252 /* we know the result will have to be a bignum */
4253 if (bigsgn == -1)
4254 return result;
4255 return scm_i_normbig (result);
4256 }
4257 else
4258 {
4259 SCM result = scm_i_mkbig ();
4260 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
4261 scm_remember_upto_here_1 (x);
4262 /* we know the result will have to be a bignum */
4263 if (bigsgn == 1)
4264 return result;
4265 return scm_i_normbig (result);
4266 }
4267 }
4268 else if (SCM_BIGP (y))
4269 {
4270 SCM result = scm_i_mkbig ();
4271 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4272 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4273 mpz_add (SCM_I_BIG_MPZ (result),
4274 SCM_I_BIG_MPZ (x),
4275 SCM_I_BIG_MPZ (y));
4276 scm_remember_upto_here_2 (x, y);
4277 /* we know the result will have to be a bignum */
4278 if (sgn_x == sgn_y)
4279 return result;
4280 return scm_i_normbig (result);
4281 }
4282 else if (SCM_REALP (y))
4283 {
4284 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
4285 scm_remember_upto_here_1 (x);
4286 return scm_from_double (result);
4287 }
4288 else if (SCM_COMPLEXP (y))
4289 {
4290 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4291 + SCM_COMPLEX_REAL (y));
4292 scm_remember_upto_here_1 (x);
4293 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4294 }
4295 else if (SCM_FRACTIONP (y))
4296 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
4297 scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
4298 SCM_FRACTION_DENOMINATOR (y));
4299 else
4300 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4301 }
4302 else if (SCM_REALP (x))
4303 {
4304 if (SCM_I_INUMP (y))
4305 return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
4306 else if (SCM_BIGP (y))
4307 {
4308 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
4309 scm_remember_upto_here_1 (y);
4310 return scm_from_double (result);
4311 }
4312 else if (SCM_REALP (y))
4313 return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
4314 else if (SCM_COMPLEXP (y))
4315 return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
4316 SCM_COMPLEX_IMAG (y));
4317 else if (SCM_FRACTIONP (y))
4318 return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
4319 else
4320 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4321 }
4322 else if (SCM_COMPLEXP (x))
4323 {
4324 if (SCM_I_INUMP (y))
4325 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
4326 SCM_COMPLEX_IMAG (x));
4327 else if (SCM_BIGP (y))
4328 {
4329 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
4330 + SCM_COMPLEX_REAL (x));
4331 scm_remember_upto_here_1 (y);
4332 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
4333 }
4334 else if (SCM_REALP (y))
4335 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
4336 SCM_COMPLEX_IMAG (x));
4337 else if (SCM_COMPLEXP (y))
4338 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
4339 SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
4340 else if (SCM_FRACTIONP (y))
4341 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
4342 SCM_COMPLEX_IMAG (x));
4343 else
4344 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4345 }
4346 else if (SCM_FRACTIONP (x))
4347 {
4348 if (SCM_I_INUMP (y))
4349 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4350 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4351 SCM_FRACTION_DENOMINATOR (x));
4352 else if (SCM_BIGP (y))
4353 return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
4354 scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
4355 SCM_FRACTION_DENOMINATOR (x));
4356 else if (SCM_REALP (y))
4357 return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
4358 else if (SCM_COMPLEXP (y))
4359 return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
4360 SCM_COMPLEX_IMAG (y));
4361 else if (SCM_FRACTIONP (y))
4362 /* a/b + c/d = (ad + bc) / bd */
4363 return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4364 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4365 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4366 else
4367 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
4368 }
4369 else
4370 SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
4371 }
4372
4373
4374 SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
4375 (SCM x),
4376 "Return @math{@var{x}+1}.")
4377 #define FUNC_NAME s_scm_oneplus
4378 {
4379 return scm_sum (x, SCM_I_MAKINUM (1));
4380 }
4381 #undef FUNC_NAME
4382
4383
4384 SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1,
4385 (SCM x, SCM y, SCM rest),
4386 "If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n"
4387 "the sum of all but the first argument are subtracted from the first\n"
4388 "argument.")
4389 #define FUNC_NAME s_scm_i_difference
4390 {
4391 while (!scm_is_null (rest))
4392 { x = scm_difference (x, y);
4393 y = scm_car (rest);
4394 rest = scm_cdr (rest);
4395 }
4396 return scm_difference (x, y);
4397 }
4398 #undef FUNC_NAME
4399
4400 #define s_difference s_scm_i_difference
4401 #define g_difference g_scm_i_difference
4402
4403 SCM
4404 scm_difference (SCM x, SCM y)
4405 #define FUNC_NAME s_difference
4406 {
4407 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4408 {
4409 if (SCM_UNBNDP (x))
4410 SCM_WTA_DISPATCH_0 (g_difference, s_difference);
4411 else
4412 if (SCM_I_INUMP (x))
4413 {
4414 long xx = -SCM_I_INUM (x);
4415 if (SCM_FIXABLE (xx))
4416 return SCM_I_MAKINUM (xx);
4417 else
4418 return scm_i_long2big (xx);
4419 }
4420 else if (SCM_BIGP (x))
4421 /* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
4422 bignum, but negating that gives a fixnum. */
4423 return scm_i_normbig (scm_i_clonebig (x, 0));
4424 else if (SCM_REALP (x))
4425 return scm_from_double (-SCM_REAL_VALUE (x));
4426 else if (SCM_COMPLEXP (x))
4427 return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
4428 -SCM_COMPLEX_IMAG (x));
4429 else if (SCM_FRACTIONP (x))
4430 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
4431 SCM_FRACTION_DENOMINATOR (x));
4432 else
4433 SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
4434 }
4435
4436 if (SCM_LIKELY (SCM_I_INUMP (x)))
4437 {
4438 if (SCM_LIKELY (SCM_I_INUMP (y)))
4439 {
4440 long int xx = SCM_I_INUM (x);
4441 long int yy = SCM_I_INUM (y);
4442 long int z = xx - yy;
4443 if (SCM_FIXABLE (z))
4444 return SCM_I_MAKINUM (z);
4445 else
4446 return scm_i_long2big (z);
4447 }
4448 else if (SCM_BIGP (y))
4449 {
4450 /* inum-x - big-y */
4451 long xx = SCM_I_INUM (x);
4452
4453 if (xx == 0)
4454 return scm_i_clonebig (y, 0);
4455 else
4456 {
4457 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4458 SCM result = scm_i_mkbig ();
4459
4460 if (xx >= 0)
4461 mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
4462 else
4463 {
4464 /* x - y == -(y + -x) */
4465 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
4466 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
4467 }
4468 scm_remember_upto_here_1 (y);
4469
4470 if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
4471 /* we know the result will have to be a bignum */
4472 return result;
4473 else
4474 return scm_i_normbig (result);
4475 }
4476 }
4477 else if (SCM_REALP (y))
4478 {
4479 long int xx = SCM_I_INUM (x);
4480 return scm_from_double (xx - SCM_REAL_VALUE (y));
4481 }
4482 else if (SCM_COMPLEXP (y))
4483 {
4484 long int xx = SCM_I_INUM (x);
4485 return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
4486 - SCM_COMPLEX_IMAG (y));
4487 }
4488 else if (SCM_FRACTIONP (y))
4489 /* a - b/c = (ac - b) / c */
4490 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4491 SCM_FRACTION_NUMERATOR (y)),
4492 SCM_FRACTION_DENOMINATOR (y));
4493 else
4494 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4495 }
4496 else if (SCM_BIGP (x))
4497 {
4498 if (SCM_I_INUMP (y))
4499 {
4500 /* big-x - inum-y */
4501 long yy = SCM_I_INUM (y);
4502 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4503
4504 scm_remember_upto_here_1 (x);
4505 if (sgn_x == 0)
4506 return (SCM_FIXABLE (-yy) ?
