prevent (resolve-module '(guile)) recursion
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. There are three situations defined. `load-toplevel' triggers for
96 ;; code evaluated at the top-level, for example from the REPL or when
97 ;; loading a file. `compile-toplevel' triggers for code compiled at the
98 ;; toplevel. `execute' triggers during execution of code not at the top
99 ;; level.
100
101 (define eval-case
102 (procedure->memoizing-macro
103 (lambda (exp env)
104 (define (toplevel-env? env)
105 (or (not (pair? env)) (not (pair? (car env)))))
106 (define (syntax)
107 (error "syntax error in eval-case"))
108 (let loop ((clauses (cdr exp)))
109 (cond
110 ((null? clauses)
111 #f)
112 ((not (list? (car clauses)))
113 (syntax))
114 ((eq? 'else (caar clauses))
115 (or (null? (cdr clauses))
116 (syntax))
117 (cons 'begin (cdar clauses)))
118 ((not (list? (caar clauses)))
119 (syntax))
120 ((and (toplevel-env? env)
121 (memq 'load-toplevel (caar clauses)))
122 (cons 'begin (cdar clauses)))
123 (else
124 (loop (cdr clauses))))))))
125
126 \f
127
128 ;; Before compiling, make sure any symbols are resolved in the (guile)
129 ;; module, the primary location of those symbols, rather than in
130 ;; (guile-user), the default module that we compile in.
131
132 (eval-case
133 ((compile-toplevel)
134 (set-current-module (resolve-module '(guile)))))
135
136 ;;; {Defmacros}
137 ;;;
138 ;;; Depends on: features, eval-case
139 ;;;
140
141 (define macro-table (make-weak-key-hash-table 61))
142 (define xformer-table (make-weak-key-hash-table 61))
143
144 (define (defmacro? m) (hashq-ref macro-table m))
145 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
146 (define (defmacro-transformer m) (hashq-ref xformer-table m))
147 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
148
149 (define defmacro:transformer
150 (lambda (f)
151 (let* ((xform (lambda (exp env)
152 (copy-tree (apply f (cdr exp)))))
153 (a (procedure->memoizing-macro xform)))
154 (assert-defmacro?! a)
155 (set-defmacro-transformer! a f)
156 a)))
157
158
159 (define defmacro
160 (let ((defmacro-transformer
161 (lambda (name parms . body)
162 (let ((transformer `(lambda ,parms ,@body)))
163 `(eval-case
164 ((load-toplevel compile-toplevel)
165 (define ,name (defmacro:transformer ,transformer)))
166 (else
167 (error "defmacro can only be used at the top level")))))))
168 (defmacro:transformer defmacro-transformer)))
169
170 (define defmacro:syntax-transformer
171 (lambda (f)
172 (procedure->syntax
173 (lambda (exp env)
174 (copy-tree (apply f (cdr exp)))))))
175
176
177 ;; XXX - should the definition of the car really be looked up in the
178 ;; current module?
179
180 (define (macroexpand-1 e)
181 (cond
182 ((pair? e) (let* ((a (car e))
183 (val (and (symbol? a) (local-ref (list a)))))
184 (if (defmacro? val)
185 (apply (defmacro-transformer val) (cdr e))
186 e)))
187 (#t e)))
188
189 (define (macroexpand e)
190 (cond
191 ((pair? e) (let* ((a (car e))
192 (val (and (symbol? a) (local-ref (list a)))))
193 (if (defmacro? val)
194 (macroexpand (apply (defmacro-transformer val) (cdr e)))
195 e)))
196 (#t e)))
197
198 (provide 'defmacro)
199
200 \f
201
202 ;;; {Deprecation}
203 ;;;
204 ;;; Depends on: defmacro
205 ;;;
206
207 (defmacro begin-deprecated forms
208 (if (include-deprecated-features)
209 `(begin ,@forms)
210 (begin)))
211
212 \f
213
214 ;;; {R4RS compliance}
215 ;;;
216
217 (primitive-load-path "ice-9/r4rs.scm")
218
219 \f
220
221 ;;; {Simple Debugging Tools}
222 ;;;
223
224 ;; peek takes any number of arguments, writes them to the
225 ;; current ouput port, and returns the last argument.
226 ;; It is handy to wrap around an expression to look at
227 ;; a value each time is evaluated, e.g.:
228 ;;
229 ;; (+ 10 (troublesome-fn))
230 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
231 ;;
232
233 (define (peek . stuff)
234 (newline)
235 (display ";;; ")
236 (write stuff)
237 (newline)
238 (car (last-pair stuff)))
239
240 (define pk peek)
241
242 (define (warn . stuff)
243 (with-output-to-port (current-error-port)
244 (lambda ()
245 (newline)
246 (display ";;; WARNING ")
247 (display stuff)
248 (newline)
249 (car (last-pair stuff)))))
250
251 \f
252
253 ;;; {Trivial Functions}
254 ;;;
255
256 (define (identity x) x)
257 (define (and=> value procedure) (and value (procedure value)))
258 (define call/cc call-with-current-continuation)
259
260 ;;; apply-to-args is functionally redundant with apply and, worse,
261 ;;; is less general than apply since it only takes two arguments.
262 ;;;
263 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
264 ;;; perform binding in many circumstances when the "let" family of
265 ;;; of forms don't cut it. E.g.:
266 ;;;
267 ;;; (apply-to-args (return-3d-mouse-coords)
268 ;;; (lambda (x y z)
269 ;;; ...))
270 ;;;
271
272 (define (apply-to-args args fn) (apply fn args))
273
274 (defmacro false-if-exception (expr)
275 `(catch #t (lambda () ,expr)
276 (lambda args #f)))
277
278 \f
279
280 ;;; {General Properties}
281 ;;;
282
283 ;; This is a more modern interface to properties. It will replace all
284 ;; other property-like things eventually.
285
286 (define (make-object-property)
287 (let ((prop (primitive-make-property #f)))
288 (make-procedure-with-setter
289 (lambda (obj) (primitive-property-ref prop obj))
290 (lambda (obj val) (primitive-property-set! prop obj val)))))
291
292 \f
293
294 ;;; {Symbol Properties}
295 ;;;
296
297 (define (symbol-property sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (and pair (cdr pair))))
300
301 (define (set-symbol-property! sym prop val)
302 (let ((pair (assoc prop (symbol-pref sym))))
303 (if pair
304 (set-cdr! pair val)
305 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
306
307 (define (symbol-property-remove! sym prop)
308 (let ((pair (assoc prop (symbol-pref sym))))
309 (if pair
310 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
311
312 \f
313
314 ;;; {Arrays}
315 ;;;
316
317 (define (array-shape a)
318 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
319 (array-dimensions a)))
320
321 \f
322
323 ;;; {Keywords}
324 ;;;
325
326 (define (kw-arg-ref args kw)
327 (let ((rem (member kw args)))
328 (and rem (pair? (cdr rem)) (cadr rem))))
329
330 \f
331
332 ;;; {Structs}
333 ;;;
334
335 (define (struct-layout s)
336 (struct-ref (struct-vtable s) vtable-index-layout))
337
338 \f
339
340 ;;; {Records}
341 ;;;
342
343 ;; Printing records: by default, records are printed as
344 ;;
345 ;; #<type-name field1: val1 field2: val2 ...>
346 ;;
347 ;; You can change that by giving a custom printing function to
348 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
349 ;; will be called like
350 ;;
351 ;; (<printer> object port)
352 ;;
353 ;; It should print OBJECT to PORT.
354
355 (define (inherit-print-state old-port new-port)
356 (if (get-print-state old-port)
357 (port-with-print-state new-port (get-print-state old-port))
358 new-port))
359
360 ;; 0: type-name, 1: fields
361 (define record-type-vtable
362 (make-vtable-vtable "prpr" 0
363 (lambda (s p)
364 (cond ((eq? s record-type-vtable)
365 (display "#<record-type-vtable>" p))
366 (else
367 (display "#<record-type " p)
368 (display (record-type-name s) p)
369 (display ">" p))))))
370
371 (define (record-type? obj)
372 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
373
374 (define (make-record-type type-name fields . opt)
375 (let ((printer-fn (and (pair? opt) (car opt))))
376 (let ((struct (make-struct record-type-vtable 0
377 (make-struct-layout
378 (apply string-append
379 (map (lambda (f) "pw") fields)))
380 (or printer-fn
381 (lambda (s p)
382 (display "#<" p)
383 (display type-name p)
384 (let loop ((fields fields)
385 (off 0))
386 (cond
387 ((not (null? fields))
388 (display " " p)
389 (display (car fields) p)
390 (display ": " p)
391 (display (struct-ref s off) p)
392 (loop (cdr fields) (+ 1 off)))))
393 (display ">" p)))
394 type-name
395 (copy-tree fields))))
396 ;; Temporary solution: Associate a name to the record type descriptor
397 ;; so that the object system can create a wrapper class for it.
398 (set-struct-vtable-name! struct (if (symbol? type-name)
399 type-name
400 (string->symbol type-name)))
401 struct)))
402
403 (define (record-type-name obj)
404 (if (record-type? obj)
405 (struct-ref obj vtable-offset-user)
406 (error 'not-a-record-type obj)))
407
408 (define (record-type-fields obj)
409 (if (record-type? obj)
410 (struct-ref obj (+ 1 vtable-offset-user))
411 (error 'not-a-record-type obj)))
412
413 (define (record-constructor rtd . opt)
414 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
415 (primitive-eval
416 `(lambda ,field-names
417 (make-struct ',rtd 0 ,@(map (lambda (f)
418 (if (memq f field-names)
419 f
420 #f))
421 (record-type-fields rtd)))))))
422
423 (define (record-predicate rtd)
424 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
425
426 (define (%record-type-error rtd obj) ;; private helper
427 (or (eq? rtd (record-type-descriptor obj))
428 (scm-error 'wrong-type-arg "%record-type-check"
429 "Wrong type record (want `~S'): ~S"
430 (list (record-type-name rtd) obj)
431 #f)))
432
433 (define (record-accessor rtd field-name)
434 (let ((pos (list-index (record-type-fields rtd) field-name)))
435 (if (not pos)
436 (error 'no-such-field field-name))
437 (lambda (obj)
438 (if (eq? (struct-vtable obj) rtd)
439 (struct-ref obj pos)
440 (%record-type-error rtd obj)))))
441
442 (define (record-modifier rtd field-name)
443 (let ((pos (list-index (record-type-fields rtd) field-name)))
444 (if (not pos)
445 (error 'no-such-field field-name))
446 (lambda (obj val)
447 (if (eq? (struct-vtable obj) rtd)
448 (struct-set! obj pos val)
449 (%record-type-error rtd obj)))))
450
451 (define (record? obj)
452 (and (struct? obj) (record-type? (struct-vtable obj))))
453
454 (define (record-type-descriptor obj)
455 (if (struct? obj)
456 (struct-vtable obj)
457 (error 'not-a-record obj)))
458
459 (provide 'record)
460
461 \f
462
463 ;;; {Booleans}
464 ;;;
465
466 (define (->bool x) (not (not x)))
467
468 \f
469
470 ;;; {Symbols}
471 ;;;
472
473 (define (symbol-append . args)
474 (string->symbol (apply string-append (map symbol->string args))))
475
476 (define (list->symbol . args)
477 (string->symbol (apply list->string args)))
478
479 (define (symbol . args)
480 (string->symbol (apply string args)))
481
482 \f
483
484 ;;; {Lists}
485 ;;;
486
487 (define (list-index l k)
488 (let loop ((n 0)
489 (l l))
490 (and (not (null? l))
491 (if (eq? (car l) k)
492 n
493 (loop (+ n 1) (cdr l))))))
494
495 \f
496
497 ;;; {and-map and or-map}
498 ;;;
499 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
500 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
501 ;;;
502
503 ;; and-map f l
504 ;;
505 ;; Apply f to successive elements of l until exhaustion or f returns #f.
506 ;; If returning early, return #f. Otherwise, return the last value returned
507 ;; by f. If f has never been called because l is empty, return #t.
508 ;;
509 (define (and-map f lst)
510 (let loop ((result #t)
511 (l lst))
512 (and result
513 (or (and (null? l)
514 result)
515 (loop (f (car l)) (cdr l))))))
516
517 ;; or-map f l
518 ;;
519 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
520 ;; If returning early, return the return value of f.
521 ;;
522 (define (or-map f lst)
523 (let loop ((result #f)
524 (l lst))
525 (or result
526 (and (not (null? l))
527 (loop (f (car l)) (cdr l))))))
528
529 \f
530
531 (if (provided? 'posix)
532 (primitive-load-path "ice-9/posix.scm"))
533
534 (if (provided? 'socket)
535 (primitive-load-path "ice-9/networking.scm"))
536
537 ;; For reference, Emacs file-exists-p uses stat in this same way.
538 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
539 ;; C where all that's needed is to inspect the return from stat().
540 (define file-exists?
541 (if (provided? 'posix)
542 (lambda (str)
543 (->bool (false-if-exception (stat str))))
544 (lambda (str)
545 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
546 (lambda args #f))))
547 (if port (begin (close-port port) #t)
548 #f)))))
549
550 (define file-is-directory?
551 (if (provided? 'posix)
552 (lambda (str)
553 (eq? (stat:type (stat str)) 'directory))
554 (lambda (str)
555 (let ((port (catch 'system-error
556 (lambda () (open-file (string-append str "/.")
557 OPEN_READ))
558 (lambda args #f))))
559 (if port (begin (close-port port) #t)
560 #f)))))
561
562 (define (has-suffix? str suffix)
563 (string-suffix? suffix str))
564
565 (define (system-error-errno args)
566 (if (eq? (car args) 'system-error)
567 (car (list-ref args 4))
568 #f))
569
570 \f
571
572 ;;; {Error Handling}
573 ;;;
574
575 (define (error . args)
576 (save-stack)
577 (if (null? args)
578 (scm-error 'misc-error #f "?" #f #f)
579 (let loop ((msg "~A")
580 (rest (cdr args)))
581 (if (not (null? rest))
582 (loop (string-append msg " ~S")
583 (cdr rest))
584 (scm-error 'misc-error #f msg args #f)))))
585
586 ;; bad-throw is the hook that is called upon a throw to a an unhandled
587 ;; key (unless the throw has four arguments, in which case
588 ;; it's usually interpreted as an error throw.)
