Revert "(scm_shell_usage): Note need for subscription to bug-guile@gnu.org."
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. The only defined situation right now is `load-toplevel' which
96 ;; triggers for code evaluated at the top-level, for example from the
97 ;; REPL or when loading a file.
98
99 (define eval-case
100 (procedure->memoizing-macro
101 (lambda (exp env)
102 (define (toplevel-env? env)
103 (or (not (pair? env)) (not (pair? (car env)))))
104 (define (syntax)
105 (error "syntax error in eval-case"))
106 (let loop ((clauses (cdr exp)))
107 (cond
108 ((null? clauses)
109 #f)
110 ((not (list? (car clauses)))
111 (syntax))
112 ((eq? 'else (caar clauses))
113 (or (null? (cdr clauses))
114 (syntax))
115 (cons 'begin (cdar clauses)))
116 ((not (list? (caar clauses)))
117 (syntax))
118 ((and (toplevel-env? env)
119 (memq 'load-toplevel (caar clauses)))
120 (cons 'begin (cdar clauses)))
121 (else
122 (loop (cdr clauses))))))))
123
124 \f
125
126 ;;; {Defmacros}
127 ;;;
128 ;;; Depends on: features, eval-case
129 ;;;
130
131 (define macro-table (make-weak-key-hash-table 61))
132 (define xformer-table (make-weak-key-hash-table 61))
133
134 (define (defmacro? m) (hashq-ref macro-table m))
135 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
136 (define (defmacro-transformer m) (hashq-ref xformer-table m))
137 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
138
139 (define defmacro:transformer
140 (lambda (f)
141 (let* ((xform (lambda (exp env)
142 (copy-tree (apply f (cdr exp)))))
143 (a (procedure->memoizing-macro xform)))
144 (assert-defmacro?! a)
145 (set-defmacro-transformer! a f)
146 a)))
147
148
149 (define defmacro
150 (let ((defmacro-transformer
151 (lambda (name parms . body)
152 (let ((transformer `(lambda ,parms ,@body)))
153 `(eval-case
154 ((load-toplevel)
155 (define ,name (defmacro:transformer ,transformer)))
156 (else
157 (error "defmacro can only be used at the top level")))))))
158 (defmacro:transformer defmacro-transformer)))
159
160 (define defmacro:syntax-transformer
161 (lambda (f)
162 (procedure->syntax
163 (lambda (exp env)
164 (copy-tree (apply f (cdr exp)))))))
165
166
167 ;; XXX - should the definition of the car really be looked up in the
168 ;; current module?
169
170 (define (macroexpand-1 e)
171 (cond
172 ((pair? e) (let* ((a (car e))
173 (val (and (symbol? a) (local-ref (list a)))))
174 (if (defmacro? val)
175 (apply (defmacro-transformer val) (cdr e))
176 e)))
177 (#t e)))
178
179 (define (macroexpand e)
180 (cond
181 ((pair? e) (let* ((a (car e))
182 (val (and (symbol? a) (local-ref (list a)))))
183 (if (defmacro? val)
184 (macroexpand (apply (defmacro-transformer val) (cdr e)))
185 e)))
186 (#t e)))
187
188 (provide 'defmacro)
189
190 \f
191
192 ;;; {Deprecation}
193 ;;;
194 ;;; Depends on: defmacro
195 ;;;
196
197 (defmacro begin-deprecated forms
198 (if (include-deprecated-features)
199 (cons begin forms)
200 #f))
201
202 \f
203
204 ;;; {R4RS compliance}
205 ;;;
206
207 (primitive-load-path "ice-9/r4rs.scm")
208
209 \f
210
211 ;;; {Simple Debugging Tools}
212 ;;;
213
214 ;; peek takes any number of arguments, writes them to the
215 ;; current ouput port, and returns the last argument.
216 ;; It is handy to wrap around an expression to look at
217 ;; a value each time is evaluated, e.g.:
218 ;;
219 ;; (+ 10 (troublesome-fn))
220 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
221 ;;
222
223 (define (peek . stuff)
224 (newline)
225 (display ";;; ")
226 (write stuff)
227 (newline)
228 (car (last-pair stuff)))
229
230 (define pk peek)
231
232 (define (warn . stuff)
233 (with-output-to-port (current-error-port)
234 (lambda ()
235 (newline)
236 (display ";;; WARNING ")
237 (display stuff)
238 (newline)
239 (car (last-pair stuff)))))
240
241 \f
242
243 ;;; {Trivial Functions}
244 ;;;
245
246 (define (identity x) x)
247 (define (and=> value procedure) (and value (procedure value)))
248 (define call/cc call-with-current-continuation)
249
250 ;;; apply-to-args is functionally redundant with apply and, worse,
251 ;;; is less general than apply since it only takes two arguments.
252 ;;;
253 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
254 ;;; perform binding in many circumstances when the "let" family of
255 ;;; of forms don't cut it. E.g.:
256 ;;;
257 ;;; (apply-to-args (return-3d-mouse-coords)
258 ;;; (lambda (x y z)
259 ;;; ...))
260 ;;;
261
262 (define (apply-to-args args fn) (apply fn args))
263
264 (defmacro false-if-exception (expr)
265 `(catch #t (lambda () ,expr)
266 (lambda args #f)))
267
268 \f
269
270 ;;; {General Properties}
271 ;;;
272
273 ;; This is a more modern interface to properties. It will replace all
274 ;; other property-like things eventually.
275
276 (define (make-object-property)
277 (let ((prop (primitive-make-property #f)))
278 (make-procedure-with-setter
279 (lambda (obj) (primitive-property-ref prop obj))
280 (lambda (obj val) (primitive-property-set! prop obj val)))))
281
282 \f
283
284 ;;; {Symbol Properties}
285 ;;;
286
287 (define (symbol-property sym prop)
288 (let ((pair (assoc prop (symbol-pref sym))))
289 (and pair (cdr pair))))
290
291 (define (set-symbol-property! sym prop val)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (if pair
294 (set-cdr! pair val)
295 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
296
297 (define (symbol-property-remove! sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (if pair
300 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
301
302 \f
303
304 ;;; {Arrays}
305 ;;;
306
307 (define (array-shape a)
308 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
309 (array-dimensions a)))
310
311 \f
312
313 ;;; {Keywords}
314 ;;;
315
316 (define (kw-arg-ref args kw)
317 (let ((rem (member kw args)))
318 (and rem (pair? (cdr rem)) (cadr rem))))
319
320 \f
321
322 ;;; {Structs}
323 ;;;
324
325 (define (struct-layout s)
326 (struct-ref (struct-vtable s) vtable-index-layout))
327
328 \f
329
330 ;;; {Environments}
331 ;;;
332
333 (define the-environment
334 (procedure->syntax
335 (lambda (x e)
336 e)))
337
338 (define the-root-environment (the-environment))
339
340 (define (environment-module env)
341 (let ((closure (and (pair? env) (car (last-pair env)))))
342 (and closure (procedure-property closure 'module))))
343
344 \f
345
346 ;;; {Records}
347 ;;;
348
349 ;; Printing records: by default, records are printed as
350 ;;
351 ;; #<type-name field1: val1 field2: val2 ...>
352 ;;
353 ;; You can change that by giving a custom printing function to
354 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
355 ;; will be called like
356 ;;
357 ;; (<printer> object port)
358 ;;
359 ;; It should print OBJECT to PORT.
360
361 (define (inherit-print-state old-port new-port)
362 (if (get-print-state old-port)
363 (port-with-print-state new-port (get-print-state old-port))
364 new-port))
365
366 ;; 0: type-name, 1: fields
367 (define record-type-vtable
368 (make-vtable-vtable "prpr" 0
369 (lambda (s p)
370 (cond ((eq? s record-type-vtable)
371 (display "#<record-type-vtable>" p))
372 (else
373 (display "#<record-type " p)
374 (display (record-type-name s) p)
375 (display ">" p))))))
376
377 (define (record-type? obj)
378 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
379
380 (define (make-record-type type-name fields . opt)
381 (let ((printer-fn (and (pair? opt) (car opt))))
382 (let ((struct (make-struct record-type-vtable 0
383 (make-struct-layout
384 (apply string-append
385 (map (lambda (f) "pw") fields)))
386 (or printer-fn
387 (lambda (s p)
388 (display "#<" p)
389 (display type-name p)
390 (let loop ((fields fields)
391 (off 0))
392 (cond
393 ((not (null? fields))
394 (display " " p)
395 (display (car fields) p)
396 (display ": " p)
397 (display (struct-ref s off) p)
398 (loop (cdr fields) (+ 1 off)))))
399 (display ">" p)))
400 type-name
401 (copy-tree fields))))
402 ;; Temporary solution: Associate a name to the record type descriptor
403 ;; so that the object system can create a wrapper class for it.
404 (set-struct-vtable-name! struct (if (symbol? type-name)
405 type-name
406 (string->symbol type-name)))
407 struct)))
408
409 (define (record-type-name obj)
410 (if (record-type? obj)
411 (struct-ref obj vtable-offset-user)
412 (error 'not-a-record-type obj)))
413
414 (define (record-type-fields obj)
415 (if (record-type? obj)
416 (struct-ref obj (+ 1 vtable-offset-user))
417 (error 'not-a-record-type obj)))
418
419 (define (record-constructor rtd . opt)
420 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
421 (local-eval `(lambda ,field-names
422 (make-struct ',rtd 0 ,@(map (lambda (f)
423 (if (memq f field-names)
424 f
425 #f))
426 (record-type-fields rtd))))
427 the-root-environment)))
428
429 (define (record-predicate rtd)
430 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
431
432 (define (%record-type-error rtd obj) ;; private helper
433 (or (eq? rtd (record-type-descriptor obj))
434 (scm-error 'wrong-type-arg "%record-type-check"
435 "Wrong type record (want `~S'): ~S"
436 (list (record-type-name rtd) obj)
437 #f)))
438
439 (define (record-accessor rtd field-name)
440 (let* ((pos (list-index (record-type-fields rtd) field-name)))
441 (if (not pos)
442 (error 'no-such-field field-name))
443 (local-eval `(lambda (obj)
444 (if (eq? (struct-vtable obj) ,rtd)
445 (struct-ref obj ,pos)
446 (%record-type-error ,rtd obj)))
447 the-root-environment)))
448
449 (define (record-modifier rtd field-name)
450 (let* ((pos (list-index (record-type-fields rtd) field-name)))
451 (if (not pos)
452 (error 'no-such-field field-name))
453 (local-eval `(lambda (obj val)
454 (if (eq? (struct-vtable obj) ,rtd)
455 (struct-set! obj ,pos val)
456 (%record-type-error ,rtd obj)))
457 the-root-environment)))
458
459
460 (define (record? obj)
461 (and (struct? obj) (record-type? (struct-vtable obj))))
462
463 (define (record-type-descriptor obj)
464 (if (struct? obj)
465 (struct-vtable obj)
466 (error 'not-a-record obj)))
467
468 (provide 'record)
469
470 \f
471
472 ;;; {Booleans}
473 ;;;
474
475 (define (->bool x) (not (not x)))
476
477 \f
478
479 ;;; {Symbols}
480 ;;;
481
482 (define (symbol-append . args)
483 (string->symbol (apply string-append (map symbol->string args))))
484
485 (define (list->symbol . args)
486 (string->symbol (apply list->string args)))
487
488 (define (symbol . args)
489 (string->symbol (apply string args)))
490
491 \f
492
493 ;;; {Lists}
494 ;;;
495
496 (define (list-index l k)
497 (let loop ((n 0)
498 (l l))
499 (and (not (null? l))
500 (if (eq? (car l) k)
501 n
502 (loop (+ n 1) (cdr l))))))
503
504 \f
505
506 ;;; {and-map and or-map}
507 ;;;
508 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
509 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
510 ;;;
511
512 ;; and-map f l
513 ;;
514 ;; Apply f to successive elements of l until exhaustion or f returns #f.
515 ;; If returning early, return #f. Otherwise, return the last value returned
516 ;; by f. If f has never been called because l is empty, return #t.
517 ;;
518 (define (and-map f lst)
519 (let loop ((result #t)
520 (l lst))
521 (and result
522 (or (and (null? l)
523 result)
524 (loop (f (car l)) (cdr l))))))
525
526 ;; or-map f l
527 ;;
528 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
529 ;; If returning early, return the return value of f.
530 ;;
531 (define (or-map f lst)
532 (let loop ((result #f)
533 (l lst))
534 (or result
535 (and (not (null? l))
536 (loop (f (car l)) (cdr l))))))
537
538 \f
539
540 (if (provided? 'posix)
541 (primitive-load-path "ice-9/posix.scm"))
542
543 (if (provided? 'socket)
544 (primitive-load-path "ice-9/networking.scm"))
545
546 ;; For reference, Emacs file-exists-p uses stat in this same way.
547 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
548 ;; C where all that's needed is to inspect the return from stat().
549 (define file-exists?
550 (if (provided? 'posix)
551 (lambda (str)
552 (->bool (false-if-exception (stat str))))
553 (lambda (str)
554 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
555 (lambda args #f))))
556 (if port (begin (close-port port) #t)
557 #f)))))
558
559 (define file-is-directory?
560 (if (provided? 'posix)
561 (lambda (str)
562 (eq? (stat:type (stat str)) 'directory))
563 (lambda (str)
564 (let ((port (catch 'system-error
565 (lambda () (open-file (string-append str "/.")
566 OPEN_READ))
567 (lambda args #f))))
568 (if port (begin (close-port port) #t)
569 #f)))))
570
571 (define (has-suffix? str suffix)
572 (let ((sufl (string-length suffix))
573 (sl (string-length str)))
574 (and (> sl sufl)
575 (string=? (substring str (- sl sufl) sl) suffix))))
576
577 (define (system-error-errno args)
578 (if (eq? (car args) 'system-error)
579 (car (list-ref args 4))
580 #f))
581
582 \f
583
584 ;;; {Error Handling}
585 ;;;
586
587 (define (error . args)
588 (save-stack)
589 (if (null? args)
590 (scm-error 'misc-error #f "?" #f #f)
591 (let loop ((msg "~A")
592 (rest (cdr args)))
593 (if (not (null? rest))
594 (loop (string-append msg " ~S")
595 (cdr rest))
596 (scm-error 'misc-error #f msg args #f)))))
597
598 ;; bad-throw is the hook that is called upon a throw to a an unhandled
599 ;; key (unless the throw has four arguments, in which case
600 ;; it's usually interpreted as an error throw.)
