* stack-catch.scm (stack-catch): Use catch pre-unwind handler
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. The only defined situation right now is `load-toplevel' which
96 ;; triggers for code evaluated at the top-level, for example from the
97 ;; REPL or when loading a file.
98
99 (define eval-case
100 (procedure->memoizing-macro
101 (lambda (exp env)
102 (define (toplevel-env? env)
103 (or (not (pair? env)) (not (pair? (car env)))))
104 (define (syntax)
105 (error "syntax error in eval-case"))
106 (let loop ((clauses (cdr exp)))
107 (cond
108 ((null? clauses)
109 #f)
110 ((not (list? (car clauses)))
111 (syntax))
112 ((eq? 'else (caar clauses))
113 (or (null? (cdr clauses))
114 (syntax))
115 (cons 'begin (cdar clauses)))
116 ((not (list? (caar clauses)))
117 (syntax))
118 ((and (toplevel-env? env)
119 (memq 'load-toplevel (caar clauses)))
120 (cons 'begin (cdar clauses)))
121 (else
122 (loop (cdr clauses))))))))
123
124 \f
125
126 ;;; {Defmacros}
127 ;;;
128 ;;; Depends on: features, eval-case
129 ;;;
130
131 (define macro-table (make-weak-key-hash-table 61))
132 (define xformer-table (make-weak-key-hash-table 61))
133
134 (define (defmacro? m) (hashq-ref macro-table m))
135 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
136 (define (defmacro-transformer m) (hashq-ref xformer-table m))
137 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
138
139 (define defmacro:transformer
140 (lambda (f)
141 (let* ((xform (lambda (exp env)
142 (copy-tree (apply f (cdr exp)))))
143 (a (procedure->memoizing-macro xform)))
144 (assert-defmacro?! a)
145 (set-defmacro-transformer! a f)
146 a)))
147
148
149 (define defmacro
150 (let ((defmacro-transformer
151 (lambda (name parms . body)
152 (let ((transformer `(lambda ,parms ,@body)))
153 `(eval-case
154 ((load-toplevel)
155 (define ,name (defmacro:transformer ,transformer)))
156 (else
157 (error "defmacro can only be used at the top level")))))))
158 (defmacro:transformer defmacro-transformer)))
159
160 (define defmacro:syntax-transformer
161 (lambda (f)
162 (procedure->syntax
163 (lambda (exp env)
164 (copy-tree (apply f (cdr exp)))))))
165
166
167 ;; XXX - should the definition of the car really be looked up in the
168 ;; current module?
169
170 (define (macroexpand-1 e)
171 (cond
172 ((pair? e) (let* ((a (car e))
173 (val (and (symbol? a) (local-ref (list a)))))
174 (if (defmacro? val)
175 (apply (defmacro-transformer val) (cdr e))
176 e)))
177 (#t e)))
178
179 (define (macroexpand e)
180 (cond
181 ((pair? e) (let* ((a (car e))
182 (val (and (symbol? a) (local-ref (list a)))))
183 (if (defmacro? val)
184 (macroexpand (apply (defmacro-transformer val) (cdr e)))
185 e)))
186 (#t e)))
187
188 (provide 'defmacro)
189
190 \f
191
192 ;;; {Deprecation}
193 ;;;
194 ;;; Depends on: defmacro
195 ;;;
196
197 (defmacro begin-deprecated forms
198 (if (include-deprecated-features)
199 (cons begin forms)
200 #f))
201
202 \f
203
204 ;;; {R4RS compliance}
205 ;;;
206
207 (primitive-load-path "ice-9/r4rs.scm")
208
209 \f
210
211 ;;; {Simple Debugging Tools}
212 ;;;
213
214 ;; peek takes any number of arguments, writes them to the
215 ;; current ouput port, and returns the last argument.
216 ;; It is handy to wrap around an expression to look at
217 ;; a value each time is evaluated, e.g.:
218 ;;
219 ;; (+ 10 (troublesome-fn))
220 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
221 ;;
222
223 (define (peek . stuff)
224 (newline)
225 (display ";;; ")
226 (write stuff)
227 (newline)
228 (car (last-pair stuff)))
229
230 (define pk peek)
231
232 (define (warn . stuff)
233 (with-output-to-port (current-error-port)
234 (lambda ()
235 (newline)
236 (display ";;; WARNING ")
237 (display stuff)
238 (newline)
239 (car (last-pair stuff)))))
240
241 \f
242
243 ;;; {Trivial Functions}
244 ;;;
245
246 (define (identity x) x)
247 (define (and=> value procedure) (and value (procedure value)))
248 (define call/cc call-with-current-continuation)
249
250 ;;; apply-to-args is functionally redundant with apply and, worse,
251 ;;; is less general than apply since it only takes two arguments.
252 ;;;
253 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
254 ;;; perform binding in many circumstances when the "let" family of
255 ;;; of forms don't cut it. E.g.:
256 ;;;
257 ;;; (apply-to-args (return-3d-mouse-coords)
258 ;;; (lambda (x y z)
259 ;;; ...))
260 ;;;
261
262 (define (apply-to-args args fn) (apply fn args))
263
264 (defmacro false-if-exception (expr)
265 `(catch #t (lambda () ,expr)
266 (lambda args #f)))
267
268 \f
269
270 ;;; {General Properties}
271 ;;;
272
273 ;; This is a more modern interface to properties. It will replace all
274 ;; other property-like things eventually.
275
276 (define (make-object-property)
277 (let ((prop (primitive-make-property #f)))
278 (make-procedure-with-setter
279 (lambda (obj) (primitive-property-ref prop obj))
280 (lambda (obj val) (primitive-property-set! prop obj val)))))
281
282 \f
283
284 ;;; {Symbol Properties}
285 ;;;
286
287 (define (symbol-property sym prop)
288 (let ((pair (assoc prop (symbol-pref sym))))
289 (and pair (cdr pair))))
290
291 (define (set-symbol-property! sym prop val)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (if pair
294 (set-cdr! pair val)
295 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
296
297 (define (symbol-property-remove! sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (if pair
300 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
301
302 \f
303
304 ;;; {Arrays}
305 ;;;
306
307 (define (array-shape a)
308 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
309 (array-dimensions a)))
310
311 \f
312
313 ;;; {Keywords}
314 ;;;
315
316 (define (kw-arg-ref args kw)
317 (let ((rem (member kw args)))
318 (and rem (pair? (cdr rem)) (cadr rem))))
319
320 \f
321
322 ;;; {Structs}
323 ;;;
324
325 (define (struct-layout s)
326 (struct-ref (struct-vtable s) vtable-index-layout))
327
328 \f
329
330 ;;; {Environments}
331 ;;;
332
333 (define the-environment
334 (procedure->syntax
335 (lambda (x e)
336 e)))
337
338 (define the-root-environment (the-environment))
339
340 (define (environment-module env)
341 (let ((closure (and (pair? env) (car (last-pair env)))))
342 (and closure (eval-closure-module closure))))
343
344 \f
345
346 ;;; {Records}
347 ;;;
348
349 ;; Printing records: by default, records are printed as
350 ;;
351 ;; #<type-name field1: val1 field2: val2 ...>
352 ;;
353 ;; You can change that by giving a custom printing function to
354 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
355 ;; will be called like
356 ;;
357 ;; (<printer> object port)
358 ;;
359 ;; It should print OBJECT to PORT.
360
361 (define (inherit-print-state old-port new-port)
362 (if (get-print-state old-port)
363 (port-with-print-state new-port (get-print-state old-port))
364 new-port))
365
366 ;; 0: type-name, 1: fields
367 (define record-type-vtable
368 (make-vtable-vtable "prpr" 0
369 (lambda (s p)
370 (cond ((eq? s record-type-vtable)
371 (display "#<record-type-vtable>" p))
372 (else
373 (display "#<record-type " p)
374 (display (record-type-name s) p)
375 (display ">" p))))))
376
377 (define (record-type? obj)
378 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
379
380 (define (make-record-type type-name fields . opt)
381 (let ((printer-fn (and (pair? opt) (car opt))))
382 (let ((struct (make-struct record-type-vtable 0
383 (make-struct-layout
384 (apply string-append
385 (map (lambda (f) "pw") fields)))
386 (or printer-fn
387 (lambda (s p)
388 (display "#<" p)
389 (display type-name p)
390 (let loop ((fields fields)
391 (off 0))
392 (cond
393 ((not (null? fields))
394 (display " " p)
395 (display (car fields) p)
396 (display ": " p)
397 (display (struct-ref s off) p)
398 (loop (cdr fields) (+ 1 off)))))
399 (display ">" p)))
400 type-name
401 (copy-tree fields))))
402 ;; Temporary solution: Associate a name to the record type descriptor
403 ;; so that the object system can create a wrapper class for it.
404 (set-struct-vtable-name! struct (if (symbol? type-name)
405 type-name
406 (string->symbol type-name)))
407 struct)))
408
409 (define (record-type-name obj)
410 (if (record-type? obj)
411 (struct-ref obj vtable-offset-user)
412 (error 'not-a-record-type obj)))
413
414 (define (record-type-fields obj)
415 (if (record-type? obj)
416 (struct-ref obj (+ 1 vtable-offset-user))
417 (error 'not-a-record-type obj)))
418
419 (define (record-constructor rtd . opt)
420 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
421 (local-eval `(lambda ,field-names
422 (make-struct ',rtd 0 ,@(map (lambda (f)
423 (if (memq f field-names)
424 f
425 #f))
426 (record-type-fields rtd))))
427 the-root-environment)))
428
429 (define (record-predicate rtd)
430 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
431
432 (define (record-accessor rtd field-name)
433 (let* ((pos (list-index (record-type-fields rtd) field-name)))
434 (if (not pos)
435 (error 'no-such-field field-name))
436 (local-eval `(lambda (obj)
437 (and (eq? ',rtd (record-type-descriptor obj))
438 (struct-ref obj ,pos)))
439 the-root-environment)))
440
441 (define (record-modifier rtd field-name)
442 (let* ((pos (list-index (record-type-fields rtd) field-name)))
443 (if (not pos)
444 (error 'no-such-field field-name))
445 (local-eval `(lambda (obj val)
446 (and (eq? ',rtd (record-type-descriptor obj))
447 (struct-set! obj ,pos val)))
448 the-root-environment)))
449
450
451 (define (record? obj)
452 (and (struct? obj) (record-type? (struct-vtable obj))))
453
454 (define (record-type-descriptor obj)
455 (if (struct? obj)
456 (struct-vtable obj)
457 (error 'not-a-record obj)))
458
459 (provide 'record)
460
461 \f
462
463 ;;; {Booleans}
464 ;;;
465
466 (define (->bool x) (not (not x)))
467
468 \f
469
470 ;;; {Symbols}
471 ;;;
472
473 (define (symbol-append . args)
474 (string->symbol (apply string-append (map symbol->string args))))
475
476 (define (list->symbol . args)
477 (string->symbol (apply list->string args)))
478
479 (define (symbol . args)
480 (string->symbol (apply string args)))
481
482 \f
483
484 ;;; {Lists}
485 ;;;
486
487 (define (list-index l k)
488 (let loop ((n 0)
489 (l l))
490 (and (not (null? l))
491 (if (eq? (car l) k)
492 n
493 (loop (+ n 1) (cdr l))))))
494
495 \f
496
497 ;;; {and-map and or-map}
498 ;;;
499 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
500 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
501 ;;;
502
503 ;; and-map f l
504 ;;
505 ;; Apply f to successive elements of l until exhaustion or f returns #f.
506 ;; If returning early, return #f. Otherwise, return the last value returned
507 ;; by f. If f has never been called because l is empty, return #t.
508 ;;
509 (define (and-map f lst)
510 (let loop ((result #t)
511 (l lst))
512 (and result
513 (or (and (null? l)
514 result)
515 (loop (f (car l)) (cdr l))))))
516
517 ;; or-map f l
518 ;;
519 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
520 ;; If returning early, return the return value of f.
521 ;;
522 (define (or-map f lst)
523 (let loop ((result #f)
524 (l lst))
525 (or result
526 (and (not (null? l))
527 (loop (f (car l)) (cdr l))))))
528
529 \f
530
531 (if (provided? 'posix)
532 (primitive-load-path "ice-9/posix.scm"))
533
534 (if (provided? 'socket)
535 (primitive-load-path "ice-9/networking.scm"))
536
537 ;; For reference, Emacs file-exists-p uses stat in this same way.
538 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
539 ;; C where all that's needed is to inspect the return from stat().
540 (define file-exists?
541 (if (provided? 'posix)
542 (lambda (str)
543 (->bool (false-if-exception (stat str))))
544 (lambda (str)
545 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
546 (lambda args #f))))
547 (if port (begin (close-port port) #t)
548 #f)))))
549
550 (define file-is-directory?
551 (if (provided? 'posix)
552 (lambda (str)
553 (eq? (stat:type (stat str)) 'directory))
554 (lambda (str)
555 (let ((port (catch 'system-error
556 (lambda () (open-file (string-append str "/.")
557 OPEN_READ))
558 (lambda args #f))))
559 (if port (begin (close-port port) #t)
560 #f)))))
561
562 (define (has-suffix? str suffix)
563 (let ((sufl (string-length suffix))
564 (sl (string-length str)))
565 (and (> sl sufl)
566 (string=? (substring str (- sl sufl) sl) suffix))))
567
568 (define (system-error-errno args)
569 (if (eq? (car args) 'system-error)
570 (car (list-ref args 4))
571 #f))
572
573 \f
574
575 ;;; {Error Handling}
576 ;;;
577
578 (define (error . args)
579 (save-stack)
580 (if (null? args)
581 (scm-error 'misc-error #f "?" #f #f)
582 (let loop ((msg "~A")
583 (rest (cdr args)))
584 (if (not (null? rest))
585 (loop (string-append msg " ~S")
586 (cdr rest))
587 (scm-error 'misc-error #f msg args #f)))))
588
589 ;; bad-throw is the hook that is called upon a throw to a an unhandled
590 ;; key (unless the throw has four arguments, in which case
591 ;; it's usually interpreted as an error throw.)
592 ;; If the key has a default handler (a throw-handler-default property),
593 ;; it is applied to the throw.
