Fix partial commit of documentation update
[bpt/guile.git] / doc / ref / api-procedures.texi
1 @c -*-texinfo-*-
2 @c This is part of the GNU Guile Reference Manual.
3 @c Copyright (C) 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2009, 2010,
4 @c 2011, 2012, 2013 Free Software Foundation, Inc.
5 @c See the file guile.texi for copying conditions.
6
7 @node Procedures
8 @section Procedures
9
10 @menu
11 * Lambda:: Basic procedure creation using lambda.
12 * Primitive Procedures:: Procedures defined in C.
13 * Compiled Procedures:: Scheme procedures can be compiled.
14 * Optional Arguments:: Handling keyword, optional and rest arguments.
15 * Case-lambda:: One function, multiple arities.
16 * Higher-Order Functions:: Function that take or return functions.
17 * Procedure Properties:: Procedure properties and meta-information.
18 * Procedures with Setters:: Procedures with setters.
19 * Inlinable Procedures:: Procedures that can be inlined.
20 @end menu
21
22
23 @node Lambda
24 @subsection Lambda: Basic Procedure Creation
25 @cindex lambda
26
27 A @code{lambda} expression evaluates to a procedure. The environment
28 which is in effect when a @code{lambda} expression is evaluated is
29 enclosed in the newly created procedure, this is referred to as a
30 @dfn{closure} (@pxref{About Closure}).
31
32 When a procedure created by @code{lambda} is called with some actual
33 arguments, the environment enclosed in the procedure is extended by
34 binding the variables named in the formal argument list to new locations
35 and storing the actual arguments into these locations. Then the body of
36 the @code{lambda} expression is evaluated sequentially. The result of
37 the last expression in the procedure body is then the result of the
38 procedure invocation.
39
40 The following examples will show how procedures can be created using
41 @code{lambda}, and what you can do with these procedures.
42
43 @lisp
44 (lambda (x) (+ x x)) @result{} @r{a procedure}
45 ((lambda (x) (+ x x)) 4) @result{} 8
46 @end lisp
47
48 The fact that the environment in effect when creating a procedure is
49 enclosed in the procedure is shown with this example:
50
51 @lisp
52 (define add4
53 (let ((x 4))
54 (lambda (y) (+ x y))))
55 (add4 6) @result{} 10
56 @end lisp
57
58
59 @deffn syntax lambda formals body
60 @var{formals} should be a formal argument list as described in the
61 following table.
62
63 @table @code
64 @item (@var{variable1} @dots{})
65 The procedure takes a fixed number of arguments; when the procedure is
66 called, the arguments will be stored into the newly created location for
67 the formal variables.
68 @item @var{variable}
69 The procedure takes any number of arguments; when the procedure is
70 called, the sequence of actual arguments will converted into a list and
71 stored into the newly created location for the formal variable.
72 @item (@var{variable1} @dots{} @var{variablen} . @var{variablen+1})
73 If a space-delimited period precedes the last variable, then the
74 procedure takes @var{n} or more variables where @var{n} is the number
75 of formal arguments before the period. There must be at least one
76 argument before the period. The first @var{n} actual arguments will be
77 stored into the newly allocated locations for the first @var{n} formal
78 arguments and the sequence of the remaining actual arguments is
79 converted into a list and the stored into the location for the last
80 formal argument. If there are exactly @var{n} actual arguments, the
81 empty list is stored into the location of the last formal argument.
82 @end table
83
84 The list in @var{variable} or @var{variablen+1} is always newly
85 created and the procedure can modify it if desired. This is the case
86 even when the procedure is invoked via @code{apply}, the required part
87 of the list argument there will be copied (@pxref{Fly Evaluation,,
88 Procedures for On the Fly Evaluation}).
89
90 @var{body} is a sequence of Scheme expressions which are evaluated in
91 order when the procedure is invoked.
92 @end deffn
93
94 @node Primitive Procedures
95 @subsection Primitive Procedures
96 @cindex primitives
97 @cindex primitive procedures
98
99 Procedures written in C can be registered for use from Scheme,
100 provided they take only arguments of type @code{SCM} and return
101 @code{SCM} values. @code{scm_c_define_gsubr} is likely to be the most
102 useful mechanism, combining the process of registration
103 (@code{scm_c_make_gsubr}) and definition (@code{scm_define}).