4507 SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
4508 else
4509 {
4510 SCM result = scm_i_mkbig ();
4511
4512 if (yy >= 0)
4513 mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
4514 else
4515 mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
4516 scm_remember_upto_here_1 (x);
4517
4518 if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
4519 /* we know the result will have to be a bignum */
4520 return result;
4521 else
4522 return scm_i_normbig (result);
4523 }
4524 }
4525 else if (SCM_BIGP (y))
4526 {
4527 int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
4528 int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
4529 SCM result = scm_i_mkbig ();
4530 mpz_sub (SCM_I_BIG_MPZ (result),
4531 SCM_I_BIG_MPZ (x),
4532 SCM_I_BIG_MPZ (y));
4533 scm_remember_upto_here_2 (x, y);
4534 /* we know the result will have to be a bignum */
4535 if ((sgn_x == 1) && (sgn_y == -1))
4536 return result;
4537 if ((sgn_x == -1) && (sgn_y == 1))
4538 return result;
4539 return scm_i_normbig (result);
4540 }
4541 else if (SCM_REALP (y))
4542 {
4543 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
4544 scm_remember_upto_here_1 (x);
4545 return scm_from_double (result);
4546 }
4547 else if (SCM_COMPLEXP (y))
4548 {
4549 double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
4550 - SCM_COMPLEX_REAL (y));
4551 scm_remember_upto_here_1 (x);
4552 return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
4553 }
4554 else if (SCM_FRACTIONP (y))
4555 return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
4556 SCM_FRACTION_NUMERATOR (y)),
4557 SCM_FRACTION_DENOMINATOR (y));
4558 else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4559 }
4560 else if (SCM_REALP (x))
4561 {
4562 if (SCM_I_INUMP (y))
4563 return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
4564 else if (SCM_BIGP (y))
4565 {
4566 double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
4567 scm_remember_upto_here_1 (x);
4568 return scm_from_double (result);
4569 }
4570 else if (SCM_REALP (y))
4571 return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
4572 else if (SCM_COMPLEXP (y))
4573 return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
4574 -SCM_COMPLEX_IMAG (y));
4575 else if (SCM_FRACTIONP (y))
4576 return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
4577 else
4578 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4579 }
4580 else if (SCM_COMPLEXP (x))
4581 {
4582 if (SCM_I_INUMP (y))
4583 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
4584 SCM_COMPLEX_IMAG (x));
4585 else if (SCM_BIGP (y))
4586 {
4587 double real_part = (SCM_COMPLEX_REAL (x)
4588 - mpz_get_d (SCM_I_BIG_MPZ (y)));
4589 scm_remember_upto_here_1 (x);
4590 return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
4591 }
4592 else if (SCM_REALP (y))
4593 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
4594 SCM_COMPLEX_IMAG (x));
4595 else if (SCM_COMPLEXP (y))
4596 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
4597 SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
4598 else if (SCM_FRACTIONP (y))
4599 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
4600 SCM_COMPLEX_IMAG (x));
4601 else
4602 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4603 }
4604 else if (SCM_FRACTIONP (x))
4605 {
4606 if (SCM_I_INUMP (y))
4607 /* a/b - c = (a - cb) / b */
4608 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4609 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4610 SCM_FRACTION_DENOMINATOR (x));
4611 else if (SCM_BIGP (y))
4612 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
4613 scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
4614 SCM_FRACTION_DENOMINATOR (x));
4615 else if (SCM_REALP (y))
4616 return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
4617 else if (SCM_COMPLEXP (y))
4618 return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
4619 -SCM_COMPLEX_IMAG (y));
4620 else if (SCM_FRACTIONP (y))
4621 /* a/b - c/d = (ad - bc) / bd */
4622 return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
4623 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
4624 scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
4625 else
4626 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
4627 }
4628 else
4629 SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
4630 }
4631 #undef FUNC_NAME
4632
4633
4634 SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
4635 (SCM x),
4636 "Return @math{@var{x}-1}.")
4637 #define FUNC_NAME s_scm_oneminus
4638 {
4639 return scm_difference (x, SCM_I_MAKINUM (1));
4640 }
4641 #undef FUNC_NAME
4642
4643
4644 SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1,
4645 (SCM x, SCM y, SCM rest),
4646 "Return the product of all arguments. If called without arguments,\n"
4647 "1 is returned.")
4648 #define FUNC_NAME s_scm_i_product
4649 {
4650 while (!scm_is_null (rest))
4651 { x = scm_product (x, y);
4652 y = scm_car (rest);
4653 rest = scm_cdr (rest);
4654 }
4655 return scm_product (x, y);
4656 }
4657 #undef FUNC_NAME
4658
4659 #define s_product s_scm_i_product
4660 #define g_product g_scm_i_product
4661
4662 SCM
4663 scm_product (SCM x, SCM y)
4664 {
4665 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4666 {
4667 if (SCM_UNBNDP (x))
4668 return SCM_I_MAKINUM (1L);
4669 else if (SCM_NUMBERP (x))
4670 return x;
4671 else
4672 SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
4673 }
4674
4675 if (SCM_LIKELY (SCM_I_INUMP (x)))
4676 {
4677 long xx;
4678
4679 intbig:
4680 xx = SCM_I_INUM (x);
4681
4682 switch (xx)
4683 {
4684 case 0: return x; break;
4685 case 1: return y; break;
4686 }
4687
4688 if (SCM_LIKELY (SCM_I_INUMP (y)))
4689 {
4690 long yy = SCM_I_INUM (y);
4691 long kk = xx * yy;
4692 SCM k = SCM_I_MAKINUM (kk);
4693 if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
4694 return k;
4695 else
4696 {
4697 SCM result = scm_i_long2big (xx);
4698 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
4699 return scm_i_normbig (result);
4700 }
4701 }
4702 else if (SCM_BIGP (y))
4703 {
4704 SCM result = scm_i_mkbig ();
4705 mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
4706 scm_remember_upto_here_1 (y);
4707 return result;
4708 }
4709 else if (SCM_REALP (y))
4710 return scm_from_double (xx * SCM_REAL_VALUE (y));
4711 else if (SCM_COMPLEXP (y))
4712 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4713 xx * SCM_COMPLEX_IMAG (y));
4714 else if (SCM_FRACTIONP (y))
4715 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4716 SCM_FRACTION_DENOMINATOR (y));
4717 else
4718 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4719 }
4720 else if (SCM_BIGP (x))
4721 {
4722 if (SCM_I_INUMP (y))
4723 {
4724 SCM_SWAP (x, y);
4725 goto intbig;
4726 }
4727 else if (SCM_BIGP (y))
4728 {
4729 SCM result = scm_i_mkbig ();
4730 mpz_mul (SCM_I_BIG_MPZ (result),
4731 SCM_I_BIG_MPZ (x),
4732 SCM_I_BIG_MPZ (y));
4733 scm_remember_upto_here_2 (x, y);
4734 return result;
4735 }
4736 else if (SCM_REALP (y))
4737 {
4738 double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
4739 scm_remember_upto_here_1 (x);
4740 return scm_from_double (result);
4741 }
4742 else if (SCM_COMPLEXP (y))
4743 {
4744 double z = mpz_get_d (SCM_I_BIG_MPZ (x));
4745 scm_remember_upto_here_1 (x);
4746 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
4747 z * SCM_COMPLEX_IMAG (y));
4748 }
4749 else if (SCM_FRACTIONP (y))
4750 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
4751 SCM_FRACTION_DENOMINATOR (y));
4752 else
4753 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4754 }
4755 else if (SCM_REALP (x))
4756 {
4757 if (SCM_I_INUMP (y))
4758 {
4759 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4760 if (scm_is_eq (y, SCM_INUM0))
4761 return y;
4762 return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
4763 }
4764 else if (SCM_BIGP (y))
4765 {
4766 double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
4767 scm_remember_upto_here_1 (y);
4768 return scm_from_double (result);
4769 }
4770 else if (SCM_REALP (y))
4771 return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
4772 else if (SCM_COMPLEXP (y))
4773 return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
4774 SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
4775 else if (SCM_FRACTIONP (y))
4776 return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
4777 else
4778 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4779 }
4780 else if (SCM_COMPLEXP (x))
4781 {
4782 if (SCM_I_INUMP (y))
4783 {
4784 /* inexact*exact0 => exact 0, per R5RS "Exactness" section */
4785 if (scm_is_eq (y, SCM_INUM0))
4786 return y;
4787 return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
4788 SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
4789 }
4790 else if (SCM_BIGP (y))
4791 {
4792 double z = mpz_get_d (SCM_I_BIG_MPZ (y));
4793 scm_remember_upto_here_1 (y);
4794 return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
4795 z * SCM_COMPLEX_IMAG (x));
4796 }
4797 else if (SCM_REALP (y))
4798 return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
4799 SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
4800 else if (SCM_COMPLEXP (y))
4801 {
4802 return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
4803 - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
4804 SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
4805 + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
4806 }
4807 else if (SCM_FRACTIONP (y))
4808 {
4809 double yy = scm_i_fraction2double (y);
4810 return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
4811 yy * SCM_COMPLEX_IMAG (x));
4812 }
4813 else
4814 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4815 }
4816 else if (SCM_FRACTIONP (x))
4817 {
4818 if (SCM_I_INUMP (y))
4819 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4820 SCM_FRACTION_DENOMINATOR (x));
4821 else if (SCM_BIGP (y))
4822 return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
4823 SCM_FRACTION_DENOMINATOR (x));
4824 else if (SCM_REALP (y))
4825 return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
4826 else if (SCM_COMPLEXP (y))
4827 {
4828 double xx = scm_i_fraction2double (x);
4829 return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
4830 xx * SCM_COMPLEX_IMAG (y));
4831 }
4832 else if (SCM_FRACTIONP (y))
4833 /* a/b * c/d = ac / bd */
4834 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
4835 SCM_FRACTION_NUMERATOR (y)),
4836 scm_product (SCM_FRACTION_DENOMINATOR (x),
4837 SCM_FRACTION_DENOMINATOR (y)));
4838 else
4839 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
4840 }
4841 else
4842 SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
4843 }
4844
4845 #if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
4846 || (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
4847 #define ALLOW_DIVIDE_BY_ZERO
4848 /* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
4849 #endif
4850
4851 /* The code below for complex division is adapted from the GNU
4852 libstdc++, which adapted it from f2c's libF77, and is subject to
4853 this copyright: */
4854
4855 /****************************************************************
4856 Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
4857
4858 Permission to use, copy, modify, and distribute this software
4859 and its documentation for any purpose and without fee is hereby
4860 granted, provided that the above copyright notice appear in all
4861 copies and that both that the copyright notice and this
4862 permission notice and warranty disclaimer appear in supporting
4863 documentation, and that the names of AT&T Bell Laboratories or
4864 Bellcore or any of their entities not be used in advertising or
4865 publicity pertaining to distribution of the software without
4866 specific, written prior permission.
4867
4868 AT&T and Bellcore disclaim all warranties with regard to this
4869 software, including all implied warranties of merchantability
4870 and fitness. In no event shall AT&T or Bellcore be liable for
4871 any special, indirect or consequential damages or any damages
4872 whatsoever resulting from loss of use, data or profits, whether
4873 in an action of contract, negligence or other tortious action,
4874 arising out of or in connection with the use or performance of
4875 this software.
