avoid local-eval in record constructors and accessors
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. There are three situations defined. `load-toplevel' triggers for
96 ;; code evaluated at the top-level, for example from the REPL or when
97 ;; loading a file. `compile-toplevel' triggers for code compiled at the
98 ;; toplevel. `execute' triggers during execution of code not at the top
99 ;; level.
100
101 (define eval-case
102 (procedure->memoizing-macro
103 (lambda (exp env)
104 (define (toplevel-env? env)
105 (or (not (pair? env)) (not (pair? (car env)))))
106 (define (syntax)
107 (error "syntax error in eval-case"))
108 (let loop ((clauses (cdr exp)))
109 (cond
110 ((null? clauses)
111 #f)
112 ((not (list? (car clauses)))
113 (syntax))
114 ((eq? 'else (caar clauses))
115 (or (null? (cdr clauses))
116 (syntax))
117 (cons 'begin (cdar clauses)))
118 ((not (list? (caar clauses)))
119 (syntax))
120 ((and (toplevel-env? env)
121 (memq 'load-toplevel (caar clauses)))
122 (cons 'begin (cdar clauses)))
123 (else
124 (loop (cdr clauses))))))))
125
126 \f
127
128 ;; Before compiling, make sure any symbols are resolved in the (guile)
129 ;; module, the primary location of those symbols, rather than in
130 ;; (guile-user), the default module that we compile in.
131
132 (eval-case
133 ((compile-toplevel)
134 (set-current-module (resolve-module '(guile)))))
135
136 ;;; {Defmacros}
137 ;;;
138 ;;; Depends on: features, eval-case
139 ;;;
140
141 (define macro-table (make-weak-key-hash-table 61))
142 (define xformer-table (make-weak-key-hash-table 61))
143
144 (define (defmacro? m) (hashq-ref macro-table m))
145 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
146 (define (defmacro-transformer m) (hashq-ref xformer-table m))
147 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
148
149 (define defmacro:transformer
150 (lambda (f)
151 (let* ((xform (lambda (exp env)
152 (copy-tree (apply f (cdr exp)))))
153 (a (procedure->memoizing-macro xform)))
154 (assert-defmacro?! a)
155 (set-defmacro-transformer! a f)
156 a)))
157
158
159 (define defmacro
160 (let ((defmacro-transformer
161 (lambda (name parms . body)
162 (let ((transformer `(lambda ,parms ,@body)))
163 `(eval-case
164 ((load-toplevel compile-toplevel)
165 (define ,name (defmacro:transformer ,transformer)))
166 (else
167 (error "defmacro can only be used at the top level")))))))
168 (defmacro:transformer defmacro-transformer)))
169
170 (define defmacro:syntax-transformer
171 (lambda (f)
172 (procedure->syntax
173 (lambda (exp env)
174 (copy-tree (apply f (cdr exp)))))))
175
176
177 ;; XXX - should the definition of the car really be looked up in the
178 ;; current module?
179
180 (define (macroexpand-1 e)
181 (cond
182 ((pair? e) (let* ((a (car e))
183 (val (and (symbol? a) (local-ref (list a)))))
184 (if (defmacro? val)
185 (apply (defmacro-transformer val) (cdr e))
186 e)))
187 (#t e)))
188
189 (define (macroexpand e)
190 (cond
191 ((pair? e) (let* ((a (car e))
192 (val (and (symbol? a) (local-ref (list a)))))
193 (if (defmacro? val)
194 (macroexpand (apply (defmacro-transformer val) (cdr e)))
195 e)))
196 (#t e)))
197
198 (provide 'defmacro)
199
200 \f
201
202 ;;; {Deprecation}
203 ;;;
204 ;;; Depends on: defmacro
205 ;;;
206
207 (defmacro begin-deprecated forms
208 (if (include-deprecated-features)
209 `(begin ,@forms)
210 (begin)))
211
212 \f
213
214 ;;; {R4RS compliance}
215 ;;;
216
217 (primitive-load-path "ice-9/r4rs.scm")
218
219 \f
220
221 ;;; {Simple Debugging Tools}
222 ;;;
223
224 ;; peek takes any number of arguments, writes them to the
225 ;; current ouput port, and returns the last argument.
226 ;; It is handy to wrap around an expression to look at
227 ;; a value each time is evaluated, e.g.:
228 ;;
229 ;; (+ 10 (troublesome-fn))
230 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
231 ;;
232
233 (define (peek . stuff)
234 (newline)
235 (display ";;; ")
236 (write stuff)
237 (newline)
238 (car (last-pair stuff)))
239
240 (define pk peek)
241
242 (define (warn . stuff)
243 (with-output-to-port (current-error-port)
244 (lambda ()
245 (newline)
246 (display ";;; WARNING ")
247 (display stuff)
248 (newline)
249 (car (last-pair stuff)))))
250
251 \f
252
253 ;;; {Trivial Functions}
254 ;;;
255
256 (define (identity x) x)
257 (define (and=> value procedure) (and value (procedure value)))
258 (define call/cc call-with-current-continuation)
259
260 ;;; apply-to-args is functionally redundant with apply and, worse,
261 ;;; is less general than apply since it only takes two arguments.
262 ;;;
263 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
264 ;;; perform binding in many circumstances when the "let" family of
265 ;;; of forms don't cut it. E.g.:
266 ;;;
267 ;;; (apply-to-args (return-3d-mouse-coords)
268 ;;; (lambda (x y z)
269 ;;; ...))
270 ;;;
271
272 (define (apply-to-args args fn) (apply fn args))
273
274 (defmacro false-if-exception (expr)
275 `(catch #t (lambda () ,expr)
276 (lambda args #f)))
277
278 \f
279
280 ;;; {General Properties}
281 ;;;
282
283 ;; This is a more modern interface to properties. It will replace all
284 ;; other property-like things eventually.
285
286 (define (make-object-property)
287 (let ((prop (primitive-make-property #f)))
288 (make-procedure-with-setter
289 (lambda (obj) (primitive-property-ref prop obj))
290 (lambda (obj val) (primitive-property-set! prop obj val)))))
291
292 \f
293
294 ;;; {Symbol Properties}
295 ;;;
296
297 (define (symbol-property sym prop)
298 (let ((pair (assoc prop (symbol-pref sym))))
299 (and pair (cdr pair))))
300
301 (define (set-symbol-property! sym prop val)
302 (let ((pair (assoc prop (symbol-pref sym))))
303 (if pair
304 (set-cdr! pair val)
305 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
306
307 (define (symbol-property-remove! sym prop)
308 (let ((pair (assoc prop (symbol-pref sym))))
309 (if pair
310 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
311
312 \f
313
314 ;;; {Arrays}
315 ;;;
316
317 (define (array-shape a)
318 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
319 (array-dimensions a)))
320
321 \f
322
323 ;;; {Keywords}
324 ;;;
325
326 (define (kw-arg-ref args kw)
327 (let ((rem (member kw args)))
328 (and rem (pair? (cdr rem)) (cadr rem))))
329
330 \f
331
332 ;;; {Structs}
333 ;;;
334
335 (define (struct-layout s)
336 (struct-ref (struct-vtable s) vtable-index-layout))
337
338 \f
339
340 ;;; {Environments}
341 ;;;
342
343 (define the-environment
344 (procedure->syntax
345 (lambda (x e)
346 e)))
347
348 (define the-root-environment (the-environment))
349
350 (define (environment-module env)
351 (let ((closure (and (pair? env) (car (last-pair env)))))
352 (and closure (procedure-property closure 'module))))
353
354 \f
355
356 ;;; {Records}
357 ;;;
358
359 ;; Printing records: by default, records are printed as
360 ;;
361 ;; #<type-name field1: val1 field2: val2 ...>
362 ;;
363 ;; You can change that by giving a custom printing function to
364 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
365 ;; will be called like
366 ;;
367 ;; (<printer> object port)
368 ;;
369 ;; It should print OBJECT to PORT.
370
371 (define (inherit-print-state old-port new-port)
372 (if (get-print-state old-port)
373 (port-with-print-state new-port (get-print-state old-port))
374 new-port))
375
376 ;; 0: type-name, 1: fields
377 (define record-type-vtable
378 (make-vtable-vtable "prpr" 0
379 (lambda (s p)
380 (cond ((eq? s record-type-vtable)
381 (display "#<record-type-vtable>" p))
382 (else
383 (display "#<record-type " p)
384 (display (record-type-name s) p)
385 (display ">" p))))))
386
387 (define (record-type? obj)
388 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
389
390 (define (make-record-type type-name fields . opt)
391 (let ((printer-fn (and (pair? opt) (car opt))))
392 (let ((struct (make-struct record-type-vtable 0
393 (make-struct-layout
394 (apply string-append
395 (map (lambda (f) "pw") fields)))
396 (or printer-fn
397 (lambda (s p)
398 (display "#<" p)
399 (display type-name p)
400 (let loop ((fields fields)
401 (off 0))
402 (cond
403 ((not (null? fields))
404 (display " " p)
405 (display (car fields) p)
406 (display ": " p)
407 (display (struct-ref s off) p)
408 (loop (cdr fields) (+ 1 off)))))
409 (display ">" p)))
410 type-name
411 (copy-tree fields))))
412 ;; Temporary solution: Associate a name to the record type descriptor
413 ;; so that the object system can create a wrapper class for it.
414 (set-struct-vtable-name! struct (if (symbol? type-name)
415 type-name
416 (string->symbol type-name)))
417 struct)))
418
419 (define (record-type-name obj)
420 (if (record-type? obj)
421 (struct-ref obj vtable-offset-user)
422 (error 'not-a-record-type obj)))
423
424 (define (record-type-fields obj)
425 (if (record-type? obj)
426 (struct-ref obj (+ 1 vtable-offset-user))
427 (error 'not-a-record-type obj)))
428
429 (define (record-constructor rtd . opt)
430 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
431 (primitive-eval
432 `(lambda ,field-names
433 (make-struct ',rtd 0 ,@(map (lambda (f)
434 (if (memq f field-names)
435 f
436 #f))
437 (record-type-fields rtd)))))))
438
439 (define (record-predicate rtd)
440 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
441
442 (define (%record-type-error rtd obj) ;; private helper
443 (or (eq? rtd (record-type-descriptor obj))
444 (scm-error 'wrong-type-arg "%record-type-check"
445 "Wrong type record (want `~S'): ~S"
446 (list (record-type-name rtd) obj)
447 #f)))
448
449 (define (record-accessor rtd field-name)
450 (let ((pos (list-index (record-type-fields rtd) field-name)))
451 (if (not pos)
452 (error 'no-such-field field-name))
453 (lambda (obj)
454 (if (eq? (struct-vtable obj) rtd)
455 (struct-ref obj pos)
456 (%record-type-error rtd obj)))))
457
458 (define (record-modifier rtd field-name)
459 (let ((pos (list-index (record-type-fields rtd) field-name)))
460 (if (not pos)
461 (error 'no-such-field field-name))
462 (lambda (obj val)
463 (if (eq? (struct-vtable obj) rtd)
464 (struct-set! obj pos val)
465 (%record-type-error rtd obj)))))
466
467 (define (record? obj)
468 (and (struct? obj) (record-type? (struct-vtable obj))))
469
470 (define (record-type-descriptor obj)
471 (if (struct? obj)
472 (struct-vtable obj)
473 (error 'not-a-record obj)))
474
475 (provide 'record)
476
477 \f
478
479 ;;; {Booleans}
480 ;;;
481
482 (define (->bool x) (not (not x)))
483
484 \f
485
486 ;;; {Symbols}
487 ;;;
488
489 (define (symbol-append . args)
490 (string->symbol (apply string-append (map symbol->string args))))
491
492 (define (list->symbol . args)
493 (string->symbol (apply list->string args)))
494
495 (define (symbol . args)
496 (string->symbol (apply string args)))
497
498 \f
499
500 ;;; {Lists}
501 ;;;
502
503 (define (list-index l k)
504 (let loop ((n 0)
505 (l l))
506 (and (not (null? l))
507 (if (eq? (car l) k)
508 n
509 (loop (+ n 1) (cdr l))))))
510
511 \f
512
513 ;;; {and-map and or-map}
514 ;;;
515 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
516 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
517 ;;;
518
519 ;; and-map f l
520 ;;
521 ;; Apply f to successive elements of l until exhaustion or f returns #f.
522 ;; If returning early, return #f. Otherwise, return the last value returned
523 ;; by f. If f has never been called because l is empty, return #t.
524 ;;
525 (define (and-map f lst)
526 (let loop ((result #t)
527 (l lst))
528 (and result
529 (or (and (null? l)
530 result)
531 (loop (f (car l)) (cdr l))))))
532
533 ;; or-map f l
534 ;;
535 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
536 ;; If returning early, return the return value of f.
537 ;;
538 (define (or-map f lst)
539 (let loop ((result #f)
540 (l lst))
541 (or result
542 (and (not (null? l))
543 (loop (f (car l)) (cdr l))))))
544
545 \f
546
547 (if (provided? 'posix)
548 (primitive-load-path "ice-9/posix.scm"))
549
550 (if (provided? 'socket)
551 (primitive-load-path "ice-9/networking.scm"))
552
553 ;; For reference, Emacs file-exists-p uses stat in this same way.
554 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
555 ;; C where all that's needed is to inspect the return from stat().
556 (define file-exists?
557 (if (provided? 'posix)
558 (lambda (str)
559 (->bool (false-if-exception (stat str))))
560 (lambda (str)
561 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
562 (lambda args #f))))
563 (if port (begin (close-port port) #t)
564 #f)))))
565
566 (define file-is-directory?
567 (if (provided? 'posix)
568 (lambda (str)
569 (eq? (stat:type (stat str)) 'directory))
570 (lambda (str)
571 (let ((port (catch 'system-error
572 (lambda () (open-file (string-append str "/.")