104
105 @deftypefun SCM scm_c_make_gsubr (const char *name, int req, int opt, int rst, fcn)
106 Register a C procedure @var{fcn} as a ``subr'' --- a primitive
107 subroutine that can be called from Scheme. It will be associated with
108 the given @var{name} but no environment binding will be created. The
109 arguments @var{req}, @var{opt} and @var{rst} specify the number of
110 required, optional and ``rest'' arguments respectively. The total
111 number of these arguments should match the actual number of arguments
112 to @var{fcn}, but may not exceed 10. The number of rest arguments should be 0 or 1.
113 @code{scm_c_make_gsubr} returns a value of type @code{SCM} which is a
114 ``handle'' for the procedure.
115 @end deftypefun
116
117 @deftypefun SCM scm_c_define_gsubr (const char *name, int req, int opt, int rst, fcn)
118 Register a C procedure @var{fcn}, as for @code{scm_c_make_gsubr}
119 above, and additionally create a top-level Scheme binding for the
120 procedure in the ``current environment'' using @code{scm_define}.
121 @code{scm_c_define_gsubr} returns a handle for the procedure in the
122 same way as @code{scm_c_make_gsubr}, which is usually not further
123 required.
124 @end deftypefun
125
126 @node Compiled Procedures
127 @subsection Compiled Procedures
128
129 The evaluation strategy given in @ref{Lambda} describes how procedures
130 are @dfn{interpreted}. Interpretation operates directly on expanded
131 Scheme source code, recursively calling the evaluator to obtain the
132 value of nested expressions.
133
134 Most procedures are compiled, however. This means that Guile has done
135 some pre-computation on the procedure, to determine what it will need to
136 do each time the procedure runs. Compiled procedures run faster than
137 interpreted procedures.
138
139 Loading files is the normal way that compiled procedures come to
140 being. If Guile sees that a file is uncompiled, or that its compiled
141 file is out of date, it will attempt to compile the file when it is
142 loaded, and save the result to disk. Procedures can be compiled at
143 runtime as well. @xref{Read/Load/Eval/Compile}, for more information
144 on runtime compilation.
145
146 Compiled procedures, also known as @dfn{programs}, respond all
147 procedures that operate on procedures. In addition, there are a few
148 more accessors for low-level details on programs.
149
150 Most people won't need to use the routines described in this section,
151 but it's good to have them documented. You'll have to include the
152 appropriate module first, though:
153
154 @example
155 (use-modules (system vm program))
156 @end example
157
158 @deffn {Scheme Procedure} program? obj
159 @deffnx {C Function} scm_program_p (obj)
160 Returns @code{#t} iff @var{obj} is a compiled procedure.
161 @end deffn
162
163 @deffn {Scheme Procedure} program-objcode program
164 @deffnx {C Function} scm_program_objcode (program)
165 Returns the object code associated with this program. @xref{Bytecode
166 and Objcode}, for more information.
167 @end deffn
168
169 @deffn {Scheme Procedure} program-objects program
170 @deffnx {C Function} scm_program_objects (program)
171 Returns the ``object table'' associated with this program, as a
172 vector. @xref{VM Programs}, for more information.
173 @end deffn
174
175 @deffn {Scheme Procedure} program-module program
176 @deffnx {C Function} scm_program_module (program)
177 Returns the module that was current when this program was created. Can
178 return @code{#f} if the compiler could determine that this information
179 was unnecessary.
180 @end deffn
181
182 @deffn {Scheme Procedure} program-free-variables program
183 @deffnx {C Function} scm_program_free_variables (program)
184 Returns the set of free variables that this program captures in its
185 closure, as a vector. If a closure is code with data, you can get the
186 code from @code{program-objcode}, and the data via
187 @code{program-free-variables}.
188
189 Some of the values captured are actually in variable ``boxes''.
190 @xref{Variables and the VM}, for more information.
191
192 Users must not modify the returned value unless they think they're
193 really clever.
194 @end deffn
195
196 @deffn {Scheme Procedure} program-meta program
197 @deffnx {C Function} scm_program_meta (program)
198 Return the metadata thunk of @var{program}, or @code{#f} if it has no
199 metadata.
200
201 When called, a metadata thunk returns a list of the following form:
202 @code{(@var{bindings} @var{sources} @var{arities} . @var{properties})}. The format
203 of each of these elements is discussed below.