594 ;;
595 (define (bad-throw key . args)
596 (let ((default (symbol-property key 'throw-handler-default)))
597 (or (and default (apply default key args))
598 (apply error "unhandled-exception:" key args))))
599
600 \f
601
602 (define (tm:sec obj) (vector-ref obj 0))
603 (define (tm:min obj) (vector-ref obj 1))
604 (define (tm:hour obj) (vector-ref obj 2))
605 (define (tm:mday obj) (vector-ref obj 3))
606 (define (tm:mon obj) (vector-ref obj 4))
607 (define (tm:year obj) (vector-ref obj 5))
608 (define (tm:wday obj) (vector-ref obj 6))
609 (define (tm:yday obj) (vector-ref obj 7))
610 (define (tm:isdst obj) (vector-ref obj 8))
611 (define (tm:gmtoff obj) (vector-ref obj 9))
612 (define (tm:zone obj) (vector-ref obj 10))
613
614 (define (set-tm:sec obj val) (vector-set! obj 0 val))
615 (define (set-tm:min obj val) (vector-set! obj 1 val))
616 (define (set-tm:hour obj val) (vector-set! obj 2 val))
617 (define (set-tm:mday obj val) (vector-set! obj 3 val))
618 (define (set-tm:mon obj val) (vector-set! obj 4 val))
619 (define (set-tm:year obj val) (vector-set! obj 5 val))
620 (define (set-tm:wday obj val) (vector-set! obj 6 val))
621 (define (set-tm:yday obj val) (vector-set! obj 7 val))
622 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
623 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
624 (define (set-tm:zone obj val) (vector-set! obj 10 val))
625
626 (define (tms:clock obj) (vector-ref obj 0))
627 (define (tms:utime obj) (vector-ref obj 1))
628 (define (tms:stime obj) (vector-ref obj 2))
629 (define (tms:cutime obj) (vector-ref obj 3))
630 (define (tms:cstime obj) (vector-ref obj 4))
631
632 (define file-position ftell)
633 (define (file-set-position port offset . whence)
634 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
635 (seek port offset whence)))
636
637 (define (move->fdes fd/port fd)
638 (cond ((integer? fd/port)
639 (dup->fdes fd/port fd)
640 (close fd/port)
641 fd)
642 (else
643 (primitive-move->fdes fd/port fd)
644 (set-port-revealed! fd/port 1)
645 fd/port)))
646
647 (define (release-port-handle port)
648 (let ((revealed (port-revealed port)))
649 (if (> revealed 0)
650 (set-port-revealed! port (- revealed 1)))))
651
652 (define (dup->port port/fd mode . maybe-fd)
653 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
654 mode)))
655 (if (pair? maybe-fd)
656 (set-port-revealed! port 1))
657 port))
658
659 (define (dup->inport port/fd . maybe-fd)
660 (apply dup->port port/fd "r" maybe-fd))
661
662 (define (dup->outport port/fd . maybe-fd)
663 (apply dup->port port/fd "w" maybe-fd))
664
665 (define (dup port/fd . maybe-fd)
666 (if (integer? port/fd)
667 (apply dup->fdes port/fd maybe-fd)
668 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
669
670 (define (duplicate-port port modes)
671 (dup->port port modes))
672
673 (define (fdes->inport fdes)
674 (let loop ((rest-ports (fdes->ports fdes)))
675 (cond ((null? rest-ports)
676 (let ((result (fdopen fdes "r")))
677 (set-port-revealed! result 1)
678 result))
679 ((input-port? (car rest-ports))
680 (set-port-revealed! (car rest-ports)
681 (+ (port-revealed (car rest-ports)) 1))
682 (car rest-ports))
683 (else
684 (loop (cdr rest-ports))))))
685
686 (define (fdes->outport fdes)
687 (let loop ((rest-ports (fdes->ports fdes)))
688 (cond ((null? rest-ports)
689 (let ((result (fdopen fdes "w")))
690 (set-port-revealed! result 1)
691 result))
692 ((output-port? (car rest-ports))
693 (set-port-revealed! (car rest-ports)
694 (+ (port-revealed (car rest-ports)) 1))
695 (car rest-ports))
696 (else
697 (loop (cdr rest-ports))))))
698
699 (define (port->fdes port)
700 (set-port-revealed! port (+ (port-revealed port) 1))
701 (fileno port))
702
703 (define (setenv name value)
704 (if value
705 (putenv (string-append name "=" value))
706 (putenv name)))
707
708 (define (unsetenv name)
709 "Remove the entry for NAME from the environment."
710 (putenv name))
711
712 \f
713
714 ;;; {Load Paths}
715 ;;;
716
717 ;;; Here for backward compatability
718 ;;
719 (define scheme-file-suffix (lambda () ".scm"))
720
721 (define (in-vicinity vicinity file)
722 (let ((tail (let ((len (string-length vicinity)))
723 (if (zero? len)
724 #f
725 (string-ref vicinity (- len 1))))))
726 (string-append vicinity
727 (if (or (not tail)
728 (eq? tail #\/))
729 ""
730 "/")
731 file)))
732
733 \f
734
735 ;;; {Help for scm_shell}
736 ;;;
737 ;;; The argument-processing code used by Guile-based shells generates
738 ;;; Scheme code based on the argument list. This page contains help
739 ;;; functions for the code it generates.
740 ;;;
741
742 (define (command-line) (program-arguments))
743
744 ;; This is mostly for the internal use of the code generated by
745 ;; scm_compile_shell_switches.
746
747 (define (turn-on-debugging)
748 (debug-enable 'debug)
749 (debug-enable 'backtrace)
750 (read-enable 'positions))
751
752 (define (load-user-init)
753 (let* ((home (or (getenv "HOME")
754 (false-if-exception (passwd:dir (getpwuid (getuid))))
755 "/")) ;; fallback for cygwin etc.
756 (init-file (in-vicinity home ".guile")))
757 (if (file-exists? init-file)
758 (primitive-load init-file))))
759
760 \f
761
762 ;;; {Loading by paths}
763 ;;;
764
765 ;;; Load a Scheme source file named NAME, searching for it in the
766 ;;; directories listed in %load-path, and applying each of the file
767 ;;; name extensions listed in %load-extensions.
768 (define (load-from-path name)
769 (start-stack 'load-stack
770 (primitive-load-path name)))
771
772
773 \f
774
775 ;;; {Transcendental Functions}
776 ;;;
777 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
778 ;;; Written by Jerry D. Hedden, (C) FSF.
779 ;;; See the file `COPYING' for terms applying to this program.
780 ;;;
781
782 (define (exp z)
783 (if (real? z) ($exp z)
784 (make-polar ($exp (real-part z)) (imag-part z))))
785
786 (define (log z)
787 (if (and (real? z) (>= z 0))
788 ($log z)
789 (make-rectangular ($log (magnitude z)) (angle z))))
790
791 (define (sqrt z)
792 (if (real? z)
793 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
794 ($sqrt z))
795 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
796
797 (define expt
798 (let ((integer-expt integer-expt))
799 (lambda (z1 z2)
800 (cond ((and (exact? z2) (integer? z2))
801 (integer-expt z1 z2))
802 ((and (real? z2) (real? z1) (>= z1 0))
803 ($expt z1 z2))
804 (else
805 (exp (* z2 (log z1))))))))
806
807 (define (sinh z)
808 (if (real? z) ($sinh z)
809 (let ((x (real-part z)) (y (imag-part z)))
810 (make-rectangular (* ($sinh x) ($cos y))
811 (* ($cosh x) ($sin y))))))
812 (define (cosh z)
813 (if (real? z) ($cosh z)
814 (let ((x (real-part z)) (y (imag-part z)))
815 (make-rectangular (* ($cosh x) ($cos y))
816 (* ($sinh x) ($sin y))))))
817 (define (tanh z)
818 (if (real? z) ($tanh z)
819 (let* ((x (* 2 (real-part z)))
820 (y (* 2 (imag-part z)))
821 (w (+ ($cosh x) ($cos y))))
822 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
823
824 (define (asinh z)
825 (if (real? z) ($asinh z)
826 (log (+ z (sqrt (+ (* z z) 1))))))
827
828 (define (acosh z)
829 (if (and (real? z) (>= z 1))
830 ($acosh z)
831 (log (+ z (sqrt (- (* z z) 1))))))
832
833 (define (atanh z)
834 (if (and (real? z) (> z -1) (< z 1))
835 ($atanh z)
836 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
837
838 (define (sin z)
839 (if (real? z) ($sin z)
840 (let ((x (real-part z)) (y (imag-part z)))
841 (make-rectangular (* ($sin x) ($cosh y))
842 (* ($cos x) ($sinh y))))))
843 (define (cos z)
844 (if (real? z) ($cos z)
845 (let ((x (real-part z)) (y (imag-part z)))
846 (make-rectangular (* ($cos x) ($cosh y))
847 (- (* ($sin x) ($sinh y)))))))
848 (define (tan z)
849 (if (real? z) ($tan z)
850 (let* ((x (* 2 (real-part z)))
851 (y (* 2 (imag-part z)))
852 (w (+ ($cos x) ($cosh y))))
853 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
854
855 (define (asin z)
856 (if (and (real? z) (>= z -1) (<= z 1))
857 ($asin z)
858 (* -i (asinh (* +i z)))))
859
860 (define (acos z)
861 (if (and (real? z) (>= z -1) (<= z 1))
862 ($acos z)
863 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
864
865 (define (atan z . y)
866 (if (null? y)
867 (if (real? z) ($atan z)
868 (/ (log (/ (- +i z) (+ +i z))) +2i))
869 ($atan2 z (car y))))
870
871 (define (log10 arg)
872 (/ (log arg) (log 10)))
873
874 \f
875
876 ;;; {Reader Extensions}
877 ;;;
878 ;;; Reader code for various "#c" forms.
879 ;;;
880
881 (read-hash-extend #\' (lambda (c port)
882 (read port)))
883
884 (define read-eval? (make-fluid))
885 (fluid-set! read-eval? #f)
886 (read-hash-extend #\.
887 (lambda (c port)
888 (if (fluid-ref read-eval?)
889 (eval (read port) (interaction-environment))
890 (error
891 "#. read expansion found and read-eval? is #f."))))
892
893 \f
894
895 ;;; {Command Line Options}
896 ;;;
897
898 (define (get-option argv kw-opts kw-args return)
899 (cond
900 ((null? argv)
901 (return #f #f argv))
902
903 ((or (not (eq? #\- (string-ref (car argv) 0)))
904 (eq? (string-length (car argv)) 1))
905 (return 'normal-arg (car argv) (cdr argv)))
906
907 ((eq? #\- (string-ref (car argv) 1))
908 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
909 (string-length (car argv))))
910 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
911 (kw-opt? (member kw kw-opts))
912 (kw-arg? (member kw kw-args))
913 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
914 (substring (car argv)
915 (+ kw-arg-pos 1)
916 (string-length (car argv))))
917 (and kw-arg?
918 (begin (set! argv (cdr argv)) (car argv))))))
919 (if (or kw-opt? kw-arg?)
920 (return kw arg (cdr argv))
921 (return 'usage-error kw (cdr argv)))))
922
923 (else
924 (let* ((char (substring (car argv) 1 2))
925 (kw (symbol->keyword char)))
926 (cond
927
928 ((member kw kw-opts)
929 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
930 (new-argv (if (= 0 (string-length rest-car))
931 (cdr argv)
932 (cons (string-append "-" rest-car) (cdr argv)))))
933 (return kw #f new-argv)))
934
935 ((member kw kw-args)
936 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
937 (arg (if (= 0 (string-length rest-car))
938 (cadr argv)
939 rest-car))
940 (new-argv (if (= 0 (string-length rest-car))
941 (cddr argv)
942 (cdr argv))))
943 (return kw arg new-argv)))
944
945 (else (return 'usage-error kw argv)))))))
946
947 (define (for-next-option proc argv kw-opts kw-args)
948 (let loop ((argv argv))
949 (get-option argv kw-opts kw-args
950 (lambda (opt opt-arg argv)
951 (and opt (proc opt opt-arg argv loop))))))
952
953 (define (display-usage-report kw-desc)
954 (for-each
955 (lambda (kw)
956 (or (eq? (car kw) #t)
957 (eq? (car kw) 'else)
958 (let* ((opt-desc kw)
959 (help (cadr opt-desc))
960 (opts (car opt-desc))
961 (opts-proper (if (string? (car opts)) (cdr opts) opts))
962 (arg-name (if (string? (car opts))
963 (string-append "<" (car opts) ">")
964 ""))
965 (left-part (string-append
966 (with-output-to-string
967 (lambda ()
968 (map (lambda (x) (display (keyword->symbol x)) (display " "))
969 opts-proper)))
970 arg-name))
971 (middle-part (if (and (< (string-length left-part) 30)
972 (< (string-length help) 40))
973 (make-string (- 30 (string-length left-part)) #\ )
974 "\n\t")))
975 (display left-part)
976 (display middle-part)
977 (display help)
978 (newline))))
979 kw-desc))
980
981
982
983 (define (transform-usage-lambda cases)
984 (let* ((raw-usage (delq! 'else (map car cases)))
985 (usage-sans-specials (map (lambda (x)
986 (or (and (not (list? x)) x)
987 (and (symbol? (car x)) #t)
988 (and (boolean? (car x)) #t)
989 x))
990 raw-usage))
991 (usage-desc (delq! #t usage-sans-specials))
992 (kw-desc (map car usage-desc))
993 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
994 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
995 (transmogrified-cases (map (lambda (case)
996 (cons (let ((opts (car case)))
997 (if (or (boolean? opts) (eq? 'else opts))
998 opts
999 (cond
1000 ((symbol? (car opts)) opts)
1001 ((boolean? (car opts)) opts)
1002 ((string? (caar opts)) (cdar opts))
1003 (else (car opts)))))
1004 (cdr case)))
1005 cases)))
1006 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1007 (lambda (%argv)
1008 (let %next-arg ((%argv %argv))
1009 (get-option %argv
1010 ',kw-opts
1011 ',kw-args
1012 (lambda (%opt %arg %new-argv)
1013 (case %opt
1014 ,@ transmogrified-cases))))))))
1015
1016
1017 \f
1018
1019 ;;; {Low Level Modules}
1020 ;;;
1021 ;;; These are the low level data structures for modules.