4876 ****************************************************************/
4877
4878 SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1,
4879 (SCM x, SCM y, SCM rest),
4880 "Divide the first argument by the product of the remaining\n"
4881 "arguments. If called with one argument @var{z1}, 1/@var{z1} is\n"
4882 "returned.")
4883 #define FUNC_NAME s_scm_i_divide
4884 {
4885 while (!scm_is_null (rest))
4886 { x = scm_divide (x, y);
4887 y = scm_car (rest);
4888 rest = scm_cdr (rest);
4889 }
4890 return scm_divide (x, y);
4891 }
4892 #undef FUNC_NAME
4893
4894 #define s_divide s_scm_i_divide
4895 #define g_divide g_scm_i_divide
4896
4897 static SCM
4898 do_divide (SCM x, SCM y, int inexact)
4899 #define FUNC_NAME s_divide
4900 {
4901 double a;
4902
4903 if (SCM_UNLIKELY (SCM_UNBNDP (y)))
4904 {
4905 if (SCM_UNBNDP (x))
4906 SCM_WTA_DISPATCH_0 (g_divide, s_divide);
4907 else if (SCM_I_INUMP (x))
4908 {
4909 long xx = SCM_I_INUM (x);
4910 if (xx == 1 || xx == -1)
4911 return x;
4912 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4913 else if (xx == 0)
4914 scm_num_overflow (s_divide);
4915 #endif
4916 else
4917 {
4918 if (inexact)
4919 return scm_from_double (1.0 / (double) xx);
4920 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4921 }
4922 }
4923 else if (SCM_BIGP (x))
4924 {
4925 if (inexact)
4926 return scm_from_double (1.0 / scm_i_big2dbl (x));
4927 else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
4928 }
4929 else if (SCM_REALP (x))
4930 {
4931 double xx = SCM_REAL_VALUE (x);
4932 #ifndef ALLOW_DIVIDE_BY_ZERO
4933 if (xx == 0.0)
4934 scm_num_overflow (s_divide);
4935 else
4936 #endif
4937 return scm_from_double (1.0 / xx);
4938 }
4939 else if (SCM_COMPLEXP (x))
4940 {
4941 double r = SCM_COMPLEX_REAL (x);
4942 double i = SCM_COMPLEX_IMAG (x);
4943 if (fabs(r) <= fabs(i))
4944 {
4945 double t = r / i;
4946 double d = i * (1.0 + t * t);
4947 return scm_c_make_rectangular (t / d, -1.0 / d);
4948 }
4949 else
4950 {
4951 double t = i / r;
4952 double d = r * (1.0 + t * t);
4953 return scm_c_make_rectangular (1.0 / d, -t / d);
4954 }
4955 }
4956 else if (SCM_FRACTIONP (x))
4957 return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
4958 SCM_FRACTION_NUMERATOR (x));
4959 else
4960 SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
4961 }
4962
4963 if (SCM_LIKELY (SCM_I_INUMP (x)))
4964 {
4965 long xx = SCM_I_INUM (x);
4966 if (SCM_LIKELY (SCM_I_INUMP (y)))
4967 {
4968 long yy = SCM_I_INUM (y);
4969 if (yy == 0)
4970 {
4971 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
4972 scm_num_overflow (s_divide);
4973 #else
4974 return scm_from_double ((double) xx / (double) yy);
4975 #endif
4976 }
4977 else if (xx % yy != 0)
4978 {
4979 if (inexact)
4980 return scm_from_double ((double) xx / (double) yy);
4981 else return scm_i_make_ratio (x, y);
4982 }
4983 else
4984 {
4985 long z = xx / yy;
4986 if (SCM_FIXABLE (z))
4987 return SCM_I_MAKINUM (z);
4988 else
4989 return scm_i_long2big (z);
4990 }
4991 }
4992 else if (SCM_BIGP (y))
4993 {
4994 if (inexact)
4995 return scm_from_double ((double) xx / scm_i_big2dbl (y));
4996 else return scm_i_make_ratio (x, y);
4997 }
4998 else if (SCM_REALP (y))
4999 {
5000 double yy = SCM_REAL_VALUE (y);
5001 #ifndef ALLOW_DIVIDE_BY_ZERO
5002 if (yy == 0.0)
5003 scm_num_overflow (s_divide);
5004 else
5005 #endif
5006 return scm_from_double ((double) xx / yy);
5007 }
5008 else if (SCM_COMPLEXP (y))
5009 {
5010 a = xx;
5011 complex_div: /* y _must_ be a complex number */
5012 {
5013 double r = SCM_COMPLEX_REAL (y);
5014 double i = SCM_COMPLEX_IMAG (y);
5015 if (fabs(r) <= fabs(i))
5016 {
5017 double t = r / i;
5018 double d = i * (1.0 + t * t);
5019 return scm_c_make_rectangular ((a * t) / d, -a / d);
5020 }
5021 else
5022 {
5023 double t = i / r;
5024 double d = r * (1.0 + t * t);
5025 return scm_c_make_rectangular (a / d, -(a * t) / d);
5026 }
5027 }
5028 }
5029 else if (SCM_FRACTIONP (y))
5030 /* a / b/c = ac / b */
5031 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
5032 SCM_FRACTION_NUMERATOR (y));
5033 else
5034 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5035 }
5036 else if (SCM_BIGP (x))
5037 {
5038 if (SCM_I_INUMP (y))
5039 {
5040 long int yy = SCM_I_INUM (y);
5041 if (yy == 0)
5042 {
5043 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5044 scm_num_overflow (s_divide);
5045 #else
5046 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5047 scm_remember_upto_here_1 (x);
5048 return (sgn == 0) ? scm_nan () : scm_inf ();
5049 #endif
5050 }
5051 else if (yy == 1)
5052 return x;
5053 else
5054 {
5055 /* FIXME: HMM, what are the relative performance issues here?
5056 We need to test. Is it faster on average to test
5057 divisible_p, then perform whichever operation, or is it
5058 faster to perform the integer div opportunistically and
5059 switch to real if there's a remainder? For now we take the
5060 middle ground: test, then if divisible, use the faster div
5061 func. */
5062
5063 long abs_yy = yy < 0 ? -yy : yy;
5064 int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
5065
5066 if (divisible_p)
5067 {
5068 SCM result = scm_i_mkbig ();
5069 mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
5070 scm_remember_upto_here_1 (x);
5071 if (yy < 0)
5072 mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
5073 return scm_i_normbig (result);
5074 }
5075 else
5076 {
5077 if (inexact)
5078 return scm_from_double (scm_i_big2dbl (x) / (double) yy);
5079 else return scm_i_make_ratio (x, y);
5080 }
5081 }
5082 }
5083 else if (SCM_BIGP (y))
5084 {
5085 int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
5086 if (y_is_zero)
5087 {
5088 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5089 scm_num_overflow (s_divide);
5090 #else
5091 int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
5092 scm_remember_upto_here_1 (x);
5093 return (sgn == 0) ? scm_nan () : scm_inf ();
5094 #endif
5095 }
5096 else
5097 {
5098 /* big_x / big_y */
5099 if (inexact)
5100 {
5101 /* It's easily possible for the ratio x/y to fit a double
5102 but one or both x and y be too big to fit a double,
5103 hence the use of mpq_get_d rather than converting and
5104 dividing. */
5105 mpq_t q;
5106 *mpq_numref(q) = *SCM_I_BIG_MPZ (x);
5107 *mpq_denref(q) = *SCM_I_BIG_MPZ (y);
5108 return scm_from_double (mpq_get_d (q));
5109 }
5110 else
5111 {
5112 int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
5113 SCM_I_BIG_MPZ (y));
5114 if (divisible_p)
5115 {
5116 SCM result = scm_i_mkbig ();
5117 mpz_divexact (SCM_I_BIG_MPZ (result),
5118 SCM_I_BIG_MPZ (x),
5119 SCM_I_BIG_MPZ (y));
5120 scm_remember_upto_here_2 (x, y);
5121 return scm_i_normbig (result);
5122 }
5123 else
5124 return scm_i_make_ratio (x, y);
5125 }
5126 }
5127 }
5128 else if (SCM_REALP (y))
5129 {
5130 double yy = SCM_REAL_VALUE (y);
5131 #ifndef ALLOW_DIVIDE_BY_ZERO
5132 if (yy == 0.0)
5133 scm_num_overflow (s_divide);
5134 else
5135 #endif
5136 return scm_from_double (scm_i_big2dbl (x) / yy);
5137 }
5138 else if (SCM_COMPLEXP (y))
5139 {
5140 a = scm_i_big2dbl (x);
5141 goto complex_div;
5142 }
5143 else if (SCM_FRACTIONP (y))
5144 return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
5145 SCM_FRACTION_NUMERATOR (y));
5146 else
5147 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5148 }
5149 else if (SCM_REALP (x))
5150 {
5151 double rx = SCM_REAL_VALUE (x);
5152 if (SCM_I_INUMP (y))
5153 {
5154 long int yy = SCM_I_INUM (y);
5155 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5156 if (yy == 0)
5157 scm_num_overflow (s_divide);
5158 else
5159 #endif
5160 return scm_from_double (rx / (double) yy);
5161 }
5162 else if (SCM_BIGP (y))
5163 {
5164 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5165 scm_remember_upto_here_1 (y);
5166 return scm_from_double (rx / dby);
5167 }
5168 else if (SCM_REALP (y))
5169 {
5170 double yy = SCM_REAL_VALUE (y);
5171 #ifndef ALLOW_DIVIDE_BY_ZERO
5172 if (yy == 0.0)
5173 scm_num_overflow (s_divide);
5174 else
5175 #endif
5176 return scm_from_double (rx / yy);
5177 }
5178 else if (SCM_COMPLEXP (y))
5179 {
5180 a = rx;
5181 goto complex_div;
5182 }
5183 else if (SCM_FRACTIONP (y))
5184 return scm_from_double (rx / scm_i_fraction2double (y));
5185 else
5186 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5187 }
5188 else if (SCM_COMPLEXP (x))
5189 {
5190 double rx = SCM_COMPLEX_REAL (x);
5191 double ix = SCM_COMPLEX_IMAG (x);
5192 if (SCM_I_INUMP (y))
5193 {
5194 long int yy = SCM_I_INUM (y);