204 @end deffn
205
206 @deffn {Scheme Procedure} program-bindings program
207 @deffnx {Scheme Procedure} make-binding name boxed? index start end
208 @deffnx {Scheme Procedure} binding:name binding
209 @deffnx {Scheme Procedure} binding:boxed? binding
210 @deffnx {Scheme Procedure} binding:index binding
211 @deffnx {Scheme Procedure} binding:start binding
212 @deffnx {Scheme Procedure} binding:end binding
213 Bindings annotations for programs, along with their accessors.
214
215 Bindings declare names and liveness extents for block-local variables.
216 The best way to see what these are is to play around with them at a
217 REPL. @xref{VM Concepts}, for more information.
218
219 Note that bindings information is stored in a program as part of its
220 metadata thunk, so including it in the generated object code does not
221 impose a runtime performance penalty.
222 @end deffn
223
224 @deffn {Scheme Procedure} program-sources program
225 @deffnx {Scheme Procedure} source:addr source
226 @deffnx {Scheme Procedure} source:line source
227 @deffnx {Scheme Procedure} source:column source
228 @deffnx {Scheme Procedure} source:file source
229 Source location annotations for programs, along with their accessors.
230
231 Source location information propagates through the compiler and ends
232 up being serialized to the program's metadata. This information is
233 keyed by the offset of the instruction pointer within the object code
234 of the program. Specifically, it is keyed on the @code{ip} @emph{just
235 following} an instruction, so that backtraces can find the source
236 location of a call that is in progress.
237 @end deffn
238
239 @deffn {Scheme Procedure} program-arities program
240 @deffnx {C Function} scm_program_arities (program)
241 @deffnx {Scheme Procedure} program-arity program ip
242 @deffnx {Scheme Procedure} arity:start arity
243 @deffnx {Scheme Procedure} arity:end arity
244 @deffnx {Scheme Procedure} arity:nreq arity
245 @deffnx {Scheme Procedure} arity:nopt arity
246 @deffnx {Scheme Procedure} arity:rest? arity
247 @deffnx {Scheme Procedure} arity:kw arity
248 @deffnx {Scheme Procedure} arity:allow-other-keys? arity
249 Accessors for a representation of the ``arity'' of a program.
250
251 The normal case is that a procedure has one arity. For example,
252 @code{(lambda (x) x)}, takes one required argument, and that's it. One
253 could access that number of required arguments via @code{(arity:nreq
254 (program-arities (lambda (x) x)))}. Similarly, @code{arity:nopt} gets
255 the number of optional arguments, and @code{arity:rest?} returns a true
256 value if the procedure has a rest arg.
257
258 @code{arity:kw} returns a list of @code{(@var{kw} . @var{idx})} pairs,
259 if the procedure has keyword arguments. The @var{idx} refers to the
260 @var{idx}th local variable; @xref{Variables and the VM}, for more
261 information. Finally @code{arity:allow-other-keys?} returns a true
262 value if other keys are allowed. @xref{Optional Arguments}, for more
263 information.
264
265 So what about @code{arity:start} and @code{arity:end}, then? They
266 return the range of bytes in the program's bytecode for which a given
267 arity is valid. You see, a procedure can actually have more than one
268 arity. The question, ``what is a procedure's arity'' only really makes
269 sense at certain points in the program, delimited by these
270 @code{arity:start} and @code{arity:end} values.
271 @end deffn
272
273 @deffn {Scheme Procedure} program-arguments-alist program [ip]
274 Return an association list describing the arguments that @var{program} accepts, or
275 @code{#f} if the information cannot be obtained.
276
277 The alist keys that are currently defined are `required', `optional',
278 `keyword', `allow-other-keys?', and `rest'. For example:
279
280 @example
281 (program-arguments-alist
282 (lambda* (a b #:optional c #:key (d 1) #:rest e)
283 #t)) @result{}
284 ((required . (a b))
285 (optional . (c))
286 (keyword . ((#:d . 4)))
287 (allow-other-keys? . #f)
288 (rest . d))
289 @end example
290 @end deffn
291
292 @deffn {Scheme Procedure} program-lambda-list program [ip]
293 Return a representation of the arguments of @var{program} as a lambda
294 list, or @code{#f} if this information is not available.
295
296 For example:
297
298 @example
299 (program-lambda-alist
300 (lambda* (a b #:optional c #:key (d 1) #:rest e)
301 #t)) @result{}
302 @end example
303 @end deffn
304
305 @node Optional Arguments
306 @subsection Optional Arguments
307
308 Scheme procedures, as defined in R5RS, can either handle a fixed number
309 of actual arguments, or a fixed number of actual arguments followed by
310 arbitrarily many additional arguments. Writing procedures of variable
311 arity can be useful, but unfortunately, the syntactic means for handling
312 argument lists of varying length is a bit inconvenient. It is possible
313 to give names to the fixed number of arguments, but the remaining
314 (optional) arguments can be only referenced as a list of values
315 (@pxref{Lambda}).