1022 ;;;
1023 ;;; Every module object is of the type 'module-type', which is a record
1024 ;;; consisting of the following members:
1025 ;;;
1026 ;;; - eval-closure: the function that defines for its module the strategy that
1027 ;;; shall be followed when looking up symbols in the module.
1028 ;;;
1029 ;;; An eval-closure is a function taking two arguments: the symbol to be
1030 ;;; looked up and a boolean value telling whether a binding for the symbol
1031 ;;; should be created if it does not exist yet. If the symbol lookup
1032 ;;; succeeded (either because an existing binding was found or because a new
1033 ;;; binding was created), a variable object representing the binding is
1034 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1035 ;;; closure does not take the module to be searched as an argument: During
1036 ;;; construction of the eval-closure, the eval-closure has to store the
1037 ;;; module it belongs to in its environment. This means, that any
1038 ;;; eval-closure can belong to only one module.
1039 ;;;
1040 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1041 ;;; special cases of eval-closures are to be distinguished: During startup
1042 ;;; the module system is not yet activated. In this phase, no modules are
1043 ;;; defined and all bindings are automatically stored by the system in the
1044 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1045 ;;; functions which require an eval-closure as their argument need to be
1046 ;;; passed the value #f.
1047 ;;;
1048 ;;; The other two special cases of eval-closures are the
1049 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1050 ;;; behave equally for the case that no new binding is to be created. The
1051 ;;; difference between the two comes in, when the boolean argument to the
1052 ;;; eval-closure indicates that a new binding shall be created if it is not
1053 ;;; found.
1054 ;;;
1055 ;;; Given that no new binding shall be created, both standard eval-closures
1056 ;;; define the following standard strategy of searching bindings in the
1057 ;;; module: First, the module's obarray is searched for the symbol. Second,
1058 ;;; if no binding for the symbol was found in the module's obarray, the
1059 ;;; module's binder procedure is exececuted. If this procedure did not
1060 ;;; return a binding for the symbol, the modules referenced in the module's
1061 ;;; uses list are recursively searched for a binding of the symbol. If the
1062 ;;; binding can not be found in these modules also, the symbol lookup has
1063 ;;; failed.
1064 ;;;
1065 ;;; If a new binding shall be created, the standard-interface-eval-closure
1066 ;;; immediately returns indicating failure. That is, it does not even try
1067 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1068 ;;; first search the obarray, and if no binding was found there, would
1069 ;;; create a new binding in the obarray, therefore not calling the binder
1070 ;;; procedure or searching the modules in the uses list.
1071 ;;;
1072 ;;; The explanation of the following members obarray, binder and uses
1073 ;;; assumes that the symbol lookup follows the strategy that is defined in
1074 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1075 ;;;
1076 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1077 ;;; hash table, the definitions are found that are local to the module (that
1078 ;;; is, not imported from other modules). When looking up bindings in the
1079 ;;; module, this hash table is searched first.
1080 ;;;
1081 ;;; - binder: either #f or a function taking a module and a symbol argument.
1082 ;;; If it is a function it is called after the obarray has been
1083 ;;; unsuccessfully searched for a binding. It then can provide bindings
1084 ;;; that would otherwise not be found locally in the module.
1085 ;;;
1086 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1087 ;;; These modules are the third place queried for bindings after the obarray
1088 ;;; has been unsuccessfully searched and the binder function did not deliver
1089 ;;; a result either.
1090 ;;;
1091 ;;; - transformer: either #f or a function taking a scheme expression as
1092 ;;; delivered by read. If it is a function, it will be called to perform
1093 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1094 ;;; expression. The output of the transformer function will then be passed
1095 ;;; to Guile's internal memoizer. This means that the output must be valid
1096 ;;; scheme code. The only exception is, that the output may make use of the
1097 ;;; syntax extensions provided to identify the modules that a binding
1098 ;;; belongs to.
1099 ;;;
1100 ;;; - name: the name of the module. This is used for all kinds of printing
1101 ;;; outputs. In certain places the module name also serves as a way of
1102 ;;; identification. When adding a module to the uses list of another
1103 ;;; module, it is made sure that the new uses list will not contain two
1104 ;;; modules of the same name.
1105 ;;;
1106 ;;; - kind: classification of the kind of module. The value is (currently?)
1107 ;;; only used for printing. It has no influence on how a module is treated.
1108 ;;; Currently the following values are used when setting the module kind:
1109 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1110 ;;; is set, it defaults to 'module.
1111 ;;;
1112 ;;; - duplicates-handlers
1113 ;;;
1114 ;;; - duplicates-interface
1115 ;;;
1116 ;;; - observers
1117 ;;;
1118 ;;; - weak-observers
1119 ;;;
1120 ;;; - observer-id
1121 ;;;
1122 ;;; In addition, the module may (must?) contain a binding for
1123 ;;; %module-public-interface... More explanations here...
1124 ;;;
1125 ;;; !!! warning: The interface to lazy binder procedures is going
1126 ;;; to be changed in an incompatible way to permit all the basic
1127 ;;; module ops to be virtualized.
1128 ;;;
1129 ;;; (make-module size use-list lazy-binding-proc) => module
1130 ;;; module-{obarray,uses,binder}[|-set!]
1131 ;;; (module? obj) => [#t|#f]
1132 ;;; (module-locally-bound? module symbol) => [#t|#f]
1133 ;;; (module-bound? module symbol) => [#t|#f]
1134 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1135 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1136 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1137 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1138 ;;; (module-symbol-binding module symbol opt-value)
1139 ;;; => [ <obj> | opt-value | an error occurs ]
1140 ;;; (module-make-local-var! module symbol) => #<variable...>
1141 ;;; (module-add! module symbol var) => unspecified
1142 ;;; (module-remove! module symbol) => unspecified
1143 ;;; (module-for-each proc module) => unspecified
1144 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1145 ;;; (set-current-module module) => unspecified
1146 ;;; (current-module) => #<module...>
1147 ;;;
1148 ;;;
1149
1150 \f
1151
1152 ;;; {Printing Modules}
1153 ;;;
1154
1155 ;; This is how modules are printed. You can re-define it.
1156 ;; (Redefining is actually more complicated than simply redefining
1157 ;; %print-module because that would only change the binding and not
1158 ;; the value stored in the vtable that determines how record are
1159 ;; printed. Sigh.)
1160
1161 (define (%print-module mod port) ; unused args: depth length style table)
1162 (display "#<" port)
1163 (display (or (module-kind mod) "module") port)
1164 (let ((name (module-name mod)))
1165 (if name
1166 (begin
1167 (display " " port)
1168 (display name port))))
1169 (display " " port)
1170 (display (number->string (object-address mod) 16) port)
1171 (display ">" port))
1172
1173 ;; module-type
1174 ;;
1175 ;; A module is characterized by an obarray in which local symbols
1176 ;; are interned, a list of modules, "uses", from which non-local
1177 ;; bindings can be inherited, and an optional lazy-binder which
1178 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1179 ;; bindings that would otherwise not be found locally in the module.
1180 ;;
1181 ;; NOTE: If you change anything here, you also need to change
1182 ;; libguile/modules.h.
1183 ;;
1184 (define module-type
1185 (make-record-type 'module
1186 '(obarray uses binder eval-closure transformer name kind
1187 duplicates-handlers duplicates-interface
1188 observers weak-observers observer-id)
1189 %print-module))
1190
1191 ;; make-module &opt size uses binder
1192 ;;
1193 ;; Create a new module, perhaps with a particular size of obarray,
1194 ;; initial uses list, or binding procedure.
1195 ;;
1196 (define make-module
1197 (lambda args
1198
1199 (define (parse-arg index default)
1200 (if (> (length args) index)
1201 (list-ref args index)
1202 default))
1203
1204 (if (> (length args) 3)
1205 (error "Too many args to make-module." args))
1206
1207 (let ((size (parse-arg 0 31))
1208 (uses (parse-arg 1 '()))
1209 (binder (parse-arg 2 #f)))
1210
1211 (if (not (integer? size))
1212 (error "Illegal size to make-module." size))
1213 (if (not (and (list? uses)
1214 (and-map module? uses)))
1215 (error "Incorrect use list." uses))
1216 (if (and binder (not (procedure? binder)))
1217 (error
1218 "Lazy-binder expected to be a procedure or #f." binder))
1219
1220 (let ((module (module-constructor (make-hash-table size)
1221 uses binder #f #f #f #f #f #f
1222 '()
1223 (make-weak-value-hash-table 31)
1224 0)))
1225
1226 ;; We can't pass this as an argument to module-constructor,
1227 ;; because we need it to close over a pointer to the module
1228 ;; itself.
1229 (set-module-eval-closure! module (standard-eval-closure module))
1230
1231 module))))
1232
1233 (define module-constructor (record-constructor module-type))
1234 (define module-obarray (record-accessor module-type 'obarray))
1235 (define set-module-obarray! (record-modifier module-type 'obarray))
1236 (define module-uses (record-accessor module-type 'uses))
1237 (define set-module-uses! (record-modifier module-type 'uses))
1238 (define module-binder (record-accessor module-type 'binder))
1239 (define set-module-binder! (record-modifier module-type 'binder))
1240
1241 ;; NOTE: This binding is used in libguile/modules.c.
1242 (define module-eval-closure (record-accessor module-type 'eval-closure))
1243
1244 (define module-transformer (record-accessor module-type 'transformer))
1245 (define set-module-transformer! (record-modifier module-type 'transformer))
1246 (define module-name (record-accessor module-type 'name))
1247 (define set-module-name! (record-modifier module-type 'name))
1248 (define module-kind (record-accessor module-type 'kind))
1249 (define set-module-kind! (record-modifier module-type 'kind))
1250 (define module-duplicates-handlers
1251 (record-accessor module-type 'duplicates-handlers))
1252 (define set-module-duplicates-handlers!
1253 (record-modifier module-type 'duplicates-handlers))
1254 (define module-duplicates-interface
1255 (record-accessor module-type 'duplicates-interface))
1256 (define set-module-duplicates-interface!
1257 (record-modifier module-type 'duplicates-interface))
1258 (define module-observers (record-accessor module-type 'observers))
1259 (define set-module-observers! (record-modifier module-type 'observers))
1260 (define module-weak-observers (record-accessor module-type 'weak-observers))
1261 (define module-observer-id (record-accessor module-type 'observer-id))
1262 (define set-module-observer-id! (record-modifier module-type 'observer-id))
1263 (define module? (record-predicate module-type))
1264
1265 (define set-module-eval-closure!
1266 (let ((setter (record-modifier module-type 'eval-closure)))
1267 (lambda (module closure)
1268 (setter module closure)
1269 ;; Make it possible to lookup the module from the environment.
1270 ;; This implementation is correct since an eval closure can belong
1271 ;; to maximally one module.
1272 (set-procedure-property! closure 'module module))))
1273
1274 \f
1275
1276 ;;; {Observer protocol}
1277 ;;;
1278
1279 (define (module-observe module proc)
1280 (set-module-observers! module (cons proc (module-observers module)))
1281 (cons module proc))
1282
1283 (define (module-observe-weak module proc)
1284 (let ((id (module-observer-id module)))
1285 (hash-set! (module-weak-observers module) id proc)
1286 (set-module-observer-id! module (+ 1 id))
1287 (cons module id)))
1288
1289 (define (module-unobserve token)
1290 (let ((module (car token))
1291 (id (cdr token)))
1292 (if (integer? id)
1293 (hash-remove! (module-weak-observers module) id)
1294 (set-module-observers! module (delq1! id (module-observers module)))))
1295 *unspecified*)
1296
1297 (define module-defer-observers #f)
1298 (define module-defer-observers-mutex (make-mutex))
1299 (define module-defer-observers-table (make-hash-table))
1300
1301 (define (module-modified m)
1302 (if module-defer-observers
1303 (hash-set! module-defer-observers-table m #t)
1304 (module-call-observers m)))
1305
1306 ;;; This function can be used to delay calls to observers so that they
1307 ;;; can be called once only in the face of massive updating of modules.
1308 ;;;
1309 (define (call-with-deferred-observers thunk)
1310 (dynamic-wind
1311 (lambda ()
1312 (lock-mutex module-defer-observers-mutex)
1313 (set! module-defer-observers #t))
1314 thunk
1315 (lambda ()
1316 (set! module-defer-observers #f)
1317 (hash-for-each (lambda (m dummy)
1318 (module-call-observers m))
1319 module-defer-observers-table)
1320 (hash-clear! module-defer-observers-table)
1321 (unlock-mutex module-defer-observers-mutex))))
1322
1323 (define (module-call-observers m)
1324 (for-each (lambda (proc) (proc m)) (module-observers m))
1325 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1326
1327 \f
1328
1329 ;;; {Module Searching in General}
1330 ;;;
1331 ;;; We sometimes want to look for properties of a symbol
1332 ;;; just within the obarray of one module. If the property
1333 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1334 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1335 ;;;
1336 ;;;
1337 ;;; Other times, we want to test for a symbol property in the obarray
1338 ;;; of M and, if it is not found there, try each of the modules in the
1339 ;;; uses list of M. This is the normal way of testing for some
1340 ;;; property, so we state these properties without qualification as
1341 ;;; in: ``The symbol 'fnord is interned in module M because it is
1342 ;;; interned locally in module M2 which is a member of the uses list
1343 ;;; of M.''
1344 ;;;
1345
1346 ;; module-search fn m
1347 ;;
1348 ;; return the first non-#f result of FN applied to M and then to
1349 ;; the modules in the uses of m, and so on recursively. If all applications
1350 ;; return #f, then so does this function.
1351 ;;
1352 (define (module-search fn m v)
1353 (define (loop pos)
1354 (and (pair? pos)
1355 (or (module-search fn (car pos) v)
1356 (loop (cdr pos)))))
1357 (or (fn m v)
1358 (loop (module-uses m))))
1359
1360
1361 ;;; {Is a symbol bound in a module?}
1362 ;;;
1363 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1364 ;;; of S in M has been set to some well-defined value.
1365 ;;;
1366
1367 ;; module-locally-bound? module symbol
1368 ;;
1369 ;; Is a symbol bound (interned and defined) locally in a given module?
1370 ;;
1371 (define (module-locally-bound? m v)
1372 (let ((var (module-local-variable m v)))
1373 (and var
1374 (variable-bound? var))))
1375
1376 ;; module-bound? module symbol
1377 ;;
1378 ;; Is a symbol bound (interned and defined) anywhere in a given module
1379 ;; or its uses?