601 ;; If the key has a default handler (a throw-handler-default property),
602 ;; it is applied to the throw.
603 ;;
604 (define (bad-throw key . args)
605 (let ((default (symbol-property key 'throw-handler-default)))
606 (or (and default (apply default key args))
607 (apply error "unhandled-exception:" key args))))
608
609 \f
610
611 (define (tm:sec obj) (vector-ref obj 0))
612 (define (tm:min obj) (vector-ref obj 1))
613 (define (tm:hour obj) (vector-ref obj 2))
614 (define (tm:mday obj) (vector-ref obj 3))
615 (define (tm:mon obj) (vector-ref obj 4))
616 (define (tm:year obj) (vector-ref obj 5))
617 (define (tm:wday obj) (vector-ref obj 6))
618 (define (tm:yday obj) (vector-ref obj 7))
619 (define (tm:isdst obj) (vector-ref obj 8))
620 (define (tm:gmtoff obj) (vector-ref obj 9))
621 (define (tm:zone obj) (vector-ref obj 10))
622
623 (define (set-tm:sec obj val) (vector-set! obj 0 val))
624 (define (set-tm:min obj val) (vector-set! obj 1 val))
625 (define (set-tm:hour obj val) (vector-set! obj 2 val))
626 (define (set-tm:mday obj val) (vector-set! obj 3 val))
627 (define (set-tm:mon obj val) (vector-set! obj 4 val))
628 (define (set-tm:year obj val) (vector-set! obj 5 val))
629 (define (set-tm:wday obj val) (vector-set! obj 6 val))
630 (define (set-tm:yday obj val) (vector-set! obj 7 val))
631 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
632 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
633 (define (set-tm:zone obj val) (vector-set! obj 10 val))
634
635 (define (tms:clock obj) (vector-ref obj 0))
636 (define (tms:utime obj) (vector-ref obj 1))
637 (define (tms:stime obj) (vector-ref obj 2))
638 (define (tms:cutime obj) (vector-ref obj 3))
639 (define (tms:cstime obj) (vector-ref obj 4))
640
641 (define file-position ftell)
642 (define (file-set-position port offset . whence)
643 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
644 (seek port offset whence)))
645
646 (define (move->fdes fd/port fd)
647 (cond ((integer? fd/port)
648 (dup->fdes fd/port fd)
649 (close fd/port)
650 fd)
651 (else
652 (primitive-move->fdes fd/port fd)
653 (set-port-revealed! fd/port 1)
654 fd/port)))
655
656 (define (release-port-handle port)
657 (let ((revealed (port-revealed port)))
658 (if (> revealed 0)
659 (set-port-revealed! port (- revealed 1)))))
660
661 (define (dup->port port/fd mode . maybe-fd)
662 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
663 mode)))
664 (if (pair? maybe-fd)
665 (set-port-revealed! port 1))
666 port))
667
668 (define (dup->inport port/fd . maybe-fd)
669 (apply dup->port port/fd "r" maybe-fd))
670
671 (define (dup->outport port/fd . maybe-fd)
672 (apply dup->port port/fd "w" maybe-fd))
673
674 (define (dup port/fd . maybe-fd)
675 (if (integer? port/fd)
676 (apply dup->fdes port/fd maybe-fd)
677 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
678
679 (define (duplicate-port port modes)
680 (dup->port port modes))
681
682 (define (fdes->inport fdes)
683 (let loop ((rest-ports (fdes->ports fdes)))
684 (cond ((null? rest-ports)
685 (let ((result (fdopen fdes "r")))
686 (set-port-revealed! result 1)
687 result))
688 ((input-port? (car rest-ports))
689 (set-port-revealed! (car rest-ports)
690 (+ (port-revealed (car rest-ports)) 1))
691 (car rest-ports))
692 (else
693 (loop (cdr rest-ports))))))
694
695 (define (fdes->outport fdes)
696 (let loop ((rest-ports (fdes->ports fdes)))
697 (cond ((null? rest-ports)
698 (let ((result (fdopen fdes "w")))
699 (set-port-revealed! result 1)
700 result))
701 ((output-port? (car rest-ports))
702 (set-port-revealed! (car rest-ports)
703 (+ (port-revealed (car rest-ports)) 1))
704 (car rest-ports))
705 (else
706 (loop (cdr rest-ports))))))
707
708 (define (port->fdes port)
709 (set-port-revealed! port (+ (port-revealed port) 1))
710 (fileno port))
711
712 (define (setenv name value)
713 (if value
714 (putenv (string-append name "=" value))
715 (putenv name)))
716
717 (define (unsetenv name)
718 "Remove the entry for NAME from the environment."
719 (putenv name))
720
721 \f
722
723 ;;; {Load Paths}
724 ;;;
725
726 ;;; Here for backward compatability
727 ;;
728 (define scheme-file-suffix (lambda () ".scm"))
729
730 (define (in-vicinity vicinity file)
731 (let ((tail (let ((len (string-length vicinity)))
732 (if (zero? len)
733 #f
734 (string-ref vicinity (- len 1))))))
735 (string-append vicinity
736 (if (or (not tail)
737 (eq? tail #\/))
738 ""
739 "/")
740 file)))
741
742 \f
743
744 ;;; {Help for scm_shell}
745 ;;;
746 ;;; The argument-processing code used by Guile-based shells generates
747 ;;; Scheme code based on the argument list. This page contains help
748 ;;; functions for the code it generates.
749 ;;;
750
751 (define (command-line) (program-arguments))
752
753 ;; This is mostly for the internal use of the code generated by
754 ;; scm_compile_shell_switches.
755
756 (define (turn-on-debugging)
757 (debug-enable 'debug)
758 (debug-enable 'backtrace)
759 (read-enable 'positions))
760
761 (define (load-user-init)
762 (let* ((home (or (getenv "HOME")
763 (false-if-exception (passwd:dir (getpwuid (getuid))))
764 "/")) ;; fallback for cygwin etc.
765 (init-file (in-vicinity home ".guile")))
766 (if (file-exists? init-file)
767 (primitive-load init-file))))
768
769 \f
770
771 ;;; {Loading by paths}
772 ;;;
773
774 ;;; Load a Scheme source file named NAME, searching for it in the
775 ;;; directories listed in %load-path, and applying each of the file
776 ;;; name extensions listed in %load-extensions.
777 (define (load-from-path name)
778 (start-stack 'load-stack
779 (primitive-load-path name)))
780
781
782 \f
783
784 ;;; {Transcendental Functions}
785 ;;;
786 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
787 ;;; Written by Jerry D. Hedden, (C) FSF.
788 ;;; See the file `COPYING' for terms applying to this program.
789 ;;;
790
791 (define expt
792 (let ((integer-expt integer-expt))
793 (lambda (z1 z2)
794 (cond ((and (exact? z2) (integer? z2))
795 (integer-expt z1 z2))
796 ((and (real? z2) (real? z1) (>= z1 0))
797 ($expt z1 z2))
798 (else
799 (exp (* z2 (log z1))))))))
800
801 (define (sinh z)
802 (if (real? z) ($sinh z)
803 (let ((x (real-part z)) (y (imag-part z)))
804 (make-rectangular (* ($sinh x) ($cos y))
805 (* ($cosh x) ($sin y))))))
806 (define (cosh z)
807 (if (real? z) ($cosh z)
808 (let ((x (real-part z)) (y (imag-part z)))
809 (make-rectangular (* ($cosh x) ($cos y))
810 (* ($sinh x) ($sin y))))))
811 (define (tanh z)
812 (if (real? z) ($tanh z)
813 (let* ((x (* 2 (real-part z)))
814 (y (* 2 (imag-part z)))
815 (w (+ ($cosh x) ($cos y))))
816 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
817
818 (define (asinh z)
819 (if (real? z) ($asinh z)
820 (log (+ z (sqrt (+ (* z z) 1))))))
821
822 (define (acosh z)
823 (if (and (real? z) (>= z 1))
824 ($acosh z)
825 (log (+ z (sqrt (- (* z z) 1))))))
826
827 (define (atanh z)
828 (if (and (real? z) (> z -1) (< z 1))
829 ($atanh z)
830 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
831
832 (define (sin z)
833 (if (real? z) ($sin z)
834 (let ((x (real-part z)) (y (imag-part z)))
835 (make-rectangular (* ($sin x) ($cosh y))
836 (* ($cos x) ($sinh y))))))
837 (define (cos z)
838 (if (real? z) ($cos z)
839 (let ((x (real-part z)) (y (imag-part z)))
840 (make-rectangular (* ($cos x) ($cosh y))
841 (- (* ($sin x) ($sinh y)))))))
842 (define (tan z)
843 (if (real? z) ($tan z)
844 (let* ((x (* 2 (real-part z)))
845 (y (* 2 (imag-part z)))
846 (w (+ ($cos x) ($cosh y))))
847 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
848
849 (define (asin z)
850 (if (and (real? z) (>= z -1) (<= z 1))
851 ($asin z)
852 (* -i (asinh (* +i z)))))
853
854 (define (acos z)
855 (if (and (real? z) (>= z -1) (<= z 1))
856 ($acos z)
857 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
858
859 (define (atan z . y)
860 (if (null? y)
861 (if (real? z) ($atan z)
862 (/ (log (/ (- +i z) (+ +i z))) +2i))
863 ($atan2 z (car y))))
864
865 \f
866
867 ;;; {Reader Extensions}
868 ;;;
869 ;;; Reader code for various "#c" forms.
870 ;;;
871
872 (read-hash-extend #\' (lambda (c port)
873 (read port)))
874
875 (define read-eval? (make-fluid))
876 (fluid-set! read-eval? #f)
877 (read-hash-extend #\.
878 (lambda (c port)
879 (if (fluid-ref read-eval?)
880 (eval (read port) (interaction-environment))
881 (error
882 "#. read expansion found and read-eval? is #f."))))
883
884 \f
885
886 ;;; {Command Line Options}
887 ;;;
888
889 (define (get-option argv kw-opts kw-args return)
890 (cond
891 ((null? argv)
892 (return #f #f argv))
893
894 ((or (not (eq? #\- (string-ref (car argv) 0)))
895 (eq? (string-length (car argv)) 1))
896 (return 'normal-arg (car argv) (cdr argv)))
897
898 ((eq? #\- (string-ref (car argv) 1))
899 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
900 (string-length (car argv))))
901 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
902 (kw-opt? (member kw kw-opts))
903 (kw-arg? (member kw kw-args))
904 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
905 (substring (car argv)
906 (+ kw-arg-pos 1)
907 (string-length (car argv))))
908 (and kw-arg?
909 (begin (set! argv (cdr argv)) (car argv))))))
910 (if (or kw-opt? kw-arg?)
911 (return kw arg (cdr argv))
912 (return 'usage-error kw (cdr argv)))))
913
914 (else
915 (let* ((char (substring (car argv) 1 2))
916 (kw (symbol->keyword char)))
917 (cond
918
919 ((member kw kw-opts)
920 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
921 (new-argv (if (= 0 (string-length rest-car))
922 (cdr argv)
923 (cons (string-append "-" rest-car) (cdr argv)))))
924 (return kw #f new-argv)))
925
926 ((member kw kw-args)
927 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
928 (arg (if (= 0 (string-length rest-car))
929 (cadr argv)
930 rest-car))
931 (new-argv (if (= 0 (string-length rest-car))
932 (cddr argv)
933 (cdr argv))))
934 (return kw arg new-argv)))
935
936 (else (return 'usage-error kw argv)))))))
937
938 (define (for-next-option proc argv kw-opts kw-args)
939 (let loop ((argv argv))
940 (get-option argv kw-opts kw-args
941 (lambda (opt opt-arg argv)
942 (and opt (proc opt opt-arg argv loop))))))
943
944 (define (display-usage-report kw-desc)
945 (for-each
946 (lambda (kw)
947 (or (eq? (car kw) #t)
948 (eq? (car kw) 'else)
949 (let* ((opt-desc kw)
950 (help (cadr opt-desc))
951 (opts (car opt-desc))
952 (opts-proper (if (string? (car opts)) (cdr opts) opts))
953 (arg-name (if (string? (car opts))
954 (string-append "<" (car opts) ">")
955 ""))
956 (left-part (string-append
957 (with-output-to-string
958 (lambda ()
959 (map (lambda (x) (display (keyword->symbol x)) (display " "))
960 opts-proper)))
961 arg-name))
962 (middle-part (if (and (< (string-length left-part) 30)
963 (< (string-length help) 40))
964 (make-string (- 30 (string-length left-part)) #\ )
965 "\n\t")))
966 (display left-part)
967 (display middle-part)
968 (display help)
969 (newline))))
970 kw-desc))
971
972
973
974 (define (transform-usage-lambda cases)
975 (let* ((raw-usage (delq! 'else (map car cases)))
976 (usage-sans-specials (map (lambda (x)
977 (or (and (not (list? x)) x)
978 (and (symbol? (car x)) #t)
979 (and (boolean? (car x)) #t)
980 x))
981 raw-usage))
982 (usage-desc (delq! #t usage-sans-specials))
983 (kw-desc (map car usage-desc))
984 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
985 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
986 (transmogrified-cases (map (lambda (case)
987 (cons (let ((opts (car case)))
988 (if (or (boolean? opts) (eq? 'else opts))
989 opts
990 (cond
991 ((symbol? (car opts)) opts)
992 ((boolean? (car opts)) opts)
993 ((string? (caar opts)) (cdar opts))
994 (else (car opts)))))
995 (cdr case)))
996 cases)))
997 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
998 (lambda (%argv)
999 (let %next-arg ((%argv %argv))
1000 (get-option %argv
1001 ',kw-opts
1002 ',kw-args
1003 (lambda (%opt %arg %new-argv)
1004 (case %opt
1005 ,@ transmogrified-cases))))))))
1006
1007
1008 \f
1009
1010 ;;; {Low Level Modules}
1011 ;;;
1012 ;;; These are the low level data structures for modules.