316
317 For this reason, Guile provides an extension to @code{lambda},
318 @code{lambda*}, which allows the user to define procedures with
319 optional and keyword arguments. In addition, Guile's virtual machine
320 has low-level support for optional and keyword argument dispatch.
321 Calls to procedures with optional and keyword arguments can be made
322 cheaply, without allocating a rest list.
323
324 @menu
325 * lambda* and define*:: Creating advanced argument handling procedures.
326 * ice-9 optargs:: (ice-9 optargs) provides some utilities.
327 @end menu
328
329
330 @node lambda* and define*
331 @subsubsection lambda* and define*.
332
333 @code{lambda*} is like @code{lambda}, except with some extensions to
334 allow optional and keyword arguments.
335
336 @deffn {library syntax} lambda* ([var@dots{}] @* [#:optional vardef@dots{}] @* [#:key vardef@dots{} [#:allow-other-keys]] @* [#:rest var | . var]) @* body
337 @sp 1
338 Create a procedure which takes optional and/or keyword arguments
339 specified with @code{#:optional} and @code{#:key}. For example,
340
341 @lisp
342 (lambda* (a b #:optional c d . e) '())
343 @end lisp
344
345 is a procedure with fixed arguments @var{a} and @var{b}, optional
346 arguments @var{c} and @var{d}, and rest argument @var{e}. If the
347 optional arguments are omitted in a call, the variables for them are
348 bound to @code{#f}.
349
350 @fnindex define*
351 Likewise, @code{define*} is syntactic sugar for defining procedures
352 using @code{lambda*}.
353
354 @code{lambda*} can also make procedures with keyword arguments. For
355 example, a procedure defined like this:
356
357 @lisp
358 (define* (sir-yes-sir #:key action how-high)
359 (list action how-high))
360 @end lisp
361
362 can be called as @code{(sir-yes-sir #:action 'jump)},
363 @code{(sir-yes-sir #:how-high 13)}, @code{(sir-yes-sir #:action
364 'lay-down #:how-high 0)}, or just @code{(sir-yes-sir)}. Whichever
365 arguments are given as keywords are bound to values (and those not
366 given are @code{#f}).
367
368 Optional and keyword arguments can also have default values to take
369 when not present in a call, by giving a two-element list of variable
370 name and expression. For example in
371
372 @lisp
373 (define* (frob foo #:optional (bar 42) #:key (baz 73))
374 (list foo bar baz))
375 @end lisp
376
377 @var{foo} is a fixed argument, @var{bar} is an optional argument with
378 default value 42, and baz is a keyword argument with default value 73.
379 Default value expressions are not evaluated unless they are needed,
380 and until the procedure is called.
381
382 Normally it's an error if a call has keywords other than those
383 specified by @code{#:key}, but adding @code{#:allow-other-keys} to the
384 definition (after the keyword argument declarations) will ignore
385 unknown keywords.
386
387 If a call has a keyword given twice, the last value is used. For
388 example,
389
390 @lisp
391 (define* (flips #:key (heads 0) (tails 0))
392 (display (list heads tails)))
393
394 (flips #:heads 37 #:tails 42 #:heads 99)
395 @print{} (99 42)
396 @end lisp
397
398 @code{#:rest} is a synonym for the dotted syntax rest argument. The
399 argument lists @code{(a . b)} and @code{(a #:rest b)} are equivalent
400 in all respects. This is provided for more similarity to DSSSL,
401 MIT-Scheme and Kawa among others, as well as for refugees from other
402 Lisp dialects.
403
404 When @code{#:key} is used together with a rest argument, the keyword
405 parameters in a call all remain in the rest list. This is the same as
406 Common Lisp. For example,
407
408 @lisp
409 ((lambda* (#:key (x 0) #:allow-other-keys #:rest r)
410 (display r))
411 #:x 123 #:y 456)
412 @print{} (#:x 123 #:y 456)
413 @end lisp
414
415 @code{#:optional} and @code{#:key} establish their bindings
416 successively, from left to right. This means default expressions can
417 refer back to prior parameters, for example
418
419 @lisp
420 (lambda* (start #:optional (end (+ 10 start)))
421 (do ((i start (1+ i)))
422 ((> i end))
423 (display i)))
424 @end lisp
425
426 The exception to this left-to-right scoping rule is the rest argument.
427 If there is a rest argument, it is bound after the optional arguments,
428 but before the keyword arguments.