5195 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5196 if (yy == 0)
5197 scm_num_overflow (s_divide);
5198 else
5199 #endif
5200 {
5201 double d = yy;
5202 return scm_c_make_rectangular (rx / d, ix / d);
5203 }
5204 }
5205 else if (SCM_BIGP (y))
5206 {
5207 double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
5208 scm_remember_upto_here_1 (y);
5209 return scm_c_make_rectangular (rx / dby, ix / dby);
5210 }
5211 else if (SCM_REALP (y))
5212 {
5213 double yy = SCM_REAL_VALUE (y);
5214 #ifndef ALLOW_DIVIDE_BY_ZERO
5215 if (yy == 0.0)
5216 scm_num_overflow (s_divide);
5217 else
5218 #endif
5219 return scm_c_make_rectangular (rx / yy, ix / yy);
5220 }
5221 else if (SCM_COMPLEXP (y))
5222 {
5223 double ry = SCM_COMPLEX_REAL (y);
5224 double iy = SCM_COMPLEX_IMAG (y);
5225 if (fabs(ry) <= fabs(iy))
5226 {
5227 double t = ry / iy;
5228 double d = iy * (1.0 + t * t);
5229 return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
5230 }
5231 else
5232 {
5233 double t = iy / ry;
5234 double d = ry * (1.0 + t * t);
5235 return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
5236 }
5237 }
5238 else if (SCM_FRACTIONP (y))
5239 {
5240 double yy = scm_i_fraction2double (y);
5241 return scm_c_make_rectangular (rx / yy, ix / yy);
5242 }
5243 else
5244 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5245 }
5246 else if (SCM_FRACTIONP (x))
5247 {
5248 if (SCM_I_INUMP (y))
5249 {
5250 long int yy = SCM_I_INUM (y);
5251 #ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
5252 if (yy == 0)
5253 scm_num_overflow (s_divide);
5254 else
5255 #endif
5256 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5257 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5258 }
5259 else if (SCM_BIGP (y))
5260 {
5261 return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
5262 scm_product (SCM_FRACTION_DENOMINATOR (x), y));
5263 }
5264 else if (SCM_REALP (y))
5265 {
5266 double yy = SCM_REAL_VALUE (y);
5267 #ifndef ALLOW_DIVIDE_BY_ZERO
5268 if (yy == 0.0)
5269 scm_num_overflow (s_divide);
5270 else
5271 #endif
5272 return scm_from_double (scm_i_fraction2double (x) / yy);
5273 }
5274 else if (SCM_COMPLEXP (y))
5275 {
5276 a = scm_i_fraction2double (x);
5277 goto complex_div;
5278 }
5279 else if (SCM_FRACTIONP (y))
5280 return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
5281 scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
5282 else
5283 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
5284 }
5285 else
5286 SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
5287 }
5288
5289 SCM
5290 scm_divide (SCM x, SCM y)
5291 {
5292 return do_divide (x, y, 0);
5293 }
5294
5295 static SCM scm_divide2real (SCM x, SCM y)
5296 {
5297 return do_divide (x, y, 1);
5298 }
5299 #undef FUNC_NAME
5300
5301
5302 double
5303 scm_c_truncate (double x)
5304 {
5305 #if HAVE_TRUNC
5306 return trunc (x);
5307 #else
5308 if (x < 0.0)
5309 return -floor (-x);
5310 return floor (x);
5311 #endif
5312 }
5313
5314 /* scm_c_round is done using floor(x+0.5) to round to nearest and with
5315 half-way case (ie. when x is an integer plus 0.5) going upwards.
5316 Then half-way cases are identified and adjusted down if the
5317 round-upwards didn't give the desired even integer.
5318
5319 "plus_half == result" identifies a half-way case. If plus_half, which is
5320 x + 0.5, is an integer then x must be an integer plus 0.5.
5321
5322 An odd "result" value is identified with result/2 != floor(result/2).
5323 This is done with plus_half, since that value is ready for use sooner in
5324 a pipelined cpu, and we're already requiring plus_half == result.
5325
5326 Note however that we need to be careful when x is big and already an
5327 integer. In that case "x+0.5" may round to an adjacent integer, causing
5328 us to return such a value, incorrectly. For instance if the hardware is
5329 in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
5330 (ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
5331 returned. Or if the hardware is in round-upwards mode, then other bigger
5332 values like say x == 2^128 will see x+0.5 rounding up to the next higher
5333 representable value, 2^128+2^76 (or whatever), again incorrect.
5334
5335 These bad roundings of x+0.5 are avoided by testing at the start whether
5336 x is already an integer. If it is then clearly that's the desired result
5337 already. And if it's not then the exponent must be small enough to allow
5338 an 0.5 to be represented, and hence added without a bad rounding. */
5339
5340 double
5341 scm_c_round (double x)
5342 {
5343 double plus_half, result;
5344
5345 if (x == floor (x))
5346 return x;
5347
5348 plus_half = x + 0.5;
5349 result = floor (plus_half);
5350 /* Adjust so that the rounding is towards even. */
5351 return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
5352 ? result - 1
5353 : result);
5354 }
5355
5356 SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
5357 (SCM x),
5358 "Round the number @var{x} towards zero.")
5359 #define FUNC_NAME s_scm_truncate_number
5360 {
5361 if (scm_is_false (scm_negative_p (x)))
5362 return scm_floor (x);
5363 else
5364 return scm_ceiling (x);
5365 }
5366 #undef FUNC_NAME
5367
5368 static SCM exactly_one_half;
5369
5370 SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
5371 (SCM x),
5372 "Round the number @var{x} towards the nearest integer. "
5373 "When it is exactly halfway between two integers, "
5374 "round towards the even one.")
5375 #define FUNC_NAME s_scm_round_number
5376 {
5377 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5378 return x;
5379 else if (SCM_REALP (x))
5380 return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
5381 else
5382 {
5383 /* OPTIMIZE-ME: Fraction case could be done more efficiently by a
5384 single quotient+remainder division then examining to see which way
5385 the rounding should go. */
5386 SCM plus_half = scm_sum (x, exactly_one_half);
5387 SCM result = scm_floor (plus_half);
5388 /* Adjust so that the rounding is towards even. */
5389 if (scm_is_true (scm_num_eq_p (plus_half, result))
5390 && scm_is_true (scm_odd_p (result)))
5391 return scm_difference (result, SCM_I_MAKINUM (1));
5392 else
5393 return result;
5394 }
5395 }
5396 #undef FUNC_NAME
5397
5398 SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
5399 (SCM x),
5400 "Round the number @var{x} towards minus infinity.")
5401 #define FUNC_NAME s_scm_floor
5402 {
5403 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5404 return x;
5405 else if (SCM_REALP (x))
5406 return scm_from_double (floor (SCM_REAL_VALUE (x)));
5407 else if (SCM_FRACTIONP (x))
5408 {
5409 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5410 SCM_FRACTION_DENOMINATOR (x));
5411 if (scm_is_false (scm_negative_p (x)))
5412 {
5413 /* For positive x, rounding towards zero is correct. */
5414 return q;
5415 }
5416 else
5417 {
5418 /* For negative x, we need to return q-1 unless x is an
5419 integer. But fractions are never integer, per our
5420 assumptions. */
5421 return scm_difference (q, SCM_I_MAKINUM (1));
5422 }
5423 }
5424 else
5425 SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
5426 }
5427 #undef FUNC_NAME
5428
5429 SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
5430 (SCM x),
5431 "Round the number @var{x} towards infinity.")
5432 #define FUNC_NAME s_scm_ceiling
5433 {
5434 if (SCM_I_INUMP (x) || SCM_BIGP (x))
5435 return x;
5436 else if (SCM_REALP (x))
5437 return scm_from_double (ceil (SCM_REAL_VALUE (x)));
5438 else if (SCM_FRACTIONP (x))
5439 {
5440 SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
5441 SCM_FRACTION_DENOMINATOR (x));
5442 if (scm_is_false (scm_positive_p (x)))
5443 {
5444 /* For negative x, rounding towards zero is correct. */
5445 return q;
5446 }
5447 else
5448 {
5449 /* For positive x, we need to return q+1 unless x is an
5450 integer. But fractions are never integer, per our
5451 assumptions. */
5452 return scm_sum (q, SCM_I_MAKINUM (1));
5453 }
5454 }
5455 else
5456 SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
5457 }
5458 #undef FUNC_NAME
5459
5460 /* sin/cos/tan/asin/acos/atan
5461 sinh/cosh/tanh/asinh/acosh/atanh
5462 Derived from "Transcen.scm", Complex trancendental functions for SCM.
5463 Written by Jerry D. Hedden, (C) FSF.
5464 See the file `COPYING' for terms applying to this program. */
5465
5466 SCM_DEFINE (scm_expt, "expt", 2, 0, 0,
5467 (SCM x, SCM y),
5468 "Return @var{x} raised to the power of @var{y}.")