1013 ;;;
1014 ;;; Every module object is of the type 'module-type', which is a record
1015 ;;; consisting of the following members:
1016 ;;;
1017 ;;; - eval-closure: the function that defines for its module the strategy that
1018 ;;; shall be followed when looking up symbols in the module.
1019 ;;;
1020 ;;; An eval-closure is a function taking two arguments: the symbol to be
1021 ;;; looked up and a boolean value telling whether a binding for the symbol
1022 ;;; should be created if it does not exist yet. If the symbol lookup
1023 ;;; succeeded (either because an existing binding was found or because a new
1024 ;;; binding was created), a variable object representing the binding is
1025 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1026 ;;; closure does not take the module to be searched as an argument: During
1027 ;;; construction of the eval-closure, the eval-closure has to store the
1028 ;;; module it belongs to in its environment. This means, that any
1029 ;;; eval-closure can belong to only one module.
1030 ;;;
1031 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1032 ;;; special cases of eval-closures are to be distinguished: During startup
1033 ;;; the module system is not yet activated. In this phase, no modules are
1034 ;;; defined and all bindings are automatically stored by the system in the
1035 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1036 ;;; functions which require an eval-closure as their argument need to be
1037 ;;; passed the value #f.
1038 ;;;
1039 ;;; The other two special cases of eval-closures are the
1040 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1041 ;;; behave equally for the case that no new binding is to be created. The
1042 ;;; difference between the two comes in, when the boolean argument to the
1043 ;;; eval-closure indicates that a new binding shall be created if it is not
1044 ;;; found.
1045 ;;;
1046 ;;; Given that no new binding shall be created, both standard eval-closures
1047 ;;; define the following standard strategy of searching bindings in the
1048 ;;; module: First, the module's obarray is searched for the symbol. Second,
1049 ;;; if no binding for the symbol was found in the module's obarray, the
1050 ;;; module's binder procedure is exececuted. If this procedure did not
1051 ;;; return a binding for the symbol, the modules referenced in the module's
1052 ;;; uses list are recursively searched for a binding of the symbol. If the
1053 ;;; binding can not be found in these modules also, the symbol lookup has
1054 ;;; failed.
1055 ;;;
1056 ;;; If a new binding shall be created, the standard-interface-eval-closure
1057 ;;; immediately returns indicating failure. That is, it does not even try
1058 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1059 ;;; first search the obarray, and if no binding was found there, would
1060 ;;; create a new binding in the obarray, therefore not calling the binder
1061 ;;; procedure or searching the modules in the uses list.
1062 ;;;
1063 ;;; The explanation of the following members obarray, binder and uses
1064 ;;; assumes that the symbol lookup follows the strategy that is defined in
1065 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1066 ;;;
1067 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1068 ;;; hash table, the definitions are found that are local to the module (that
1069 ;;; is, not imported from other modules). When looking up bindings in the
1070 ;;; module, this hash table is searched first.
1071 ;;;
1072 ;;; - binder: either #f or a function taking a module and a symbol argument.
1073 ;;; If it is a function it is called after the obarray has been
1074 ;;; unsuccessfully searched for a binding. It then can provide bindings
1075 ;;; that would otherwise not be found locally in the module.
1076 ;;;
1077 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1078 ;;; These modules are the third place queried for bindings after the obarray
1079 ;;; has been unsuccessfully searched and the binder function did not deliver
1080 ;;; a result either.
1081 ;;;
1082 ;;; - transformer: either #f or a function taking a scheme expression as
1083 ;;; delivered by read. If it is a function, it will be called to perform
1084 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1085 ;;; expression. The output of the transformer function will then be passed
1086 ;;; to Guile's internal memoizer. This means that the output must be valid
1087 ;;; scheme code. The only exception is, that the output may make use of the
1088 ;;; syntax extensions provided to identify the modules that a binding
1089 ;;; belongs to.
1090 ;;;
1091 ;;; - name: the name of the module. This is used for all kinds of printing
1092 ;;; outputs. In certain places the module name also serves as a way of
1093 ;;; identification. When adding a module to the uses list of another
1094 ;;; module, it is made sure that the new uses list will not contain two
1095 ;;; modules of the same name.
1096 ;;;
1097 ;;; - kind: classification of the kind of module. The value is (currently?)
1098 ;;; only used for printing. It has no influence on how a module is treated.
1099 ;;; Currently the following values are used when setting the module kind:
1100 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1101 ;;; is set, it defaults to 'module.
1102 ;;;
1103 ;;; - duplicates-handlers: a list of procedures that get called to make a
1104 ;;; choice between two duplicate bindings when name clashes occur. See the
1105 ;;; `duplicate-handlers' global variable below.
1106 ;;;
1107 ;;; - observers: a list of procedures that get called when the module is
1108 ;;; modified.
1109 ;;;
1110 ;;; - weak-observers: a weak-key hash table of procedures that get called
1111 ;;; when the module is modified. See `module-observe-weak' for details.
1112 ;;;
1113 ;;; In addition, the module may (must?) contain a binding for
1114 ;;; `%module-public-interface'. This variable should be bound to a module
1115 ;;; representing the exported interface of a module. See the
1116 ;;; `module-public-interface' and `module-export!' procedures.
1117 ;;;
1118 ;;; !!! warning: The interface to lazy binder procedures is going
1119 ;;; to be changed in an incompatible way to permit all the basic
1120 ;;; module ops to be virtualized.
1121 ;;;
1122 ;;; (make-module size use-list lazy-binding-proc) => module
1123 ;;; module-{obarray,uses,binder}[|-set!]
1124 ;;; (module? obj) => [#t|#f]
1125 ;;; (module-locally-bound? module symbol) => [#t|#f]
1126 ;;; (module-bound? module symbol) => [#t|#f]
1127 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1128 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1129 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1130 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1131 ;;; (module-symbol-binding module symbol opt-value)
1132 ;;; => [ <obj> | opt-value | an error occurs ]
1133 ;;; (module-make-local-var! module symbol) => #<variable...>
1134 ;;; (module-add! module symbol var) => unspecified
1135 ;;; (module-remove! module symbol) => unspecified
1136 ;;; (module-for-each proc module) => unspecified
1137 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1138 ;;; (set-current-module module) => unspecified
1139 ;;; (current-module) => #<module...>
1140 ;;;
1141 ;;;
1142
1143 \f
1144
1145 ;;; {Printing Modules}
1146 ;;;
1147
1148 ;; This is how modules are printed. You can re-define it.
1149 ;; (Redefining is actually more complicated than simply redefining
1150 ;; %print-module because that would only change the binding and not
1151 ;; the value stored in the vtable that determines how record are
1152 ;; printed. Sigh.)
1153
1154 (define (%print-module mod port) ; unused args: depth length style table)
1155 (display "#<" port)
1156 (display (or (module-kind mod) "module") port)
1157 (let ((name (module-name mod)))
1158 (if name
1159 (begin
1160 (display " " port)
1161 (display name port))))
1162 (display " " port)
1163 (display (number->string (object-address mod) 16) port)
1164 (display ">" port))
1165
1166 ;; module-type
1167 ;;
1168 ;; A module is characterized by an obarray in which local symbols
1169 ;; are interned, a list of modules, "uses", from which non-local
1170 ;; bindings can be inherited, and an optional lazy-binder which
1171 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1172 ;; bindings that would otherwise not be found locally in the module.
1173 ;;
1174 ;; NOTE: If you change anything here, you also need to change
1175 ;; libguile/modules.h.
1176 ;;
1177 (define module-type
1178 (make-record-type 'module
1179 '(obarray uses binder eval-closure transformer name kind
1180 duplicates-handlers import-obarray
1181 observers weak-observers)
1182 %print-module))
1183
1184 ;; make-module &opt size uses binder
1185 ;;
1186 ;; Create a new module, perhaps with a particular size of obarray,
1187 ;; initial uses list, or binding procedure.
1188 ;;
1189 (define make-module
1190 (lambda args
1191
1192 (define (parse-arg index default)
1193 (if (> (length args) index)
1194 (list-ref args index)
1195 default))
1196
1197 (define %default-import-size
1198 ;; Typical number of imported bindings actually used by a module.
1199 600)
1200
1201 (if (> (length args) 3)
1202 (error "Too many args to make-module." args))
1203
1204 (let ((size (parse-arg 0 31))
1205 (uses (parse-arg 1 '()))
1206 (binder (parse-arg 2 #f)))
1207
1208 (if (not (integer? size))
1209 (error "Illegal size to make-module." size))
1210 (if (not (and (list? uses)
1211 (and-map module? uses)))
1212 (error "Incorrect use list." uses))
1213 (if (and binder (not (procedure? binder)))
1214 (error
1215 "Lazy-binder expected to be a procedure or #f." binder))
1216
1217 (let ((module (module-constructor (make-hash-table size)
1218 uses binder #f #f #f #f #f
1219 (make-hash-table %default-import-size)
1220 '()
1221 (make-weak-key-hash-table 31))))
1222
1223 ;; We can't pass this as an argument to module-constructor,
1224 ;; because we need it to close over a pointer to the module
1225 ;; itself.
1226 (set-module-eval-closure! module (standard-eval-closure module))
1227
1228 module))))
1229
1230 (define module-constructor (record-constructor module-type))
1231 (define module-obarray (record-accessor module-type 'obarray))
1232 (define set-module-obarray! (record-modifier module-type 'obarray))
1233 (define module-uses (record-accessor module-type 'uses))
1234 (define set-module-uses! (record-modifier module-type 'uses))
1235 (define module-binder (record-accessor module-type 'binder))
1236 (define set-module-binder! (record-modifier module-type 'binder))
1237
1238 ;; NOTE: This binding is used in libguile/modules.c.
1239 (define module-eval-closure (record-accessor module-type 'eval-closure))
1240
1241 (define module-transformer (record-accessor module-type 'transformer))
1242 (define set-module-transformer! (record-modifier module-type 'transformer))
1243 (define module-name (record-accessor module-type 'name))
1244 (define set-module-name! (record-modifier module-type 'name))
1245 (define module-kind (record-accessor module-type 'kind))
1246 (define set-module-kind! (record-modifier module-type 'kind))
1247 (define module-duplicates-handlers
1248 (record-accessor module-type 'duplicates-handlers))
1249 (define set-module-duplicates-handlers!
1250 (record-modifier module-type 'duplicates-handlers))
1251 (define module-observers (record-accessor module-type 'observers))
1252 (define set-module-observers! (record-modifier module-type 'observers))
1253 (define module-weak-observers (record-accessor module-type 'weak-observers))
1254 (define module? (record-predicate module-type))
1255
1256 (define module-import-obarray (record-accessor module-type 'import-obarray))
1257
1258 (define set-module-eval-closure!
1259 (let ((setter (record-modifier module-type 'eval-closure)))
1260 (lambda (module closure)
1261 (setter module closure)
1262 ;; Make it possible to lookup the module from the environment.
1263 ;; This implementation is correct since an eval closure can belong
1264 ;; to maximally one module.
1265 (set-procedure-property! closure 'module module))))
1266
1267 \f
1268
1269 ;;; {Observer protocol}
1270 ;;;
1271
1272 (define (module-observe module proc)
1273 (set-module-observers! module (cons proc (module-observers module)))
1274 (cons module proc))
1275
1276 (define (module-observe-weak module observer-id . proc)
1277 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1278 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1279 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1280 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1281 ;; for instance).
1282
1283 ;; The two-argument version is kept for backward compatibility: when called
1284 ;; with two arguments, the observer gets unregistered when closure PROC
1285 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1286
1287 (let ((proc (if (null? proc) observer-id (car proc))))
1288 (hashq-set! (module-weak-observers module) observer-id proc)))
1289
1290 (define (module-unobserve token)
1291 (let ((module (car token))
1292 (id (cdr token)))
1293 (if (integer? id)
1294 (hash-remove! (module-weak-observers module) id)
1295 (set-module-observers! module (delq1! id (module-observers module)))))
1296 *unspecified*)
1297
1298 (define module-defer-observers #f)
1299 (define module-defer-observers-mutex (make-mutex))
1300 (define module-defer-observers-table (make-hash-table))
1301
1302 (define (module-modified m)
1303 (if module-defer-observers
1304 (hash-set! module-defer-observers-table m #t)
1305 (module-call-observers m)))
1306
1307 ;;; This function can be used to delay calls to observers so that they
1308 ;;; can be called once only in the face of massive updating of modules.
1309 ;;;
1310 (define (call-with-deferred-observers thunk)
1311 (dynamic-wind
1312 (lambda ()
1313 (lock-mutex module-defer-observers-mutex)
1314 (set! module-defer-observers #t))
1315 thunk
1316 (lambda ()
1317 (set! module-defer-observers #f)
1318 (hash-for-each (lambda (m dummy)
1319 (module-call-observers m))
1320 module-defer-observers-table)
1321 (hash-clear! module-defer-observers-table)
1322 (unlock-mutex module-defer-observers-mutex))))
1323
1324 (define (module-call-observers m)
1325 (for-each (lambda (proc) (proc m)) (module-observers m))
1326
1327 ;; We assume that weak observers don't (un)register themselves as they are
1328 ;; called since this would preclude proper iteration over the hash table
1329 ;; elements.
1330 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1331
1332 \f
1333
1334 ;;; {Module Searching in General}
1335 ;;;
1336 ;;; We sometimes want to look for properties of a symbol
1337 ;;; just within the obarray of one module. If the property
1338 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1339 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1340 ;;;
1341 ;;;
1342 ;;; Other times, we want to test for a symbol property in the obarray
1343 ;;; of M and, if it is not found there, try each of the modules in the
1344 ;;; uses list of M. This is the normal way of testing for some
1345 ;;; property, so we state these properties without qualification as
1346 ;;; in: ``The symbol 'fnord is interned in module M because it is
1347 ;;; interned locally in module M2 which is a member of the uses list
1348 ;;; of M.''