429 @end deffn
430
431
432 @node ice-9 optargs
433 @subsubsection (ice-9 optargs)
434
435 Before Guile 2.0, @code{lambda*} and @code{define*} were implemented
436 using macros that processed rest list arguments. This was not optimal,
437 as calling procedures with optional arguments had to allocate rest
438 lists at every procedure invocation. Guile 2.0 improved this
439 situation by bringing optional and keyword arguments into Guile's
440 core.
441
442 However there are occasions in which you have a list and want to parse
443 it for optional or keyword arguments. Guile's @code{(ice-9 optargs)}
444 provides some macros to help with that task.
445
446 The syntax @code{let-optional} and @code{let-optional*} are for
447 destructuring rest argument lists and giving names to the various list
448 elements. @code{let-optional} binds all variables simultaneously, while
449 @code{let-optional*} binds them sequentially, consistent with @code{let}
450 and @code{let*} (@pxref{Local Bindings}).
451
452 @deffn {library syntax} let-optional rest-arg (binding @dots{}) body1 body2 @dots{}
453 @deffnx {library syntax} let-optional* rest-arg (binding @dots{}) body1 body2 @dots{}
454 These two macros give you an optional argument interface that is very
455 @dfn{Schemey} and introduces no fancy syntax. They are compatible with
456 the scsh macros of the same name, but are slightly extended. Each of
457 @var{binding} may be of one of the forms @var{var} or @code{(@var{var}
458 @var{default-value})}. @var{rest-arg} should be the rest-argument of the
459 procedures these are used from. The items in @var{rest-arg} are
460 sequentially bound to the variable names are given. When @var{rest-arg}
461 runs out, the remaining vars are bound either to the default values or
462 @code{#f} if no default value was specified. @var{rest-arg} remains
463 bound to whatever may have been left of @var{rest-arg}.
464
465 After binding the variables, the expressions @var{body1} @var{body2} @dots{}
466 are evaluated in order.
467 @end deffn
468
469 Similarly, @code{let-keywords} and @code{let-keywords*} extract values
470 from keyword style argument lists, binding local variables to those
471 values or to defaults.
472
473 @deffn {library syntax} let-keywords args allow-other-keys? (binding @dots{}) body1 body2 @dots{}
474 @deffnx {library syntax} let-keywords* args allow-other-keys? (binding @dots{}) body1 body2 @dots{}
475 @var{args} is evaluated and should give a list of the form
476 @code{(#:keyword1 value1 #:keyword2 value2 @dots{})}. The
477 @var{binding}s are variables and default expressions, with the variables
478 to be set (by name) from the keyword values. The @var{body1}
479 @var{body2} @dots{} forms are then evaluated and the last is the
480 result. An example will make the syntax clearest,
481
482 @example
483 (define args '(#:xyzzy "hello" #:foo "world"))
484
485 (let-keywords args #t
486 ((foo "default for foo")
487 (bar (string-append "default" "for" "bar")))
488 (display foo)
489 (display ", ")
490 (display bar))
491 @print{} world, defaultforbar
492 @end example
493
494 The binding for @code{foo} comes from the @code{#:foo} keyword in
495 @code{args}. But the binding for @code{bar} is the default in the
496 @code{let-keywords}, since there's no @code{#:bar} in the args.
497
498 @var{allow-other-keys?} is evaluated and controls whether unknown
499 keywords are allowed in the @var{args} list. When true other keys are
500 ignored (such as @code{#:xyzzy} in the example), when @code{#f} an
501 error is thrown for anything unknown.
502 @end deffn
503
504 @code{(ice-9 optargs)} also provides some more @code{define*} sugar,
505 which is not so useful with modern Guile coding, but still supported:
506 @code{define*-public} is the @code{lambda*} version of
507 @code{define-public}; @code{defmacro*} and @code{defmacro*-public}
508 exist for defining macros with the improved argument list handling
509 possibilities. The @code{-public} versions not only define the
510 procedures/macros, but also export them from the current module.