573 OPEN_READ))
574 (lambda args #f))))
575 (if port (begin (close-port port) #t)
576 #f)))))
577
578 (define (has-suffix? str suffix)
579 (string-suffix? suffix str))
580
581 (define (system-error-errno args)
582 (if (eq? (car args) 'system-error)
583 (car (list-ref args 4))
584 #f))
585
586 \f
587
588 ;;; {Error Handling}
589 ;;;
590
591 (define (error . args)
592 (save-stack)
593 (if (null? args)
594 (scm-error 'misc-error #f "?" #f #f)
595 (let loop ((msg "~A")
596 (rest (cdr args)))
597 (if (not (null? rest))
598 (loop (string-append msg " ~S")
599 (cdr rest))
600 (scm-error 'misc-error #f msg args #f)))))
601
602 ;; bad-throw is the hook that is called upon a throw to a an unhandled
603 ;; key (unless the throw has four arguments, in which case
604 ;; it's usually interpreted as an error throw.)
605 ;; If the key has a default handler (a throw-handler-default property),
606 ;; it is applied to the throw.
607 ;;
608 (define (bad-throw key . args)
609 (let ((default (symbol-property key 'throw-handler-default)))
610 (or (and default (apply default key args))
611 (apply error "unhandled-exception:" key args))))
612
613 \f
614
615 (define (tm:sec obj) (vector-ref obj 0))
616 (define (tm:min obj) (vector-ref obj 1))
617 (define (tm:hour obj) (vector-ref obj 2))
618 (define (tm:mday obj) (vector-ref obj 3))
619 (define (tm:mon obj) (vector-ref obj 4))
620 (define (tm:year obj) (vector-ref obj 5))
621 (define (tm:wday obj) (vector-ref obj 6))
622 (define (tm:yday obj) (vector-ref obj 7))
623 (define (tm:isdst obj) (vector-ref obj 8))
624 (define (tm:gmtoff obj) (vector-ref obj 9))
625 (define (tm:zone obj) (vector-ref obj 10))
626
627 (define (set-tm:sec obj val) (vector-set! obj 0 val))
628 (define (set-tm:min obj val) (vector-set! obj 1 val))
629 (define (set-tm:hour obj val) (vector-set! obj 2 val))
630 (define (set-tm:mday obj val) (vector-set! obj 3 val))
631 (define (set-tm:mon obj val) (vector-set! obj 4 val))
632 (define (set-tm:year obj val) (vector-set! obj 5 val))
633 (define (set-tm:wday obj val) (vector-set! obj 6 val))
634 (define (set-tm:yday obj val) (vector-set! obj 7 val))
635 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
636 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
637 (define (set-tm:zone obj val) (vector-set! obj 10 val))
638
639 (define (tms:clock obj) (vector-ref obj 0))
640 (define (tms:utime obj) (vector-ref obj 1))
641 (define (tms:stime obj) (vector-ref obj 2))
642 (define (tms:cutime obj) (vector-ref obj 3))
643 (define (tms:cstime obj) (vector-ref obj 4))
644
645 (define file-position ftell)
646 (define (file-set-position port offset . whence)
647 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
648 (seek port offset whence)))
649
650 (define (move->fdes fd/port fd)
651 (cond ((integer? fd/port)
652 (dup->fdes fd/port fd)
653 (close fd/port)
654 fd)
655 (else
656 (primitive-move->fdes fd/port fd)
657 (set-port-revealed! fd/port 1)
658 fd/port)))
659
660 (define (release-port-handle port)
661 (let ((revealed (port-revealed port)))
662 (if (> revealed 0)
663 (set-port-revealed! port (- revealed 1)))))
664
665 (define (dup->port port/fd mode . maybe-fd)
666 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
667 mode)))
668 (if (pair? maybe-fd)
669 (set-port-revealed! port 1))
670 port))
671
672 (define (dup->inport port/fd . maybe-fd)
673 (apply dup->port port/fd "r" maybe-fd))
674
675 (define (dup->outport port/fd . maybe-fd)
676 (apply dup->port port/fd "w" maybe-fd))
677
678 (define (dup port/fd . maybe-fd)
679 (if (integer? port/fd)
680 (apply dup->fdes port/fd maybe-fd)
681 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
682
683 (define (duplicate-port port modes)
684 (dup->port port modes))
685
686 (define (fdes->inport fdes)
687 (let loop ((rest-ports (fdes->ports fdes)))
688 (cond ((null? rest-ports)
689 (let ((result (fdopen fdes "r")))
690 (set-port-revealed! result 1)
691 result))
692 ((input-port? (car rest-ports))
693 (set-port-revealed! (car rest-ports)
694 (+ (port-revealed (car rest-ports)) 1))
695 (car rest-ports))
696 (else
697 (loop (cdr rest-ports))))))
698
699 (define (fdes->outport fdes)
700 (let loop ((rest-ports (fdes->ports fdes)))
701 (cond ((null? rest-ports)
702 (let ((result (fdopen fdes "w")))
703 (set-port-revealed! result 1)
704 result))
705 ((output-port? (car rest-ports))
706 (set-port-revealed! (car rest-ports)
707 (+ (port-revealed (car rest-ports)) 1))
708 (car rest-ports))
709 (else
710 (loop (cdr rest-ports))))))
711
712 (define (port->fdes port)
713 (set-port-revealed! port (+ (port-revealed port) 1))
714 (fileno port))
715
716 (define (setenv name value)
717 (if value
718 (putenv (string-append name "=" value))
719 (putenv name)))
720
721 (define (unsetenv name)
722 "Remove the entry for NAME from the environment."
723 (putenv name))
724
725 \f
726
727 ;;; {Load Paths}
728 ;;;
729
730 ;;; Here for backward compatability
731 ;;
732 (define scheme-file-suffix (lambda () ".scm"))
733
734 (define (in-vicinity vicinity file)
735 (let ((tail (let ((len (string-length vicinity)))
736 (if (zero? len)
737 #f
738 (string-ref vicinity (- len 1))))))
739 (string-append vicinity
740 (if (or (not tail)
741 (eq? tail #\/))
742 ""
743 "/")
744 file)))
745
746 \f
747
748 ;;; {Help for scm_shell}
749 ;;;
750 ;;; The argument-processing code used by Guile-based shells generates
751 ;;; Scheme code based on the argument list. This page contains help
752 ;;; functions for the code it generates.
753 ;;;
754
755 (define (command-line) (program-arguments))
756
757 ;; This is mostly for the internal use of the code generated by
758 ;; scm_compile_shell_switches.
759
760 (define (turn-on-debugging)
761 (debug-enable 'debug)
762 (debug-enable 'backtrace)
763 (read-enable 'positions))
764
765 (define (load-user-init)
766 (let* ((home (or (getenv "HOME")
767 (false-if-exception (passwd:dir (getpwuid (getuid))))
768 "/")) ;; fallback for cygwin etc.
769 (init-file (in-vicinity home ".guile")))
770 (if (file-exists? init-file)
771 (primitive-load init-file))))
772
773 \f
774
775 ;;; {Loading by paths}
776 ;;;
777
778 ;;; Load a Scheme source file named NAME, searching for it in the
779 ;;; directories listed in %load-path, and applying each of the file
780 ;;; name extensions listed in %load-extensions.
781 (define (load-from-path name)
782 (start-stack 'load-stack
783 (primitive-load-path name)))
784
785
786 \f
787
788 ;;; {Transcendental Functions}
789 ;;;
790 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
791 ;;; Written by Jerry D. Hedden, (C) FSF.
792 ;;; See the file `COPYING' for terms applying to this program.
793 ;;;
794
795 (define expt
796 (let ((integer-expt integer-expt))
797 (lambda (z1 z2)
798 (cond ((and (exact? z2) (integer? z2))
799 (integer-expt z1 z2))
800 ((and (real? z2) (real? z1) (>= z1 0))
801 ($expt z1 z2))
802 (else
803 (exp (* z2 (log z1))))))))
804
805 (define (sinh z)
806 (if (real? z) ($sinh z)
807 (let ((x (real-part z)) (y (imag-part z)))
808 (make-rectangular (* ($sinh x) ($cos y))
809 (* ($cosh x) ($sin y))))))
810 (define (cosh z)
811 (if (real? z) ($cosh z)
812 (let ((x (real-part z)) (y (imag-part z)))
813 (make-rectangular (* ($cosh x) ($cos y))
814 (* ($sinh x) ($sin y))))))
815 (define (tanh z)
816 (if (real? z) ($tanh z)
817 (let* ((x (* 2 (real-part z)))
818 (y (* 2 (imag-part z)))
819 (w (+ ($cosh x) ($cos y))))
820 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
821
822 (define (asinh z)
823 (if (real? z) ($asinh z)
824 (log (+ z (sqrt (+ (* z z) 1))))))
825
826 (define (acosh z)
827 (if (and (real? z) (>= z 1))
828 ($acosh z)
829 (log (+ z (sqrt (- (* z z) 1))))))
830
831 (define (atanh z)
832 (if (and (real? z) (> z -1) (< z 1))
833 ($atanh z)
834 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
835
836 (define (sin z)
837 (if (real? z) ($sin z)
838 (let ((x (real-part z)) (y (imag-part z)))
839 (make-rectangular (* ($sin x) ($cosh y))
840 (* ($cos x) ($sinh y))))))
841 (define (cos z)
842 (if (real? z) ($cos z)
843 (let ((x (real-part z)) (y (imag-part z)))
844 (make-rectangular (* ($cos x) ($cosh y))
845 (- (* ($sin x) ($sinh y)))))))
846 (define (tan z)
847 (if (real? z) ($tan z)
848 (let* ((x (* 2 (real-part z)))
849 (y (* 2 (imag-part z)))
850 (w (+ ($cos x) ($cosh y))))
851 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
852
853 (define (asin z)
854 (if (and (real? z) (>= z -1) (<= z 1))
855 ($asin z)
856 (* -i (asinh (* +i z)))))
857
858 (define (acos z)
859 (if (and (real? z) (>= z -1) (<= z 1))
860 ($acos z)
861 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
862
863 (define (atan z . y)
864 (if (null? y)
865 (if (real? z) ($atan z)
866 (/ (log (/ (- +i z) (+ +i z))) +2i))
867 ($atan2 z (car y))))
868
869 \f
870
871 ;;; {Reader Extensions}
872 ;;;
873 ;;; Reader code for various "#c" forms.
874 ;;;
875
876 (read-hash-extend #\' (lambda (c port)
877 (read port)))
878
879 (define read-eval? (make-fluid))
880 (fluid-set! read-eval? #f)
881 (read-hash-extend #\.
882 (lambda (c port)
883 (if (fluid-ref read-eval?)
884 (eval (read port) (interaction-environment))
885 (error
886 "#. read expansion found and read-eval? is #f."))))
887
888 \f
889
890 ;;; {Command Line Options}
891 ;;;
892
893 (define (get-option argv kw-opts kw-args return)
894 (cond
895 ((null? argv)
896 (return #f #f argv))
897
898 ((or (not (eq? #\- (string-ref (car argv) 0)))
899 (eq? (string-length (car argv)) 1))
900 (return 'normal-arg (car argv) (cdr argv)))
901
902 ((eq? #\- (string-ref (car argv) 1))
903 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
904 (string-length (car argv))))
905 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
906 (kw-opt? (member kw kw-opts))
907 (kw-arg? (member kw kw-args))
908 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
909 (substring (car argv)
910 (+ kw-arg-pos 1)
911 (string-length (car argv))))
912 (and kw-arg?
913 (begin (set! argv (cdr argv)) (car argv))))))
914 (if (or kw-opt? kw-arg?)
915 (return kw arg (cdr argv))
916 (return 'usage-error kw (cdr argv)))))
917
918 (else
919 (let* ((char (substring (car argv) 1 2))
920 (kw (symbol->keyword char)))
921 (cond
922
923 ((member kw kw-opts)
924 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
925 (new-argv (if (= 0 (string-length rest-car))
926 (cdr argv)
927 (cons (string-append "-" rest-car) (cdr argv)))))
928 (return kw #f new-argv)))
929
930 ((member kw kw-args)
931 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
932 (arg (if (= 0 (string-length rest-car))
933 (cadr argv)
934 rest-car))
935 (new-argv (if (= 0 (string-length rest-car))
936 (cddr argv)
937 (cdr argv))))
938 (return kw arg new-argv)))
939
940 (else (return 'usage-error kw argv)))))))
941
942 (define (for-next-option proc argv kw-opts kw-args)
943 (let loop ((argv argv))
944 (get-option argv kw-opts kw-args
945 (lambda (opt opt-arg argv)
946 (and opt (proc opt opt-arg argv loop))))))
947
948 (define (display-usage-report kw-desc)
949 (for-each
950 (lambda (kw)
951 (or (eq? (car kw) #t)
952 (eq? (car kw) 'else)
953 (let* ((opt-desc kw)
954 (help (cadr opt-desc))
955 (opts (car opt-desc))
956 (opts-proper (if (string? (car opts)) (cdr opts) opts))
957 (arg-name (if (string? (car opts))
958 (string-append "<" (car opts) ">")
959 ""))
960 (left-part (string-append
961 (with-output-to-string
962 (lambda ()
963 (map (lambda (x) (display (keyword->symbol x)) (display " "))
964 opts-proper)))
965 arg-name))
966 (middle-part (if (and (< (string-length left-part) 30)
967 (< (string-length help) 40))
968 (make-string (- 30 (string-length left-part)) #\ )
969 "\n\t")))
970 (display left-part)
971 (display middle-part)
972 (display help)
973 (newline))))
974 kw-desc))
975
976
977
978 (define (transform-usage-lambda cases)
979 (let* ((raw-usage (delq! 'else (map car cases)))
980 (usage-sans-specials (map (lambda (x)
981 (or (and (not (list? x)) x)
982 (and (symbol? (car x)) #t)
983 (and (boolean? (car x)) #t)
984 x))
985 raw-usage))
986 (usage-desc (delq! #t usage-sans-specials))
987 (kw-desc (map car usage-desc))
988 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
989 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
990 (transmogrified-cases (map (lambda (case)
991 (cons (let ((opts (car case)))
992 (if (or (boolean? opts) (eq? 'else opts))
993 opts
994 (cond
995 ((symbol? (car opts)) opts)
996 ((boolean? (car opts)) opts)
997 ((string? (caar opts)) (cdar opts))
998 (else (car opts)))))
999 (cdr case)))
1000 cases)))
1001 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
1002 (lambda (%argv)
1003 (let %next-arg ((%argv %argv))
1004 (get-option %argv
1005 ',kw-opts
1006 ',kw-args
1007 (lambda (%opt %arg %new-argv)
1008 (case %opt
1009 ,@ transmogrified-cases))))))))
1010
1011
1012 \f
1013
1014 ;;; {Low Level Modules}
1015 ;;;
1016 ;;; These are the low level data structures for modules.