1380 ;;
1381 (define (module-bound? m v)
1382 (module-search module-locally-bound? m v))
1383
1384 ;;; {Is a symbol interned in a module?}
1385 ;;;
1386 ;;; Symbol S in Module M is interned if S occurs in
1387 ;;; of S in M has been set to some well-defined value.
1388 ;;;
1389 ;;; It is possible to intern a symbol in a module without providing
1390 ;;; an initial binding for the corresponding variable. This is done
1391 ;;; with:
1392 ;;; (module-add! module symbol (make-undefined-variable))
1393 ;;;
1394 ;;; In that case, the symbol is interned in the module, but not
1395 ;;; bound there. The unbound symbol shadows any binding for that
1396 ;;; symbol that might otherwise be inherited from a member of the uses list.
1397 ;;;
1398
1399 (define (module-obarray-get-handle ob key)
1400 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1401
1402 (define (module-obarray-ref ob key)
1403 ((if (symbol? key) hashq-ref hash-ref) ob key))
1404
1405 (define (module-obarray-set! ob key val)
1406 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1407
1408 (define (module-obarray-remove! ob key)
1409 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1410
1411 ;; module-symbol-locally-interned? module symbol
1412 ;;
1413 ;; is a symbol interned (not neccessarily defined) locally in a given module
1414 ;; or its uses? Interned symbols shadow inherited bindings even if
1415 ;; they are not themselves bound to a defined value.
1416 ;;
1417 (define (module-symbol-locally-interned? m v)
1418 (not (not (module-obarray-get-handle (module-obarray m) v))))
1419
1420 ;; module-symbol-interned? module symbol
1421 ;;
1422 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1423 ;; or its uses? Interned symbols shadow inherited bindings even if
1424 ;; they are not themselves bound to a defined value.
1425 ;;
1426 (define (module-symbol-interned? m v)
1427 (module-search module-symbol-locally-interned? m v))
1428
1429
1430 ;;; {Mapping modules x symbols --> variables}
1431 ;;;
1432
1433 ;; module-local-variable module symbol
1434 ;; return the local variable associated with a MODULE and SYMBOL.
1435 ;;
1436 ;;; This function is very important. It is the only function that can
1437 ;;; return a variable from a module other than the mutators that store
1438 ;;; new variables in modules. Therefore, this function is the location
1439 ;;; of the "lazy binder" hack.
1440 ;;;
1441 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1442 ;;; to a variable, return that variable object.
1443 ;;;
1444 ;;; If the symbols is not found at first, but the module has a lazy binder,
1445 ;;; then try the binder.
1446 ;;;
1447 ;;; If the symbol is not found at all, return #f.
1448 ;;;
1449 (define (module-local-variable m v)
1450 ; (caddr
1451 ; (list m v
1452 (let ((b (module-obarray-ref (module-obarray m) v)))
1453 (or (and (variable? b) b)
1454 (and (module-binder m)
1455 ((module-binder m) m v #f)))))
1456 ;))
1457
1458 ;; module-variable module symbol
1459 ;;
1460 ;; like module-local-variable, except search the uses in the
1461 ;; case V is not found in M.
1462 ;;
1463 ;; NOTE: This function is superseded with C code (see modules.c)
1464 ;;; when using the standard eval closure.
1465 ;;
1466 (define (module-variable m v)
1467 (module-search module-local-variable m v))
1468
1469
1470 ;;; {Mapping modules x symbols --> bindings}
1471 ;;;
1472 ;;; These are similar to the mapping to variables, except that the
1473 ;;; variable is dereferenced.
1474 ;;;
1475
1476 ;; module-symbol-binding module symbol opt-value
1477 ;;
1478 ;; return the binding of a variable specified by name within
1479 ;; a given module, signalling an error if the variable is unbound.
1480 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1481 ;; return OPT-VALUE.
1482 ;;
1483 (define (module-symbol-local-binding m v . opt-val)
1484 (let ((var (module-local-variable m v)))
1485 (if (and var (variable-bound? var))
1486 (variable-ref var)
1487 (if (not (null? opt-val))
1488 (car opt-val)
1489 (error "Locally unbound variable." v)))))
1490
1491 ;; module-symbol-binding module symbol opt-value
1492 ;;
1493 ;; return the binding of a variable specified by name within
1494 ;; a given module, signalling an error if the variable is unbound.
1495 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1496 ;; return OPT-VALUE.
1497 ;;
1498 (define (module-symbol-binding m v . opt-val)
1499 (let ((var (module-variable m v)))
1500 (if (and var (variable-bound? var))
1501 (variable-ref var)
1502 (if (not (null? opt-val))
1503 (car opt-val)
1504 (error "Unbound variable." v)))))
1505
1506
1507 \f
1508
1509 ;;; {Adding Variables to Modules}
1510 ;;;
1511
1512 ;; module-make-local-var! module symbol
1513 ;;
1514 ;; ensure a variable for V in the local namespace of M.
1515 ;; If no variable was already there, then create a new and uninitialzied
1516 ;; variable.
1517 ;;
1518 ;; This function is used in modules.c.
1519 ;;
1520 (define (module-make-local-var! m v)
1521 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1522 (and (variable? b)
1523 (begin
1524 ;; Mark as modified since this function is called when
1525 ;; the standard eval closure defines a binding
1526 (module-modified m)
1527 b)))
1528
1529 ;; No local variable yet, so we need to create a new one. That
1530 ;; new variable is initialized with the old imported value of V,
1531 ;; if there is one.
1532 (let ((imported-var (module-variable m v))
1533 (local-var (or (and (module-binder m)
1534 ((module-binder m) m v #t))
1535 (begin
1536 (let ((answer (make-undefined-variable)))
1537 (module-add! m v answer)
1538 answer)))))
1539 (if (and imported-var (not (variable-bound? local-var)))
1540 (variable-set! local-var (variable-ref imported-var)))
1541 local-var)))
1542
1543 ;; module-ensure-local-variable! module symbol
1544 ;;
1545 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1546 ;; there is no binding for SYMBOL, create a new uninitialized
1547 ;; variable. Return the local variable.
1548 ;;
1549 (define (module-ensure-local-variable! module symbol)
1550 (or (module-local-variable module symbol)
1551 (let ((var (make-undefined-variable)))
1552 (module-add! module symbol var)
1553 var)))
1554
1555 ;; module-add! module symbol var
1556 ;;
1557 ;; ensure a particular variable for V in the local namespace of M.
1558 ;;
1559 (define (module-add! m v var)
1560 (if (not (variable? var))
1561 (error "Bad variable to module-add!" var))
1562 (module-obarray-set! (module-obarray m) v var)
1563 (module-modified m))
1564
1565 ;; module-remove!
1566 ;;
1567 ;; make sure that a symbol is undefined in the local namespace of M.
1568 ;;
1569 (define (module-remove! m v)
1570 (module-obarray-remove! (module-obarray m) v)
1571 (module-modified m))
1572
1573 (define (module-clear! m)
1574 (hash-clear! (module-obarray m))
1575 (module-modified m))
1576
1577 ;; MODULE-FOR-EACH -- exported
1578 ;;
1579 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1580 ;;
1581 (define (module-for-each proc module)
1582 (hash-for-each proc (module-obarray module)))
1583
1584 (define (module-map proc module)
1585 (hash-map->list proc (module-obarray module)))
1586
1587 \f
1588
1589 ;;; {Low Level Bootstrapping}
1590 ;;;
1591
1592 ;; make-root-module
1593
1594 ;; A root module uses the pre-modules-obarray as its obarray. This
1595 ;; special obarray accumulates all bindings that have been established
1596 ;; before the module system is fully booted.
1597 ;;
1598 ;; (The obarray continues to be used by code that has been closed over
1599 ;; before the module system has been booted.)
1600
1601 (define (make-root-module)
1602 (let ((m (make-module 0)))
1603 (set-module-obarray! m (%get-pre-modules-obarray))
1604 m))
1605
1606 ;; make-scm-module
1607
1608 ;; The root interface is a module that uses the same obarray as the
1609 ;; root module. It does not allow new definitions, tho.
1610
1611 (define (make-scm-module)
1612 (let ((m (make-module 0)))
1613 (set-module-obarray! m (%get-pre-modules-obarray))
1614 (set-module-eval-closure! m (standard-interface-eval-closure m))
1615 m))
1616
1617
1618 \f
1619
1620 ;;; {Module-based Loading}
1621 ;;;
1622
1623 (define (save-module-excursion thunk)
1624 (let ((inner-module (current-module))
1625 (outer-module #f))
1626 (dynamic-wind (lambda ()
1627 (set! outer-module (current-module))
1628 (set-current-module inner-module)
1629 (set! inner-module #f))
1630 thunk
1631 (lambda ()
1632 (set! inner-module (current-module))
1633 (set-current-module outer-module)
1634 (set! outer-module #f)))))
1635
1636 (define basic-load load)
1637
1638 (define (load-module filename . reader)
1639 (save-module-excursion
1640 (lambda ()
1641 (let ((oldname (and (current-load-port)
1642 (port-filename (current-load-port)))))
1643 (apply basic-load
1644 (if (and oldname
1645 (> (string-length filename) 0)
1646 (not (char=? (string-ref filename 0) #\/))
1647 (not (string=? (dirname oldname) ".")))
1648 (string-append (dirname oldname) "/" filename)
1649 filename)
1650 reader)))))
1651
1652
1653 \f
1654
1655 ;;; {MODULE-REF -- exported}
1656 ;;;
1657
1658 ;; Returns the value of a variable called NAME in MODULE or any of its
1659 ;; used modules. If there is no such variable, then if the optional third
1660 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1661 ;;
1662 (define (module-ref module name . rest)
1663 (let ((variable (module-variable module name)))
1664 (if (and variable (variable-bound? variable))
1665 (variable-ref variable)
1666 (if (null? rest)
1667 (error "No variable named" name 'in module)
1668 (car rest) ; default value
1669 ))))
1670
1671 ;; MODULE-SET! -- exported
1672 ;;
1673 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1674 ;; to VALUE; if there is no such variable, an error is signaled.
1675 ;;
1676 (define (module-set! module name value)
1677 (let ((variable (module-variable module name)))
1678 (if variable
1679 (variable-set! variable value)
1680 (error "No variable named" name 'in module))))
1681
1682 ;; MODULE-DEFINE! -- exported
1683 ;;
1684 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1685 ;; variable, it is added first.
1686 ;;
1687 (define (module-define! module name value)
1688 (let ((variable (module-local-variable module name)))
1689 (if variable
1690 (begin
1691 (variable-set! variable value)
1692 (module-modified module))
1693 (let ((variable (make-variable value)))
1694 (module-add! module name variable)))))
1695
1696 ;; MODULE-DEFINED? -- exported
1697 ;;
1698 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1699 ;; uses)
1700 ;;
1701 (define (module-defined? module name)
1702 (let ((variable (module-variable module name)))
1703 (and variable (variable-bound? variable))))
1704
1705 ;; MODULE-USE! module interface
1706 ;;
1707 ;; Add INTERFACE to the list of interfaces used by MODULE.
1708 ;;
1709 (define (module-use! module interface)
1710 (set-module-uses! module
1711 (cons interface
1712 (filter (lambda (m)
1713 (not (equal? (module-name m)
1714 (module-name interface))))
1715 (module-uses module))))
1716 (module-modified module))
1717
1718 ;; MODULE-USE-INTERFACES! module interfaces
1719 ;;
1720 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1721 ;;
1722 (define (module-use-interfaces! module interfaces)
1723 (let* ((duplicates-handlers? (or (module-duplicates-handlers module)
1724 (default-duplicate-binding-procedures)))
1725 (uses (module-uses module)))
1726 ;; remove duplicates-interface
1727 (set! uses (delq! (module-duplicates-interface module) uses))
1728 ;; remove interfaces to be added
1729 (for-each (lambda (interface)
1730 (set! uses
1731 (filter (lambda (m)
1732 (not (equal? (module-name m)
1733 (module-name interface))))
1734 uses)))
1735 interfaces)
1736 ;; add interfaces to use list
1737 (set-module-uses! module uses)
1738 (for-each (lambda (interface)
1739 (and duplicates-handlers?
1740 ;; perform duplicate checking
1741 (process-duplicates module interface))
1742 (set! uses (cons interface uses))
1743 (set-module-uses! module uses))
1744 interfaces)
1745 ;; add duplicates interface
1746 (if (module-duplicates-interface module)
1747 (set-module-uses! module
1748 (cons (module-duplicates-interface module) uses)))
1749 (module-modified module)))
1750
1751 \f
1752
1753 ;;; {Recursive Namespaces}
1754 ;;;
1755 ;;; A hierarchical namespace emerges if we consider some module to be
1756 ;;; root, and variables bound to modules as nested namespaces.
1757 ;;;
1758 ;;; The routines in this file manage variable names in hierarchical namespace.
1759 ;;; Each variable name is a list of elements, looked up in successively nested
1760 ;;; modules.
1761 ;;;
1762 ;;; (nested-ref some-root-module '(foo bar baz))
1763 ;;; => <value of a variable named baz in the module bound to bar in
1764 ;;; the module bound to foo in some-root-module>
1765 ;;;
1766 ;;;
1767 ;;; There are:
1768 ;;;
1769 ;;; ;; a-root is a module
1770 ;;; ;; name is a list of symbols
1771 ;;;
1772 ;;; nested-ref a-root name
1773 ;;; nested-set! a-root name val
1774 ;;; nested-define! a-root name val
1775 ;;; nested-remove! a-root name
1776 ;;;
1777 ;;;
1778 ;;; (current-module) is a natural choice for a-root so for convenience there are
1779 ;;; also:
1780 ;;;
1781 ;;; local-ref name == nested-ref (current-module) name
1782 ;;; local-set! name val == nested-set! (current-module) name val
1783 ;;; local-define! name val == nested-define! (current-module) name val
1784 ;;; local-remove! name == nested-remove! (current-module) name
1785 ;;;
1786
1787
1788 (define (nested-ref root names)
1789 (let loop ((cur root)
1790 (elts names))
1791 (cond
1792 ((null? elts) cur)
1793 ((not (module? cur)) #f)
1794 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1795
1796 (define (nested-set! root names val)
1797 (let loop ((cur root)
1798 (elts names))
1799 (if (null? (cdr elts))
1800 (module-set! cur (car elts) val)
1801 (loop (module-ref cur (car elts)) (cdr elts)))))
1802
1803 (define (nested-define! root names val)
1804 (let loop ((cur root)
1805 (elts names))
1806 (if (null? (cdr elts))
1807 (module-define! cur (car elts) val)
1808 (loop (module-ref cur (car elts)) (cdr elts)))))
1809
1810 (define (nested-remove! root names)
1811 (let loop ((cur root)
1812 (elts names))
1813 (if (null? (cdr elts))
1814 (module-remove! cur (car elts))
1815 (loop (module-ref cur (car elts)) (cdr elts)))))
1816
1817 (define (local-ref names) (nested-ref (current-module) names))
1818 (define (local-set! names val) (nested-set! (current-module) names val))
1819 (define (local-define names val) (nested-define! (current-module) names val))
1820 (define (local-remove names) (nested-remove! (current-module) names))
1821
1822
1823 \f
1824
1825 ;;; {The (%app) module}
1826 ;;;
1827 ;;; The root of conventionally named objects not directly in the top level.