1349 ;;;
1350
1351 ;; module-search fn m
1352 ;;
1353 ;; return the first non-#f result of FN applied to M and then to
1354 ;; the modules in the uses of m, and so on recursively. If all applications
1355 ;; return #f, then so does this function.
1356 ;;
1357 (define (module-search fn m v)
1358 (define (loop pos)
1359 (and (pair? pos)
1360 (or (module-search fn (car pos) v)
1361 (loop (cdr pos)))))
1362 (or (fn m v)
1363 (loop (module-uses m))))
1364
1365
1366 ;;; {Is a symbol bound in a module?}
1367 ;;;
1368 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1369 ;;; of S in M has been set to some well-defined value.
1370 ;;;
1371
1372 ;; module-locally-bound? module symbol
1373 ;;
1374 ;; Is a symbol bound (interned and defined) locally in a given module?
1375 ;;
1376 (define (module-locally-bound? m v)
1377 (let ((var (module-local-variable m v)))
1378 (and var
1379 (variable-bound? var))))
1380
1381 ;; module-bound? module symbol
1382 ;;
1383 ;; Is a symbol bound (interned and defined) anywhere in a given module
1384 ;; or its uses?
1385 ;;
1386 (define (module-bound? m v)
1387 (module-search module-locally-bound? m v))
1388
1389 ;;; {Is a symbol interned in a module?}
1390 ;;;
1391 ;;; Symbol S in Module M is interned if S occurs in
1392 ;;; of S in M has been set to some well-defined value.
1393 ;;;
1394 ;;; It is possible to intern a symbol in a module without providing
1395 ;;; an initial binding for the corresponding variable. This is done
1396 ;;; with:
1397 ;;; (module-add! module symbol (make-undefined-variable))
1398 ;;;
1399 ;;; In that case, the symbol is interned in the module, but not
1400 ;;; bound there. The unbound symbol shadows any binding for that
1401 ;;; symbol that might otherwise be inherited from a member of the uses list.
1402 ;;;
1403
1404 (define (module-obarray-get-handle ob key)
1405 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1406
1407 (define (module-obarray-ref ob key)
1408 ((if (symbol? key) hashq-ref hash-ref) ob key))
1409
1410 (define (module-obarray-set! ob key val)
1411 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1412
1413 (define (module-obarray-remove! ob key)
1414 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1415
1416 ;; module-symbol-locally-interned? module symbol
1417 ;;
1418 ;; is a symbol interned (not neccessarily defined) locally in a given module
1419 ;; or its uses? Interned symbols shadow inherited bindings even if
1420 ;; they are not themselves bound to a defined value.
1421 ;;
1422 (define (module-symbol-locally-interned? m v)
1423 (not (not (module-obarray-get-handle (module-obarray m) v))))
1424
1425 ;; module-symbol-interned? module symbol
1426 ;;
1427 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1428 ;; or its uses? Interned symbols shadow inherited bindings even if
1429 ;; they are not themselves bound to a defined value.
1430 ;;
1431 (define (module-symbol-interned? m v)
1432 (module-search module-symbol-locally-interned? m v))
1433
1434
1435 ;;; {Mapping modules x symbols --> variables}
1436 ;;;
1437
1438 ;; module-local-variable module symbol
1439 ;; return the local variable associated with a MODULE and SYMBOL.
1440 ;;
1441 ;;; This function is very important. It is the only function that can
1442 ;;; return a variable from a module other than the mutators that store
1443 ;;; new variables in modules. Therefore, this function is the location
1444 ;;; of the "lazy binder" hack.
1445 ;;;
1446 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1447 ;;; to a variable, return that variable object.
1448 ;;;
1449 ;;; If the symbols is not found at first, but the module has a lazy binder,
1450 ;;; then try the binder.
1451 ;;;
1452 ;;; If the symbol is not found at all, return #f.
1453 ;;;
1454 ;;; (This is now written in C, see `modules.c'.)
1455 ;;;
1456
1457 ;;; {Mapping modules x symbols --> bindings}
1458 ;;;
1459 ;;; These are similar to the mapping to variables, except that the
1460 ;;; variable is dereferenced.
1461 ;;;
1462
1463 ;; module-symbol-binding module symbol opt-value
1464 ;;
1465 ;; return the binding of a variable specified by name within
1466 ;; a given module, signalling an error if the variable is unbound.
1467 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1468 ;; return OPT-VALUE.
1469 ;;
1470 (define (module-symbol-local-binding m v . opt-val)
1471 (let ((var (module-local-variable m v)))
1472 (if (and var (variable-bound? var))
1473 (variable-ref var)
1474 (if (not (null? opt-val))
1475 (car opt-val)
1476 (error "Locally unbound variable." v)))))
1477
1478 ;; module-symbol-binding module symbol opt-value
1479 ;;
1480 ;; return the binding of a variable specified by name within
1481 ;; a given module, signalling an error if the variable is unbound.
1482 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1483 ;; return OPT-VALUE.
1484 ;;
1485 (define (module-symbol-binding m v . opt-val)
1486 (let ((var (module-variable m v)))
1487 (if (and var (variable-bound? var))
1488 (variable-ref var)
1489 (if (not (null? opt-val))
1490 (car opt-val)
1491 (error "Unbound variable." v)))))
1492
1493
1494 \f
1495
1496 ;;; {Adding Variables to Modules}
1497 ;;;
1498
1499 ;; module-make-local-var! module symbol
1500 ;;
1501 ;; ensure a variable for V in the local namespace of M.
1502 ;; If no variable was already there, then create a new and uninitialzied
1503 ;; variable.
1504 ;;
1505 ;; This function is used in modules.c.
1506 ;;
1507 (define (module-make-local-var! m v)
1508 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1509 (and (variable? b)
1510 (begin
1511 ;; Mark as modified since this function is called when
1512 ;; the standard eval closure defines a binding
1513 (module-modified m)
1514 b)))
1515
1516 ;; Create a new local variable.
1517 (let ((local-var (make-undefined-variable)))
1518 (module-add! m v local-var)
1519 local-var)))
1520
1521 ;; module-ensure-local-variable! module symbol
1522 ;;
1523 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1524 ;; there is no binding for SYMBOL, create a new uninitialized
1525 ;; variable. Return the local variable.
1526 ;;
1527 (define (module-ensure-local-variable! module symbol)
1528 (or (module-local-variable module symbol)
1529 (let ((var (make-undefined-variable)))
1530 (module-add! module symbol var)
1531 var)))
1532
1533 ;; module-add! module symbol var
1534 ;;
1535 ;; ensure a particular variable for V in the local namespace of M.
1536 ;;
1537 (define (module-add! m v var)
1538 (if (not (variable? var))
1539 (error "Bad variable to module-add!" var))
1540 (module-obarray-set! (module-obarray m) v var)
1541 (module-modified m))
1542
1543 ;; module-remove!
1544 ;;
1545 ;; make sure that a symbol is undefined in the local namespace of M.
1546 ;;
1547 (define (module-remove! m v)
1548 (module-obarray-remove! (module-obarray m) v)
1549 (module-modified m))
1550
1551 (define (module-clear! m)
1552 (hash-clear! (module-obarray m))
1553 (module-modified m))
1554
1555 ;; MODULE-FOR-EACH -- exported
1556 ;;
1557 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1558 ;;
1559 (define (module-for-each proc module)
1560 (hash-for-each proc (module-obarray module)))
1561
1562 (define (module-map proc module)
1563 (hash-map->list proc (module-obarray module)))
1564
1565 \f
1566
1567 ;;; {Low Level Bootstrapping}
1568 ;;;
1569
1570 ;; make-root-module
1571
1572 ;; A root module uses the pre-modules-obarray as its obarray. This
1573 ;; special obarray accumulates all bindings that have been established
1574 ;; before the module system is fully booted.
1575 ;;
1576 ;; (The obarray continues to be used by code that has been closed over
1577 ;; before the module system has been booted.)
1578
1579 (define (make-root-module)
1580 (let ((m (make-module 0)))
1581 (set-module-obarray! m (%get-pre-modules-obarray))
1582 m))
1583
1584 ;; make-scm-module
1585
1586 ;; The root interface is a module that uses the same obarray as the
1587 ;; root module. It does not allow new definitions, tho.
1588
1589 (define (make-scm-module)
1590 (let ((m (make-module 0)))
1591 (set-module-obarray! m (%get-pre-modules-obarray))
1592 (set-module-eval-closure! m (standard-interface-eval-closure m))
1593 m))
1594
1595
1596 \f
1597
1598 ;;; {Module-based Loading}
1599 ;;;
1600
1601 (define (save-module-excursion thunk)
1602 (let ((inner-module (current-module))
1603 (outer-module #f))
1604 (dynamic-wind (lambda ()
1605 (set! outer-module (current-module))
1606 (set-current-module inner-module)
1607 (set! inner-module #f))
1608 thunk
1609 (lambda ()
1610 (set! inner-module (current-module))
1611 (set-current-module outer-module)
1612 (set! outer-module #f)))))
1613
1614 (define basic-load load)
1615
1616 (define (load-module filename . reader)
1617 (save-module-excursion
1618 (lambda ()
1619 (let ((oldname (and (current-load-port)
1620 (port-filename (current-load-port)))))
1621 (apply basic-load
1622 (if (and oldname
1623 (> (string-length filename) 0)
1624 (not (char=? (string-ref filename 0) #\/))
1625 (not (string=? (dirname oldname) ".")))
1626 (string-append (dirname oldname) "/" filename)
1627 filename)
1628 reader)))))
1629
1630
1631 \f
1632
1633 ;;; {MODULE-REF -- exported}
1634 ;;;
1635
1636 ;; Returns the value of a variable called NAME in MODULE or any of its
1637 ;; used modules. If there is no such variable, then if the optional third
1638 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1639 ;;
1640 (define (module-ref module name . rest)
1641 (let ((variable (module-variable module name)))
1642 (if (and variable (variable-bound? variable))
1643 (variable-ref variable)
1644 (if (null? rest)
1645 (error "No variable named" name 'in module)
1646 (car rest) ; default value
1647 ))))
1648
1649 ;; MODULE-SET! -- exported
1650 ;;
1651 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1652 ;; to VALUE; if there is no such variable, an error is signaled.
1653 ;;
1654 (define (module-set! module name value)
1655 (let ((variable (module-variable module name)))
1656 (if variable
1657 (variable-set! variable value)
1658 (error "No variable named" name 'in module))))
1659
1660 ;; MODULE-DEFINE! -- exported
1661 ;;
1662 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1663 ;; variable, it is added first.
1664 ;;
1665 (define (module-define! module name value)
1666 (let ((variable (module-local-variable module name)))
1667 (if variable
1668 (begin
1669 (variable-set! variable value)
1670 (module-modified module))
1671 (let ((variable (make-variable value)))
1672 (module-add! module name variable)))))
1673
1674 ;; MODULE-DEFINED? -- exported
1675 ;;
1676 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1677 ;; uses)
1678 ;;
1679 (define (module-defined? module name)
1680 (let ((variable (module-variable module name)))
1681 (and variable (variable-bound? variable))))
1682
1683 ;; MODULE-USE! module interface
1684 ;;
1685 ;; Add INTERFACE to the list of interfaces used by MODULE.
1686 ;;
1687 (define (module-use! module interface)
1688 (if (not (eq? module interface))
1689 (begin
1690 ;; Newly used modules must be appended rather than consed, so that
1691 ;; `module-variable' traverses the use list starting from the first
1692 ;; used module.
1693 (set-module-uses! module
1694 (append (filter (lambda (m)
1695 (not
1696 (equal? (module-name m)
1697 (module-name interface))))
1698 (module-uses module))
1699 (list interface)))
1700
1701 (module-modified module))))
1702
1703 ;; MODULE-USE-INTERFACES! module interfaces
1704 ;;
1705 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1706 ;;
1707 (define (module-use-interfaces! module interfaces)
1708 (set-module-uses! module
1709 (append (module-uses module) interfaces))
1710 (module-modified module))
1711
1712 \f
1713
1714 ;;; {Recursive Namespaces}
1715 ;;;
1716 ;;; A hierarchical namespace emerges if we consider some module to be
1717 ;;; root, and variables bound to modules as nested namespaces.
1718 ;;;
1719 ;;; The routines in this file manage variable names in hierarchical namespace.
1720 ;;; Each variable name is a list of elements, looked up in successively nested
1721 ;;; modules.
1722 ;;;
1723 ;;; (nested-ref some-root-module '(foo bar baz))
1724 ;;; => <value of a variable named baz in the module bound to bar in
1725 ;;; the module bound to foo in some-root-module>
1726 ;;;
1727 ;;;
1728 ;;; There are:
1729 ;;;
1730 ;;; ;; a-root is a module
1731 ;;; ;; name is a list of symbols
1732 ;;;
1733 ;;; nested-ref a-root name
1734 ;;; nested-set! a-root name val
1735 ;;; nested-define! a-root name val
1736 ;;; nested-remove! a-root name
1737 ;;;
1738 ;;;
1739 ;;; (current-module) is a natural choice for a-root so for convenience there are
1740 ;;; also:
1741 ;;;
1742 ;;; local-ref name == nested-ref (current-module) name
1743 ;;; local-set! name val == nested-set! (current-module) name val
1744 ;;; local-define! name val == nested-define! (current-module) name val
1745 ;;; local-remove! name == nested-remove! (current-module) name
1746 ;;;
1747
1748
1749 (define (nested-ref root names)
1750 (let loop ((cur root)
1751 (elts names))
1752 (cond
1753 ((null? elts) cur)
1754 ((not (module? cur)) #f)
1755 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1756
1757 (define (nested-set! root names val)
1758 (let loop ((cur root)
1759 (elts names))
1760 (if (null? (cdr elts))
1761 (module-set! cur (car elts) val)
1762 (loop (module-ref cur (car elts)) (cdr elts)))))
1763
1764 (define (nested-define! root names val)
1765 (let loop ((cur root)
1766 (elts names))
1767 (if (null? (cdr elts))
1768 (module-define! cur (car elts) val)
1769 (loop (module-ref cur (car elts)) (cdr elts)))))
1770
1771 (define (nested-remove! root names)
1772 (let loop ((cur root)
1773 (elts names))
1774 (if (null? (cdr elts))
1775 (module-remove! cur (car elts))
1776 (loop (module-ref cur (car elts)) (cdr elts)))))
1777
1778 (define (local-ref names) (nested-ref (current-module) names))
1779 (define (local-set! names val) (nested-set! (current-module) names val))
1780 (define (local-define names val) (nested-define! (current-module) names val))
1781 (define (local-remove names) (nested-remove! (current-module) names))
1782
1783
1784 \f
1785
1786 ;;; {The (%app) module}
1787 ;;;
1788 ;;; The root of conventionally named objects not directly in the top level.