1017 ;;;
1018 ;;; Every module object is of the type 'module-type', which is a record
1019 ;;; consisting of the following members:
1020 ;;;
1021 ;;; - eval-closure: the function that defines for its module the strategy that
1022 ;;; shall be followed when looking up symbols in the module.
1023 ;;;
1024 ;;; An eval-closure is a function taking two arguments: the symbol to be
1025 ;;; looked up and a boolean value telling whether a binding for the symbol
1026 ;;; should be created if it does not exist yet. If the symbol lookup
1027 ;;; succeeded (either because an existing binding was found or because a new
1028 ;;; binding was created), a variable object representing the binding is
1029 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1030 ;;; closure does not take the module to be searched as an argument: During
1031 ;;; construction of the eval-closure, the eval-closure has to store the
1032 ;;; module it belongs to in its environment. This means, that any
1033 ;;; eval-closure can belong to only one module.
1034 ;;;
1035 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1036 ;;; special cases of eval-closures are to be distinguished: During startup
1037 ;;; the module system is not yet activated. In this phase, no modules are
1038 ;;; defined and all bindings are automatically stored by the system in the
1039 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1040 ;;; functions which require an eval-closure as their argument need to be
1041 ;;; passed the value #f.
1042 ;;;
1043 ;;; The other two special cases of eval-closures are the
1044 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1045 ;;; behave equally for the case that no new binding is to be created. The
1046 ;;; difference between the two comes in, when the boolean argument to the
1047 ;;; eval-closure indicates that a new binding shall be created if it is not
1048 ;;; found.
1049 ;;;
1050 ;;; Given that no new binding shall be created, both standard eval-closures
1051 ;;; define the following standard strategy of searching bindings in the
1052 ;;; module: First, the module's obarray is searched for the symbol. Second,
1053 ;;; if no binding for the symbol was found in the module's obarray, the
1054 ;;; module's binder procedure is exececuted. If this procedure did not
1055 ;;; return a binding for the symbol, the modules referenced in the module's
1056 ;;; uses list are recursively searched for a binding of the symbol. If the
1057 ;;; binding can not be found in these modules also, the symbol lookup has
1058 ;;; failed.
1059 ;;;
1060 ;;; If a new binding shall be created, the standard-interface-eval-closure
1061 ;;; immediately returns indicating failure. That is, it does not even try
1062 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1063 ;;; first search the obarray, and if no binding was found there, would
1064 ;;; create a new binding in the obarray, therefore not calling the binder
1065 ;;; procedure or searching the modules in the uses list.
1066 ;;;
1067 ;;; The explanation of the following members obarray, binder and uses
1068 ;;; assumes that the symbol lookup follows the strategy that is defined in
1069 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1070 ;;;
1071 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1072 ;;; hash table, the definitions are found that are local to the module (that
1073 ;;; is, not imported from other modules). When looking up bindings in the
1074 ;;; module, this hash table is searched first.
1075 ;;;
1076 ;;; - binder: either #f or a function taking a module and a symbol argument.
1077 ;;; If it is a function it is called after the obarray has been
1078 ;;; unsuccessfully searched for a binding. It then can provide bindings
1079 ;;; that would otherwise not be found locally in the module.
1080 ;;;
1081 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1082 ;;; These modules are the third place queried for bindings after the obarray
1083 ;;; has been unsuccessfully searched and the binder function did not deliver
1084 ;;; a result either.
1085 ;;;
1086 ;;; - transformer: either #f or a function taking a scheme expression as
1087 ;;; delivered by read. If it is a function, it will be called to perform
1088 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1089 ;;; expression. The output of the transformer function will then be passed
1090 ;;; to Guile's internal memoizer. This means that the output must be valid
1091 ;;; scheme code. The only exception is, that the output may make use of the
1092 ;;; syntax extensions provided to identify the modules that a binding
1093 ;;; belongs to.
1094 ;;;
1095 ;;; - name: the name of the module. This is used for all kinds of printing
1096 ;;; outputs. In certain places the module name also serves as a way of
1097 ;;; identification. When adding a module to the uses list of another
1098 ;;; module, it is made sure that the new uses list will not contain two
1099 ;;; modules of the same name.
1100 ;;;
1101 ;;; - kind: classification of the kind of module. The value is (currently?)
1102 ;;; only used for printing. It has no influence on how a module is treated.
1103 ;;; Currently the following values are used when setting the module kind:
1104 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1105 ;;; is set, it defaults to 'module.
1106 ;;;
1107 ;;; - duplicates-handlers: a list of procedures that get called to make a
1108 ;;; choice between two duplicate bindings when name clashes occur. See the
1109 ;;; `duplicate-handlers' global variable below.
1110 ;;;
1111 ;;; - observers: a list of procedures that get called when the module is
1112 ;;; modified.
1113 ;;;
1114 ;;; - weak-observers: a weak-key hash table of procedures that get called
1115 ;;; when the module is modified. See `module-observe-weak' for details.
1116 ;;;
1117 ;;; In addition, the module may (must?) contain a binding for
1118 ;;; `%module-public-interface'. This variable should be bound to a module
1119 ;;; representing the exported interface of a module. See the
1120 ;;; `module-public-interface' and `module-export!' procedures.
1121 ;;;
1122 ;;; !!! warning: The interface to lazy binder procedures is going
1123 ;;; to be changed in an incompatible way to permit all the basic
1124 ;;; module ops to be virtualized.
1125 ;;;
1126 ;;; (make-module size use-list lazy-binding-proc) => module
1127 ;;; module-{obarray,uses,binder}[|-set!]
1128 ;;; (module? obj) => [#t|#f]
1129 ;;; (module-locally-bound? module symbol) => [#t|#f]
1130 ;;; (module-bound? module symbol) => [#t|#f]
1131 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1132 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1133 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1134 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1135 ;;; (module-symbol-binding module symbol opt-value)
1136 ;;; => [ <obj> | opt-value | an error occurs ]
1137 ;;; (module-make-local-var! module symbol) => #<variable...>
1138 ;;; (module-add! module symbol var) => unspecified
1139 ;;; (module-remove! module symbol) => unspecified
1140 ;;; (module-for-each proc module) => unspecified
1141 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1142 ;;; (set-current-module module) => unspecified
1143 ;;; (current-module) => #<module...>
1144 ;;;
1145 ;;;
1146
1147 \f
1148
1149 ;;; {Printing Modules}
1150 ;;;
1151
1152 ;; This is how modules are printed. You can re-define it.
1153 ;; (Redefining is actually more complicated than simply redefining
1154 ;; %print-module because that would only change the binding and not
1155 ;; the value stored in the vtable that determines how record are
1156 ;; printed. Sigh.)
1157
1158 (define (%print-module mod port) ; unused args: depth length style table)
1159 (display "#<" port)
1160 (display (or (module-kind mod) "module") port)
1161 (let ((name (module-name mod)))
1162 (if name
1163 (begin
1164 (display " " port)
1165 (display name port))))
1166 (display " " port)
1167 (display (number->string (object-address mod) 16) port)
1168 (display ">" port))
1169
1170 ;; module-type
1171 ;;
1172 ;; A module is characterized by an obarray in which local symbols
1173 ;; are interned, a list of modules, "uses", from which non-local
1174 ;; bindings can be inherited, and an optional lazy-binder which
1175 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1176 ;; bindings that would otherwise not be found locally in the module.
1177 ;;
1178 ;; NOTE: If you change anything here, you also need to change
1179 ;; libguile/modules.h.
1180 ;;
1181 (define module-type
1182 (make-record-type 'module
1183 '(obarray uses binder eval-closure transformer name kind
1184 duplicates-handlers import-obarray
1185 observers weak-observers)
1186 %print-module))
1187
1188 ;; make-module &opt size uses binder
1189 ;;
1190 ;; Create a new module, perhaps with a particular size of obarray,
1191 ;; initial uses list, or binding procedure.
1192 ;;
1193 (define make-module
1194 (lambda args
1195
1196 (define (parse-arg index default)
1197 (if (> (length args) index)
1198 (list-ref args index)
1199 default))
1200
1201 (define %default-import-size
1202 ;; Typical number of imported bindings actually used by a module.
1203 600)
1204
1205 (if (> (length args) 3)
1206 (error "Too many args to make-module." args))
1207
1208 (let ((size (parse-arg 0 31))
1209 (uses (parse-arg 1 '()))
1210 (binder (parse-arg 2 #f)))
1211
1212 (if (not (integer? size))
1213 (error "Illegal size to make-module." size))
1214 (if (not (and (list? uses)
1215 (and-map module? uses)))
1216 (error "Incorrect use list." uses))
1217 (if (and binder (not (procedure? binder)))
1218 (error
1219 "Lazy-binder expected to be a procedure or #f." binder))
1220
1221 (let ((module (module-constructor (make-hash-table size)
1222 uses binder #f #f #f #f #f
1223 (make-hash-table %default-import-size)
1224 '()
1225 (make-weak-key-hash-table 31))))
1226
1227 ;; We can't pass this as an argument to module-constructor,
1228 ;; because we need it to close over a pointer to the module
1229 ;; itself.
1230 (set-module-eval-closure! module (standard-eval-closure module))
1231
1232 module))))
1233
1234 (define module-constructor (record-constructor module-type))
1235 (define module-obarray (record-accessor module-type 'obarray))
1236 (define set-module-obarray! (record-modifier module-type 'obarray))
1237 (define module-uses (record-accessor module-type 'uses))
1238 (define set-module-uses! (record-modifier module-type 'uses))
1239 (define module-binder (record-accessor module-type 'binder))
1240 (define set-module-binder! (record-modifier module-type 'binder))
1241
1242 ;; NOTE: This binding is used in libguile/modules.c.
1243 (define module-eval-closure (record-accessor module-type 'eval-closure))
1244
1245 (define module-transformer (record-accessor module-type 'transformer))
1246 (define set-module-transformer! (record-modifier module-type 'transformer))
1247 (define module-name (record-accessor module-type 'name))
1248 (define set-module-name! (record-modifier module-type 'name))
1249 (define module-kind (record-accessor module-type 'kind))
1250 (define set-module-kind! (record-modifier module-type 'kind))
1251 (define module-duplicates-handlers
1252 (record-accessor module-type 'duplicates-handlers))
1253 (define set-module-duplicates-handlers!
1254 (record-modifier module-type 'duplicates-handlers))
1255 (define module-observers (record-accessor module-type 'observers))
1256 (define set-module-observers! (record-modifier module-type 'observers))
1257 (define module-weak-observers (record-accessor module-type 'weak-observers))
1258 (define module? (record-predicate module-type))
1259
1260 (define module-import-obarray (record-accessor module-type 'import-obarray))
1261
1262 (define set-module-eval-closure!
1263 (let ((setter (record-modifier module-type 'eval-closure)))
1264 (lambda (module closure)
1265 (setter module closure)
1266 ;; Make it possible to lookup the module from the environment.
1267 ;; This implementation is correct since an eval closure can belong
1268 ;; to maximally one module.
1269 (set-procedure-property! closure 'module module))))
1270
1271 \f
1272
1273 ;;; {Observer protocol}
1274 ;;;
1275
1276 (define (module-observe module proc)
1277 (set-module-observers! module (cons proc (module-observers module)))
1278 (cons module proc))
1279
1280 (define (module-observe-weak module observer-id . proc)
1281 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1282 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1283 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1284 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1285 ;; for instance).
1286
1287 ;; The two-argument version is kept for backward compatibility: when called
1288 ;; with two arguments, the observer gets unregistered when closure PROC
1289 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1290
1291 (let ((proc (if (null? proc) observer-id (car proc))))
1292 (hashq-set! (module-weak-observers module) observer-id proc)))
1293
1294 (define (module-unobserve token)
1295 (let ((module (car token))
1296 (id (cdr token)))
1297 (if (integer? id)
1298 (hash-remove! (module-weak-observers module) id)
1299 (set-module-observers! module (delq1! id (module-observers module)))))
1300 *unspecified*)
1301
1302 (define module-defer-observers #f)
1303 (define module-defer-observers-mutex (make-mutex))
1304 (define module-defer-observers-table (make-hash-table))
1305
1306 (define (module-modified m)
1307 (if module-defer-observers
1308 (hash-set! module-defer-observers-table m #t)
1309 (module-call-observers m)))
1310
1311 ;;; This function can be used to delay calls to observers so that they
1312 ;;; can be called once only in the face of massive updating of modules.
1313 ;;;
1314 (define (call-with-deferred-observers thunk)
1315 (dynamic-wind
1316 (lambda ()
1317 (lock-mutex module-defer-observers-mutex)
1318 (set! module-defer-observers #t))
1319 thunk
1320 (lambda ()
1321 (set! module-defer-observers #f)
1322 (hash-for-each (lambda (m dummy)
1323 (module-call-observers m))
1324 module-defer-observers-table)
1325 (hash-clear! module-defer-observers-table)
1326 (unlock-mutex module-defer-observers-mutex))))
1327
1328 (define (module-call-observers m)
1329 (for-each (lambda (proc) (proc m)) (module-observers m))
1330
1331 ;; We assume that weak observers don't (un)register themselves as they are
1332 ;; called since this would preclude proper iteration over the hash table
1333 ;; elements.
1334 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1335
1336 \f
1337
1338 ;;; {Module Searching in General}
1339 ;;;
1340 ;;; We sometimes want to look for properties of a symbol
1341 ;;; just within the obarray of one module. If the property
1342 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1343 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1344 ;;;
1345 ;;;
1346 ;;; Other times, we want to test for a symbol property in the obarray
1347 ;;; of M and, if it is not found there, try each of the modules in the
1348 ;;; uses list of M. This is the normal way of testing for some
1349 ;;; property, so we state these properties without qualification as
1350 ;;; in: ``The symbol 'fnord is interned in module M because it is
1351 ;;; interned locally in module M2 which is a member of the uses list
1352 ;;; of M.''