1828 ;;;
1829 ;;; (%app modules)
1830 ;;; (%app modules guile)
1831 ;;;
1832 ;;; The directory of all modules and the standard root module.
1833 ;;;
1834
1835 (define (module-public-interface m)
1836 (module-ref m '%module-public-interface #f))
1837 (define (set-module-public-interface! m i)
1838 (module-define! m '%module-public-interface i))
1839 (define (set-system-module! m s)
1840 (set-procedure-property! (module-eval-closure m) 'system-module s))
1841 (define the-root-module (make-root-module))
1842 (define the-scm-module (make-scm-module))
1843 (set-module-public-interface! the-root-module the-scm-module)
1844 (set-module-name! the-root-module '(guile))
1845 (set-module-name! the-scm-module '(guile))
1846 (set-module-kind! the-scm-module 'interface)
1847 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1848
1849 ;; NOTE: This binding is used in libguile/modules.c.
1850 ;;
1851 (define (make-modules-in module name)
1852 (if (null? name)
1853 module
1854 (cond
1855 ((module-ref module (car name) #f)
1856 => (lambda (m) (make-modules-in m (cdr name))))
1857 (else (let ((m (make-module 31)))
1858 (set-module-kind! m 'directory)
1859 (set-module-name! m (append (or (module-name module)
1860 '())
1861 (list (car name))))
1862 (module-define! module (car name) m)
1863 (make-modules-in m (cdr name)))))))
1864
1865 (define (beautify-user-module! module)
1866 (let ((interface (module-public-interface module)))
1867 (if (or (not interface)
1868 (eq? interface module))
1869 (let ((interface (make-module 31)))
1870 (set-module-name! interface (module-name module))
1871 (set-module-kind! interface 'interface)
1872 (set-module-public-interface! module interface))))
1873 (if (and (not (memq the-scm-module (module-uses module)))
1874 (not (eq? module the-root-module)))
1875 (set-module-uses! module
1876 (append (module-uses module) (list the-scm-module)))))
1877
1878 ;; NOTE: This binding is used in libguile/modules.c.
1879 ;;
1880 (define (resolve-module name . maybe-autoload)
1881 (let ((full-name (append '(%app modules) name)))
1882 (let ((already (nested-ref the-root-module full-name)))
1883 (if already
1884 ;; The module already exists...
1885 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1886 (not (module-public-interface already)))
1887 ;; ...but we are told to load and it doesn't contain source, so
1888 (begin
1889 (try-load-module name)
1890 already)
1891 ;; simply return it.
1892 already)
1893 (begin
1894 ;; Try to autoload it if we are told so
1895 (if (or (null? maybe-autoload) (car maybe-autoload))
1896 (try-load-module name))
1897 ;; Get/create it.
1898 (make-modules-in (current-module) full-name))))))
1899
1900 ;; Cheat. These bindings are needed by modules.c, but we don't want
1901 ;; to move their real definition here because that would be unnatural.
1902 ;;
1903 (define try-module-autoload #f)
1904 (define process-define-module #f)
1905 (define process-use-modules #f)
1906 (define module-export! #f)
1907
1908 ;; This boots the module system. All bindings needed by modules.c
1909 ;; must have been defined by now.
1910 ;;
1911 (set-current-module the-root-module)
1912
1913 (define %app (make-module 31))
1914 (define app %app) ;; for backwards compatability
1915 (local-define '(%app modules) (make-module 31))
1916 (local-define '(%app modules guile) the-root-module)
1917
1918 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1919
1920 (define (try-load-module name)
1921 (or (begin-deprecated (try-module-linked name))
1922 (try-module-autoload name)
1923 (begin-deprecated (try-module-dynamic-link name))))
1924
1925 (define (purify-module! module)
1926 "Removes bindings in MODULE which are inherited from the (guile) module."
1927 (let ((use-list (module-uses module)))
1928 (if (and (pair? use-list)
1929 (eq? (car (last-pair use-list)) the-scm-module))
1930 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1931
1932 ;; Return a module that is an interface to the module designated by
1933 ;; NAME.
1934 ;;
1935 ;; `resolve-interface' takes four keyword arguments:
1936 ;;
1937 ;; #:select SELECTION
1938 ;;
1939 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1940 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1941 ;; is the name in the used module and SEEN is the name in the using
1942 ;; module. Note that SEEN is also passed through RENAMER, below. The
1943 ;; default is to select all bindings. If you specify no selection but
1944 ;; a renamer, only the bindings that already exist in the used module
1945 ;; are made available in the interface. Bindings that are added later
1946 ;; are not picked up.
1947 ;;
1948 ;; #:hide BINDINGS
1949 ;;
1950 ;; BINDINGS is a list of bindings which should not be imported.
1951 ;;
1952 ;; #:prefix PREFIX
1953 ;;
1954 ;; PREFIX is a symbol that will be appended to each exported name.
1955 ;; The default is to not perform any renaming.
1956 ;;
1957 ;; #:renamer RENAMER
1958 ;;
1959 ;; RENAMER is a procedure that takes a symbol and returns its new
1960 ;; name. The default is not perform any renaming.
1961 ;;
1962 ;; Signal "no code for module" error if module name is not resolvable
1963 ;; or its public interface is not available. Signal "no binding"
1964 ;; error if selected binding does not exist in the used module.
1965 ;;
1966 (define (resolve-interface name . args)
1967
1968 (define (get-keyword-arg args kw def)
1969 (cond ((memq kw args)
1970 => (lambda (kw-arg)
1971 (if (null? (cdr kw-arg))
1972 (error "keyword without value: " kw))
1973 (cadr kw-arg)))
1974 (else
1975 def)))
1976
1977 (let* ((select (get-keyword-arg args #:select #f))
1978 (hide (get-keyword-arg args #:hide '()))
1979 (renamer (or (get-keyword-arg args #:renamer #f)
1980 (let ((prefix (get-keyword-arg args #:prefix #f)))
1981 (and prefix (symbol-prefix-proc prefix)))
1982 identity))
1983 (module (resolve-module name))
1984 (public-i (and module (module-public-interface module))))
1985 (and (or (not module) (not public-i))
1986 (error "no code for module" name))
1987 (if (and (not select) (null? hide) (eq? renamer identity))
1988 public-i
1989 (let ((selection (or select (module-map (lambda (sym var) sym)
1990 public-i)))
1991 (custom-i (make-module 31)))
1992 (set-module-kind! custom-i 'custom-interface)
1993 (set-module-name! custom-i name)
1994 ;; XXX - should use a lazy binder so that changes to the
1995 ;; used module are picked up automatically.
1996 (for-each (lambda (bspec)
1997 (let* ((direct? (symbol? bspec))
1998 (orig (if direct? bspec (car bspec)))
1999 (seen (if direct? bspec (cdr bspec)))
2000 (var (or (module-local-variable public-i orig)
2001 (module-local-variable module orig)
2002 (error
2003 ;; fixme: format manually for now
2004 (simple-format
2005 #f "no binding `~A' in module ~A"
2006 orig name)))))
2007 (if (memq orig hide)
2008 (set! hide (delq! orig hide))
2009 (module-add! custom-i
2010 (renamer seen)
2011 var))))
2012 selection)
2013 ;; Check that we are not hiding bindings which don't exist
2014 (for-each (lambda (binding)
2015 (if (not (module-local-variable public-i binding))
2016 (error
2017 (simple-format
2018 #f "no binding `~A' to hide in module ~A"
2019 binding name))))
2020 hide)
2021 custom-i))))
2022
2023 (define (symbol-prefix-proc prefix)
2024 (lambda (symbol)
2025 (symbol-append prefix symbol)))
2026
2027 ;; This function is called from "modules.c". If you change it, be
2028 ;; sure to update "modules.c" as well.
2029
2030 (define (process-define-module args)
2031 (let* ((module-id (car args))
2032 (module (resolve-module module-id #f))
2033 (kws (cdr args))
2034 (unrecognized (lambda (arg)
2035 (error "unrecognized define-module argument" arg))))
2036 (beautify-user-module! module)
2037 (let loop ((kws kws)
2038 (reversed-interfaces '())
2039 (exports '())
2040 (re-exports '())
2041 (replacements '()))
2042
2043 (if (null? kws)
2044 (call-with-deferred-observers
2045 (lambda ()
2046 (module-use-interfaces! module (reverse reversed-interfaces))
2047 (module-export! module exports)
2048 (module-replace! module replacements)
2049 (module-re-export! module re-exports)))
2050 (case (car kws)
2051 ((#:use-module #:use-syntax)
2052 (or (pair? (cdr kws))
2053 (unrecognized kws))
2054 (let* ((interface-args (cadr kws))
2055 (interface (apply resolve-interface interface-args)))
2056 (and (eq? (car kws) #:use-syntax)
2057 (or (symbol? (caar interface-args))
2058 (error "invalid module name for use-syntax"
2059 (car interface-args)))
2060 (set-module-transformer!
2061 module
2062 (module-ref interface
2063 (car (last-pair (car interface-args)))
2064 #f)))
2065 (loop (cddr kws)
2066 (cons interface reversed-interfaces)
2067 exports
2068 re-exports
2069 replacements)))
2070 ((#:autoload)
2071 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2072 (unrecognized kws))
2073 (loop (cdddr kws)
2074 (cons (make-autoload-interface module
2075 (cadr kws)
2076 (caddr kws))
2077 reversed-interfaces)
2078 exports
2079 re-exports
2080 replacements))
2081 ((#:no-backtrace)
2082 (set-system-module! module #t)
2083 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2084 ((#:pure)
2085 (purify-module! module)
2086 (loop (cdr kws) reversed-interfaces exports re-exports replacements))
2087 ((#:duplicates)
2088 (if (not (pair? (cdr kws)))
2089 (unrecognized kws))
2090 (set-module-duplicates-handlers!
2091 module
2092 (lookup-duplicates-handlers (cadr kws)))
2093 (loop (cddr kws) reversed-interfaces exports re-exports replacements))
2094 ((#:export #:export-syntax)
2095 (or (pair? (cdr kws))
2096 (unrecognized kws))
2097 (loop (cddr kws)
2098 reversed-interfaces
2099 (append (cadr kws) exports)
2100 re-exports
2101 replacements))
2102 ((#:re-export #:re-export-syntax)
2103 (or (pair? (cdr kws))
2104 (unrecognized kws))
2105 (loop (cddr kws)
2106 reversed-interfaces
2107 exports
2108 (append (cadr kws) re-exports)
2109 replacements))
2110 ((#:replace #:replace-syntax)
2111 (or (pair? (cdr kws))
2112 (unrecognized kws))
2113 (loop (cddr kws)
2114 reversed-interfaces
2115 exports
2116 re-exports
2117 (append (cadr kws) replacements)))
2118 (else
2119 (unrecognized kws)))))
2120 (run-hook module-defined-hook module)
2121 module))
2122
2123 ;; `module-defined-hook' is a hook that is run whenever a new module
2124 ;; is defined. Its members are called with one argument, the new
2125 ;; module.
2126 (define module-defined-hook (make-hook 1))
2127
2128 \f
2129
2130 ;;; {Autoload}
2131 ;;;
2132
2133 (define (make-autoload-interface module name bindings)
2134 (let ((b (lambda (a sym definep)
2135 (and (memq sym bindings)
2136 (let ((i (module-public-interface (resolve-module name))))
2137 (if (not i)
2138 (error "missing interface for module" name))
2139 ;; Replace autoload-interface with interface
2140 (set-car! (memq a (module-uses module)) i)
2141 (module-local-variable i sym))))))
2142 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f #f
2143 '() (make-weak-value-hash-table 31) 0)))
2144
2145 ;;; {Compiled module}
2146
2147 (define load-compiled #f)
2148
2149 \f
2150
2151 ;;; {Autoloading modules}
2152 ;;;
2153
2154 (define autoloads-in-progress '())
2155
2156 ;; This function is called from "modules.c". If you change it, be
2157 ;; sure to update "modules.c" as well.
2158
2159 (define (try-module-autoload module-name)
2160 (let* ((reverse-name (reverse module-name))
2161 (name (symbol->string (car reverse-name)))
2162 (dir-hint-module-name (reverse (cdr reverse-name)))
2163 (dir-hint (apply string-append
2164 (map (lambda (elt)
2165 (string-append (symbol->string elt) "/"))
2166 dir-hint-module-name))))
2167 (resolve-module dir-hint-module-name #f)
2168 (and (not (autoload-done-or-in-progress? dir-hint name))
2169 (let ((didit #f))
2170 (define (load-file proc file)
2171 (save-module-excursion (lambda () (proc file)))
2172 (set! didit #t))
2173 (dynamic-wind
2174 (lambda () (autoload-in-progress! dir-hint name))
2175 (lambda ()
2176 (let ((file (in-vicinity dir-hint name)))
2177 (cond ((and load-compiled
2178 (%search-load-path (string-append file ".go")))
2179 => (lambda (full)
2180 (load-file load-compiled full)))
2181 ((%search-load-path file)
2182 => (lambda (full)
2183 (load-file primitive-load full))))))
2184 (lambda () (set-autoloaded! dir-hint name didit)))
2185 didit))))
2186
2187 \f
2188
2189 ;;; {Dynamic linking of modules}
2190 ;;;
2191
2192 (define autoloads-done '((guile . guile)))
2193
2194 (define (autoload-done-or-in-progress? p m)
2195 (let ((n (cons p m)))
2196 (->bool (or (member n autoloads-done)
2197 (member n autoloads-in-progress)))))
2198
2199 (define (autoload-done! p m)
2200 (let ((n (cons p m)))
2201 (set! autoloads-in-progress
2202 (delete! n autoloads-in-progress))
2203 (or (member n autoloads-done)
2204 (set! autoloads-done (cons n autoloads-done)))))
2205
2206 (define (autoload-in-progress! p m)
2207 (let ((n (cons p m)))
2208 (set! autoloads-done
2209 (delete! n autoloads-done))
2210 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2211
2212 (define (set-autoloaded! p m done?)