1789 ;;;
1790 ;;; (%app modules)
1791 ;;; (%app modules guile)
1792 ;;;
1793 ;;; The directory of all modules and the standard root module.
1794 ;;;
1795
1796 (define (module-public-interface m)
1797 (module-ref m '%module-public-interface #f))
1798 (define (set-module-public-interface! m i)
1799 (module-define! m '%module-public-interface i))
1800 (define (set-system-module! m s)
1801 (set-procedure-property! (module-eval-closure m) 'system-module s))
1802 (define the-root-module (make-root-module))
1803 (define the-scm-module (make-scm-module))
1804 (set-module-public-interface! the-root-module the-scm-module)
1805 (set-module-name! the-root-module '(guile))
1806 (set-module-name! the-scm-module '(guile))
1807 (set-module-kind! the-scm-module 'interface)
1808 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1809
1810 ;; NOTE: This binding is used in libguile/modules.c.
1811 ;;
1812 (define (make-modules-in module name)
1813 (if (null? name)
1814 module
1815 (cond
1816 ((module-ref module (car name) #f)
1817 => (lambda (m) (make-modules-in m (cdr name))))
1818 (else (let ((m (make-module 31)))
1819 (set-module-kind! m 'directory)
1820 (set-module-name! m (append (or (module-name module)
1821 '())
1822 (list (car name))))
1823 (module-define! module (car name) m)
1824 (make-modules-in m (cdr name)))))))
1825
1826 (define (beautify-user-module! module)
1827 (let ((interface (module-public-interface module)))
1828 (if (or (not interface)
1829 (eq? interface module))
1830 (let ((interface (make-module 31)))
1831 (set-module-name! interface (module-name module))
1832 (set-module-kind! interface 'interface)
1833 (set-module-public-interface! module interface))))
1834 (if (and (not (memq the-scm-module (module-uses module)))
1835 (not (eq? module the-root-module)))
1836 ;; Import the default set of bindings (from the SCM module) in MODULE.
1837 (module-use! module the-scm-module)))
1838
1839 ;; NOTE: This binding is used in libguile/modules.c.
1840 ;;
1841 (define (resolve-module name . maybe-autoload)
1842 (let ((full-name (append '(%app modules) name)))
1843 (let ((already (nested-ref the-root-module full-name)))
1844 (if already
1845 ;; The module already exists...
1846 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1847 (not (module-public-interface already)))
1848 ;; ...but we are told to load and it doesn't contain source, so
1849 (begin
1850 (try-load-module name)
1851 already)
1852 ;; simply return it.
1853 already)
1854 (begin
1855 ;; Try to autoload it if we are told so
1856 (if (or (null? maybe-autoload) (car maybe-autoload))
1857 (try-load-module name))
1858 ;; Get/create it.
1859 (make-modules-in (current-module) full-name))))))
1860
1861 ;; Cheat. These bindings are needed by modules.c, but we don't want
1862 ;; to move their real definition here because that would be unnatural.
1863 ;;
1864 (define try-module-autoload #f)
1865 (define process-define-module #f)
1866 (define process-use-modules #f)
1867 (define module-export! #f)
1868 (define default-duplicate-binding-procedures #f)
1869
1870 ;; This boots the module system. All bindings needed by modules.c
1871 ;; must have been defined by now.
1872 ;;
1873 (set-current-module the-root-module)
1874
1875 (define %app (make-module 31))
1876 (define app %app) ;; for backwards compatability
1877 (local-define '(%app modules) (make-module 31))
1878 (local-define '(%app modules guile) the-root-module)
1879
1880 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1881
1882 (define (try-load-module name)
1883 (or (begin-deprecated (try-module-linked name))
1884 (try-module-autoload name)
1885 (begin-deprecated (try-module-dynamic-link name))))
1886
1887 (define (purify-module! module)
1888 "Removes bindings in MODULE which are inherited from the (guile) module."
1889 (let ((use-list (module-uses module)))
1890 (if (and (pair? use-list)
1891 (eq? (car (last-pair use-list)) the-scm-module))
1892 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1893
1894 ;; Return a module that is an interface to the module designated by
1895 ;; NAME.
1896 ;;
1897 ;; `resolve-interface' takes four keyword arguments:
1898 ;;
1899 ;; #:select SELECTION
1900 ;;
1901 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1902 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1903 ;; is the name in the used module and SEEN is the name in the using
1904 ;; module. Note that SEEN is also passed through RENAMER, below. The
1905 ;; default is to select all bindings. If you specify no selection but
1906 ;; a renamer, only the bindings that already exist in the used module
1907 ;; are made available in the interface. Bindings that are added later
1908 ;; are not picked up.
1909 ;;
1910 ;; #:hide BINDINGS
1911 ;;
1912 ;; BINDINGS is a list of bindings which should not be imported.
1913 ;;
1914 ;; #:prefix PREFIX
1915 ;;
1916 ;; PREFIX is a symbol that will be appended to each exported name.
1917 ;; The default is to not perform any renaming.
1918 ;;
1919 ;; #:renamer RENAMER
1920 ;;
1921 ;; RENAMER is a procedure that takes a symbol and returns its new
1922 ;; name. The default is not perform any renaming.
1923 ;;
1924 ;; Signal "no code for module" error if module name is not resolvable
1925 ;; or its public interface is not available. Signal "no binding"
1926 ;; error if selected binding does not exist in the used module.
1927 ;;
1928 (define (resolve-interface name . args)
1929
1930 (define (get-keyword-arg args kw def)
1931 (cond ((memq kw args)
1932 => (lambda (kw-arg)
1933 (if (null? (cdr kw-arg))
1934 (error "keyword without value: " kw))
1935 (cadr kw-arg)))
1936 (else
1937 def)))
1938
1939 (let* ((select (get-keyword-arg args #:select #f))
1940 (hide (get-keyword-arg args #:hide '()))
1941 (renamer (or (get-keyword-arg args #:renamer #f)
1942 (let ((prefix (get-keyword-arg args #:prefix #f)))
1943 (and prefix (symbol-prefix-proc prefix)))
1944 identity))
1945 (module (resolve-module name))
1946 (public-i (and module (module-public-interface module))))
1947 (and (or (not module) (not public-i))
1948 (error "no code for module" name))
1949 (if (and (not select) (null? hide) (eq? renamer identity))
1950 public-i
1951 (let ((selection (or select (module-map (lambda (sym var) sym)
1952 public-i)))
1953 (custom-i (make-module 31)))
1954 (set-module-kind! custom-i 'custom-interface)
1955 (set-module-name! custom-i name)
1956 ;; XXX - should use a lazy binder so that changes to the
1957 ;; used module are picked up automatically.
1958 (for-each (lambda (bspec)
1959 (let* ((direct? (symbol? bspec))
1960 (orig (if direct? bspec (car bspec)))
1961 (seen (if direct? bspec (cdr bspec)))
1962 (var (or (module-local-variable public-i orig)
1963 (module-local-variable module orig)
1964 (error
1965 ;; fixme: format manually for now
1966 (simple-format
1967 #f "no binding `~A' in module ~A"
1968 orig name)))))
1969 (if (memq orig hide)
1970 (set! hide (delq! orig hide))
1971 (module-add! custom-i
1972 (renamer seen)
1973 var))))
1974 selection)
1975 ;; Check that we are not hiding bindings which don't exist
1976 (for-each (lambda (binding)
1977 (if (not (module-local-variable public-i binding))
1978 (error
1979 (simple-format
1980 #f "no binding `~A' to hide in module ~A"
1981 binding name))))
1982 hide)
1983 custom-i))))
1984
1985 (define (symbol-prefix-proc prefix)
1986 (lambda (symbol)
1987 (symbol-append prefix symbol)))
1988
1989 ;; This function is called from "modules.c". If you change it, be
1990 ;; sure to update "modules.c" as well.
1991
1992 (define (process-define-module args)
1993 (let* ((module-id (car args))
1994 (module (resolve-module module-id #f))
1995 (kws (cdr args))
1996 (unrecognized (lambda (arg)
1997 (error "unrecognized define-module argument" arg))))
1998 (beautify-user-module! module)
1999 (let loop ((kws kws)
2000 (reversed-interfaces '())
2001 (exports '())
2002 (re-exports '())
2003 (replacements '())
2004 (autoloads '()))
2005
2006 (if (null? kws)
2007 (call-with-deferred-observers
2008 (lambda ()
2009 (module-use-interfaces! module (reverse reversed-interfaces))
2010 (module-export! module exports)
2011 (module-replace! module replacements)
2012 (module-re-export! module re-exports)
2013 (if (not (null? autoloads))
2014 (apply module-autoload! module autoloads))))
2015 (case (car kws)
2016 ((#:use-module #:use-syntax)
2017 (or (pair? (cdr kws))
2018 (unrecognized kws))
2019 (let* ((interface-args (cadr kws))
2020 (interface (apply resolve-interface interface-args)))
2021 (and (eq? (car kws) #:use-syntax)
2022 (or (symbol? (caar interface-args))
2023 (error "invalid module name for use-syntax"
2024 (car interface-args)))
2025 (set-module-transformer!
2026 module
2027 (module-ref interface
2028 (car (last-pair (car interface-args)))
2029 #f)))
2030 (loop (cddr kws)
2031 (cons interface reversed-interfaces)
2032 exports
2033 re-exports
2034 replacements
2035 autoloads)))
2036 ((#:autoload)
2037 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2038 (unrecognized kws))
2039 (loop (cdddr kws)
2040 reversed-interfaces
2041 exports
2042 re-exports
2043 replacements
2044 (let ((name (cadr kws))
2045 (bindings (caddr kws)))
2046 (cons* name bindings autoloads))))
2047 ((#:no-backtrace)
2048 (set-system-module! module #t)
2049 (loop (cdr kws) reversed-interfaces exports re-exports
2050 replacements autoloads))
2051 ((#:pure)
2052 (purify-module! module)
2053 (loop (cdr kws) reversed-interfaces exports re-exports
2054 replacements autoloads))
2055 ((#:duplicates)
2056 (if (not (pair? (cdr kws)))
2057 (unrecognized kws))
2058 (set-module-duplicates-handlers!
2059 module
2060 (lookup-duplicates-handlers (cadr kws)))
2061 (loop (cddr kws) reversed-interfaces exports re-exports
2062 replacements autoloads))
2063 ((#:export #:export-syntax)
2064 (or (pair? (cdr kws))
2065 (unrecognized kws))
2066 (loop (cddr kws)
2067 reversed-interfaces
2068 (append (cadr kws) exports)
2069 re-exports
2070 replacements
2071 autoloads))
2072 ((#:re-export #:re-export-syntax)
2073 (or (pair? (cdr kws))
2074 (unrecognized kws))
2075 (loop (cddr kws)
2076 reversed-interfaces
2077 exports
2078 (append (cadr kws) re-exports)
2079 replacements
2080 autoloads))
2081 ((#:replace #:replace-syntax)
2082 (or (pair? (cdr kws))
2083 (unrecognized kws))
2084 (loop (cddr kws)
2085 reversed-interfaces
2086 exports
2087 re-exports
2088 (append (cadr kws) replacements)
2089 autoloads))
2090 (else
2091 (unrecognized kws)))))
2092 (run-hook module-defined-hook module)
2093 module))
2094
2095 ;; `module-defined-hook' is a hook that is run whenever a new module
2096 ;; is defined. Its members are called with one argument, the new
2097 ;; module.
2098 (define module-defined-hook (make-hook 1))
2099
2100 \f
2101
2102 ;;; {Autoload}
2103 ;;;
2104
2105 (define (make-autoload-interface module name bindings)
2106 (let ((b (lambda (a sym definep)
2107 (and (memq sym bindings)
2108 (let ((i (module-public-interface (resolve-module name))))
2109 (if (not i)
2110 (error "missing interface for module" name))
2111 (let ((autoload (memq a (module-uses module))))
2112 ;; Replace autoload-interface with actual interface if
2113 ;; that has not happened yet.
2114 (if (pair? autoload)
2115 (set-car! autoload i)))
2116 (module-local-variable i sym))))))
2117 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2118 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2119
2120 (define (module-autoload! module . args)
2121 "Have @var{module} automatically load the module named @var{name} when one
2122 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2123 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2124 module '(ice-9 q) '(make-q q-length))}."
2125 (let loop ((args args))
2126 (cond ((null? args)
2127 #t)
2128 ((null? (cdr args))
2129 (error "invalid name+binding autoload list" args))
2130 (else
2131 (let ((name (car args))
2132 (bindings (cadr args)))
2133 (module-use! module (make-autoload-interface module
2134 name bindings))
2135 (loop (cddr args)))))))
2136
2137
2138 ;;; {Compiled module}
2139
2140 (define load-compiled #f)
2141
2142 \f
2143
2144 ;;; {Autoloading modules}
2145 ;;;
2146
2147 (define autoloads-in-progress '())
2148
2149 ;; This function is called from "modules.c". If you change it, be
2150 ;; sure to update "modules.c" as well.