1353 ;;;
1354
1355 ;; module-search fn m
1356 ;;
1357 ;; return the first non-#f result of FN applied to M and then to
1358 ;; the modules in the uses of m, and so on recursively. If all applications
1359 ;; return #f, then so does this function.
1360 ;;
1361 (define (module-search fn m v)
1362 (define (loop pos)
1363 (and (pair? pos)
1364 (or (module-search fn (car pos) v)
1365 (loop (cdr pos)))))
1366 (or (fn m v)
1367 (loop (module-uses m))))
1368
1369
1370 ;;; {Is a symbol bound in a module?}
1371 ;;;
1372 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1373 ;;; of S in M has been set to some well-defined value.
1374 ;;;
1375
1376 ;; module-locally-bound? module symbol
1377 ;;
1378 ;; Is a symbol bound (interned and defined) locally in a given module?
1379 ;;
1380 (define (module-locally-bound? m v)
1381 (let ((var (module-local-variable m v)))
1382 (and var
1383 (variable-bound? var))))
1384
1385 ;; module-bound? module symbol
1386 ;;
1387 ;; Is a symbol bound (interned and defined) anywhere in a given module
1388 ;; or its uses?
1389 ;;
1390 (define (module-bound? m v)
1391 (module-search module-locally-bound? m v))
1392
1393 ;;; {Is a symbol interned in a module?}
1394 ;;;
1395 ;;; Symbol S in Module M is interned if S occurs in
1396 ;;; of S in M has been set to some well-defined value.
1397 ;;;
1398 ;;; It is possible to intern a symbol in a module without providing
1399 ;;; an initial binding for the corresponding variable. This is done
1400 ;;; with:
1401 ;;; (module-add! module symbol (make-undefined-variable))
1402 ;;;
1403 ;;; In that case, the symbol is interned in the module, but not
1404 ;;; bound there. The unbound symbol shadows any binding for that
1405 ;;; symbol that might otherwise be inherited from a member of the uses list.
1406 ;;;
1407
1408 (define (module-obarray-get-handle ob key)
1409 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1410
1411 (define (module-obarray-ref ob key)
1412 ((if (symbol? key) hashq-ref hash-ref) ob key))
1413
1414 (define (module-obarray-set! ob key val)
1415 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1416
1417 (define (module-obarray-remove! ob key)
1418 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1419
1420 ;; module-symbol-locally-interned? module symbol
1421 ;;
1422 ;; is a symbol interned (not neccessarily defined) locally in a given module
1423 ;; or its uses? Interned symbols shadow inherited bindings even if
1424 ;; they are not themselves bound to a defined value.
1425 ;;
1426 (define (module-symbol-locally-interned? m v)
1427 (not (not (module-obarray-get-handle (module-obarray m) v))))
1428
1429 ;; module-symbol-interned? module symbol
1430 ;;
1431 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1432 ;; or its uses? Interned symbols shadow inherited bindings even if
1433 ;; they are not themselves bound to a defined value.
1434 ;;
1435 (define (module-symbol-interned? m v)
1436 (module-search module-symbol-locally-interned? m v))
1437
1438
1439 ;;; {Mapping modules x symbols --> variables}
1440 ;;;
1441
1442 ;; module-local-variable module symbol
1443 ;; return the local variable associated with a MODULE and SYMBOL.
1444 ;;
1445 ;;; This function is very important. It is the only function that can
1446 ;;; return a variable from a module other than the mutators that store
1447 ;;; new variables in modules. Therefore, this function is the location
1448 ;;; of the "lazy binder" hack.
1449 ;;;
1450 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1451 ;;; to a variable, return that variable object.
1452 ;;;
1453 ;;; If the symbols is not found at first, but the module has a lazy binder,
1454 ;;; then try the binder.
1455 ;;;
1456 ;;; If the symbol is not found at all, return #f.
1457 ;;;
1458 ;;; (This is now written in C, see `modules.c'.)
1459 ;;;
1460
1461 ;;; {Mapping modules x symbols --> bindings}
1462 ;;;
1463 ;;; These are similar to the mapping to variables, except that the
1464 ;;; variable is dereferenced.
1465 ;;;
1466
1467 ;; module-symbol-binding module symbol opt-value
1468 ;;
1469 ;; return the binding of a variable specified by name within
1470 ;; a given module, signalling an error if the variable is unbound.
1471 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1472 ;; return OPT-VALUE.
1473 ;;
1474 (define (module-symbol-local-binding m v . opt-val)
1475 (let ((var (module-local-variable m v)))
1476 (if (and var (variable-bound? var))
1477 (variable-ref var)
1478 (if (not (null? opt-val))
1479 (car opt-val)
1480 (error "Locally unbound variable." v)))))
1481
1482 ;; module-symbol-binding module symbol opt-value
1483 ;;
1484 ;; return the binding of a variable specified by name within
1485 ;; a given module, signalling an error if the variable is unbound.
1486 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1487 ;; return OPT-VALUE.
1488 ;;
1489 (define (module-symbol-binding m v . opt-val)
1490 (let ((var (module-variable m v)))
1491 (if (and var (variable-bound? var))
1492 (variable-ref var)
1493 (if (not (null? opt-val))
1494 (car opt-val)
1495 (error "Unbound variable." v)))))
1496
1497
1498 \f
1499
1500 ;;; {Adding Variables to Modules}
1501 ;;;
1502
1503 ;; module-make-local-var! module symbol
1504 ;;
1505 ;; ensure a variable for V in the local namespace of M.
1506 ;; If no variable was already there, then create a new and uninitialzied
1507 ;; variable.
1508 ;;
1509 ;; This function is used in modules.c.
1510 ;;
1511 (define (module-make-local-var! m v)
1512 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1513 (and (variable? b)
1514 (begin
1515 ;; Mark as modified since this function is called when
1516 ;; the standard eval closure defines a binding
1517 (module-modified m)
1518 b)))
1519
1520 ;; Create a new local variable.
1521 (let ((local-var (make-undefined-variable)))
1522 (module-add! m v local-var)
1523 local-var)))
1524
1525 ;; module-ensure-local-variable! module symbol
1526 ;;
1527 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1528 ;; there is no binding for SYMBOL, create a new uninitialized
1529 ;; variable. Return the local variable.
1530 ;;
1531 (define (module-ensure-local-variable! module symbol)
1532 (or (module-local-variable module symbol)
1533 (let ((var (make-undefined-variable)))
1534 (module-add! module symbol var)
1535 var)))
1536
1537 ;; module-add! module symbol var
1538 ;;
1539 ;; ensure a particular variable for V in the local namespace of M.
1540 ;;
1541 (define (module-add! m v var)
1542 (if (not (variable? var))
1543 (error "Bad variable to module-add!" var))
1544 (module-obarray-set! (module-obarray m) v var)
1545 (module-modified m))
1546
1547 ;; module-remove!
1548 ;;
1549 ;; make sure that a symbol is undefined in the local namespace of M.
1550 ;;
1551 (define (module-remove! m v)
1552 (module-obarray-remove! (module-obarray m) v)
1553 (module-modified m))
1554
1555 (define (module-clear! m)
1556 (hash-clear! (module-obarray m))
1557 (module-modified m))
1558
1559 ;; MODULE-FOR-EACH -- exported
1560 ;;
1561 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1562 ;;
1563 (define (module-for-each proc module)
1564 (hash-for-each proc (module-obarray module)))
1565
1566 (define (module-map proc module)
1567 (hash-map->list proc (module-obarray module)))
1568
1569 \f
1570
1571 ;;; {Low Level Bootstrapping}
1572 ;;;
1573
1574 ;; make-root-module
1575
1576 ;; A root module uses the pre-modules-obarray as its obarray. This
1577 ;; special obarray accumulates all bindings that have been established
1578 ;; before the module system is fully booted.
1579 ;;
1580 ;; (The obarray continues to be used by code that has been closed over
1581 ;; before the module system has been booted.)
1582
1583 (define (make-root-module)
1584 (let ((m (make-module 0)))
1585 (set-module-obarray! m (%get-pre-modules-obarray))
1586 m))
1587
1588 ;; make-scm-module
1589
1590 ;; The root interface is a module that uses the same obarray as the
1591 ;; root module. It does not allow new definitions, tho.
1592
1593 (define (make-scm-module)
1594 (let ((m (make-module 0)))
1595 (set-module-obarray! m (%get-pre-modules-obarray))
1596 (set-module-eval-closure! m (standard-interface-eval-closure m))
1597 m))
1598
1599
1600 \f
1601
1602 ;;; {Module-based Loading}
1603 ;;;
1604
1605 (define (save-module-excursion thunk)
1606 (let ((inner-module (current-module))
1607 (outer-module #f))
1608 (dynamic-wind (lambda ()
1609 (set! outer-module (current-module))
1610 (set-current-module inner-module)
1611 (set! inner-module #f))
1612 thunk
1613 (lambda ()
1614 (set! inner-module (current-module))
1615 (set-current-module outer-module)
1616 (set! outer-module #f)))))
1617
1618 (define basic-load load)
1619
1620 (define (load-module filename . reader)
1621 (save-module-excursion
1622 (lambda ()
1623 (let ((oldname (and (current-load-port)
1624 (port-filename (current-load-port)))))
1625 (apply basic-load
1626 (if (and oldname
1627 (> (string-length filename) 0)
1628 (not (char=? (string-ref filename 0) #\/))
1629 (not (string=? (dirname oldname) ".")))
1630 (string-append (dirname oldname) "/" filename)
1631 filename)
1632 reader)))))
1633
1634
1635 \f
1636
1637 ;;; {MODULE-REF -- exported}
1638 ;;;
1639
1640 ;; Returns the value of a variable called NAME in MODULE or any of its
1641 ;; used modules. If there is no such variable, then if the optional third
1642 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1643 ;;
1644 (define (module-ref module name . rest)
1645 (let ((variable (module-variable module name)))
1646 (if (and variable (variable-bound? variable))
1647 (variable-ref variable)
1648 (if (null? rest)
1649 (error "No variable named" name 'in module)
1650 (car rest) ; default value
1651 ))))
1652
1653 ;; MODULE-SET! -- exported
1654 ;;
1655 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1656 ;; to VALUE; if there is no such variable, an error is signaled.
1657 ;;
1658 (define (module-set! module name value)
1659 (let ((variable (module-variable module name)))
1660 (if variable
1661 (variable-set! variable value)
1662 (error "No variable named" name 'in module))))
1663
1664 ;; MODULE-DEFINE! -- exported
1665 ;;
1666 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1667 ;; variable, it is added first.
1668 ;;
1669 (define (module-define! module name value)
1670 (let ((variable (module-local-variable module name)))
1671 (if variable
1672 (begin
1673 (variable-set! variable value)
1674 (module-modified module))
1675 (let ((variable (make-variable value)))
1676 (module-add! module name variable)))))
1677
1678 ;; MODULE-DEFINED? -- exported
1679 ;;
1680 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1681 ;; uses)
1682 ;;
1683 (define (module-defined? module name)
1684 (let ((variable (module-variable module name)))
1685 (and variable (variable-bound? variable))))
1686
1687 ;; MODULE-USE! module interface
1688 ;;
1689 ;; Add INTERFACE to the list of interfaces used by MODULE.
1690 ;;
1691 (define (module-use! module interface)
1692 (if (not (eq? module interface))
1693 (begin
1694 ;; Newly used modules must be appended rather than consed, so that
1695 ;; `module-variable' traverses the use list starting from the first
1696 ;; used module.
1697 (set-module-uses! module
1698 (append (filter (lambda (m)
1699 (not
1700 (equal? (module-name m)
1701 (module-name interface))))
1702 (module-uses module))
1703 (list interface)))
1704
1705 (module-modified module))))
1706
1707 ;; MODULE-USE-INTERFACES! module interfaces
1708 ;;
1709 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1710 ;;
1711 (define (module-use-interfaces! module interfaces)
1712 (set-module-uses! module
1713 (append (module-uses module) interfaces))
1714 (module-modified module))
1715
1716 \f
1717
1718 ;;; {Recursive Namespaces}
1719 ;;;
1720 ;;; A hierarchical namespace emerges if we consider some module to be
1721 ;;; root, and variables bound to modules as nested namespaces.
1722 ;;;
1723 ;;; The routines in this file manage variable names in hierarchical namespace.
1724 ;;; Each variable name is a list of elements, looked up in successively nested
1725 ;;; modules.
1726 ;;;
1727 ;;; (nested-ref some-root-module '(foo bar baz))
1728 ;;; => <value of a variable named baz in the module bound to bar in
1729 ;;; the module bound to foo in some-root-module>
1730 ;;;
1731 ;;;
1732 ;;; There are:
1733 ;;;
1734 ;;; ;; a-root is a module
1735 ;;; ;; name is a list of symbols
1736 ;;;
1737 ;;; nested-ref a-root name
1738 ;;; nested-set! a-root name val
1739 ;;; nested-define! a-root name val
1740 ;;; nested-remove! a-root name
1741 ;;;
1742 ;;;
1743 ;;; (current-module) is a natural choice for a-root so for convenience there are
1744 ;;; also:
1745 ;;;
1746 ;;; local-ref name == nested-ref (current-module) name
1747 ;;; local-set! name val == nested-set! (current-module) name val
1748 ;;; local-define! name val == nested-define! (current-module) name val
1749 ;;; local-remove! name == nested-remove! (current-module) name
1750 ;;;
1751
1752
1753 (define (nested-ref root names)
1754 (let loop ((cur root)
1755 (elts names))
1756 (cond
1757 ((null? elts) cur)
1758 ((not (module? cur)) #f)
1759 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1760
1761 (define (nested-set! root names val)
1762 (let loop ((cur root)
1763 (elts names))
1764 (if (null? (cdr elts))
1765 (module-set! cur (car elts) val)
1766 (loop (module-ref cur (car elts)) (cdr elts)))))
1767
1768 (define (nested-define! root names val)
1769 (let loop ((cur root)
1770 (elts names))
1771 (if (null? (cdr elts))
1772 (module-define! cur (car elts) val)
1773 (loop (module-ref cur (car elts)) (cdr elts)))))
1774
1775 (define (nested-remove! root names)
1776 (let loop ((cur root)
1777 (elts names))
1778 (if (null? (cdr elts))
1779 (module-remove! cur (car elts))
1780 (loop (module-ref cur (car elts)) (cdr elts)))))
1781
1782 (define (local-ref names) (nested-ref (current-module) names))
1783 (define (local-set! names val) (nested-set! (current-module) names val))
1784 (define (local-define names val) (nested-define! (current-module) names val))
1785 (define (local-remove names) (nested-remove! (current-module) names))
1786
1787
1788 \f
1789
1790 ;;; {The (%app) module}
1791 ;;;
1792 ;;; The root of conventionally named objects not directly in the top level.