5469 #define FUNC_NAME s_scm_expt
5470 {
5471 if (scm_is_true (scm_exact_p (x)) && scm_is_integer (y))
5472 return scm_integer_expt (x, y);
5473 else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0)
5474 {
5475 return scm_from_double (pow (scm_to_double (x), scm_to_double (y)));
5476 }
5477 else
5478 return scm_exp (scm_product (scm_log (x), y));
5479 }
5480 #undef FUNC_NAME
5481
5482 SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0,
5483 (SCM z),
5484 "Compute the sine of @var{z}.")
5485 #define FUNC_NAME s_scm_sin
5486 {
5487 if (scm_is_real (z))
5488 return scm_from_double (sin (scm_to_double (z)));
5489 else if (SCM_COMPLEXP (z))
5490 { double x, y;
5491 x = SCM_COMPLEX_REAL (z);
5492 y = SCM_COMPLEX_IMAG (z);
5493 return scm_c_make_rectangular (sin (x) * cosh (y),
5494 cos (x) * sinh (y));
5495 }
5496 else
5497 SCM_WTA_DISPATCH_1 (g_scm_sin, z, 1, s_scm_sin);
5498 }
5499 #undef FUNC_NAME
5500
5501 SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0,
5502 (SCM z),
5503 "Compute the cosine of @var{z}.")
5504 #define FUNC_NAME s_scm_cos
5505 {
5506 if (scm_is_real (z))
5507 return scm_from_double (cos (scm_to_double (z)));
5508 else if (SCM_COMPLEXP (z))
5509 { double x, y;
5510 x = SCM_COMPLEX_REAL (z);
5511 y = SCM_COMPLEX_IMAG (z);
5512 return scm_c_make_rectangular (cos (x) * cosh (y),
5513 -sin (x) * sinh (y));
5514 }
5515 else
5516 SCM_WTA_DISPATCH_1 (g_scm_cos, z, 1, s_scm_cos);
5517 }
5518 #undef FUNC_NAME
5519
5520 SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0,
5521 (SCM z),
5522 "Compute the tangent of @var{z}.")
5523 #define FUNC_NAME s_scm_tan
5524 {
5525 if (scm_is_real (z))
5526 return scm_from_double (tan (scm_to_double (z)));
5527 else if (SCM_COMPLEXP (z))
5528 { double x, y, w;
5529 x = 2.0 * SCM_COMPLEX_REAL (z);
5530 y = 2.0 * SCM_COMPLEX_IMAG (z);
5531 w = cos (x) + cosh (y);
5532 #ifndef ALLOW_DIVIDE_BY_ZERO
5533 if (w == 0.0)
5534 scm_num_overflow (s_scm_tan);
5535 #endif
5536 return scm_c_make_rectangular (sin (x) / w, sinh (y) / w);
5537 }
5538 else
5539 SCM_WTA_DISPATCH_1 (g_scm_tan, z, 1, s_scm_tan);
5540 }
5541 #undef FUNC_NAME
5542
5543 SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0,
5544 (SCM z),
5545 "Compute the hyperbolic sine of @var{z}.")
5546 #define FUNC_NAME s_scm_sinh
5547 {
5548 if (scm_is_real (z))
5549 return scm_from_double (sinh (scm_to_double (z)));
5550 else if (SCM_COMPLEXP (z))
5551 { double x, y;
5552 x = SCM_COMPLEX_REAL (z);
5553 y = SCM_COMPLEX_IMAG (z);
5554 return scm_c_make_rectangular (sinh (x) * cos (y),
5555 cosh (x) * sin (y));
5556 }
5557 else
5558 SCM_WTA_DISPATCH_1 (g_scm_sinh, z, 1, s_scm_sinh);
5559 }
5560 #undef FUNC_NAME
5561
5562 SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0,
5563 (SCM z),
5564 "Compute the hyperbolic cosine of @var{z}.")
5565 #define FUNC_NAME s_scm_cosh
5566 {
5567 if (scm_is_real (z))
5568 return scm_from_double (cosh (scm_to_double (z)));
5569 else if (SCM_COMPLEXP (z))
5570 { double x, y;
5571 x = SCM_COMPLEX_REAL (z);
5572 y = SCM_COMPLEX_IMAG (z);
5573 return scm_c_make_rectangular (cosh (x) * cos (y),
5574 sinh (x) * sin (y));
5575 }
5576 else
5577 SCM_WTA_DISPATCH_1 (g_scm_cosh, z, 1, s_scm_cosh);
5578 }
5579 #undef FUNC_NAME
5580
5581 SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0,
5582 (SCM z),
5583 "Compute the hyperbolic tangent of @var{z}.")
5584 #define FUNC_NAME s_scm_tanh
5585 {
5586 if (scm_is_real (z))
5587 return scm_from_double (tanh (scm_to_double (z)));
5588 else if (SCM_COMPLEXP (z))
5589 { double x, y, w;
5590 x = 2.0 * SCM_COMPLEX_REAL (z);
5591 y = 2.0 * SCM_COMPLEX_IMAG (z);
5592 w = cosh (x) + cos (y);
5593 #ifndef ALLOW_DIVIDE_BY_ZERO
5594 if (w == 0.0)
5595 scm_num_overflow (s_scm_tanh);
5596 #endif
5597 return scm_c_make_rectangular (sinh (x) / w, sin (y) / w);
5598 }
5599 else
5600 SCM_WTA_DISPATCH_1 (g_scm_tanh, z, 1, s_scm_tanh);
5601 }
5602 #undef FUNC_NAME
5603
5604 SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0,
5605 (SCM z),
5606 "Compute the arc sine of @var{z}.")
5607 #define FUNC_NAME s_scm_asin
5608 {
5609 if (scm_is_real (z))
5610 {
5611 double w = scm_to_double (z);
5612 if (w >= -1.0 && w <= 1.0)
5613 return scm_from_double (asin (w));
5614 else
5615 return scm_product (scm_c_make_rectangular (0, -1),
5616 scm_sys_asinh (scm_c_make_rectangular (0, w)));
5617 }
5618 else if (SCM_COMPLEXP (z))
5619 { double x, y;
5620 x = SCM_COMPLEX_REAL (z);
5621 y = SCM_COMPLEX_IMAG (z);
5622 return scm_product (scm_c_make_rectangular (0, -1),
5623 scm_sys_asinh (scm_c_make_rectangular (-y, x)));
5624 }
5625 else
5626 SCM_WTA_DISPATCH_1 (g_scm_asin, z, 1, s_scm_asin);
5627 }
5628 #undef FUNC_NAME
5629
5630 SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0,
5631 (SCM z),
5632 "Compute the arc cosine of @var{z}.")
5633 #define FUNC_NAME s_scm_acos
5634 {
5635 if (scm_is_real (z))
5636 {
5637 double w = scm_to_double (z);
5638 if (w >= -1.0 && w <= 1.0)
5639 return scm_from_double (acos (w));
5640 else
5641 return scm_sum (scm_from_double (acos (0.0)),
5642 scm_product (scm_c_make_rectangular (0, 1),
5643 scm_sys_asinh (scm_c_make_rectangular (0, w))));
5644 }
5645 else if (SCM_COMPLEXP (z))
5646 { double x, y;
5647 x = SCM_COMPLEX_REAL (z);
5648 y = SCM_COMPLEX_IMAG (z);
5649 return scm_sum (scm_from_double (acos (0.0)),
5650 scm_product (scm_c_make_rectangular (0, 1),
5651 scm_sys_asinh (scm_c_make_rectangular (-y, x))));
5652 }
5653 else
5654 SCM_WTA_DISPATCH_1 (g_scm_acos, z, 1, s_scm_acos);
5655 }
5656 #undef FUNC_NAME
5657
5658 SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0,
5659 (SCM z, SCM y),
5660 "With one argument, compute the arc tangent of @var{z}.\n"
5661 "If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n"
5662 "using the sign of @var{z} and @var{y} to determine the quadrant.")
5663 #define FUNC_NAME s_scm_atan
5664 {
5665 if (SCM_UNBNDP (y))
5666 {
5667 if (scm_is_real (z))
5668 return scm_from_double (atan (scm_to_double (z)));
5669 else if (SCM_COMPLEXP (z))
5670 {
5671 double v, w;
5672 v = SCM_COMPLEX_REAL (z);
5673 w = SCM_COMPLEX_IMAG (z);
5674 return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (v, w - 1.0),
5675 scm_c_make_rectangular (v, w + 1.0))),
5676 scm_c_make_rectangular (0, 2));
5677 }
5678 else
5679 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5680 }
5681 else if (scm_is_real (z))
5682 {
5683 if (scm_is_real (y))
5684 return scm_from_double (atan2 (scm_to_double (z), scm_to_double (y)));
5685 else
5686 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan);
5687 }
5688 else
5689 SCM_WTA_DISPATCH_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan);
5690 }
5691 #undef FUNC_NAME
5692
5693 SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0,
5694 (SCM z),
5695 "Compute the inverse hyperbolic sine of @var{z}.")
5696 #define FUNC_NAME s_scm_sys_asinh
5697 {
5698 if (scm_is_real (z))
5699 return scm_from_double (asinh (scm_to_double (z)));
5700 else if (scm_is_number (z))
5701 return scm_log (scm_sum (z,
5702 scm_sqrt (scm_sum (scm_product (z, z),
5703 SCM_I_MAKINUM (1)))));
5704 else
5705 SCM_WTA_DISPATCH_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh);
5706 }
5707 #undef FUNC_NAME
5708
5709 SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0,
5710 (SCM z),
5711 "Compute the inverse hyperbolic cosine of @var{z}.")