2151
2152 (define (try-module-autoload module-name)
2153 (let* ((reverse-name (reverse module-name))
2154 (name (symbol->string (car reverse-name)))
2155 (dir-hint-module-name (reverse (cdr reverse-name)))
2156 (dir-hint (apply string-append
2157 (map (lambda (elt)
2158 (string-append (symbol->string elt) "/"))
2159 dir-hint-module-name))))
2160 (resolve-module dir-hint-module-name #f)
2161 (and (not (autoload-done-or-in-progress? dir-hint name))
2162 (let ((didit #f))
2163 (define (load-file proc file)
2164 (save-module-excursion (lambda () (proc file)))
2165 (set! didit #t))
2166 (dynamic-wind
2167 (lambda () (autoload-in-progress! dir-hint name))
2168 (lambda ()
2169 (let ((file (in-vicinity dir-hint name)))
2170 (cond ((and load-compiled
2171 (%search-load-path (string-append file ".go")))
2172 => (lambda (full)
2173 (load-file load-compiled full)))
2174 ((%search-load-path file)
2175 => (lambda (full)
2176 (with-fluids ((current-reader #f))
2177 (load-file primitive-load full)))))))
2178 (lambda () (set-autoloaded! dir-hint name didit)))
2179 didit))))
2180
2181 \f
2182
2183 ;;; {Dynamic linking of modules}
2184 ;;;
2185
2186 (define autoloads-done '((guile . guile)))
2187
2188 (define (autoload-done-or-in-progress? p m)
2189 (let ((n (cons p m)))
2190 (->bool (or (member n autoloads-done)
2191 (member n autoloads-in-progress)))))
2192
2193 (define (autoload-done! p m)
2194 (let ((n (cons p m)))
2195 (set! autoloads-in-progress
2196 (delete! n autoloads-in-progress))
2197 (or (member n autoloads-done)
2198 (set! autoloads-done (cons n autoloads-done)))))
2199
2200 (define (autoload-in-progress! p m)
2201 (let ((n (cons p m)))
2202 (set! autoloads-done
2203 (delete! n autoloads-done))
2204 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2205
2206 (define (set-autoloaded! p m done?)
2207 (if done?
2208 (autoload-done! p m)
2209 (let ((n (cons p m)))
2210 (set! autoloads-done (delete! n autoloads-done))
2211 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2212
2213 \f
2214
2215 ;;; {Run-time options}
2216 ;;;
2217
2218 (define define-option-interface
2219 (let* ((option-name car)
2220 (option-value cadr)
2221 (option-documentation caddr)
2222
2223 (print-option (lambda (option)
2224 (display (option-name option))
2225 (if (< (string-length
2226 (symbol->string (option-name option)))
2227 8)
2228 (display #\tab))
2229 (display #\tab)
2230 (display (option-value option))
2231 (display #\tab)
2232 (display (option-documentation option))
2233 (newline)))
2234
2235 ;; Below follow the macros defining the run-time option interfaces.
2236
2237 (make-options (lambda (interface)
2238 `(lambda args
2239 (cond ((null? args) (,interface))
2240 ((list? (car args))
2241 (,interface (car args)) (,interface))
2242 (else (for-each ,print-option
2243 (,interface #t)))))))
2244
2245 (make-enable (lambda (interface)
2246 `(lambda flags
2247 (,interface (append flags (,interface)))
2248 (,interface))))
2249
2250 (make-disable (lambda (interface)
2251 `(lambda flags
2252 (let ((options (,interface)))
2253 (for-each (lambda (flag)
2254 (set! options (delq! flag options)))
2255 flags)
2256 (,interface options)
2257 (,interface))))))
2258 (procedure->memoizing-macro
2259 (lambda (exp env)
2260 (let* ((option-group (cadr exp))
2261 (interface (car option-group))
2262 (options/enable/disable (cadr option-group)))
2263 `(begin
2264 (define ,(car options/enable/disable)
2265 ,(make-options interface))
2266 (define ,(cadr options/enable/disable)
2267 ,(make-enable interface))
2268 (define ,(caddr options/enable/disable)
2269 ,(make-disable interface))
2270 (defmacro ,(caaddr option-group) (opt val)
2271 `(,,(car options/enable/disable)
2272 (append (,,(car options/enable/disable))
2273 (list ',opt ,val))))))))))
2274
2275 (define-option-interface
2276 (eval-options-interface
2277 (eval-options eval-enable eval-disable)
2278 (eval-set!)))
2279
2280 (define-option-interface
2281 (debug-options-interface
2282 (debug-options debug-enable debug-disable)
2283 (debug-set!)))
2284
2285 (define-option-interface
2286 (evaluator-traps-interface
2287 (traps trap-enable trap-disable)
2288 (trap-set!)))
2289
2290 (define-option-interface
2291 (read-options-interface
2292 (read-options read-enable read-disable)
2293 (read-set!)))
2294
2295 (define-option-interface
2296 (print-options-interface
2297 (print-options print-enable print-disable)
2298 (print-set!)))
2299
2300 \f
2301
2302 ;;; {Running Repls}
2303 ;;;
2304
2305 (define (repl read evaler print)
2306 (let loop ((source (read (current-input-port))))
2307 (print (evaler source))
2308 (loop (read (current-input-port)))))
2309
2310 ;; A provisional repl that acts like the SCM repl:
2311 ;;
2312 (define scm-repl-silent #f)
2313 (define (assert-repl-silence v) (set! scm-repl-silent v))
2314
2315 (define *unspecified* (if #f #f))
2316 (define (unspecified? v) (eq? v *unspecified*))
2317
2318 (define scm-repl-print-unspecified #f)
2319 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2320
2321 (define scm-repl-verbose #f)
2322 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2323
2324 (define scm-repl-prompt "guile> ")
2325
2326 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2327
2328 (define (default-lazy-handler key . args)
2329 (save-stack lazy-handler-dispatch)
2330 (apply throw key args))
2331
2332 (define (lazy-handler-dispatch key . args)
2333 (apply default-lazy-handler key args))
2334
2335 (define abort-hook (make-hook))
2336
2337 ;; these definitions are used if running a script.
2338 ;; otherwise redefined in error-catching-loop.
2339 (define (set-batch-mode?! arg) #t)
2340 (define (batch-mode?) #t)
2341
2342 (define (error-catching-loop thunk)
2343 (let ((status #f)
2344 (interactive #t))
2345 (define (loop first)
2346 (let ((next
2347 (catch #t
2348
2349 (lambda ()
2350 (call-with-unblocked-asyncs
2351 (lambda ()
2352 (with-traps
2353 (lambda ()
2354 (first)
2355
2356 ;; This line is needed because mark
2357 ;; doesn't do closures quite right.
2358 ;; Unreferenced locals should be
2359 ;; collected.
2360 (set! first #f)
2361 (let loop ((v (thunk)))
2362 (loop (thunk)))
2363 #f)))))
2364
2365 (lambda (key . args)
2366 (case key
2367 ((quit)
2368 (set! status args)
2369 #f)
2370
2371 ((switch-repl)
2372 (apply throw 'switch-repl args))
2373
2374 ((abort)
2375 ;; This is one of the closures that require
2376 ;; (set! first #f) above
2377 ;;
2378 (lambda ()
2379 (run-hook abort-hook)
2380 (force-output (current-output-port))
2381 (display "ABORT: " (current-error-port))
2382 (write args (current-error-port))
2383 (newline (current-error-port))
2384 (if interactive
2385 (begin
2386 (if (and
2387 (not has-shown-debugger-hint?)
2388 (not (memq 'backtrace
2389 (debug-options-interface)))
2390 (stack? (fluid-ref the-last-stack)))
2391 (begin
2392 (newline (current-error-port))
2393 (display
2394 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2395 (current-error-port))
2396 (set! has-shown-debugger-hint? #t)))
2397 (force-output (current-error-port)))
2398 (begin
2399 (primitive-exit 1)))
2400 (set! stack-saved? #f)))
2401
2402 (else
2403 ;; This is the other cons-leak closure...
2404 (lambda ()
2405 (cond ((= (length args) 4)
2406 (apply handle-system-error key args))
2407 (else
2408 (apply bad-throw key args)))))))
2409
2410 ;; Note that having just `lazy-handler-dispatch'
2411 ;; here is connected with the mechanism that
2412 ;; produces a nice backtrace upon error. If, for
2413 ;; example, this is replaced with (lambda args
2414 ;; (apply lazy-handler-dispatch args)), the stack
2415 ;; cutting (in save-stack) goes wrong and ends up
2416 ;; saving no stack at all, so there is no
2417 ;; backtrace.
2418 lazy-handler-dispatch)))
2419
2420 (if next (loop next) status)))
2421 (set! set-batch-mode?! (lambda (arg)
2422 (cond (arg
2423 (set! interactive #f)
2424 (restore-signals))
2425 (#t
2426 (error "sorry, not implemented")))))
2427 (set! batch-mode? (lambda () (not interactive)))
2428 (call-with-blocked-asyncs
2429 (lambda () (loop (lambda () #t))))))
2430
2431 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2432 (define before-signal-stack (make-fluid))
2433 (define stack-saved? #f)
2434
2435 (define (save-stack . narrowing)
2436 (or stack-saved?
2437 (cond ((not (memq 'debug (debug-options-interface)))
2438 (fluid-set! the-last-stack #f)
2439 (set! stack-saved? #t))
2440 (else
2441 (fluid-set!
2442 the-last-stack
2443 (case (stack-id #t)
2444 ((repl-stack)
2445 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2446 ((load-stack)
2447 (apply make-stack #t save-stack 0 #t 0 narrowing))
2448 ((tk-stack)
2449 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2450 ((#t)
2451 (apply make-stack #t save-stack 0 1 narrowing))
2452 (else
2453 (let ((id (stack-id #t)))
2454 (and (procedure? id)
2455 (apply make-stack #t save-stack id #t 0 narrowing))))))
2456 (set! stack-saved? #t)))))
2457
2458 (define before-error-hook (make-hook))
2459 (define after-error-hook (make-hook))
2460 (define before-backtrace-hook (make-hook))
2461 (define after-backtrace-hook (make-hook))
2462
2463 (define has-shown-debugger-hint? #f)
2464
2465 (define (handle-system-error key . args)
2466 (let ((cep (current-error-port)))
2467 (cond ((not (stack? (fluid-ref the-last-stack))))
2468 ((memq 'backtrace (debug-options-interface))
2469 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2470 (eq? key 'out-of-range))
2471 (list-ref args 3)
2472 '())))
2473 (run-hook before-backtrace-hook)
2474 (newline cep)
2475 (display "Backtrace:\n")
2476 (display-backtrace (fluid-ref the-last-stack) cep
2477 #f #f highlights)
2478 (newline cep)
2479 (run-hook after-backtrace-hook))))
2480 (run-hook before-error-hook)
2481 (apply display-error (fluid-ref the-last-stack) cep args)
2482 (run-hook after-error-hook)
2483 (force-output cep)
2484 (throw 'abort key)))
2485
2486 (define (quit . args)
2487 (apply throw 'quit args))
2488
2489 (define exit quit)
2490
2491 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2492
2493 ;; Replaced by C code:
2494 ;;(define (backtrace)
2495 ;; (if (fluid-ref the-last-stack)
2496 ;; (begin
2497 ;; (newline)
2498 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2499 ;; (newline)
2500 ;; (if (and (not has-shown-backtrace-hint?)
2501 ;; (not (memq 'backtrace (debug-options-interface))))
2502 ;; (begin
2503 ;; (display
2504 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2505 ;;automatically if an error occurs in the future.\n")
2506 ;; (set! has-shown-backtrace-hint? #t))))
2507 ;; (display "No backtrace available.\n")))
2508
2509 (define (error-catching-repl r e p)
2510 (error-catching-loop
2511 (lambda ()
2512 (call-with-values (lambda () (e (r)))
2513 (lambda the-values (for-each p the-values))))))
2514
2515 (define (gc-run-time)
2516 (cdr (assq 'gc-time-taken (gc-stats))))
2517
2518 (define before-read-hook (make-hook))
2519 (define after-read-hook (make-hook))
2520 (define before-eval-hook (make-hook 1))
2521 (define after-eval-hook (make-hook 1))
2522 (define before-print-hook (make-hook 1))
2523 (define after-print-hook (make-hook 1))
2524
2525 ;;; The default repl-reader function. We may override this if we've
2526 ;;; the readline library.
2527 (define repl-reader
2528 (lambda (prompt)
2529 (display prompt)
2530 (force-output)
2531 (run-hook before-read-hook)
2532 ((or (fluid-ref current-reader) read) (current-input-port))))
2533
2534 (define (scm-style-repl)
2535
2536 (letrec (
2537 (start-gc-rt #f)
2538 (start-rt #f)
2539 (repl-report-start-timing (lambda ()
2540 (set! start-gc-rt (gc-run-time))
2541 (set! start-rt (get-internal-run-time))))
2542 (repl-report (lambda ()
2543 (display ";;; ")
2544 (display (inexact->exact
2545 (* 1000 (/ (- (get-internal-run-time) start-rt)
2546 internal-time-units-per-second))))
2547 (display " msec (")
2548 (display (inexact->exact
2549 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2550 internal-time-units-per-second))))
2551 (display " msec in gc)\n")))
2552
2553 (consume-trailing-whitespace
2554 (lambda ()
2555 (let ((ch (peek-char)))
2556 (cond
2557 ((eof-object? ch))
2558 ((or (char=? ch #\space) (char=? ch #\tab))
2559 (read-char)
2560 (consume-trailing-whitespace))
2561 ((char=? ch #\newline)
2562 (read-char))))))
2563 (-read (lambda ()
2564 (let ((val
2565 (let ((prompt (cond ((string? scm-repl-prompt)
2566 scm-repl-prompt)
2567 ((thunk? scm-repl-prompt)
2568 (scm-repl-prompt))
2569 (scm-repl-prompt "> ")
2570 (else ""))))
2571 (repl-reader prompt))))
2572
2573 ;; As described in R4RS, the READ procedure updates the
2574 ;; port to point to the first character past the end of
2575 ;; the external representation of the object. This
2576 ;; means that it doesn't consume the newline typically
2577 ;; found after an expression. This means that, when
2578 ;; debugging Guile with GDB, GDB gets the newline, which
2579 ;; it often interprets as a "continue" command, making
2580 ;; breakpoints kind of useless. So, consume any
2581 ;; trailing newline here, as well as any whitespace
2582 ;; before it.