1793 ;;;
1794 ;;; (%app modules)
1795 ;;; (%app modules guile)
1796 ;;;
1797 ;;; The directory of all modules and the standard root module.
1798 ;;;
1799
1800 (define (module-public-interface m)
1801 (module-ref m '%module-public-interface #f))
1802 (define (set-module-public-interface! m i)
1803 (module-define! m '%module-public-interface i))
1804 (define (set-system-module! m s)
1805 (set-procedure-property! (module-eval-closure m) 'system-module s))
1806 (define the-root-module (make-root-module))
1807 (define the-scm-module (make-scm-module))
1808 (set-module-public-interface! the-root-module the-scm-module)
1809 (set-module-name! the-root-module '(guile))
1810 (set-module-name! the-scm-module '(guile))
1811 (set-module-kind! the-scm-module 'interface)
1812 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1813
1814 ;; NOTE: This binding is used in libguile/modules.c.
1815 ;;
1816 (define (make-modules-in module name)
1817 (if (null? name)
1818 module
1819 (cond
1820 ((module-ref module (car name) #f)
1821 => (lambda (m) (make-modules-in m (cdr name))))
1822 (else (let ((m (make-module 31)))
1823 (set-module-kind! m 'directory)
1824 (set-module-name! m (append (or (module-name module)
1825 '())
1826 (list (car name))))
1827 (module-define! module (car name) m)
1828 (make-modules-in m (cdr name)))))))
1829
1830 (define (beautify-user-module! module)
1831 (let ((interface (module-public-interface module)))
1832 (if (or (not interface)
1833 (eq? interface module))
1834 (let ((interface (make-module 31)))
1835 (set-module-name! interface (module-name module))
1836 (set-module-kind! interface 'interface)
1837 (set-module-public-interface! module interface))))
1838 (if (and (not (memq the-scm-module (module-uses module)))
1839 (not (eq? module the-root-module)))
1840 ;; Import the default set of bindings (from the SCM module) in MODULE.
1841 (module-use! module the-scm-module)))
1842
1843 ;; NOTE: This binding is used in libguile/modules.c.
1844 ;;
1845 (define (resolve-module name . maybe-autoload)
1846 (let ((full-name (append '(%app modules) name)))
1847 (let ((already (nested-ref the-root-module full-name)))
1848 (if already
1849 ;; The module already exists...
1850 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1851 (not (module-public-interface already)))
1852 ;; ...but we are told to load and it doesn't contain source, so
1853 (begin
1854 (try-load-module name)
1855 already)
1856 ;; simply return it.
1857 already)
1858 (begin
1859 ;; Try to autoload it if we are told so
1860 (if (or (null? maybe-autoload) (car maybe-autoload))
1861 (try-load-module name))
1862 ;; Get/create it.
1863 (make-modules-in (current-module) full-name))))))
1864
1865 ;; Cheat. These bindings are needed by modules.c, but we don't want
1866 ;; to move their real definition here because that would be unnatural.
1867 ;;
1868 (define try-module-autoload #f)
1869 (define process-define-module #f)
1870 (define process-use-modules #f)
1871 (define module-export! #f)
1872 (define default-duplicate-binding-procedures #f)
1873
1874 ;; This boots the module system. All bindings needed by modules.c
1875 ;; must have been defined by now.
1876 ;;
1877 (set-current-module the-root-module)
1878
1879 (define %app (make-module 31))
1880 (define app %app) ;; for backwards compatability
1881 (local-define '(%app modules) (make-module 31))
1882 (local-define '(%app modules guile) the-root-module)
1883
1884 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1885
1886 (define (try-load-module name)
1887 (or (begin-deprecated (try-module-linked name))
1888 (try-module-autoload name)
1889 (begin-deprecated (try-module-dynamic-link name))))
1890
1891 (define (purify-module! module)
1892 "Removes bindings in MODULE which are inherited from the (guile) module."
1893 (let ((use-list (module-uses module)))
1894 (if (and (pair? use-list)
1895 (eq? (car (last-pair use-list)) the-scm-module))
1896 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1897
1898 ;; Return a module that is an interface to the module designated by
1899 ;; NAME.
1900 ;;
1901 ;; `resolve-interface' takes four keyword arguments:
1902 ;;
1903 ;; #:select SELECTION
1904 ;;
1905 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1906 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1907 ;; is the name in the used module and SEEN is the name in the using
1908 ;; module. Note that SEEN is also passed through RENAMER, below. The
1909 ;; default is to select all bindings. If you specify no selection but
1910 ;; a renamer, only the bindings that already exist in the used module
1911 ;; are made available in the interface. Bindings that are added later
1912 ;; are not picked up.
1913 ;;
1914 ;; #:hide BINDINGS
1915 ;;
1916 ;; BINDINGS is a list of bindings which should not be imported.
1917 ;;
1918 ;; #:prefix PREFIX
1919 ;;
1920 ;; PREFIX is a symbol that will be appended to each exported name.
1921 ;; The default is to not perform any renaming.
1922 ;;
1923 ;; #:renamer RENAMER
1924 ;;
1925 ;; RENAMER is a procedure that takes a symbol and returns its new
1926 ;; name. The default is not perform any renaming.
1927 ;;
1928 ;; Signal "no code for module" error if module name is not resolvable
1929 ;; or its public interface is not available. Signal "no binding"
1930 ;; error if selected binding does not exist in the used module.
1931 ;;
1932 (define (resolve-interface name . args)
1933
1934 (define (get-keyword-arg args kw def)
1935 (cond ((memq kw args)
1936 => (lambda (kw-arg)
1937 (if (null? (cdr kw-arg))
1938 (error "keyword without value: " kw))
1939 (cadr kw-arg)))
1940 (else
1941 def)))
1942
1943 (let* ((select (get-keyword-arg args #:select #f))
1944 (hide (get-keyword-arg args #:hide '()))
1945 (renamer (or (get-keyword-arg args #:renamer #f)
1946 (let ((prefix (get-keyword-arg args #:prefix #f)))
1947 (and prefix (symbol-prefix-proc prefix)))
1948 identity))
1949 (module (resolve-module name))
1950 (public-i (and module (module-public-interface module))))
1951 (and (or (not module) (not public-i))
1952 (error "no code for module" name))
1953 (if (and (not select) (null? hide) (eq? renamer identity))
1954 public-i
1955 (let ((selection (or select (module-map (lambda (sym var) sym)
1956 public-i)))
1957 (custom-i (make-module 31)))
1958 (set-module-kind! custom-i 'custom-interface)
1959 (set-module-name! custom-i name)
1960 ;; XXX - should use a lazy binder so that changes to the
1961 ;; used module are picked up automatically.
1962 (for-each (lambda (bspec)
1963 (let* ((direct? (symbol? bspec))
1964 (orig (if direct? bspec (car bspec)))
1965 (seen (if direct? bspec (cdr bspec)))
1966 (var (or (module-local-variable public-i orig)
1967 (module-local-variable module orig)
1968 (error
1969 ;; fixme: format manually for now
1970 (simple-format
1971 #f "no binding `~A' in module ~A"
1972 orig name)))))
1973 (if (memq orig hide)
1974 (set! hide (delq! orig hide))
1975 (module-add! custom-i
1976 (renamer seen)
1977 var))))
1978 selection)
1979 ;; Check that we are not hiding bindings which don't exist
1980 (for-each (lambda (binding)
1981 (if (not (module-local-variable public-i binding))
1982 (error
1983 (simple-format
1984 #f "no binding `~A' to hide in module ~A"
1985 binding name))))
1986 hide)
1987 custom-i))))
1988
1989 (define (symbol-prefix-proc prefix)
1990 (lambda (symbol)
1991 (symbol-append prefix symbol)))
1992
1993 ;; This function is called from "modules.c". If you change it, be
1994 ;; sure to update "modules.c" as well.
1995
1996 (define (process-define-module args)
1997 (let* ((module-id (car args))
1998 (module (resolve-module module-id #f))
1999 (kws (cdr args))
2000 (unrecognized (lambda (arg)
2001 (error "unrecognized define-module argument" arg))))
2002 (beautify-user-module! module)
2003 (let loop ((kws kws)
2004 (reversed-interfaces '())
2005 (exports '())
2006 (re-exports '())
2007 (replacements '())
2008 (autoloads '()))
2009
2010 (if (null? kws)
2011 (call-with-deferred-observers
2012 (lambda ()
2013 (module-use-interfaces! module (reverse reversed-interfaces))
2014 (module-export! module exports)
2015 (module-replace! module replacements)
2016 (module-re-export! module re-exports)
2017 (if (not (null? autoloads))
2018 (apply module-autoload! module autoloads))))
2019 (case (car kws)
2020 ((#:use-module #:use-syntax)
2021 (or (pair? (cdr kws))
2022 (unrecognized kws))
2023 (let* ((interface-args (cadr kws))
2024 (interface (apply resolve-interface interface-args)))
2025 (and (eq? (car kws) #:use-syntax)
2026 (or (symbol? (caar interface-args))
2027 (error "invalid module name for use-syntax"
2028 (car interface-args)))
2029 (set-module-transformer!
2030 module
2031 (module-ref interface
2032 (car (last-pair (car interface-args)))
2033 #f)))
2034 (loop (cddr kws)
2035 (cons interface reversed-interfaces)
2036 exports
2037 re-exports
2038 replacements
2039 autoloads)))
2040 ((#:autoload)
2041 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2042 (unrecognized kws))
2043 (loop (cdddr kws)
2044 reversed-interfaces
2045 exports
2046 re-exports
2047 replacements
2048 (let ((name (cadr kws))
2049 (bindings (caddr kws)))
2050 (cons* name bindings autoloads))))
2051 ((#:no-backtrace)
2052 (set-system-module! module #t)
2053 (loop (cdr kws) reversed-interfaces exports re-exports
2054 replacements autoloads))
2055 ((#:pure)
2056 (purify-module! module)
2057 (loop (cdr kws) reversed-interfaces exports re-exports
2058 replacements autoloads))
2059 ((#:duplicates)
2060 (if (not (pair? (cdr kws)))
2061 (unrecognized kws))
2062 (set-module-duplicates-handlers!
2063 module
2064 (lookup-duplicates-handlers (cadr kws)))
2065 (loop (cddr kws) reversed-interfaces exports re-exports
2066 replacements autoloads))
2067 ((#:export #:export-syntax)
2068 (or (pair? (cdr kws))
2069 (unrecognized kws))
2070 (loop (cddr kws)
2071 reversed-interfaces
2072 (append (cadr kws) exports)
2073 re-exports
2074 replacements
2075 autoloads))
2076 ((#:re-export #:re-export-syntax)
2077 (or (pair? (cdr kws))
2078 (unrecognized kws))
2079 (loop (cddr kws)
2080 reversed-interfaces
2081 exports
2082 (append (cadr kws) re-exports)
2083 replacements
2084 autoloads))
2085 ((#:replace #:replace-syntax)
2086 (or (pair? (cdr kws))
2087 (unrecognized kws))
2088 (loop (cddr kws)
2089 reversed-interfaces
2090 exports
2091 re-exports
2092 (append (cadr kws) replacements)
2093 autoloads))
2094 (else
2095 (unrecognized kws)))))
2096 (run-hook module-defined-hook module)
2097 module))
2098
2099 ;; `module-defined-hook' is a hook that is run whenever a new module
2100 ;; is defined. Its members are called with one argument, the new
2101 ;; module.
2102 (define module-defined-hook (make-hook 1))
2103
2104 \f
2105
2106 ;;; {Autoload}
2107 ;;;
2108
2109 (define (make-autoload-interface module name bindings)
2110 (let ((b (lambda (a sym definep)
2111 (and (memq sym bindings)
2112 (let ((i (module-public-interface (resolve-module name))))
2113 (if (not i)
2114 (error "missing interface for module" name))
2115 (let ((autoload (memq a (module-uses module))))
2116 ;; Replace autoload-interface with actual interface if
2117 ;; that has not happened yet.
2118 (if (pair? autoload)
2119 (set-car! autoload i)))
2120 (module-local-variable i sym))))))
2121 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2122 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2123
2124 (define (module-autoload! module . args)
2125 "Have @var{module} automatically load the module named @var{name} when one
2126 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2127 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2128 module '(ice-9 q) '(make-q q-length))}."
2129 (let loop ((args args))
2130 (cond ((null? args)
2131 #t)
2132 ((null? (cdr args))
2133 (error "invalid name+binding autoload list" args))
2134 (else
2135 (let ((name (car args))
2136 (bindings (cadr args)))
2137 (module-use! module (make-autoload-interface module
2138 name bindings))
2139 (loop (cddr args)))))))
2140
2141
2142 ;;; {Compiled module}
2143
2144 (if (not (defined? 'load-compiled))
2145 (define load-compiled #f))
2146
2147 \f
2148
2149 ;;; {Autoloading modules}
2150 ;;;
2151
2152 (define autoloads-in-progress '())
2153
2154 ;; This function is called from "modules.c". If you change it, be
2155 ;; sure to update "modules.c" as well.