2213 (if done?
2214 (autoload-done! p m)
2215 (let ((n (cons p m)))
2216 (set! autoloads-done (delete! n autoloads-done))
2217 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2218
2219 \f
2220
2221 ;;; {Run-time options}
2222 ;;;
2223
2224 (define define-option-interface
2225 (let* ((option-name car)
2226 (option-value cadr)
2227 (option-documentation caddr)
2228
2229 (print-option (lambda (option)
2230 (display (option-name option))
2231 (if (< (string-length
2232 (symbol->string (option-name option)))
2233 8)
2234 (display #\tab))
2235 (display #\tab)
2236 (display (option-value option))
2237 (display #\tab)
2238 (display (option-documentation option))
2239 (newline)))
2240
2241 ;; Below follow the macros defining the run-time option interfaces.
2242
2243 (make-options (lambda (interface)
2244 `(lambda args
2245 (cond ((null? args) (,interface))
2246 ((list? (car args))
2247 (,interface (car args)) (,interface))
2248 (else (for-each ,print-option
2249 (,interface #t)))))))
2250
2251 (make-enable (lambda (interface)
2252 `(lambda flags
2253 (,interface (append flags (,interface)))
2254 (,interface))))
2255
2256 (make-disable (lambda (interface)
2257 `(lambda flags
2258 (let ((options (,interface)))
2259 (for-each (lambda (flag)
2260 (set! options (delq! flag options)))
2261 flags)
2262 (,interface options)
2263 (,interface))))))
2264 (procedure->memoizing-macro
2265 (lambda (exp env)
2266 (let* ((option-group (cadr exp))
2267 (interface (car option-group))
2268 (options/enable/disable (cadr option-group)))
2269 `(begin
2270 (define ,(car options/enable/disable)
2271 ,(make-options interface))
2272 (define ,(cadr options/enable/disable)
2273 ,(make-enable interface))
2274 (define ,(caddr options/enable/disable)
2275 ,(make-disable interface))
2276 (defmacro ,(caaddr option-group) (opt val)
2277 `(,,(car options/enable/disable)
2278 (append (,,(car options/enable/disable))
2279 (list ',opt ,val))))))))))
2280
2281 (define-option-interface
2282 (eval-options-interface
2283 (eval-options eval-enable eval-disable)
2284 (eval-set!)))
2285
2286 (define-option-interface
2287 (debug-options-interface
2288 (debug-options debug-enable debug-disable)
2289 (debug-set!)))
2290
2291 (define-option-interface
2292 (evaluator-traps-interface
2293 (traps trap-enable trap-disable)
2294 (trap-set!)))
2295
2296 (define-option-interface
2297 (read-options-interface
2298 (read-options read-enable read-disable)
2299 (read-set!)))
2300
2301 (define-option-interface
2302 (print-options-interface
2303 (print-options print-enable print-disable)
2304 (print-set!)))
2305
2306 \f
2307
2308 ;;; {Running Repls}
2309 ;;;
2310
2311 (define (repl read evaler print)
2312 (let loop ((source (read (current-input-port))))
2313 (print (evaler source))
2314 (loop (read (current-input-port)))))
2315
2316 ;; A provisional repl that acts like the SCM repl:
2317 ;;
2318 (define scm-repl-silent #f)
2319 (define (assert-repl-silence v) (set! scm-repl-silent v))
2320
2321 (define *unspecified* (if #f #f))
2322 (define (unspecified? v) (eq? v *unspecified*))
2323
2324 (define scm-repl-print-unspecified #f)
2325 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2326
2327 (define scm-repl-verbose #f)
2328 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2329
2330 (define scm-repl-prompt "guile> ")
2331
2332 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2333
2334 (define (default-lazy-handler key . args)
2335 (save-stack lazy-handler-dispatch)
2336 (apply throw key args))
2337
2338 (define (lazy-handler-dispatch key . args)
2339 (apply default-lazy-handler key args))
2340
2341 (define abort-hook (make-hook))
2342
2343 ;; these definitions are used if running a script.
2344 ;; otherwise redefined in error-catching-loop.
2345 (define (set-batch-mode?! arg) #t)
2346 (define (batch-mode?) #t)
2347
2348 (define (error-catching-loop thunk)
2349 (let ((status #f)
2350 (interactive #t))
2351 (define (loop first)
2352 (let ((next
2353 (catch #t
2354
2355 (lambda ()
2356 (call-with-unblocked-asyncs
2357 (lambda ()
2358 (with-traps
2359 (lambda ()
2360 (first)
2361
2362 ;; This line is needed because mark
2363 ;; doesn't do closures quite right.
2364 ;; Unreferenced locals should be
2365 ;; collected.
2366 (set! first #f)
2367 (let loop ((v (thunk)))
2368 (loop (thunk)))
2369 #f)))))
2370
2371 (lambda (key . args)
2372 (case key
2373 ((quit)
2374 (set! status args)
2375 #f)
2376
2377 ((switch-repl)
2378 (apply throw 'switch-repl args))
2379
2380 ((abort)
2381 ;; This is one of the closures that require
2382 ;; (set! first #f) above
2383 ;;
2384 (lambda ()
2385 (run-hook abort-hook)
2386 (force-output (current-output-port))
2387 (display "ABORT: " (current-error-port))
2388 (write args (current-error-port))
2389 (newline (current-error-port))
2390 (if interactive
2391 (begin
2392 (if (and
2393 (not has-shown-debugger-hint?)
2394 (not (memq 'backtrace
2395 (debug-options-interface)))
2396 (stack? (fluid-ref the-last-stack)))
2397 (begin
2398 (newline (current-error-port))
2399 (display
2400 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2401 (current-error-port))
2402 (set! has-shown-debugger-hint? #t)))
2403 (force-output (current-error-port)))
2404 (begin
2405 (primitive-exit 1)))
2406 (set! stack-saved? #f)))
2407
2408 (else
2409 ;; This is the other cons-leak closure...
2410 (lambda ()
2411 (cond ((= (length args) 4)
2412 (apply handle-system-error key args))
2413 (else
2414 (apply bad-throw key args)))))))
2415
2416 ;; Note that having just `lazy-handler-dispatch'
2417 ;; here is connected with the mechanism that
2418 ;; produces a nice backtrace upon error. If, for
2419 ;; example, this is replaced with (lambda args
2420 ;; (apply lazy-handler-dispatch args)), the stack
2421 ;; cutting (in save-stack) goes wrong and ends up
2422 ;; saving no stack at all, so there is no
2423 ;; backtrace.
2424 lazy-handler-dispatch)))
2425
2426 (if next (loop next) status)))
2427 (set! set-batch-mode?! (lambda (arg)
2428 (cond (arg
2429 (set! interactive #f)
2430 (restore-signals))
2431 (#t
2432 (error "sorry, not implemented")))))
2433 (set! batch-mode? (lambda () (not interactive)))
2434 (call-with-blocked-asyncs
2435 (lambda () (loop (lambda () #t))))))
2436
2437 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2438 (define before-signal-stack (make-fluid))
2439 (define stack-saved? #f)
2440
2441 (define (save-stack . narrowing)
2442 (or stack-saved?
2443 (cond ((not (memq 'debug (debug-options-interface)))
2444 (fluid-set! the-last-stack #f)
2445 (set! stack-saved? #t))
2446 (else
2447 (fluid-set!
2448 the-last-stack
2449 (case (stack-id #t)
2450 ((repl-stack)
2451 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2452 ((load-stack)
2453 (apply make-stack #t save-stack 0 #t 0 narrowing))
2454 ((tk-stack)
2455 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2456 ((#t)
2457 (apply make-stack #t save-stack 0 1 narrowing))
2458 (else
2459 (let ((id (stack-id #t)))
2460 (and (procedure? id)
2461 (apply make-stack #t save-stack id #t 0 narrowing))))))
2462 (set! stack-saved? #t)))))
2463
2464 (define before-error-hook (make-hook))
2465 (define after-error-hook (make-hook))
2466 (define before-backtrace-hook (make-hook))
2467 (define after-backtrace-hook (make-hook))
2468
2469 (define has-shown-debugger-hint? #f)
2470
2471 (define (handle-system-error key . args)
2472 (let ((cep (current-error-port)))
2473 (cond ((not (stack? (fluid-ref the-last-stack))))
2474 ((memq 'backtrace (debug-options-interface))
2475 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2476 (eq? key 'out-of-range))
2477 (list-ref args 3)
2478 '())))
2479 (run-hook before-backtrace-hook)
2480 (newline cep)
2481 (display "Backtrace:\n")
2482 (display-backtrace (fluid-ref the-last-stack) cep
2483 #f #f highlights)
2484 (newline cep)
2485 (run-hook after-backtrace-hook))))
2486 (run-hook before-error-hook)
2487 (apply display-error (fluid-ref the-last-stack) cep args)
2488 (run-hook after-error-hook)
2489 (force-output cep)
2490 (throw 'abort key)))
2491
2492 (define (quit . args)
2493 (apply throw 'quit args))
2494
2495 (define exit quit)
2496
2497 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2498
2499 ;; Replaced by C code:
2500 ;;(define (backtrace)
2501 ;; (if (fluid-ref the-last-stack)
2502 ;; (begin
2503 ;; (newline)
2504 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2505 ;; (newline)
2506 ;; (if (and (not has-shown-backtrace-hint?)
2507 ;; (not (memq 'backtrace (debug-options-interface))))
2508 ;; (begin
2509 ;; (display
2510 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2511 ;;automatically if an error occurs in the future.\n")
2512 ;; (set! has-shown-backtrace-hint? #t))))
2513 ;; (display "No backtrace available.\n")))
2514
2515 (define (error-catching-repl r e p)
2516 (error-catching-loop
2517 (lambda ()
2518 (call-with-values (lambda () (e (r)))
2519 (lambda the-values (for-each p the-values))))))
2520
2521 (define (gc-run-time)
2522 (cdr (assq 'gc-time-taken (gc-stats))))
2523
2524 (define before-read-hook (make-hook))
2525 (define after-read-hook (make-hook))
2526 (define before-eval-hook (make-hook 1))
2527 (define after-eval-hook (make-hook 1))
2528 (define before-print-hook (make-hook 1))
2529 (define after-print-hook (make-hook 1))
2530
2531 ;;; The default repl-reader function. We may override this if we've
2532 ;;; the readline library.
2533 (define repl-reader
2534 (lambda (prompt)
2535 (display prompt)
2536 (force-output)
2537 (run-hook before-read-hook)
2538 ((or (fluid-ref current-reader) read) (current-input-port))))
2539
2540 (define (scm-style-repl)
2541
2542 (letrec (
2543 (start-gc-rt #f)
2544 (start-rt #f)
2545 (repl-report-start-timing (lambda ()
2546 (set! start-gc-rt (gc-run-time))
2547 (set! start-rt (get-internal-run-time))))
2548 (repl-report (lambda ()
2549 (display ";;; ")
2550 (display (inexact->exact
2551 (* 1000 (/ (- (get-internal-run-time) start-rt)
2552 internal-time-units-per-second))))
2553 (display " msec (")
2554 (display (inexact->exact
2555 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2556 internal-time-units-per-second))))
2557 (display " msec in gc)\n")))
2558
2559 (consume-trailing-whitespace
2560 (lambda ()
2561 (let ((ch (peek-char)))
2562 (cond
2563 ((eof-object? ch))
2564 ((or (char=? ch #\space) (char=? ch #\tab))
2565 (read-char)
2566 (consume-trailing-whitespace))
2567 ((char=? ch #\newline)
2568 (read-char))))))
2569 (-read (lambda ()
2570 (let ((val
2571 (let ((prompt (cond ((string? scm-repl-prompt)
2572 scm-repl-prompt)
2573 ((thunk? scm-repl-prompt)
2574 (scm-repl-prompt))
2575 (scm-repl-prompt "> ")
2576 (else ""))))
2577 (repl-reader prompt))))
2578
2579 ;; As described in R4RS, the READ procedure updates the
2580 ;; port to point to the first character past the end of
2581 ;; the external representation of the object. This
2582 ;; means that it doesn't consume the newline typically
2583 ;; found after an expression. This means that, when
2584 ;; debugging Guile with GDB, GDB gets the newline, which
2585 ;; it often interprets as a "continue" command, making
2586 ;; breakpoints kind of useless. So, consume any
2587 ;; trailing newline here, as well as any whitespace
2588 ;; before it.
2589 ;; But not if EOF, for control-D.
2590 (if (not (eof-object? val))
2591 (consume-trailing-whitespace))
2592 (run-hook after-read-hook)
2593 (if (eof-object? val)
2594 (begin
2595 (repl-report-start-timing)
2596 (if scm-repl-verbose
2597 (begin
2598 (newline)
2599 (display ";;; EOF -- quitting")
2600 (newline)))
2601 (quit 0)))
2602 val)))
2603
2604 (-eval (lambda (sourc)
2605 (repl-report-start-timing)
2606 (run-hook before-eval-hook sourc)
2607 (let ((val (start-stack 'repl-stack
2608 ;; If you change this procedure
2609 ;; (primitive-eval), please also
2610 ;; modify the repl-stack case in
2611 ;; save-stack so that stack cutting
2612 ;; continues to work.