2583 ;; But not if EOF, for control-D.
2584 (if (not (eof-object? val))
2585 (consume-trailing-whitespace))
2586 (run-hook after-read-hook)
2587 (if (eof-object? val)
2588 (begin
2589 (repl-report-start-timing)
2590 (if scm-repl-verbose
2591 (begin
2592 (newline)
2593 (display ";;; EOF -- quitting")
2594 (newline)))
2595 (quit 0)))
2596 val)))
2597
2598 (-eval (lambda (sourc)
2599 (repl-report-start-timing)
2600 (run-hook before-eval-hook sourc)
2601 (let ((val (start-stack 'repl-stack
2602 ;; If you change this procedure
2603 ;; (primitive-eval), please also
2604 ;; modify the repl-stack case in
2605 ;; save-stack so that stack cutting
2606 ;; continues to work.
2607 (primitive-eval sourc))))
2608 (run-hook after-eval-hook sourc)
2609 val)))
2610
2611
2612 (-print (let ((maybe-print (lambda (result)
2613 (if (or scm-repl-print-unspecified
2614 (not (unspecified? result)))
2615 (begin
2616 (write result)
2617 (newline))))))
2618 (lambda (result)
2619 (if (not scm-repl-silent)
2620 (begin
2621 (run-hook before-print-hook result)
2622 (maybe-print result)
2623 (run-hook after-print-hook result)
2624 (if scm-repl-verbose
2625 (repl-report))
2626 (force-output))))))
2627
2628 (-quit (lambda (args)
2629 (if scm-repl-verbose
2630 (begin
2631 (display ";;; QUIT executed, repl exitting")
2632 (newline)
2633 (repl-report)))
2634 args))
2635
2636 (-abort (lambda ()
2637 (if scm-repl-verbose
2638 (begin
2639 (display ";;; ABORT executed.")
2640 (newline)
2641 (repl-report)))
2642 (repl -read -eval -print))))
2643
2644 (let ((status (error-catching-repl -read
2645 -eval
2646 -print)))
2647 (-quit status))))
2648
2649
2650 \f
2651
2652 ;;; {IOTA functions: generating lists of numbers}
2653 ;;;
2654
2655 (define (iota n)
2656 (let loop ((count (1- n)) (result '()))
2657 (if (< count 0) result
2658 (loop (1- count) (cons count result)))))
2659
2660 \f
2661
2662 ;;; {collect}
2663 ;;;
2664 ;;; Similar to `begin' but returns a list of the results of all constituent
2665 ;;; forms instead of the result of the last form.
2666 ;;; (The definition relies on the current left-to-right
2667 ;;; order of evaluation of operands in applications.)
2668 ;;;
2669
2670 (defmacro collect forms
2671 (cons 'list forms))
2672
2673 \f
2674
2675 ;;; {with-fluids}
2676 ;;;
2677
2678 ;; with-fluids is a convenience wrapper for the builtin procedure
2679 ;; `with-fluids*'. The syntax is just like `let':
2680 ;;
2681 ;; (with-fluids ((fluid val)
2682 ;; ...)
2683 ;; body)
2684
2685 (defmacro with-fluids (bindings . body)
2686 (let ((fluids (map car bindings))
2687 (values (map cadr bindings)))
2688 (if (and (= (length fluids) 1) (= (length values) 1))
2689 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2690 `(with-fluids* (list ,@fluids) (list ,@values)
2691 (lambda () ,@body)))))
2692
2693 \f
2694
2695 ;;; {Macros}
2696 ;;;
2697
2698 ;; actually....hobbit might be able to hack these with a little
2699 ;; coaxing
2700 ;;
2701
2702 (define (primitive-macro? m)
2703 (and (macro? m)
2704 (not (macro-transformer m))))
2705
2706 (defmacro define-macro (first . rest)
2707 (let ((name (if (symbol? first) first (car first)))
2708 (transformer
2709 (if (symbol? first)
2710 (car rest)
2711 `(lambda ,(cdr first) ,@rest))))
2712 `(eval-case
2713 ((load-toplevel)
2714 (define ,name (defmacro:transformer ,transformer)))
2715 (else
2716 (error "define-macro can only be used at the top level")))))
2717
2718
2719 (defmacro define-syntax-macro (first . rest)
2720 (let ((name (if (symbol? first) first (car first)))
2721 (transformer
2722 (if (symbol? first)
2723 (car rest)
2724 `(lambda ,(cdr first) ,@rest))))
2725 `(eval-case
2726 ((load-toplevel)
2727 (define ,name (defmacro:syntax-transformer ,transformer)))
2728 (else
2729 (error "define-syntax-macro can only be used at the top level")))))
2730
2731 \f
2732
2733 ;;; {While}
2734 ;;;
2735 ;;; with `continue' and `break'.
2736 ;;;
2737
2738 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2739 ;; that's only necessary if continue is actually used. A new key is
2740 ;; generated every time, so break and continue apply to their originating
2741 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2742 ;; `key' binding away from the cond and body code.
2743 ;;
2744 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2745 ;; for lambda and not, so as to protect against any user rebinding of that
2746 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2747 ;;
2748 ;; (use-modules (ice-9 syncase))
2749 ;; (while #f)
2750 ;; => ERROR: invalid syntax ()
2751 ;;
2752 ;; This is probably a bug in syncase.
2753 ;;
2754 (define-macro (while cond . body)
2755 (define (while-helper proc)
2756 (do ((key (make-symbol "while-key")))
2757 ((catch key
2758 (lambda ()
2759 (proc (lambda () (throw key #t))
2760 (lambda () (throw key #f))))
2761 (lambda (key arg) arg)))))
2762 `(,while-helper (,lambda (break continue)
2763 (do ()
2764 ((,not ,cond))
2765 ,@body)
2766 #t)))
2767
2768
2769 \f
2770
2771 ;;; {Module System Macros}
2772 ;;;
2773
2774 ;; Return a list of expressions that evaluate to the appropriate
2775 ;; arguments for resolve-interface according to SPEC.
2776
2777 (define (compile-interface-spec spec)
2778 (define (make-keyarg sym key quote?)
2779 (cond ((or (memq sym spec)
2780 (memq key spec))
2781 => (lambda (rest)
2782 (if quote?
2783 (list key (list 'quote (cadr rest)))
2784 (list key (cadr rest)))))
2785 (else
2786 '())))
2787 (define (map-apply func list)
2788 (map (lambda (args) (apply func args)) list))
2789 (define keys
2790 ;; sym key quote?
2791 '((:select #:select #t)
2792 (:hide #:hide #t)
2793 (:prefix #:prefix #t)
2794 (:renamer #:renamer #f)))
2795 (if (not (pair? (car spec)))
2796 `(',spec)
2797 `(',(car spec)
2798 ,@(apply append (map-apply make-keyarg keys)))))
2799
2800 (define (keyword-like-symbol->keyword sym)
2801 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2802
2803 (define (compile-define-module-args args)
2804 ;; Just quote everything except #:use-module and #:use-syntax. We
2805 ;; need to know about all arguments regardless since we want to turn
2806 ;; symbols that look like keywords into real keywords, and the
2807 ;; keyword args in a define-module form are not regular
2808 ;; (i.e. no-backtrace doesn't take a value).
2809 (let loop ((compiled-args `((quote ,(car args))))
2810 (args (cdr args)))
2811 (cond ((null? args)
2812 (reverse! compiled-args))
2813 ;; symbol in keyword position
2814 ((symbol? (car args))
2815 (loop compiled-args
2816 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2817 ((memq (car args) '(#:no-backtrace #:pure))
2818 (loop (cons (car args) compiled-args)
2819 (cdr args)))
2820 ((null? (cdr args))
2821 (error "keyword without value:" (car args)))
2822 ((memq (car args) '(#:use-module #:use-syntax))
2823 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2824 (car args)
2825 compiled-args)
2826 (cddr args)))
2827 ((eq? (car args) #:autoload)
2828 (loop (cons* `(quote ,(caddr args))
2829 `(quote ,(cadr args))
2830 (car args)
2831 compiled-args)
2832 (cdddr args)))
2833 (else
2834 (loop (cons* `(quote ,(cadr args))
2835 (car args)
2836 compiled-args)
2837 (cddr args))))))
2838
2839 (defmacro define-module args
2840 `(eval-case
2841 ((load-toplevel)
2842 (let ((m (process-define-module
2843 (list ,@(compile-define-module-args args)))))
2844 (set-current-module m)
2845 m))
2846 (else
2847 (error "define-module can only be used at the top level"))))
2848
2849 ;; The guts of the use-modules macro. Add the interfaces of the named
2850 ;; modules to the use-list of the current module, in order.
2851
2852 ;; This function is called by "modules.c". If you change it, be sure
2853 ;; to change scm_c_use_module as well.
2854
2855 (define (process-use-modules module-interface-args)
2856 (let ((interfaces (map (lambda (mif-args)
2857 (or (apply resolve-interface mif-args)
2858 (error "no such module" mif-args)))
2859 module-interface-args)))
2860 (call-with-deferred-observers
2861 (lambda ()
2862 (module-use-interfaces! (current-module) interfaces)))))
2863
2864 (defmacro use-modules modules
2865 `(eval-case
2866 ((load-toplevel)
2867 (process-use-modules
2868 (list ,@(map (lambda (m)
2869 `(list ,@(compile-interface-spec m)))
2870 modules)))
2871 *unspecified*)
2872 (else
2873 (error "use-modules can only be used at the top level"))))
2874
2875 (defmacro use-syntax (spec)
2876 `(eval-case
2877 ((load-toplevel)
2878 ,@(if (pair? spec)
2879 `((process-use-modules (list
2880 (list ,@(compile-interface-spec spec))))
2881 (set-module-transformer! (current-module)
2882 ,(car (last-pair spec))))
2883 `((set-module-transformer! (current-module) ,spec)))
2884 *unspecified*)
2885 (else
2886 (error "use-syntax can only be used at the top level"))))
2887
2888 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2889 ;; as soon as guile supports hygienic macros.
2890 (define define-private define)
2891
2892 (defmacro define-public args
2893 (define (syntax)
2894 (error "bad syntax" (list 'define-public args)))
2895 (define (defined-name n)
2896 (cond
2897 ((symbol? n) n)
2898 ((pair? n) (defined-name (car n)))
2899 (else (syntax))))
2900 (cond
2901 ((null? args)
2902 (syntax))
2903 (#t
2904 (let ((name (defined-name (car args))))
2905 `(begin
2906 (define-private ,@args)
2907 (eval-case ((load-toplevel) (export ,name))))))))
2908
2909 (defmacro defmacro-public args
2910 (define (syntax)
2911 (error "bad syntax" (list 'defmacro-public args)))
2912 (define (defined-name n)
2913 (cond
2914 ((symbol? n) n)
2915 (else (syntax))))
2916 (cond
2917 ((null? args)
2918 (syntax))
2919 (#t
2920 (let ((name (defined-name (car args))))
2921 `(begin
2922 (eval-case ((load-toplevel) (export-syntax ,name)))
2923 (defmacro ,@args))))))
2924
2925 ;; Export a local variable
2926
2927 ;; This function is called from "modules.c". If you change it, be
2928 ;; sure to update "modules.c" as well.
2929
2930 (define (module-export! m names)
2931 (let ((public-i (module-public-interface m)))
2932 (for-each (lambda (name)
2933 (let ((var (module-ensure-local-variable! m name)))
2934 (module-add! public-i name var)))
2935 names)))
2936
2937 (define (module-replace! m names)
2938 (let ((public-i (module-public-interface m)))
2939 (for-each (lambda (name)
2940 (let ((var (module-ensure-local-variable! m name)))
2941 (set-object-property! var 'replace #t)
2942 (module-add! public-i name var)))
2943 names)))
2944
2945 ;; Re-export a imported variable
2946 ;;
2947 (define (module-re-export! m names)
2948 (let ((public-i (module-public-interface m)))
2949 (for-each (lambda (name)
2950 (let ((var (module-variable m name)))
2951 (cond ((not var)
2952 (error "Undefined variable:" name))
2953 ((eq? var (module-local-variable m name))
2954 (error "re-exporting local variable:" name))
2955 (else
2956 (module-add! public-i name var)))))
2957 names)))
2958
2959 (defmacro export names
2960 `(eval-case
2961 ((load-toplevel)
2962 (call-with-deferred-observers
2963 (lambda ()
2964 (module-export! (current-module) ',names))))
2965 (else
2966 (error "export can only be used at the top level"))))
2967
2968 (defmacro re-export names
2969 `(eval-case
2970 ((load-toplevel)
2971 (call-with-deferred-observers
2972 (lambda ()
2973 (module-re-export! (current-module) ',names))))
2974 (else
2975 (error "re-export can only be used at the top level"))))
2976
2977 (defmacro export-syntax names
2978 `(export ,@names))
2979
2980 (defmacro re-export-syntax names
2981 `(re-export ,@names))
2982
2983 (define load load-module)
2984
2985 ;; The following macro allows one to write, for example,
2986 ;;
2987 ;; (@ (ice-9 pretty-print) pretty-print)
2988 ;;
2989 ;; to refer directly to the pretty-print variable in module (ice-9
2990 ;; pretty-print). It works by looking up the variable and inserting
2991 ;; it directly into the code. This is understood by the evaluator.
2992 ;; Indeed, all references to global variables are memoized into such
2993 ;; variable objects.
2994
2995 (define-macro (@ mod-name var-name)
2996 (let ((var (module-variable (resolve-interface mod-name) var-name)))
2997 (if (not var)
2998 (error "no such public variable" (list '@ mod-name var-name)))
2999 var))
3000
3001 ;; The '@@' macro is like '@' but it can also access bindings that
3002 ;; have not been explicitely exported.