5712 #define FUNC_NAME s_scm_sys_acosh
5713 {
5714 if (scm_is_real (z) && scm_to_double (z) >= 1.0)
5715 return scm_from_double (acosh (scm_to_double (z)));
5716 else if (scm_is_number (z))
5717 return scm_log (scm_sum (z,
5718 scm_sqrt (scm_difference (scm_product (z, z),
5719 SCM_I_MAKINUM (1)))));
5720 else
5721 SCM_WTA_DISPATCH_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh);
5722 }
5723 #undef FUNC_NAME
5724
5725 SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0,
5726 (SCM z),
5727 "Compute the inverse hyperbolic tangent of @var{z}.")
5728 #define FUNC_NAME s_scm_sys_atanh
5729 {
5730 if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0)
5731 return scm_from_double (atanh (scm_to_double (z)));
5732 else if (scm_is_number (z))
5733 return scm_divide (scm_log (scm_divide (scm_sum (SCM_I_MAKINUM (1), z),
5734 scm_difference (SCM_I_MAKINUM (1), z))),
5735 SCM_I_MAKINUM (2));
5736 else
5737 SCM_WTA_DISPATCH_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh);
5738 }
5739 #undef FUNC_NAME
5740
5741 SCM
5742 scm_c_make_rectangular (double re, double im)
5743 {
5744 if (im == 0.0)
5745 return scm_from_double (re);
5746 else
5747 {
5748 SCM z;
5749 SCM_NEWSMOB (z, scm_tc16_complex,
5750 scm_gc_malloc_pointerless (sizeof (scm_t_complex),
5751 "complex"));
5752 SCM_COMPLEX_REAL (z) = re;
5753 SCM_COMPLEX_IMAG (z) = im;
5754 return z;
5755 }
5756 }
5757
5758 SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
5759 (SCM real_part, SCM imaginary_part),
5760 "Return a complex number constructed of the given @var{real-part} "
5761 "and @var{imaginary-part} parts.")
5762 #define FUNC_NAME s_scm_make_rectangular
5763 {
5764 SCM_ASSERT_TYPE (scm_is_real (real_part), real_part,
5765 SCM_ARG1, FUNC_NAME, "real");
5766 SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part,
5767 SCM_ARG2, FUNC_NAME, "real");
5768 return scm_c_make_rectangular (scm_to_double (real_part),
5769 scm_to_double (imaginary_part));
5770 }
5771 #undef FUNC_NAME
5772
5773 SCM
5774 scm_c_make_polar (double mag, double ang)
5775 {
5776 double s, c;
5777
5778 /* The sincos(3) function is undocumented an broken on Tru64. Thus we only
5779 use it on Glibc-based systems that have it (it's a GNU extension). See
5780 http://lists.gnu.org/archive/html/guile-user/2009-04/msg00033.html for
5781 details. */
5782 #if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE)
5783 sincos (ang, &s, &c);
5784 #else
5785 s = sin (ang);
5786 c = cos (ang);
5787 #endif
5788 return scm_c_make_rectangular (mag * c, mag * s);
5789 }
5790
5791 SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
5792 (SCM x, SCM y),
5793 "Return the complex number @var{x} * e^(i * @var{y}).")
5794 #define FUNC_NAME s_scm_make_polar
5795 {
5796 SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real");
5797 SCM_ASSERT_TYPE (scm_is_real (y), y, SCM_ARG2, FUNC_NAME, "real");
5798 return scm_c_make_polar (scm_to_double (x), scm_to_double (y));
5799 }
5800 #undef FUNC_NAME
5801
5802
5803 SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
5804 /* "Return the real part of the number @var{z}."
5805 */
5806 SCM
5807 scm_real_part (SCM z)
5808 {
5809 if (SCM_I_INUMP (z))
5810 return z;
5811 else if (SCM_BIGP (z))
5812 return z;
5813 else if (SCM_REALP (z))
5814 return z;
5815 else if (SCM_COMPLEXP (z))
5816 return scm_from_double (SCM_COMPLEX_REAL (z));
5817 else if (SCM_FRACTIONP (z))
5818 return z;
5819 else
5820 SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
5821 }
5822
5823
5824 SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
5825 /* "Return the imaginary part of the number @var{z}."
5826 */
5827 SCM
5828 scm_imag_part (SCM z)
5829 {
5830 if (SCM_I_INUMP (z))
5831 return SCM_INUM0;
5832 else if (SCM_BIGP (z))
5833 return SCM_INUM0;
5834 else if (SCM_REALP (z))
5835 return flo0;
5836 else if (SCM_COMPLEXP (z))
5837 return scm_from_double (SCM_COMPLEX_IMAG (z));
5838 else if (SCM_FRACTIONP (z))
5839 return SCM_INUM0;
5840 else
5841 SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
5842 }
5843
5844 SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
5845 /* "Return the numerator of the number @var{z}."
5846 */
5847 SCM
5848 scm_numerator (SCM z)
5849 {
5850 if (SCM_I_INUMP (z))
5851 return z;
5852 else if (SCM_BIGP (z))
5853 return z;
5854 else if (SCM_FRACTIONP (z))
5855 return SCM_FRACTION_NUMERATOR (z);
5856 else if (SCM_REALP (z))
5857 return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
5858 else
5859 SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
5860 }
5861
5862
5863 SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
5864 /* "Return the denominator of the number @var{z}."
5865 */
5866 SCM
5867 scm_denominator (SCM z)
5868 {
5869 if (SCM_I_INUMP (z))
5870 return SCM_I_MAKINUM (1);
5871 else if (SCM_BIGP (z))
5872 return SCM_I_MAKINUM (1);
5873 else if (SCM_FRACTIONP (z))
5874 return SCM_FRACTION_DENOMINATOR (z);
5875 else if (SCM_REALP (z))
5876 return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
5877 else
5878 SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
5879 }
5880
5881 SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
5882 /* "Return the magnitude of the number @var{z}. This is the same as\n"
5883 * "@code{abs} for real arguments, but also allows complex numbers."
5884 */
5885 SCM
5886 scm_magnitude (SCM z)
5887 {
5888 if (SCM_I_INUMP (z))
5889 {
5890 long int zz = SCM_I_INUM (z);
5891 if (zz >= 0)
5892 return z;
5893 else if (SCM_POSFIXABLE (-zz))
5894 return SCM_I_MAKINUM (-zz);
5895 else
5896 return scm_i_long2big (-zz);
5897 }
5898 else if (SCM_BIGP (z))
5899 {
5900 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5901 scm_remember_upto_here_1 (z);
5902 if (sgn < 0)
5903 return scm_i_clonebig (z, 0);
5904 else
5905 return z;
5906 }
5907 else if (SCM_REALP (z))
5908 return scm_from_double (fabs (SCM_REAL_VALUE (z)));
5909 else if (SCM_COMPLEXP (z))
5910 return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
5911 else if (SCM_FRACTIONP (z))
5912 {
5913 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5914 return z;
5915 return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
5916 SCM_FRACTION_DENOMINATOR (z));
5917 }
5918 else
5919 SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
5920 }
5921
5922
5923 SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
5924 /* "Return the angle of the complex number @var{z}."
5925 */
5926 SCM
5927 scm_angle (SCM z)
5928 {
5929 /* atan(0,-1) is pi and it'd be possible to have that as a constant like
5930 flo0 to save allocating a new flonum with scm_from_double each time.
5931 But if atan2 follows the floating point rounding mode, then the value
5932 is not a constant. Maybe it'd be close enough though. */
5933 if (SCM_I_INUMP (z))
5934 {
5935 if (SCM_I_INUM (z) >= 0)
5936 return flo0;
5937 else
5938 return scm_from_double (atan2 (0.0, -1.0));
5939 }
5940 else if (SCM_BIGP (z))
5941 {
5942 int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
5943 scm_remember_upto_here_1 (z);
5944 if (sgn < 0)
5945 return scm_from_double (atan2 (0.0, -1.0));
5946 else
5947 return flo0;
5948 }
5949 else if (SCM_REALP (z))
5950 {
5951 if (SCM_REAL_VALUE (z) >= 0)
5952 return flo0;
5953 else
5954 return scm_from_double (atan2 (0.0, -1.0));
5955 }
5956 else if (SCM_COMPLEXP (z))
5957 return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
5958 else if (SCM_FRACTIONP (z))
5959 {
5960 if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
5961 return flo0;
5962 else return scm_from_double (atan2 (0.0, -1.0));
5963 }
5964 else
5965 SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
5966 }
5967
5968
5969 SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
5970 /* Convert the number @var{x} to its inexact representation.\n"
5971 */
5972 SCM
5973 scm_exact_to_inexact (SCM z)
5974 {
5975 if (SCM_I_INUMP (z))
5976 return scm_from_double ((double) SCM_I_INUM (z));
5977 else if (SCM_BIGP (z))
5978 return scm_from_double (scm_i_big2dbl (z));
5979 else if (SCM_FRACTIONP (z))
5980 return scm_from_double (scm_i_fraction2double (z));
5981 else if (SCM_INEXACTP (z))
5982 return z;
5983 else
5984 SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
5985 }
5986
5987
5988 SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
5989 (SCM z),
5990 "Return an exact number that is numerically closest to @var{z}.")