589 ;; If the key has a default handler (a throw-handler-default property),
590 ;; it is applied to the throw.
591 ;;
592 (define (bad-throw key . args)
593 (let ((default (symbol-property key 'throw-handler-default)))
594 (or (and default (apply default key args))
595 (apply error "unhandled-exception:" key args))))
596
597 \f
598
599 (define (tm:sec obj) (vector-ref obj 0))
600 (define (tm:min obj) (vector-ref obj 1))
601 (define (tm:hour obj) (vector-ref obj 2))
602 (define (tm:mday obj) (vector-ref obj 3))
603 (define (tm:mon obj) (vector-ref obj 4))
604 (define (tm:year obj) (vector-ref obj 5))
605 (define (tm:wday obj) (vector-ref obj 6))
606 (define (tm:yday obj) (vector-ref obj 7))
607 (define (tm:isdst obj) (vector-ref obj 8))
608 (define (tm:gmtoff obj) (vector-ref obj 9))
609 (define (tm:zone obj) (vector-ref obj 10))
610
611 (define (set-tm:sec obj val) (vector-set! obj 0 val))
612 (define (set-tm:min obj val) (vector-set! obj 1 val))
613 (define (set-tm:hour obj val) (vector-set! obj 2 val))
614 (define (set-tm:mday obj val) (vector-set! obj 3 val))
615 (define (set-tm:mon obj val) (vector-set! obj 4 val))
616 (define (set-tm:year obj val) (vector-set! obj 5 val))
617 (define (set-tm:wday obj val) (vector-set! obj 6 val))
618 (define (set-tm:yday obj val) (vector-set! obj 7 val))
619 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
620 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
621 (define (set-tm:zone obj val) (vector-set! obj 10 val))
622
623 (define (tms:clock obj) (vector-ref obj 0))
624 (define (tms:utime obj) (vector-ref obj 1))
625 (define (tms:stime obj) (vector-ref obj 2))
626 (define (tms:cutime obj) (vector-ref obj 3))
627 (define (tms:cstime obj) (vector-ref obj 4))
628
629 (define file-position ftell)
630 (define (file-set-position port offset . whence)
631 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
632 (seek port offset whence)))
633
634 (define (move->fdes fd/port fd)
635 (cond ((integer? fd/port)
636 (dup->fdes fd/port fd)
637 (close fd/port)
638 fd)
639 (else
640 (primitive-move->fdes fd/port fd)
641 (set-port-revealed! fd/port 1)
642 fd/port)))
643
644 (define (release-port-handle port)
645 (let ((revealed (port-revealed port)))
646 (if (> revealed 0)
647 (set-port-revealed! port (- revealed 1)))))
648
649 (define (dup->port port/fd mode . maybe-fd)
650 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
651 mode)))
652 (if (pair? maybe-fd)
653 (set-port-revealed! port 1))
654 port))
655
656 (define (dup->inport port/fd . maybe-fd)
657 (apply dup->port port/fd "r" maybe-fd))
658
659 (define (dup->outport port/fd . maybe-fd)
660 (apply dup->port port/fd "w" maybe-fd))
661
662 (define (dup port/fd . maybe-fd)
663 (if (integer? port/fd)
664 (apply dup->fdes port/fd maybe-fd)
665 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
666
667 (define (duplicate-port port modes)
668 (dup->port port modes))
669
670 (define (fdes->inport fdes)
671 (let loop ((rest-ports (fdes->ports fdes)))
672 (cond ((null? rest-ports)
673 (let ((result (fdopen fdes "r")))
674 (set-port-revealed! result 1)
675 result))
676 ((input-port? (car rest-ports))
677 (set-port-revealed! (car rest-ports)
678 (+ (port-revealed (car rest-ports)) 1))
679 (car rest-ports))
680 (else
681 (loop (cdr rest-ports))))))
682
683 (define (fdes->outport fdes)
684 (let loop ((rest-ports (fdes->ports fdes)))
685 (cond ((null? rest-ports)
686 (let ((result (fdopen fdes "w")))
687 (set-port-revealed! result 1)
688 result))
689 ((output-port? (car rest-ports))
690 (set-port-revealed! (car rest-ports)
691 (+ (port-revealed (car rest-ports)) 1))
692 (car rest-ports))
693 (else
694 (loop (cdr rest-ports))))))
695
696 (define (port->fdes port)
697 (set-port-revealed! port (+ (port-revealed port) 1))
698 (fileno port))
699
700 (define (setenv name value)
701 (if value
702 (putenv (string-append name "=" value))
703 (putenv name)))
704
705 (define (unsetenv name)
706 "Remove the entry for NAME from the environment."
707 (putenv name))
708
709 \f
710
711 ;;; {Load Paths}
712 ;;;
713
714 ;;; Here for backward compatability
715 ;;
716 (define scheme-file-suffix (lambda () ".scm"))
717
718 (define (in-vicinity vicinity file)
719 (let ((tail (let ((len (string-length vicinity)))
720 (if (zero? len)
721 #f
722 (string-ref vicinity (- len 1))))))
723 (string-append vicinity
724 (if (or (not tail)
725 (eq? tail #\/))
726 ""
727 "/")
728 file)))
729
730 \f
731
732 ;;; {Help for scm_shell}
733 ;;;
734 ;;; The argument-processing code used by Guile-based shells generates
735 ;;; Scheme code based on the argument list. This page contains help
736 ;;; functions for the code it generates.
737 ;;;
738
739 (define (command-line) (program-arguments))
740
741 ;; This is mostly for the internal use of the code generated by
742 ;; scm_compile_shell_switches.
743
744 (define (turn-on-debugging)
745 (debug-enable 'debug)
746 (debug-enable 'backtrace)
747 (read-enable 'positions))
748
749 (define (load-user-init)
750 (let* ((home (or (getenv "HOME")
751 (false-if-exception (passwd:dir (getpwuid (getuid))))
752 "/")) ;; fallback for cygwin etc.
753 (init-file (in-vicinity home ".guile")))
754 (if (file-exists? init-file)
755 (primitive-load init-file))))
756
757 \f
758
759 ;;; {Loading by paths}
760 ;;;
761
762 ;;; Load a Scheme source file named NAME, searching for it in the
763 ;;; directories listed in %load-path, and applying each of the file
764 ;;; name extensions listed in %load-extensions.
765 (define (load-from-path name)
766 (start-stack 'load-stack
767 (primitive-load-path name)))
768
769
770 \f
771
772 ;;; {Transcendental Functions}
773 ;;;
774 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
775 ;;; Written by Jerry D. Hedden, (C) FSF.
776 ;;; See the file `COPYING' for terms applying to this program.
777 ;;;
778
779 (define expt
780 (let ((integer-expt integer-expt))
781 (lambda (z1 z2)
782 (cond ((and (exact? z2) (integer? z2))
783 (integer-expt z1 z2))
784 ((and (real? z2) (real? z1) (>= z1 0))
785 ($expt z1 z2))
786 (else
787 (exp (* z2 (log z1))))))))
788
789 (define (sinh z)
790 (if (real? z) ($sinh z)
791 (let ((x (real-part z)) (y (imag-part z)))
792 (make-rectangular (* ($sinh x) ($cos y))
793 (* ($cosh x) ($sin y))))))
794 (define (cosh z)
795 (if (real? z) ($cosh z)
796 (let ((x (real-part z)) (y (imag-part z)))
797 (make-rectangular (* ($cosh x) ($cos y))
798 (* ($sinh x) ($sin y))))))
799 (define (tanh z)
800 (if (real? z) ($tanh z)
801 (let* ((x (* 2 (real-part z)))
802 (y (* 2 (imag-part z)))
803 (w (+ ($cosh x) ($cos y))))
804 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
805
806 (define (asinh z)
807 (if (real? z) ($asinh z)
808 (log (+ z (sqrt (+ (* z z) 1))))))
809
810 (define (acosh z)
811 (if (and (real? z) (>= z 1))
812 ($acosh z)
813 (log (+ z (sqrt (- (* z z) 1))))))
814
815 (define (atanh z)
816 (if (and (real? z) (> z -1) (< z 1))
817 ($atanh z)
818 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
819
820 (define (sin z)
821 (if (real? z) ($sin z)
822 (let ((x (real-part z)) (y (imag-part z)))
823 (make-rectangular (* ($sin x) ($cosh y))
824 (* ($cos x) ($sinh y))))))
825 (define (cos z)
826 (if (real? z) ($cos z)
827 (let ((x (real-part z)) (y (imag-part z)))
828 (make-rectangular (* ($cos x) ($cosh y))
829 (- (* ($sin x) ($sinh y)))))))
830 (define (tan z)
831 (if (real? z) ($tan z)
832 (let* ((x (* 2 (real-part z)))
833 (y (* 2 (imag-part z)))
834 (w (+ ($cos x) ($cosh y))))
835 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
836
837 (define (asin z)
838 (if (and (real? z) (>= z -1) (<= z 1))
839 ($asin z)
840 (* -i (asinh (* +i z)))))
841
842 (define (acos z)
843 (if (and (real? z) (>= z -1) (<= z 1))
844 ($acos z)
845 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
846
847 (define (atan z . y)
848 (if (null? y)
849 (if (real? z) ($atan z)
850 (/ (log (/ (- +i z) (+ +i z))) +2i))
851 ($atan2 z (car y))))
852
853 \f
854
855 ;;; {Reader Extensions}
856 ;;;
857 ;;; Reader code for various "#c" forms.
858 ;;;
859
860 (read-hash-extend #\' (lambda (c port)
861 (read port)))
862
863 (define read-eval? (make-fluid))
864 (fluid-set! read-eval? #f)
865 (read-hash-extend #\.
866 (lambda (c port)
867 (if (fluid-ref read-eval?)
868 (eval (read port) (interaction-environment))
869 (error
870 "#. read expansion found and read-eval? is #f."))))
871
872 \f
873
874 ;;; {Command Line Options}
875 ;;;
876
877 (define (get-option argv kw-opts kw-args return)
878 (cond
879 ((null? argv)
880 (return #f #f argv))
881
882 ((or (not (eq? #\- (string-ref (car argv) 0)))
883 (eq? (string-length (car argv)) 1))
884 (return 'normal-arg (car argv) (cdr argv)))
885
886 ((eq? #\- (string-ref (car argv) 1))
887 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
888 (string-length (car argv))))
889 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
890 (kw-opt? (member kw kw-opts))
891 (kw-arg? (member kw kw-args))
892 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
893 (substring (car argv)
894 (+ kw-arg-pos 1)
895 (string-length (car argv))))
896 (and kw-arg?
897 (begin (set! argv (cdr argv)) (car argv))))))
898 (if (or kw-opt? kw-arg?)
899 (return kw arg (cdr argv))
900 (return 'usage-error kw (cdr argv)))))
901
902 (else
903 (let* ((char (substring (car argv) 1 2))
904 (kw (symbol->keyword char)))
905 (cond
906
907 ((member kw kw-opts)
908 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
909 (new-argv (if (= 0 (string-length rest-car))
910 (cdr argv)
911 (cons (string-append "-" rest-car) (cdr argv)))))
912 (return kw #f new-argv)))
913
914 ((member kw kw-args)
915 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
916 (arg (if (= 0 (string-length rest-car))
917 (cadr argv)
918 rest-car))
919 (new-argv (if (= 0 (string-length rest-car))
920 (cddr argv)
921 (cdr argv))))
922 (return kw arg new-argv)))
923
924 (else (return 'usage-error kw argv)))))))
925
926 (define (for-next-option proc argv kw-opts kw-args)
927 (let loop ((argv argv))
928 (get-option argv kw-opts kw-args
929 (lambda (opt opt-arg argv)
930 (and opt (proc opt opt-arg argv loop))))))
931
932 (define (display-usage-report kw-desc)
933 (for-each
934 (lambda (kw)
935 (or (eq? (car kw) #t)
936 (eq? (car kw) 'else)
937 (let* ((opt-desc kw)
938 (help (cadr opt-desc))
939 (opts (car opt-desc))
940 (opts-proper (if (string? (car opts)) (cdr opts) opts))
941 (arg-name (if (string? (car opts))
942 (string-append "<" (car opts) ">")
943 ""))
944 (left-part (string-append
945 (with-output-to-string
946 (lambda ()
947 (map (lambda (x) (display (keyword->symbol x)) (display " "))
948 opts-proper)))
949 arg-name))
950 (middle-part (if (and (< (string-length left-part) 30)
951 (< (string-length help) 40))
952 (make-string (- 30 (string-length left-part)) #\ )
953 "\n\t")))
954 (display left-part)
955 (display middle-part)
956 (display help)
957 (newline))))
958 kw-desc))
959
960
961
962 (define (transform-usage-lambda cases)
963 (let* ((raw-usage (delq! 'else (map car cases)))
964 (usage-sans-specials (map (lambda (x)
965 (or (and (not (list? x)) x)
966 (and (symbol? (car x)) #t)
967 (and (boolean? (car x)) #t)
968 x))
969 raw-usage))
970 (usage-desc (delq! #t usage-sans-specials))
971 (kw-desc (map car usage-desc))
972 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
973 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
974 (transmogrified-cases (map (lambda (case)
975 (cons (let ((opts (car case)))
976 (if (or (boolean? opts) (eq? 'else opts))
977 opts
978 (cond
979 ((symbol? (car opts)) opts)
980 ((boolean? (car opts)) opts)
981 ((string? (caar opts)) (cdar opts))
982 (else (car opts)))))
983 (cdr case)))
984 cases)))
985 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
986 (lambda (%argv)
987 (let %next-arg ((%argv %argv))
988 (get-option %argv
989 ',kw-opts
990 ',kw-args
991 (lambda (%opt %arg %new-argv)
992 (case %opt
993 ,@ transmogrified-cases))))))))
994
995
996 \f
997
998 ;;; {Low Level Modules}
999 ;;;
1000 ;;; These are the low level data structures for modules.