2613 (primitive-eval sourc))))
2614 (run-hook after-eval-hook sourc)
2615 val)))
2616
2617
2618 (-print (let ((maybe-print (lambda (result)
2619 (if (or scm-repl-print-unspecified
2620 (not (unspecified? result)))
2621 (begin
2622 (write result)
2623 (newline))))))
2624 (lambda (result)
2625 (if (not scm-repl-silent)
2626 (begin
2627 (run-hook before-print-hook result)
2628 (maybe-print result)
2629 (run-hook after-print-hook result)
2630 (if scm-repl-verbose
2631 (repl-report))
2632 (force-output))))))
2633
2634 (-quit (lambda (args)
2635 (if scm-repl-verbose
2636 (begin
2637 (display ";;; QUIT executed, repl exitting")
2638 (newline)
2639 (repl-report)))
2640 args))
2641
2642 (-abort (lambda ()
2643 (if scm-repl-verbose
2644 (begin
2645 (display ";;; ABORT executed.")
2646 (newline)
2647 (repl-report)))
2648 (repl -read -eval -print))))
2649
2650 (let ((status (error-catching-repl -read
2651 -eval
2652 -print)))
2653 (-quit status))))
2654
2655
2656 \f
2657
2658 ;;; {IOTA functions: generating lists of numbers}
2659 ;;;
2660
2661 (define (iota n)
2662 (let loop ((count (1- n)) (result '()))
2663 (if (< count 0) result
2664 (loop (1- count) (cons count result)))))
2665
2666 \f
2667
2668 ;;; {collect}
2669 ;;;
2670 ;;; Similar to `begin' but returns a list of the results of all constituent
2671 ;;; forms instead of the result of the last form.
2672 ;;; (The definition relies on the current left-to-right
2673 ;;; order of evaluation of operands in applications.)
2674 ;;;
2675
2676 (defmacro collect forms
2677 (cons 'list forms))
2678
2679 \f
2680
2681 ;;; {with-fluids}
2682 ;;;
2683
2684 ;; with-fluids is a convenience wrapper for the builtin procedure
2685 ;; `with-fluids*'. The syntax is just like `let':
2686 ;;
2687 ;; (with-fluids ((fluid val)
2688 ;; ...)
2689 ;; body)
2690
2691 (defmacro with-fluids (bindings . body)
2692 (let ((fluids (map car bindings))
2693 (values (map cadr bindings)))
2694 (if (and (= (length fluids) 1) (= (length values) 1))
2695 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2696 `(with-fluids* (list ,@fluids) (list ,@values)
2697 (lambda () ,@body)))))
2698
2699 \f
2700
2701 ;;; {Macros}
2702 ;;;
2703
2704 ;; actually....hobbit might be able to hack these with a little
2705 ;; coaxing
2706 ;;
2707
2708 (define (primitive-macro? m)
2709 (and (macro? m)
2710 (not (macro-transformer m))))
2711
2712 (defmacro define-macro (first . rest)
2713 (let ((name (if (symbol? first) first (car first)))
2714 (transformer
2715 (if (symbol? first)
2716 (car rest)
2717 `(lambda ,(cdr first) ,@rest))))
2718 `(eval-case
2719 ((load-toplevel)
2720 (define ,name (defmacro:transformer ,transformer)))
2721 (else
2722 (error "define-macro can only be used at the top level")))))
2723
2724
2725 (defmacro define-syntax-macro (first . rest)
2726 (let ((name (if (symbol? first) first (car first)))
2727 (transformer
2728 (if (symbol? first)
2729 (car rest)
2730 `(lambda ,(cdr first) ,@rest))))
2731 `(eval-case
2732 ((load-toplevel)
2733 (define ,name (defmacro:syntax-transformer ,transformer)))
2734 (else
2735 (error "define-syntax-macro can only be used at the top level")))))
2736
2737 \f
2738
2739 ;;; {While}
2740 ;;;
2741 ;;; with `continue' and `break'.
2742 ;;;
2743
2744 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2745 ;; that's only necessary if continue is actually used. A new key is
2746 ;; generated every time, so break and continue apply to their originating
2747 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2748 ;; `key' binding away from the cond and body code.
2749 ;;
2750 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2751 ;; for lambda and not, so as to protect against any user rebinding of that
2752 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2753 ;;
2754 ;; (use-modules (ice-9 syncase))
2755 ;; (while #f)
2756 ;; => ERROR: invalid syntax ()
2757 ;;
2758 ;; This is probably a bug in syncase.
2759 ;;
2760 (define-macro (while cond . body)
2761 (define (while-helper proc)
2762 (do ((key (make-symbol "while-key")))
2763 ((catch key
2764 (lambda ()
2765 (proc (lambda () (throw key #t))
2766 (lambda () (throw key #f))))
2767 (lambda (key arg) arg)))))
2768 `(,while-helper (,lambda (break continue)
2769 (do ()
2770 ((,not ,cond))
2771 ,@body)
2772 #t)))
2773
2774
2775 \f
2776
2777 ;;; {Module System Macros}
2778 ;;;
2779
2780 ;; Return a list of expressions that evaluate to the appropriate
2781 ;; arguments for resolve-interface according to SPEC.
2782
2783 (define (compile-interface-spec spec)
2784 (define (make-keyarg sym key quote?)
2785 (cond ((or (memq sym spec)
2786 (memq key spec))
2787 => (lambda (rest)
2788 (if quote?
2789 (list key (list 'quote (cadr rest)))
2790 (list key (cadr rest)))))
2791 (else
2792 '())))
2793 (define (map-apply func list)
2794 (map (lambda (args) (apply func args)) list))
2795 (define keys
2796 ;; sym key quote?
2797 '((:select #:select #t)
2798 (:hide #:hide #t)
2799 (:prefix #:prefix #t)
2800 (:renamer #:renamer #f)))
2801 (if (not (pair? (car spec)))
2802 `(',spec)
2803 `(',(car spec)
2804 ,@(apply append (map-apply make-keyarg keys)))))
2805
2806 (define (keyword-like-symbol->keyword sym)
2807 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2808
2809 (define (compile-define-module-args args)
2810 ;; Just quote everything except #:use-module and #:use-syntax. We
2811 ;; need to know about all arguments regardless since we want to turn
2812 ;; symbols that look like keywords into real keywords, and the
2813 ;; keyword args in a define-module form are not regular
2814 ;; (i.e. no-backtrace doesn't take a value).
2815 (let loop ((compiled-args `((quote ,(car args))))
2816 (args (cdr args)))
2817 (cond ((null? args)
2818 (reverse! compiled-args))
2819 ;; symbol in keyword position
2820 ((symbol? (car args))
2821 (loop compiled-args
2822 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2823 ((memq (car args) '(#:no-backtrace #:pure))
2824 (loop (cons (car args) compiled-args)
2825 (cdr args)))
2826 ((null? (cdr args))
2827 (error "keyword without value:" (car args)))
2828 ((memq (car args) '(#:use-module #:use-syntax))
2829 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2830 (car args)
2831 compiled-args)
2832 (cddr args)))
2833 ((eq? (car args) #:autoload)
2834 (loop (cons* `(quote ,(caddr args))
2835 `(quote ,(cadr args))
2836 (car args)
2837 compiled-args)
2838 (cdddr args)))
2839 (else
2840 (loop (cons* `(quote ,(cadr args))
2841 (car args)
2842 compiled-args)
2843 (cddr args))))))
2844
2845 (defmacro define-module args
2846 `(eval-case
2847 ((load-toplevel)
2848 (let ((m (process-define-module
2849 (list ,@(compile-define-module-args args)))))
2850 (set-current-module m)
2851 m))
2852 (else
2853 (error "define-module can only be used at the top level"))))
2854
2855 ;; The guts of the use-modules macro. Add the interfaces of the named
2856 ;; modules to the use-list of the current module, in order.
2857
2858 ;; This function is called by "modules.c". If you change it, be sure
2859 ;; to change scm_c_use_module as well.
2860
2861 (define (process-use-modules module-interface-args)
2862 (let ((interfaces (map (lambda (mif-args)
2863 (or (apply resolve-interface mif-args)
2864 (error "no such module" mif-args)))
2865 module-interface-args)))
2866 (call-with-deferred-observers
2867 (lambda ()
2868 (module-use-interfaces! (current-module) interfaces)))))
2869
2870 (defmacro use-modules modules
2871 `(eval-case
2872 ((load-toplevel)
2873 (process-use-modules
2874 (list ,@(map (lambda (m)
2875 `(list ,@(compile-interface-spec m)))
2876 modules)))
2877 *unspecified*)
2878 (else
2879 (error "use-modules can only be used at the top level"))))
2880
2881 (defmacro use-syntax (spec)
2882 `(eval-case
2883 ((load-toplevel)
2884 ,@(if (pair? spec)
2885 `((process-use-modules (list
2886 (list ,@(compile-interface-spec spec))))
2887 (set-module-transformer! (current-module)
2888 ,(car (last-pair spec))))
2889 `((set-module-transformer! (current-module) ,spec)))
2890 *unspecified*)
2891 (else
2892 (error "use-syntax can only be used at the top level"))))
2893
2894 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2895 ;; as soon as guile supports hygienic macros.
2896 (define define-private define)
2897
2898 (defmacro define-public args
2899 (define (syntax)
2900 (error "bad syntax" (list 'define-public args)))
2901 (define (defined-name n)
2902 (cond
2903 ((symbol? n) n)
2904 ((pair? n) (defined-name (car n)))
2905 (else (syntax))))
2906 (cond
2907 ((null? args)
2908 (syntax))
2909 (#t
2910 (let ((name (defined-name (car args))))
2911 `(begin
2912 (define-private ,@args)
2913 (eval-case ((load-toplevel) (export ,name))))))))
2914
2915 (defmacro defmacro-public args
2916 (define (syntax)
2917 (error "bad syntax" (list 'defmacro-public args)))
2918 (define (defined-name n)
2919 (cond
2920 ((symbol? n) n)
2921 (else (syntax))))
2922 (cond
2923 ((null? args)
2924 (syntax))
2925 (#t
2926 (let ((name (defined-name (car args))))
2927 `(begin
2928 (eval-case ((load-toplevel) (export-syntax ,name)))
2929 (defmacro ,@args))))))
2930
2931 ;; Export a local variable
2932
2933 ;; This function is called from "modules.c". If you change it, be
2934 ;; sure to update "modules.c" as well.
2935
2936 (define (module-export! m names)
2937 (let ((public-i (module-public-interface m)))
2938 (for-each (lambda (name)
2939 (let ((var (module-ensure-local-variable! m name)))
2940 (module-add! public-i name var)))
2941 names)))
2942
2943 (define (module-replace! m names)
2944 (let ((public-i (module-public-interface m)))
2945 (for-each (lambda (name)
2946 (let ((var (module-ensure-local-variable! m name)))
2947 (set-object-property! var 'replace #t)
2948 (module-add! public-i name var)))
2949 names)))
2950
2951 ;; Re-export a imported variable
2952 ;;
2953 (define (module-re-export! m names)
2954 (let ((public-i (module-public-interface m)))
2955 (for-each (lambda (name)
2956 (let ((var (module-variable m name)))
2957 (cond ((not var)
2958 (error "Undefined variable:" name))
2959 ((eq? var (module-local-variable m name))
2960 (error "re-exporting local variable:" name))
2961 (else
2962 (module-add! public-i name var)))))
2963 names)))
2964
2965 (defmacro export names
2966 `(eval-case
2967 ((load-toplevel)
2968 (call-with-deferred-observers
2969 (lambda ()
2970 (module-export! (current-module) ',names))))
2971 (else
2972 (error "export can only be used at the top level"))))
2973
2974 (defmacro re-export names
2975 `(eval-case
2976 ((load-toplevel)
2977 (call-with-deferred-observers
2978 (lambda ()
2979 (module-re-export! (current-module) ',names))))
2980 (else
2981 (error "re-export can only be used at the top level"))))
2982
2983 (defmacro export-syntax names
2984 `(export ,@names))
2985
2986 (defmacro re-export-syntax names
2987 `(re-export ,@names))
2988
2989 (define load load-module)
2990
2991 ;; The following macro allows one to write, for example,
2992 ;;
2993 ;; (@ (ice-9 pretty-print) pretty-print)
2994 ;;
2995 ;; to refer directly to the pretty-print variable in module (ice-9
2996 ;; pretty-print). It works by looking up the variable and inserting
2997 ;; it directly into the code. This is understood by the evaluator.
2998 ;; Indeed, all references to global variables are memoized into such
2999 ;; variable objects.
3000
3001 (define-macro (@ mod-name var-name)
3002 (let ((var (module-variable (resolve-interface mod-name) var-name)))
3003 (if (not var)
3004 (error "no such public variable" (list '@ mod-name var-name)))
3005 var))
3006
3007 ;; The '@@' macro is like '@' but it can also access bindings that
3008 ;; have not been explicitely exported.