3003
3004 (define-macro (@@ mod-name var-name)
3005 (let ((var (module-variable (resolve-module mod-name) var-name)))
3006 (if (not var)
3007 (error "no such variable" (list '@@ mod-name var-name)))
3008 var))
3009
3010 \f
3011
3012 ;;; {Parameters}
3013 ;;;
3014
3015 (define make-mutable-parameter
3016 (let ((make (lambda (fluid converter)
3017 (lambda args
3018 (if (null? args)
3019 (fluid-ref fluid)
3020 (fluid-set! fluid (converter (car args))))))))
3021 (lambda (init . converter)
3022 (let ((fluid (make-fluid))
3023 (converter (if (null? converter)
3024 identity
3025 (car converter))))
3026 (fluid-set! fluid (converter init))
3027 (make fluid converter)))))
3028
3029 \f
3030
3031 ;;; {Handling of duplicate imported bindings}
3032 ;;;
3033
3034 ;; Duplicate handlers take the following arguments:
3035 ;;
3036 ;; module importing module
3037 ;; name conflicting name
3038 ;; int1 old interface where name occurs
3039 ;; val1 value of binding in old interface
3040 ;; int2 new interface where name occurs
3041 ;; val2 value of binding in new interface
3042 ;; var previous resolution or #f
3043 ;; val value of previous resolution
3044 ;;
3045 ;; A duplicate handler can take three alternative actions:
3046 ;;
3047 ;; 1. return #f => leave responsibility to next handler
3048 ;; 2. exit with an error
3049 ;; 3. return a variable resolving the conflict
3050 ;;
3051
3052 (define duplicate-handlers
3053 (let ((m (make-module 7)))
3054
3055 (define (check module name int1 val1 int2 val2 var val)
3056 (scm-error 'misc-error
3057 #f
3058 "~A: `~A' imported from both ~A and ~A"
3059 (list (module-name module)
3060 name
3061 (module-name int1)
3062 (module-name int2))
3063 #f))
3064
3065 (define (warn module name int1 val1 int2 val2 var val)
3066 (format (current-error-port)
3067 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3068 (module-name module)
3069 name
3070 (module-name int1)
3071 (module-name int2))
3072 #f)
3073
3074 (define (replace module name int1 val1 int2 val2 var val)
3075 (let ((old (or (and var (object-property var 'replace) var)
3076 (module-variable int1 name)))
3077 (new (module-variable int2 name)))
3078 (if (object-property old 'replace)
3079 (and (or (eq? old new)
3080 (not (object-property new 'replace)))
3081 old)
3082 (and (object-property new 'replace)
3083 new))))
3084
3085 (define (warn-override-core module name int1 val1 int2 val2 var val)
3086 (and (eq? int1 the-scm-module)
3087 (begin
3088 (format (current-error-port)
3089 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3090 (module-name module)
3091 (module-name int2)
3092 name)
3093 (module-local-variable int2 name))))
3094
3095 (define (first module name int1 val1 int2 val2 var val)
3096 (or var (module-local-variable int1 name)))
3097
3098 (define (last module name int1 val1 int2 val2 var val)
3099 (module-local-variable int2 name))
3100
3101 (define (noop module name int1 val1 int2 val2 var val)
3102 #f)
3103
3104 (set-module-name! m 'duplicate-handlers)
3105 (set-module-kind! m 'interface)
3106 (module-define! m 'check check)
3107 (module-define! m 'warn warn)
3108 (module-define! m 'replace replace)
3109 (module-define! m 'warn-override-core warn-override-core)
3110 (module-define! m 'first first)
3111 (module-define! m 'last last)
3112 (module-define! m 'merge-generics noop)
3113 (module-define! m 'merge-accessors noop)
3114 m))
3115
3116 (define (lookup-duplicates-handlers handler-names)
3117 (and handler-names
3118 (map (lambda (handler-name)
3119 (or (module-symbol-local-binding
3120 duplicate-handlers handler-name #f)
3121 (error "invalid duplicate handler name:"
3122 handler-name)))
3123 (if (list? handler-names)
3124 handler-names
3125 (list handler-names)))))
3126
3127 (define default-duplicate-binding-procedures
3128 (make-mutable-parameter #f))
3129
3130 (define default-duplicate-binding-handler
3131 (make-mutable-parameter '(replace warn-override-core warn last)
3132 (lambda (handler-names)
3133 (default-duplicate-binding-procedures
3134 (lookup-duplicates-handlers handler-names))
3135 handler-names)))
3136
3137 \f
3138
3139 ;;; {`cond-expand' for SRFI-0 support.}
3140 ;;;
3141 ;;; This syntactic form expands into different commands or
3142 ;;; definitions, depending on the features provided by the Scheme
3143 ;;; implementation.
3144 ;;;
3145 ;;; Syntax:
3146 ;;;
3147 ;;; <cond-expand>
3148 ;;; --> (cond-expand <cond-expand-clause>+)
3149 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3150 ;;; <cond-expand-clause>
3151 ;;; --> (<feature-requirement> <command-or-definition>*)
3152 ;;; <feature-requirement>
3153 ;;; --> <feature-identifier>
3154 ;;; | (and <feature-requirement>*)
3155 ;;; | (or <feature-requirement>*)
3156 ;;; | (not <feature-requirement>)
3157 ;;; <feature-identifier>
3158 ;;; --> <a symbol which is the name or alias of a SRFI>
3159 ;;;
3160 ;;; Additionally, this implementation provides the
3161 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3162 ;;; determine the implementation type and the supported standard.
3163 ;;;
3164 ;;; Currently, the following feature identifiers are supported:
3165 ;;;
3166 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3167 ;;;
3168 ;;; Remember to update the features list when adding more SRFIs.
3169 ;;;
3170
3171 (define %cond-expand-features
3172 ;; Adjust the above comment when changing this.
3173 '(guile
3174 r5rs
3175 srfi-0 ;; cond-expand itself
3176 srfi-4 ;; homogenous numeric vectors
3177 srfi-6 ;; open-input-string etc, in the guile core
3178 srfi-13 ;; string library
3179 srfi-14 ;; character sets
3180 srfi-55 ;; require-extension
3181 srfi-61 ;; general cond clause
3182 ))
3183
3184 ;; This table maps module public interfaces to the list of features.
3185 ;;
3186 (define %cond-expand-table (make-hash-table 31))
3187
3188 ;; Add one or more features to the `cond-expand' feature list of the
3189 ;; module `module'.
3190 ;;
3191 (define (cond-expand-provide module features)
3192 (let ((mod (module-public-interface module)))
3193 (and mod
3194 (hashq-set! %cond-expand-table mod
3195 (append (hashq-ref %cond-expand-table mod '())
3196 features)))))
3197
3198 (define cond-expand
3199 (procedure->memoizing-macro
3200 (lambda (exp env)
3201 (let ((clauses (cdr exp))
3202 (syntax-error (lambda (cl)
3203 (error "invalid clause in `cond-expand'" cl))))
3204 (letrec
3205 ((test-clause
3206 (lambda (clause)
3207 (cond
3208 ((symbol? clause)
3209 (or (memq clause %cond-expand-features)
3210 (let lp ((uses (module-uses (env-module env))))
3211 (if (pair? uses)
3212 (or (memq clause
3213 (hashq-ref %cond-expand-table
3214 (car uses) '()))
3215 (lp (cdr uses)))
3216 #f))))
3217 ((pair? clause)
3218 (cond
3219 ((eq? 'and (car clause))
3220 (let lp ((l (cdr clause)))
3221 (cond ((null? l)
3222 #t)
3223 ((pair? l)
3224 (and (test-clause (car l)) (lp (cdr l))))
3225 (else
3226 (syntax-error clause)))))
3227 ((eq? 'or (car clause))
3228 (let lp ((l (cdr clause)))
3229 (cond ((null? l)
3230 #f)
3231 ((pair? l)
3232 (or (test-clause (car l)) (lp (cdr l))))
3233 (else
3234 (syntax-error clause)))))
3235 ((eq? 'not (car clause))
3236 (cond ((not (pair? (cdr clause)))
3237 (syntax-error clause))
3238 ((pair? (cddr clause))
3239 ((syntax-error clause))))
3240 (not (test-clause (cadr clause))))
3241 (else
3242 (syntax-error clause))))
3243 (else
3244 (syntax-error clause))))))
3245 (let lp ((c clauses))
3246 (cond
3247 ((null? c)
3248 (error "Unfulfilled `cond-expand'"))
3249 ((not (pair? c))
3250 (syntax-error c))
3251 ((not (pair? (car c)))
3252 (syntax-error (car c)))
3253 ((test-clause (caar c))
3254 `(begin ,@(cdar c)))
3255 ((eq? (caar c) 'else)
3256 (if (pair? (cdr c))
3257 (syntax-error c))
3258 `(begin ,@(cdar c)))
3259 (else
3260 (lp (cdr c))))))))))
3261
3262 ;; This procedure gets called from the startup code with a list of
3263 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3264 ;;
3265 (define (use-srfis srfis)
3266 (process-use-modules
3267 (map (lambda (num)
3268 (list (list 'srfi (string->symbol
3269 (string-append "srfi-" (number->string num))))))
3270 srfis)))
3271
3272 \f
3273
3274 ;;; srfi-55: require-extension
3275 ;;;
3276
3277 (define-macro (require-extension extension-spec)
3278 ;; This macro only handles the srfi extension, which, at present, is
3279 ;; the only one defined by the standard.
3280 (if (not (pair? extension-spec))
3281 (scm-error 'wrong-type-arg "require-extension"
3282 "Not an extension: ~S" (list extension-spec) #f))
3283 (let ((extension (car extension-spec))
3284 (extension-args (cdr extension-spec)))
3285 (case extension
3286 ((srfi)
3287 (let ((use-list '()))
3288 (for-each
3289 (lambda (i)
3290 (if (not (integer? i))
3291 (scm-error 'wrong-type-arg "require-extension"
3292 "Invalid srfi name: ~S" (list i) #f))
3293 (let ((srfi-sym (string->symbol
3294 (string-append "srfi-" (number->string i)))))
3295 (if (not (memq srfi-sym %cond-expand-features))
3296 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3297 use-list)))))
3298 extension-args)
3299 (if (pair? use-list)
3300 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3301 `(begin ,@(reverse! use-list)))))
3302 (else
3303 (scm-error
3304 'wrong-type-arg "require-extension"
3305 "Not a recognized extension type: ~S" (list extension) #f)))))
3306
3307 \f
3308
3309 ;;; {Load emacs interface support if emacs option is given.}
3310 ;;;
3311
3312 (define (named-module-use! user usee)
3313 (module-use! (resolve-module user) (resolve-interface usee)))
3314
3315 (define (load-emacs-interface)
3316 (and (provided? 'debug-extensions)
3317 (debug-enable 'backtrace))
3318 (named-module-use! '(guile-user) '(ice-9 emacs)))
3319
3320 \f
3321
3322 (define using-readline?
3323 (let ((using-readline? (make-fluid)))
3324 (make-procedure-with-setter
3325 (lambda () (fluid-ref using-readline?))
3326 (lambda (v) (fluid-set! using-readline? v)))))
3327
3328 (define (top-repl)
3329 (let ((guile-user-module (resolve-module '(guile-user))))
3330
3331 ;; Load emacs interface support if emacs option is given.
3332 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3333 (module-ref guile-user-module 'use-emacs-interface))
3334 (load-emacs-interface))
3335
3336 ;; Use some convenient modules (in reverse order)
3337
3338 (set-current-module guile-user-module)
3339 (process-use-modules
3340 (append
3341 '(((ice-9 r5rs))
3342 ((ice-9 session))
3343 ((ice-9 debug)))
3344 (if (provided? 'regex)
3345 '(((ice-9 regex)))
3346 '())
3347 (if (provided? 'threads)
3348 '(((ice-9 threads)))
3349 '())))
3350 ;; load debugger on demand
3351 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3352
3353 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3354 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3355 ;; no effect.
3356 (let ((old-handlers #f)
3357 (signals (if (provided? 'posix)
3358 `((,SIGINT . "User interrupt")
3359 (,SIGFPE . "Arithmetic error")
3360 (,SIGSEGV
3361 . "Bad memory access (Segmentation violation)"))
3362 '())))
3363 ;; no SIGBUS on mingw
3364 (if (defined? 'SIGBUS)
3365 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3366 signals)))
3367
3368 (dynamic-wind
3369
3370 ;; call at entry
3371 (lambda ()
3372 (let ((make-handler (lambda (msg)
3373 (lambda (sig)
3374 ;; Make a backup copy of the stack
3375 (fluid-set! before-signal-stack
3376 (fluid-ref the-last-stack))
3377 (save-stack 2)
3378 (scm-error 'signal
3379 #f
3380 msg
3381 #f
3382 (list sig))))))
3383 (set! old-handlers
3384 (map (lambda (sig-msg)
3385 (sigaction (car sig-msg)
3386 (make-handler (cdr sig-msg))))
3387 signals))))
3388
3389 ;; the protected thunk.
3390 (lambda ()
3391 (let ((status (scm-style-repl)))
3392 (run-hook exit-hook)
3393 status))
3394
3395 ;; call at exit.
3396 (lambda ()
3397 (map (lambda (sig-msg old-handler)
3398 (if (not (car old-handler))
3399 ;; restore original C handler.
3400 (sigaction (car sig-msg) #f)
3401 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3402 (sigaction (car sig-msg)
3403 (car old-handler)
3404 (cdr old-handler))))
3405 signals old-handlers))))))
3406
3407 ;;; This hook is run at the very end of an interactive session.
3408 ;;;
3409 (define exit-hook (make-hook))
3410
3411 \f
3412
3413 ;;; {Deprecated stuff}
3414 ;;;
3415
3416 (begin-deprecated
3417 (define (feature? sym)
3418 (issue-deprecation-warning
3419 "`feature?' is deprecated. Use `provided?' instead.")
3420 (provided? sym)))
3421
3422 (begin-deprecated
3423 (primitive-load-path "ice-9/deprecated.scm"))
3424
3425 \f
3426
3427 ;;; Place the user in the guile-user module.
3428 ;;;
3429
3430 (define-module (guile-user))
3431
3432 ;;; boot-9.scm ends here