1001 ;;;
1002 ;;; Every module object is of the type 'module-type', which is a record
1003 ;;; consisting of the following members:
1004 ;;;
1005 ;;; - eval-closure: the function that defines for its module the strategy that
1006 ;;; shall be followed when looking up symbols in the module.
1007 ;;;
1008 ;;; An eval-closure is a function taking two arguments: the symbol to be
1009 ;;; looked up and a boolean value telling whether a binding for the symbol
1010 ;;; should be created if it does not exist yet. If the symbol lookup
1011 ;;; succeeded (either because an existing binding was found or because a new
1012 ;;; binding was created), a variable object representing the binding is
1013 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1014 ;;; closure does not take the module to be searched as an argument: During
1015 ;;; construction of the eval-closure, the eval-closure has to store the
1016 ;;; module it belongs to in its environment. This means, that any
1017 ;;; eval-closure can belong to only one module.
1018 ;;;
1019 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1020 ;;; special cases of eval-closures are to be distinguished: During startup
1021 ;;; the module system is not yet activated. In this phase, no modules are
1022 ;;; defined and all bindings are automatically stored by the system in the
1023 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1024 ;;; functions which require an eval-closure as their argument need to be
1025 ;;; passed the value #f.
1026 ;;;
1027 ;;; The other two special cases of eval-closures are the
1028 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1029 ;;; behave equally for the case that no new binding is to be created. The
1030 ;;; difference between the two comes in, when the boolean argument to the
1031 ;;; eval-closure indicates that a new binding shall be created if it is not
1032 ;;; found.
1033 ;;;
1034 ;;; Given that no new binding shall be created, both standard eval-closures
1035 ;;; define the following standard strategy of searching bindings in the
1036 ;;; module: First, the module's obarray is searched for the symbol. Second,
1037 ;;; if no binding for the symbol was found in the module's obarray, the
1038 ;;; module's binder procedure is exececuted. If this procedure did not
1039 ;;; return a binding for the symbol, the modules referenced in the module's
1040 ;;; uses list are recursively searched for a binding of the symbol. If the
1041 ;;; binding can not be found in these modules also, the symbol lookup has
1042 ;;; failed.
1043 ;;;
1044 ;;; If a new binding shall be created, the standard-interface-eval-closure
1045 ;;; immediately returns indicating failure. That is, it does not even try
1046 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1047 ;;; first search the obarray, and if no binding was found there, would
1048 ;;; create a new binding in the obarray, therefore not calling the binder
1049 ;;; procedure or searching the modules in the uses list.
1050 ;;;
1051 ;;; The explanation of the following members obarray, binder and uses
1052 ;;; assumes that the symbol lookup follows the strategy that is defined in
1053 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1054 ;;;
1055 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1056 ;;; hash table, the definitions are found that are local to the module (that
1057 ;;; is, not imported from other modules). When looking up bindings in the
1058 ;;; module, this hash table is searched first.
1059 ;;;
1060 ;;; - binder: either #f or a function taking a module and a symbol argument.
1061 ;;; If it is a function it is called after the obarray has been
1062 ;;; unsuccessfully searched for a binding. It then can provide bindings
1063 ;;; that would otherwise not be found locally in the module.
1064 ;;;
1065 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1066 ;;; These modules are the third place queried for bindings after the obarray
1067 ;;; has been unsuccessfully searched and the binder function did not deliver
1068 ;;; a result either.
1069 ;;;
1070 ;;; - transformer: either #f or a function taking a scheme expression as
1071 ;;; delivered by read. If it is a function, it will be called to perform
1072 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1073 ;;; expression. The output of the transformer function will then be passed
1074 ;;; to Guile's internal memoizer. This means that the output must be valid
1075 ;;; scheme code. The only exception is, that the output may make use of the
1076 ;;; syntax extensions provided to identify the modules that a binding
1077 ;;; belongs to.
1078 ;;;
1079 ;;; - name: the name of the module. This is used for all kinds of printing
1080 ;;; outputs. In certain places the module name also serves as a way of
1081 ;;; identification. When adding a module to the uses list of another
1082 ;;; module, it is made sure that the new uses list will not contain two
1083 ;;; modules of the same name.
1084 ;;;
1085 ;;; - kind: classification of the kind of module. The value is (currently?)
1086 ;;; only used for printing. It has no influence on how a module is treated.
1087 ;;; Currently the following values are used when setting the module kind:
1088 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1089 ;;; is set, it defaults to 'module.
1090 ;;;
1091 ;;; - duplicates-handlers: a list of procedures that get called to make a
1092 ;;; choice between two duplicate bindings when name clashes occur. See the
1093 ;;; `duplicate-handlers' global variable below.
1094 ;;;
1095 ;;; - observers: a list of procedures that get called when the module is
1096 ;;; modified.
1097 ;;;
1098 ;;; - weak-observers: a weak-key hash table of procedures that get called
1099 ;;; when the module is modified. See `module-observe-weak' for details.
1100 ;;;
1101 ;;; In addition, the module may (must?) contain a binding for
1102 ;;; `%module-public-interface'. This variable should be bound to a module
1103 ;;; representing the exported interface of a module. See the
1104 ;;; `module-public-interface' and `module-export!' procedures.
1105 ;;;
1106 ;;; !!! warning: The interface to lazy binder procedures is going
1107 ;;; to be changed in an incompatible way to permit all the basic
1108 ;;; module ops to be virtualized.
1109 ;;;
1110 ;;; (make-module size use-list lazy-binding-proc) => module
1111 ;;; module-{obarray,uses,binder}[|-set!]
1112 ;;; (module? obj) => [#t|#f]
1113 ;;; (module-locally-bound? module symbol) => [#t|#f]
1114 ;;; (module-bound? module symbol) => [#t|#f]
1115 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1116 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1117 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1118 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1119 ;;; (module-symbol-binding module symbol opt-value)
1120 ;;; => [ <obj> | opt-value | an error occurs ]
1121 ;;; (module-make-local-var! module symbol) => #<variable...>
1122 ;;; (module-add! module symbol var) => unspecified
1123 ;;; (module-remove! module symbol) => unspecified
1124 ;;; (module-for-each proc module) => unspecified
1125 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1126 ;;; (set-current-module module) => unspecified
1127 ;;; (current-module) => #<module...>
1128 ;;;
1129 ;;;
1130
1131 \f
1132
1133 ;;; {Printing Modules}
1134 ;;;
1135
1136 ;; This is how modules are printed. You can re-define it.
1137 ;; (Redefining is actually more complicated than simply redefining
1138 ;; %print-module because that would only change the binding and not
1139 ;; the value stored in the vtable that determines how record are
1140 ;; printed. Sigh.)
1141
1142 (define (%print-module mod port) ; unused args: depth length style table)
1143 (display "#<" port)
1144 (display (or (module-kind mod) "module") port)
1145 (let ((name (module-name mod)))
1146 (if name
1147 (begin
1148 (display " " port)
1149 (display name port))))
1150 (display " " port)
1151 (display (number->string (object-address mod) 16) port)
1152 (display ">" port))
1153
1154 ;; module-type
1155 ;;
1156 ;; A module is characterized by an obarray in which local symbols
1157 ;; are interned, a list of modules, "uses", from which non-local
1158 ;; bindings can be inherited, and an optional lazy-binder which
1159 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1160 ;; bindings that would otherwise not be found locally in the module.
1161 ;;
1162 ;; NOTE: If you change anything here, you also need to change
1163 ;; libguile/modules.h.
1164 ;;
1165 (define module-type
1166 (make-record-type 'module
1167 '(obarray uses binder eval-closure transformer name kind
1168 duplicates-handlers import-obarray
1169 observers weak-observers)
1170 %print-module))
1171
1172 ;; make-module &opt size uses binder
1173 ;;
1174 ;; Create a new module, perhaps with a particular size of obarray,
1175 ;; initial uses list, or binding procedure.
1176 ;;
1177 (define make-module
1178 (lambda args
1179
1180 (define (parse-arg index default)
1181 (if (> (length args) index)
1182 (list-ref args index)
1183 default))
1184
1185 (define %default-import-size
1186 ;; Typical number of imported bindings actually used by a module.
1187 600)
1188
1189 (if (> (length args) 3)
1190 (error "Too many args to make-module." args))
1191
1192 (let ((size (parse-arg 0 31))
1193 (uses (parse-arg 1 '()))
1194 (binder (parse-arg 2 #f)))
1195
1196 (if (not (integer? size))
1197 (error "Illegal size to make-module." size))
1198 (if (not (and (list? uses)
1199 (and-map module? uses)))
1200 (error "Incorrect use list." uses))
1201 (if (and binder (not (procedure? binder)))
1202 (error
1203 "Lazy-binder expected to be a procedure or #f." binder))
1204
1205 (let ((module (module-constructor (make-hash-table size)
1206 uses binder #f #f #f #f #f
1207 (make-hash-table %default-import-size)
1208 '()
1209 (make-weak-key-hash-table 31))))
1210
1211 ;; We can't pass this as an argument to module-constructor,
1212 ;; because we need it to close over a pointer to the module
1213 ;; itself.
1214 (set-module-eval-closure! module (standard-eval-closure module))
1215
1216 module))))
1217
1218 (define module-constructor (record-constructor module-type))
1219 (define module-obarray (record-accessor module-type 'obarray))
1220 (define set-module-obarray! (record-modifier module-type 'obarray))
1221 (define module-uses (record-accessor module-type 'uses))
1222 (define set-module-uses! (record-modifier module-type 'uses))
1223 (define module-binder (record-accessor module-type 'binder))
1224 (define set-module-binder! (record-modifier module-type 'binder))
1225
1226 ;; NOTE: This binding is used in libguile/modules.c.
1227 (define module-eval-closure (record-accessor module-type 'eval-closure))
1228
1229 (define module-transformer (record-accessor module-type 'transformer))
1230 (define set-module-transformer! (record-modifier module-type 'transformer))
1231 (define module-name (record-accessor module-type 'name))
1232 (define set-module-name! (record-modifier module-type 'name))
1233 (define module-kind (record-accessor module-type 'kind))
1234 (define set-module-kind! (record-modifier module-type 'kind))
1235 (define module-duplicates-handlers
1236 (record-accessor module-type 'duplicates-handlers))
1237 (define set-module-duplicates-handlers!
1238 (record-modifier module-type 'duplicates-handlers))
1239 (define module-observers (record-accessor module-type 'observers))
1240 (define set-module-observers! (record-modifier module-type 'observers))
1241 (define module-weak-observers (record-accessor module-type 'weak-observers))
1242 (define module? (record-predicate module-type))
1243
1244 (define module-import-obarray (record-accessor module-type 'import-obarray))
1245
1246 (define set-module-eval-closure!
1247 (let ((setter (record-modifier module-type 'eval-closure)))
1248 (lambda (module closure)
1249 (setter module closure)
1250 ;; Make it possible to lookup the module from the environment.
1251 ;; This implementation is correct since an eval closure can belong
1252 ;; to maximally one module.
1253 (set-procedure-property! closure 'module module))))
1254
1255 \f
1256
1257 ;;; {Observer protocol}
1258 ;;;
1259
1260 (define (module-observe module proc)
1261 (set-module-observers! module (cons proc (module-observers module)))
1262 (cons module proc))
1263
1264 (define (module-observe-weak module observer-id . proc)
1265 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1266 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1267 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1268 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1269 ;; for instance).
1270
1271 ;; The two-argument version is kept for backward compatibility: when called
1272 ;; with two arguments, the observer gets unregistered when closure PROC
1273 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1274
1275 (let ((proc (if (null? proc) observer-id (car proc))))
1276 (hashq-set! (module-weak-observers module) observer-id proc)))
1277
1278 (define (module-unobserve token)
1279 (let ((module (car token))
1280 (id (cdr token)))
1281 (if (integer? id)
1282 (hash-remove! (module-weak-observers module) id)
1283 (set-module-observers! module (delq1! id (module-observers module)))))
1284 *unspecified*)
1285
1286 (define module-defer-observers #f)
1287 (define module-defer-observers-mutex (make-mutex))
1288 (define module-defer-observers-table (make-hash-table))
1289
1290 (define (module-modified m)
1291 (if module-defer-observers
1292 (hash-set! module-defer-observers-table m #t)
1293 (module-call-observers m)))
1294
1295 ;;; This function can be used to delay calls to observers so that they
1296 ;;; can be called once only in the face of massive updating of modules.
1297 ;;;
1298 (define (call-with-deferred-observers thunk)
1299 (dynamic-wind
1300 (lambda ()
1301 (lock-mutex module-defer-observers-mutex)
1302 (set! module-defer-observers #t))
1303 thunk
1304 (lambda ()
1305 (set! module-defer-observers #f)
1306 (hash-for-each (lambda (m dummy)
1307 (module-call-observers m))
1308 module-defer-observers-table)
1309 (hash-clear! module-defer-observers-table)
1310 (unlock-mutex module-defer-observers-mutex))))
1311
1312 (define (module-call-observers m)
1313 (for-each (lambda (proc) (proc m)) (module-observers m))
1314
1315 ;; We assume that weak observers don't (un)register themselves as they are
1316 ;; called since this would preclude proper iteration over the hash table
1317 ;; elements.
1318 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1319
1320 \f
1321
1322 ;;; {Module Searching in General}
1323 ;;;
1324 ;;; We sometimes want to look for properties of a symbol
1325 ;;; just within the obarray of one module. If the property
1326 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1327 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1328 ;;;
1329 ;;;
1330 ;;; Other times, we want to test for a symbol property in the obarray
1331 ;;; of M and, if it is not found there, try each of the modules in the
1332 ;;; uses list of M. This is the normal way of testing for some
1333 ;;; property, so we state these properties without qualification as
1334 ;;; in: ``The symbol 'fnord is interned in module M because it is
1335 ;;; interned locally in module M2 which is a member of the uses list
1336 ;;; of M.''
1337 ;;;
1338
1339 ;; module-search fn m
1340 ;;
1341 ;; return the first non-#f result of FN applied to M and then to
1342 ;; the modules in the uses of m, and so on recursively. If all applications
1343 ;; return #f, then so does this function.