511
512 @deffn {library syntax} define*-public formals body1 body2 @dots{}
513 Like a mix of @code{define*} and @code{define-public}.
514 @end deffn
515
516 @deffn {library syntax} defmacro* name formals body1 body2 @dots{}
517 @deffnx {library syntax} defmacro*-public name formals body1 body2 @dots{}
518 These are just like @code{defmacro} and @code{defmacro-public} except that they
519 take @code{lambda*}-style extended parameter lists, where @code{#:optional},
520 @code{#:key}, @code{#:allow-other-keys} and @code{#:rest} are allowed with the usual
521 semantics. Here is an example of a macro with an optional argument:
522
523 @lisp
524 (defmacro* transmogrify (a #:optional b)
525 (a 1))
526 @end lisp
527 @end deffn
528
529 @node Case-lambda
530 @subsection Case-lambda
531 @cindex SRFI-16
532 @cindex variable arity
533 @cindex arity, variable
534
535 R5RS's rest arguments are indeed useful and very general, but they
536 often aren't the most appropriate or efficient means to get the job
537 done. For example, @code{lambda*} is a much better solution to the
538 optional argument problem than @code{lambda} with rest arguments.
539
540 @fnindex case-lambda
541 Likewise, @code{case-lambda} works well for when you want one
542 procedure to do double duty (or triple, or ...), without the penalty
543 of consing a rest list.
544
545 For example:
546
547 @lisp
548 (define (make-accum n)
549 (case-lambda
550 (() n)
551 ((m) (set! n (+ n m)) n)))
552
553 (define a (make-accum 20))
554 (a) @result{} 20
555 (a 10) @result{} 30
556 (a) @result{} 30
557 @end lisp
558
559 The value returned by a @code{case-lambda} form is a procedure which
560 matches the number of actual arguments against the formals in the
561 various clauses, in order. The first matching clause is selected, the
562 corresponding values from the actual parameter list are bound to the
563 variable names in the clauses and the body of the clause is evaluated.
564 If no clause matches, an error is signalled.
565
566 The syntax of the @code{case-lambda} form is defined in the following
567 EBNF grammar. @dfn{Formals} means a formal argument list just like
568 with @code{lambda} (@pxref{Lambda}).
569
570 @example
571 @group
572 <case-lambda>
573 --> (case-lambda <case-lambda-clause>)
574 <case-lambda-clause>
575 --> (<formals> <definition-or-command>*)
576 <formals>
577 --> (<identifier>*)
578 | (<identifier>* . <identifier>)
579 | <identifier>
580 @end group
581 @end example
582
583 Rest lists can be useful with @code{case-lambda}:
584
585 @lisp
586 (define plus
587 (case-lambda
588 (() 0)
589 ((a) a)
590 ((a b) (+ a b))
591 ((a b . rest) (apply plus (+ a b) rest))))
592 (plus 1 2 3) @result{} 6
593 @end lisp
594
595 @fnindex case-lambda*
596 Also, for completeness. Guile defines @code{case-lambda*} as well,
597 which is like @code{case-lambda}, except with @code{lambda*} clauses.
598 A @code{case-lambda*} clause matches if the arguments fill the
599 required arguments, but are not too many for the optional and/or rest
600 arguments.
601
602 Keyword arguments are possible with @code{case-lambda*}, but they do
603 not contribute to the ``matching'' behavior. That is to say,
604 @code{case-lambda*} matches only on required, optional, and rest
605 arguments, and on the predicate; keyword arguments may be present but
606 do not contribute to the ``success'' of a match. In fact a bad keyword
607 argument list may cause an error to be raised.
608
609 @node Higher-Order Functions
610 @subsection Higher-Order Functions
611
612 @cindex higher-order functions
613
614 As a functional programming language, Scheme allows the definition of
615 @dfn{higher-order functions}, i.e., functions that take functions as
616 arguments and/or return functions. Utilities to derive procedures from
617 other procedures are provided and described below.
618
619 @deffn {Scheme Procedure} const value
620 Return a procedure that accepts any number of arguments and returns
621 @var{value}.
622
623 @lisp
624 (procedure? (const 3)) @result{} #t
625 ((const 'hello)) @result{} hello
626 ((const 'hello) 'world) @result{} hello
627 @end lisp
628 @end deffn
629
630 @deffn {Scheme Procedure} negate proc
631 Return a procedure with the same arity as @var{proc} that returns the
632 @code{not} of @var{proc}'s result.
633
634 @lisp
635 (procedure? (negate number?)) @result{} #t
636 ((negate odd?) 2) @result{} #t
637 ((negate real?) 'dream) @result{} #t
638 ((negate string-prefix?) "GNU" "GNU Guile")
639 @result{} #f
640 (filter (negate number?) '(a 2 "b"))
641 @result{} (a "b")
642 @end lisp
643 @end deffn
644
645 @deffn {Scheme Procedure} compose proc1 proc2 @dots{}
646 Compose @var{proc1} with the procedures @var{proc2} @dots{} such that
647 the last @var{proc} argument is applied first and @var{proc1} last, and
648 return the resulting procedure. The given procedures must have
649 compatible arity.