5991 #define FUNC_NAME s_scm_inexact_to_exact
5992 {
5993 if (SCM_I_INUMP (z))
5994 return z;
5995 else if (SCM_BIGP (z))
5996 return z;
5997 else if (SCM_REALP (z))
5998 {
5999 if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
6000 SCM_OUT_OF_RANGE (1, z);
6001 else
6002 {
6003 mpq_t frac;
6004 SCM q;
6005
6006 mpq_init (frac);
6007 mpq_set_d (frac, SCM_REAL_VALUE (z));
6008 q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
6009 scm_i_mpz2num (mpq_denref (frac)));
6010
6011 /* When scm_i_make_ratio throws, we leak the memory allocated
6012 for frac...
6013 */
6014 mpq_clear (frac);
6015 return q;
6016 }
6017 }
6018 else if (SCM_FRACTIONP (z))
6019 return z;
6020 else
6021 SCM_WRONG_TYPE_ARG (1, z);
6022 }
6023 #undef FUNC_NAME
6024
6025 SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
6026 (SCM x, SCM eps),
6027 "Returns the @emph{simplest} rational number differing\n"
6028 "from @var{x} by no more than @var{eps}.\n"
6029 "\n"
6030 "As required by @acronym{R5RS}, @code{rationalize} only returns an\n"
6031 "exact result when both its arguments are exact. Thus, you might need\n"
6032 "to use @code{inexact->exact} on the arguments.\n"
6033 "\n"
6034 "@lisp\n"
6035 "(rationalize (inexact->exact 1.2) 1/100)\n"
6036 "@result{} 6/5\n"
6037 "@end lisp")
6038 #define FUNC_NAME s_scm_rationalize
6039 {
6040 if (SCM_I_INUMP (x))
6041 return x;
6042 else if (SCM_BIGP (x))
6043 return x;
6044 else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
6045 {
6046 /* Use continued fractions to find closest ratio. All
6047 arithmetic is done with exact numbers.
6048 */
6049
6050 SCM ex = scm_inexact_to_exact (x);
6051 SCM int_part = scm_floor (ex);
6052 SCM tt = SCM_I_MAKINUM (1);
6053 SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
6054 SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
6055 SCM rx;
6056 int i = 0;
6057
6058 if (scm_is_true (scm_num_eq_p (ex, int_part)))
6059 return ex;
6060
6061 ex = scm_difference (ex, int_part); /* x = x-int_part */
6062 rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
6063
6064 /* We stop after a million iterations just to be absolutely sure
6065 that we don't go into an infinite loop. The process normally
6066 converges after less than a dozen iterations.
6067 */
6068
6069 eps = scm_abs (eps);
6070 while (++i < 1000000)
6071 {
6072 a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
6073 b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
6074 if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
6075 scm_is_false
6076 (scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
6077 eps))) /* abs(x-a/b) <= eps */
6078 {
6079 SCM res = scm_sum (int_part, scm_divide (a, b));
6080 if (scm_is_false (scm_exact_p (x))
6081 || scm_is_false (scm_exact_p (eps)))
6082 return scm_exact_to_inexact (res);
6083 else
6084 return res;
6085 }
6086 rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
6087 SCM_UNDEFINED);
6088 tt = scm_floor (rx); /* tt = floor (rx) */
6089 a2 = a1;
6090 b2 = b1;
6091 a1 = a;
6092 b1 = b;
6093 }
6094 scm_num_overflow (s_scm_rationalize);
6095 }
6096 else
6097 SCM_WRONG_TYPE_ARG (1, x);
6098 }
6099 #undef FUNC_NAME
6100
6101 /* conversion functions */
6102
6103 int
6104 scm_is_integer (SCM val)
6105 {
6106 return scm_is_true (scm_integer_p (val));
6107 }
6108
6109 int
6110 scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
6111 {
6112 if (SCM_I_INUMP (val))
6113 {
6114 scm_t_signed_bits n = SCM_I_INUM (val);
6115 return n >= min && n <= max;
6116 }
6117 else if (SCM_BIGP (val))
6118 {
6119 if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
6120 return 0;
6121 else if (min >= LONG_MIN && max <= LONG_MAX)
6122 {
6123 if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
6124 {
6125 long n = mpz_get_si (SCM_I_BIG_MPZ (val));
6126 return n >= min && n <= max;
6127 }
6128 else
6129 return 0;
6130 }
6131 else
6132 {
6133 scm_t_intmax n;
6134 size_t count;
6135
6136 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6137 > CHAR_BIT*sizeof (scm_t_uintmax))
6138 return 0;
6139
6140 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6141 SCM_I_BIG_MPZ (val));
6142
6143 if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
6144 {
6145 if (n < 0)
6146 return 0;
6147 }
6148 else
6149 {
6150 n = -n;
6151 if (n >= 0)
6152 return 0;
6153 }
6154
6155 return n >= min && n <= max;
6156 }
6157 }
6158 else
6159 return 0;
6160 }
6161
6162 int
6163 scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
6164 {
6165 if (SCM_I_INUMP (val))
6166 {
6167 scm_t_signed_bits n = SCM_I_INUM (val);
6168 return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
6169 }
6170 else if (SCM_BIGP (val))
6171 {
6172 if (max <= SCM_MOST_POSITIVE_FIXNUM)
6173 return 0;
6174 else if (max <= ULONG_MAX)
6175 {
6176 if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
6177 {
6178 unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
6179 return n >= min && n <= max;
6180 }
6181 else
6182 return 0;
6183 }
6184 else
6185 {
6186 scm_t_uintmax n;
6187 size_t count;
6188
6189 if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
6190 return 0;
6191
6192 if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
6193 > CHAR_BIT*sizeof (scm_t_uintmax))
6194 return 0;
6195
6196 mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
6197 SCM_I_BIG_MPZ (val));
6198
6199 return n >= min && n <= max;
6200 }
6201 }
6202 else
6203 return 0;
6204 }
6205
6206 static void
6207 scm_i_range_error (SCM bad_val, SCM min, SCM max)
6208 {
6209 scm_error (scm_out_of_range_key,
6210 NULL,
6211 "Value out of range ~S to ~S: ~S",
6212 scm_list_3 (min, max, bad_val),
6213 scm_list_1 (bad_val));
6214 }
6215
6216 #define TYPE scm_t_intmax
6217 #define TYPE_MIN min
6218 #define TYPE_MAX max
6219 #define SIZEOF_TYPE 0
6220 #define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
6221 #define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
6222 #include "libguile/conv-integer.i.c"
6223
6224 #define TYPE scm_t_uintmax
6225 #define TYPE_MIN min
6226 #define TYPE_MAX max
6227 #define SIZEOF_TYPE 0
6228 #define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
6229 #define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
6230 #include "libguile/conv-uinteger.i.c"
6231
6232 #define TYPE scm_t_int8
6233 #define TYPE_MIN SCM_T_INT8_MIN
6234 #define TYPE_MAX SCM_T_INT8_MAX
6235 #define SIZEOF_TYPE 1
6236 #define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
6237 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
6238 #include "libguile/conv-integer.i.c"
6239
6240 #define TYPE scm_t_uint8
6241 #define TYPE_MIN 0
6242 #define TYPE_MAX SCM_T_UINT8_MAX
6243 #define SIZEOF_TYPE 1
6244 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
6245 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
6246 #include "libguile/conv-uinteger.i.c"
6247
6248 #define TYPE scm_t_int16
6249 #define TYPE_MIN SCM_T_INT16_MIN
6250 #define TYPE_MAX SCM_T_INT16_MAX
6251 #define SIZEOF_TYPE 2
6252 #define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
6253 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
6254 #include "libguile/conv-integer.i.c"
6255
6256 #define TYPE scm_t_uint16
6257 #define TYPE_MIN 0
6258 #define TYPE_MAX SCM_T_UINT16_MAX
6259 #define SIZEOF_TYPE 2
6260 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
6261 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
6262 #include "libguile/conv-uinteger.i.c"
6263
6264 #define TYPE scm_t_int32
6265 #define TYPE_MIN SCM_T_INT32_MIN
6266 #define TYPE_MAX SCM_T_INT32_MAX
6267 #define SIZEOF_TYPE 4
6268 #define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
6269 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
6270 #include "libguile/conv-integer.i.c"
6271
6272 #define TYPE scm_t_uint32
6273 #define TYPE_MIN 0
6274 #define TYPE_MAX SCM_T_UINT32_MAX
6275 #define SIZEOF_TYPE 4
6276 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
6277 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
6278 #include "libguile/conv-uinteger.i.c"
6279
6280 #define TYPE scm_t_wchar
6281 #define TYPE_MIN (scm_t_int32)-1
6282 #define TYPE_MAX (scm_t_int32)0x10ffff
6283 #define SIZEOF_TYPE 4
6284 #define SCM_TO_TYPE_PROTO(arg) scm_to_wchar (arg)
6285 #define SCM_FROM_TYPE_PROTO(arg) scm_from_wchar (arg)
6286 #include "libguile/conv-integer.i.c"
6287
6288 #if SCM_HAVE_T_INT64
6289
6290 #define TYPE scm_t_int64
6291 #define TYPE_MIN SCM_T_INT64_MIN
6292 #define TYPE_MAX SCM_T_INT64_MAX
6293 #define SIZEOF_TYPE 8
6294 #define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
6295 #define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
6296 #include "libguile/conv-integer.i.c"
6297
6298 #define TYPE scm_t_uint64
6299 #define TYPE_MIN 0
6300 #define TYPE_MAX SCM_T_UINT64_MAX
6301 #define SIZEOF_TYPE 8
6302 #define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
6303 #define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
6304 #include "libguile/conv-uinteger.i.c"
6305
6306 #endif
6307
6308 void
6309 scm_to_mpz (SCM val, mpz_t rop)
6310 {
6311 if (SCM_I_INUMP (val))
6312 mpz_set_si (rop, SCM_I_INUM (val));
6313 else if (SCM_BIGP (val))
6314 mpz_set (rop, SCM_I_BIG_MPZ (val));
6315 else
6316 scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
6317 }
6318
6319 SCM
6320 scm_from_mpz (mpz_t val)
6321 {
6322 return scm_i_mpz2num (val);
6323 }
6324
6325 int
6326 scm_is_real (SCM val)
6327 {
6328 return scm_is_true (scm_real_p (val));
6329 }
6330
6331 int
6332 scm_is_rational (SCM val)
6333 {
6334 return scm_is_true (scm_rational_p (val));
6335 }
6336
6337 double
6338 scm_to_double (SCM val)
6339 {
6340 if (SCM_I_INUMP (val))
6341 return SCM_I_INUM (val);
6342 else if (SCM_BIGP (val))
6343 return scm_i_big2dbl (val);
6344 else if (SCM_FRACTIONP (val))
6345 return scm_i_fraction2double (val);
6346 else if (SCM_REALP (val))
6347 return SCM_REAL_VALUE (val);
6348 else
6349 scm_wrong_type_arg_msg (NULL, 0, val, "real number");
6350 }
6351
6352 SCM
6353 scm_from_double (double val)
6354 {
6355 SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
6356 SCM_REAL_VALUE (z) = val;
6357 return z;
6358 }
6359
6360 #if SCM_ENABLE_DISCOURAGED == 1
6361
6362 float
6363 scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
6364 {
6365 if (SCM_BIGP (num))
6366 {
6367 float res = mpz_get_d (SCM_I_BIG_MPZ (num));
6368 if (!xisinf (res))
6369 return res;
6370 else
6371 scm_out_of_range (NULL, num);
6372 }
6373 else
6374 return scm_to_double (num);
6375 }
6376
6377 double
6378 scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
6379 {
6380 if (SCM_BIGP (num))
6381 {
6382 double res = mpz_get_d (SCM_I_BIG_MPZ (num));
6383 if (!xisinf (res))
6384 return res;
6385 else
6386 scm_out_of_range (NULL, num);
6387 }
6388 else
6389 return scm_to_double (num);
6390 }
6391
6392 #endif
6393
6394 int
6395 scm_is_complex (SCM val)
6396 {
6397 return scm_is_true (scm_complex_p (val));
6398 }
6399
6400 double
6401 scm_c_real_part (SCM z)
6402 {
6403 if (SCM_COMPLEXP (z))
6404 return SCM_COMPLEX_REAL (z);
6405 else
6406 {
6407 /* Use the scm_real_part to get proper error checking and
6408 dispatching.