1344 ;;
1345 (define (module-search fn m v)
1346 (define (loop pos)
1347 (and (pair? pos)
1348 (or (module-search fn (car pos) v)
1349 (loop (cdr pos)))))
1350 (or (fn m v)
1351 (loop (module-uses m))))
1352
1353
1354 ;;; {Is a symbol bound in a module?}
1355 ;;;
1356 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1357 ;;; of S in M has been set to some well-defined value.
1358 ;;;
1359
1360 ;; module-locally-bound? module symbol
1361 ;;
1362 ;; Is a symbol bound (interned and defined) locally in a given module?
1363 ;;
1364 (define (module-locally-bound? m v)
1365 (let ((var (module-local-variable m v)))
1366 (and var
1367 (variable-bound? var))))
1368
1369 ;; module-bound? module symbol
1370 ;;
1371 ;; Is a symbol bound (interned and defined) anywhere in a given module
1372 ;; or its uses?
1373 ;;
1374 (define (module-bound? m v)
1375 (module-search module-locally-bound? m v))
1376
1377 ;;; {Is a symbol interned in a module?}
1378 ;;;
1379 ;;; Symbol S in Module M is interned if S occurs in
1380 ;;; of S in M has been set to some well-defined value.
1381 ;;;
1382 ;;; It is possible to intern a symbol in a module without providing
1383 ;;; an initial binding for the corresponding variable. This is done
1384 ;;; with:
1385 ;;; (module-add! module symbol (make-undefined-variable))
1386 ;;;
1387 ;;; In that case, the symbol is interned in the module, but not
1388 ;;; bound there. The unbound symbol shadows any binding for that
1389 ;;; symbol that might otherwise be inherited from a member of the uses list.
1390 ;;;
1391
1392 (define (module-obarray-get-handle ob key)
1393 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1394
1395 (define (module-obarray-ref ob key)
1396 ((if (symbol? key) hashq-ref hash-ref) ob key))
1397
1398 (define (module-obarray-set! ob key val)
1399 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1400
1401 (define (module-obarray-remove! ob key)
1402 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1403
1404 ;; module-symbol-locally-interned? module symbol
1405 ;;
1406 ;; is a symbol interned (not neccessarily defined) locally in a given module
1407 ;; or its uses? Interned symbols shadow inherited bindings even if
1408 ;; they are not themselves bound to a defined value.
1409 ;;
1410 (define (module-symbol-locally-interned? m v)
1411 (not (not (module-obarray-get-handle (module-obarray m) v))))
1412
1413 ;; module-symbol-interned? module symbol
1414 ;;
1415 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1416 ;; or its uses? Interned symbols shadow inherited bindings even if
1417 ;; they are not themselves bound to a defined value.
1418 ;;
1419 (define (module-symbol-interned? m v)
1420 (module-search module-symbol-locally-interned? m v))
1421
1422
1423 ;;; {Mapping modules x symbols --> variables}
1424 ;;;
1425
1426 ;; module-local-variable module symbol
1427 ;; return the local variable associated with a MODULE and SYMBOL.
1428 ;;
1429 ;;; This function is very important. It is the only function that can
1430 ;;; return a variable from a module other than the mutators that store
1431 ;;; new variables in modules. Therefore, this function is the location
1432 ;;; of the "lazy binder" hack.
1433 ;;;
1434 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1435 ;;; to a variable, return that variable object.
1436 ;;;
1437 ;;; If the symbols is not found at first, but the module has a lazy binder,
1438 ;;; then try the binder.
1439 ;;;
1440 ;;; If the symbol is not found at all, return #f.
1441 ;;;
1442 ;;; (This is now written in C, see `modules.c'.)
1443 ;;;
1444
1445 ;;; {Mapping modules x symbols --> bindings}
1446 ;;;
1447 ;;; These are similar to the mapping to variables, except that the
1448 ;;; variable is dereferenced.
1449 ;;;
1450
1451 ;; module-symbol-binding module symbol opt-value
1452 ;;
1453 ;; return the binding of a variable specified by name within
1454 ;; a given module, signalling an error if the variable is unbound.
1455 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1456 ;; return OPT-VALUE.
1457 ;;
1458 (define (module-symbol-local-binding m v . opt-val)
1459 (let ((var (module-local-variable m v)))
1460 (if (and var (variable-bound? var))
1461 (variable-ref var)
1462 (if (not (null? opt-val))
1463 (car opt-val)
1464 (error "Locally unbound variable." v)))))
1465
1466 ;; module-symbol-binding module symbol opt-value
1467 ;;
1468 ;; return the binding of a variable specified by name within
1469 ;; a given module, signalling an error if the variable is unbound.
1470 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1471 ;; return OPT-VALUE.
1472 ;;
1473 (define (module-symbol-binding m v . opt-val)
1474 (let ((var (module-variable m v)))
1475 (if (and var (variable-bound? var))
1476 (variable-ref var)
1477 (if (not (null? opt-val))
1478 (car opt-val)
1479 (error "Unbound variable." v)))))
1480
1481
1482 \f
1483
1484 ;;; {Adding Variables to Modules}
1485 ;;;
1486
1487 ;; module-make-local-var! module symbol
1488 ;;
1489 ;; ensure a variable for V in the local namespace of M.
1490 ;; If no variable was already there, then create a new and uninitialzied
1491 ;; variable.
1492 ;;
1493 ;; This function is used in modules.c.
1494 ;;
1495 (define (module-make-local-var! m v)
1496 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1497 (and (variable? b)
1498 (begin
1499 ;; Mark as modified since this function is called when
1500 ;; the standard eval closure defines a binding
1501 (module-modified m)
1502 b)))
1503
1504 ;; Create a new local variable.
1505 (let ((local-var (make-undefined-variable)))
1506 (module-add! m v local-var)
1507 local-var)))
1508
1509 ;; module-ensure-local-variable! module symbol
1510 ;;
1511 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1512 ;; there is no binding for SYMBOL, create a new uninitialized
1513 ;; variable. Return the local variable.
1514 ;;
1515 (define (module-ensure-local-variable! module symbol)
1516 (or (module-local-variable module symbol)
1517 (let ((var (make-undefined-variable)))
1518 (module-add! module symbol var)
1519 var)))
1520
1521 ;; module-add! module symbol var
1522 ;;
1523 ;; ensure a particular variable for V in the local namespace of M.
1524 ;;
1525 (define (module-add! m v var)
1526 (if (not (variable? var))
1527 (error "Bad variable to module-add!" var))
1528 (module-obarray-set! (module-obarray m) v var)
1529 (module-modified m))
1530
1531 ;; module-remove!
1532 ;;
1533 ;; make sure that a symbol is undefined in the local namespace of M.
1534 ;;
1535 (define (module-remove! m v)
1536 (module-obarray-remove! (module-obarray m) v)
1537 (module-modified m))
1538
1539 (define (module-clear! m)
1540 (hash-clear! (module-obarray m))
1541 (module-modified m))
1542
1543 ;; MODULE-FOR-EACH -- exported
1544 ;;
1545 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1546 ;;
1547 (define (module-for-each proc module)
1548 (hash-for-each proc (module-obarray module)))
1549
1550 (define (module-map proc module)
1551 (hash-map->list proc (module-obarray module)))
1552
1553 \f
1554
1555 ;;; {Low Level Bootstrapping}
1556 ;;;
1557
1558 ;; make-root-module
1559
1560 ;; A root module uses the pre-modules-obarray as its obarray. This
1561 ;; special obarray accumulates all bindings that have been established
1562 ;; before the module system is fully booted.
1563 ;;
1564 ;; (The obarray continues to be used by code that has been closed over
1565 ;; before the module system has been booted.)
1566
1567 (define (make-root-module)
1568 (let ((m (make-module 0)))
1569 (set-module-obarray! m (%get-pre-modules-obarray))
1570 m))
1571
1572 ;; make-scm-module
1573
1574 ;; The root interface is a module that uses the same obarray as the
1575 ;; root module. It does not allow new definitions, tho.
1576
1577 (define (make-scm-module)
1578 (let ((m (make-module 0)))
1579 (set-module-obarray! m (%get-pre-modules-obarray))
1580 (set-module-eval-closure! m (standard-interface-eval-closure m))
1581 m))
1582
1583
1584 \f
1585
1586 ;;; {Module-based Loading}
1587 ;;;
1588
1589 (define (save-module-excursion thunk)
1590 (let ((inner-module (current-module))
1591 (outer-module #f))
1592 (dynamic-wind (lambda ()
1593 (set! outer-module (current-module))
1594 (set-current-module inner-module)
1595 (set! inner-module #f))
1596 thunk
1597 (lambda ()
1598 (set! inner-module (current-module))
1599 (set-current-module outer-module)
1600 (set! outer-module #f)))))
1601
1602 (define basic-load load)
1603
1604 (define (load-module filename . reader)
1605 (save-module-excursion
1606 (lambda ()
1607 (let ((oldname (and (current-load-port)
1608 (port-filename (current-load-port)))))
1609 (apply basic-load
1610 (if (and oldname
1611 (> (string-length filename) 0)
1612 (not (char=? (string-ref filename 0) #\/))
1613 (not (string=? (dirname oldname) ".")))
1614 (string-append (dirname oldname) "/" filename)
1615 filename)
1616 reader)))))
1617
1618
1619 \f
1620
1621 ;;; {MODULE-REF -- exported}
1622 ;;;
1623
1624 ;; Returns the value of a variable called NAME in MODULE or any of its
1625 ;; used modules. If there is no such variable, then if the optional third
1626 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1627 ;;
1628 (define (module-ref module name . rest)
1629 (let ((variable (module-variable module name)))
1630 (if (and variable (variable-bound? variable))
1631 (variable-ref variable)
1632 (if (null? rest)
1633 (error "No variable named" name 'in module)
1634 (car rest) ; default value
1635 ))))
1636
1637 ;; MODULE-SET! -- exported
1638 ;;
1639 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1640 ;; to VALUE; if there is no such variable, an error is signaled.
1641 ;;
1642 (define (module-set! module name value)
1643 (let ((variable (module-variable module name)))
1644 (if variable
1645 (variable-set! variable value)
1646 (error "No variable named" name 'in module))))
1647
1648 ;; MODULE-DEFINE! -- exported
1649 ;;
1650 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1651 ;; variable, it is added first.
1652 ;;
1653 (define (module-define! module name value)
1654 (let ((variable (module-local-variable module name)))
1655 (if variable
1656 (begin
1657 (variable-set! variable value)
1658 (module-modified module))
1659 (let ((variable (make-variable value)))
1660 (module-add! module name variable)))))
1661
1662 ;; MODULE-DEFINED? -- exported
1663 ;;
1664 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1665 ;; uses)
1666 ;;
1667 (define (module-defined? module name)
1668 (let ((variable (module-variable module name)))
1669 (and variable (variable-bound? variable))))
1670
1671 ;; MODULE-USE! module interface
1672 ;;
1673 ;; Add INTERFACE to the list of interfaces used by MODULE.
1674 ;;
1675 (define (module-use! module interface)
1676 (if (not (eq? module interface))
1677 (begin
1678 ;; Newly used modules must be appended rather than consed, so that
1679 ;; `module-variable' traverses the use list starting from the first
1680 ;; used module.
1681 (set-module-uses! module
1682 (append (filter (lambda (m)
1683 (not
1684 (equal? (module-name m)
1685 (module-name interface))))
1686 (module-uses module))
1687 (list interface)))
1688
1689 (module-modified module))))
1690
1691 ;; MODULE-USE-INTERFACES! module interfaces
1692 ;;
1693 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1694 ;;
1695 (define (module-use-interfaces! module interfaces)
1696 (set-module-uses! module
1697 (append (module-uses module) interfaces))
1698 (module-modified module))
1699
1700 \f
1701
1702 ;;; {Recursive Namespaces}
1703 ;;;
1704 ;;; A hierarchical namespace emerges if we consider some module to be
1705 ;;; root, and variables bound to modules as nested namespaces.
1706 ;;;
1707 ;;; The routines in this file manage variable names in hierarchical namespace.
1708 ;;; Each variable name is a list of elements, looked up in successively nested
1709 ;;; modules.
1710 ;;;
1711 ;;; (nested-ref some-root-module '(foo bar baz))
1712 ;;; => <value of a variable named baz in the module bound to bar in
1713 ;;; the module bound to foo in some-root-module>
1714 ;;;
1715 ;;;
1716 ;;; There are:
1717 ;;;
1718 ;;; ;; a-root is a module
1719 ;;; ;; name is a list of symbols
1720 ;;;
1721 ;;; nested-ref a-root name
1722 ;;; nested-set! a-root name val
1723 ;;; nested-define! a-root name val
1724 ;;; nested-remove! a-root name
1725 ;;;
1726 ;;;
1727 ;;; (current-module) is a natural choice for a-root so for convenience there are
1728 ;;; also:
1729 ;;;
1730 ;;; local-ref name == nested-ref (current-module) name
1731 ;;; local-set! name val == nested-set! (current-module) name val
1732 ;;; local-define! name val == nested-define! (current-module) name val
1733 ;;; local-remove! name == nested-remove! (current-module) name
1734 ;;;
1735
1736
1737 (define (nested-ref root names)
1738 (let loop ((cur root)
1739 (elts names))
1740 (cond
1741 ((null? elts) cur)
1742 ((not (module? cur)) #f)
1743 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1744
1745 (define (nested-set! root names val)
1746 (let loop ((cur root)
1747 (elts names))
1748 (if (null? (cdr elts))
1749 (module-set! cur (car elts) val)
1750 (loop (module-ref cur (car elts)) (cdr elts)))))
1751
1752 (define (nested-define! root names val)
1753 (let loop ((cur root)
1754 (elts names))
1755 (if (null? (cdr elts))
1756 (module-define! cur (car elts) val)
1757 (loop (module-ref cur (car elts)) (cdr elts)))))
1758
1759 (define (nested-remove! root names)
1760 (let loop ((cur root)
1761 (elts names))
1762 (if (null? (cdr elts))
1763 (module-remove! cur (car elts))
1764 (loop (module-ref cur (car elts)) (cdr elts)))))
1765
1766 (define (local-ref names) (nested-ref (current-module) names))
1767 (define (local-set! names val) (nested-set! (current-module) names val))
1768 (define (local-define names val) (nested-define! (current-module) names val))
1769 (define (local-remove names) (nested-remove! (current-module) names))
1770
1771
1772 \f
1773
1774 ;;; {The (%app) module}
1775 ;;;
1776 ;;; The root of conventionally named objects not directly in the top level.
1777 ;;;
1778 ;;; (%app modules)
1779 ;;; (%app modules guile)
1780 ;;;
1781 ;;; The directory of all modules and the standard root module.
1782 ;;;
1783
1784 (define (module-public-interface m)
1785 (module-ref m '%module-public-interface #f))
1786 (define (set-module-public-interface! m i)
1787 (module-define! m '%module-public-interface i))
1788 (define (set-system-module! m s)
1789 (set-procedure-property! (module-eval-closure m) 'system-module s))
1790 (define the-root-module (make-root-module))
1791 (define the-scm-module (make-scm-module))
1792 (set-module-public-interface! the-root-module the-scm-module)
1793 (set-module-name! the-root-module '(guile))
1794 (set-module-name! the-scm-module '(guile))
1795 (set-module-kind! the-scm-module 'interface)
1796 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1797
1798 ;; NOTE: This binding is used in libguile/modules.c.
1799 ;;
1800 (define (make-modules-in module name)
1801 (if (null? name)
1802 module
1803 (cond
1804 ((module-ref module (car name) #f)
1805 => (lambda (m) (make-modules-in m (cdr name))))
1806 (else (let ((m (make-module 31)))
1807 (set-module-kind! m 'directory)
1808 (set-module-name! m (append (or (module-name module)
1809 '())
1810 (list (car name))))
1811 (module-define! module (car name) m)
1812 (make-modules-in m (cdr name)))))))
1813
1814 (define (beautify-user-module! module)
1815 (let ((interface (module-public-interface module)))
1816 (if (or (not interface)
1817 (eq? interface module))
1818 (let ((interface (make-module 31)))
1819 (set-module-name! interface (module-name module))
1820 (set-module-kind! interface 'interface)
1821 (set-module-public-interface! module interface))))
1822 (if (and (not (memq the-scm-module (module-uses module)))
1823 (not (eq? module the-root-module)))
1824 ;; Import the default set of bindings (from the SCM module) in MODULE.
1825 (module-use! module the-scm-module)))
1826
1827 ;; NOTE: This binding is used in libguile/modules.c.
1828 ;;
1829 (define resolve-module
1830 (let ((the-root-module the-root-module))
1831 (lambda (name . maybe-autoload)
1832 (if (equal? name '(guile))
1833 the-root-module
1834 (let ((full-name (append '(%app modules) name)))
1835 (let ((already (nested-ref the-root-module full-name)))
1836 (if already
1837 ;; The module already exists...
1838 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1839 (not (module-public-interface already)))
1840 ;; ...but we are told to load and it doesn't contain source, so
1841 (begin
1842 (try-load-module name)
1843 already)
1844 ;; simply return it.
1845 already)
1846 (begin
1847 ;; Try to autoload it if we are told so
1848 (if (or (null? maybe-autoload) (car maybe-autoload))
1849 (try-load-module name))
1850 ;; Get/create it.
1851 (make-modules-in (current-module) full-name)))))))))
1852
1853 ;; Cheat. These bindings are needed by modules.c, but we don't want
1854 ;; to move their real definition here because that would be unnatural.
1855 ;;
1856 (define try-module-autoload #f)
1857 (define process-define-module #f)
1858 (define process-use-modules #f)
1859 (define module-export! #f)
1860 (define default-duplicate-binding-procedures #f)
1861
1862 ;; This boots the module system. All bindings needed by modules.c
1863 ;; must have been defined by now.
1864 ;;
1865 (set-current-module the-root-module)
1866
1867 (define %app (make-module 31))
1868 (define app %app) ;; for backwards compatability
1869 (local-define '(%app modules) (make-module 31))
1870 (local-define '(%app modules guile) the-root-module)
1871
1872 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1873
1874 (define (try-load-module name)
1875 (or (begin-deprecated (try-module-linked name))
1876 (try-module-autoload name)
1877 (begin-deprecated (try-module-dynamic-link name))))
1878
1879 (define (purify-module! module)
1880 "Removes bindings in MODULE which are inherited from the (guile) module."
1881 (let ((use-list (module-uses module)))
1882 (if (and (pair? use-list)
1883 (eq? (car (last-pair use-list)) the-scm-module))
1884 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1885
1886 ;; Return a module that is an interface to the module designated by
1887 ;; NAME.
1888 ;;
1889 ;; `resolve-interface' takes four keyword arguments:
1890 ;;
1891 ;; #:select SELECTION
1892 ;;
1893 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1894 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1895 ;; is the name in the used module and SEEN is the name in the using
1896 ;; module. Note that SEEN is also passed through RENAMER, below. The
1897 ;; default is to select all bindings. If you specify no selection but
1898 ;; a renamer, only the bindings that already exist in the used module
1899 ;; are made available in the interface. Bindings that are added later
1900 ;; are not picked up.
1901 ;;
1902 ;; #:hide BINDINGS
1903 ;;
1904 ;; BINDINGS is a list of bindings which should not be imported.
1905 ;;
1906 ;; #:prefix PREFIX
1907 ;;
1908 ;; PREFIX is a symbol that will be appended to each exported name.
1909 ;; The default is to not perform any renaming.
1910 ;;
1911 ;; #:renamer RENAMER
1912 ;;
1913 ;; RENAMER is a procedure that takes a symbol and returns its new
1914 ;; name. The default is not perform any renaming.
1915 ;;
1916 ;; Signal "no code for module" error if module name is not resolvable
1917 ;; or its public interface is not available. Signal "no binding"
1918 ;; error if selected binding does not exist in the used module.
1919 ;;
1920 (define (resolve-interface name . args)
1921
1922 (define (get-keyword-arg args kw def)
1923 (cond ((memq kw args)
1924 => (lambda (kw-arg)
1925 (if (null? (cdr kw-arg))
1926 (error "keyword without value: " kw))
1927 (cadr kw-arg)))
1928 (else
1929 def)))
1930
1931 (let* ((select (get-keyword-arg args #:select #f))
1932 (hide (get-keyword-arg args #:hide '()))
1933 (renamer (or (get-keyword-arg args #:renamer #f)
1934 (let ((prefix (get-keyword-arg args #:prefix #f)))
1935 (and prefix (symbol-prefix-proc prefix)))
1936 identity))
1937 (module (resolve-module name))
1938 (public-i (and module (module-public-interface module))))
1939 (and (or (not module) (not public-i))
1940 (error "no code for module" name))
1941 (if (and (not select) (null? hide) (eq? renamer identity))
1942 public-i
1943 (let ((selection (or select (module-map (lambda (sym var) sym)
1944 public-i)))
1945 (custom-i (make-module 31)))
1946 (set-module-kind! custom-i 'custom-interface)
1947 (set-module-name! custom-i name)
1948 ;; XXX - should use a lazy binder so that changes to the
1949 ;; used module are picked up automatically.
1950 (for-each (lambda (bspec)
1951 (let* ((direct? (symbol? bspec))
1952 (orig (if direct? bspec (car bspec)))
1953 (seen (if direct? bspec (cdr bspec)))
1954 (var (or (module-local-variable public-i orig)
1955 (module-local-variable module orig)
1956 (error
1957 ;; fixme: format manually for now
1958 (simple-format
1959 #f "no binding `~A' in module ~A"
1960 orig name)))))
1961 (if (memq orig hide)
1962 (set! hide (delq! orig hide))
1963 (module-add! custom-i
1964 (renamer seen)
1965 var))))
1966 selection)
1967 ;; Check that we are not hiding bindings which don't exist
1968 (for-each (lambda (binding)
1969 (if (not (module-local-variable public-i binding))
1970 (error
1971 (simple-format
1972 #f "no binding `~A' to hide in module ~A"
1973 binding name))))
1974 hide)
1975 custom-i))))
1976
1977 (define (symbol-prefix-proc prefix)
1978 (lambda (symbol)
1979 (symbol-append prefix symbol)))
1980
1981 ;; This function is called from "modules.c". If you change it, be
1982 ;; sure to update "modules.c" as well.
1983
1984 (define (process-define-module args)
1985 (let* ((module-id (car args))
1986 (module (resolve-module module-id #f))
1987 (kws (cdr args))
1988 (unrecognized (lambda (arg)
1989 (error "unrecognized define-module argument" arg))))
1990 (beautify-user-module! module)
1991 (let loop ((kws kws)
1992 (reversed-interfaces '())
1993 (exports '())
1994 (re-exports '())
1995 (replacements '())
1996 (autoloads '()))
1997
1998 (if (null? kws)
1999 (call-with-deferred-observers
2000 (lambda ()
2001 (module-use-interfaces! module (reverse reversed-interfaces))
2002 (module-export! module exports)
2003 (module-replace! module replacements)
2004 (module-re-export! module re-exports)
2005 (if (not (null? autoloads))
2006 (apply module-autoload! module autoloads))))
2007 (case (car kws)
2008 ((#:use-module #:use-syntax)
2009 (or (pair? (cdr kws))
2010 (unrecognized kws))
2011 (let* ((interface-args (cadr kws))
2012 (interface (apply resolve-interface interface-args)))
2013 (and (eq? (car kws) #:use-syntax)
2014 (or (symbol? (caar interface-args))
2015 (error "invalid module name for use-syntax"
2016 (car interface-args)))
2017 (set-module-transformer!
2018 module
2019 (module-ref interface
2020 (car (last-pair (car interface-args)))
2021 #f)))
2022 (loop (cddr kws)
2023 (cons interface reversed-interfaces)
2024 exports
2025 re-exports
2026 replacements
2027 autoloads)))
2028 ((#:autoload)
2029 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2030 (unrecognized kws))
2031 (loop (cdddr kws)
2032 reversed-interfaces
2033 exports
2034 re-exports
2035 replacements
2036 (let ((name (cadr kws))
2037 (bindings (caddr kws)))
2038 (cons* name bindings autoloads))))
2039 ((#:no-backtrace)
2040 (set-system-module! module #t)
2041 (loop (cdr kws) reversed-interfaces exports re-exports
2042 replacements autoloads))
2043 ((#:pure)
2044 (purify-module! module)
2045 (loop (cdr kws) reversed-interfaces exports re-exports
2046 replacements autoloads))
2047 ((#:duplicates)
2048 (if (not (pair? (cdr kws)))
2049 (unrecognized kws))
2050 (set-module-duplicates-handlers!
2051 module
2052 (lookup-duplicates-handlers (cadr kws)))
2053 (loop (cddr kws) reversed-interfaces exports re-exports
2054 replacements autoloads))
2055 ((#:export #:export-syntax)
2056 (or (pair? (cdr kws))
2057 (unrecognized kws))
2058 (loop (cddr kws)
2059 reversed-interfaces
2060 (append (cadr kws) exports)
2061 re-exports
2062 replacements
2063 autoloads))
2064 ((#:re-export #:re-export-syntax)
2065 (or (pair? (cdr kws))
2066 (unrecognized kws))
2067 (loop (cddr kws)
2068 reversed-interfaces
2069 exports
2070 (append (cadr kws) re-exports)
2071 replacements
2072 autoloads))
2073 ((#:replace #:replace-syntax)
2074 (or (pair? (cdr kws))
2075 (unrecognized kws))
2076 (loop (cddr kws)
2077 reversed-interfaces
2078 exports
2079 re-exports
2080 (append (cadr kws) replacements)
2081 autoloads))
2082 (else
2083 (unrecognized kws)))))
2084 (run-hook module-defined-hook module)
2085 module))
2086
2087 ;; `module-defined-hook' is a hook that is run whenever a new module
2088 ;; is defined. Its members are called with one argument, the new
2089 ;; module.
2090 (define module-defined-hook (make-hook 1))
2091
2092 \f
2093
2094 ;;; {Autoload}
2095 ;;;
2096
2097 (define (make-autoload-interface module name bindings)
2098 (let ((b (lambda (a sym definep)
2099 (and (memq sym bindings)
2100 (let ((i (module-public-interface (resolve-module name))))
2101 (if (not i)
2102 (error "missing interface for module" name))
2103 (let ((autoload (memq a (module-uses module))))
2104 ;; Replace autoload-interface with actual interface if
2105 ;; that has not happened yet.
2106 (if (pair? autoload)
2107 (set-car! autoload i)))
2108 (module-local-variable i sym))))))
2109 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2110 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2111
2112 (define (module-autoload! module . args)
2113 "Have @var{module} automatically load the module named @var{name} when one
2114 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2115 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2116 module '(ice-9 q) '(make-q q-length))}."
2117 (let loop ((args args))
2118 (cond ((null? args)
2119 #t)
2120 ((null? (cdr args))
2121 (error "invalid name+binding autoload list" args))
2122 (else
2123 (let ((name (car args))
2124 (bindings (cadr args)))
2125 (module-use! module (make-autoload-interface module
2126 name bindings))
2127 (loop (cddr args)))))))
2128
2129
2130 ;;; {Compiled module}
2131
2132 (if (not (defined? 'load-compiled))
2133 (define load-compiled #f))
2134
2135 \f
2136
2137 ;;; {Autoloading modules}
2138 ;;;
2139
2140 (define autoloads-in-progress '())
2141
2142 ;; This function is called from "modules.c". If you change it, be
2143 ;; sure to update "modules.c" as well.
2144
2145 (define (try-module-autoload module-name)
2146 (let* ((reverse-name (reverse module-name))
2147 (name (symbol->string (car reverse-name)))
2148 (dir-hint-module-name (reverse (cdr reverse-name)))
2149 (dir-hint (apply string-append
2150 (map (lambda (elt)
2151 (string-append (symbol->string elt) "/"))
2152 dir-hint-module-name))))
2153 (resolve-module dir-hint-module-name #f)
2154 (and (not (autoload-done-or-in-progress? dir-hint name))
2155 (let ((didit #f))
2156 (define (load-file proc file)
2157 (save-module-excursion (lambda () (proc file)))
2158 (set! didit #t))
2159 (dynamic-wind
2160 (lambda () (autoload-in-progress! dir-hint name))
2161 (lambda ()
2162 (let ((file (in-vicinity dir-hint name)))
2163 (let ((compiled (and load-compiled
2164 (%search-load-path
2165 (string-append file ".go"))))
2166 (source (%search-load-path file)))
2167 (cond ((and source
2168 (or (not compiled)
2169 (< (stat:mtime (stat compiled))
2170 (stat:mtime (stat source)))))
2171 (if compiled
2172 (warn "source file" source "newer than" compiled))
2173 (with-fluids ((current-reader #f))
2174 (load-file primitive-load source)))
2175 (compiled
2176 (load-file load-compiled compiled))))))
2177 (lambda () (set-autoloaded! dir-hint name didit)))
2178 didit))))
2179
2180 \f
2181
2182 ;;; {Dynamic linking of modules}
2183 ;;;
2184
2185 (define autoloads-done '((guile . guile)))
2186
2187 (define (autoload-done-or-in-progress? p m)
2188 (let ((n (cons p m)))
2189 (->bool (or (member n autoloads-done)
2190 (member n autoloads-in-progress)))))
2191
2192 (define (autoload-done! p m)
2193 (let ((n (cons p m)))
2194 (set! autoloads-in-progress
2195 (delete! n autoloads-in-progress))
2196 (or (member n autoloads-done)
2197 (set! autoloads-done (cons n autoloads-done)))))
2198
2199 (define (autoload-in-progress! p m)
2200 (let ((n (cons p m)))
2201 (set! autoloads-done
2202 (delete! n autoloads-done))
2203 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2204
2205 (define (set-autoloaded! p m done?)
2206 (if done?
2207 (autoload-done! p m)
2208 (let ((n (cons p m)))
2209 (set! autoloads-done (delete! n autoloads-done))
2210 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2211
2212 \f
2213
2214 ;;; {Run-time options}
2215 ;;;
2216
2217 (defmacro define-option-interface (option-group)
2218 (let* ((option-name car)
2219 (option-value cadr)
2220 (option-documentation caddr)
2221
2222 ;; Below follow the macros defining the run-time option interfaces.
2223
2224 (make-options (lambda (interface)
2225 `(lambda args
2226 (cond ((null? args) (,interface))
2227 ((list? (car args))
2228 (,interface (car args)) (,interface))
2229 (else (for-each
2230 (lambda (option)
2231 (display (option-name option))
2232 (if (< (string-length
2233 (symbol->string (option-name option)))
2234 8)
2235 (display #\tab))
2236 (display #\tab)
2237 (display (option-value option))
2238 (display #\tab)
2239 (display (option-documentation option))
2240 (newline))
2241 (,interface #t)))))))
2242
2243 (make-enable (lambda (interface)
2244 `(lambda flags
2245 (,interface (append flags (,interface)))
2246 (,interface))))
2247
2248 (make-disable (lambda (interface)
2249 `(lambda flags
2250 (let ((options (,interface)))
2251 (for-each (lambda (flag)
2252 (set! options (delq! flag options)))
2253 flags)
2254 (,interface options)
2255 (,interface))))))
2256 (let* ((interface (car option-group))
2257 (options/enable/disable (cadr option-group)))
2258 `(begin
2259 (define ,(car options/enable/disable)
2260 ,(make-options interface))
2261 (define ,(cadr options/enable/disable)
2262 ,(make-enable interface))
2263 (define ,(caddr options/enable/disable)
2264 ,(make-disable interface))
2265 (defmacro ,(caaddr option-group) (opt val)
2266 `(,',(car options/enable/disable)
2267 (append (,',(car options/enable/disable))
2268 (list ',opt ,val))))))))
2269
2270 (define-option-interface
2271 (eval-options-interface
2272 (eval-options eval-enable eval-disable)
2273 (eval-set!)))
2274
2275 (define-option-interface
2276 (debug-options-interface
2277 (debug-options debug-enable debug-disable)
2278 (debug-set!)))
2279
2280 (define-option-interface
2281 (evaluator-traps-interface
2282 (traps trap-enable trap-disable)
2283 (trap-set!)))
2284
2285 (define-option-interface
2286 (read-options-interface
2287 (read-options read-enable read-disable)
2288 (read-set!)))
2289
2290 (define-option-interface
2291 (print-options-interface
2292 (print-options print-enable print-disable)
2293 (print-set!)))
2294
2295 \f
2296
2297 ;;; {Running Repls}
2298 ;;;
2299
2300 (define (repl read evaler print)
2301 (let loop ((source (read (current-input-port))))
2302 (print (evaler source))
2303 (loop (read (current-input-port)))))
2304
2305 ;; A provisional repl that acts like the SCM repl:
2306 ;;
2307 (define scm-repl-silent #f)
2308 (define (assert-repl-silence v) (set! scm-repl-silent v))
2309
2310 (define *unspecified* (if #f #f))
2311 (define (unspecified? v) (eq? v *unspecified*))
2312
2313 (define scm-repl-print-unspecified #f)
2314 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2315
2316 (define scm-repl-verbose #f)
2317 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2318
2319 (define scm-repl-prompt "guile> ")
2320
2321 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2322
2323 (define (default-lazy-handler key . args)
2324 (save-stack lazy-handler-dispatch)
2325 (apply throw key args))
2326
2327 (define (lazy-handler-dispatch key . args)
2328 (apply default-lazy-handler key args))
2329
2330 (define abort-hook (make-hook))
2331
2332 ;; these definitions are used if running a script.
2333 ;; otherwise redefined in error-catching-loop.
2334 (define (set-batch-mode?! arg) #t)
2335 (define (batch-mode?) #t)
2336
2337 (define (error-catching-loop thunk)
2338 (let ((status #f)
2339 (interactive #t))
2340 (define (loop first)
2341 (let ((next
2342 (catch #t
2343
2344 (lambda ()
2345 (call-with-unblocked-asyncs
2346 (lambda ()
2347 (with-traps
2348 (lambda ()
2349 (first)
2350
2351 ;; This line is needed because mark
2352 ;; doesn't do closures quite right.
2353 ;; Unreferenced locals should be
2354 ;; collected.
2355 (set! first #f)
2356 (let loop ((v (thunk)))
2357 (loop (thunk)))
2358 #f)))))
2359
2360 (lambda (key . args)
2361 (case key
2362 ((quit)
2363 (set! status args)
2364 #f)
2365
2366 ((switch-repl)
2367 (apply throw 'switch-repl args))
2368
2369 ((abort)
2370 ;; This is one of the closures that require
2371 ;; (set! first #f) above
2372 ;;
2373 (lambda ()
2374 (run-hook abort-hook)
2375 (force-output (current-output-port))
2376 (display "ABORT: " (current-error-port))
2377 (write args (current-error-port))
2378 (newline (current-error-port))
2379 (if interactive
2380 (begin
2381 (if (and
2382 (not has-shown-debugger-hint?)
2383 (not (memq 'backtrace
2384 (debug-options-interface)))
2385 (stack? (fluid-ref the-last-stack)))
2386 (begin
2387 (newline (current-error-port))
2388 (display
2389 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2390 (current-error-port))
2391 (set! has-shown-debugger-hint? #t)))
2392 (force-output (current-error-port)))
2393 (begin
2394 (primitive-exit 1)))
2395 (set! stack-saved? #f)))
2396
2397 (else
2398 ;; This is the other cons-leak closure...
2399 (lambda ()
2400 (cond ((= (length args) 4)
2401 (apply handle-system-error key args))
2402 (else
2403 (apply bad-throw key args)))))))
2404
2405 ;; Note that having just `lazy-handler-dispatch'
2406 ;; here is connected with the mechanism that
2407 ;; produces a nice backtrace upon error. If, for
2408 ;; example, this is replaced with (lambda args
2409 ;; (apply lazy-handler-dispatch args)), the stack
2410 ;; cutting (in save-stack) goes wrong and ends up
2411 ;; saving no stack at all, so there is no
2412 ;; backtrace.
2413 lazy-handler-dispatch)))
2414
2415 (if next (loop next) status)))
2416 (set! set-batch-mode?! (lambda (arg)
2417 (cond (arg
2418 (set! interactive #f)
2419 (restore-signals))
2420 (#t
2421 (error "sorry, not implemented")))))
2422 (set! batch-mode? (lambda () (not interactive)))
2423 (call-with-blocked-asyncs
2424 (lambda () (loop (lambda () #t))))))
2425
2426 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2427 (define before-signal-stack (make-fluid))
2428 (define stack-saved? #f)
2429
2430 (define (save-stack . narrowing)
2431 (or stack-saved?
2432 (cond ((not (memq 'debug (debug-options-interface)))
2433 (fluid-set! the-last-stack #f)
2434 (set! stack-saved? #t))
2435 (else
2436 (fluid-set!
2437 the-last-stack
2438 (case (stack-id #t)
2439 ((repl-stack)
2440 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2441 ((load-stack)
2442 (apply make-stack #t save-stack 0 #t 0 narrowing))
2443 ((tk-stack)
2444 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2445 ((#t)
2446 (apply make-stack #t save-stack 0 1 narrowing))
2447 (else
2448 (let ((id (stack-id #t)))
2449 (and (procedure? id)
2450 (apply make-stack #t save-stack id #t 0 narrowing))))))
2451 (set! stack-saved? #t)))))
2452
2453 (define before-error-hook (make-hook))
2454 (define after-error-hook (make-hook))
2455 (define before-backtrace-hook (make-hook))
2456 (define after-backtrace-hook (make-hook))
2457
2458 (define has-shown-debugger-hint? #f)
2459
2460 (define (handle-system-error key . args)
2461 (let ((cep (current-error-port)))
2462 (cond ((not (stack? (fluid-ref the-last-stack))))
2463 ((memq 'backtrace (debug-options-interface))
2464 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2465 (eq? key 'out-of-range))
2466 (list-ref args 3)
2467 '())))
2468 (run-hook before-backtrace-hook)
2469 (newline cep)
2470 (display "Backtrace:\n")
2471 (display-backtrace (fluid-ref the-last-stack) cep
2472 #f #f highlights)
2473 (newline cep)
2474 (run-hook after-backtrace-hook))))
2475 (run-hook before-error-hook)
2476 (apply display-error (fluid-ref the-last-stack) cep args)
2477 (run-hook after-error-hook)
2478 (force-output cep)
2479 (throw 'abort key)))
2480
2481 (define (quit . args)
2482 (apply throw 'quit args))
2483
2484 (define exit quit)
2485
2486 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2487
2488 ;; Replaced by C code:
2489 ;;(define (backtrace)
2490 ;; (if (fluid-ref the-last-stack)
2491 ;; (begin
2492 ;; (newline)
2493 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2494 ;; (newline)
2495 ;; (if (and (not has-shown-backtrace-hint?)
2496 ;; (not (memq 'backtrace (debug-options-interface))))
2497 ;; (begin
2498 ;; (display
2499 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2500 ;;automatically if an error occurs in the future.\n")
2501 ;; (set! has-shown-backtrace-hint? #t))))
2502 ;; (display "No backtrace available.\n")))
2503
2504 (define (error-catching-repl r e p)
2505 (error-catching-loop
2506 (lambda ()
2507 (call-with-values (lambda () (e (r)))
2508 (lambda the-values (for-each p the-values))))))
2509
2510 (define (gc-run-time)
2511 (cdr (assq 'gc-time-taken (gc-stats))))
2512
2513 (define before-read-hook (make-hook))
2514 (define after-read-hook (make-hook))
2515 (define before-eval-hook (make-hook 1))
2516 (define after-eval-hook (make-hook 1))
2517 (define before-print-hook (make-hook 1))
2518 (define after-print-hook (make-hook 1))
2519
2520 ;;; The default repl-reader function. We may override this if we've
2521 ;;; the readline library.
2522 (define repl-reader
2523 (lambda (prompt)
2524 (display (if (string? prompt) prompt (prompt)))
2525 (force-output)
2526 (run-hook before-read-hook)
2527 ((or (fluid-ref current-reader) read) (current-input-port))))
2528
2529 (define (scm-style-repl)
2530
2531 (letrec (
2532 (start-gc-rt #f)
2533 (start-rt #f)
2534 (repl-report-start-timing (lambda ()
2535 (set! start-gc-rt (gc-run-time))
2536 (set! start-rt (get-internal-run-time))))
2537 (repl-report (lambda ()
2538 (display ";;; ")
2539 (display (inexact->exact
2540 (* 1000 (/ (- (get-internal-run-time) start-rt)
2541 internal-time-units-per-second))))
2542 (display " msec (")
2543 (display (inexact->exact
2544 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2545 internal-time-units-per-second))))
2546 (display " msec in gc)\n")))
2547
2548 (consume-trailing-whitespace
2549 (lambda ()
2550 (let ((ch (peek-char)))
2551 (cond
2552 ((eof-object? ch))
2553 ((or (char=? ch #\space) (char=? ch #\tab))
2554 (read-char)
2555 (consume-trailing-whitespace))
2556 ((char=? ch #\newline)
2557 (read-char))))))
2558 (-read (lambda ()
2559 (let ((val
2560 (let ((prompt (cond ((string? scm-repl-prompt)
2561 scm-repl-prompt)
2562 ((thunk? scm-repl-prompt)
2563 (scm-repl-prompt))
2564 (scm-repl-prompt "> ")
2565 (else ""))))
2566 (repl-reader prompt))))
2567
2568 ;; As described in R4RS, the READ procedure updates the
2569 ;; port to point to the first character past the end of
2570 ;; the external representation of the object. This
2571 ;; means that it doesn't consume the newline typically
2572 ;; found after an expression. This means that, when
2573 ;; debugging Guile with GDB, GDB gets the newline, which
2574 ;; it often interprets as a "continue" command, making
2575 ;; breakpoints kind of useless. So, consume any
2576 ;; trailing newline here, as well as any whitespace
2577 ;; before it.
2578 ;; But not if EOF, for control-D.
2579 (if (not (eof-object? val))
2580 (consume-trailing-whitespace))
2581 (run-hook after-read-hook)
2582 (if (eof-object? val)
2583 (begin
2584 (repl-report-start-timing)
2585 (if scm-repl-verbose
2586 (begin
2587 (newline)
2588 (display ";;; EOF -- quitting")
2589 (newline)))
2590 (quit 0)))
2591 val)))
2592
2593 (-eval (lambda (sourc)
2594 (repl-report-start-timing)
2595 (run-hook before-eval-hook sourc)
2596 (let ((val (start-stack 'repl-stack
2597 ;; If you change this procedure
2598 ;; (primitive-eval), please also
2599 ;; modify the repl-stack case in
2600 ;; save-stack so that stack cutting
2601 ;; continues to work.
2602 (primitive-eval sourc))))
2603 (run-hook after-eval-hook sourc)
2604 val)))
2605
2606
2607 (-print (let ((maybe-print (lambda (result)
2608 (if (or scm-repl-print-unspecified
2609 (not (unspecified? result)))
2610 (begin
2611 (write result)
2612 (newline))))))
2613 (lambda (result)
2614 (if (not scm-repl-silent)
2615 (begin
2616 (run-hook before-print-hook result)
2617 (maybe-print result)
2618 (run-hook after-print-hook result)
2619 (if scm-repl-verbose
2620 (repl-report))
2621 (force-output))))))
2622
2623 (-quit (lambda (args)
2624 (if scm-repl-verbose
2625 (begin
2626 (display ";;; QUIT executed, repl exitting")
2627 (newline)
2628 (repl-report)))
2629 args))
2630
2631 (-abort (lambda ()
2632 (if scm-repl-verbose
2633 (begin
2634 (display ";;; ABORT executed.")
2635 (newline)
2636 (repl-report)))
2637 (repl -read -eval -print))))
2638
2639 (let ((status (error-catching-repl -read
2640 -eval
2641 -print)))
2642 (-quit status))))
2643
2644
2645 \f
2646
2647 ;;; {IOTA functions: generating lists of numbers}
2648 ;;;
2649
2650 (define (iota n)
2651 (let loop ((count (1- n)) (result '()))
2652 (if (< count 0) result
2653 (loop (1- count) (cons count result)))))
2654
2655 \f
2656
2657 ;;; {collect}
2658 ;;;
2659 ;;; Similar to `begin' but returns a list of the results of all constituent
2660 ;;; forms instead of the result of the last form.
2661 ;;; (The definition relies on the current left-to-right
2662 ;;; order of evaluation of operands in applications.)
2663 ;;;
2664
2665 (defmacro collect forms
2666 (cons 'list forms))
2667
2668 \f
2669
2670 ;;; {with-fluids}
2671 ;;;
2672
2673 ;; with-fluids is a convenience wrapper for the builtin procedure
2674 ;; `with-fluids*'. The syntax is just like `let':
2675 ;;
2676 ;; (with-fluids ((fluid val)
2677 ;; ...)
2678 ;; body)
2679
2680 (defmacro with-fluids (bindings . body)
2681 (let ((fluids (map car bindings))
2682 (values (map cadr bindings)))
2683 (if (and (= (length fluids) 1) (= (length values) 1))
2684 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2685 `(with-fluids* (list ,@fluids) (list ,@values)
2686 (lambda () ,@body)))))
2687
2688 \f
2689
2690 ;;; {Macros}
2691 ;;;
2692
2693 ;; actually....hobbit might be able to hack these with a little
2694 ;; coaxing
2695 ;;
2696
2697 (define (primitive-macro? m)
2698 (and (macro? m)
2699 (not (macro-transformer m))))
2700
2701 (defmacro define-macro (first . rest)
2702 (let ((name (if (symbol? first) first (car first)))
2703 (transformer
2704 (if (symbol? first)
2705 (car rest)
2706 `(lambda ,(cdr first) ,@rest))))
2707 `(eval-case
2708 ((load-toplevel compile-toplevel)
2709 (define ,name (defmacro:transformer ,transformer)))
2710 (else
2711 (error "define-macro can only be used at the top level")))))
2712
2713
2714 (defmacro define-syntax-macro (first . rest)
2715 (let ((name (if (symbol? first) first (car first)))
2716 (transformer
2717 (if (symbol? first)
2718 (car rest)
2719 `(lambda ,(cdr first) ,@rest))))
2720 `(eval-case
2721 ((load-toplevel compile-toplevel)
2722 (define ,name (defmacro:syntax-transformer ,transformer)))
2723 (else
2724 (error "define-syntax-macro can only be used at the top level")))))
2725
2726 \f
2727
2728 ;;; {While}
2729 ;;;
2730 ;;; with `continue' and `break'.
2731 ;;;
2732
2733 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2734 ;; that's only necessary if continue is actually used. A new key is
2735 ;; generated every time, so break and continue apply to their originating
2736 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2737 ;; `key' binding away from the cond and body code.
2738 ;;
2739 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2740 ;; for lambda and not, so as to protect against any user rebinding of that
2741 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2742 ;;
2743 ;; (use-modules (ice-9 syncase))
2744 ;; (while #f)
2745 ;; => ERROR: invalid syntax ()
2746 ;;
2747 ;; This is probably a bug in syncase.
2748 ;;
2749 (define-macro (while cond . body)
2750 (define (while-helper proc)
2751 (do ((key (make-symbol "while-key")))
2752 ((catch key
2753 (lambda ()
2754 (proc (lambda () (throw key #t))
2755 (lambda () (throw key #f))))
2756 (lambda (key arg) arg)))))
2757 `(,while-helper (,lambda (break continue)
2758 (do ()
2759 ((,not ,cond))
2760 ,@body)
2761 #t)))
2762
2763
2764 \f
2765
2766 ;;; {Module System Macros}
2767 ;;;
2768
2769 ;; Return a list of expressions that evaluate to the appropriate
2770 ;; arguments for resolve-interface according to SPEC.
2771
2772 (define (compile-interface-spec spec)
2773 (define (make-keyarg sym key quote?)
2774 (cond ((or (memq sym spec)
2775 (memq key spec))
2776 => (lambda (rest)
2777 (if quote?
2778 (list key (list 'quote (cadr rest)))
2779 (list key (cadr rest)))))
2780 (else
2781 '())))
2782 (define (map-apply func list)
2783 (map (lambda (args) (apply func args)) list))
2784 (define keys
2785 ;; sym key quote?
2786 '((:select #:select #t)
2787 (:hide #:hide #t)
2788 (:prefix #:prefix #t)
2789 (:renamer #:renamer #f)))
2790 (if (not (pair? (car spec)))
2791 `(',spec)
2792 `(',(car spec)
2793 ,@(apply append (map-apply make-keyarg keys)))))
2794
2795 (define (keyword-like-symbol->keyword sym)
2796 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2797
2798 (define (compile-define-module-args args)
2799 ;; Just quote everything except #:use-module and #:use-syntax. We
2800 ;; need to know about all arguments regardless since we want to turn
2801 ;; symbols that look like keywords into real keywords, and the
2802 ;; keyword args in a define-module form are not regular
2803 ;; (i.e. no-backtrace doesn't take a value).
2804 (let loop ((compiled-args `((quote ,(car args))))
2805 (args (cdr args)))
2806 (cond ((null? args)
2807 (reverse! compiled-args))
2808 ;; symbol in keyword position
2809 ((symbol? (car args))
2810 (loop compiled-args
2811 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2812 ((memq (car args) '(#:no-backtrace #:pure))
2813 (loop (cons (car args) compiled-args)
2814 (cdr args)))
2815 ((null? (cdr args))
2816 (error "keyword without value:" (car args)))
2817 ((memq (car args) '(#:use-module #:use-syntax))
2818 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2819 (car args)
2820 compiled-args)
2821 (cddr args)))
2822 ((eq? (car args) #:autoload)
2823 (loop (cons* `(quote ,(caddr args))
2824 `(quote ,(cadr args))
2825 (car args)
2826 compiled-args)
2827 (cdddr args)))
2828 (else
2829 (loop (cons* `(quote ,(cadr args))
2830 (car args)
2831 compiled-args)
2832 (cddr args))))))
2833
2834 (defmacro define-module args
2835 `(eval-case
2836 ((load-toplevel compile-toplevel)
2837 (let ((m (process-define-module
2838 (list ,@(compile-define-module-args args)))))
2839 (set-current-module m)
2840 m))
2841 (else
2842 (error "define-module can only be used at the top level"))))
2843
2844 ;; The guts of the use-modules macro. Add the interfaces of the named
2845 ;; modules to the use-list of the current module, in order.
2846
2847 ;; This function is called by "modules.c". If you change it, be sure
2848 ;; to change scm_c_use_module as well.
2849
2850 (define (process-use-modules module-interface-args)
2851 (let ((interfaces (map (lambda (mif-args)
2852 (or (apply resolve-interface mif-args)
2853 (error "no such module" mif-args)))
2854 module-interface-args)))
2855 (call-with-deferred-observers
2856 (lambda ()
2857 (module-use-interfaces! (current-module) interfaces)))))
2858
2859 (defmacro use-modules modules
2860 `(eval-case
2861 ((load-toplevel compile-toplevel)
2862 (process-use-modules
2863 (list ,@(map (lambda (m)
2864 `(list ,@(compile-interface-spec m)))
2865 modules)))
2866 *unspecified*)
2867 (else
2868 (error "use-modules can only be used at the top level"))))
2869
2870 (defmacro use-syntax (spec)
2871 `(eval-case
2872 ((load-toplevel compile-toplevel)
2873 ,@(if (pair? spec)
2874 `((process-use-modules (list
2875 (list ,@(compile-interface-spec spec))))
2876 (set-module-transformer! (current-module)
2877 ,(car (last-pair spec))))
2878 `((set-module-transformer! (current-module) ,spec)))
2879 *unspecified*)
2880 (else
2881 (error "use-syntax can only be used at the top level"))))
2882
2883 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2884 ;; as soon as guile supports hygienic macros.
2885 (define define-private define)
2886
2887 (defmacro define-public args
2888 (define (syntax)
2889 (error "bad syntax" (list 'define-public args)))
2890 (define (defined-name n)
2891 (cond
2892 ((symbol? n) n)
2893 ((pair? n) (defined-name (car n)))
2894 (else (syntax))))
2895 (cond
2896 ((null? args)
2897 (syntax))
2898 (#t
2899 (let ((name (defined-name (car args))))
2900 `(begin
2901 (define-private ,@args)
2902 (eval-case ((load-toplevel compile-toplevel) (export ,name))))))))
2903
2904 (defmacro defmacro-public args
2905 (define (syntax)
2906 (error "bad syntax" (list 'defmacro-public args)))
2907 (define (defined-name n)
2908 (cond
2909 ((symbol? n) n)
2910 (else (syntax))))
2911 (cond
2912 ((null? args)
2913 (syntax))
2914 (#t
2915 (let ((name (defined-name (car args))))
2916 `(begin
2917 (eval-case ((load-toplevel compile-toplevel) (export-syntax ,name)))
2918 (defmacro ,@args))))))
2919
2920 ;; Export a local variable
2921
2922 ;; This function is called from "modules.c". If you change it, be
2923 ;; sure to update "modules.c" as well.
2924
2925 (define (module-export! m names)
2926 (let ((public-i (module-public-interface m)))
2927 (for-each (lambda (name)
2928 (let ((var (module-ensure-local-variable! m name)))
2929 (module-add! public-i name var)))
2930 names)))
2931
2932 (define (module-replace! m names)
2933 (let ((public-i (module-public-interface m)))
2934 (for-each (lambda (name)
2935 (let ((var (module-ensure-local-variable! m name)))
2936 (set-object-property! var 'replace #t)
2937 (module-add! public-i name var)))
2938 names)))
2939
2940 ;; Re-export a imported variable
2941 ;;
2942 (define (module-re-export! m names)
2943 (let ((public-i (module-public-interface m)))
2944 (for-each (lambda (name)
2945 (let ((var (module-variable m name)))
2946 (cond ((not var)
2947 (error "Undefined variable:" name))
2948 ((eq? var (module-local-variable m name))
2949 (error "re-exporting local variable:" name))
2950 (else
2951 (module-add! public-i name var)))))
2952 names)))
2953
2954 (defmacro export names
2955 `(eval-case
2956 ((load-toplevel compile-toplevel)
2957 (call-with-deferred-observers
2958 (lambda ()
2959 (module-export! (current-module) ',names))))
2960 (else
2961 (error "export can only be used at the top level"))))
2962
2963 (defmacro re-export names
2964 `(eval-case
2965 ((load-toplevel compile-toplevel)
2966 (call-with-deferred-observers
2967 (lambda ()
2968 (module-re-export! (current-module) ',names))))
2969 (else
2970 (error "re-export can only be used at the top level"))))
2971
2972 (defmacro export-syntax names
2973 `(export ,@names))
2974
2975 (defmacro re-export-syntax names
2976 `(re-export ,@names))
2977
2978 (define load load-module)
2979
2980 ;; The following macro allows one to write, for example,
2981 ;;
2982 ;; (@ (ice-9 pretty-print) pretty-print)
2983 ;;
2984 ;; to refer directly to the pretty-print variable in module (ice-9
2985 ;; pretty-print). It works by looking up the variable and inserting
2986 ;; it directly into the code. This is understood by the evaluator.
2987 ;; Indeed, all references to global variables are memoized into such
2988 ;; variable objects.
2989
2990 (define-macro (@ mod-name var-name)
2991 (let ((var (module-variable (resolve-interface mod-name) var-name)))
2992 (if (not var)
2993 (error "no such public variable" (list '@ mod-name var-name)))
2994 var))
2995
2996 ;; The '@@' macro is like '@' but it can also access bindings that
2997 ;; have not been explicitely exported.
2998
2999 (define-macro (@@ mod-name var-name)
3000 (let ((var (module-variable (resolve-module mod-name) var-name)))
3001 (if (not var)
3002 (error "no such variable" (list '@@ mod-name var-name)))
3003 var))
3004
3005 \f
3006
3007 ;;; {Parameters}
3008 ;;;
3009
3010 (define make-mutable-parameter
3011 (let ((make (lambda (fluid converter)
3012 (lambda args
3013 (if (null? args)
3014 (fluid-ref fluid)
3015 (fluid-set! fluid (converter (car args))))))))
3016 (lambda (init . converter)
3017 (let ((fluid (make-fluid))
3018 (converter (if (null? converter)
3019 identity
3020 (car converter))))
3021 (fluid-set! fluid (converter init))
3022 (make fluid converter)))))
3023
3024 \f
3025
3026 ;;; {Handling of duplicate imported bindings}
3027 ;;;
3028
3029 ;; Duplicate handlers take the following arguments:
3030 ;;
3031 ;; module importing module
3032 ;; name conflicting name
3033 ;; int1 old interface where name occurs
3034 ;; val1 value of binding in old interface
3035 ;; int2 new interface where name occurs
3036 ;; val2 value of binding in new interface
3037 ;; var previous resolution or #f
3038 ;; val value of previous resolution
3039 ;;
3040 ;; A duplicate handler can take three alternative actions:
3041 ;;
3042 ;; 1. return #f => leave responsibility to next handler
3043 ;; 2. exit with an error
3044 ;; 3. return a variable resolving the conflict
3045 ;;
3046
3047 (define duplicate-handlers
3048 (let ((m (make-module 7)))
3049
3050 (define (check module name int1 val1 int2 val2 var val)
3051 (scm-error 'misc-error
3052 #f
3053 "~A: `~A' imported from both ~A and ~A"
3054 (list (module-name module)
3055 name
3056 (module-name int1)
3057 (module-name int2))
3058 #f))
3059
3060 (define (warn module name int1 val1 int2 val2 var val)
3061 (format (current-error-port)
3062 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3063 (module-name module)
3064 name
3065 (module-name int1)
3066 (module-name int2))
3067 #f)
3068
3069 (define (replace module name int1 val1 int2 val2 var val)
3070 (let ((old (or (and var (object-property var 'replace) var)
3071 (module-variable int1 name)))
3072 (new (module-variable int2 name)))
3073 (if (object-property old 'replace)
3074 (and (or (eq? old new)
3075 (not (object-property new 'replace)))
3076 old)
3077 (and (object-property new 'replace)
3078 new))))
3079
3080 (define (warn-override-core module name int1 val1 int2 val2 var val)
3081 (and (eq? int1 the-scm-module)
3082 (begin
3083 (format (current-error-port)
3084 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3085 (module-name module)
3086 (module-name int2)
3087 name)
3088 (module-local-variable int2 name))))
3089
3090 (define (first module name int1 val1 int2 val2 var val)
3091 (or var (module-local-variable int1 name)))
3092
3093 (define (last module name int1 val1 int2 val2 var val)
3094 (module-local-variable int2 name))
3095
3096 (define (noop module name int1 val1 int2 val2 var val)
3097 #f)
3098
3099 (set-module-name! m 'duplicate-handlers)
3100 (set-module-kind! m 'interface)
3101 (module-define! m 'check check)
3102 (module-define! m 'warn warn)
3103 (module-define! m 'replace replace)
3104 (module-define! m 'warn-override-core warn-override-core)
3105 (module-define! m 'first first)
3106 (module-define! m 'last last)
3107 (module-define! m 'merge-generics noop)
3108 (module-define! m 'merge-accessors noop)
3109 m))
3110
3111 (define (lookup-duplicates-handlers handler-names)
3112 (and handler-names
3113 (map (lambda (handler-name)
3114 (or (module-symbol-local-binding
3115 duplicate-handlers handler-name #f)
3116 (error "invalid duplicate handler name:"
3117 handler-name)))
3118 (if (list? handler-names)
3119 handler-names
3120 (list handler-names)))))
3121
3122 (define default-duplicate-binding-procedures
3123 (make-mutable-parameter #f))
3124
3125 (define default-duplicate-binding-handler
3126 (make-mutable-parameter '(replace warn-override-core warn last)
3127 (lambda (handler-names)
3128 (default-duplicate-binding-procedures
3129 (lookup-duplicates-handlers handler-names))
3130 handler-names)))
3131
3132 \f
3133
3134 ;;; {`cond-expand' for SRFI-0 support.}
3135 ;;;
3136 ;;; This syntactic form expands into different commands or
3137 ;;; definitions, depending on the features provided by the Scheme
3138 ;;; implementation.
3139 ;;;
3140 ;;; Syntax:
3141 ;;;
3142 ;;; <cond-expand>
3143 ;;; --> (cond-expand <cond-expand-clause>+)
3144 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3145 ;;; <cond-expand-clause>
3146 ;;; --> (<feature-requirement> <command-or-definition>*)
3147 ;;; <feature-requirement>
3148 ;;; --> <feature-identifier>
3149 ;;; | (and <feature-requirement>*)
3150 ;;; | (or <feature-requirement>*)
3151 ;;; | (not <feature-requirement>)
3152 ;;; <feature-identifier>
3153 ;;; --> <a symbol which is the name or alias of a SRFI>
3154 ;;;
3155 ;;; Additionally, this implementation provides the
3156 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3157 ;;; determine the implementation type and the supported standard.
3158 ;;;
3159 ;;; Currently, the following feature identifiers are supported:
3160 ;;;
3161 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3162 ;;;
3163 ;;; Remember to update the features list when adding more SRFIs.
3164 ;;;
3165
3166 (define %cond-expand-features
3167 ;; Adjust the above comment when changing this.
3168 '(guile
3169 r5rs
3170 srfi-0 ;; cond-expand itself
3171 srfi-4 ;; homogenous numeric vectors
3172 srfi-6 ;; open-input-string etc, in the guile core
3173 srfi-13 ;; string library
3174 srfi-14 ;; character sets
3175 srfi-55 ;; require-extension
3176 srfi-61 ;; general cond clause
3177 ))
3178
3179 ;; This table maps module public interfaces to the list of features.
3180 ;;
3181 (define %cond-expand-table (make-hash-table 31))
3182
3183 ;; Add one or more features to the `cond-expand' feature list of the
3184 ;; module `module'.
3185 ;;
3186 (define (cond-expand-provide module features)
3187 (let ((mod (module-public-interface module)))
3188 (and mod
3189 (hashq-set! %cond-expand-table mod
3190 (append (hashq-ref %cond-expand-table mod '())
3191 features)))))
3192
3193 (define cond-expand
3194 (procedure->memoizing-macro
3195 (lambda (exp env)
3196 (let ((clauses (cdr exp))
3197 (syntax-error (lambda (cl)
3198 (error "invalid clause in `cond-expand'" cl))))
3199 (letrec
3200 ((test-clause
3201 (lambda (clause)
3202 (cond
3203 ((symbol? clause)
3204 (or (memq clause %cond-expand-features)
3205 (let lp ((uses (module-uses (env-module env))))
3206 (if (pair? uses)
3207 (or (memq clause
3208 (hashq-ref %cond-expand-table
3209 (car uses) '()))
3210 (lp (cdr uses)))
3211 #f))))
3212 ((pair? clause)
3213 (cond
3214 ((eq? 'and (car clause))
3215 (let lp ((l (cdr clause)))
3216 (cond ((null? l)
3217 #t)
3218 ((pair? l)
3219 (and (test-clause (car l)) (lp (cdr l))))
3220 (else
3221 (syntax-error clause)))))
3222 ((eq? 'or (car clause))
3223 (let lp ((l (cdr clause)))
3224 (cond ((null? l)
3225 #f)
3226 ((pair? l)
3227 (or (test-clause (car l)) (lp (cdr l))))
3228 (else
3229 (syntax-error clause)))))
3230 ((eq? 'not (car clause))
3231 (cond ((not (pair? (cdr clause)))
3232 (syntax-error clause))
3233 ((pair? (cddr clause))
3234 ((syntax-error clause))))
3235 (not (test-clause (cadr clause))))
3236 (else
3237 (syntax-error clause))))
3238 (else
3239 (syntax-error clause))))))
3240 (let lp ((c clauses))
3241 (cond
3242 ((null? c)
3243 (error "Unfulfilled `cond-expand'"))
3244 ((not (pair? c))
3245 (syntax-error c))
3246 ((not (pair? (car c)))
3247 (syntax-error (car c)))
3248 ((test-clause (caar c))
3249 `(begin ,@(cdar c)))
3250 ((eq? (caar c) 'else)
3251 (if (pair? (cdr c))
3252 (syntax-error c))
3253 `(begin ,@(cdar c)))
3254 (else
3255 (lp (cdr c))))))))))
3256
3257 ;; This procedure gets called from the startup code with a list of
3258 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3259 ;;
3260 (define (use-srfis srfis)
3261 (process-use-modules
3262 (map (lambda (num)
3263 (list (list 'srfi (string->symbol
3264 (string-append "srfi-" (number->string num))))))
3265 srfis)))
3266
3267 \f
3268
3269 ;;; srfi-55: require-extension
3270 ;;;
3271
3272 (define-macro (require-extension extension-spec)
3273 ;; This macro only handles the srfi extension, which, at present, is
3274 ;; the only one defined by the standard.
3275 (if (not (pair? extension-spec))
3276 (scm-error 'wrong-type-arg "require-extension"
3277 "Not an extension: ~S" (list extension-spec) #f))
3278 (let ((extension (car extension-spec))
3279 (extension-args (cdr extension-spec)))
3280 (case extension
3281 ((srfi)
3282 (let ((use-list '()))
3283 (for-each
3284 (lambda (i)
3285 (if (not (integer? i))
3286 (scm-error 'wrong-type-arg "require-extension"
3287 "Invalid srfi name: ~S" (list i) #f))
3288 (let ((srfi-sym (string->symbol
3289 (string-append "srfi-" (number->string i)))))
3290 (if (not (memq srfi-sym %cond-expand-features))
3291 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3292 use-list)))))
3293 extension-args)
3294 (if (pair? use-list)
3295 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3296 `(begin ,@(reverse! use-list)))))
3297 (else
3298 (scm-error
3299 'wrong-type-arg "require-extension"
3300 "Not a recognized extension type: ~S" (list extension) #f)))))
3301
3302 \f
3303
3304 ;;; {Load emacs interface support if emacs option is given.}
3305 ;;;
3306
3307 (define (named-module-use! user usee)
3308 (module-use! (resolve-module user) (resolve-interface usee)))
3309
3310 (define (load-emacs-interface)
3311 (and (provided? 'debug-extensions)
3312 (debug-enable 'backtrace))
3313 (named-module-use! '(guile-user) '(ice-9 emacs)))
3314
3315 \f
3316
3317 (define using-readline?
3318 (let ((using-readline? (make-fluid)))
3319 (make-procedure-with-setter
3320 (lambda () (fluid-ref using-readline?))
3321 (lambda (v) (fluid-set! using-readline? v)))))
3322
3323 (define (top-repl)
3324 (let ((guile-user-module (resolve-module '(guile-user))))
3325
3326 ;; Load emacs interface support if emacs option is given.
3327 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3328 (module-ref guile-user-module 'use-emacs-interface))
3329 (load-emacs-interface))
3330
3331 ;; Use some convenient modules (in reverse order)
3332
3333 (set-current-module guile-user-module)
3334 (process-use-modules
3335 (append
3336 '(((ice-9 r5rs))
3337 ((ice-9 session))
3338 ((ice-9 debug)))
3339 (if (provided? 'regex)
3340 '(((ice-9 regex)))
3341 '())
3342 (if (provided? 'threads)
3343 '(((ice-9 threads)))
3344 '())))
3345 ;; load debugger on demand
3346 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3347
3348 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3349 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3350 ;; no effect.
3351 (let ((old-handlers #f)
3352 (signals (if (provided? 'posix)
3353 `((,SIGINT . "User interrupt")
3354 (,SIGFPE . "Arithmetic error")
3355 (,SIGSEGV
3356 . "Bad memory access (Segmentation violation)"))
3357 '())))
3358 ;; no SIGBUS on mingw
3359 (if (defined? 'SIGBUS)
3360 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3361 signals)))
3362
3363 (dynamic-wind
3364
3365 ;; call at entry
3366 (lambda ()
3367 (let ((make-handler (lambda (msg)
3368 (lambda (sig)
3369 ;; Make a backup copy of the stack
3370 (fluid-set! before-signal-stack
3371 (fluid-ref the-last-stack))
3372 (save-stack 2)
3373 (scm-error 'signal
3374 #f
3375 msg
3376 #f
3377 (list sig))))))
3378 (set! old-handlers
3379 (map (lambda (sig-msg)
3380 (sigaction (car sig-msg)
3381 (make-handler (cdr sig-msg))))
3382 signals))))
3383
3384 ;; the protected thunk.
3385 (lambda ()
3386 (let ((status (scm-style-repl)))
3387 (run-hook exit-hook)
3388 status))
3389
3390 ;; call at exit.
3391 (lambda ()
3392 (map (lambda (sig-msg old-handler)
3393 (if (not (car old-handler))
3394 ;; restore original C handler.
3395 (sigaction (car sig-msg) #f)
3396 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3397 (sigaction (car sig-msg)
3398 (car old-handler)
3399 (cdr old-handler))))
3400 signals old-handlers))))))
3401
3402 ;;; This hook is run at the very end of an interactive session.
3403 ;;;
3404 (define exit-hook (make-hook))
3405
3406 \f
3407
3408 ;;; {Deprecated stuff}
3409 ;;;
3410
3411 (begin-deprecated
3412 (define (feature? sym)
3413 (issue-deprecation-warning
3414 "`feature?' is deprecated. Use `provided?' instead.")
3415 (provided? sym)))
3416
3417 (begin-deprecated
3418 (primitive-load-path "ice-9/deprecated.scm"))
3419
3420 \f
3421
3422 ;;; Place the user in the guile-user module.
3423 ;;;
3424
3425 (define-module (guile-user))
3426
3427 ;;; boot-9.scm ends here