3009
3010 (define-macro (@@ mod-name var-name)
3011 (let ((var (module-variable (resolve-module mod-name) var-name)))
3012 (if (not var)
3013 (error "no such variable" (list '@@ mod-name var-name)))
3014 var))
3015
3016 \f
3017
3018 ;;; {Parameters}
3019 ;;;
3020
3021 (define make-mutable-parameter
3022 (let ((make (lambda (fluid converter)
3023 (lambda args
3024 (if (null? args)
3025 (fluid-ref fluid)
3026 (fluid-set! fluid (converter (car args))))))))
3027 (lambda (init . converter)
3028 (let ((fluid (make-fluid))
3029 (converter (if (null? converter)
3030 identity
3031 (car converter))))
3032 (fluid-set! fluid (converter init))
3033 (make fluid converter)))))
3034
3035 \f
3036
3037 ;;; {Handling of duplicate imported bindings}
3038 ;;;
3039
3040 ;; Duplicate handlers take the following arguments:
3041 ;;
3042 ;; module importing module
3043 ;; name conflicting name
3044 ;; int1 old interface where name occurs
3045 ;; val1 value of binding in old interface
3046 ;; int2 new interface where name occurs
3047 ;; val2 value of binding in new interface
3048 ;; var previous resolution or #f
3049 ;; val value of previous resolution
3050 ;;
3051 ;; A duplicate handler can take three alternative actions:
3052 ;;
3053 ;; 1. return #f => leave responsibility to next handler
3054 ;; 2. exit with an error
3055 ;; 3. return a variable resolving the conflict
3056 ;;
3057
3058 (define duplicate-handlers
3059 (let ((m (make-module 7)))
3060
3061 (define (check module name int1 val1 int2 val2 var val)
3062 (scm-error 'misc-error
3063 #f
3064 "~A: `~A' imported from both ~A and ~A"
3065 (list (module-name module)
3066 name
3067 (module-name int1)
3068 (module-name int2))
3069 #f))
3070
3071 (define (warn module name int1 val1 int2 val2 var val)
3072 (format #t
3073 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3074 (module-name module)
3075 name
3076 (module-name int1)
3077 (module-name int2))
3078 #f)
3079
3080 (define (replace module name int1 val1 int2 val2 var val)
3081 (let ((old (or (and var (object-property var 'replace) var)
3082 (module-variable int1 name)))
3083 (new (module-variable int2 name)))
3084 (if (object-property old 'replace)
3085 (and (or (eq? old new)
3086 (not (object-property new 'replace)))
3087 old)
3088 (and (object-property new 'replace)
3089 new))))
3090
3091 (define (warn-override-core module name int1 val1 int2 val2 var val)
3092 (and (eq? int1 the-scm-module)
3093 (begin
3094 (format #t
3095 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3096 (module-name module)
3097 (module-name int2)
3098 name)
3099 (module-local-variable int2 name))))
3100
3101 (define (first module name int1 val1 int2 val2 var val)
3102 (or var (module-local-variable int1 name)))
3103
3104 (define (last module name int1 val1 int2 val2 var val)
3105 (module-local-variable int2 name))
3106
3107 (define (noop module name int1 val1 int2 val2 var val)
3108 #f)
3109
3110 (set-module-name! m 'duplicate-handlers)
3111 (set-module-kind! m 'interface)
3112 (module-define! m 'check check)
3113 (module-define! m 'warn warn)
3114 (module-define! m 'replace replace)
3115 (module-define! m 'warn-override-core warn-override-core)
3116 (module-define! m 'first first)
3117 (module-define! m 'last last)
3118 (module-define! m 'merge-generics noop)
3119 (module-define! m 'merge-accessors noop)
3120 m))
3121
3122 (define (lookup-duplicates-handlers handler-names)
3123 (and handler-names
3124 (map (lambda (handler-name)
3125 (or (module-symbol-local-binding
3126 duplicate-handlers handler-name #f)
3127 (error "invalid duplicate handler name:"
3128 handler-name)))
3129 (if (list? handler-names)
3130 handler-names
3131 (list handler-names)))))
3132
3133 (define default-duplicate-binding-procedures
3134 (make-mutable-parameter #f))
3135
3136 (define default-duplicate-binding-handler
3137 (make-mutable-parameter '(replace warn-override-core warn last)
3138 (lambda (handler-names)
3139 (default-duplicate-binding-procedures
3140 (lookup-duplicates-handlers handler-names))
3141 handler-names)))
3142
3143 (define (make-duplicates-interface)
3144 (let ((m (make-module)))
3145 (set-module-kind! m 'custom-interface)
3146 (set-module-name! m 'duplicates)
3147 m))
3148
3149 (define (process-duplicates module interface)
3150 (let* ((duplicates-handlers (or (module-duplicates-handlers module)
3151 (default-duplicate-binding-procedures)))
3152 (duplicates-interface (module-duplicates-interface module)))
3153 (module-for-each
3154 (lambda (name var)
3155 (cond ((module-import-interface module name)
3156 =>
3157 (lambda (prev-interface)
3158 (let ((var1 (module-local-variable prev-interface name))
3159 (var2 (module-local-variable interface name)))
3160 (if (not (eq? var1 var2))
3161 (begin
3162 (if (not duplicates-interface)
3163 (begin
3164 (set! duplicates-interface
3165 (make-duplicates-interface))
3166 (set-module-duplicates-interface!
3167 module
3168 duplicates-interface)))
3169 (let* ((var (module-local-variable duplicates-interface
3170 name))
3171 (val (and var
3172 (variable-bound? var)
3173 (variable-ref var))))
3174 (let loop ((duplicates-handlers duplicates-handlers))
3175 (cond ((null? duplicates-handlers))
3176 (((car duplicates-handlers)
3177 module
3178 name
3179 prev-interface
3180 (and (variable-bound? var1)
3181 (variable-ref var1))
3182 interface
3183 (and (variable-bound? var2)
3184 (variable-ref var2))
3185 var
3186 val)
3187 =>
3188 (lambda (var)
3189 (module-add! duplicates-interface name var)))
3190 (else
3191 (loop (cdr duplicates-handlers)))))))))))))
3192 interface)))
3193
3194 \f
3195
3196 ;;; {`cond-expand' for SRFI-0 support.}
3197 ;;;
3198 ;;; This syntactic form expands into different commands or
3199 ;;; definitions, depending on the features provided by the Scheme
3200 ;;; implementation.
3201 ;;;
3202 ;;; Syntax:
3203 ;;;
3204 ;;; <cond-expand>
3205 ;;; --> (cond-expand <cond-expand-clause>+)
3206 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3207 ;;; <cond-expand-clause>
3208 ;;; --> (<feature-requirement> <command-or-definition>*)
3209 ;;; <feature-requirement>
3210 ;;; --> <feature-identifier>
3211 ;;; | (and <feature-requirement>*)
3212 ;;; | (or <feature-requirement>*)
3213 ;;; | (not <feature-requirement>)
3214 ;;; <feature-identifier>
3215 ;;; --> <a symbol which is the name or alias of a SRFI>
3216 ;;;
3217 ;;; Additionally, this implementation provides the
3218 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3219 ;;; determine the implementation type and the supported standard.
3220 ;;;
3221 ;;; Currently, the following feature identifiers are supported:
3222 ;;;
3223 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3224 ;;;
3225 ;;; Remember to update the features list when adding more SRFIs.
3226 ;;;
3227
3228 (define %cond-expand-features
3229 ;; Adjust the above comment when changing this.
3230 '(guile
3231 r5rs
3232 srfi-0 ;; cond-expand itself
3233 srfi-4 ;; homogenous numeric vectors
3234 srfi-6 ;; open-input-string etc, in the guile core
3235 srfi-13 ;; string library
3236 srfi-14 ;; character sets
3237 srfi-55 ;; require-extension
3238 srfi-61 ;; general cond clause
3239 ))
3240
3241 ;; This table maps module public interfaces to the list of features.
3242 ;;
3243 (define %cond-expand-table (make-hash-table 31))
3244
3245 ;; Add one or more features to the `cond-expand' feature list of the
3246 ;; module `module'.
3247 ;;
3248 (define (cond-expand-provide module features)
3249 (let ((mod (module-public-interface module)))
3250 (and mod
3251 (hashq-set! %cond-expand-table mod
3252 (append (hashq-ref %cond-expand-table mod '())
3253 features)))))
3254
3255 (define cond-expand
3256 (procedure->memoizing-macro
3257 (lambda (exp env)
3258 (let ((clauses (cdr exp))
3259 (syntax-error (lambda (cl)
3260 (error "invalid clause in `cond-expand'" cl))))
3261 (letrec
3262 ((test-clause
3263 (lambda (clause)
3264 (cond
3265 ((symbol? clause)
3266 (or (memq clause %cond-expand-features)
3267 (let lp ((uses (module-uses (env-module env))))
3268 (if (pair? uses)
3269 (or (memq clause
3270 (hashq-ref %cond-expand-table
3271 (car uses) '()))
3272 (lp (cdr uses)))
3273 #f))))
3274 ((pair? clause)
3275 (cond
3276 ((eq? 'and (car clause))
3277 (let lp ((l (cdr clause)))
3278 (cond ((null? l)
3279 #t)
3280 ((pair? l)
3281 (and (test-clause (car l)) (lp (cdr l))))
3282 (else
3283 (syntax-error clause)))))
3284 ((eq? 'or (car clause))
3285 (let lp ((l (cdr clause)))
3286 (cond ((null? l)
3287 #f)
3288 ((pair? l)
3289 (or (test-clause (car l)) (lp (cdr l))))
3290 (else
3291 (syntax-error clause)))))
3292 ((eq? 'not (car clause))
3293 (cond ((not (pair? (cdr clause)))
3294 (syntax-error clause))
3295 ((pair? (cddr clause))
3296 ((syntax-error clause))))
3297 (not (test-clause (cadr clause))))
3298 (else
3299 (syntax-error clause))))
3300 (else
3301 (syntax-error clause))))))
3302 (let lp ((c clauses))
3303 (cond
3304 ((null? c)
3305 (error "Unfulfilled `cond-expand'"))
3306 ((not (pair? c))
3307 (syntax-error c))
3308 ((not (pair? (car c)))
3309 (syntax-error (car c)))
3310 ((test-clause (caar c))
3311 `(begin ,@(cdar c)))
3312 ((eq? (caar c) 'else)
3313 (if (pair? (cdr c))
3314 (syntax-error c))
3315 `(begin ,@(cdar c)))
3316 (else
3317 (lp (cdr c))))))))))
3318
3319 ;; This procedure gets called from the startup code with a list of
3320 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3321 ;;
3322 (define (use-srfis srfis)
3323 (let lp ((s srfis))
3324 (if (pair? s)
3325 (let* ((srfi (string->symbol
3326 (string-append "srfi-" (number->string (car s)))))
3327 (mod-i (resolve-interface (list 'srfi srfi))))
3328 (module-use! (current-module) mod-i)
3329 (lp (cdr s))))))
3330
3331 \f
3332
3333 ;;; srfi-55: require-extension
3334 ;;;
3335
3336 (define-macro (require-extension extension-spec)
3337 ;; This macro only handles the srfi extension, which, at present, is
3338 ;; the only one defined by the standard.
3339 (if (not (pair? extension-spec))
3340 (scm-error 'wrong-type-arg "require-extension"
3341 "Not an extension: ~S" (list extension-spec) #f))
3342 (let ((extension (car extension-spec))
3343 (extension-args (cdr extension-spec)))
3344 (case extension
3345 ((srfi)
3346 (let ((use-list '()))
3347 (for-each
3348 (lambda (i)
3349 (if (not (integer? i))
3350 (scm-error 'wrong-type-arg "require-extension"
3351 "Invalid srfi name: ~S" (list i) #f))
3352 (let ((srfi-sym (string->symbol
3353 (string-append "srfi-" (number->string i)))))
3354 (if (not (memq srfi-sym %cond-expand-features))
3355 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3356 use-list)))))
3357 extension-args)
3358 (if (pair? use-list)
3359 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3360 `(begin ,@(reverse! use-list)))))
3361 (else
3362 (scm-error
3363 'wrong-type-arg "require-extension"
3364 "Not a recognized extension type: ~S" (list extension) #f)))))
3365
3366 \f
3367
3368 ;;; {Load emacs interface support if emacs option is given.}
3369 ;;;
3370
3371 (define (named-module-use! user usee)
3372 (module-use! (resolve-module user) (resolve-interface usee)))
3373
3374 (define (load-emacs-interface)
3375 (and (provided? 'debug-extensions)
3376 (debug-enable 'backtrace))
3377 (named-module-use! '(guile-user) '(ice-9 emacs)))
3378
3379 \f
3380
3381 (define using-readline?
3382 (let ((using-readline? (make-fluid)))
3383 (make-procedure-with-setter
3384 (lambda () (fluid-ref using-readline?))
3385 (lambda (v) (fluid-set! using-readline? v)))))
3386
3387 (define (top-repl)
3388 (let ((guile-user-module (resolve-module '(guile-user))))
3389
3390 ;; Load emacs interface support if emacs option is given.
3391 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3392 (module-ref guile-user-module 'use-emacs-interface))
3393 (load-emacs-interface))
3394
3395 ;; Use some convenient modules (in reverse order)
3396
3397 (if (provided? 'regex)
3398 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
3399 (if (provided? 'threads)
3400 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
3401 ;; load debugger on demand
3402 (module-use! guile-user-module
3403 (make-autoload-interface guile-user-module
3404 '(ice-9 debugger) '(debug)))
3405 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
3406 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
3407 ;; so that builtin bindings will be checked first
3408 (module-use! guile-user-module (resolve-interface '(ice-9 r5rs)))
3409 (module-use! guile-user-module (resolve-interface '(guile)))
3410
3411 (set-current-module guile-user-module)
3412
3413 (let ((old-handlers #f)
3414 (signals (if (provided? 'posix)
3415 `((,SIGINT . "User interrupt")
3416 (,SIGFPE . "Arithmetic error")
3417 (,SIGBUS . "Bad memory access (bus error)")
3418 (,SIGSEGV
3419 . "Bad memory access (Segmentation violation)"))
3420 '())))
3421
3422 (dynamic-wind
3423
3424 ;; call at entry
3425 (lambda ()
3426 (let ((make-handler (lambda (msg)
3427 (lambda (sig)
3428 ;; Make a backup copy of the stack
3429 (fluid-set! before-signal-stack
3430 (fluid-ref the-last-stack))
3431 (save-stack 2)
3432 (scm-error 'signal
3433 #f
3434 msg
3435 #f
3436 (list sig))))))
3437 (set! old-handlers
3438 (map (lambda (sig-msg)
3439 (sigaction (car sig-msg)
3440 (make-handler (cdr sig-msg))))
3441 signals))))
3442
3443 ;; the protected thunk.
3444 (lambda ()
3445 (let ((status (scm-style-repl)))
3446 (run-hook exit-hook)
3447 status))
3448
3449 ;; call at exit.
3450 (lambda ()
3451 (map (lambda (sig-msg old-handler)
3452 (if (not (car old-handler))
3453 ;; restore original C handler.
3454 (sigaction (car sig-msg) #f)
3455 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3456 (sigaction (car sig-msg)
3457 (car old-handler)
3458 (cdr old-handler))))
3459 signals old-handlers))))))
3460
3461 ;;; This hook is run at the very end of an interactive session.
3462 ;;;
3463 (define exit-hook (make-hook))
3464
3465 \f
3466
3467 ;;; {Deprecated stuff}
3468 ;;;
3469
3470 (begin-deprecated
3471 (define (feature? sym)
3472 (issue-deprecation-warning
3473 "`feature?' is deprecated. Use `provided?' instead.")
3474 (provided? sym)))
3475
3476 (begin-deprecated
3477 (primitive-load-path "ice-9/deprecated.scm"))
3478
3479 \f
3480
3481 ;;; Place the user in the guile-user module.
3482 ;;;
3483
3484 (define-module (guile-user))
3485
3486 ;;; boot-9.scm ends here