650
651 @lisp
652 (procedure? (compose 1+ 1-)) @result{} #t
653 ((compose sqrt 1+ 1+) 2) @result{} 2.0
654 ((compose 1+ sqrt) 3) @result{} 2.73205080756888
655 (eq? (compose 1+) 1+) @result{} #t
656
657 ((compose zip unzip2) '((1 2) (a b)))
658 @result{} ((1 2) (a b))
659 @end lisp
660 @end deffn
661
662 @deffn {Scheme Procedure} identity x
663 Return X.
664 @end deffn
665
666 @node Procedure Properties
667 @subsection Procedure Properties and Meta-information
668
669 In addition to the information that is strictly necessary to run,
670 procedures may have other associated information. For example, the
671 name of a procedure is information not for the procedure, but about
672 the procedure. This meta-information can be accessed via the procedure
673 properties interface.
674
675 The first group of procedures in this meta-interface are predicates to
676 test whether a Scheme object is a procedure, or a special procedure,
677 respectively. @code{procedure?} is the most general predicates, it
678 returns @code{#t} for any kind of procedure.
679
680 @rnindex procedure?
681 @deffn {Scheme Procedure} procedure? obj
682 @deffnx {C Function} scm_procedure_p (obj)
683 Return @code{#t} if @var{obj} is a procedure.
684 @end deffn
685
686 @deffn {Scheme Procedure} thunk? obj
687 @deffnx {C Function} scm_thunk_p (obj)
688 Return @code{#t} if @var{obj} is a thunk---a procedure that does
689 not accept arguments.
690 @end deffn
691
692 @cindex procedure properties
693 Procedure properties are general properties associated with
694 procedures. These can be the name of a procedure or other relevant
695 information, such as debug hints.
696
697 @deffn {Scheme Procedure} procedure-name proc
698 @deffnx {C Function} scm_procedure_name (proc)
699 Return the name of the procedure @var{proc}
700 @end deffn
701
702 @deffn {Scheme Procedure} procedure-source proc
703 @deffnx {C Function} scm_procedure_source (proc)
704 Return the source of the procedure @var{proc}. Returns @code{#f} if
705 the source code is not available.
706 @end deffn
707
708 @deffn {Scheme Procedure} procedure-properties proc
709 @deffnx {C Function} scm_procedure_properties (proc)
710 Return the properties associated with @var{proc}, as an association
711 list.
712 @end deffn
713
714 @deffn {Scheme Procedure} procedure-property proc key
715 @deffnx {C Function} scm_procedure_property (proc, key)
716 Return the property of @var{proc} with name @var{key}.
717 @end deffn
718
719 @deffn {Scheme Procedure} set-procedure-properties! proc alist
720 @deffnx {C Function} scm_set_procedure_properties_x (proc, alist)
721 Set @var{proc}'s property list to @var{alist}.
722 @end deffn
723
724 @deffn {Scheme Procedure} set-procedure-property! proc key value
725 @deffnx {C Function} scm_set_procedure_property_x (proc, key, value)
726 In @var{proc}'s property list, set the property named @var{key} to
727 @var{value}.
728 @end deffn
729
730 @cindex procedure documentation
731 Documentation for a procedure can be accessed with the procedure
732 @code{procedure-documentation}.
733
734 @deffn {Scheme Procedure} procedure-documentation proc
735 @deffnx {C Function} scm_procedure_documentation (proc)
736 Return the documentation string associated with @code{proc}. By
737 convention, if a procedure contains more than one expression and the
738 first expression is a string constant, that string is assumed to contain
739 documentation for that procedure.
740 @end deffn
741
742
743 @node Procedures with Setters
744 @subsection Procedures with Setters
745
746 @c FIXME::martin: Review me!
747
748 @c FIXME::martin: Document `operator struct'.
749
750 @cindex procedure with setter
751 @cindex setter
752 A @dfn{procedure with setter} is a special kind of procedure which
753 normally behaves like any accessor procedure, that is a procedure which
754 accesses a data structure. The difference is that this kind of
755 procedure has a so-called @dfn{setter} attached, which is a procedure
756 for storing something into a data structure.
757
758 Procedures with setters are treated specially when the procedure appears
759 in the special form @code{set!} (REFFIXME). How it works is best shown
760 by example.