2156
2157 (define (try-module-autoload module-name)
2158 (let* ((reverse-name (reverse module-name))
2159 (name (symbol->string (car reverse-name)))
2160 (dir-hint-module-name (reverse (cdr reverse-name)))
2161 (dir-hint (apply string-append
2162 (map (lambda (elt)
2163 (string-append (symbol->string elt) "/"))
2164 dir-hint-module-name))))
2165 (resolve-module dir-hint-module-name #f)
2166 (and (not (autoload-done-or-in-progress? dir-hint name))
2167 (let ((didit #f))
2168 (define (load-file proc file)
2169 (save-module-excursion (lambda () (proc file)))
2170 (set! didit #t))
2171 (dynamic-wind
2172 (lambda () (autoload-in-progress! dir-hint name))
2173 (lambda ()
2174 (let ((file (in-vicinity dir-hint name)))
2175 (let ((compiled (and load-compiled
2176 (%search-load-path
2177 (string-append file ".go"))))
2178 (source (%search-load-path file)))
2179 (cond ((and source
2180 (or (not compiled)
2181 (< (stat:mtime (stat compiled))
2182 (stat:mtime (stat source)))))
2183 (if compiled
2184 (warn "source file" source "newer than" compiled))
2185 (with-fluids ((current-reader #f))
2186 (load-file primitive-load source)))
2187 (compiled
2188 (load-file load-compiled compiled))))))
2189 (lambda () (set-autoloaded! dir-hint name didit)))
2190 didit))))
2191
2192 \f
2193
2194 ;;; {Dynamic linking of modules}
2195 ;;;
2196
2197 (define autoloads-done '((guile . guile)))
2198
2199 (define (autoload-done-or-in-progress? p m)
2200 (let ((n (cons p m)))
2201 (->bool (or (member n autoloads-done)
2202 (member n autoloads-in-progress)))))
2203
2204 (define (autoload-done! p m)
2205 (let ((n (cons p m)))
2206 (set! autoloads-in-progress
2207 (delete! n autoloads-in-progress))
2208 (or (member n autoloads-done)
2209 (set! autoloads-done (cons n autoloads-done)))))
2210
2211 (define (autoload-in-progress! p m)
2212 (let ((n (cons p m)))
2213 (set! autoloads-done
2214 (delete! n autoloads-done))
2215 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2216
2217 (define (set-autoloaded! p m done?)
2218 (if done?
2219 (autoload-done! p m)
2220 (let ((n (cons p m)))
2221 (set! autoloads-done (delete! n autoloads-done))
2222 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2223
2224 \f
2225
2226 ;;; {Run-time options}
2227 ;;;
2228
2229 (define define-option-interface
2230 (let* ((option-name car)
2231 (option-value cadr)
2232 (option-documentation caddr)
2233
2234 (print-option (lambda (option)
2235 (display (option-name option))
2236 (if (< (string-length
2237 (symbol->string (option-name option)))
2238 8)
2239 (display #\tab))
2240 (display #\tab)
2241 (display (option-value option))
2242 (display #\tab)
2243 (display (option-documentation option))
2244 (newline)))
2245
2246 ;; Below follow the macros defining the run-time option interfaces.
2247
2248 (make-options (lambda (interface)
2249 `(lambda args
2250 (cond ((null? args) (,interface))
2251 ((list? (car args))
2252 (,interface (car args)) (,interface))
2253 (else (for-each ,print-option
2254 (,interface #t)))))))
2255
2256 (make-enable (lambda (interface)
2257 `(lambda flags
2258 (,interface (append flags (,interface)))
2259 (,interface))))
2260
2261 (make-disable (lambda (interface)
2262 `(lambda flags
2263 (let ((options (,interface)))
2264 (for-each (lambda (flag)
2265 (set! options (delq! flag options)))
2266 flags)
2267 (,interface options)
2268 (,interface))))))
2269 (procedure->memoizing-macro
2270 (lambda (exp env)
2271 (let* ((option-group (cadr exp))
2272 (interface (car option-group))
2273 (options/enable/disable (cadr option-group)))
2274 `(begin
2275 (define ,(car options/enable/disable)
2276 ,(make-options interface))
2277 (define ,(cadr options/enable/disable)
2278 ,(make-enable interface))
2279 (define ,(caddr options/enable/disable)
2280 ,(make-disable interface))
2281 (defmacro ,(caaddr option-group) (opt val)
2282 `(,',(car options/enable/disable)
2283 (append (,',(car options/enable/disable))
2284 (list ',opt ,val))))))))))
2285
2286 (define-option-interface
2287 (eval-options-interface
2288 (eval-options eval-enable eval-disable)
2289 (eval-set!)))
2290
2291 (define-option-interface
2292 (debug-options-interface
2293 (debug-options debug-enable debug-disable)
2294 (debug-set!)))
2295
2296 (define-option-interface
2297 (evaluator-traps-interface
2298 (traps trap-enable trap-disable)
2299 (trap-set!)))
2300
2301 (define-option-interface
2302 (read-options-interface
2303 (read-options read-enable read-disable)
2304 (read-set!)))
2305
2306 (define-option-interface
2307 (print-options-interface
2308 (print-options print-enable print-disable)
2309 (print-set!)))
2310
2311 \f
2312
2313 ;;; {Running Repls}
2314 ;;;
2315
2316 (define (repl read evaler print)
2317 (let loop ((source (read (current-input-port))))
2318 (print (evaler source))
2319 (loop (read (current-input-port)))))
2320
2321 ;; A provisional repl that acts like the SCM repl:
2322 ;;
2323 (define scm-repl-silent #f)
2324 (define (assert-repl-silence v) (set! scm-repl-silent v))
2325
2326 (define *unspecified* (if #f #f))
2327 (define (unspecified? v) (eq? v *unspecified*))
2328
2329 (define scm-repl-print-unspecified #f)
2330 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2331
2332 (define scm-repl-verbose #f)
2333 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2334
2335 (define scm-repl-prompt "guile> ")
2336
2337 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2338
2339 (define (default-lazy-handler key . args)
2340 (save-stack lazy-handler-dispatch)
2341 (apply throw key args))
2342
2343 (define (lazy-handler-dispatch key . args)
2344 (apply default-lazy-handler key args))
2345
2346 (define abort-hook (make-hook))
2347
2348 ;; these definitions are used if running a script.
2349 ;; otherwise redefined in error-catching-loop.
2350 (define (set-batch-mode?! arg) #t)
2351 (define (batch-mode?) #t)
2352
2353 (define (error-catching-loop thunk)
2354 (let ((status #f)
2355 (interactive #t))
2356 (define (loop first)
2357 (let ((next
2358 (catch #t
2359
2360 (lambda ()
2361 (call-with-unblocked-asyncs
2362 (lambda ()
2363 (with-traps
2364 (lambda ()
2365 (first)
2366
2367 ;; This line is needed because mark
2368 ;; doesn't do closures quite right.
2369 ;; Unreferenced locals should be
2370 ;; collected.
2371 (set! first #f)
2372 (let loop ((v (thunk)))
2373 (loop (thunk)))
2374 #f)))))
2375
2376 (lambda (key . args)
2377 (case key
2378 ((quit)
2379 (set! status args)
2380 #f)
2381
2382 ((switch-repl)
2383 (apply throw 'switch-repl args))
2384
2385 ((abort)
2386 ;; This is one of the closures that require
2387 ;; (set! first #f) above
2388 ;;
2389 (lambda ()
2390 (run-hook abort-hook)
2391 (force-output (current-output-port))
2392 (display "ABORT: " (current-error-port))
2393 (write args (current-error-port))
2394 (newline (current-error-port))
2395 (if interactive
2396 (begin
2397 (if (and
2398 (not has-shown-debugger-hint?)
2399 (not (memq 'backtrace
2400 (debug-options-interface)))
2401 (stack? (fluid-ref the-last-stack)))
2402 (begin
2403 (newline (current-error-port))
2404 (display
2405 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2406 (current-error-port))
2407 (set! has-shown-debugger-hint? #t)))
2408 (force-output (current-error-port)))
2409 (begin
2410 (primitive-exit 1)))
2411 (set! stack-saved? #f)))
2412
2413 (else
2414 ;; This is the other cons-leak closure...
2415 (lambda ()
2416 (cond ((= (length args) 4)
2417 (apply handle-system-error key args))
2418 (else
2419 (apply bad-throw key args)))))))
2420
2421 ;; Note that having just `lazy-handler-dispatch'
2422 ;; here is connected with the mechanism that
2423 ;; produces a nice backtrace upon error. If, for
2424 ;; example, this is replaced with (lambda args
2425 ;; (apply lazy-handler-dispatch args)), the stack
2426 ;; cutting (in save-stack) goes wrong and ends up
2427 ;; saving no stack at all, so there is no
2428 ;; backtrace.
2429 lazy-handler-dispatch)))
2430
2431 (if next (loop next) status)))
2432 (set! set-batch-mode?! (lambda (arg)
2433 (cond (arg
2434 (set! interactive #f)
2435 (restore-signals))
2436 (#t
2437 (error "sorry, not implemented")))))
2438 (set! batch-mode? (lambda () (not interactive)))
2439 (call-with-blocked-asyncs
2440 (lambda () (loop (lambda () #t))))))
2441
2442 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2443 (define before-signal-stack (make-fluid))
2444 (define stack-saved? #f)
2445
2446 (define (save-stack . narrowing)
2447 (or stack-saved?
2448 (cond ((not (memq 'debug (debug-options-interface)))
2449 (fluid-set! the-last-stack #f)
2450 (set! stack-saved? #t))
2451 (else
2452 (fluid-set!
2453 the-last-stack
2454 (case (stack-id #t)
2455 ((repl-stack)
2456 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2457 ((load-stack)
2458 (apply make-stack #t save-stack 0 #t 0 narrowing))
2459 ((tk-stack)
2460 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2461 ((#t)
2462 (apply make-stack #t save-stack 0 1 narrowing))
2463 (else
2464 (let ((id (stack-id #t)))
2465 (and (procedure? id)
2466 (apply make-stack #t save-stack id #t 0 narrowing))))))
2467 (set! stack-saved? #t)))))
2468
2469 (define before-error-hook (make-hook))
2470 (define after-error-hook (make-hook))
2471 (define before-backtrace-hook (make-hook))
2472 (define after-backtrace-hook (make-hook))
2473
2474 (define has-shown-debugger-hint? #f)
2475
2476 (define (handle-system-error key . args)
2477 (let ((cep (current-error-port)))
2478 (cond ((not (stack? (fluid-ref the-last-stack))))
2479 ((memq 'backtrace (debug-options-interface))
2480 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2481 (eq? key 'out-of-range))
2482 (list-ref args 3)
2483 '())))
2484 (run-hook before-backtrace-hook)
2485 (newline cep)
2486 (display "Backtrace:\n")
2487 (display-backtrace (fluid-ref the-last-stack) cep
2488 #f #f highlights)
2489 (newline cep)
2490 (run-hook after-backtrace-hook))))
2491 (run-hook before-error-hook)
2492 (apply display-error (fluid-ref the-last-stack) cep args)
2493 (run-hook after-error-hook)
2494 (force-output cep)
2495 (throw 'abort key)))
2496
2497 (define (quit . args)
2498 (apply throw 'quit args))
2499
2500 (define exit quit)
2501
2502 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2503
2504 ;; Replaced by C code:
2505 ;;(define (backtrace)
2506 ;; (if (fluid-ref the-last-stack)
2507 ;; (begin
2508 ;; (newline)
2509 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2510 ;; (newline)
2511 ;; (if (and (not has-shown-backtrace-hint?)
2512 ;; (not (memq 'backtrace (debug-options-interface))))
2513 ;; (begin
2514 ;; (display
2515 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2516 ;;automatically if an error occurs in the future.\n")
2517 ;; (set! has-shown-backtrace-hint? #t))))
2518 ;; (display "No backtrace available.\n")))
2519
2520 (define (error-catching-repl r e p)
2521 (error-catching-loop
2522 (lambda ()
2523 (call-with-values (lambda () (e (r)))
2524 (lambda the-values (for-each p the-values))))))
2525
2526 (define (gc-run-time)
2527 (cdr (assq 'gc-time-taken (gc-stats))))
2528
2529 (define before-read-hook (make-hook))
2530 (define after-read-hook (make-hook))
2531 (define before-eval-hook (make-hook 1))
2532 (define after-eval-hook (make-hook 1))
2533 (define before-print-hook (make-hook 1))
2534 (define after-print-hook (make-hook 1))
2535
2536 ;;; The default repl-reader function. We may override this if we've
2537 ;;; the readline library.
2538 (define repl-reader
2539 (lambda (prompt)
2540 (display (if (string? prompt) prompt (prompt)))
2541 (force-output)
2542 (run-hook before-read-hook)
2543 ((or (fluid-ref current-reader) read) (current-input-port))))
2544
2545 (define (scm-style-repl)
2546
2547 (letrec (
2548 (start-gc-rt #f)
2549 (start-rt #f)
2550 (repl-report-start-timing (lambda ()
2551 (set! start-gc-rt (gc-run-time))
2552 (set! start-rt (get-internal-run-time))))
2553 (repl-report (lambda ()
2554 (display ";;; ")
2555 (display (inexact->exact
2556 (* 1000 (/ (- (get-internal-run-time) start-rt)
2557 internal-time-units-per-second))))
2558 (display " msec (")
2559 (display (inexact->exact
2560 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2561 internal-time-units-per-second))))
2562 (display " msec in gc)\n")))
2563
2564 (consume-trailing-whitespace
2565 (lambda ()
2566 (let ((ch (peek-char)))
2567 (cond
2568 ((eof-object? ch))
2569 ((or (char=? ch #\space) (char=? ch #\tab))
2570 (read-char)
2571 (consume-trailing-whitespace))
2572 ((char=? ch #\newline)
2573 (read-char))))))
2574 (-read (lambda ()
2575 (let ((val
2576 (let ((prompt (cond ((string? scm-repl-prompt)
2577 scm-repl-prompt)
2578 ((thunk? scm-repl-prompt)
2579 (scm-repl-prompt))
2580 (scm-repl-prompt "> ")
2581 (else ""))))
2582 (repl-reader prompt))))
2583
2584 ;; As described in R4RS, the READ procedure updates the
2585 ;; port to point to the first character past the end of
2586 ;; the external representation of the object. This
2587 ;; means that it doesn't consume the newline typically
2588 ;; found after an expression. This means that, when
2589 ;; debugging Guile with GDB, GDB gets the newline, which
2590 ;; it often interprets as a "continue" command, making
2591 ;; breakpoints kind of useless. So, consume any
2592 ;; trailing newline here, as well as any whitespace
2593 ;; before it.
2594 ;; But not if EOF, for control-D.
2595 (if (not (eof-object? val))
2596 (consume-trailing-whitespace))
2597 (run-hook after-read-hook)
2598 (if (eof-object? val)
2599 (begin
2600 (repl-report-start-timing)
2601 (if scm-repl-verbose
2602 (begin
2603 (newline)
2604 (display ";;; EOF -- quitting")
2605 (newline)))
2606 (quit 0)))
2607 val)))
2608
2609 (-eval (lambda (sourc)
2610 (repl-report-start-timing)
2611 (run-hook before-eval-hook sourc)
2612 (let ((val (start-stack 'repl-stack
2613 ;; If you change this procedure
2614 ;; (primitive-eval), please also
2615 ;; modify the repl-stack case in
2616 ;; save-stack so that stack cutting
2617 ;; continues to work.
2618 (primitive-eval sourc))))
2619 (run-hook after-eval-hook sourc)
2620 val)))
2621
2622
2623 (-print (let ((maybe-print (lambda (result)
2624 (if (or scm-repl-print-unspecified
2625 (not (unspecified? result)))
2626 (begin
2627 (write result)
2628 (newline))))))
2629 (lambda (result)
2630 (if (not scm-repl-silent)
2631 (begin
2632 (run-hook before-print-hook result)
2633 (maybe-print result)
2634 (run-hook after-print-hook result)
2635 (if scm-repl-verbose
2636 (repl-report))
2637 (force-output))))))
2638
2639 (-quit (lambda (args)
2640 (if scm-repl-verbose
2641 (begin
2642 (display ";;; QUIT executed, repl exitting")
2643 (newline)
2644 (repl-report)))
2645 args))
2646
2647 (-abort (lambda ()
2648 (if scm-repl-verbose
2649 (begin
2650 (display ";;; ABORT executed.")
2651 (newline)
2652 (repl-report)))
2653 (repl -read -eval -print))))
2654
2655 (let ((status (error-catching-repl -read
2656 -eval
2657 -print)))
2658 (-quit status))))
2659
2660
2661 \f
2662
2663 ;;; {IOTA functions: generating lists of numbers}
2664 ;;;
2665
2666 (define (iota n)
2667 (let loop ((count (1- n)) (result '()))
2668 (if (< count 0) result
2669 (loop (1- count) (cons count result)))))
2670
2671 \f
2672
2673 ;;; {collect}
2674 ;;;
2675 ;;; Similar to `begin' but returns a list of the results of all constituent
2676 ;;; forms instead of the result of the last form.
2677 ;;; (The definition relies on the current left-to-right
2678 ;;; order of evaluation of operands in applications.)
2679 ;;;
2680
2681 (defmacro collect forms
2682 (cons 'list forms))
2683
2684 \f
2685
2686 ;;; {with-fluids}
2687 ;;;
2688
2689 ;; with-fluids is a convenience wrapper for the builtin procedure
2690 ;; `with-fluids*'. The syntax is just like `let':
2691 ;;
2692 ;; (with-fluids ((fluid val)
2693 ;; ...)
2694 ;; body)
2695
2696 (defmacro with-fluids (bindings . body)
2697 (let ((fluids (map car bindings))
2698 (values (map cadr bindings)))
2699 (if (and (= (length fluids) 1) (= (length values) 1))
2700 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2701 `(with-fluids* (list ,@fluids) (list ,@values)
2702 (lambda () ,@body)))))
2703
2704 \f
2705
2706 ;;; {Macros}
2707 ;;;
2708
2709 ;; actually....hobbit might be able to hack these with a little
2710 ;; coaxing
2711 ;;
2712
2713 (define (primitive-macro? m)
2714 (and (macro? m)
2715 (not (macro-transformer m))))
2716
2717 (defmacro define-macro (first . rest)
2718 (let ((name (if (symbol? first) first (car first)))
2719 (transformer
2720 (if (symbol? first)
2721 (car rest)
2722 `(lambda ,(cdr first) ,@rest))))
2723 `(eval-case
2724 ((load-toplevel compile-toplevel)
2725 (define ,name (defmacro:transformer ,transformer)))
2726 (else
2727 (error "define-macro can only be used at the top level")))))
2728
2729
2730 (defmacro define-syntax-macro (first . rest)
2731 (let ((name (if (symbol? first) first (car first)))
2732 (transformer
2733 (if (symbol? first)
2734 (car rest)
2735 `(lambda ,(cdr first) ,@rest))))
2736 `(eval-case
2737 ((load-toplevel compile-toplevel)
2738 (define ,name (defmacro:syntax-transformer ,transformer)))
2739 (else
2740 (error "define-syntax-macro can only be used at the top level")))))
2741
2742 \f
2743
2744 ;;; {While}
2745 ;;;
2746 ;;; with `continue' and `break'.
2747 ;;;
2748
2749 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2750 ;; that's only necessary if continue is actually used. A new key is
2751 ;; generated every time, so break and continue apply to their originating
2752 ;; `while' even when recursing. `while-helper' is an easy way to keep the
2753 ;; `key' binding away from the cond and body code.
2754 ;;
2755 ;; FIXME: This is supposed to have an `unquote' on the `do' the same used
2756 ;; for lambda and not, so as to protect against any user rebinding of that
2757 ;; symbol, but unfortunately an unquote breaks with ice-9 syncase, eg.
2758 ;;
2759 ;; (use-modules (ice-9 syncase))
2760 ;; (while #f)
2761 ;; => ERROR: invalid syntax ()
2762 ;;
2763 ;; This is probably a bug in syncase.
2764 ;;
2765 (define-macro (while cond . body)
2766 (define (while-helper proc)
2767 (do ((key (make-symbol "while-key")))
2768 ((catch key
2769 (lambda ()
2770 (proc (lambda () (throw key #t))
2771 (lambda () (throw key #f))))
2772 (lambda (key arg) arg)))))
2773 `(,while-helper (,lambda (break continue)
2774 (do ()
2775 ((,not ,cond))
2776 ,@body)
2777 #t)))
2778
2779
2780 \f
2781
2782 ;;; {Module System Macros}
2783 ;;;
2784
2785 ;; Return a list of expressions that evaluate to the appropriate
2786 ;; arguments for resolve-interface according to SPEC.
2787
2788 (define (compile-interface-spec spec)
2789 (define (make-keyarg sym key quote?)
2790 (cond ((or (memq sym spec)
2791 (memq key spec))
2792 => (lambda (rest)
2793 (if quote?
2794 (list key (list 'quote (cadr rest)))
2795 (list key (cadr rest)))))
2796 (else
2797 '())))
2798 (define (map-apply func list)
2799 (map (lambda (args) (apply func args)) list))
2800 (define keys
2801 ;; sym key quote?
2802 '((:select #:select #t)
2803 (:hide #:hide #t)
2804 (:prefix #:prefix #t)
2805 (:renamer #:renamer #f)))
2806 (if (not (pair? (car spec)))
2807 `(',spec)
2808 `(',(car spec)
2809 ,@(apply append (map-apply make-keyarg keys)))))
2810
2811 (define (keyword-like-symbol->keyword sym)
2812 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2813
2814 (define (compile-define-module-args args)
2815 ;; Just quote everything except #:use-module and #:use-syntax. We
2816 ;; need to know about all arguments regardless since we want to turn
2817 ;; symbols that look like keywords into real keywords, and the
2818 ;; keyword args in a define-module form are not regular
2819 ;; (i.e. no-backtrace doesn't take a value).
2820 (let loop ((compiled-args `((quote ,(car args))))
2821 (args (cdr args)))
2822 (cond ((null? args)
2823 (reverse! compiled-args))
2824 ;; symbol in keyword position
2825 ((symbol? (car args))
2826 (loop compiled-args
2827 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2828 ((memq (car args) '(#:no-backtrace #:pure))
2829 (loop (cons (car args) compiled-args)
2830 (cdr args)))
2831 ((null? (cdr args))
2832 (error "keyword without value:" (car args)))
2833 ((memq (car args) '(#:use-module #:use-syntax))
2834 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2835 (car args)
2836 compiled-args)
2837 (cddr args)))
2838 ((eq? (car args) #:autoload)
2839 (loop (cons* `(quote ,(caddr args))
2840 `(quote ,(cadr args))
2841 (car args)
2842 compiled-args)
2843 (cdddr args)))
2844 (else
2845 (loop (cons* `(quote ,(cadr args))
2846 (car args)
2847 compiled-args)
2848 (cddr args))))))
2849
2850 (defmacro define-module args
2851 `(eval-case
2852 ((load-toplevel compile-toplevel)
2853 (let ((m (process-define-module
2854 (list ,@(compile-define-module-args args)))))
2855 (set-current-module m)
2856 m))
2857 (else
2858 (error "define-module can only be used at the top level"))))
2859
2860 ;; The guts of the use-modules macro. Add the interfaces of the named
2861 ;; modules to the use-list of the current module, in order.
2862
2863 ;; This function is called by "modules.c". If you change it, be sure
2864 ;; to change scm_c_use_module as well.
2865
2866 (define (process-use-modules module-interface-args)
2867 (let ((interfaces (map (lambda (mif-args)
2868 (or (apply resolve-interface mif-args)
2869 (error "no such module" mif-args)))
2870 module-interface-args)))
2871 (call-with-deferred-observers
2872 (lambda ()
2873 (module-use-interfaces! (current-module) interfaces)))))
2874
2875 (defmacro use-modules modules
2876 `(eval-case
2877 ((load-toplevel compile-toplevel)
2878 (process-use-modules
2879 (list ,@(map (lambda (m)
2880 `(list ,@(compile-interface-spec m)))
2881 modules)))
2882 *unspecified*)
2883 (else
2884 (error "use-modules can only be used at the top level"))))
2885
2886 (defmacro use-syntax (spec)
2887 `(eval-case
2888 ((load-toplevel compile-toplevel)
2889 ,@(if (pair? spec)
2890 `((process-use-modules (list
2891 (list ,@(compile-interface-spec spec))))
2892 (set-module-transformer! (current-module)
2893 ,(car (last-pair spec))))
2894 `((set-module-transformer! (current-module) ,spec)))
2895 *unspecified*)
2896 (else
2897 (error "use-syntax can only be used at the top level"))))
2898
2899 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2900 ;; as soon as guile supports hygienic macros.
2901 (define define-private define)
2902
2903 (defmacro define-public args
2904 (define (syntax)
2905 (error "bad syntax" (list 'define-public args)))
2906 (define (defined-name n)
2907 (cond
2908 ((symbol? n) n)
2909 ((pair? n) (defined-name (car n)))
2910 (else (syntax))))
2911 (cond
2912 ((null? args)
2913 (syntax))
2914 (#t
2915 (let ((name (defined-name (car args))))
2916 `(begin
2917 (define-private ,@args)
2918 (eval-case ((load-toplevel compile-toplevel) (export ,name))))))))
2919
2920 (defmacro defmacro-public args
2921 (define (syntax)
2922 (error "bad syntax" (list 'defmacro-public args)))
2923 (define (defined-name n)
2924 (cond
2925 ((symbol? n) n)
2926 (else (syntax))))
2927 (cond
2928 ((null? args)
2929 (syntax))
2930 (#t
2931 (let ((name (defined-name (car args))))
2932 `(begin
2933 (eval-case ((load-toplevel compile-toplevel) (export-syntax ,name)))
2934 (defmacro ,@args))))))
2935
2936 ;; Export a local variable
2937
2938 ;; This function is called from "modules.c". If you change it, be
2939 ;; sure to update "modules.c" as well.
2940
2941 (define (module-export! m names)
2942 (let ((public-i (module-public-interface m)))
2943 (for-each (lambda (name)
2944 (let ((var (module-ensure-local-variable! m name)))
2945 (module-add! public-i name var)))
2946 names)))
2947
2948 (define (module-replace! m names)
2949 (let ((public-i (module-public-interface m)))
2950 (for-each (lambda (name)
2951 (let ((var (module-ensure-local-variable! m name)))
2952 (set-object-property! var 'replace #t)
2953 (module-add! public-i name var)))
2954 names)))
2955
2956 ;; Re-export a imported variable
2957 ;;
2958 (define (module-re-export! m names)
2959 (let ((public-i (module-public-interface m)))
2960 (for-each (lambda (name)
2961 (let ((var (module-variable m name)))
2962 (cond ((not var)
2963 (error "Undefined variable:" name))
2964 ((eq? var (module-local-variable m name))
2965 (error "re-exporting local variable:" name))
2966 (else
2967 (module-add! public-i name var)))))
2968 names)))
2969
2970 (defmacro export names
2971 `(eval-case
2972 ((load-toplevel compile-toplevel)
2973 (call-with-deferred-observers
2974 (lambda ()
2975 (module-export! (current-module) ',names))))
2976 (else
2977 (error "export can only be used at the top level"))))
2978
2979 (defmacro re-export names
2980 `(eval-case
2981 ((load-toplevel compile-toplevel)
2982 (call-with-deferred-observers
2983 (lambda ()
2984 (module-re-export! (current-module) ',names))))
2985 (else
2986 (error "re-export can only be used at the top level"))))
2987
2988 (defmacro export-syntax names
2989 `(export ,@names))
2990
2991 (defmacro re-export-syntax names
2992 `(re-export ,@names))
2993
2994 (define load load-module)
2995
2996 ;; The following macro allows one to write, for example,
2997 ;;
2998 ;; (@ (ice-9 pretty-print) pretty-print)
2999 ;;
3000 ;; to refer directly to the pretty-print variable in module (ice-9
3001 ;; pretty-print). It works by looking up the variable and inserting
3002 ;; it directly into the code. This is understood by the evaluator.
3003 ;; Indeed, all references to global variables are memoized into such
3004 ;; variable objects.
3005
3006 (define-macro (@ mod-name var-name)
3007 (let ((var (module-variable (resolve-interface mod-name) var-name)))
3008 (if (not var)
3009 (error "no such public variable" (list '@ mod-name var-name)))
3010 var))
3011
3012 ;; The '@@' macro is like '@' but it can also access bindings that
3013 ;; have not been explicitely exported.
3014
3015 (define-macro (@@ mod-name var-name)
3016 (let ((var (module-variable (resolve-module mod-name) var-name)))
3017 (if (not var)
3018 (error "no such variable" (list '@@ mod-name var-name)))
3019 var))
3020
3021 \f
3022
3023 ;;; {Parameters}
3024 ;;;
3025
3026 (define make-mutable-parameter
3027 (let ((make (lambda (fluid converter)
3028 (lambda args
3029 (if (null? args)
3030 (fluid-ref fluid)
3031 (fluid-set! fluid (converter (car args))))))))
3032 (lambda (init . converter)
3033 (let ((fluid (make-fluid))
3034 (converter (if (null? converter)
3035 identity
3036 (car converter))))
3037 (fluid-set! fluid (converter init))
3038 (make fluid converter)))))
3039
3040 \f
3041
3042 ;;; {Handling of duplicate imported bindings}
3043 ;;;
3044
3045 ;; Duplicate handlers take the following arguments:
3046 ;;
3047 ;; module importing module
3048 ;; name conflicting name
3049 ;; int1 old interface where name occurs
3050 ;; val1 value of binding in old interface
3051 ;; int2 new interface where name occurs
3052 ;; val2 value of binding in new interface
3053 ;; var previous resolution or #f
3054 ;; val value of previous resolution
3055 ;;
3056 ;; A duplicate handler can take three alternative actions:
3057 ;;
3058 ;; 1. return #f => leave responsibility to next handler
3059 ;; 2. exit with an error
3060 ;; 3. return a variable resolving the conflict
3061 ;;
3062
3063 (define duplicate-handlers
3064 (let ((m (make-module 7)))
3065
3066 (define (check module name int1 val1 int2 val2 var val)
3067 (scm-error 'misc-error
3068 #f
3069 "~A: `~A' imported from both ~A and ~A"
3070 (list (module-name module)
3071 name
3072 (module-name int1)
3073 (module-name int2))
3074 #f))
3075
3076 (define (warn module name int1 val1 int2 val2 var val)
3077 (format (current-error-port)
3078 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3079 (module-name module)
3080 name
3081 (module-name int1)
3082 (module-name int2))
3083 #f)
3084
3085 (define (replace module name int1 val1 int2 val2 var val)
3086 (let ((old (or (and var (object-property var 'replace) var)
3087 (module-variable int1 name)))
3088 (new (module-variable int2 name)))
3089 (if (object-property old 'replace)
3090 (and (or (eq? old new)
3091 (not (object-property new 'replace)))
3092 old)
3093 (and (object-property new 'replace)
3094 new))))
3095
3096 (define (warn-override-core module name int1 val1 int2 val2 var val)
3097 (and (eq? int1 the-scm-module)
3098 (begin
3099 (format (current-error-port)
3100 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3101 (module-name module)
3102 (module-name int2)
3103 name)
3104 (module-local-variable int2 name))))
3105
3106 (define (first module name int1 val1 int2 val2 var val)
3107 (or var (module-local-variable int1 name)))
3108
3109 (define (last module name int1 val1 int2 val2 var val)
3110 (module-local-variable int2 name))
3111
3112 (define (noop module name int1 val1 int2 val2 var val)
3113 #f)
3114
3115 (set-module-name! m 'duplicate-handlers)
3116 (set-module-kind! m 'interface)
3117 (module-define! m 'check check)
3118 (module-define! m 'warn warn)
3119 (module-define! m 'replace replace)
3120 (module-define! m 'warn-override-core warn-override-core)
3121 (module-define! m 'first first)
3122 (module-define! m 'last last)
3123 (module-define! m 'merge-generics noop)
3124 (module-define! m 'merge-accessors noop)
3125 m))
3126
3127 (define (lookup-duplicates-handlers handler-names)
3128 (and handler-names
3129 (map (lambda (handler-name)
3130 (or (module-symbol-local-binding
3131 duplicate-handlers handler-name #f)
3132 (error "invalid duplicate handler name:"
3133 handler-name)))
3134 (if (list? handler-names)
3135 handler-names
3136 (list handler-names)))))
3137
3138 (define default-duplicate-binding-procedures
3139 (make-mutable-parameter #f))
3140
3141 (define default-duplicate-binding-handler
3142 (make-mutable-parameter '(replace warn-override-core warn last)
3143 (lambda (handler-names)
3144 (default-duplicate-binding-procedures
3145 (lookup-duplicates-handlers handler-names))
3146 handler-names)))
3147
3148 \f
3149
3150 ;;; {`cond-expand' for SRFI-0 support.}
3151 ;;;
3152 ;;; This syntactic form expands into different commands or
3153 ;;; definitions, depending on the features provided by the Scheme
3154 ;;; implementation.
3155 ;;;
3156 ;;; Syntax:
3157 ;;;
3158 ;;; <cond-expand>
3159 ;;; --> (cond-expand <cond-expand-clause>+)
3160 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3161 ;;; <cond-expand-clause>
3162 ;;; --> (<feature-requirement> <command-or-definition>*)
3163 ;;; <feature-requirement>
3164 ;;; --> <feature-identifier>
3165 ;;; | (and <feature-requirement>*)
3166 ;;; | (or <feature-requirement>*)
3167 ;;; | (not <feature-requirement>)
3168 ;;; <feature-identifier>
3169 ;;; --> <a symbol which is the name or alias of a SRFI>
3170 ;;;
3171 ;;; Additionally, this implementation provides the
3172 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3173 ;;; determine the implementation type and the supported standard.
3174 ;;;
3175 ;;; Currently, the following feature identifiers are supported:
3176 ;;;
3177 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3178 ;;;
3179 ;;; Remember to update the features list when adding more SRFIs.
3180 ;;;
3181
3182 (define %cond-expand-features
3183 ;; Adjust the above comment when changing this.
3184 '(guile
3185 r5rs
3186 srfi-0 ;; cond-expand itself
3187 srfi-4 ;; homogenous numeric vectors
3188 srfi-6 ;; open-input-string etc, in the guile core
3189 srfi-13 ;; string library
3190 srfi-14 ;; character sets
3191 srfi-55 ;; require-extension
3192 srfi-61 ;; general cond clause
3193 ))
3194
3195 ;; This table maps module public interfaces to the list of features.
3196 ;;
3197 (define %cond-expand-table (make-hash-table 31))
3198
3199 ;; Add one or more features to the `cond-expand' feature list of the
3200 ;; module `module'.
3201 ;;
3202 (define (cond-expand-provide module features)
3203 (let ((mod (module-public-interface module)))
3204 (and mod
3205 (hashq-set! %cond-expand-table mod
3206 (append (hashq-ref %cond-expand-table mod '())
3207 features)))))
3208
3209 (define cond-expand
3210 (procedure->memoizing-macro
3211 (lambda (exp env)
3212 (let ((clauses (cdr exp))
3213 (syntax-error (lambda (cl)
3214 (error "invalid clause in `cond-expand'" cl))))
3215 (letrec
3216 ((test-clause
3217 (lambda (clause)
3218 (cond
3219 ((symbol? clause)
3220 (or (memq clause %cond-expand-features)
3221 (let lp ((uses (module-uses (env-module env))))
3222 (if (pair? uses)
3223 (or (memq clause
3224 (hashq-ref %cond-expand-table
3225 (car uses) '()))
3226 (lp (cdr uses)))
3227 #f))))
3228 ((pair? clause)
3229 (cond
3230 ((eq? 'and (car clause))
3231 (let lp ((l (cdr clause)))
3232 (cond ((null? l)
3233 #t)
3234 ((pair? l)
3235 (and (test-clause (car l)) (lp (cdr l))))
3236 (else
3237 (syntax-error clause)))))
3238 ((eq? 'or (car clause))
3239 (let lp ((l (cdr clause)))
3240 (cond ((null? l)
3241 #f)
3242 ((pair? l)
3243 (or (test-clause (car l)) (lp (cdr l))))
3244 (else
3245 (syntax-error clause)))))
3246 ((eq? 'not (car clause))
3247 (cond ((not (pair? (cdr clause)))
3248 (syntax-error clause))
3249 ((pair? (cddr clause))
3250 ((syntax-error clause))))
3251 (not (test-clause (cadr clause))))
3252 (else
3253 (syntax-error clause))))
3254 (else
3255 (syntax-error clause))))))
3256 (let lp ((c clauses))
3257 (cond
3258 ((null? c)
3259 (error "Unfulfilled `cond-expand'"))
3260 ((not (pair? c))
3261 (syntax-error c))
3262 ((not (pair? (car c)))
3263 (syntax-error (car c)))
3264 ((test-clause (caar c))
3265 `(begin ,@(cdar c)))
3266 ((eq? (caar c) 'else)
3267 (if (pair? (cdr c))
3268 (syntax-error c))
3269 `(begin ,@(cdar c)))
3270 (else
3271 (lp (cdr c))))))))))
3272
3273 ;; This procedure gets called from the startup code with a list of
3274 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3275 ;;
3276 (define (use-srfis srfis)
3277 (process-use-modules
3278 (map (lambda (num)
3279 (list (list 'srfi (string->symbol
3280 (string-append "srfi-" (number->string num))))))
3281 srfis)))
3282
3283 \f
3284
3285 ;;; srfi-55: require-extension
3286 ;;;
3287
3288 (define-macro (require-extension extension-spec)
3289 ;; This macro only handles the srfi extension, which, at present, is
3290 ;; the only one defined by the standard.
3291 (if (not (pair? extension-spec))
3292 (scm-error 'wrong-type-arg "require-extension"
3293 "Not an extension: ~S" (list extension-spec) #f))
3294 (let ((extension (car extension-spec))
3295 (extension-args (cdr extension-spec)))
3296 (case extension
3297 ((srfi)
3298 (let ((use-list '()))
3299 (for-each
3300 (lambda (i)
3301 (if (not (integer? i))
3302 (scm-error 'wrong-type-arg "require-extension"
3303 "Invalid srfi name: ~S" (list i) #f))
3304 (let ((srfi-sym (string->symbol
3305 (string-append "srfi-" (number->string i)))))
3306 (if (not (memq srfi-sym %cond-expand-features))
3307 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3308 use-list)))))
3309 extension-args)
3310 (if (pair? use-list)
3311 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3312 `(begin ,@(reverse! use-list)))))
3313 (else
3314 (scm-error
3315 'wrong-type-arg "require-extension"
3316 "Not a recognized extension type: ~S" (list extension) #f)))))
3317
3318 \f
3319
3320 ;;; {Load emacs interface support if emacs option is given.}
3321 ;;;
3322
3323 (define (named-module-use! user usee)
3324 (module-use! (resolve-module user) (resolve-interface usee)))
3325
3326 (define (load-emacs-interface)
3327 (and (provided? 'debug-extensions)
3328 (debug-enable 'backtrace))
3329 (named-module-use! '(guile-user) '(ice-9 emacs)))
3330
3331 \f
3332
3333 (define using-readline?
3334 (let ((using-readline? (make-fluid)))
3335 (make-procedure-with-setter
3336 (lambda () (fluid-ref using-readline?))
3337 (lambda (v) (fluid-set! using-readline? v)))))
3338
3339 (define (top-repl)
3340 (let ((guile-user-module (resolve-module '(guile-user))))
3341
3342 ;; Load emacs interface support if emacs option is given.
3343 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3344 (module-ref guile-user-module 'use-emacs-interface))
3345 (load-emacs-interface))
3346
3347 ;; Use some convenient modules (in reverse order)
3348
3349 (set-current-module guile-user-module)
3350 (process-use-modules
3351 (append
3352 '(((ice-9 r5rs))
3353 ((ice-9 session))
3354 ((ice-9 debug)))
3355 (if (provided? 'regex)
3356 '(((ice-9 regex)))
3357 '())
3358 (if (provided? 'threads)
3359 '(((ice-9 threads)))
3360 '())))
3361 ;; load debugger on demand
3362 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3363
3364 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3365 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3366 ;; no effect.
3367 (let ((old-handlers #f)
3368 (signals (if (provided? 'posix)
3369 `((,SIGINT . "User interrupt")
3370 (,SIGFPE . "Arithmetic error")
3371 (,SIGSEGV
3372 . "Bad memory access (Segmentation violation)"))
3373 '())))
3374 ;; no SIGBUS on mingw
3375 (if (defined? 'SIGBUS)
3376 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3377 signals)))
3378
3379 (dynamic-wind
3380
3381 ;; call at entry
3382 (lambda ()
3383 (let ((make-handler (lambda (msg)
3384 (lambda (sig)
3385 ;; Make a backup copy of the stack
3386 (fluid-set! before-signal-stack
3387 (fluid-ref the-last-stack))
3388 (save-stack 2)
3389 (scm-error 'signal
3390 #f
3391 msg
3392 #f
3393 (list sig))))))
3394 (set! old-handlers
3395 (map (lambda (sig-msg)
3396 (sigaction (car sig-msg)
3397 (make-handler (cdr sig-msg))))
3398 signals))))
3399
3400 ;; the protected thunk.
3401 (lambda ()
3402 (let ((status (scm-style-repl)))
3403 (run-hook exit-hook)
3404 status))
3405
3406 ;; call at exit.
3407 (lambda ()
3408 (map (lambda (sig-msg old-handler)
3409 (if (not (car old-handler))
3410 ;; restore original C handler.
3411 (sigaction (car sig-msg) #f)
3412 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3413 (sigaction (car sig-msg)
3414 (car old-handler)
3415 (cdr old-handler))))
3416 signals old-handlers))))))
3417
3418 ;;; This hook is run at the very end of an interactive session.
3419 ;;;
3420 (define exit-hook (make-hook))
3421
3422 \f
3423
3424 ;;; {Deprecated stuff}
3425 ;;;
3426
3427 (begin-deprecated
3428 (define (feature? sym)
3429 (issue-deprecation-warning
3430 "`feature?' is deprecated. Use `provided?' instead.")
3431 (provided? sym)))
3432
3433 (begin-deprecated
3434 (primitive-load-path "ice-9/deprecated.scm"))
3435
3436 \f
3437
3438 ;;; Place the user in the guile-user module.
3439 ;;;
3440
3441 (define-module (guile-user))
3442
3443 ;;; boot-9.scm ends here