6409 */
6410 return scm_to_double (scm_real_part (z));
6411 }
6412 }
6413
6414 double
6415 scm_c_imag_part (SCM z)
6416 {
6417 if (SCM_COMPLEXP (z))
6418 return SCM_COMPLEX_IMAG (z);
6419 else
6420 {
6421 /* Use the scm_imag_part to get proper error checking and
6422 dispatching. The result will almost always be 0.0, but not
6423 always.
6424 */
6425 return scm_to_double (scm_imag_part (z));
6426 }
6427 }
6428
6429 double
6430 scm_c_magnitude (SCM z)
6431 {
6432 return scm_to_double (scm_magnitude (z));
6433 }
6434
6435 double
6436 scm_c_angle (SCM z)
6437 {
6438 return scm_to_double (scm_angle (z));
6439 }
6440
6441 int
6442 scm_is_number (SCM z)
6443 {
6444 return scm_is_true (scm_number_p (z));
6445 }
6446
6447
6448 /* In the following functions we dispatch to the real-arg funcs like log()
6449 when we know the arg is real, instead of just handing everything to
6450 clog() for instance. This is in case clog() doesn't optimize for a
6451 real-only case, and because we have to test SCM_COMPLEXP anyway so may as
6452 well use it to go straight to the applicable C func. */
6453
6454 SCM_DEFINE (scm_log, "log", 1, 0, 0,
6455 (SCM z),
6456 "Return the natural logarithm of @var{z}.")
6457 #define FUNC_NAME s_scm_log
6458 {
6459 if (SCM_COMPLEXP (z))
6460 {
6461 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG && defined (SCM_COMPLEX_VALUE)
6462 return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
6463 #else
6464 double re = SCM_COMPLEX_REAL (z);
6465 double im = SCM_COMPLEX_IMAG (z);
6466 return scm_c_make_rectangular (log (hypot (re, im)),
6467 atan2 (im, re));
6468 #endif
6469 }
6470 else
6471 {
6472 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6473 although the value itself overflows. */
6474 double re = scm_to_double (z);
6475 double l = log (fabs (re));
6476 if (re >= 0.0)
6477 return scm_from_double (l);
6478 else
6479 return scm_c_make_rectangular (l, M_PI);
6480 }
6481 }
6482 #undef FUNC_NAME
6483
6484
6485 SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
6486 (SCM z),
6487 "Return the base 10 logarithm of @var{z}.")
6488 #define FUNC_NAME s_scm_log10
6489 {
6490 if (SCM_COMPLEXP (z))
6491 {
6492 /* Mingw has clog() but not clog10(). (Maybe it'd be worth using
6493 clog() and a multiply by M_LOG10E, rather than the fallback
6494 log10+hypot+atan2.) */
6495 #if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10 && defined (SCM_COMPLEX_VALUE)
6496 return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
6497 #else
6498 double re = SCM_COMPLEX_REAL (z);
6499 double im = SCM_COMPLEX_IMAG (z);
6500 return scm_c_make_rectangular (log10 (hypot (re, im)),
6501 M_LOG10E * atan2 (im, re));
6502 #endif
6503 }
6504 else
6505 {
6506 /* ENHANCE-ME: When z is a bignum the logarithm will fit a double
6507 although the value itself overflows. */
6508 double re = scm_to_double (z);
6509 double l = log10 (fabs (re));
6510 if (re >= 0.0)
6511 return scm_from_double (l);
6512 else
6513 return scm_c_make_rectangular (l, M_LOG10E * M_PI);
6514 }
6515 }
6516 #undef FUNC_NAME
6517
6518
6519 SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
6520 (SCM z),
6521 "Return @math{e} to the power of @var{z}, where @math{e} is the\n"
6522 "base of natural logarithms (2.71828@dots{}).")
6523 #define FUNC_NAME s_scm_exp
6524 {
6525 if (SCM_COMPLEXP (z))
6526 {
6527 #if HAVE_COMPLEX_DOUBLE && HAVE_CEXP && defined (SCM_COMPLEX_VALUE)
6528 return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
6529 #else
6530 return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
6531 SCM_COMPLEX_IMAG (z));
6532 #endif
6533 }
6534 else
6535 {
6536 /* When z is a negative bignum the conversion to double overflows,
6537 giving -infinity, but that's ok, the exp is still 0.0. */
6538 return scm_from_double (exp (scm_to_double (z)));
6539 }
6540 }
6541 #undef FUNC_NAME
6542
6543
6544 SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
6545 (SCM x),
6546 "Return the square root of @var{z}. Of the two possible roots\n"
6547 "(positive and negative), the one with the a positive real part\n"
6548 "is returned, or if that's zero then a positive imaginary part.\n"
6549 "Thus,\n"
6550 "\n"
6551 "@example\n"
6552 "(sqrt 9.0) @result{} 3.0\n"
6553 "(sqrt -9.0) @result{} 0.0+3.0i\n"
6554 "(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
6555 "(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
6556 "@end example")
6557 #define FUNC_NAME s_scm_sqrt
6558 {
6559 if (SCM_COMPLEXP (x))
6560 {
6561 #if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT && defined (SCM_COMPLEX_VALUE)
6562 return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
6563 #else
6564 double re = SCM_COMPLEX_REAL (x);
6565 double im = SCM_COMPLEX_IMAG (x);
6566 return scm_c_make_polar (sqrt (hypot (re, im)),
6567 0.5 * atan2 (im, re));
6568 #endif
6569 }
6570 else
6571 {
6572 double xx = scm_to_double (x);
6573 if (xx < 0)
6574 return scm_c_make_rectangular (0.0, sqrt (-xx));
6575 else
6576 return scm_from_double (sqrt (xx));
6577 }
6578 }
6579 #undef FUNC_NAME
6580
6581
6582
6583 void
6584 scm_init_numbers ()
6585 {
6586 int i;
6587
6588 mpz_init_set_si (z_negative_one, -1);
6589
6590 /* It may be possible to tune the performance of some algorithms by using
6591 * the following constants to avoid the creation of bignums. Please, before
6592 * using these values, remember the two rules of program optimization:
6593 * 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
6594 scm_c_define ("most-positive-fixnum",
6595 SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
6596 scm_c_define ("most-negative-fixnum",
6597 SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
6598
6599 scm_add_feature ("complex");
6600 scm_add_feature ("inexact");
6601 flo0 = scm_from_double (0.0);
6602
6603 /* determine floating point precision */
6604 for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
6605 {
6606 init_dblprec(&scm_dblprec[i-2],i);
6607 init_fx_radix(fx_per_radix[i-2],i);
6608 }
6609 #ifdef DBL_DIG
6610 /* hard code precision for base 10 if the preprocessor tells us to... */
6611 scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
6612 #endif
6613
6614 exactly_one_half = scm_divide (SCM_I_MAKINUM (1), SCM_I_MAKINUM (2));
6615 #include "libguile/numbers.x"
6616 }
6617
6618 /*
6619 Local Variables:
6620 c-file-style: "gnu"
6621 End:
6622 */