761
762 Suppose we have a procedure called @code{foo-ref}, which accepts two
763 arguments, a value of type @code{foo} and an integer. The procedure
764 returns the value stored at the given index in the @code{foo} object.
765 Let @code{f} be a variable containing such a @code{foo} data
766 structure.@footnote{Working definitions would be:
767 @lisp
768 (define foo-ref vector-ref)
769 (define foo-set! vector-set!)
770 (define f (make-vector 2 #f))
771 @end lisp
772 }
773
774 @lisp
775 (foo-ref f 0) @result{} bar
776 (foo-ref f 1) @result{} braz
777 @end lisp
778
779 Also suppose that a corresponding setter procedure called
780 @code{foo-set!} does exist.
781
782 @lisp
783 (foo-set! f 0 'bla)
784 (foo-ref f 0) @result{} bla
785 @end lisp
786
787 Now we could create a new procedure called @code{foo}, which is a
788 procedure with setter, by calling @code{make-procedure-with-setter} with
789 the accessor and setter procedures @code{foo-ref} and @code{foo-set!}.
790 Let us call this new procedure @code{foo}.
791
792 @lisp
793 (define foo (make-procedure-with-setter foo-ref foo-set!))
794 @end lisp
795
796 @code{foo} can from now an be used to either read from the data
797 structure stored in @code{f}, or to write into the structure.
798
799 @lisp
800 (set! (foo f 0) 'dum)
801 (foo f 0) @result{} dum
802 @end lisp
803
804 @deffn {Scheme Procedure} make-procedure-with-setter procedure setter
805 @deffnx {C Function} scm_make_procedure_with_setter (procedure, setter)
806 Create a new procedure which behaves like @var{procedure}, but
807 with the associated setter @var{setter}.
808 @end deffn
809
810 @deffn {Scheme Procedure} procedure-with-setter? obj
811 @deffnx {C Function} scm_procedure_with_setter_p (obj)
812 Return @code{#t} if @var{obj} is a procedure with an
813 associated setter procedure.
814 @end deffn
815
816 @deffn {Scheme Procedure} procedure proc
817 @deffnx {C Function} scm_procedure (proc)
818 Return the procedure of @var{proc}, which must be an
819 applicable struct.
820 @end deffn
821
822 @deffn {Scheme Procedure} setter proc
823 Return the setter of @var{proc}, which must be either a procedure with
824 setter or an operator struct.
825 @end deffn
826
827 @node Inlinable Procedures
828 @subsection Inlinable Procedures
829
830 @cindex inlining
831 @cindex procedure inlining
832 You can define an @dfn{inlinable procedure} by using
833 @code{define-inlinable} instead of @code{define}. An inlinable
834 procedure behaves the same as a regular procedure, but direct calls will
835 result in the procedure body being inlined into the caller.
836
837 @cindex partial evaluator
838 Bear in mind that starting from version 2.0.3, Guile has a partial
839 evaluator that can inline the body of inner procedures when deemed
840 appropriate:
841
842 @example
843 scheme@@(guile-user)> ,optimize (define (foo x)
844 (define (bar) (+ x 3))
845 (* (bar) 2))
846 $1 = (define foo
847 (lambda (#@{x 94@}#) (* (+ #@{x 94@}# 3) 2)))
848 @end example
849
850 @noindent
851 The partial evaluator does not inline top-level bindings, though, so
852 this is a situation where you may find it interesting to use
853 @code{define-inlinable}.
854
855 Procedures defined with @code{define-inlinable} are @emph{always}
856 inlined, at all direct call sites. This eliminates function call
857 overhead at the expense of an increase in code size. Additionally, the
858 caller will not transparently use the new definition if the inline
859 procedure is redefined. It is not possible to trace an inlined
860 procedures or install a breakpoint in it (@pxref{Traps}). For these
861 reasons, you should not make a procedure inlinable unless it
862 demonstrably improves performance in a crucial way.
863
864 In general, only small procedures should be considered for inlining, as
865 making large procedures inlinable will probably result in an increase in
866 code size. Additionally, the elimination of the call overhead rarely
867 matters for large procedures.
868
869 @deffn {Scheme Syntax} define-inlinable (name parameter @dots{}) body1 body2 @dots{}
870 Define @var{name} as a procedure with parameters @var{parameter}s and
871 bodies @var{body1}, @var{body2}, @enddots{}.
872 @end deffn
873
874 @c Local Variables:
875 @c TeX-master: "guile.texi"
876 @c End: